MIIFPS

MIPS32® microAptivi™ UC Processor
Core Family Software User’s Manual

Document Number: MD00934
Revision 01.03
July 30, 2014



Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

alt{ont YION2 1LJiigw /7 12055320 /205 CI-YIEe {2FigHIS FaSia al-yil-6 wSaazy nmono



MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



Table of Contents

Chapter 1: Introduction to the MIPS32® microAptiv™ UC Processor Core .......ccccvvrrvvrerreeeeeesneenn 18
P B =T (U] £ PSPPSR 19
1.2: microAptivT™ UC Core BIOCK DIi@gram..........ueiiiiiiiiieiiiiie ittt 23

1.2.1: Required LOGIC BIOCKS .......eeiiiiiiiiiie ittt et e bbb e e e e e 24
1.2.2: Optional LOGIC BIOCKS.........eiiiiiiiiiiee e 31

Chapter 2: Pipeline of the microAptiv™ UC Core........cccccccoiiiumnnnnnnneennennnennneennenneeeeeennennnneeseenssnnsenne 38

D B 1o T=Y g oI =T [T PSSR 38
2. 1.1 1 Stage: INSrUCtiON FEICN .....ooi e e 40
2.1.2: E Stage: EXECULION. ....ccoiiiieiie ittt et e e ettt e e e et e e e e e e e et e e e e nees 40
2.1.3: M Stage: MEMOTY FEICN .....coiiiiiiii et e e e e e e 41
B B S NS =T T 1o | o L SRR 41
2.1.5: W Stage: WHEEDACK ...ttt e et e e e et e e e e e e e nneeas 41

2.2: MUIIDlY/DiVIdE OPEIAtiONS .......eiiiiiiiiiiiei ittt e ettt e e e ettt e e e e sttt e e s e nae e e e anbeeeeeeannneeeens 41

2.3: MDU Pipeline with DSP Module ENabled.............ueiiiiiiiie et 42
D22 TRt 1Y 15 SRS 42
2.3.2: DSP Module INStruCtion LAtENCIES .......ciiiiiiiiiie ittt 43
2.3.3: High-performance MDU Pipeling Stages .........oouuiiiiiiiiiiiie et 46
2.3.4: High-performance MDU Divide Operations............cooiiuiiiiiiiiiiiiiee i 47

2.4: MDU Pipeline - High-performance MDU with DSP Module Disabled.............ccoccuviiiiiiiiiiiiiee e, 48
2.4.1: 32x16 Multiply (High-Performance MDU) ..........cc.uuiiiiiiiiiie et 51
2.4.2: 32x32 Multiply (High-Performance MDU) ..........c.uuiiiiiiiiiie et 51
2.4.3: Divide (High-Performance MDU) ..........oooiiiiiiiiiiiie ettt e et e e nnaee e nneeas 52

2.5: MDU Pipeline - Area-Efficient MDU with DSP Module Disabled ... 53
2.5.1: Multiply (Area-EffiCient MDU).......cooiiiiiiiieiiiiee ettt e e e e e e nneeas 54
2.5.2: Multiply Accumulate (Area-Efficient MDU) .........oooiiiiii e 54
2.5.3: Divide (Area-Efficient MDU) ........ooiiiiiiiiie ettt et e e et e e e enere e e e e e nneeas 55

2.6: BranCR D IAY ...ttt e e e e e e 55

2.7 DAl@ BYP@SSING ..ttt ittt ettt e e e e e e e e e e e e e e e e e ee s 56
27707 L0AA DEIAY ...ttt e e 58
2.7.2: Move from HI/LO and CPO DEIAY..........couiiiuiiiiieiiiiieie ettt e e e e e 58

2.8: COProCeSSOr 2 INSITUCTIONS ......eiiiiiiiiiii ettt ettt ettt e e sttt e e e a et e e e s smee et e e e anaeee e ennseeeeeeannnneeeeas 59

2,97 INTEIOCK HANAIING ...ttt e e e e e e e e e e e e e e e e e e eee e 60

D2 L0 TS 110 X 0o g T 1140 1= SRRSO 61

2. 1712 INSrUCHION INTEITOCKS ......eeeieeiee ettt e e e e eees e e e e e e e e e e nneeeens 61

22  HAZAIAS ...t e et e e e e e e n e e e n e e e s a e es 62
2.12.1: TYPES OF HAZAIAS ..ottt e e e e e e e e e e e e e e e e e eeeaessennnnbesrneeeeeas 63
2.12.2: INSTrUCHION LISHING ...ttt e e e e s e e e e e e e aeaeaaaaaeaeaeeeeeeeanenes 64
2.12.3: EIMINAtiNG HAZAIAS ...ttt ettt e e e e e e e e e e e e e aaaeeeaeaeaeeeeeaenees 64

Chapter 3: Floating-Point Unit of the microAptiv™ UC COre .......ccccccommmmmmmmmmmmmmmeereeeeeeeeeeeeeeeeseneeenes 65

312 FRALUIES OVEIVIEW ..ottt ettt ettt h e e bttt oa et e sttt o4 b et e e b et e e a et e e nb e e eabee e e esbeeeanbeeeanneeean 65

KR I R = =T g o =T o £ ST PR 66
3.2: Enabling the Floating-Point COPrOCESSON ... . ... e ittt e e e e e e e e e e e e e aaa e e s 67
3.3 DAt FOIMMALS ...ttt ettt e e e et e e e e e e 67
3.3.1: Floating-Point FOrMALS.......ooiiiiiii et e e e e e e st e e e e aeae e an 67
3.3.2: FiIXed-POINt FOIMEALS .......eeeiiiiie ettt e s 70

4 MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



3.4: Floating-Point GENEral REGISIEIS .......coiuiiiiiii it e e st e e e s s e e e s aneeeeeeeanes 71
3.4.1: FPRs and Formatted Operand LayOuUt...........cccuuiiiiiiiiiiiie et e e snneeeeeee s 71
3.4.2: Formats of Values Used inN FP REQISTErS ...t 71
3.4.3: Binary Data Transfers (32-Bit and 64-Bit) ...........coooiiiiiiiiiii e 73

3.5: Floating-Point Control REGISTEIS. ..o it e e e e e e e e e as 74
3.5.1: Floating-Point Implementation Register (FIR, CP1 Control Register 0)...........ooociiiiiiiiiiiininnnnn. 75
3.5.2: Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25).........ccccccccviiieiininnnnn. 77
3.5.3: Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)............coooiiiiiiiiiiiiieiianenenn. 78
3.5.4: Floating-Point Enables Register (FENR, CP1 Control Register 28) ... 78
3.5.5: Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)........cccccccvevieeennnnnn. 79
3.5.6: Operation of the FS/FO/FN BitS ........cooiiiiiieeeee e e e e e e e e e e e e e eeaeeaes 82
3.5.7: FCSR Cause Bit Update FIOW..........ccooiiiiiiecce e e e e e e e e e e e eee e e e eeeeeees 85

3.6: INSITUCHON OVEIVIEW ...ttt oottt e et e e e e e e e s e e e b bete e e e e e e e e e e e e nnnbsbeneeaeeaaaaaans 86
3.6.1: Data Transfer INSIrUCHIONS ..o et e e e e e e e e e e e e e e e 86
3.6.2: ArithmeEtiC INSIIUCHONS ...ttt e e e e e e e e e eeeaaaaaeeeas 88
3.6.3: ConVErsion INSIIUCLIONS. ... ..ooiii ettt ettt e e e e e e e e e e e eeeeaaeaaaaeeeas 89
3.6.4: Formatted Operand-Value Move INStrUCHIONS ..........cooiiiiiiiiii e 90
3.6.5: Conditional Branch INSTIUCLIONS ..........eeiiiiiie e 90
3.6.6: Miscellaneous INSIUCHIONS .......cooiii ettt e e e e e e e e e e e e e e e e aaaee e s 91

BT EXCEPIIONS ...ttt et oot eeeeeeeeeaeaeeaeeeetteaaaeteetrr————————————————— 91
3.7.1: Precise EXCEPLION MOE ........coo oot e e e e e e e e e e e e e e e e e e e e eeanaaes 92
3.7.2: EXCEPLION CONILIONS .....iiiiiiiiieiiee et e e ettt e e e e e e e e e e e aaaeaeaaaeeeeeeeanenes 92

3.8: Pipeline and PerfOrmMancCe ...........oooiiiiiiiieeee et e e e e e e e e e e e et e e e e e e 95
3.8.1: PIPEIINE OVEIVIEW ...ttt et e e e e e e e e e e et ettt e e e e e e e e e e aaaaaaaaaaaeaeeeeeeeanenes 95
KR =1V o = 1= o O OSSO PP 96
3.8.3: Repeat Rate and LatenCy ........coooiiiiiiiiiiii et 97

IR 2 0101 B O BT ] o PP 97

Chapter 4: The MIPS® DSP MOAUIE ........cciiiiiiiiiinerrreesssssssssss s s sssssnsss s s s s ssmmn s s s s s sssssssssmnnsssnses 929

4.1: Additional Register State for the DSP MOAUIE............oiiiiiiii e 99
T I T | B O B =T 1] (=] £ RO P PTPTUPPPP 99
4.1.2: DSPCONIOI REGISIET ...t 99

4.2: Software Detection of the DSP Module REVISION 2 ..........ooiiiiiiiiiiiiieeee e 101

Chapter 5: Memory Management of the microAptivi™ UC CoOre.........cooumiimmiemmmmmeermmeeerseeeeeeeeeeeeeeeens 102

T A 1 ol 8T 1] o F PSP P ST PP PP PRPRPP PP 102
5.1.1: Memory Management Unit (MMU) ..........ooooiiiiiiieee et reeaae e e 102

IV V[ To (=Y 0o ) @ 01T =1 i o] o WP SS PP 103
5.2.1: Virtual MEMOIY SEOMIENES .....iiiiiii i ettt e e e e e e e e e s e et e e e e eaeeeeeeseebanbreaaaaaaeeaeas 103
5.2.2: USEI IMIOUE......coeeeie ettt ettt e et e e e e e e s e e e e e e e e e e e 105
5.2.31 KEIMEI IMOUE..... ..ttt e s e e e et e e e s e e e e e eanneas 106
oA S =T o 18 o 1Y (o o = T RPN 108

LRGN/ =T o] o] 1 o 1YY USRS 110

R YV ] (=Y 0 O] o] (o I O] o] o Tot=T- T Yo ] SRS PP 112

Chapter 6: Exceptions and Interrupts in the microAptiv™ UC Core ......cccccemveereeieeeeseeesesseseeeeeeeens 113

T A = (o7=T o o] W @] oo [1 o] 1S PR UUPPOURPRRRS 113

N A o o=t o ([ o I o4 1 Y2 UT USSP 114

G T 01 (=14 (U] o] £ O PP OSSO OPRPR 115
B.3. 1. INEEITUPE IMOES ..ot e e e e e ettt ettt e e e e e e e e aeeaaaaeaeaeeeeeeeenes 115
6.3.2: Generation of Exception Vector Offsets for Vectored Interrupts...........ooovvvmiiiiiiiiiiiiiiiieeeeees 124
6.3.3: MCU ASE Enhancement for Interrupt Handling..........ooooeiii e 125

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 5



6.4: GPR Shadow ReEGISIEIS. ... ..eiiiiiiiiiiiii ittt e ettt e e s ettt e e s et e e e e e anns e e aansseeeaesannneeeens 126

6.5: EXCepPtion VECtOr LOCAIONS .......coiiiiieieieete et e e e e e e e e e e e e e e e e e e e e e e e e e e ae e senr s 127
6.6: General EXCEePtioN PrOCESSING ....cuiiiiiiiiiiiiiit ettt e e e e e e e e e e ettt e e e e e e e e e e e nnnbenaeeeeeeas 129
6.7: Debug EXCEPHON PrOCESSING .....eeiiiiiiiiiiiiiiiit ettt ettt et e e e e e e e e s e s ee et e e eee e e e e e nnnbeneeeeeeeas 131
6.8: EXCEPLION DESCIIPLIONS ... .ottt e e e e e e e e e e e e e e e e e e et e e ee e e e e e eeae i r 132
6.8.1: Reset/SOftRESEt EXCEPLON ... e e e e e e e e e e e e e e e eeaees 132
6.8.2: Debug Single Step EXCEPLON .......eiiiieiiiiii et e e 133
6.8.3: Debug INterrupt EXCEPLION ....cooiiii et e e e e e e e e e e e e e e e e 134
6.8.4: Non-Maskable Interrupt (NMI) EXCEPON ......cooi it 134
6.8.5: INtErrUPE EXCEPLION ...ttt e e e e e e e e e e e e e e e e e aaaaaaaeaaaaas 135
6.8.6: Debug Instruction Break EXCEePLION .........u i it 135
6.8.7: Address Error Exception — Instruction Fetch/Data ACCESS.........ccooiiiiiiiiiiiiiiccceie e, 135
6.8.8: SRAM Parity Error EXCEPLION ... ... e e e e 136
6.8.9: Bus Error Exception — Instruction Fetch or Data ACCESS..........ccooiiiiiiiiiiiiiccccceee e, 136
6.8.10: ProteCtion EXCEPLON ......uiii ittt e e e e e e e e e aaaaeaaeaeaaaaaeaeas 137
6.8.11: Debug Software Breakpoint EXCEePLION .......cooi i 137
6.8.12: Execution Exception — System Call..........oooiiiiiii e 137
6.8.13: Execution Exception — Breakpoint............uuiiiiiiiiic e 138
6.8.14: Execution Exception — Reserved INStruction ... 138
6.8.15: Execution Exception — Coprocessor UNUSabIe ............cooooeiiiiiiiiiiiiiiiee et 138
6.8.16: Execution Exception — CorExtend Unusable..............uuuuiiiiiiiiiiiiii e 139
6.8.17: Execution Exception — DSP Module State Disabled ...............cccoooiiiiiiiiiicccece e 139
6.8.18: Execution Exception — Coprocessor 2 EXCEPLioN.........ccoooiiiiiiiiiiiiiiicee e 139
6.8.19: Execution Exception — Implementation-Specific 1 Exception.............cccoooviiimiiiiicciiiiec e, 140
6.8.20: Execution Exception — Integer OVerflow..........cooi e 140
6.8.21: EXeCUtion EXCEPLION — Trap.....cccoiiiiiiieeeee ettt e e e e e e e e e e e e e e e e e e e e aaaeeaeaeeenes 140
6.8.22: Debug Data Break EXCEPLION ..........uiiiiiiiiii ettt 141
6.8.23: Complex Break EXCEPLION........oo ettt e e e e e e e e e e 141
6.9: Exception Handling and Servicing FIOWCHhAIS ...........ooiiiiiiiiiii e 141
Chapter 7: CP0 Registers of the MiCroAptiv™ UC COre ......ccuuiiiiiiiieiiiiiisiiecseesseeesssseseeseesessesseeseee s 145
7.1 CPO REJISIEr SUMIMAIY ...ttt ettt e o bttt e s e bttt e e et et e b et e e e s snneeee s 145
7.2: CPO RegiSter DESCIIPLIONS .....ciiiiiiiiiiiiiiiee ettt ettt e e e et e e e e e e s nnaeeeens 147
7.2.1: UserLocal Register (CPO Register 4, SEIECt 2)........ccoiiiiiiiiiiiiiieee e 147
7.2.2: HWREnNa Register (CPO Register 7, Select 0)........cooiiiiiiiiiiiiieeee e 148
7.2.3: BadVAddr Register (CPO Register 8, Select 0)........cooiuiiiiiiiiiiiie e 149
7.2.4: BadInstr Register (CPO Register 8, SEIECE 1).....oiuuiiiiiiiiiiie e 149
7.2.5: BadInstrP Register (CPO Register 8, SEIECt 2) .......ooi i 150
7.2.6: Count Register (CPO Register 9, SeleCt 0) ......ouuiiiiiiiiiiiie et 151
7.2.7: Compare Register (CP0O Register 11, Select 0) ......ocuiiiiiiiiiiiiii e 152
7.2.8: Status Register (CP0O Register 12, Select 0).......cuuiiiiiiiieeee e 152
7.2.9: IntCtl Register (CPO Register 12, SEIECE 1)....ciiiiiiiiiieiiiiei e 157
7.2.10: SRSCtl Register (CPO Register 12, SElEeCt 2) .......oviiiiiiiiiieie e 161
7.2.11: SRSMap Register (CP0O Register 12, Select 3)......ccoiouiiiiiiiiiiieieee e 164
7.2.12: View_IPL Register (CPO Register 12, SElECt 4).......ocuiiiiiiiiiiiee e 165
7.2.13: SRSMap2 Register (CPO Register 12, SEIECt 5)....ccciiiuiiiieiiiiiii e 165
7.2.14: Cause Register (CP0O Register 13, SeleCt 0).......cooiiiiiiiiiiiiiiiee e 166
7.2.15: View_RIPL Register (CPO Register 13, SeIeCt 4) ........evviiiiiiiiieiiie et 171
7.2.16: NestedExc (CPO Register 13, SeleCt 5) ......uiiiiiiiiiiiiie e 171
7.2.17: Exception Program Counter (CPO Register 14, Select 0)........cccooiiiiiieiiiiiiiiieeiieee e 172
7.2.18: NestedEPC (CPO Register 14, SElECE 2)......coiiiiiiiiie it 173
7.2.19: Processor Identification (CPO Register 15, SeleCt 0) ........coiiuiiiiiiiiiiiieeiiiie e 174
7.2.20: EBase Register (CP0O Register 15, SeleCt 1) ....uuiiiiiiiiiiiiiiee e 175

MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



7.2.21: CDMMBase Register (CP0 Register 15, SElECE 2)........ooiiiiiiiiiieiiieee et 176

7.2.22: Config Register (CP0 Register 16, SeleCt 0).........coveiiiiiiiieiiiiie e 177
7.2.23: Config1 Register (CPO Register 16, SEIECE 1)......uuiiiiiiiiiiieiiie e 179
7.2.24: Config2 Register (CP0O Register 16, SEIECE 2)........ciiiiiiiiiiiiiiiie et 180
7.2.25: Config3 Register (CP0O Register 16, Select 3)......ooo i 181
7.2.26: Configd Register (CP0O Register 16, SeleCt 4).......ooiiiiiiiiieee e 184
7.2.27: Configb Register (CP0O Register 16, SeleCt 5).......oouuiiiiiiiieiee e 184
7.2.28: Config7 Register (CP0O Register 16, SeleCt 7)o 185
7.2.29: Debug Register (CPO Register 23, Select 0) .....cooiiiiiiiiieeeeiieee e 186
7.2.30: Trace Control Register (CPO Register 23, Select 1) ......oooviiiiiiiiieeeeeee e 190
7.2.31: Trace Control2 Register (CPO Register 23, SeleCt 2) ..o 192
7.2.32: User Trace Data1 Register (CP0O Register 23, Select 3)/User Trace Data2 Register (CPO Register
T = o TSP 194
7.2.33: TraceBPC Register (CP0O Register 23, SeleCt 4) ... 195
7.2.34: Debug?2 Register (CP0 Register 23, SElECE 6) ........uuiiiiiiiiaiiiiiie e 196
7.2.35: Debug Exception Program Counter Register (CPO Register 24, Select 0).........cccevveeveeieeeennnnnn. 197
7.2.36: Performance Counter Register (CPO Register 25, select 0-3) ......cooveiiiiiiiiiiiiiieeeeeeeee, 198
7.2.37: ErrCtl Register (CPO Register 26, SeleCt 0).......cccuuueiiiiiiiiiee e 202
7.2.38: CacheErr Register (CP0O Register 27, SeleCt 0)........eeiiiiiiiiiieiiee e 203
7.2.39: ErrorEPC (CPO Register 30, SeleCt 0) .....iiiiiiiiiiieiie e e e 204
7.2.40: DeSave Register (CP0O Register 31, SeleCt 0) ... 205
7.2.41: KScratchn Registers (CPO Register 31, Selects 210 3)....cooiiiiiiiiiiiie e 205
Chapter 8: Hardware and Software Initialization of the microAptiv™ UC Core.......cccccceeveeeeeeeennn. 207
8.1: Hardware-Initialized ProCessor STate ..........coiiiiiiiiiiiiii e 207
8.1.1: COProCESSOr 0 SEALE ...ttt e e e e e e e e e e e e e ee e e e e e e e e e e e e e e eaaaaaaaaans 207
8.1.2: BUS State MaACKINES ... 208
8.1.3: Static Configuration INPULS ........cooiiiii e 208

I I S = o I [ | £ PSR PPRRO 208
8.2: Software Initialized ProCessor State............ooiiiiiiiiiii e 208
S B = Te 1] (=T 1= S SRR 208
8.2.2: COProCESSOr 0 SEALE ....uieiiiiiiiiie ettt e e e e e e e e e s e ettt e e e e e e e e e e e e e e e eeaaaaaaaa s 208
Chapter 9: Power Management of the microAptiv™ UC CoOre........ccouiiiimimimmimmmeeeeseeeeeseeeseeeeeeeeeeeeeas 210
9.1: Register-Controlled POWer ManagemENt ...........cc.uuuiiiiiiiiiee et e e e e e e e e e e e e e e e e e e e st neeeeees 210
9.2: Instruction-Controlled Power ManagemeNnt ...........coceiiiiiiiiiiiiieiieeee e rae e 211
Chapter 10: EJTAG Debug Support in the microAptiv™ UC COre.....cccccvvererrreemeerresssseessssesssseesens 212
10.1: Debug CoNtrol REGISTET .....ooiiiiiii ettt e e e e e e e e e e et e e e e e e e e e e e e e annnenes 212
10.2: Hardware BreakpOints ....... . ittt e et e et ettt e e e e e e e e e e e e e e e aaaaaaaaaaaaa 217
10.2.1: Data Breakpoints. ... ..ccooo oottt e e e e e e e e e e e e e e e e e e e ae—ara i ————— 218
10.2.2: ComMPIeX BreakpOintS .......oeviiiiiiiiii i e e e e e e e e e e e e e e e e e e e e e e rea e ae e raa—————— 218
10.2.3: Conditions for Matching Breakpoints ... 218
10.2.4: Debug Exceptions from BreakpointS...... ... 222
10.2.5: Breakpoint Used as TriggerPOiNt. .. ... oot e e e e e ee e e e e e e e e ennnnenes 223
10.2.6: Instruction Breakpoint REGISTEIS ......oooi i e e 223
10.2.7: Data Breakpoint REGISTErS .......ooiiiiiiiiiiiit ettt e e e e e e e e e e e nnneenes 228
10.2.8: Complex BreaKpoint REGISTEIS. ... ..o i e e e 235
10.3: CompleX BreaKpoint USAQE ... ...ccoiiiiiiiiiiee ittt e e e e ettt et e e e e e e e e s e aannbnaseeeeaeeeeaaaannnnnnes 239
10.3.1: Checking for Presence of Complex Break SUPPOIt............uueiiiiiiiiiaiiiiiiiieieeee e 239
10.3.2: General Complex Break Behavior..........ccooooiiiiiiiiiiiic ettt 240
10.3.3: USage Of PASS COUNLEIS ...ttt e ettt et e e e e e e e e e s e e eebeeeeeeeeeeeeeaaannneenes 241

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 7



10.3.4: Usage of TUPIE Bre@KPOINTS.......ccciiiiiiiiie ittt et e e e sttt e e e e e snt e e e e s sntaeeeeeeenteeeeaeens 241

10.3.5: Usage of Priming CONITIONS. ........coiuuiiiiiiiiiiiie ettt et e e e e st e e e e s snaeeaaeeeanes 241
10.3.6: Usage of Data Qualified BreakpointS ..........ccueiiiiiiiiiiie e 242
10.3.7: Usage of STopWatCh TIMEIS .......o i e e e e e e 242
T0.4: TESE ACCESS PO (TAP) .ttt e e e e e e e e e e ettt et e e e e e e e aa e e nbnbeeeaeaeeeeaaaannnenes 243
10.4.1: EJTAG Internal and External INterfaces. ... 243
10.4.2: Test ACCESS POrt OPEIration ........uuueiii i e e e e e e e e e e e e e e e e e e e e e e reas b eereaaananan 244
10.4.3: Test Access Port (TAP) INSTrUCHONS ... e e e e e e 247
T0.5: EJTAG TAP REQGISIEIS ...ttt e oottt et e e e e e e e e e e e nnnbe e e e e e e e e aaeannnenes 250
10.5.1: INSErUCHION REGISTEN ... ettt e e e e e e e e e e e e e e e e e e e e nnnnnenes 250
10.5.2: Data ReGISIErS OVEIVIEW ........eeiiiiiiiiiiiie ettt et e e e e e e e e e et eeeeeeaaeeaaannnnnenes 251
10.5.3: Processor ACCess AdAress RegISTer..........uuuiiiiiiiiiii e e e 259
10.5.4: Fastdata Register (TAP Instruction FASTDATA) ... 260
T0.6: TAP PrOCESSOr ACCESSES ... .eeiiiiiiitieee ettt ettt e et e e et e e e e et e e e e bt e e e e b et e e e e b e e b be e e e e aneeas 261
10.6.1: Fetch/Load and Store from/to EJTAG Probe Through dmseg ..........oooiiiiiiiiiiiiiiiiiie s 262
OB A T=To TN =Y =T o 18 Lo PSRRI 263
10.7.1: Disabling EJTAG DebDUQGGING ---eetetiiiiiaaiaaiiei ittt e ettt e e e e e e e e e e e e e eeaeaaeeeaannnennes 263
10.7.2: EJTAG Features Unmodified by SecureDebug ... 264
10.8: IFIOWIrace™ MECRANISI ...t 264
10.8.1: A Simple Instruction-Only Tracing SChEME .........oeiiiiiii e 265
10.8.2: SPECial TraCe MOUES .......oveiiiticie et e e e e e e e e e e e e e e e e e e e e eeeeeeeaesesaaeseresesannanan 266
T0.8.3: ITCB OVEIVIEW ...ttt ettt e e oo bt e e e e ettt e e e ab b et e e e s aab e e e e s aabeneeeenaan 269
10.8.4: ITCB IFIOWLrace INtErfaCe.........cuviiiiiiiiiie e 269
10.8.5: TCB Storage RepresSentation ...... ... er e e e e e e ennnneenes 270
10.8.6: ITCB Register Interface for Software Configurability .............ccccooiiiiiiiiii e, 271
10.8.7: ITCB iFlowtrace Off-Chip INterface ..........ccooii i 275
10.8.8: Breakpoint-Based Enabling of TraCing.........cccuuiiiiiiiieiee e e e e e 275
10.9: PC/Data AdAress SAmMPING ......cooiiiiiiieeiiiieie et e e e e e b b e e e nneeas 276
10.9.1: PC Sampling in Wait State...........oooiiiiiiii e 277
10.9.2: Data ADAress SAMPIING ......oeeiiiiiiiiie et et e e e e e e e e e ebaeee e e aan 277
10.10: Fast DEDUG CRaNNEL.......coouiiiieiiiee ettt e e e e e e b e e e anaeas 277
10.10.1: Common Device MEMOTY MaP.........uiiiiiiiiiiiie ettt e s eeeenanes 278
10.10.2: Fast Debug Channel INTerrupt........ ..o 278
10.10.3: microAptiv™ UC Core FDC BUFfErs ..o e e 278

O L0 S =T =Y o 8 4T Yo [ SRR 280
10.10.5: FDC TAP REGISIET ... .ttt ettt e e et e e e st ea e e e ane 280
10.10.6: Fast Debug Channel REgISIEIS ........cooiiiiiiiiii e 281
L R o B N € [ 01 1= 7= [o = T TSP T PSRRI 285
Chapter 11: InStruction Set OVervieW.......... e e e e e e e e e e eeaas 286
11.1: CPU INSErUCION FOMMALS ...ttt e et e e e et e e e b e e e e e 286
11.2: Load and STOre INSTIUCHIONS. .......cooiiieie ettt e e e b e e e enneeas 287
11.2.1: Scheduling @ Load Delay SIOt...........uiiiiiiiiiieie et ee e 287
11.2.2: DEfiNING ACCESS TYPES. .. eeeieiiittiiie e ittt ettt e e ettt e e e ettt e e e e s aa bt e e e e e abbe e e e e e abbe e e e e s anbeeeesanbeneeeenanes 287
11.3: Computational INSTIUCHIONS ........eiii et e b e e e enneeas 288
11.3.1: Cycle Timing for Multiply and Divide INStrUCHONS...........ccuiiiiiiiiiie e 289
11.4: Jump and Branch INSITUCLIONS ..ot et e e e 289
11.4.1: Overview of JUMP INSITUCHIONS .....o.oiiiiii e 289
11.4.2: Overview of Branch INSIIUCHIONS .........oooiiiiiiii e e 289
(RS T a1 1ol [0 TS] 14 BT 1 o] I PP PRPP 289
11.6: COProCeSSOr INSITUCHIONS ... ..eeiiiiiie ettt e e e e e e e e e e e bbe e e e e nnbbe e e e e e nnnaeas 289
11.7: Enhancements {0 the MIPS ArchiteCtUre............oooiiiiiiiie e 289
11.7.1: CLO - Count LEAAING ONES....cooiiiiiiiiie ittt e e et e e et e e e e e anb e e e e e e nneeas 290

8 MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



11.7.2: CLZ - CoUNt LEAAING ZEIOS.......eeiiiieiiiiiiie ettt e e ettt e e e e et e e e e e bt e e e e s abteeeeeesreeaaeenanes 290

11.7.3: MADD - Multiply @nd Add WO ........c.ouiiiiiiiiiiiee ettt e et e e e st e e e e e ennaaeeeennes 290

11.7.4: MADDU - Multiply and Add Unsigned WO ..........coooiiiiiiiiiieieee e 290

11.7.5: MSUB - Multiply and Subtract WOrd ... 290

11.7.6: MSUBU - Multiply and Subtract Unsigned Word............ooooiiiiiiiiiiieee e 291

T1.7.7: MUL = MURIPIY WOEG. ..ottt e e ettt e e e ettt e e e e sstt e e e e eanteeeeeantneaaeeeane 291

11.7.8: SSNOP- Superscalar INhibit NOP ........ccooiii e 291

T11.8: MCU ASE INSIIUCHIONS ...ttt oottt e e e e e e e e e e e e st teeeeeeeeeeaaaannnnenes 291
T O PSR UPPUPRRN 291

I N T P ERPPPUPRRN 291

T T T 1 = PSR UPPRPRRN 291
Chapter 12: microAptiv™ UC Processor Core INStructions ...........ccuueviiiiiiiiieisiseeissseessseseeseeeeeeeeeens 292
12.1: Understanding the Instruction DesCriptioNS ...........viiiiiiii e 292
12.2: microAptiv™ UC Core OPCOAE AP ... .. e ettt e ettt e e e e e e e e e e e e e eeeeaeeeaaaannnnnnes 292
12.3: MIPS32® Instruction Set for the microAptiv™ UC COre.......cc.uueeiiiiieiiiee e 297
O I PSSO 303
O I OSSO 304
] = USSP 305

| PRSP 307

] PR SPEPR 311

L ettt e et — et e e e aa—eeeeaaaa———eeeaansateeeeaahteeeeeanheaeeeeannteeeeeaanteeeeantteeee e e nnreeeeeeannreeeeeennres 315

T RO UURPRRUPPPPPR 316

S N C ittt e e e et e e —eeeea———eee e e ————eeeaahteeteeeaaateteeeeatteeeeeaastaeeeeearaeeeeeaanraeeeeeeanrreeaeeans 318
L OSSPSR 319
Chapter 13: microMIPS™ Instruction Set Architecture ... 320
RS TR T O AN 1= SRR 320
13.1.1: MIPSI3™ ArCRIECIUIE ...t e ettt e e e e e eeeeeanes 320

13.1.2: DEFAUIT ISA IMOE ...ttt e e ettt e e e ettt e e e e eanbe e e e e e annteeesanteeaeeeeane 321

13.1.3: SOfWAIrE DEIECHON .....cii ittt e ettt e e e et e e e e snbe e e s enbaeaeeeeanes 321

13.1.4: Compliance and SUDSEING .......cciiiiiiiiiiice e e e e e e e e s e e eee e 321

13.1.5: MOAE SWILCN ...ttt e e et e e e et e e e e ann e e e e anbe e e e e e nneeas 321

13.1.6: Branch and JUMP OffSEES.......uuuiiiiiiiii it e e e e e e e e e e e e e e e st aeaeeees 322

13.1.7: Coprocessor Unusable BEhaVIor ...........ccuuuiiiiiiiiiee et 322

13.2: INSEIUCHION FOMMALS ...ttt e e e e e e st e e e e e e e e e e e e e annenes 322
13.2.1: Instruction Stream Organization and ENdianness...........ccuueviieiiiieeeiiiiiceeeeee e 325

13.3: microMIPS Re-encoded INSITUCHIONS ........vuiiiiiiiiiiie ettt e e e 325
LS TR Tt B [ =11 0= 1 (=T o] OO PPPTUPRRRIR 326

13.3.2: 16-bit INStruction REGISTEr SEL......oveiiiiiiiiiie e 330

TR TR S =11 07 | (=T (o] o TSP PPUTURRRRRRTPIR: 332

WY o] 011 g Lo [) QN 2= =] =Y o Ve == 334
Appendix B: ReVISION HIStOrY ........ .ot r e s s r e e s s e e e e m s 336

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



List of Figures

Figure 1.1: microAptivi™ UC Processor Core BIOCK Diagram ............uueiiiiiiiiiiiiaaiieiee e 24
Figure 1.2: microAptiv™™ UC Core Virtual AddresSs Map ......coooiiiiiiiiieie et 28
Figure 1.3: Address Translation During SRAM Access with FMT Implementation ............ccccooiiiiiie 29
Figure 1.4: Reference Design BIOCK DIiagram. ... ...coooi ittt e e e e e e e e e nee e e e e e aaae e an 32
FIGUIre 1.5: FPU PIPEIINE. ...ttt et e e e e e e e e e o bbbttt e e e e e e e e s e e nnnenneneeeeeaaaaaeas 33
FIGUIE 1.6: FDC OVEIVIEW ...ttt ettt e e e oo oo oottt ettt e e e e e e e e e aa e neaabe b e et e ee e e e e e e e nnnsenbeeeeaaeaaeaeens 36
LT [ T R A o I I C S U o o Yo o PRSP 37
Figure 2.1: microAptivi™ UC Core Pipeline Stages with high-performance MDU .............ccccooiiiiiiiee 39
Figure 2.2: microAptivi™ UC Core Pipeline Stages with area-efficient MDU ............ccoooiiiie e 39
Figure 2.3: microAptiv™ UC Core PIpeling STages .........uueeiiiiiiiiiiiiiii et e e e e 40
Figure 2.4: MUIIPLY PIPEIINE ...ttt et e e e e e e e e ettt e e e e e e e e e s s e s nnnannteeeeaeaaaaaens 46
Figure 2.5: Multiply With Dependency From ALU ....... .ot e e e e e e e e e e e e e e e e an 46
Figure 2.6: Multiply With Dependency From Load Hit ... 46
Figure 2.7: Multiply With Dependency From Load MISS .........ooiiiiiiiiiiiiieiee e e e e 46
Figure 2.8: subtractMUL Bypassing Result to Integer INStructions ... 47
Figure 2.9: MDU Pipeline Flow During a 8-bit Divide (DIV) Operation ............cooi i 48
Figure 2.10: MDU Pipeline Flow During a 16-bit Divide (DIV) Operation ... 48
Figure 2.11: MDU Pipeline Flow During a 24-bit Divide (DIV) Operation ... 48
Figure 2.12: MDU Pipeline Flow During a 32-bit Divide (DIV) Operation ... 48
Figure 2.13: MDU Pipeline Behavior During Multiply Operations ..o 50
Figure 2.14: MDU Pipeline Flow During a 32x16 Multiply Operation ... 51
Figure 2.15: MDU Pipeline Flow During a 32x32 Multiply Operation ... 52
Figure 2.16: High-Performance MDU Pipeline Flow During a 8-bit Divide (DIV) Operation ..........cccccccceeiiiiiinnna. 52
Figure 2.17: High-Performance MDU Pipeline Flow During a 16-bit Divide (DIV) Operation ..........cccccccciieennnnnn. 52
Figure 2.18: High-Performance MDU Pipeline Flow During a 24-bit Divide (DIV) Operation ..........cccccccovveiininnen. 53
Figure 2.19: High-Performance MDU Pipeline Flow During a 32-bit Divide (DIV) Operation ..........cccccccovverinnnnen. 53
Figure 2.20: microAptiv™™ UC Area-Efficient MDU Pipeline Flow During a Multiply Operation ..........cccccccccceiinni. 54
Figure 2.21: microAptivi™ UC Core Area-Efficient MDU Pipeline Flow During a Multiply Accumulate Operation . 54
Figure 2.22: microAptiv™ UC Core Area-Efficient MDU Pipeline Flow During a Divide (DIV) Operation .............. 55
Figure 2.23: 1U Pipeling BranCh DEIAY ........cuuiiiiiiiii ettt et e e e 56
Figure 2.24: |U PIpeline Data DYPASS .......eiiiiiiiiiiiiiiiiit ettt e e e e 57
Figure 2.25: 1U PIpeling M 10 E DYPASS ....coiiiiiiiiii ittt e e e e e 58
Figure 2.26: |U Pipeline A t0 E Data DYPasSS ......cooiiiiiiiiiiiiiiiee et 58
Figure 2.27: [U Pipeline Slip after a MEHI ... e e e e e e e e 59
Figure 2.28: Coprocessor 2 Interface TranSACHIONS ........oouuiiiiiiiiiiii e 60
Figure 2.29: InStruction Cache MiSS SHID ...ciiueiiiiiiiii e e e e 61
Figure 3.1: FPU BIOCK DIGGIAM ..ottt ettt et et e e ettt e e e b bt e e e e e et e e e e b e e e e e nnees 66
Figure 3.2: Single-Precision Floating-Point FOrmat (S) ........cccoiiiii e 68
Figure 3.3: Double-Precision Floating-Point FOrmat (D) ........ccoiiiiiiiiiiiii e 68
Figure 3.4: Word Fixed-Point FOrMat (W) ...ttt e e e e e e et e e e e e st e e e e e nnes 71
Figure 3.5: Longword Fixed-Point FOrMAt (L) .......cooiiiiiiiiiiiiie et e e e e e e e e 71
Figure 3.6: Single Floating-Point or Word Fixed-Point Operand in an FPR ... 71
Figure 3.7: Double Floating-Point or Longword Fixed-Point Operand in an FPR ..........ccccccoiiiiiiiiiieee, 71
Figure 3.8: Effect of FPU Operations on the Format of Values Held in FPRS ..., 73
Figure 3.9: FPU Word Load and Move-t0 Operations ..............uueiiiiiiiiiaaaiii e a e e e 74
Figure 3.10: FPU Doubleword Load and Move-to Operations ...........c...ueiiiiiiiiioiiiiiiiieeeeeee e 74
LT T =T R B e | o 0 = USSP 76

10

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



FIgure 3.12: FCCR FOIMAL ...ooiiiiiiiiii ittt ettt e e et e e e ettt e e e e e st e e e e e ensbee e e e nsseeeeeeansseeeeeennsees 77

Figure 3.13: FEXR FOMMAL ...ttt et e e e e e e e s e e a bbbt eeee e e e e e e e nnnen e e e eeaeaaaeaeas 78
Figure 3.14: FENR FOIMAL ...ttt et e e e e e e e e s et e e e e e e e e e e e e e e e e nnnbbeeeeeeeeeas 78
Figure 3.15: FCSR FOMMAL ...ttt et e e e e e e e e e ettt et e e e e e e e e e e e s e nnnbbeeaeeeeeeas 79
Figure 3.16: FS/FO/FN Bits Influence on Multiply and Addition ReSUItS ..........oooiiiiiiiiiiii e 83
Figure 3.17: Flushing to Nearest when Rounding Mode is Round to Nearest ..., 84
FIQUIre 3.18: FPU PIPEINE ..ottt ettt ettt e e e e e e e e e e e bee bt e e e e e e e s e e nnnenbreeeeeeeaaaaeas 95
Figure 3.19: Arithmetic Pipeline Bypass Paths ... 97
Figure 4.1: MIPS32® DSP Module Control Register (DSPControl) Format .............cccooiiiiiiiiiiiiieee e 99

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:

Address Translation DUNNG SRAM ACCESS ....oiiiiiiiiiiiie et ee e e e e e 103
microAptiv™ UC processor core Virtual Memory Map ........ooooiiiiiiiiiiiie e 104
User Mode Virtual AAAreSSs SPACE ........ouuiiiiiiiiiii ittt e e e e e e e e e e e e e e e e e aeaeeaeaeeanes 105
Kernel Mode Virtual AddreSs SPaACE ......ccocoiiiiiiiiiieeeeee et e e e e e e e e e e e e eeeeaees 107
Debug Mode Virtual ADAreSS SPACE ......cooiiiiiiiiiiiiie e e e e e e e e e e e e e e e nnnes 109
FMT Memory Map (ERL=0) in the microAptiv™ UC Processor COre .........cccuueeeeieeieaeeaiiiiiiiieeeeen. 111
FMT Memory Map (ERL=1) in the microAptiv™ UC Processor COre ..........ccooeeeieeieeeieniiiiiiiieeeeenn, 112
Interrupt Generation for Vectored Interrupt Mode ..........ueeeiiiiiiiiiii e 120
Interrupt Generation for External Interrupt Controller Interrupt Mode ... 123
General Exception Handler (HW) ...t e e e e e e e e 142
General Exception Servicing GUIdelines (SW) .....ueeiiiiiiiieeie e 143
Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines ..............ooooiiiiiiiiieeennen. 144
UserLocal Register FOrMaL ....... ..ot e e e e e e e e e e e e 148
HWRERNEA Register FOrMAL ..... ..ttt e e e e e e e ee e e e e e e e e e e e ennenes 148
BadVAddr Register FOrMAL ..... ...ttt e e e e e e e e e e e e nnenes 149
BadInstr Register FOrMat..... ..o e e e e e e e e e e e e e 150
BadInstrP Register FOrmMat ....... ... e e e e e e e e e e 151
Count Register FOrMALt ..ottt e e e e e e e e e e e e e e e e e aaaeeeaaannnnes 151
Compare RegisSter FOMMAL ........oouiiiiiiiii e e 152

Figure 7.8: Status Register FOMMAt..........oii i 153
Figure 7.9: IntCtl RegiSter FOMMAL....... ..ot e e 157
Figure 7.10: SRSCH Register FOMAL ... 161
Figure 7.11: SRSMap RegisSter FOMMAL.......cooiiiiiiiiii e 164
Figure 7-12: View_IPL RegiSter FOMMAat.........ouuiiiiii i 165
Figure 7-13: SRSMap Register FOrMAt ... 166
Figure 7.14: Cause Register FOIrMAL....... ..ot 166
Figure 7-15: View_RIPL RegiSter FOrMAL .......ccooiiiiiiiiiiie et 171
Figure 7-16: NestedEXC Register FOrmMat ..........ooooiiiiii e 172
Figure 7.17: EPC RegISter FOIMAL ...t 173
Figure 7-18: NestedEPC Register FOrmMat ..... ... 174
Figure 7.19: PRIA RegiSter FOMMAL .........o ittt e e e e e e e e e et eeeeas 174
Figure 7.20: EBase Register FOIMAt ...... ... ettt e e eeeeas 176
Figure 7.21: CDMMBase Register FOrMat....... ..o 176
Figure 7.22: Config Register Format — SeleCt O ... 177
Figure 7.23: Config1 Register Format — Select 1 ... 179
Figure 7.24: Config2 Register Format — Select 2 ... 180
Figure 7-25: Config3 Register FOrMAL ...... ..o e e 181
Figure 7-26: Configd Register FOrMAL ...... ..o e 184
Figure 7-27: Configd Register FOrMAL ... ..o e e 185
Figure 7.28: Config7 Register FOrMAt ...t e e e e 185
Figure 7.29: Debug Register FOrMAt ......... .o e e e e e e e eeeeas 186
Figure 7.30: TraceControl Register FOrmMat ... 190
Figure 7.31: TraceControl2 Register FOrmat ........ ..o e 192
Figure 7.32: User Trace Data1/User Trace Data2 Register Format ... 194

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 11



Figure 7.33
Figure 7.34
Figure 7.35:
Figure 7.36:
Figure 7.37:
Figure 7.38
Figure 7.39:
Figure 7.40:
Figure 7.41
Figure 7-42:
Figure 10.1:
Figure 10.2:
Figure 10.3:
Figure 10.4:
Figure 10.5:
Figure 10.6:
Figure 10.7:
Figure 10.8:
Figure 10.9:
Figure 10.10
Figure 10.11
Figure 10.12
Figure 10.13

Figure 10.14:
Figure 10.15:
Figure 10.16:
Figure 10.17:
Figure 10.18:
Figure 10.19:
Figure 10.20:
Figure 10.21:
Figure 10.22:
Figure 10.23:
Figure 10.24:
Figure 10.25:
Figure 10.26:
Figure 10.27:
Figure 10.28:
Figure 10.29:
Figure 10.30:
Figure 10.31:
Figure 10.32:
Figure 10.33:
Figure 10.34:
Figure 10.35:
Figure 10.36:
Figure 10.37:
Figure 10.38:
Figure 10.39:
Figure 10.40:
Figure 10.41:
Figure 10.42:
Figure 10.43:

12

: Trace BPC Register Format

Debug2 Register FOMAat .......... it e e e e e e e e e e e 196
DEPC RegiSter FOMMAL ... ...ttt e e e e et e e e e e e e e eeeeeeeas 197
Performance Counter Control REGISIEr ... 198
Performance Counter Count REgISIEr ... 202
ErrCtl Register FOIMAL ... ... et e e e e e e e e e e e ee e eeas 203
CacheErr Register (Primary CaCh@S) ........cueiiiiiiiiiiiii e 203
ErrorEPC Register FOrMAL ...t 205
DeSave Register FOrMat ...... ... et e e e 205
KScratchn Register FOrmMat ... ...t e e e e e e 205
DCR Register FOMMAL ... ...ttt e e e e e e e e e e e e e e e e e s e e eeeeas 213
IBS Register FOIMat ...ttt e e e e e e e e e e e e e e e e e nnenreeeeeeas 224
IBAN ReGIiSter FOrMAL ... ettt e e e e e e e e e eeeeas 224
IBMN Register FOrMAL ...ttt e e e e e ee e e e e e e e e s e eeeeas 225
IBASIDN Register FOrMAL ........ ittt e e e e e e e e e eeeeas 225
IBCN Register FOrMAat .. ...ttt e e e e e e e et e e e e e e e e e e eeeeeas 226
120707 ol =T o £53 C=T gl o] g 1 = USSR 227
IBPChn Register FOrMaL ... ...ttt e e e e e e e ee e 228
DBS Register FOrMAL ...ttt e et e e e e e e e e e e e e e e e e e e s e eeeeas 229
T DBAN Register FOrMaAL .. ...t e e e e e e 229
T DBMN Register FOrMat .. ...ttt e e et r e e e e e e e 230
: DBASIDN RegiSter FOMMAL ...... .o ittt e e e e e e e e e ee e 230
BB =0 o I = To 153 (=Y gl o 2 = USSP 230
DBVN Register FOrMaL ... ..ottt e e e e e e e e e e e e e e e e e e e e e e annnes 232
DBCCN REGIStEr FOMMAL ...t 233
DBPCN ReGISter FOMMAL ... .. e 234
DVM REGISEr FOMMAL ...ttt e e e e 234
CBTC Register FOIMAL ......cooiiiiiieiiie et 235
PrendA Register FOrMAt ..........oiiiiiiie e 236
STCH Register FOrMAL .......oooi et e e rab e e e 238
STCNE REGIStEr FOMMAL ...t e et e e e nnb e e e e 239
TAP Controller State DIagram ........ooooiiiiiii e e e e e e 245
Concatenation of the EJTAG Address, Data and Control Registers ...........ccccoviiiiiiiiniiiiieeeninn, 249
TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected ....................... 250
Device Identification Register FOrmat ... 251
Implementation Register FOrmat ... 252
EJTAG Control Register FOrMat ... ..ottt e e 253
Endian Formats for the PAD RegIiSIer ... 260
Fastdata Register FOrmMat ... ... e e e e e e 260
Trace LOGIC OVEIVIEW .......ueeiiiiiiiiee ettt e e e oottt e et e e e e e e e e e s e e aanbeeteeeee e e e e e nnneeneeeeeeeas 269
Control/Status REGISTEN.......coi et e e e e e e e e e e e e e e e e as 271
ITCBTW ReQISter FOMMAL ...ttt e e e e 273
ITCBRDP RegiSter FOrMAL .......ooiiiiiiiiiiii et e e e e e e e e eeas 274
ITCBWRP Register FOrMAL.........ooii i e e e ee e 274
PCSAMPLE TAP Register Format (MIPS32) .......c.uuiiiiiiiiiie et 276
Fast Debug Channel Buffer Organization .................cooiiioi e 279
FDC TAP RegISter FOIMMAL........oooiiiiiiiiiiiiee ettt et e e e e e e e e e e e e e e e annnees 280
FDC Access Control and Status ReGISter...... ..o 281
FDC Configuration REGISTEN .........u et e e e e e e e e e e e e e 282
FDC Status ReGISIOr ...ttt e e e e e e e e e e e e e e e e e e e e e e e annnnes 283
FDC RECEIVE REGISIEN ... .ttt e e e e e e e e e e e e e e e e eaeannnnes 284
FDC Transmit REGISIEN ...ttt e e e e e e e e e e e e e annnnes 284
CITAG INTEITACE ...ttt e et e e e bbb e e e s sbe e e e e e 285

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



Figure 11.1: InStruction FOIMAatS .. ...t ee e e e e e e e e e e eeeeas 287
Figure 13.1: 16-Bit Instruction Formats

................................................................................................................. 323
Figure 13.2: 32-Bit INStruCtioN FOIMALS........ceiiiiiiieee e 324
Figure 13.3: Immediate Fields within 32-Bit INStrUCONS..........ooiiii i 324

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 13



List of Tables

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 2.7:
Table 2.8:
Table 2.9:
Table 2.10
Table 2.11
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:
Table 3.9:
Table 3.10
Table 3.11
Table 3.12
Table 3.13

Table 3.14:
Table 3.15:
Table 3.16:
Table 3.17:

High-performance MDU SHallS .........ooooiiiiiiiieiiiie et e et e e e et e e e s e eesnnnaeeeesennneeeeas 43
DSP INSIFUCHION DEIAYS .....eeeiieieeeiiie ettt e e e e e et ettt ettt e e e e e e eanbe e e e e eeaeaaeeeaeeaaannns 44
Delays for Interesting Sequences with DSPControl Dependency..........ccoeeiiiiiiiiiiiiiiieieieiee e 45
MDU Instruction Latencies (High-Performance MDU) ............ccooiiiiiiiiiiiiiiie e 49
MDU Instruction Repeat Rates (High-Performance MDU).............ooiiiiiiiiiiiiiiiee e 50
microAptiv™™ UC Core Instruction Latencies (Area-Efficient MDU)...........ocoooiiiiiieiee 53
PIpElINE INTEIOCKS ... ...t e e e e e e e e e e e e e e e e e e e e e e e e e e e ae s e e s 60
INSTUCHION INTEIIOCKS ...ttt e et e e e s e e e s e e e 62
EXECULION HAZAIAS ..ottt e s e e s 63
DINSTIUCHION HAZAMAS ..ottt e s e e s 63
D Hazard INSruCtion LIStING ....cooiiieeee et e e e e e e e e e e e e e e e e e e e e e nnnes 64
Parameters of Floating-Point Data TyPesS .....coooiiie e 67
Value of Single or Double Floating-Point Data Type ENcoding............ciiiiiiiiiiiiiiieeeeeeee e 68
Value Supplied When a New Quiet NaN is Created ... 70
Coprocessor 1 RegiSter SUMIMAIY ... it e et e e e e e e e e e e e e e e reeeeaeaaaaeaean 75
Read/WHIIte PropPerties........coooieieeeeeeee et e e e e e e e e e e e e e e e e e e ae s 75
FIR Bit Field DESCIIPLONS ...ttt ettt e e e e e e e e e e e e e e e e e e e e e e e e e e e ae s s aeab e ns 76
FCCR Bit Field DESCIIPHIONS ..ottt et e e e e e e e e e e e e e e e e e e e e e e e e ae e s 78
FEXR Bit Field DeSCHPLIONS.......cooeieeiieeieeee et e e e e e e e e e e e e e e e e e e ns 78
FENR Bit Field DESCIIPLONS ......cciiiiiiiieei et e e e e e e e e e e e e e e e e e e e e e e e e e ae s e e ns 79
: FCSR Bit Field DESCHPLONS ....coeiiiiiiiitteeee e s e e e e e e e e e e e e e e e e e e e e e e e re e e e e e aersbeab i ns 80
: Cause, Enables, and Flags Definitions ... 81
2 Rounding Mode DefinitioNS ... ..ottt e e e e e e e e e e e e e e e e 82
: Zero Flushing fOr TINY RESUILS ........eeeiiiiiii e e e e e e e 83

Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting..................... 83
Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings ...........ccccceeiiiiiiieiinnnen. 83
Handling of Tiny Final Result Based on FN and FS Bit Settings ... 84
Recommended FS/FO/FN SEHINGS ......uviiiiiiiiiie it 84

Table 3.18: FPU Data Transfer INSIIUCHIONS ..........oiiii ittt e 87
Table 3.19: FPU LoAds @nd STOIES.........coooiiiiiiiiitcieee ettt e e e e e e e e e e e e e e e e e e e eeaeaeabe e e e eeessesesaaaanannns 87
Table 3.20: FPU Move To and From INSTrUCHIONS ........coooi i 87
Table 3.21: FPU IEEE Arithmetic OPerations ..........oooiiiiiii et e e e e e e e e 88
Table 3.22: FPU-Approximate Arithmetic Operations ....... ... 88
Table 3.23: FPU Multiply-Accumulate Arithmetic Operations ......... ..o 89

Table 3.24:
Table 3.25:
Table 3.26:
Table 3.27:
Table 3.28:
Table 3.29:
Table 3.30:

FPU Conversion Operations Using the FCSR Rounding Mode............cccciiiiiiiiiiiiiie e 89
FPU Conversion Operations Using a Directed Rounding Mode .............oooiiiiiiiiiiiiiiiiieee e 89
FPU Formatted Operand Move INStrUCION ..........ccoooiiiiiiiiii e, 90
FPU Conditional Move on True/False INStruCtions..............oooiiiiiiiiiiiiecccee e, 90
FPU Conditional Move on Zero/Non-Zero INStruCtioNS .........cooooiiiiiiiiiiieee e 90
FPU Conditional Branch INSIrUCHIONS .........ccoooiiiiii e 91
Deprecated FPU Conditional Branch Likely INnStructions ............cc.uueiiiiiiii e 91

Table 3.31: CPU Conditional Move on FPU True/False INStruCtioNS ............ooiiiiiiiiiiii e 91
Table 3.32: Result for EXCeptions NOt Trapped ........ooeeiiiiiiiiiiiiie oo e e e e e e e e e e e e e e e e a s 93
Table 3.33: microAptiviM UC Core FPU Latency and Repeat Rate............oooiiiiiiiiiiii e 97
Table 4.1: MIPS® DSP Module Control Register (DSPControl) Field Descriptions ..........ccccuvviieeiiiiieiiiiiiies 100
Table 4.2: DSPCONIrOl OUFlag BILS .....cooiieeee ettt e e e e e e e e e e e e e e e e e e e e e ennnenes 101
Table 5.1: User MOde SEOMENTES ......ooiiiiiee ettt e e e e oo e ettt e et e e e e e e e e e e e e e nnnbeeeeeaaeeeeeaaaannnnnes 105

14

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:
Table 6.8:
Table 6.9:
Table 6.10
Table 6.11
Table 6.12
Table 6.13
Table 7.1:
Table 7.2:
Table 7.3:
Table 7.4:
Table 7.5:
Table 7.6:
Table 7.7:
Table 7.8:
Table 7.9:
Table 7.10
Table 7.11
Table 7.12
Table 7.13

Table 7.14:
Table 7.15:
Table 7.16:
Table 7.17:
Table 7.18:
Table 7.19:
Table 7.20:
Table 7.21:
Table 7.22:
Table 7.23:
Table 7.24:
Table 7.25:
Table 7.26:
Table 7.27:
Table 7.28:
Table 7.29:
Table 7.30:
Table 7.31:
Table 7.32:
Table 7.33:
Table 7.34:
Table 7.35:

Kernel MOAE SEOMENLS ......ueiiiiiiiiiiiie ettt e et e e e e e e e e e s st e e e e e nb e e e e s aneeeeeeansbeeeeeeanneeas 107

Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces..............c........ 109
CPU Access to drseg AdAress RaANGE ......oooiii ittt e e e e e e e e 109
CPU Access to dmseg AdAreSS RANGE ... .uuuiiiiiiiiiiieie ittt e e e e e e e e ee e e e e e e 110
Cacheability of Segments with Block Address Translation ... 110
10T 1A o] = CeT=T o] (o o - T PPPRSRRTR 114
INEEITUPT MOAES ... ettt ettt e e e e e e e e e e e e e aaaeaeaeeeeeeeeeessesessnaannnnnns 116
Relative Interrupt Priority for Vectored Interrupt Mode............oooooiiiiiiiiii e 119
Exception Vector Offsets for Vectored Interrupts...........ooooireimiiiiiiiie e 124
EXception Vector Base AQArESSES. ......coiiiiiii i e e e e e e e e e e e e e e e e e e e e et aeeaere e 128
EXCeption VECtOr OffSEIS ....cooiiieiieee e e e e e e e e 128
o ot=Y oY i{o] a VA=Y o1 (o] £ TP UUSUOOUOUPRRP 128
Value Stored in EPC, ErrorEPC, or DEPC on an EXception...........c.ooooiiiiiiiiiciciece e 129
Debug EXCeption VECIOr AQAIESSES .....oiiiiiiiieiii ittt r et e e e e e e e e e e e eeeeeeaaaaee e s 132
: Register States an Interrupt EXCEPION ..o 135
: CPO Register States on an Address EXCeption Error..........oooo e 136
: CPO Register States on a SRAM Parity Error EXCeption ... 136
: Register States on a Coprocessor Unusable EXCeption ... 139
(O O =T 1] (=T SRR 145
CPO Register R/W Field TyYPeS ...ttt ettt e e e e e e e e e e e aeeeeeaeaaaaeeas 147
UserLocal Register Field DeSCPIONS .......o it e e e e e e 148
HWREnNa Register Field DeSCHPHONS ... ... eeaa e 148
BadVAddr Register Field DeSCHPLON .....ooiiiiiiiiie et e e e e e 149
Badlnstr Register Field DeSCrIPHONS........ooi ittt e e e e e e e 150
BadInstrP Register Field DeSCrIPHIONS .......oiii ittt e e e e e e 151
Count Register Field DeSCrIPHION .......cooiiiieee et e e e e e e e e e e e e eeeaaaaeeaeas 151
Compare Register Field DeSCription ...t e e e e e e e e e e e e e e 152
: Status Register Field DeSCPLIONS ........viiiiiiiiiiii et 153
: IntCtl Register Field DeSCIPHIONS .........ueiiie ittt 158
: SRSCtl Register Field DeSCIIPLIONS .......ciiiiiiiiiiii it 161
: Sources for new SRSCtlggg on an Exception or Interrupt.............cccoooiiiiiiii 164

SRSMap Register Field DeSCHPIIONS .......c..uiiiiiiiiiiie ettt e e e et e e e s e s e e s enteeeeaeeanes 164
View_IPL Register Field DeSCrPHIONS .......coiiiiiiiiiiii et e e e e e e 165
SRSMap Register Field DeSCriptioNsS . ........oo it e e e ee e 166
Cause Register Field DesSCriptiONS.........ooii it e e 166
Cause Register EXCCOAE Filld ... ..ot 170
View_RIPL Register Field DeSCHIPHONS ......cooiiiiiiiiiiieee e 171
NestedExc Register Field DeSCrIPHIONS .........u it 172
EPC Register Field DeSCIIPHION ........ueiiiiiiiiieei ettt e e e e e e e e e e e e as 173
NestedEPC Register Field DeSCrIPHIONS ........oiiiiiiiiiiiee e 174
PRI Register Field DeSCrPHIONS ......cooiiiieeeeiee ettt e e e e e e e e e e eeeaaa e e e as 174
EBase Register Field DeSCIPLONS ........i it e e e e e e 176
CDMMBase Register Field DeSCripliONS ...........uuiiiiiiiiiii it e e e 177
Config Register Field DeSCriPtiONS........oooiie et e e 178
Cache CoherenCy AMIDULES .......oooi it e e e e e ee e 179
Config1 Register Field Descriptions — SeleCt 1 .. ..o 179
Config2 Register Field Descriptions — SeleCt 1 .. ..o 180
Config3 Register Field DeSCriptions.........ooi e e e e e e e eeeeeas 181
Configd Register Field DeSCriptions.........ooi e e e e e eeeeas 184
Configd Register Field DeSCriptioNS........oooi e e e e e e eeeeas 185
Config7 Register Field DeSCriptioNS........oooi e e e e e e e eeeeas 186
Debug Register Field DeSCHPLIONS .......oi ittt e e e e e e e e 187
TraceControl Register Field DeSCHPLIONS ..........u i 190

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 15



Table 7.36:
Table 7.37:
Table 7.38:
Table 7.39:
Table 7.40:
Table 7.41:
Table 7.42:
Table 7.43:
Table 7.44:
Table 7.45:
Table 7.46:
Table 7.47:
Table 7.48:
Table 7.49:
Table 7.50:
Table 10.1:
Table 10.2:
Table 10.3:
Table 10.4:
Table 10.5:
Table 10.6:
Table 10.7:
Table 10.8:
Table 10.9:
Table 10.10
Table 10.11
Table 10.12
Table 10.13
Table 10.14
Table 10.15
Table 10.16
Table 10.17
Table 10.18
Table 10.19

Table 10.20:
Table 10.21:
Table 10.23:
Table 10.24:
Table 10.22:
Table 10.25:
Table 10.26:
Table 10.27:
Table 10.28:
Table 10.30:
Table 10.29:
Table 10.31:
Table 10.32:
Table 10.33:
Table 10.34:
Table 10.35:
Table 10.36:
Table 10.37:
Table 10.38:

16

TraceControl2 Register Field DeSCHPLIONS .......cccuuiiiiiiiiiiie e 192
UserTraceData1/UserTraceData2 Register Field Descriptions ............cccccveeiiiiiiieiiiiieee e 194
TraceBPC Register Field DeSCriptionS. .......cooiiiiiiiiieiie et e e 195
Debug?2 Register Field DeSCHPHONS ...t e e e e e e 196
DEPC RegiSter FOMMALS .....cooiiiiiiii ettt ettt e e e e e e e e e e et e eeaeaaeeeeeaan 197
Performance Counter Register SEIECES ... 198
Performance Counter Control Register Field Descriptions ..............coeiiiiiiiiiiiiiieeeeeeeeeeee 198
Performance Counter Events Sorted by Event NUMber ..........c.ouuiiiiie e 199
Performance Counter Event Descriptions Sorted by Event Type ... 201
Performance Counter Count Register Field Descriptions ..........ccuuuiiiiiiiiiiiiae e 202
Errctl Register Field DeSCrIPHIONS........eeii ittt e e e e e e e e e 203
CacheErr Register Field Descriptions (Primary Caches) ........cooouiiiiiiiiiiiiiiieeeeeeee e 203
ErrorEPC Register Field DeSCHPON. .......i i e e e e e 205
DeSave Register Field DeSCriptioNn ... e e e e e e e e e e e e 205
KScratchn Register Field DeSCHPONS. ........ it a e e 206
DCR Register Field DeSCIPLIONS ...t e e e e e e e e e e eeaaaaeee s 213
Addresses for Instruction Breakpoint RegISters ......... ..o 223
IBS Register Field DeSCIIPLIONS ........ ettt e e e e e e e e e ee e e e e e e e e e e e e nnnnes 224
IBAN Register Field DeSCIPLIONS ........e ittt e e e e e e e et e e e e e e e e e e e annnnee 224
IBMn Register Field DeSCHIPHIONS ........uueieiiiii ettt e e e e e e e e e e e e e e e e e e e annnnee 225
IBASIDn Register Field DeSCIIPLIONS ......coiiiiiieiiiiii et e e e e e e e e e e e 225
IBCn Register Field DEeSCIPLIONS ........uueiiiiiiiiee ittt e e e e e e e e e e e e e e e e e e 226
IBCCn Register Field DeSCIPLIONS. ......co ittt e e ee e e e e e e e e e ennnes 227
IBPCn Register Field DeSCrIPHIONS..........u ittt e e e e e e e e 228
: Addresses for Data Breakpoint REgISters ............uuiiiiiiiiiiee e 228
: DBS Register Field DeSCriptiONS ... ... it e e e e e e e e e e e e eeeaaaaeae e s 229
: DBAN Register Field DeSCHIPHONS......coi ittt ee e e e e e e e 229
: DBMn Register Field DeSCrIPHONS ........uiiiiiiiiiiei e e 230
: DBASIDN Register Field DeSCPLONS..........ueiiiiiiiiitee ettt 230
: DBCn Register Field DeSCrPONS. .......oiiiiiiiii e 231
: DBVN Register Field DesCriPlONS........ciiiiiiiiiie et 232
: DBCCn Register Field DeSCrPLONS .........oiiiiiiiiiie ittt e 233
: DBPCn Register Field DeSCHPONS .....ccoiiiiiiiiiiiitie ettt 234
: DVM Register Field DeSCIIPHONS ........uiiiiiiiiiie e 234

Addresses for Complex Breakpoint REGISIErS ..........ueiiiiiiiiiiii e 235
CBTC Register Field DESCIIPHONS .......coiiiiiiiiii it 235
Priming Conditions and Register Values for 61/2D Configuration .............cccccvieiiiiiiiei e 237
Priming Conditions and Register Values for 81/4D Configuration ............c.cccooviiiiiiiiie e 237
PrCndA Register Field DeSCrIPHONS. ........uuiiiiiiiiieeee et e e 237
STCtl Register Field DeSCriPtiONS .......ooiiiiiie et e e e e e 238
STCtl Register Field DeSCriPtiONS ......cooiiiiiiieee ettt e e e e s 239
EJTAG INTErfaCe PINS ..ottt e e e e e e 243
Implemented EJTAG INSIIUCHIONS .....oooviiieieeeee e e e e e e e 248
Implementation Register DeSCrIPLIONS ........ooi i 252
Device Identification REeGISIEr .........eeiieee e 252
EJTAG Control Register DeSCrIPHIONS .........uuiiiiiiiiiee et e e e 254
Fastdata Register Field DeSCription ............ueeiiiiiiiii e e 260
Operation of the FASTDATA QCCESS ....ccoiiiiieieeieee et e e e e et e e e e e e e aaaaeeaeeees 261
EJ_DisableProbeDebug Signal OVErVIEW..............ueiiiiiiiieaiiii e e e e 264
(D= L e= B = TU LS =l e Yo 1T USSP 270
LK1 T8 =18 =1 e o |1 o TSRS 270
Control/Status Register Field DeSCriPtioNS .........coiiiiiiiiiiiiie e 272
ITCBTW Register Field DeSCrIPHONS ......coiiiiiiiiiiee e e e e e e e e 273

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



Table 10.39:
Table 10.40:
Table 10.41:
Table 10.42:
Table 10.43:
Table 10.44:
Table 10.45:
Table 10.46:
Table 10.47:
Table 10.49:
Table 10.48:

Table 11.1:
Table 12.1:
Table 12.2:
Table 12.3:
Table 12.4:
Table 12.5:
Table 12.6:
Table 12.7:
Table 12.8:
Table 12.9:
Table 12.10
Table 12.11
Table 12.12
Table 12.13
Table 12.14
Table 12.15
Table 13.1:
Table 13.2:
Table 13.3:
Table 13.4:
Table 13.5:
Table 13.6:
Table 13.7:
Table 13.8:

ITCBRDP Register Field DEeSCHIPHIONS .......cuuiiiiiiiiiiiiie e e e e e e e 274
ITCBWRP Register Field DeSCrPiONS. .......coui it e e e e e e 274
drseg Registers that Enable/Disable Trace from Breakpoint-Based Triggers.........ccccoccvviveeviinnen.. 275
FDC TAP Register Field DeSCriPHIONS .........ui it a e e e 280
[ B O =To 1S3 (S g 1Y =T o] o g T [ TP 281
FDC Access Control and Status Register Field Descriptions ............oooiiiiiiiiiiieeeeeeeee 281
FDC Configuration Register Field DeSCrPtiONS ..........uuiiiiiiiiiiiiiiiiie e 282
FDC Status Register Field DeSCPIONS. ........ i i e e 283
FDC Receive Register Field DeSCHPHONS........iii i e e 284
FDTXN ADAreSSs DECOE ... .ottt e e e e e e e e e e et eeeeeaaaaeeeaeas 285
FDC Transmit Register Field DeSCHPONS.......coii i 285
Byte AcCess WIthin @ WOId........coo ittt e e e e e e e e e e e e e e 288
Encoding of the Opcode Field...........ooo e e e 293
Special Opcode Encoding of Function Field ... 293
Special2 Opcode Encoding of Function Field ... 293
Special3 Opcode Encoding of Function Field ... 294
Reglmm ENcoding Of rt FI@ld ..........ee e e e e e e e e e 294
COP2 ENcoding Of 'S FIEIA ..ottt e e e e e e eeeeas 294
COP2 Encoding of rt Field When rS=BC2........uuiiiiiiiiiee ettt 294
COPO ENcoding Of IS FIEIA ..ottt e e e e e e e eeeeas 295
COPO Encoding of Function Field When rS=CO .......coii i 295
: MIPS32 COP1 ENcoding Of 1S FI@ld... ... e e 295
: MIPS32 COP1 Encoding of Function Field When rs=S ... ... 296
: MIPS32 COP1 Encoding of Function Field When rs=D ... 296
: MIPS32 COP1 Encoding of Function Field When rs=W or L ... 296
: MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF...............cccciiiieeee. 297
B 1 1] (0 T3 1] 7= SRR 297
16-Bit Re-encoding of Frequent MIPS INSTrUCHIONS...........uviiiiiiiiii e 327
16-Bit Re-encoding of Frequent MIPS Instruction SeqUEeNCES...........coooiiiiiiiiiiiiiiiie e 328
Instruction-Specific Register Specifiers and Immediate Field Values...............cccoooiiis 329
16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 ....ooooeiiiiieeeeeeeeeee e 330
SB16, SH16, SW16 Source Registers - $0, $2-$7, $17 ....oommririieeee e 331
16-Bit Instruction Implicit General-Purpose Registers ... 331
16-Bit Instruction Special-Purpose RegISters........ ..o 332
32-bit Instructions introduced within MICIOMIPS ... 332

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 17



Chapter 1

Introduction to the MIPS32® microAptiv™ UC Processor
Core

The MIPS32® microAptivi™ UC core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS
RISC processor core intended for custom system-on-silicon applications. The core is designed for semiconductor
manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic
and peripherals with a high-performance RISC processor. The microAptiv UC core is fully synthesizable to allow
maximum flexibility; it is highly portable across processes and can easily be integrated into full system-on-silicon
designs. This allows developers to focus their attention on end-user specific characteristics of their product.

The microAptiv UC core is especially well-suited for microcontrollers and applications that have real-time require-
ments with a high level of performance efficiency and security requirements.

The microAptiv UC core implements the MIPS Architecture in a 5-stage pipeline. It includes support for the micro-
MIPS™ [SA, an Instruction Set Architecture with optimized MIPS32 16-bit and 32-bit instructions that provides a
significant reduction in code size with a performance equivalent to MIPS32. The microAptiv UC core is a successor
to the M14K™, designed from the same microarchitecture, including the Microcontroller Application-Specific
Extension (MCU™ ASE), enhanced interrupt handling, lower interrupt latency, a reference design of an optimized
interface for flash memory and built-in native AMBA®-3 AHB-Lite Bus Interface Unit (BIU), with additional power
saving, debug, and profiling features.

The microAptiv UC core has an option to include the MIPS Architecture DSP Module Revision 2 that provides digi-
tal signal processing capabilities, with support for a number of powerful data processing operations. The microAptiv
UC core has a microAptiv UCF version that features an optional IEEE 754 compliant Floating-Point Unit (FPU). The
FPU supports both single- and double-precision instructions.

The microAptiv UC core is cacheless; in lieu of caches, it includes a simple interface to SRAM-style devices. This
interface may be configured for independent instruction and data devices or combined into a unified interface. The
SRAM interface allows deterministic latency to memory, while still maintaining high performance.

A distinguishing characteristic of the microAptiv UC family is the inclusion of a configurable MIPS DSP Module.
The MIPS DSP Module provides support for a number of powerful data processing operations. It includes instruc-
tions for executing fractional arithmetic (Q15/Q31) and saturating arithmetic. Additionally, for smaller data sizes,
SIMD operations are supported, allowing 2x16b or 4x8b operations to occur simultaneously. Another feature of the
DSP Module is the inclusion of additional HI/LO accumulator registers that improve the parallelization of indepen-
dent accumulation routines.

The core includes one of two different Multiply/Divide Unit (MDU) implementations, selectable at build-time if the
DSP Module is not configured in, allowing the user to trade-off performance and area for integer multiply and divide
operations. The high-performance MDU option implements single-cycle multiply and multiply-accumulate (MAC)
instructions that enable DSP algorithms to be performed efficiently. It allows 32-bit x 16-bit MAC instructions to be
issued every cycle, while a 32-bit x 32-bit MAC instruction can be issued every other cycle. The area-efficient MDU
option handles multiplies with a one-bit-per-clock iterative algorithm.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03 18



1.1 Features

If the core is configured with the DSP Module, the Multiply-Divide Unit (MDU) is fully pipelined and supports a
maximum issue rate of one 32x32 multiply MUL/MULT/MULTU), multiply-add MADD/MADDU), or multi-
ply-subtract MSUB/MSUBU) operations per clock.

The MMU consists of a simple Fixed Mapping Translation (FMT) mechanism, for applications that do not require
the full capabilities of a Translation Lookaside Buffer- (TLB-) based MMU available on other MIPS cores.

The basic Enhanced JTAG (EJTAG) features provide CPU run control with stop, single-stepping and re-start, and
with software breakpoints using the SDBBP instruction. Additional EJTAG features such as instruction and data vir-

tual address hardware breakpoints, complex hardware breakpoints, connection to an external EITAG probe through
the Test Access Port (TAP), and PC/Data tracing, may be included as an option.

1.1 Features

*  5-stage pipeline

e 32-bit Address and Data Paths

*  MIPS32 Instruction Set Architecture

e MIPS32 Enhanced Architecture Features
*  Vectored interrupts and support for external interrupt controller
*  Programmable exception vector base
*  Atomic interrupt enable/disable

*  GPR shadow registers (one, three, seven, or fifteen additional shadows can be optionally added to minimize
latency for interrupt handlers)

*  Bit field manipulation instructions
e microMIPS Instruction Set Architecture

*  microMIPS ISA is a build-time configurable option that reduces code size over MIPS32, while maintaining
MIPS32 performance.

*  Combining both 16-bit and 32-bit opcodes, microMIPS supports all MIPS32 instructions (except
branch-likely instructions) with new optimized encoding. Frequently used MIPS32 instructions are available
as 16-bit instructions.

*  Added fifteen new 32-bit instructions and thirty-nine 16-bit instructions.

»  Stack pointer implicit in instruction.

e MIPS32 assembly and ABI-compatible.

*  Supports MIPS architecture Modules and User-defined Instructions (UDIs).

e MCU™ ASE

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03 19



Introduction to the MIPS32® microAptiv’™ UC Processor Core

20

* Increases the number of interrupt hardware inputs from 6 to 8 for Vectored Interrupt (VI) mode, and from 63
to 255 for External Interrupt Controller (EIC) mode.

»  Separate priority and vector generation. 16-bit vector address is provided.

e Hardware assist combined with the use of Shadow Register Sets to reduce interrupt latency during the pro-
logue and epilogue of an interrupt.

*  An interrupt return with automated interrupt epilogue handling instruction (IRET) improves interrupt
latency.

»  Supports optional interrupt chaining.

e  Two memory-to-memory atomic read-modify-write instructions (ASET and ACLR) eases commonly used
semaphore manipulation in microcontroller applications. Interrupts are automatically disabled during the
operation to maintain coherency.

Memory Management Unit

*  Simple Fixed Mapping Translation (FMT) mechanism

Simple SRAM-Style Interface

*  Cacheless operation enables deterministic response and reduces die-size

*  32-bit address and data; input byte-enables enable simple connection to narrower devices

*  Single or multi-cycle latencies

*  Configuration option for dual or unified instruction/data interfaces

* Redirection mechanism on dual I/D interfaces permits D-side references to be handled by I-side

*  Transactions can be aborted

Reference Design

* A typical SRAM reference design is provided.

* An AHB-Lite BIU reference design is provided between the SRAM interface and AHB-Lite Bus.

* An optimized interface for slow memory (Flash) access using prefetch buffer scheme is provided.

Parity Support

e The ISRAM and DSRAM support optional parity detection.

e MIPS DSP Module (Revision 2.0)

*  Support for MAC operations with 3 additional pairs of Hi/Lo accumulator registers (AcO - Ac3)

*  Fractional data types (Q15, Q31) with rounding support

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



1.1 Features

»  Saturating arithmetic with overflow handling
*  SIMD instructions operate on 2x16-bit or 4x8-bit operands simultaneously
»  Separate MDU pipeline with full-sized hardware multiplier to support back-to-back operations
e The DSP Module is build-time configurable.
e Multiply/Divide Unit (area-efficient configuration without DSP)
* 32 clock latency on multiply
* 34 clock latency on multiply-accumulate
e 33-35 clock latency on divide (sign-dependent)
*  Multiply/Divide Unit (high-performance configuration without DSP)
e Maximum issue rate of one 32x16 multiply per clock via on-chip 32x16 hardware multiplier array.
*  Maximum issue rate of one 32x32 multiply every other clock

*  Early-in iterative divide. Minimum 11 and maximum 34 clock latency (dividend (rs) sign extension-depen-
dent)

*  Multiply/Divide Unit (with DSP configuration)
*  Maximum issue rate of one 32x32 multiply per clock via on-chip 32x32 hardware multiplier array
*  Maximum issue rate of one 32x32 multiply every clock

*  Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (rs) sign extension-depen-
dent)

*  Floating Point Unit (FPU) - available in microAptiv UCF version only.
* 1985 IEEE-754 compliant Floating Point Unit.
*  Supports single and double precision datatypes
* 2008 IEEE-754 compatibility control for NaN handling and Abs/Neg instructions
* Runs at 1:1 core/FPU clock ratio.
*  The FPU is build-time configurable.
*  CorExtend® User-Defined Instruction Set Extensions
*  Allows user to define and add instructions to the core at build time
*  Maintains full MIPS32 compatibility

*  Supported by industry-standard development tools

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03 21



Introduction to the MIPS32® microAptiv’™ UC Processor Core

22

»  Single or multi-cycle instructions

Multi-Core Support

»  External lock indication enables multi-processor semaphores based on LL/SC instructions
*  External sync indication allows memory ordering

*  Debug support includes cross-core triggers

Coprocessor 2 interface

*  32-bit interface to an external coprocessor

Power Control

*  Minimum frequency: 0 MHz

*  Power-down mode (triggered by WAIT instruction)

*  Support for software-controlled clock divider

*  Support for extensive use of local gated clocks

EJTAG Debug/Profiling and iFlowtrace™ Mechanism

*  CPU control with start, stop, and single stepping

*  Virtual instruction and data address/value breakpoints

*  Hardware breakpoint supports both address match and address range triggering

*  Optional simple hardware breakpoints on virtual addresses; 81/4D, 61/2D, 41/2D, 21/1D breakpoints, or no
breakpoints

*  Optional complex hardware breakpoints with 81/4D, 61/2D simple breakpoints

*  TAP controller is chainable for multi-CPU debug

*  Supports EJTAG (IEEE 1149.1) and compatible with cJTAG 2-wire (IEEE 1149.7) extension protocol
*  Cross-CPU breakpoint support

* iFlowtrace support for real-time instruction PC and special events

e  PC and/or load/store address sampling for profiling

*  Performance Counters

*  Support for Fast Debug Channel (FDC)

SecureDebug

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



1.2 microAptiv’™ UC Core Block Diagram

*  An optional feature that disables access via EJTAG in an untrusted environment
o Testability

»  Full scan design achieves test coverage in excess of 99% (dependent on library and configuration options)
1.2 microAptivi™ UC Core Block Diagram

The microAptiv UC core contains both required and optional blocks, as shown in the block diagram in Figure 1.1.
Required blocks are the lightly shaded areas of the block diagram and are always present in any core implementation.
Optional blocks may be added to the base core, depending on the needs of a specific implementation. The required
blocks are as follows:

* Instruction Decode

*  Execution Unit

*  General Purposed Registers (GPR)

*  Multiply/Divide Unit (MDU)

*  System Control Coprocessor (CP0)

*  Memory Management Unit (MMU)

* 1I/D SRAM Interfaces

*  Power Management

Optional blocks include:

*  Configurable instruction decoder supporting three ISA modes: MIPS32-only, MIPS32 and microMIPS, or
microMIPS-only

»  DSP (integrated with MDU)

*  Floating-point Unit (FPU) - available in microAptiv UCF version only
*  Reference Design of I/D-SRAM, BIU, Slow Memory Interface

*  Coprocessor 2 interface

¢ CorExtend® User-Defined Instruction (UDI) interface

*  Debug/Profiling with Enhanced JTAG (EJTAG) Controller, Break points, Sampling, Performance counters, Fast
Debug Channel, and iFlowtrace logic

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03 23



Introduction to the MIPS32® microAptivi™ UC Processor Core

Figure 1.1 microAptiv™™ UC Processor Core Block Diagram

microAptiv UC core Reference Design

b=y

Instruction Decode ~ [«e—e=|  MicTOMIPS ISRAM ISRAM SO
(MIPS32/microMIPS) 1 IF E 1
GPR MMU *

User-defined CcP2 ‘ (124816 sets) (FMT) o]

Cop2 blk *T"| IF |+ . | — SRAM Flash

P i Execution Unit Controller - Slwml:ﬂem -
User-defined UDI MDU MPU
CorExtend blk T g [~ || DSPMedue | [=—] ) i ,
( DSRAM | J B L | AHB-Lite
[ ) IIF
J U BIU I/F
Single & Double

System Sys. Control [

Interface | Coprocessor t | psnam

Interrupt - DSI?FAM e /

Interface \

Power
\ Manager /
2-wire Optional Fixed/Required
debug‘ CJTAG

1.2.1 Required Logic Blocks
The following subsections describe the required logic blocks of the microAptiv UC processor core.
1.2.1.1 Execution Unit

The microAptiv UC core execution unit implements a load/store architecture with single-cycle ALU operations (log-
ical, shift, add, subtract) and an autonomous multiply/divide unit.

The execution unit includes:

¢ Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations. Shared adder for arith-
metic operations, load/store address calculation, and branch target calculation.

¢ Address unit for calculating the next PC and next fetch address selection muxes.

¢ Load Aligner.

¢ Shifter and Store Aligner.

¢ Branch condition comparator.

¢ Trap condition comparator.

¢ Bypass muxes to advance result between two adjacent instructions with data dependency.
¢ Leading Zero/One detect unit for implementing the CLZ and CLO instructions.

¢ Actual execution of the Atomic Instructions defined in the MCU ASE.

24 MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



1.2 microAptiv’™ UC Core Block Diagram

* A separate DSP ALU and Logic block for performing part of DSP Module instructions, such as arith-
metic/shift/compare operations, if the DSP function is configured.

1.2.1.2 General Purposed Register (GPR) Shadow Registers

The microAptiv UC core contains thirty-two 32-bit general-purpose registers used for integer operations and address
calculation. Optionally, one, three, seven or fifteen additional register file shadow sets (each containing thirty-two
registers) can be added to minimize context switching overhead during interrupt/exception processing. The register
file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

1.2.1.3 Multiply/Divide Unit (MDU)

The microAptiv UC core includes a multiply/divide unit (MDU) that contains a separate, dedicated pipeline for inte-
ger multiply/divide operations, and DSP Module multiply instructions. This pipeline operates in parallel with the
integer unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows the long-running MDU opera-
tions to be partially masked by system stalls and/or other integer unit instructions.

The MIPS architecture defines that the result of a multiply or divide operation be placed in a pair (without DSP
enabled) or one of 4 pairs (with DSP enabled) of H/ and LO registers. Using the Move-From-HI (MFHI) and
Move-From-LO (MFLO) instructions, these values can be transferred to the general-purpose register file.

There are three configuration options for the MDU: 1) a full 32x32 multiplier block; 2) a higher performance 32x16
multiplier block; 3) an area-efficient iterative multiplier block. Option 2 and 3 are available if the DSP configuration
option is disabled. If the DSP configuration option is enabled, option 1 is the default. The selection of the MDU style
allows the implementor to determine the appropriate performance and area trade-off for the application.

MDU with 32x32 DSP Multiplier

With the DSP configuration option enabled, the MDU supports execution of one 16x16, 32x16, or 32x32 multiply or
multiply-accumulate operation every clock cycle with the built in 32x32 multiplier array. The multiplier is shared
with DSP Module operations.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as
defined in the DSP Module. It supports all the data types required for this purpose and includes three extra HI/LO
registers as defined by the Module.

MDU with 32x16 High-Performance Multiplier

The high-performance MDU consists of a 32x16 Booth-recoded multiplier, a pair of result/accumulation registers (H/
and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown (‘32 of
32x16) represents the s operand. The second number (‘16” of 32x16) represents the 7t operand. The microAptiv UC
core only checks the value of the rf operand to determine how many times the operation must pass through the multi-
plier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multi-
plier twice.

The MDU supports execution of one 16x16 or 32x16 multiply or multiply-accumulate operation every clock cycle;
32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic
built into the MDU.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03 25



Introduction to the MIPS32® microAptiv’™ UC Processor Core

26

MDU with Area-Efficient Option

With the area-efficient option, multiply and divide operations are implemented with a simple 1-bit-per-clock iterative
algorithm. Any attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes an MDU
pipeline stall until the operation is completed.

Regardless of the multiplier array implementation, divide operations are implemented with a simple 1-bit-per-clock
iterative algorithm. An early-in detection checks the sign extension of the dividend (rs) operand. If rs is 8 bits wide,
23 iterations are skipped. For a 16-bit-wide rs, 15 iterations are skipped, and for a 24-bit-wide rs, 7 iterations are
skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall
until the divide operation has completed.

1.2.1.4 System Control Coprocessor (CP0)

In the MIPS architecture, CPO is responsible for the virtual-to-physical address translation, the exception control sys-
tem, the processor’s diagnostics capability, the operating modes (kernel, user, and debug), and whether interrupts are
enabled or disabled. Configuration information, such as presence of build-time options like microMIPS, CorExtend
Module or Coprocessor 2 interface, is also available by accessing the CPO registers.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events, or program errors.

Interrupt Handling

The microAptiv UC core includes support for eight hardware interrupt pins, two software interrupts, and a timer
interrupt. These interrupts can be used in any of three interrupt modes, as defined by Release 2 of the MIPS32 Archi-
tecture:

* Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture.

*  Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the Vintbit in the Config3 register. This mode is architecturally optional; but it is always present on
the microAptiv UC core, so the Vint bit will always read as a 1 for the microAptiv UC core.

*  External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. The presence of
this mode denoted by the VEIC bit in the Config3 register. Again, this mode is architecturally optional. On the
microAptiv UC core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to
indicate the presence of an external interrupt controller.

The reset state of the processor is interrupt compatibility mode, such that a processor supporting Release 2 of the
Architecture, the microAptiv UC core for example, is fully compatible with implementations of Release 1 of the
Architecture.

VI or EIC interrupt modes can be combined with the optional shadow registers to specify which shadow set should be
used on entry to a particular vector. The shadow registers further improve interrupt latency by avoiding the need to
save context when invoking an interrupt handler.

In the microAptiv UC core, interrupt latency is reduced by:

*  Speculative interrupt vector prefetching during the pipeline flush.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



1.2 microAptiv’™ UC Core Block Diagram

* Interrupt Automated Prologue (IAP) in hardware: Shadow Register Sets remove the need to save GPRs, and IAP
removes the need to save specific Control Registers when handling an interrupt.

* Interrupt Automated Epilogue (IAE) in hardware: Shadow Register Sets remove the need to restore GPRs, and
IAE removes the need to restore specific Control Registers when returning from an interrupt.

*  Allow interrupt chaining. When servicing an interrupt and interrupt chaining is enabled, there is no need to return
from the current Interrupt Service Routine (ISR) if there is another valid interrupt pending to be serviced. The
control of the processor can jump directly from the current ISR to the next ISR without IAE and TAP.

GPR Shadow Registers

The MIPS32 Architecture optionally removes the need to save and restore GPRs on entry to high-priority interrupts
or exceptions, and to provide specified processor modes with the same capability. This is done by introducing multi-
ple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with entry to
kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option. The microAptiv UC core allows 1 (the normal GPRs), 2, 4, 8,
or 16 shadow sets. The highest number actually implemented is indicated by the SRSCtHSS field. If this field is zero,
only the normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. When a shadow set is bound to a kernel-mode entry condition, references to GPRs operate
exactly as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged soft-
ware may need to reference all GPRs in the register file, even specific shadow registers that are not visible in the cur-
rent mode, and the RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCt/
register provides the number of the current shadow register set, and the PSS field of the SRSCt/ register provides the
number of the previous shadow register set that was current before the last exception or interrupt occurred.

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCH/
register. When an exception or interrupt occurs, the value of SRSCltl-gg is copied to SRSCtlpgs, and SRSCtlcgg is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlpgg is copied back into SRSCtl-gg
to restore the shadow set of the mode to which control returns.

Refer to Chapter 7, “CPO Registers of the microAptivi™™ UC Core” on page 145 for more information on the CPO reg-

isters. Refer to Chapter 10, “EJTAG Debug Support in the microAptivI™ UC Core” on page 212 for more informa-
tion on EJTAG debug registers.

1.2.1.5 Memory Management Unit (MMU)
Modes of Operation
The microAptiv UC core implements three modes of operation:
*  User mode is most often used for applications programs.

*  Kernel mode is typically used for handling exceptions and operating-system kernel functions, including CPO
management and I/O device accesses.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03 27



Introduction to the MIPS32® microAptiv’™ UC Processor Core

28

*  Debug mode is used during system bring-up and software development. Refer to the EJTAG section for
more information on debug mode.

Figure 1.2 shows the virtual address map of the MIPS Architecture.

Figure 1.2 microAptivi™™ UC Core Virtual Address Map

OxFFFFFFFF
Fix Mapped
O0xFF400000
OxFF3FFFFF
OXFF200000 Memory/EJTAG'
OxF1FFFFFF
Fix Mapped
0xE0000000
OXDFFFFFFF |k ernel Virtual Address Space
Fix Mapped, 512 MB
0xC0000000
OxBFFFFFFF [Kernel Virtual Address Space
Unmapped, 512 MB
0xA0000000 Uncached
OXOFFFFFFF | Kernel Virtual Address Space]
Unmapped, 512 MB
0x80000000
Ox7FFFFFFF
User Virtual Address Space
Mapped, 2048 MB
0x00000000

\

kseg3

kseg2

kseg1

kseg0

kuseg

1. This space is mapped to memory in user or kernel mode,
and by the EJTAG module in debug mode.

Memory Management Unit (MMU)

The microAptiv UC core contains a simple Fixed Mapping Translation (FMT) MMU that interfaces between the exe-

cution unit and the SRAM controller.

*  Fixed Mapping Translation (FMT)

A FMT is smaller and simpler than the full Translation Lookaside Buffer (TLB) style MMU found in other MIPS
cores. Like a TLB, the FMT performs virtual-to-physical address translation and provides attributes for the dif-
ferent segments. Those segments that are unmapped in a TLB implementation (ksegO and ksegl) are translated

identically by the FMT.

Figure 1.3 shows how the FMT is implemented in the microAptiv UC core.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



1.2 microAptivi™ UC Core Block Diagram

Figure 1.3 Address Translation During SRAM Access with FMT Implementation

Virtual Physical
Instruction | Aqdress Address
Address > Inst
Calculator —»| sRAM
SRAM
FMT interface]
Data
Data R —»| SRAM
Address > o
Virtual Physical
Calculator | JTUa Address

1.2.1.6 SRAM Interface Controller

Instead of caches, the microAptiv UC core contains an interface to SRAM-style memories that can be tightly coupled
to the core. This permits deterministic response time with less area than is typically required for caches. The SRAM
interface includes separate uni-directional 32-bit buses for address, read data, and write data.

Dual or Unified Interfaces
The SRAM interface includes a build-time option to select either dual or unified instruction and data interfaces.

The dual interface enables independent connection to instruction and data devices. It generally yields the highest per-
formance, because the pipeline can generate simultaneous I and D requests, which are then serviced in parallel.

For simpler or cost-sensitive systems, it is also possible to combine the I and D interfaces into a common interface
that services both types of requests. If I and D requests occur simultaneously, priority is given to the D side.

Back-stalling

Typically, read and write transactions will complete in a single cycle. However, if multi-cycle latency is desired, the
interface can be stalled to allow connection to slower devices.

Redirection

When the dual I/D interface is present, a mechanism exists to divert D-side references to the I-side, if desired. The
mechanism can be explicitly invoked for any other D-side references, as well. When the DS_Redir signal is asserted,
a D-side request is diverted to the I-side interface in the following cycle, and the D-side will be stalled until the trans-
action is completed.

Transaction Abort

The core may request a transaction (fetch/load/store/sync) to be aborted. This is particularly useful in case of inter-
rupts. Because the core does not know whether transactions are re-startable, it cannot arbitrarily interrupt a request
that has been initiated on the SRAM interface. However, cycles spent waiting for a multi-cycle transaction to com-
plete can directly impact interrupt latency. In order to minimize this effect, the interface supports an abort mecha-
nism. The core requests an abort whenever an interrupt is detected and a transaction is pending (abort of an
instruction fetch may also be requested in other cases). The external system logic can choose to acknowledge or to
ignore the abort request.

Connecting to Narrower Devices
The instruction and data read buses are always 32 bits in width. To facilitate connection to narrower memories, the

SRAM interface protocol includes input byte-enables that can be used by system logic to signal validity as partial
read data becomes available. The input byte-enables conditionally register the incoming read data bytes within the

MIPS32® microAptivi™ UC Processor Core Family Software User's Manual, Revision 01.03 29



Introduction to the MIPS32® microAptiv’™ UC Processor Core

30

core, and thus eliminate the need for external registers to gather the entire 32 bits of data. External muxes are required
to redirect the narrower data to the appropriate byte lanes.

Lock Mechanism

The SRAM interface includes a protocol to identify a locked sequence, and is used in conjunction with the LL/SC
atomic read-modify-write semaphore instructions.

Sync Mechanism

The interface includes a protocol that externalizes the execution of the SYNC instruction. External logic might
choose to use this information to enforce memory ordering between various elements in the system.

External Call Indication

The instruction fetch interface contains signals that indicate that the core is fetching the target of a subroutine
call-type instruction such as JAL or BAL. At some point after a call, there will typically be a return to the original
code sequence. If a system prefetches instructions, it can make use of this information to save instructions that were
prefetched and are likely to be executed after the return.

1.2.1.7 Power Management

The microAptiv UC core offers a number of power management features, including low-power design, active power
management, and power-down modes of operation. The core is a static design that supports slowing or halting the
clocks, which reduces system power consumption during idle periods.

The microAptiv UC core provides two mechanisms for system-level low-power support:

*  Register-controlled power management

*  Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CPO Status register provides a software mechanism for placing the system into a low-power state.
The state of the RP bit is available externally via the SI_RP signal. The external agent then decides whether to place
the device in a low-power mode, such as reducing the system clock frequency.

Three additional bits,StatusEXL, StatusERL, and DebugDM support the power management function by allowing the
user to change the power state if an exception or error occurs while the microAptiv UC core is in a low-power state.
Depending on what type of exception is taken, one of these three bits will be asserted and reflected on the SI_EXL,
SI_ERL, or EJ_DebugM outputs. The external agent can look at these signals and determine whether to leave the

low-power state to service the exception.

The following four power-down signals are part of the system interface and change state as the corresponding bits in
the CPO registers are set or cleared:

*  The SI_RP signal represents the state of the RP bit (27) in the CPO Status register.
* The SI_EXL signal represents the state of the EXL bit (1) in the CP0O Status register.
* The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

*  The EJ_DebugM signal represents the state of the DM bit (30) in the CPO Debug register.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



1.2 microAptiv’™ UC Core Block Diagram

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is by executing the WAIT instruction. When the WAIT
instruction is executed, the internal clock is suspended; however, the internal timer and some of the input pins
(SI_Int[5:0], SI_NMI, SI_Reset, and SI_ColdReset) continue to run. When the CPU is in instruction-controlled power
management mode, any interrupt, NMI, or reset condition causes the CPU to exit this mode and resume normal oper-
ation.

The microAptiv UC core asserts the SI_Sleep signal, which is part of the system interface bus, whenever the WAIT
instruction is executed. The assertion of SI_Sleep indicates that the clock has stopped and the microAptiv UC core is

waiting for an interrupt.

Local clock gating
The majority of the power consumed by the microAptiv UC core is in the clock tree and clocking registers. The core
has support for extensive use of local gated clocks. Power-conscious implementors can use these gated clocks to sig-

nificantly reduce power consumption within the core.

Refer to Chapter 9, “Power Management of the microAptiv™ UC Core” on page 210 for more information on power
management.

1.2.2 Optional Logic Blocks
The core consists of the following optional logic blocks as shown in the block diagram in Figure 1.1.
1.2.2.1 Reference Design
The microAptiv UC core contains a reference design that shows a typical usage of the core with:
e  Dual I-SRAM and D-SRAM interface with fast memories (i.e., SRAM) for instruction and data storage.

*  Optimized interface for slow memory (i.e., Flash memory) access by having a prefetch buffer and a wider Data
Read bus (i.e., IS_RData[127:0]) to speed up I-Fetch performance.

*  AHB-lite bus interface to the system bus if the memory accesses are outside the memory map for the SRAM and
Flash regions. AHB-Lite is a subset of the AHB bus protocol that supports a single bus master. The interface
shares the same 32-bit Read and Write address bus and has two unidirectional 32-bit buses for Read and Write

data.

The reference design is optional and can be modified by the user to better fit the SOC design requirement.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03 31



Introduction to the MIPS32® microAptivi™ UC Processor Core

32

Figure 1.4 Reference Design Block Diagram.

pd Prefetch Buﬂel 128-bit| Internal
ISUF - Flash
32-,bil .
icroAptiv UC
oAy N AHB Lite AHB-Lite Bus
1 | 1] Bridge ‘
DSI/F
‘32_131( Internal Extomal
ISRAM &
AN DSRAM Memory IF

1.2.2.2 microMIPS™ [SA

The microAptiv UC core supports the microMIPS ISA, which contains all MIPS32 ISA instructions (except for
branch- likely instructions) in a new 32-bit encoding scheme, with some of the commonly used instructions also
available in 16-bit encoded format. This ISA improves code density through the additional 16-bit instructions while
maintaining a performance similar to MIPS32 mode. In microMIPS mode, 16-bit or 32-bit instructions will be
fetched and recoded to legacy MIPS32 instruction opcodes in the pipeline’s I stage, so that the microAptiv UC core
can have the same M 14K microarchitecture. Because the microMIPS instruction stream can be intermixed with
16-bit halfword or 32-bit word size instructions on halfword or word boundaries, additional logic is in place to
address the word misalignment issues, thus minimizing performance loss.

1.2.2.3 DSP Module

The microAptiv UC core implements an optional DSP Module to benefit a wide range of DSP, Media, and DSP-like
algorithms. The DSP module is highly integrated with the Execution Unit and the MDU in order to share common
logic and to include support for operations on fractional data types, saturating arithmetic, and register SIMD opera-
tions. Fractional data types Q15 and Q31 are supported. Register SIMD operations can perform up to four simulta-
neous add, subtract, or shift operations and two simultaneous multiply operations.

In addition, the DSP Module includes some key features that efficiently address specific problems often encountered
in DSP applications. These include, for example, support for complex multiply, variable-bit insert and extract, and
implementation and use of virtual circular buffers. The extension also makes available three additional sets of HI-LO
accumulators to better facilitate common accumulate functions such as filter operation and convolutions.

1.2.2.4 Floating Point Unit (FPU)

The microAptiv UC core Floating Point Unit (FPU) implements the MIPS Instruction Set Architecture for float-
ing-point computation. The implementation supports the ANSI/IEEE Standard 754 (IEEE Standard for Binary Float-
ing-Point Arithmetic) for single- and double-precision data formats. The FPU can be programmed to have thirty-two
32-bit or 64-bit floating-point registers used for floating point operations.

The performance is optimized for single-precision formats. Most instructions have one FPU cycle throughput and
four FPU cycle latency. The FPU implements the multiply-add (MADD) and multiply-sub (MSUB) instructions with
intermediate rounding after the multiply function. The result is guaranteed to be the same as executing a MUL and an
ADD instruction separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the total number of
register accesses are improved.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



1.2 microAptivi™ UC Core Block Diagram

IEEE denormalized input operands and results are supported by hardware for some instructions. IEEE denormalized
results are not supported by hardware in general, but a fast flush-to-zero mode is provided to optimize performance.
The fast flush-to-zero mode is enabled through the FCCR register, and use of this mode is recommended for best per-
formance when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction execution. This pipeline operates in parallel with the
integer core pipeline and does not stall when the integer pipeline stalls. This allows long-running FPU operations,
such as divide or square root, to be partially masked by system stalls and/or other integer-unit instructions. Arithmetic

instructions are always dispatched and completed in-order, but loads and stores can complete out-of-order. The
exception model is ‘precise’ at all times. The FPU is also denoted as “Coprocessor 1”.

FPU Pipeline

The FPU implements a high-performance 7-stage pipeline:
¢ Decode, register read and unpack (FR stage)

¢ Multiply tree - double pumped for double (M1 stage)
e Multiply complete (M2 stage)

¢ Addition first step (A1l stage)

¢ Addition second and final step (A2 stage)

¢ Packing to IEEE format (FP stage)

¢ Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result to the FPU register and then read it back.

Figure 1.5 shows the FPU pipeline.

Figure 1.5 FPU Pipeline.

3
\‘EI-.--

1.2.2.5 Coprocessor 2 Interface

The microAptiv UC core can be configured to have an interface for an on-chip coprocessor. This coprocessor can be
tightly coupled to the processor core, allowing high-performance solutions integrating a graphics accelerator or DSP,
for example.

The coprocessor interface is extensible and standardized on MIPS cores, allowing for design reuse. The microAptiv

UC core supports a subset of the full coprocessor interface standard: 32b data transfer, no Coprocessor 1 support, sin-
gle issue in-order data transfer to coprocessor, and one out-of-order data transfer from coprocessor.

MIPS32® microAptivi™ UC Processor Core Family Software User's Manual, Revision 01.03 33



Introduction to the MIPS32® microAptiv’™ UC Processor Core

34

The coprocessor interface is designed to ease integration with customer IP. The interface allows high-performance
communication between the core and coprocessor. There are no late or critical signals on the interface.

Refer to Chapter 12, “microAptiv™ UC Processor Core Instructions” on page 292 for more information on the
Coprocessor 2 supported instructions.

1.2.2.6 CorExtend® User-defined Instruction Extensions

An optional CorExtend User-defined Instruction (UDI) block enables the implementation of a small number of appli-
cation-specific instructions that are tightly coupled to the core’s execution unit. The interface to the UDI block is
external to the microAptiv UC core.

Such instructions may operate on a general-purpose register, immediate data specified by the instruction word, or
local state stored within the UDI block. The destination may be a general-purpose register or local UDI state. The
operation may complete in one cycle or multiple cycles, if desired.

Refer to Table 12.3 “Special2 Opcode Encoding of Function Field” for a specification of the opcode map available
for user-defined instructions.

1.2.2.7 EJTAG Debug Support

The microAptiv UC core provides for an optional Enhanced JTAG (EJTAG) interface for use in the software debug
of application and kernel code. In addition to standard user and kernel modes of operation, the microAptiv UC core
provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step
exception, etc.) is taken and continues until a debug exception return (DERET) instruction is executed. During this
time, the processor executes the debug exception-handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring
test data in and out of the microAptiv UC core. In addition to the standard JTAG instructions, special instructions
defined in the EJTAG specification specify which registers are selected and how they are used.

Debug Registers

Four debug registers (DEBUG, DEBUG2, DEPC, and DESAVE) have been added to the MIPS Coprocessor 0 (CPO)
register set. The DEBUG and DEBUG2 registers show the cause of the debug exception and are used for setting up
single-step operations. The DEPC (Debug Exception Program Counter) register holds the address on which the debug
exception was taken, which is used to resume program execution after the debug operation finishes. Finally, the
DESAVE (Debug Exception Save) register enables the saving of general-purpose registers used during execution of
the debug exception handler.

To exit debug mode, a Debug Exception Return (DERET) instruction is executed. When this instruction is executed,
the system exits debug mode, allowing normal execution of application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug mode. There are two types of simple hardware breakpoints
implemented in the microAptiv UC core: Instruction breakpoints and Data breakpoints. Additionally, complex hard-
ware breakpoints can be included, which allow detection of more intricate sequences of events.

The microAptiv UC core can be configured with the following breakpoint options:

*  No data or instruction, or complex breakpoints

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



1.2 microAptiv’™ UC Core Block Diagram

*  One data and two instruction breakpoints, without complex breakpoints

*  Two data and four instruction breakpoints, without complex breakpoints

*  Two data and six instruction breakpoints, with or without complex breakpoints

*  Four data and eight instruction breakpoints, with or without complex breakpoints

Instruction breakpoints occur on instruction execution operations, and the breakpoint is set on the virtual address. A
mask can be applied to the virtual address to set breakpoints on a binary range of instructions.

Data breakpoints occur on load/store transactions, and the breakpoint is set on a virtual address value, with the same
single address or binary address range as the Instruction breakpoint. Data breakpoints can be set on a load, a store, or
both. Data breakpoints can also be set to match on the operand value of the load/store operation, with byte-granularity
masking. Finally, masks can be applied to both the virtual address and the load/store value.

In addition, the microAptiv UC core has a configurable feature to support data and instruction address-range trig-
gered breakpoints, where a breakpoint can occur when a virtual address is either within or outside a pair of 32-bit
addresses. Unlike the traditional address-mask control, address-range triggering is not restricted to a power-of-two
binary boundary.

Complex breakpoints utilize the simple instruction and data breakpoints and break when combinations of events are
seen. Complex break features include:

*  Pass Counters - Each time a matching condition is seen, a counter is decremented. The break or trigger will only
be enabled when the counter has counted down to 0.

e Tuples - A tuple is the pairing of an instruction and a data breakpoint. The tuple will match if both the virtual
address of the load or store instruction matches the instruction breakpoint, and the data breakpoint of the result-
ing load or store address and optional data value matches.

*  Priming - This allows a breakpoint to be enabled only after other break conditions have been met. Also called
sequential or armed triggering.

e Qualified - This feature uses a data breakpoint to qualify when an instruction breakpoint can be taken. When a
load matches the data address and the data value, the instruction break will be enabled. If a load matches the
address, but has mis-matching data, the instruction break will be disabled.

Performance Counters

Performance counters are used to accumulate occurrences of internal predefined events/cycles/conditions for pro-
gram analysis, debug, or profiling. A few examples of event types are clock cycles, instructions executed, specific
instruction types executed, loads, stores, exceptions, and cycles while the CPU is stalled. There are two, 32-bit
counters. Each can count one of the 64 internal predefined events selected by a corresponding control register. A
counter overflow can be programmed to generate an interrupt, where the interrupt-handler software can maintain
larger total counts.

PC/Address Sampling
This sampling function is used for program profiling and hot-spots analysis. Instruction PC and/or Load/Store

addresses can be sampled periodically. The result is scanned out through the EJTAG port. The Debug Control
Register (DCR) is used to specify the sample period and the sample trigger.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03 35



Introduction to the MIPS32® microAptivi™ UC Processor Core

36

Fast Debug Channel (FDC)

The microAptiv UC core includes an optional FDC as a mechanism for high bandwidth data transfer between a debug
host/probe and a target. FDC provides a FIFO buffering scheme to transfer data serially, with low CPU overhead and
minimized waiting time. The data transfer occurs in the background, and the target CPU can choose either to check
the status of the transfer periodically or to be interrupted at the end of the transfer.

Figure 1.6 FDC Overview

microAptiv
EJITAG Probe
TAP
FDC
Receive from 43; TDI
Probe to Core™ 7

Transmit from 3; L TDO
Core to Probe 7

| Tap Controller I ™S

iFlowtrace™
The microAptiv UC core has an option for a simple trace mechanism named iFlowtrace. This mechanism only traces
the instruction PC, not data addresses or values. This simplification allows the trace block to be smaller and the trace

compression to be more efficient. iFlowtrace memory can be configured as off-chip, on-chip, or both.

iFlowtrace also offers special-event trace modes when normal tracing is disabled, namely:

Function Call/Return and Exception Tracing mode to trace the PC value of function calls and returns and/or
exceptions and returns.

Breakpoint Match mode traces the breakpoint ID of a matching breakpoint and, for data breakpoints, the PC
value of the instruction that caused it.

Filtered Data Tracing mode traces the ID of a matching data breakpoint, the load or store data value, access type
and memory access size, and the low-order address bits of the memory access, which is useful when the data
breakpoint is set up to match a binary range of addresses.

User Trace Messages. The user can instrument their code to add their own 32-bit value messages into the trace by
writing to the Cop0 UTM register.

Delta Cycle mode works in combination with the above trace modes to provide a timestamp between stored
events. It reports the number of cycles that have elapsed since the last message was generated and put into the
trace.

Refer to Chapter 10, “EJTAG Debug Support in the microAptivi™ UC Core” on page 212 for more information on
the EJTAG features.

MIPS32® microAptivi™ UC Processor Core Family Software User’'s Manual, Revision 01.03



cJTAG Support

1.2 microAptivi™ UC Core Block Diagram

The microAptiv UC core provides an external conversion block which converts the existing EJTAG (IEEE 1149.1)
4-wire interface at the microAptiv UC core to a cJTAG (IEEE 1149.7) 2-wire interface. cJTAG reduces the number
of wires from 4 to 2 and enables the support of Star-2 scan topology in the system debug environment.

Figure 1.7 cJTAG Support

microAptiv
EJTAG
EJITAG 4-wire
interface
TDI
Tap TDO
Controller TCK
™S

SecureDebug

cJTAG
Conversion
Block

cJTAG
2-wire
interface

TMSC
TCK

SecureDebug improves security by disabling untrusted EJTAG debug access. An input signal is used to disable debug
features, such as Probe Trap, Debug Interrupt Exception (EjtagBrk and DINT), EI TAGBOOT instruction, and PC

Sampling.

MIPS32® microAptivi™ UC Processor Core Family Software User's Manual, Revision 01.03

37



Chapter 2

Pipeline of the microAptiv™™ UC Core

The microAptiv UC processor core implements a 5-stage pipeline similar to the original M4K pipeline. The pipeline
allows the processor to achieve high frequency while minimizing device complexity, reducing both cost and power
consumption. This chapter contains the following sections:

e Section 2.1 “Pipeline Stages”

*  Section 2.2 “Multiply/Divide Operations”

e Section 2.3 “MDU Pipeline with DSP Module Enabled”

*  Section 2.4 “MDU Pipeline - High-performance MDU with DSP Module Disabled”

*  Section 2.5 “MDU Pipeline - Area-Efficient MDU with DSP Module Disabled”

*  Section 2.6 “Branch Delay”

*  Section 2.7 “Data Bypassing”

*  Section 2.9 “Interlock Handling”

¢ Section 2.10 “Slip Conditions”

e Section 2.11 “Instruction Interlocks”

e Section 2.12 “Hazards”

2.1 Pipeline Stages

The microAptiv UC core implements a 5-stage pipeline with a performance similar to the M14K pipeline. The pipe-
line allows the processor to achieve high frequency while minimizing device complexity, reducing both cost and
power consumption.

The microAptiv UC core pipeline consists of five stages:

*  Instruction (I Stage)

*  Execution (E Stage)

*  Memory (M Stage)

*  Align (A Stage)

*  Writeback (W stage)

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 38



2.1 Pipeline Stages

The microAptiv UC core implements a bypass mechanism that allows the result of an operation to be forwarded
directly to the instruction that needs it without having to write the result to the register and then read it back.

The microAptiv UC soft core includes a build-time option that determines the type of multiply/divide unit (MDU)
implemented. The MDU can be either a high-performance 32x16 multiplier array or an iterative, area-efficient array
when the DSP Module configuration is not selected. The MDU choice has a significant effect on the MDU pipeline,
and the latency of multiply/divide instructions executed on the core. Software can query the type of MDU present on
a specific implementation of the core by querying the MDU bit in the Config register (CPO register 16, select 0); see
Chapter 7, “CPO0 Registers of the microAptivI™ UC Core” on page 145 for more details. When the DSP Module con-
figuration is selected, the multiply/divide unit (MDU) of the microAptiv UC soft core is always implemented with a
fully pipelined 32x32 multiplier array for maximum performance.

Figure 2.1 shows the operations performed in each pipeline stage of the microAptiv UC processor core, when the
high-performance multiplier is present when the DSP Module is disabled.

Figure 2.1 microAptiv™ UC Core Pipeline Stages with high-performance MDU
| [ | | | [ | | | [

1 E M A w [ ISRAM : ISRtll\ll:ﬂd(eadD o
ASEB 1 Dec | - Instruction Decode
Km_ﬂm!& RegRd| - Register file read
\ 1-AC1 | FAc2 ] : Instruction Address Calculation stage 1 and 2
ISRAM__[ReqRd| ALUOp | : ALUOp | : Arithmetic Logic and Shift operations
IDec | DAC| DSRAM | Align | [RegW| E D-AC | : Data Address Calculation
[ DSRAM - DSRAM read
FAC1 | FAC2 3 Align | : Load data aligner
w___ A>E Bypass = RegW| : Register file write
[muL // MDU Res Rdy [RegW | MUL | : MUL instruction
o 5 CPA - Carry Propagate Adder
| Mult, 16x16, CPA MDU Res Rdy| | .2 Mult, Macc | : Multiply and Multiply Accumulate instructions
., : Divide : Divide instructions
| Muit, /[ 32x32 CPA MDU Res Rdy g Sign Adjust_| : Last stage of Divide is a sign adjust
T = |MDUResRdy| : Result can be read from MDU
| Divide // Sign Adjust_|MDU Res Rdy

/ / - One or more cycles.

Figure 2.2 shows the operations performed in each pipeline stage of the microAptiv UC processor core, when the
area-efficient multiplier is present when the DSP Module is disabled.

Figure 2.2 microAptiv™ UC Core Pipeline Stages with area-efficient MDU
| | | | | | | | | |

I E M A W [ 1-SRAM - II_St?qu fe%d y
A->E Bypass |Dec | - INS! lon Decode
& \>E Bypass RegRd| - Register file read
\ I-AC1 | 1-ac2 | - Instruction Address Calculation stage 1 and 2
ISRAM_[ReqRd| ALUOp ] ALU Op - Arithmetic Logic and Shift operations

I1Dec | D-AC| D-SRAM | Align | RegW |

E :IQTAACM : Baéa R/)-\A(li\gressd Calculation
£ :D- rea
IAC1 | -AC2 = Align | : Load data aligner
w A->E Bypass = Reqw | : Register file write
[moc 7/~ |MDU Res Rdy[RegW] =3 MUL | - MUL instruction .
1/ B [Muttiply, Divide| - Multiply, Multiply Acc. And Divide
— DMd//. T 8 MDU Res Rdy| : Result can be read from MDU
[Muitip 7/ =

/ / - One or more cycles.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 39



Pipeline of the microAptiv™ UC Core

Figure 2.3 shows the operations performed in each pipeline stage of the microAptiv UC processor core when the DSP

Module is enabled.
Figure 2.3 microAptiv™ UC Core Pipeline Stages
| | | | | [ | | | |
1 E M A w [ ISRAM : ISRtll\ll:ﬂd(eadD o
A->E Bypass 1Dec | - Instruction Decode
AW SE Bypass RegRd| - Register file read
\ 1-AC1 | FAc2 ] : Instruction Address Calculation stage 1 and 2
ISRAM__[ReqRd| ALUOp | : ALUOp | : Arithmetic Logic and Shift operations
IDec | DAC| DSRAM | Align | [RegW| E D-AC | : Data Address Calculation
3 DSRAM - DSRAM read
FAC1 | FAC2 3 Align | : Load data aligner
w___| A>E Bypass = RegW| : Register file write
[muL // MDU Res Rdy [RegW | MUL | : MUL instruction
o CPA - Carry Propagate Adder
Mul CPA MDU Res R Mult, Macc | : Multiply and Multiply Accumulate instructions
[ty '/'/ B Divide - Divide instructions

MDUPipeli

Sign Adjust_| : Last stage of Divide is a sign adjust
MDU Res Rdy| : Result can be read from MDU
/ / - One or more cycles.

| Divide // Sign Adjust_|MDU Res Rdy |

2.1.1 | Stage: Instruction Fetch

During the Instruction fetch stage:
*  An instruction is fetched from the instructionSRAM.
e If both MIPS32 and microMIPS ISAs are supported, microMIPS instructions are converted to MIPS32-like

instructions. If the MIPS32 ISA is not supported, 16-bit microMIPS instructions will be first recoded into 32-bit
microMIPS equivalent instructions, and then decoded in native microMIPS ISA format.

2.1.2 E Stage: Execution

During the Execution stage:

*  Operands are fetched from the register file.

*  Operands from the M and A stage are bypassed to this stage.

*  The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register instructions.

*  The ALU calculates the data virtual address for load and store instructions and the MMU performs the fixed vir-
tual-to-physical address translation.

*  The ALU determines whether the branch condition is true and calculates the virtual branch target address for
branch instructions.

» Instruction logic selects an instruction address and the MMU performs the fixed virtual-to-physical address
translation.

*  All multiply and divide operations begin in this stage.

40 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



2.2 Multiply/Divide Operations

2.1.3 M Stage: Memory Fetch

During the Memory fetch stage:

e The arithmetic ALU operation completes.

e The data SRAM access is performed for load and store instructions.

A 16x16, 32x16 or 32x32 multiply calculation completes (with DSP configuration).

* A 32x32 multiply operation stalls the MDU pipeline for one clock in the M stage (high-performance MDU
option without DSP configuration).

* A multiply operation stalls the MDU pipeline for 31 clocks in the M stage (area-efficient MDU option without
DSP configuration).

* A multiply-accumulate operation stalls the MDU pipeline for 33 clocks in the M stage (area-efficient MDU
option without DSP configuration).

* A divide operation stalls the MDU pipeline for a maximum of 38 clocks in the M stage. Early-in sign extension

detection on the dividend will skip 7, 15, or 23 stall clocks (only the divider in the fast MDU option supports
early-in detection).

2.1.4 A Stage: Align

During the Align stage:
* Load data is aligned to its word boundary.
* A multiply/divide operation updates the HI/LO registers (area-efficient MDU option).

e  Multiply operation performs the carry-propagate-add. The actual register writeback is performed in the W stage
(high-performance MDU option).

A MUL operation makes the result available for writeback. The actual register writeback is performed in the W
stage.

*  EJTAG complex break conditions are evaluated.

2.1.5 W Stage: Writeback

During the Writeback stage:

*  For register-to-register or load instructions, the result is written back to the register file.
2.2 Multiply/Divide Operations

The microAptiv UC core implements the standard MIPS II™ multiply and divide instructions. Additionally, several
new instructions were standardized in the MIPS32 architecture for enhanced performance.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 41



Pipeline of the microAptivi™™ UC Core

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general-purpose register file
instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register,
and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU), multiply-subtract (MSUB), and multi-
ply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract operations. The
MADD/MADDU instruction multiplies two numbers and then adds the product to the current contents of the HI and
LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and then subtracts the product from
the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are commonly used in DSP algo-
rithms.

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations write to
the general purpose registers (GPR). Because MDU operations write to different registers than integer operations,
integer instructions that follow can execute before the MDU operation has completed. The MFLO and MFHI instruc-
tions are used to move data from the HI/LO register pair to the GPR file. If an MFLO or MFHI instruction is issued
before the MDU operation completes, it will stall to wait for the data.

2.3 MDU Pipeline with DSP Module Enabled

42

The microAptiv UC processor core contains a high-performance Multiply-Divide Unit (MDU) and a DSP unit to han-
dle integer multiply, divide, and DSP Module instructions.

The autonomous multiply/divide unit (MDU) has a separate pipeline for multiply and divide operations. This pipeline
operates in parallel with the integer unit (ALU) pipeline and does not stall when the ALU pipeline stalls. This allows
multi-cycle MDU operations, such as a divide, to be partially masked by system stalls and/or other integer unit
instructions.

The following subsections describe the MDU pipeline in more detail.

2.3.1 MDU

The high-performance MDU consists of a 32x32 Booth-recoded multiplier array, separate carry-lookahead adders for
multiply and divide, result/accumulation registers (H/ and LO), multiply and divide state machines, and all necessary
multiplexers and control logic.

Due to the multiplier array, the high-performance MDU supports execution of a multiply operation every clock cycle.
Divide operations are implemented with a simple 1 bit-per-clock iterative algorithm with an early in detection of sign
extension on the dividend (rs). An attempt to issue a subsequent MDU instruction which would access the Hl or LO
register before the divide completes causes a delay in starting the subsequent MDU instruction. Some concurrency is
enabled by the separate adders for the multiply and divide data paths. The MDU instruction may start executing when
the divide is ensured of writing to the H/ and LO registers before the MDU instruction will access them. A MUL
instruction, which does not access the HI or LO register, may start executing anytime relative to a previous divide
instruction.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



2.3 MDU Pipeline with DSP Module Enabled

Table 2.1 lists the number of stall cycles incurred between two dependent instructions. A stall of 0 clock cycles means
that the first and second instructions can be issued back-to-back in the code, without the MDU causing any stalls in

the ALU pipeline.

Table 2.1 High-performance MDU Stalls

Size of Operand Instruction Sequence Delay
1st Instructionl] 1st Instruction 2nd Instruction Clocks
32 bit MULT/MULTU, MADD/MADDU, 0
MADD/MADDU, or MSUB/MSUBU, or MFHI/MFLO
MSUB/MSUBU
32 bit MUL Integer operation!!] 3
8 bit DIVU MFHI/MFLO 8
16 bit DIVU MFHI/MFLO 16
24 bit DIVU MFHI/MFLO 24
32 bit DIVU MFHI/MFLO 32
8 bit DIV MFHI/MFLO 1012]
16 bit DIV MFHI/MFLO 18021
24 bit DIV MFHI/MFLO 2621
32 bit DIV MFHI/MFLO 3402]
any MFHI/MFLO Integer operationm 1
any MTHI/MTLO MADD/MADDU, 1
MSUB/MSUBU
any MTHI/MTLO MFHI/MFLO 1
[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
[2] If both operands are positive, then the two Sign Adjust stages are bypassed. Delay is then the same as
for DIVU.

2.3.2 DSP Module Instruction Latencies

The microAptiv UC processor core includes support for DSP Module. Logic for these instructions is located prima-

rily in the ALU and MDU blocks. Any DSP instructions accessing the accumulators or performing multiplication are
implemented in the MDU. All others are implemented in the ALU. In addition to the “normal” MIPS32 HI/LO accu-
mulator, the DSP Module introduces three additional HI/LO accumulator pairs.

The latency and repeat rate for the BPOSGE32 instruction is similar to those for a MIPS32 conditional branch

instruction. However, unlike a MIPS32 conditional branch instruction, BPOSGE32 is dependent on DSPControl.Pos
and not on a GPR. The LHX and LWX instructions are treated as non-blocking loads by the core; they have depen-
dencies on the index and base registers. The delay and repeat rates for other DSP instructions are shown in the follow-
ing tables. The ‘delay’ in Table 2.2 is in terms of pipeline clocks and refers to the number of cycles the pipeline must
stall the second instruction in order to wait for the result of the first instruction. A delay of zero means that the first

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

43



Pipeline of the microAptivi™™ UC Core

and second instructions can be issued back-to-back without stalling the pipeline. A delay of one means that if issued

back-to-back, the pipeline will stall for one cycle.

Table 2.2 DSP Instruction Delays

Instruction Sequence
Delay
Dependency on' 1st Instruction 2nd Instruction Clocks
GPR MUL*, EXT*, MFHI, MFLO Instruction with GPR input 3
(multiplies or HI/LO reads that
write to a GPR)
GPR Other (ALU) DSP instruction Instruction with GPR input 0
with GPR result
HI/LO DPAQ¥*, DPSQ*, MULSAQ*, MFHI, MFLO, MFTR 1
MAQ*, MADD*, MSUB¥*, (HI/LO reads)
MULT*, MTHI, MTLO, MTTR,
SHILO*, MTHLIP
(HI/LO writes)
HI/LO * SA DPAQ¥*, DPSQ*, MULSAQ*, 1
(MAC:s that saturates after accu- MAQ*, MADD*, MSUB*
mulate) (MAC’s)
HI/LO DPAQ S.*, DPSQ S.*, MUL- DPAQ#*, DPSQ*, MULSAQ*, 1
SAQ*, MAQ_S.*, MADD¥, MAQ#*, MADD*, MSUB*
MSUB* (MAC’s)
(MAC’s that do not saturate after
accumulate)
HI/LO MTHI, MTLO, MTTR, SHILO*, | DPAQ%*, DPSQ*, MULSAQ*, 1
MTHLIP MAQ#*, MADD*, MSUB*
(HI/LO writes that are not multi- (MAC’s)
plies)
HI/LO DPAQ*, DPSQ*, MULSAQ*, EXT*, SHILO* 3
MAQ*, MADD*, MSUB*, (HI/LO shifts)
MULT#*, MTHI, MTLO, MTTR,
EXT*, SHILO*, MTHLIP
(HI/LO writes)
HI/LO DPAQ#*, DPSQ*, MULSAQ*, MTHLIP 3
MAQ*, MADD*, MSUB*,
MULT*, MTHI, MTLO, MTTR,
SHILO*, MTHLIP
(HI/LO writes)

1. For dependencies on a HI/LO accumulator, the delay clocks shown assume that the 1st and 2nd instruc-
tion are operating on the same accumulator.

The delays shown in table Table 2.2 with a dependency on a HI/LO accumulator pair assume that the dependent
instruction sequence is operating on the same accumulator pair. This is the worst case situation. The delay clock value
can be reduced when the second instruction operates on a different accumulator. For example, consider the following

sequence:
MULT (writing to accumulator 0)
MADD (writing to accumulator 1)

(

(
MSUB (writing to accumulator 2)
EXTR (reading from accumulator n)

44 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



2.3 MDU Pipeline with DSP Module Enabled

If the EXTR instruction is reading accumulator 2 (n=2), then a delay of 3 cycles would apply between the MSUB and
EXTR operation, as indicated in Table 2.2. If the EXTR reads accumulator 1, then a delay of 2 cycles would apply
between the MADD and EXTR, since there is already one unrelated instruction between the dependent ones. If the
EXTR reads accumulator 0, then a delay of 1 would apply between the MULT and EXTR. Finally, if the EXTR
instruction is reading accumulator 3, no delay would be incurred in the sequence.

Table 2.3 shows the repeat rates of all possible instruction sequences between two integer arithmetic, multiply,
divide, or DSP instructions, with and without data dependencies.

Table 2.3 Delays for Interesting Sequences with DSPControl Dependency

Instruction Sequence Repeat Rate
1st Instruction 2nd Instruction . .
MIPS32 Without Data | With Data
or Instruction Instruction Dependency | Dependency
microMIPS Type Target Type Target
GPR | Integer Arithmetic | GPR 1 1
. . Multipl GPR 1 1
Integer Arithmetic .
Multiply Hi/Lo 1 1
Divide Hi/Lo 1 1
GPR | Integer Arithmetic | GPR 3 4
Multipl PR 1 4
Multiply whpy G
Multiply Hi/Lo 1 4
Normal Divide Hi/Lo 1 4
Integer 3 - -
Instructions Hi/Lo |Integer Arithmetic| GPR 1 1
Multipl GPR 1 1
Multiply wHpy
Multiply Hi/Lo 1 1
Divide Hi/Lo 1 1
Hi/Lo |Integer Arithmetic| GPR 1 1
i 1 1
Divide Multiply GPR 110, 18, 26, 3411 | 10, 18, 26, 34l1]
Multiply Hi/Lo |10, 18, 26, 341 | 10, 18, 26, 341
Divide Hi/Lo |10, 18, 26,3411 10, 18, 26, 34!!]
GPR | Integer Arithmetic | GPR 1 1
Integer Arithmetic Multiply GPR | 1
Multiply Hi/Lo 1 1
GPR | Integer Arithmetic | GPR 3 4
DSP Module| Pl Multiply | GPR I 4
Instructions Multiply Hi/Lo 1 4
Hi/Lo |Integer Arithmetic| GPR 1 1
Multiply Multiply GPR 1 1
Multiply Hi/Lo 1 1,20

[1] : The number cycles depends on the size of input operands.
[2] : An extra cycle is needed if Saturation arithmetic is needed.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 45



Pipeline of the microAptiv™ UC Core

2.3.3 High-performance MDU Pipeline Stages

The multiply operation begins in stage Bypy. which would be the E stage in the integer pipeline. The Booth-recod-
ing function occurs at this time. The multiply calculation requires three clocks and occurs in the M1ymy. M2ypu.
and M3y my stages. The carry-lookahead-add (CLA) function occurs at the end of the M3y stage. In the Aypu

stage, the result is selected from the multiply data path, HI register, and LO register to be returned to the ALU for the
MFHI, MFLO, and MUL instructions. If the MDU instruction is not one of these, the result is selected to be written
into the HI/LO registers instead. The result is ready to be read from the HI/LO registers in the Wymy; stage.

The following figures illustrate a multiply (accumulate) instruction and the interaction with the main integer pipeline.
These figures are applicable to MUL, MULT, MULTU, MADD, MADDU, MSUB, and MSUBU instructions

Figure 2.4 Multiply Pipeline

I BMDU M1MDU M2MDU M3MDU AMDU WMDU

(EX)

Figure 2.5 Multiply With Dependency From ALU

1 E Result bypass

-~

I BMDU M1MDU M2MDU M3MDU AMDU wMDU

Figure 2.6 Multiply With Dependency From Load Hit

| E M Result bypass

| BMDU BMDU M1MDU M2MDU M3MDU AMDU WMDU

* - MUL enters EX stage but stalls because data is not
ready

Figure 2.7 Multiply With Dependency From Load Miss

| E M M M \'
| BMDU BMDU /[" BMDU BMDU M1MDU M2MDU M3MDU AMDU WMDU
Result 6ypass

46 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



2.3 MDU Pipeline with DSP Module Enabled

Figure 2.8 shows the results of the GPR-targeted MUL instruction being bypassed to a later instruction. Independent
instructions can execute while the multiply is occurring. If a dependent instruction is found, it will stall until the result
is available. When the MUL completes, it will arbitrate for access to the write port of the register file. If the integer
pipe is busy with other instructions, the MDU pipeline will stall until the result can be written.

If the MUL target is being used as the base address for a load or store instruction, it needs to be bypassed by the AG
stage, and thus one extra cycle will be required.

Figure 2.8 subtractMUL Bypassing Result to Integer Instructions

MUL | Bumou [MTuou | M2mou | M3mou | Amou Result bypass

Earliest dependent ALU instn I E M A w

Earliest dependent load/store base address | E M A w

2.3.4 High-performance MDU Divide Operations

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands, and thus the first cycle of the My stage is used to negate the 7:s operand (RS Adjust), if needed.
Note that this cycle is spent even if the adjustment is not necessary. In cycle 2, the first add/subtract iteration is exe-
cuted. In cycle 3, an early-in detection is performed. The adjusted 7s operand is detected to be zero-extended on the
uppermost 8, 16, or 24 bits. If this is the case, the following 7, 15, or 23 cycles of the add/subtract iterations are
skipped. During the next maximum 31 cycles (4-34), the remaining iterative add/subtract loop is executed.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is spent even
if the remainder was positive. A sign-adjust is performed on the quotient and/or remainder, if necessary. The sign
adjust stages are skipped if both operands are positive.

Figure 2.16, Figure 2.17, Figure 2.11 and Figure 2.12 show the worst-case latencies for 8, 16, 24, and 32 bit divide

operations respectively. The worst case repeat rate is either 14, 22., 30, or 38 cycles (two less if the sign adjust stage
is skipped).

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 47



Pipeline of the microAptiv™ UC Core

Figure 2.9 MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

1

|<-1DLEStage >

2

< DIV Stage P

3

- ERLY Stage |

4-10

4 DIV Stages P

11

4 RMD Stage |

12

4 SON Stage

13

4~ SGN2 Stage P

14

4 IDLE Stage ->|

| RS Adjust

I Add/Subtract I

Early In

I Add/subtract I Rem Adjust I Sign Adjust 1 | Sign Adjust 2 | Result Ready I

Figure 2.10 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

1

|<-1DLEStage -»>

2

<« DIV1 Stage ]

3

4 ERLY Stage -}

4-18

4 DIV Stages |

19

4 RMD Stage |

20

4 SON Stage

21

¢~ SGN2 Stage P,

2

& IDLE Stage ->|

| RS Adjust

I Add/Subtract I

Early In

I Add/subtract I Rem Adjust I Sign Adjust 1 | Sign Adjust 2 | Result Ready I

Figure 2.11 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

1 2 3 426 27 28 29 30
|<- IDLE Stage —9>| - DIV1 Stage |- ERLY Stage 9|~ DIV Stages -p| €~ RMD Stage |4~ SGN Stage —| €~ SGN2 Stage —p| € IDLE Stage ->|
| RS Adjust I Add/Subtract I Early In I Add/subtract I Rem Adjust I Sign Adjust 1 | Sign Adjust 2 | Result Ready I
Figure 2.12 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation
1 2 3 434 35 36 37 38
|<- IDLE Stage |- DIV1 Stage |- ERLY Stage |~ DIV Stages |~ RMD Stage |4~ SGN Stage —p| €~ SGN2 Stage | €~ IDLE Stage ->|
| RS Adjust I Add/Subtract I Early In I Add/subtract I Rem Adjust I Sign Adjust 1 | Sign Adjust 2 | Result Ready I

2.4 MDU Pipeline - High-performance MDU with DSP Module Disabled

48

The microAptiv UC processor core contains an autonomous multiply/divide unit (MDU) with a separate pipeline for
multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall
when the IU pipeline stalls. This allows multi-cycle MDU operations, such as a divide, to be partially masked by sys-
tem stalls and/or other integer unit instructions.

The MDU consists of a 32x16 Booth-encoded multiplier array, a carry propagate adder, result/accumulation registers
(HI and LO), multiply and divide state machines, and all necessary multiplexers and control logic. The first number
shown (‘32 of 32x16) represents the s operand. The second number (16’ of 32x16) represents the 77 operand. The
core only checks the latter (77) operand value to determine how many times the operation must pass through the mul-
tiplier array. The 16x16 and 32x16 operations pass through the multiplier array once. A 32x32 operation passes
through the multiplier array twice.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



2.4 MDU Pipeline - High-performance MDU with DSP Module Disabled

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations
can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back
32x32 multiply operations. Multiply operand size is automatically determined by logic built into the MDU. Divide
operations are implemented with a simple 1 bit per clock iterative algorithm with an early in detection of sign exten-
sion on the dividend (rs). Any attempt to issue a subsequent MDU instruction while a divide is still active causes an
IU pipeline stall until the divide operation is completed.

Table 2.4 lists the latencies (number of cycles until a result is available) for multiply, and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the
first instruction to produce the result needed by the second instruction.

Table 2.4 MDU Instruction Latencies (High-Performance MDU)

Size of Operand Instruction Sequence Latency
1st Instructionl] 1st Instruction 2nd Instruction Clocks
16 bit MULT/MULTU, MADD/MADDU, 1
MADD/MADDU, MSUB/MSUBU or
MSUB/MSUBU MFHI/MFLO
32 bit MULT/MULTU, MADD/MADDU, 2
MADD/MADDU, or MSUB/MSUBU or
MSUB/MSUBU MFHI/MFLO
16 bit MUL Integer operation?! 2031
32 bit MUL Integer operation[?] 201
8 bit DIVU MFHI/MFLO 9
16 bit DIVU MFHI/MFLO 17
24 bit DIVU MFHI/MFLO 25
32 bit DIVU MFHI/MFLO 33
8 bit DIV MFHI/MFLO 104]
16 bit DIV MFHI/MFLO 18[4]
24 bit DIV MFHI/MFLO 264
32 bit DIV MFHI/MFLO 34041
any MFHI/MFLO Integer operation[z] 2
any MTHI/MTLO MADD/MADDU or 1
MSUB/MSUBU
[1] For multiply operations, this is the rt operand. For divide operations, this is the rs operand.
[2] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
[3] This does not include the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that the MUL operation causes irre-
spective of the following instruction.These stalls do not add to the latency of 2.
[4] If both operands are positive, then the Sign Adjust stage is bypassed. Latency is then the same as for
DIVU.

In Table 2.4, a latency of one means that the first and second instructions can be issued back-to-back in the code,
without the MDU causing any stalls in the IU pipeline. A latency of two means that if issued back-to-back, the IU
pipeline will be stalled for one cycle. MUL operations are special, because the MDU needs to stall the IU pipeline in
order to maintain its register file write slot. As a result, the MUL 16x16 or 32x16 operation will always force a one-
cycle stall of the IU pipeline, and the MUL 32x32 will force a two-cycle stall. If the integer instruction immediately
following the MUL operation uses its result, an additional stall is forced on the IU pipeline.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 49



Pipeline of the microAptivi™™ UC Core

Table 2.5 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply accumu-
late/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repeat rate’ refers to the
case where the first MDU instruction (in the table below) if back-to-back with the second instruction.

Table 2.5 MDU Instruction Repeat Rates (High-Performance MDU)

. Instruction Sequence
Operand Size of 1st Repeat
Instruction 1st Instruction 2nd Instruction Rate
16 bit MULT/MULTU, MADD/MADDU, 1
MADD/MADDU, MSUB/MSUBU
MSUB/MSUBU
32 bit MULT/MULTU, MADD/MADDU, MSUB/MSUBU 2
MADD/MADDU,
MSUB/MSUBU

Figure 2.13 below shows the pipeline flow for the following sequence:

1. 32x16 multiply (Mult,)

2. Add

3. 32x32 multiply (Mult,)

4. Subtract (Sub)

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 multiply operation
requires two clocks in the Mypy pipe-stage. The MDU pipeline is shown as the shaded areas of Figure 2.13 and

always starts a computation in the final phase of the E stage. As shown in the figure, the Mypy; pipe-stage of the
MDU pipeline occurs in parallel with the M stage of the IU pipeline, the Ay py stage occurs in parallel with the A
stage, and the Wy p stage occurs in parallel with the W stage. In general this need not be the case. Following the 1st

cycle of the M stages, the two pipelines need not be synchronized. This does not present a problem because results in
the MDU pipeline are written to the HI and LO registers, while the integer pipeline results are written to the register
file.

Figure 2.13 MDU Pipeline Behavior During Multiply Operations

[ eyclel1 | cycle2 | cycle3 | cycle4 | cycle5 | cycle6 | cycle7 [ cycle8 |
ol = - - 7 7 L1 I
Mult, 1 E My Ampbu Wnmbu
Add 1 E M A W
Mult, 1 E Mmpbu Mmpbu Ampu Wabu
Sub 1 E M A w

The following is a cycle-by-cycle analysis of Figure 2.13.

1. The first 32x16 multiply operation (Mult,) is fetched from the instruction cache and enters the I stage.

50 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



2.4 MDU Pipeline - High-performance MDU with DSP Module Disabled

2. An Add operation enters the I stage. The Mult; operation enters the E stage. The integer and MDU pipelines

share the I and E pipeline stages. At the end of the E stage in cycle 2, the MDU pipeline starts processing the
multiply operation (Mult,).

3. Incycle 3, a 32x32 multiply operation (Mult,) enters the I stage and is fetched from the instruction cache. Since
the Add operation has not yet reached the M stage by cycle 3, there is no activity in the M stage of the integer
pipeline at this time.

4. Incycle 4, the Subtract instruction enters I stage. The second multiply operation (Mult,) enters the E stage. And
the Add operation enters M stage of the integer pipe. Since the Mult; multiply is a 32x16 operation. only one
clock is required for the My stage. hence the Mult; operation passes to the Ay stage of the MDU pipeline.

5. Incycle 5, the Subtract instruction enters E stage. The Mult, multiply enters the My stage. The Add operation
enters the A stage of the integer pipeline. The Mult; operation completes and is written back in to the HI/LO reg-
ister pair in the Wymy; stage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one clock, the 32x32
Mult, remains in the Mymy; stage in cycle 6. The Sub instruction enters M stage in the integer pipeline. The Add

operation completes and is written to the register file in the W stage of the integer pipeline.

7. The Mult, multiply operation progresses to the Aymyy stage. and the Sub instruction progress to the A stage.

8. The Mult, operation completes and is written to the HI/LO registers pair in the the Wy s stage, while the Sub
instruction writes to the register file in the W stage.

2.4.1 32x16 Multiply (High-Performance MDU)

The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage, the r:s and 77 operands arrive and the Booth-recoding function occurs at
this time. The multiply calculation requires one clock and occurs in the My stage. In the Ay stage, the

carry-propagate-add (CPA) function occurs and the operation is completed. The result is ready to be read from the
HI/LO registers in the Wy stage.

Figure 2.14 shows a diagram of a 32x16 multiply operation.

Figure 2.14 MDU Pipeline Flow During a 32x16 Multiply Operation

Clock 1 2 3 4
|4' E »>l¢ MMDU »>|¢ AMDU >4 WMDU "I

[Booth| Amay [ CPA | Res |

2.4.2 32x32 Multiply (High-Performance MDU)

The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage, the 7s and 77 operands arrive and the Booth-recoding function occurs at
this time. The multiply calculation requires two clocks and occurs in the Mypys stage. In the Ay stage. the CPA

function occurs and the operation is completed.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 51



Pipeline of the microAptiv™ UC Core

Figure 2.15 shows a diagram of a 32x32 multiply operation.

Figure 2.15 MDU Pipeline Flow During a 32x32 Multiply Operation
Clock 1 2 3 4 5
[« E »l¢ Mypy »|¢ Mypy P|¢ Aypy Pl¢ Wypy +

|Booth [ Array Amay | CPA | Res |
Booth

2.4.3 Divide (High-Performance MDU)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands. hence the first cycle of the Myp stage is used to negate the 7:s operand (RS Adjust) if needed. Note
that this cycle is spent even if the adjustment is not necessary. During the next maximum 32 cycles (3-34) an iterative
add/subtract loop is executed. In cycle 3 an early-in detection is performed in parallel with the add/subtract. The
adjusted 75 operand is detected to be zero extended on the upper most 8, 16 or 24 bits. If this is the case the following
7, 15 or 23 cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is spent even
if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. The sign
adjust stage is skipped if both operands are positive. In this case the Rem Adjust is moved to the Aypy stage.

Figure 2.16, Figure 2.17, Figure 2.18 and Figure 2.19 show the latency for 8, 16, 24 and 32 bit divide operations,
respectively. The repeat rate is either 11, 19, 27 or 35 cycles (one less if the sign adjust stage is skipped) as a second
divide can be in the RS Adjust stage when the first divide is in the Reg WR stage.

Figure 2.16 High-Performance MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

Clock 1 2 3 4-10 11 12 13
I“ EStage P4 Mypy Stage >[4 Mypy Stage 9| €-Mypy Stage | € Mypy Stage |4 Aypu Stage Pl Wapy S'xge"l

I RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | MDU Res Rdy I
Early In

Figure 2.17 High-Performance MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Clock 1 2 3 4-18 19 20 21
|4- EStage -P{€-Mypy Stage 9> |4 Mypy Stage | €-Mypy Stage 9| € Mypy Stage | € Aypy Stage -P"WMDUS“SP’I

| RS Adjust Add/Subtract Add/Subtract I Rem Adjust I Sign Adjust | MDU Res Rdy |
Early In

52 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



2.5 MDU Pipeline - Area-Efficient MDU with DSP Module Disabled

Figure 2.18 High-Performance MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

Clock 1 2 3 4-26 27 28 29
I" EStage -4 Mypy Stage 9|4 Mypy Stage 9| €-Mypy Stage 9| €= Mypy Stage | €= Aypy Stage *Wsms‘ﬂge"i

I RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | MDU Res Rdy I
Early In

Figure 2.19 High-Performance MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

Clock 1 2 3 434 35 36 37
| EStge Pl Mypy Staze B | € Mypu Staze | €My Stage P4 Mypy Stage | € Avpy Stage |4 Wapy Stage B

I RS Adjust Add/Subtract Add/Subtract I Rem Adjust | Sign Adjust I MDU Res Rdy I
Early In

2.5 MDU Pipeline - Area-Efficient MDU with DSP Module Disabled

The area-efficient multiply/divide unit (MDU) is a separate autonomous block for multiply and divide operations.
The MDU is not pipelined, but rather performs the computations iteratively in parallel with the integer unit (IU) pipe-
line and does not stall when the IU pipeline stalls. This allows the long-running MDU operations to be partially
masked by system stalls and/or other integer unit instructions.

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide state
machine, and all multiplexers and control logic. A simple 1-bit-per-clock recursive algorithm is used for both multi-
ply and divide operations. Using Booth’s algorithm all multiply operations complete in 32 clocks. Two extra clocks
are needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not work with nega-
tive numbers. Adjustment before and after are thus required depending on the sign of the operands. All divide opera-
tions complete in 33 to 35 clocks.

Table 2.6 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the
second instruction to use the results of the first.

Table 2.6 microAptiv™ UC Core Instruction Latencies (Area-Efficient MDU)

Operand Signs of Instruction Sequence
1st Instruction Latency
(Rs,Rt) 1st Instruction 2nd Instruction Clocks
any, any MULT/MULTU MADD/MADDU, 32
MSUB/MSUBU, or
MFHI/MFLO
any, any MADD/MADDU, MADD/MADDU, 34
MSUB/MSUBU MSUB/MSUBU, or
MFHI/MFLO
any, any MUL Integer operation[ll 32
any. any DIVU MFHIMFLO 33

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 53



Pipeline of the microAptiv™ UC Core

Table 2.6 microAptiv™ UC Core Instruction Latencies (Area-Efficient MDU)

Operand Signs of Instruction Sequence

1st Instruction Latency
(Rs,Rt) 1st Instruction 2nd Instruction Clocks

Pos, pos DIV MFHI/MFLO 33

any. neg DIV MFHIMFLO 34

neg, pos DIV MFHI/MFLO 35

any, any MFHI/MFLO Integer opcration[l] 2

any, any MTHI/MTLO MADD/MADDU, 1

MSUB/MSUBU
[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

2.5.1 Multiply (Area-Efficient MDU)

Multiply operations are executed using a simple iterative multiply algorithm. Using Booth’s approach, this algorithm
works for both positive and negative operands. The operation uses 32 cycles in My stage to complete a multiplica-

tion. The register writeback to HI and LO are done in the A stage. For MUL operations, the register file writeback is
done in the Wypy; stage.

Figure 2.20 shows the latency for a multiply operation. The repeat rate is 33 cycles as a second multiply can be in the
first My stage when the first multiply is in Ay stage.

Figure 2.20 microAptiv™™ UC Area-Efficient MDU Pipeline Flow During a Multiply Operation

Clock 1 233 N 35
I<— E-Stage —P|€-Myou-Stage | € Avou-Stage | € Wyoy-Stage|
| | |

I Add/sub-shift | HI/LO Write |Reg WR|

2.5.2 Multiply Accumulate (Area-Efficient MDU)

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stages are
needed to perform the addition/subtraction. The operations uses 34 cycles in My stage to complete the multi-

ply-accumulate. The register writeback to HI and LO are done in the A stage.

Figure 2.21 shows the latency for a multiply-accumulate operation. The repeat rate is 35 cycles as a second multi-
ply-accumulate can be in the E stage when the first multiply is in the last Mymy; stage.

Figure 2.21 microAptiv™™ UC Core Area-Efficient MDU Pipeline Flow During a Multiply Accumulate
Operation

Clock 1 233 34 35 36 37

Iﬂ- EStage -l Mypy Stage |- Mypy Stage | € Mypy Stage 9| Aypy Stage P[4 Wypy Stage—

|Add/SubtnctShiﬁ| Accumulate/LO |

Accmmxlate/HIl HULO Write |

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



2.6 Branch Delay

2.5.3 Divide (Area-Efficient MDU)

Divide operations also implement a simple non-restoring algorithm. This algorithm works only for positive operands,
hence the first cycle of the My stage is used to negate the rs operand (RS Adjust) if needed. Note that this cycle is

executed even if negation is not needed. The next 32 cycle (3-34) executes an interactive add/subtract-shift function.

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the remainder.
Note that one or both of these cycles are skipped if they are not needed. The rule is, if both operands were positive or
if this is an unsigned division; both of the sign adjust cycles are skipped. If the 7s operand was negative, one of the
sign adjust cycles is skipped. If only the 75 operand was negative, none of the sign adjust cycles are skipped. Register
writeback to HI and LO are done in the A stage.

Figure 2.22 shows the pipeline flow for a divide operation. The repeat rate is either 34, 35 or 36 cycles (depending on
how many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide is in the last

Mpypu stage.

Figure 2.22 microAptiv™ UC Core Area-Efficient MDU Pipeline Flow During a Divide (DIV) Operation

Clock

1
|« E Stage |

2
<4 Mmpu -»|

3-34
<+ Mmbu >

35
<+ Mmbu >

36
<+ Mmbu >

37
<+ AMDU »

38
<+ WmbDU »

[ RSAdjust | Add/Subtract| Sign Adjust 1 | Sign Adjust 2 | HILLO Write |

2.6 Branch Delay

The pipeline has a branch delay of one cycle. The one-cycle branch delay is a result of the branch decision logic oper-
ating during the E pipeline stage. This allows the branch target address to be used in the I stage of the instruction fol-
lowing 2 cycles after the branch instruction. By executing the 1st instruction following the branch instruction
sequentially before switching to the branch target, the intervening branch delay slot is utilized. This avoids bubbles
being injected into the pipeline on branch instructions. Both the address calculation and the branch condition check
are performed in the E stage.

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay slot.
After the branch decision is made, the processor continues with the fetch of either the branch path (for a taken branch)
or the fall-through path (for the non-taken branch).

The branch delay means that the instruction immediately following a branch is always executed, regardless of the
branch direction. If no useful instruction can be placed after the branch, then the compiler or assembler must insert a

NOP instruction in the delay slot.

Figure 2.23 illustrates the branch delay.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 55



Pipeline of the microAptiv™ UC Core

Figure 2.23 IU Pipeline Branch Delay

One Cycle One Cycle One Cycle | One Cycle One Cycle One Cycle
Jump orBranch —p | E M A W
Delay Slot Instruction =~ ———» | / E M A w
Jump Target Instruction (;‘ | E M A
One Clock
Branch
Delay

2.7 Data Bypassing

Most MIPS32 instructions use one or two register values as source operands. These operands are fetched from the
register file in the first part of E stage. The ALU straddles the E-to-M boundary, and can present the result early in the
M stage. However, the result is not written to the register file before the W stage. If no precautions were taken, it
would take 3 cycles before the result was available for the following instructions. To avoid this, data bypassing is
implemented.

Between the register file and the ALU a data-bypass multiplexer is placed on both operands (see figure below). This
enables the microAptiv UC core to forward data from a preceding instruction whose target is a source register of a
following instruction. An M to E bypass and an A to E bypass feed the bypass multiplexers. A W to E bypass is not
needed. as the register file is capable of making an internal bypass of Rd write data directly to the Rs and Rt read
ports.

56 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



2.7 Data Bypassing

Figure 2.24 U Pipeline Data bypass

| stage . E stage : M stage ' A stage W stage

ALU

Branch /
PCGEN

.| Ld
Aligner

ISRam

GP

y

AGEN/
ADDER

RAA

SHIFTER

CMP

polPs}
- W

RD

i

ALU Result

DSRam

DSP

ADDER

CMP

DSP Result

A H‘

\

MDU

=)
Ls b
a
o©

Acc/Sat/Rnd Hi/Lo Regs

| Booth | Mults

I R N D IR ¢ I Y |

Bmpu stage 'M1/2/3ypy stages'! Ampu Stage Wwpu stage

Figure 2.25 shows the data bypass for an Add; instruction followed by a Sub, and another Adds instruction. The Sub,
instruction uses the output from the Add, instruction as one of the operands, and thus the M to E bypass is used. The
following Addj uses the result from both the first Add; instruction and the Sub, instruction. Since the Add; data is
now in A stage, the A to E bypass is used, and the M to E bypass is used to bypass the Sub, data to the Add, instruc-
tion.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 57



Pipeline of the microAptiv™ UC Core

Figure 2.25 IU Pipeline M to E bypass

One Cycle One Cycle One Cycle . One Cycle One Cycle One Cycle
ADD; —» I E M A w
R3=-R2:R1 2311 toE bypass\ A to E Hypass
suB, — | "E / M A w
RASRIRT M to E byp ass&&
ADD; > I E M A
R5=R3+R4

2.7.1 Load Delay

Load delay refers to the fact that data fetched by a load instruction is not available in the integer pipeline until after
the load aligner in A stage. All instructions need the source operands available in the E stage. An instruction immedi-
ately following a load instruction will, if it has the same source register as was the target of the load, cause an instruc-
tion interlock pipeline slip in the E stage (see 2.11 “Instruction Interlocks™ on page 61). If an instruction following
the load by 1 or 2 cycles uses the data from the load, the A to E bypass (see Figure 2.24) serves to reduce or avoid
stall cycles. An instruction flow of this is shown in Figure 2.26.

Figure 2.26 IU Pipeline A to E Data bypass

One Cycle One Cycle One Cycle | one Cycle One Cycle One Cycle

Load Instruction  —p | E M A W
\ Data bypass from A to|E
_— I E / M A w
Consumer of Load Data Instructon =~ ————p | E M A
One Clock
Load Delay

2.7.2 Move from HI/LO and CPO0 Delay

As indicated in Figure 2.24, not only load data, but also data moved from the HI or LO registers (MFHI/MFLO) and
data moved from CP0O (MFCO) enters the IU-Pipeline in the A stage. That is, data is not available in the integer pipe-
line until early in the A stage. The A to E bypass is available for this data. But as for Loads, an instruction following
immediately after one of these move instructions must be paused for one cycle if the target of the move is among the
sources of the following instruction and this causes an interlock slip in the E stage (see 2.11 “Instruction Interlocks™
on page 61). An interlock slip after a MFHI is illustrated in Figure 2.27.

58 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



2.8 Coprocessor 2 Instructions

Figure 2.27 IU Pipeline Slip after a MFHI

One Cycle One Cycle One Cycle | One Cycle | One Cycle One Cycle One Cycle

MFHI (o R3) —p | E M A w
ZData bypass from A to E
ADD (R4=R3+R5) R | E (slip) E M A W

2.8 Coprocessor 2 Instructions

If a coprocessor 2 is attached to the microAptiv UC core, a number of transactions must take place on the CP2 Inter-
face for each coprocessor 2 instruction. First, if the CU[2] bit in the CP0 Status register is not set, then no coprocessor
2 related instruction will start a transaction on the CP2 Interface; instead, a Coprocessor Unusable exception will be

signaled. If the CU[2] bit is set, and a coprocessor 2 instruction is fetched, the following transactions will occur on the
CP2 Interface:

1. The Instruction is presented on the instructions bus in E stage. Coprocessor 2 can do a decode in the same cycle.

2. The Instruction is validated from the core in M stage. From this point, the core will accept control and data sig-
nals back from coprocessor 2. All control and data signals from coprocessor 2 are captured on input latches to the
core.

3. Ifall the expected control and data signals were presented to the core in the previous M stage, the core will pro-
ceed to execute the A stage. If some return information is missing, the A stage will not advance and cause a slip
inall I, E, and M stages (see 2.10 “Slip Conditions™ on page 61).

If this instruction sent data from the core to coprocessor 2, this data is sent in the A stage.

4. The instruction completion is signaled to coprocessor 2 in the W stage. Potential data from the coprocessor is
written to the register file.

Figure 2.28 shows the timing relationship between the microAptiv UC core and coprocessor 2 for all coprocessor 2
instructions.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 59



Pipeline of the microAptiv™ UC Core

Figure 2.28 Coprocessor 2 Interface Transactions

One Cycle One Cycle One Cycle One Cycle One Cycle
COP2 inst. | E M A W
Core internal Fetch Decode and | Get ToData (%]‘:r“(:lri
operations instrucion setup valid | from memory FromData
Qore toCP2 Instrucior<\ alidate inst. ToData \N Complete |
info. \ \
QPZ to Core Ready ) Control &
info. > FromData
CP2 internal Get ready for | Decode & get| See Capture Complete
operations new inst. FromData alid ToData instruction

As can be seen in the Figure, all control and data from the coprocessor must occur in the M stage. If this is not the
case, the A stage will start slipping in the following cycle and thus stall the I, E, M. and A stages:; but if all expected
control and data is available in the M stage, coprocessor 2 instructions can execute with no pipeline stalls. The only
exception to this is the Branch on Coprocessor conditions (BC2) instruction. All branch instructions, including the
regular BEQ. BNE, etc., must be resolved in the E stage. The microAptiv UC core does not have branch prediction
logic, and thus the target address must be available before the end of the E stage. The BC2 instruction has to follow
the same protocol as all other coprocessor 2 instructions on the CP2 Interface. All core interface operations belonging
to the E. M, and A stages will have to occur in the E stage for BC2 instructions. This means that a BC2 instruction
always slips for a minimum of 2 cycles int the E stage, and any delay in the return of branch information from copro-
cessor 2 will add to the number of slip cycles. All other Coprocessor 2 instructions can operate without slips, pro-
vided that all control and data information from coprocessor 2 is transferred in the M stage.

2.9 Interlock Handling

60

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interruptions
handled entirely in hardware, such as cache misses, are referred to as interlocks. At each cycle, interlock conditions
are checked for all active instructions.

Table 2.7 lists the types of pipeline interlocks for the microAptiv UC processor core.

Table 2.7 Pipeline Interlocks

Interlock Type Sources Slip Stage
I-side SRAM Stall SRAM Access not complete E Stage
Instruction Producer-consumer hazards E/M Stage
Hardware Dependencies (MDU) E Stage
BC2 waiting for COP2 Condition Check
D-side SRAM Stall SRAM Access not complete A Stage
Coprocessor 2 completion slip Coprocessor 2 control and/or data delay A Stage
from coprocessor

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



2.10 Slip Conditions

In general, MIPS processors support two types of hardware interlocks:
»  Stalls, which are resolved by halting the pipeline
»  Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the microAptiv UC processor core, all interlocks are handled as slips.
2.10 Slip Conditions

On every clock, internal logic determines whether each pipe stage is allowed to advance. These slip conditions prop-
agate backwards down the pipe. For example, if the M stage does not advance, neither does the E or I stage.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advances normally
during slips. This resolves the conflict when the slip was caused by a missing result. NOPs are inserted into the bub-

ble in the pipeline. Figure 2.29 shows an instruction cache miss that causes a two-cycle slip.

Figure 2.29 Instruction Cache Miss Slip

Clock 1 2 3 4 5 6

Stage
Tl Juls s |s] x|
Elle sy [u]u]x]
Mo b s fofofu]
Al |nln o fofo]

@ Cache miss detected
@ Critical word received
@ Execute E-stage

In the first clock cycle in Figure 2.29, the pipeline is full and the cache miss is detected. Instruction I is in the A
stage, instruction I; is in the M stage. instruction I, is in the E stage. and instruction I3 is in the I stage. The cache miss
occurs in clock 2 when the I, instruction fetch is attempted. I, advances to the E stage and waits for the instruction to
be fetched from main memory. In this example, two clocks (3 and 4) are required to fetch the I, instruction from

memory. After the cache miss has been resolved in clock 4 and the instruction is bypassed to the E stage, the pipeline
is restarted, causing I, to finally execute it’s E-stage operations.

2.11 Instruction Interlocks

Most instructions can be issued at a rate of one per clock cycle. In order to adhere to the sequential programming
model, the issue of an instruction must sometimes be delayed to ensure that the result of a prior instruction is avail-

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 61



Pipeline of the microAptivi™™ UC Core

able. Table 2.8 details the instruction interactions that prevent an instruction from advancing in the processor pipe-
line.

Table 2.8 Instruction Interlocks

Instruction Interlocks

Issue Delay (in

First Instruction Second Instruction Clock Cycles) Slip Stage
LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage
MEFCO0 Consumer of destination regis- 1 E stage

ter
MULTx/MADDx/MSUBx 16bx32b MFLO/MFHI 0
(high-performance MDU with
DSP Module disabled) 32bx32b ! M stage
MUL 16bx32b Consumer of target data 2 E stage
(high-performance MDU with
. 32bx32b 3 E st
DSP Module disabled) x slage
MUL 16bx32b Non-Consumer of target data 1 E stage
(high-performance MDU with
. 32bx32b 2 E st:
DSP Module disabled) * slage
MFHI/MFLO Consumer of target data 1 E stage
MULTx/MADDx/MSUBx 16bx32b MULT/MUL/MADD/MSUB ol E stage
(high-performance MDU with MTHI/MTLO/DIV
DSP Module disabled) 32bx32b 1t E stage
DIV MUL/MULTx/MADDx/ Until DIV completes E stage
MSUBx/MTHI/MTLO/
MFHI/MFLO/DIV
MULT/MUL/MADD/MSUB/MTHI/MTLO/MFH | MULT/MUL/MADD/MSUB/ Until 1st MDU op E stage
I/MFLO/DIV MTHI/MTLO/MFHI/MFLO/ completes
(area-efficient MDU with DSP Module disabled) | DIV
MUL Any Instruction Until MUL completes E stage
(area-efficient MDU with DSP Module disabled)
MFCO0/MFC2/CFC2 Consumer of target data 1 E stage

2.12 Hazards

62

In general, the microAptiv UC core ensures that instructions are executed following a fully sequential program model
in which each instruction in the program sees the results of the previous instruction. There are some deviations to this
model, referred to as hazards.

Prior to Release 2 of the MIPS Architecture, hazards (primarily CP0 hazards) were relegated to implementa-
tion-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such a way that they are back-
ward-compatible with existing MIPS processors.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



2.12.1 Types of Hazards

2.12 Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two types of hazards: execution hazards and instruction hazards.

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 2.9 lists execution hazards.

Table 2.9 Execution Hazards

Spacing
Producer - Consumer Hazard On (Instructions)
MTCO - Coprocessor instruction execution depends on the new value of Sta- Statuscy 1
tusCU
MTCO —  ERET EPC 1
DEPC
ErrorEPC
MTCO —  ERET Status 0
MTCO, EI, DI - Interrupted Instruction Status;g 1
MTCO —  Interrupted Instruction Causepp 3
MTCO —  RDPGPR SRSCtlpgg 1
WRPGPR
MTCO - Instruction not seeing a Timer Interrupt Compare 41
update that
clears Timer
Interrupt
MTCO - Instruction affected by change Any other CPO 2
register

1. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic between the SI_TimerInt
output and the external logic which feeds SI_TimerInt back into one of the SI_Int inputs, or a function of the method for handling
SI_TimerInt in an external interrupt controller.

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 2.10 lists instruction hazards.

Table 2.10 Instruction Hazards

Spacing
Producer - Consumer Hazard On | (Instructions)
MTCO - Instruction fetch seeing the new value (including a change to ERL fol- Status
lowed by an instruction fetch from the useg segment)
Instruction stream - Instruction fetch seeing the new instruction stream Cache entries 3

write via redi-
rected store

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

63



Pipeline of the microAptivi™™ UC Core

2.12.2 Instruction Listing

Table 2.11 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture for
Programmers Volume I1: The MIPS32® Instruction Set (MD00086) for a more detailed description of these instruc-
tions.

Table 2.11 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

JALR.HB | Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write

2.12.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

2.12.3 Eliminating Hazards

The Spacing column shown in Table 2.9 and Table 2.10 indicates the number of unrelated instructions (such as NOPs
or SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and consumer
of the hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entries in the
table that are listed as O are traditional MIPS hazards which are not hazards on the microAptiv UC core.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazards is to place
one of the instructions listed in Table 2.11 between the producer and consumer of the hazard. Execution hazards can
be removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the
JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction. Since the microAptiv UC core does not
contain caches, the SYNCI instruction is not strictly necessary, but is still recommended to create portable code that
can be run on other MIPS processors that may contain caches.

64 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



Chapter 3

Floating-Point Unit of the microAptiv™™ UC Core

This chapter describes the MIPS64® Floating-Point Unit (FPU) included in the microAptiv UC core. This chapter
contains the following sections:

*  Section 3.1 “Features Overview”

*  Section 3.2 “Enabling the Floating-Point Coprocessor”
*  Section 3.3 “Data Formats”

*  Section 3.4 “Floating-Point General Registers”

*  Section 3.5 “Floating-Point Control Registers”

*  Section 3.6 “Instruction Overview”

*  Section 3.7 “Exceptions”

*  Section 3.8 “Pipeline and Performance”

*  Section 3.9 “2008 FPU Support”

3.1 Features Overview

The FPU is provided via Coprocessor 1. Together with its dedicated system software, the FPU fully complies with the
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. The MIPS architecture sup-
ports the recommendations of IEEE Standard 754, and the coprocessor implements a precise exception model. The
key features of the FPU are listed below:

Full 64-bit operation is implemented in both the register file and functional units.

* A 32-bit Floating-Point Control Register controls the operation of the FPU, and monitors condition codes and
exception conditions.

»  Like the main processor core, Coprocessor 1 is programmed and operated using a Load/Store instruction set. The
processor core communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functions as
an autonomous unit. The hardware is completely interlocked such that, when writing software, the programmer
does not have to worry about inserting delay slots after loads and between dependent instructions.

* Additional arithmetic operations not specified by IEEE Standard 754 (for example, reciprocal and reciprocal

square root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low
latency counts, these instructions satisfy more relaxed precision requirements.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 65



Floating-Point Unit of the microAptiv"™™ UC Core

e The MIPS architecture further specifies compound multiply-add instructions. These instructions meet the IEEE
accuracy specification where the result is numerically identical to an equivalent computation using multiply, add,
subtract, or negate instructions.

Figure 3.1 depicts a block diagram of the FPU.

Figure 3.1 FPU Block Diagram

Register File
] b 4
i A A N F————
Bypass 7 Control .+.:
1
1
r“\r——“——'\—wr—r ——y——-——n :
| ! ya
1 Div/Sqrt Mul Ié(t)g:-g 1 1 Processor
1 t 7 > Core
1 1 1
) , Coprocessor |
1 \_%# 1 Interface |
I I |
| | |
| Add | |
| 1 1
b oo o o - - - - — - | 7 ——————————— -l o - - — -

The MIPS architecture is designed such that a combination of hardware and software can be used to implement the
architecture. The microAptiv UC core FPU can operate on numbers within a specific range (in general, the IEEE nor-
malized numbers), but it relies on a software handler to operate on numbers not handled by the FPU hardware (in
general, the IEEE denormalized numbers). Supported number ranges for different instructions are described later in
this chapter. A fast Flush To Zero mode is provided to optimize performance for cases where IEEE denormalized
operands and results are not supported by hardware. The fast Flush to Zero mode is enabled through the CP1 FCSR
register; use of this mode is recommended for best performance.

3.1.1 IEEE Standard 754

The IEEE Standard 754-1985. IEEE Standard for Binary Floating-Point Arithmetic, is referred to in this chapter as
“IEEE Standard 754”. IEEE Standard 754 defines the following:

*  Floating-point data types

*  The basic arithmetic, comparison, and conversion operations

* A computational model

IEEE Standard 754 does not define specific processing resources nor does it define an instruction set.

For more information about this standard, see the IEEE web page at http://stdsbbs.ieee.org/.

66 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



3.2 Enabling the Floating-Point Coprocessor

3.2 Enabling the Floating-Point Coprocessor

3.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

*  The single- and double-precision floating-point data types are those specified by IEEE Standard 754.

»  The fixed-point types are signed integers provided by the MIPS architecture.

3.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

*  a32-bit single-precision floating point (type S, shown in Figure 3.2)

*  a 64-bit double-precision floating point (type D, shown in Figure 3.3)

The floating-point data types represent numeric values as well as the following special entities:

*  Two infinities, +o0 and -

*  Signaling non-numbers (SNaNs)

e Quiet non-numbers (QNaNs)

+ Numbers of the form: (-1)° 2F b.b, by..by.1, where:
e s=0orl

* E =any integer between E_min and E_max, inclusive

* b;=0or1 (the high bit, by, is to the left of the binary point)

e  pis the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes

are listed in Table 3.1.

Table 3.1 Parameters of Floating-Point Data Types

Parameter Single Double
Bits of mantissa precision, p 24 53
Maximum exponent, E_max +127 +1023
Minimum exponent, E_min -126 -1022
Exponent bias +127 +1023
Bits in exponent field, e 8 11
Representation of by integer bit hidden hidden

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

67



Floating-Point Unit of the microAptiv’™ UC Core

Table 3.1 Parameters of Floating-Point Data Types (Continued)

Parameter Single Double
Bits in fraction field, f 23 52
Total format width in bits 32 64
Magnitude of largest representable number 3.4028234664e+38 1.7976931349¢+308
Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

Layouts of these three fields are shown in Figure 3.2 and Figure 3.3 below. The fields are:
* 1-bitsign,s

+  Biased exponent, e = E + bias

Binary fraction, f=.b; by..0p_1 (the bo bit is hidden; it is not recorded)

Figure 3.2 Single-Precision Floating-Point Format (S)

31 30 23 22 0
S| Exponent Fraction
1 8 23

Figure 3.3 Double-Precision Floating-Point Format (D)

63 62 52 51 0
S Exponent Fraction
1 11 52

Values are encoded in the specified format using the unbiased exponent, fraction, and sign values listed in Table 3.2.
The high-order bit of the Fraction field, identified as by, is also important for NaNs.

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased Typical Single Typical Double
E f s | b Value V Type of Value Bit Pattern’ Bit Pattern’

E max+1 | #0 1 SNaN Signaling NaN Ox7ffEEEfE OX7EEfEfEff EEEEEEEF
(FCSRnaN2008 = 0)

0 QNaN Quiet NaN 0x7fbfEEEE O0x7EE7EEEf £EEEFEEE
(FCSRNaN2008 = 0)

E_max+1 | #0 1 QNaN Quiet NaN Ox7EEEEEEE Ox7fEfEEff £EEEEEEE
(FCSRnanz008 = 1)

0 SNaN Signaling NaN O0x7fbEfEEE Ox7f£7fEff fEEEFEfE
(FCSRnanz008 = 1)

E_max +1 0 1 - 00 Minus infinity 0x££800000 0xE££00000 00000000

0 + ® Plus infinity 0x7£800000 0x7££00000 00000000

68 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.3 Data Formats

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding (Continued)

Unbiased Typical Single Typical Double
E f s | by Value V Type of Value Bit Pattern’ Bit Pattern’
E_max 1 - (25)(1.f) | Negative normalized num- | 0x80800000 0x80100000 00000000
to ber through through
E min OxEE7fEEEE Oxffefffff FEEfFfff
0 + (2F)(1.fy | Positive normalized number | 0300800000 0x00100000 00000000
through through
Ox7E7EEEEE Ox7fefffff FELEFFEf
E_min -1 #0 | 1 - (2B-Minyq.f) | Negative denormalized 0x807f£fff 0x800fffff FFffFfff
number
0 + (2B-mimyq.fy | Positive denormalized num- | 0x007£££££ 0x000fffff FELEFEES
ber
E_min -1 0 1 -0 Negative zero 0x80000000 0x80000000 00000000
0 +0 positive zero 0x00000000 0x00000000 00000000

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either

value (NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in
a class of potential values that represent these special values.

3.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min — 1, and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

3.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap IEEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format
defines representations (listed in Table 3.2) for plus infinity (+o0), minus infinity (-o0), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

3.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format; it represents a magnitude
overflow during a computation. A correctly signed oo is generated as the default result in division by zero operations
and some cases of overflow as described in Section 3.7.2 “Exception Conditions”.

When created as a default result, oo can become an operand in a subsequent operation. The infinities are interpreted
such that -oo < (every finite number) < +oo. Arithmetic with oo is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on o is regarded as exact, and exception
conditions do not arise. The out-of-range indication represented by oo is propagated through subsequent computa-
tions. For some cases, there is no meaningful limiting case in real arithmetic for operands of co. These cases raise the
Invalid Operation exception condition as described in Section 3.7.2.1 “Invalid Operation Exception”.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 69



Floating-Point Unit of the microAptiv’™ UC Core

70

3.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-
tions (MOV.fmt, MOVT.fmt, MOVF fmt, MOVN fmt, MOVZ.fmt) non-arithmetic; they do not signal IEEE 754
exceptions.

3.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga-
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is

one! of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), a new QNaN value is created. Table 3.3 shows the QNaN value generated when no input operand QNaN
value can be copied. The values listed for the fixed-point formats are the values supplied to satisfy IEEE Standard
754 when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architec-
ture that detects or makes use of these “integer QNaN” values.

Table 3.3 Value Supplied When a New Quiet NaN is Created

New QNaN value New QNaN value
Format (FCSRyaN2008 = 0) (FCSRnaN2008 = 1)
Single floating-point | 0x7fbf ffff 0x7fff ffff
Double floating-point | 0x7££7 £fff £f£f ffff O0x7fff ffff ffff ffff
Word fixed-point ox7f£f ffff Ox7f££f ffff
Longword fixed-point |0x7fff ffff £fff ffff 0x7fff ffff ffff ffff

3.3.2 Fixed-Point Formats

The FPU provides two fixed-point data types:

* a32-bit Word fixed point (type W), shown in Figure 3.4

* a64-bit Longword fixed point (type L), shown in Figure 3.5

The fixed-point values are held in 2’s complement format, which is used for signed integers in the CPU. Unsigned

fixed-point data types are not provided by the architecture; application software can synthesize computations for
unsigned integers from the existing instructions and data types.

In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority:
1: fs, 2: ft, 3: fr.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.4 Floating-Point General Registers

Figure 3.4 Word Fixed-Point Format (W)
31 0

Integer
32

Figure 3.5 Longword Fixed-Point Format (L)
63 0

Integer
64

3.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRs). The FPU is a 64b
FPU, but a 32b register mode for backwards compatibility is also supported. The FR bit in the CP0 Status register
determines which mode is selected:

*  When the FR bitis a 1, the FPU is in FR64 mode and the 64b register model is used, which defines 32 64-bit reg-
isters with all formats supported in a register.

*  When the FR bit is a 0, the FPU is in FR32 mode and the 32b register model is used, which defines 32 32-bit reg-
isters with D-format values stored in even-odd pairs of registers; thus the register file can also be viewed as hav-

ing 16 64-bit registers. When configured this way, there are several restrictions for double operation:

—  Any double operations which specify an odd register as a source or destination will cause a
ReservedInstruction exception

— MTHCI1/MFHCI instructions which access an odd FPU register will signal a Reserved Instruction exception.

3.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register (FPR) that holds the
value. Operands that are only 32 bits wide (W and S formats) use only half the space in an FPR.

Figure 3.6 and Figure 3.7 show the FPR organization and the way that operand data is stored in them.

Figure 3.6 Single Floating-Point or Word Fixed-Point Operand in an FPR
63 32 31 0

Reg 0 Undefined/Unused Data Word

Figure 3.7 Double Floating-Point or Longword Fixed-Point Operand in an FPR
63 0

Reg 0 Data Doubleword/Longword

3.4.2 Formats of Values Used in FP Registers

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of
results for every operation. The value held in a floating-point operand register (FPR) has a format, or type, and it can

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 71



Floating-Point Unit of the microAptiv’™ UC Core

72

be used only by instructions that operate on that format. The format of a value is either uninterpreted, unknown, or
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is always set when a value is written to the register as follows:

*  When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value that is
uninterpreted.

* A computational or FP register move instruction that produces a result of type fmt puts a value of type fmt into
the result register.

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of for-
mat fmt, the binary contents are interpreted as an encoded value in format fmt, and the value in the FPR changes to a
value of format fmt. The binary contents cannot be reinterpreted in a different format.

If an FPR contains a value of format fmt, a computational instruction must not use the FPR as a source operand of a
different format. If this case occurs the value in the register becomesunknown, and the result of the instruction is also
a value that is unknown. Using an FPR containing an unknown value as a source operand produces a result that has an
unknown value.

The format of the value in the FPR isunchanged when it is read by a data transfer instruction (a store). A data transfer
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR is unknown, the
encoded binary value produced by the operation is not defined.

The state diagram in Figure 3.8 illustrates the manner in which the formatted value in an FPR is set and changed.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.4 Floating-Point General Registers

Figure 3.8 Effect of FPU Operations on the Format of Values Held in FPRs

Value
uninterpreted
(binary
encoding)

Rslt unknown

Value in
Format
B

Rslt
unknown

Rslt
unknown

A, B: Example formats

Load: Destination of LWC1, LDC1, MTC1 instructions.

Store: Source operand of SWC1, SDC1, MFC1 instructions.

Src fmt: Source operand of computational instruction expecting format “fmt.”
Rslt fmt: Result of computational instruction producing value of format “fmt.”

3.4.3 Binary Data Transfers (32-Bit and 64-Bit)

The data transfer instructions move words and doublewords between the FPU FPRs and the remainder of the system.

The operations of the word and doubleword load and move-to instructions are shown in Figure 3.9 and Figure 3.10,
respectively.

The store and move-from instructions operate in reverse, reading data from the location that the corresponding load
or move-to instruction had written.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 73



Floating-Point Unit of the microAptiv’™™ UC Core

Figure 3.9 FPU Word Load and Move-to Operations

FRBIT=1 FRBIT=0
63 0 63 0
Reg 0 Initial value 1 I Reg 0 Initial value 1
Reg 1 Initial value 2 I Reg 2 Initial value 2
' LWC1 £0, 0(r0) / MTC1l £0,r0 l
63 0 63 0
Reg 0 Undefined/Unused I Data word (0) ' Reg 0 Undefined/Unused | Data word (0)
Reg 1 Initial value 2 I Reg 2 Initial value 2
LWC1 f1, 4(xr0) / MTCl1 f1,r4 l
63 0 63 0
Reg 0 Undefined/Unused Data word (0) I Reg 0 Data word (4) | Data word (0)
Reg 1 Undefined/Unused Data word (4) I Reg 2 Initial value 2

Figure 3.10 FPU Doubleword Load and Move-to Operations

FRBIT=1 FRBIT=0
63 0 63 0
Reg 0 Initial value 1 I Reg 0 Initial value 1
Reg 1 Initial value 2 I Reg 2 Initial value 2
T —
l LDC1 f0, 0(x0) l
63 0 63 0
Reg 0 Data doubleword (0) I Reg 0 Data doubleword (0)
Reg 1 Initial value 2 I Reg 2 Initial value 2
T
l LDC1 f1, 8(x0)
63 0
Reg 0 Data doubleword (0) .
(Il1legal when FR BIT = 0)

Reg 1 Data doubleword (8) I

3.5 Floating-Point Control Registers

The FPU Control Registers (FCRs) identify and control the FPU. The five FPU control registers are 32 bits wide:
FIR, FCCR, FEXR, FENR, FCSR. Three of these registers, FCCR. FEXR, and FENR, select subsets of the floating-
point Control/Status register, the FCSR. These registers are also denoted Coprocessor 1 (CP1) control registers.

74 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



CP1 control registers are summarized in Table 3.4 and are described individually in the following subsections of this

3.5 Floating-Point Control Registers

chapter. Each register’s description includes the read/write properties and the reset state of each field.

Table 3.4 Coprocessor 1 Register Summary

Register Number | Register Name Function
0 FIR Floating-Point Implementation register. Contains information that identifies the
FPU.
25 FCCR Floating-Point Condition Codes register.
26 FEXR Floating-Point Exceptions register.
28 FENR Floating-Point Enables register.
31 FCSR Floating-Point Control and Status register.

Table 3.5 defines the notation used for the read/write properties of the register bit fields.

Table 3.5 Read/Write Properties

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W All bits in this field are readable and writable by software and potentially by hardware.

Hardware updates of this field are visible by software reads. Software updates of this field are visible by

hardware reads.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the

first read returns a predictable value. This definition should not be confused with the formal definition of

UNDEFINED behavior.

R This field is either static or is updated only by hard- | A field to which the value written by software is

ware. ignored by hardware. Software may write any value

If the Reset State of this field is either “0” or “Pre- | to this field without affecting hardware behavior.

set”, hardware initializes this field to zero or to the Software reads of this field return the last value

appropriate state, respectively, on powerup. updated by hardware.

If the Reset State of this field is “Undefined”, hard- |If the Reset State of this field is “Undefined,” soft-

ware updates this field only under those conditions | ware reads of this field result in an UNPREDICT-

specified in the description of the field. ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

0 Hardware does not update this field. Hardware can | The value software writes to this field must be zero.

assume a zero value. Software writes of non-zero values to this field might
result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.
If the Reset State of this field is “Undefined,” soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 3.11
shows the format of the F/R; Table 3.6 describes the FIR bit fields.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 75



Floating-Point Unit of the microAptiv’™ UC Core

Figure 3.11 FIR Format

31 29 28 27 25 24 23 22 21 20 19 18 17 16 15 8 7 0
Has ..
0 UFRP 0 FC 2008 F64 | L|W|3D|PS|D|S ProcessorID Revision

Table 3.6 FIR Bit Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
UFRP 28 See Release 5 definition of CFC1 and CTC1 R 1
Encoding Meaning
0 User mode FR switching instructions
not supported.
1 User mode FR switching instructions
supported.
FC 24 Indicates that full convert ranges are implemented: R 1

0: Full convert ranges not implemented

1: Full convert ranges implemented

This bit is always 1 to indicate that full convert ranges are
implemented. This means that all numbers can be con-
verted to another type by the FPU (If FS bitin FCSR is not
set Unimplemented Operation exception can still occur on
denormal operands though).

Has2008 23 Indicates that one or more IEEE-754-2008 features are R 1
implemented. This bit is always set in the microAptiv
UCF to indicate that the MAC2008, ABS2008, NAN2008
bits within the FCSR register exist. For more information,
refer to Section 3.5.5 “Floating-Point Control and Status
Register (FCSR, CP1 Control Register 31)”.

Fo4 22 Indicates that this is a 64-bit FPU: R 1
0: Not a 64-bit FPU

1: A 64-bit FPU.

This bit is always 1 to indicate that this is a 64-bit FPU.

L 21 Indicates that the long fixed point (L) data type and R 1
instructions are implemented:

0: Long type not implemented

1: Long implemented

This bit is always 1 to indicate that long fixed-point data
types are implemented.

\Y 20 Indicates that the word fixed point (W) data type and R 1
instructions are implemented:

0: Word type not implemented

1: Word implemented

This bit is always 1 to indicate that word fixed point data
types are implemented.

76 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.5 Floating-Point Control Registers

Table 3.6 FIR Bit Field Descriptions (Continued)

Fields
Read /

Name Bits Description Write Reset State

3D 19 Indicates that the MIPS-3D ASE is implemented: R 0
0: MIPS-3D not implemented

1: MIPS-3D implemented

This bit is always 0 to indicate that MIPS-3D is not imple-
mented.

PS 18 Indicates that the paired-single (PS) floating-point data R 0
type and instructions are implemented:

0: PS floating-point not implemented

1: PS floating-point implemented

This bit is always 0 to indicate that paired-single floating-
point data types are not implemented.

D 17 Indicates that the double-precision (D) floating-point data R 1
type and instructions are implemented:

0: D floating-point not implemented

1: D floating-point implemented

This bit is always 1 to indicate that double-precision float-
ing-point data types are implemented.

S 16 Indicates that the single-precision (S) floating-point data R 1
type and instructions are implemented:

0: S floating-point not implemented

1: S floating-point implemented

This bit is always 1 to indicate that single-precision float-
ing-point data types are implemented.

Processor ID 15:8 This value matches the corresponding field of the CP0O R 0x9D
PRId register.

Revision 7:0 Specifies the revision number of the FPU. This field R Preset
allows software to distinguish between different revisions
of the same floating-point processor type.

0 31:25,23 | These bits must be written as zeros; they return zeros on 0 0
reads.

3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point condi-
tion code values that also appear in the FCSR. Unlike the FCSR, all eight FCC bits are contiguous in the FCCR.
Figure 3.12 shows the format of the FCCR; Table 3.7 describes the FCCR bit fields.

Figure 3.12 FCCR Format
31 8 7 0

0 FCC

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 77



Floating-Point Unit of the microAptiv’™ UC Core

Table 3.7 FCCR Bit Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
FCC 7:0 Floating-point condition code. Refer to the description of R/W Undefined

this field in Section 3.5.5 “Floating-Point Control and

Status Register (FCSR, CP1 Control Register 31)”.

0 31:8 These bits must be written as zeros; they return zeros on 0 0

reads.

3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields that
also appear in the FCSR. Figure 3.13 shows the format of the FEXR; Table 3.8 describes the FEXR bit fields.

Figure 3.13 FEXR Format

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0
0 Cause 0 Flags 0
E|(V|Z|O|U|I VIZ|O|U|I

Table 3.8 FEXR Bit Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Cause 17:12 Cause bits. Refer to the description of this field in Section R/W Undefined

3.5.5, "Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

Flags 6:2 Flag bits. Refer to the description of this field in Section R/W Undefined
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

0 31:18, 11:7, | These bits must be written as zeros; they return zeros on 0 0
1:0 reads.

3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields
that also appear in the FCSR. Figure 3.14 shows the format of the FENR; Table 3.9 describes the FENR bit fields.

Figure 3.14 FENR Format
31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enables 0 FS| RM

ViZ|O|U|I

78 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.5 Floating-Point Control Registers

Table 3.9 FENR Bit Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Enables 11:7 Enable bits. Refer to the description of this field in Section R/W Undefined

3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

FS 2 Flush to Zero bit. Refer to the description of this field in R/W Undefined
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

RM 1:0 Rounding mode. Refer to the description of this field in R/W Undefined
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

0 31:12, 6:3 | These bits must be written as zeros; they return zeros on 0 0
reads.

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

» selects the default rounding mode for FPU arithmetic operations

» selectively enables traps of FPU exception conditions

*  controls some denormalized number handling options

» reports any IEEE exceptions that arose during the most recently executed instruction

» reports any IEEE exceptions that cumulatively arose in completed instructions

* indicates the condition code result of FP compare instructions

Access to the FCSR is not privileged; it can be read or written by any program that has access to the FPU (via the
coprocessor enables in the Status register). Figure 3.15 shows the format of the FCSR; Table 3.10 describes the FCSR

bit fields.

Figure 3.15 FCSR Format
31 25 24 23 22 21 20 19 18 17 12 11 7 6 2 10

MAC|ABS |NAN
FCC FS|FCC|FO|FN 2008 | 2008 | 2008 Cause Enables Flags RM

716(5(4(3[2]|1 0 0 1 1 [E|V|(Z|O|U|TI|V|Z|O|U|I|V|Z]|O|U|I

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 79



Floating-Point Unit of the microAptiv’™ UC Core

Table 3.10 FCSR Bit Field Descriptions

Fields
Read /
Name Bit Description Write Reset State

FCC 31:25,23 | Floating-point condition codes. These bits record the R/W Undefined
result of floating-point compares and are tested for float-
ing-point conditional branches and conditional moves.
The FCC bit to use is specified in the compare, branch, or
conditional move instruction. For backward compatibility
with previous MIPS ISAs, the FCC bits are separated into
two non-contiguous fields.

FS 24 Flush to Zero (FS). Refer to Section 3.5.6 “Operation of R/W Undefined
the FS/FO/FN Bits” for more details on this bit.

FO 22 Flush Override (FO). Refer toSection 3.5.6 “Operation of R/W Undefined
the FS/FO/FN Bits” for more details on this bit.

FN 21 Flush to Nearest (FN). Refer to Section 3.5.6 “Operation R/W Undefined
of the FS/FO/FN Bits” for more details on this bit.

MAC2008 20 Fused multiply-add mode, compliant with IEEE Standard R 0

754-2008.The fused multiply-add operation multiplies and
adds with unbounded range and precision, rounding only
once to the destination format.

The fused multiply-add is notsupported in the microAptiv
UCEF core. microAptiv UCF implements the unfused mul-
tiply-add, which rounds the intermediary multiplication
result to the destination format.

This field applies to the MADD fmt, NMADD fmt,
MSUB.fmt, and NMSUB fmt instructions.

0: Unfused multiply-add

1: IEEE 754-2008 fused multiply-add

ABS2008 19 ABS fmt & NEG fmt instructions compliant with IEEE R 1
Standard 754-2008. The IEEE 754-2008 standard requires
that the ABS and NEG functions accept QNAN inputs
without trapping. This bit is always set in the microAptiv
UCEF core to indicate support for the IEEE 754-2008 stan-
dard.

0: ABS & NEG trap for QNAN input

1: ABS & NEG accept QNAN input without trapping.
IEEE 754-2008 behavior.

NAN2008 18 Quiet and signaling NaN encodings recommended by the R 1
IEEE Standard 754-2008, i.c. a quiet NaN is encoded with
the first bit of the fraction being 1 and a signaling NaN is

encoded with the first bit of the fraction field being 0.

In the microAptiv UCF core, this bit is always set to indi-
cate support for the IEEE Standard 754-2008 encoding.

0: MIPS NaN encoding

1: IEEE 754-2008 NaN encoding

80 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.5 Floating-Point Control Registers

Table 3.10 FCSR Bit Field Descriptions (Continued)

Fields

Name

Bit

Description

Read /
Write

Reset State

Cause

17:12

Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 when the corresponding exception
condition arises during the execution of an instruction;
otherwise, it is cleared to 0. By reading the registers, the
exception condition caused by the preceding FPU arith-
metic instruction can be determined.

Refer to Table 3.11 for the meaning of each cause bit.

R/W

Undefined

Enables

Enable bits. These bits control whether or not a trap is
taken when an IEEE exception condition occurs for any of
the five conditions. The trap occurs when both an enable
bit and its corresponding cause bit are set either during an
FPU arithmetic operation or by moving a value to the
FCSR or one of its alternative representations. Note that
Cause bit E (CauseE) has no corresponding enable bit; the
MIPS architecture defines non-IEEE Unimplemented
Operation exceptions as always enabled.

Refer to Table 3.11 for the meaning of each enable bit.

Undefined

Flags

6:2

Flag bits. This field shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.

When an FPU arithmetic operation raises an IEEE excep-
tion condition that does not result in a Floating-Point
Exception (the enable bit was off), the corresponding
bit(s) in the Flags field are set, while the others remain
unchanged. Arithmetic operations that result in a Floating-
Point Exception (the enable bit was on) do not update the
Flags field.

Hardware never resets this field; software must explicitly
reset this field.

Refer to Table 3.11 for the meaning of each flag bit.

Undefined

RM

1:0

Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).

Refer to Table 3.12 for the encoding of this field.

Undefined

20:18

These bits must be written as zeros; they return zeros on
reads.

Table 3.11 Cause, Enables, and Flags Definitions

Bit Name

Bit Meaning

Unimplemented Operation (this bit exists only in the Cause field).

Invalid Operations

Divide by Zero

Overflow

c|lOIN| <

Underflow

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

81



Floating-Point Unit of the microAptiv’™ UC Core

Table 3.11 Cause, Enables, and Flags Definitions (Continued)

Bit Name Bit Meaning

1 Inexact

Table 3.12 Rounding Mode Definitions

RM Field
Encoding Meaning
0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (even).
1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater in magnitude than the result.
2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.
3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

3.5.6 Operation of the FS/FO/FN Bits

The FS, FO, and FN bits in the CP1 FCSR register control handling of denormalized operands and tiny results (i.e.

nonzero result between 225" whereby the FPU can handle these cases right away instead of relying on the much
slower software handler. The trade-off is a loss of IEEE compliance and accuracy (except for use of the FO bit),
because a minimal normalized or zero result is provided by the FPU instead of the more accurate denormalized result
that a software handler would give. The benefit is a significantly improved performance and precision.

Use of the FS, FO, and FN bits affects handling of denormalized floating-point numbers and tiny results for the
instructions listed below:

FSand FNbit:  ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB, RECIP, ROUND,
RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEG!
FO bit: MADD, MSUB, NMADD, and NMSUB

1. For ABS, C.cond, and NEG, denormal input operands or tiny results doe not result in Unimplemented exceptions when
FS = 0. Flushing to zero nonetheless is implemented when FS = 1 such that these operations return the same result as an
equivalent sequence of arithmetic FPU operations.

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbers in oper-
ands or results.

Figure 3.16 depicts how the FS, FO, and FN bits control handling of denormalized numbers. For instructions that are
not multiply or add types (such as DIV), only the FS and FN bits apply.

82 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.5 Floating-Point Control Registers

Figure 3.16 FS/FO/FN Bits Influence on Multiply and Addition Results

Operand values
FS applies

Intermediate Multiply-Add result

FS/FO applies

Final result
FS/FN applies

Multiply

Addition

3.5.6.1 Flush To Zero Bit

‘When the Flush To Zero (FS) bit is set, denormal input operands are flushed to zero. Tiny results are flushed to either

zero or the applied format’s smallest normalized number (MinNorm) depending on the rounding mode settings. Table
3.13 lists the flushing behavior for tiny results..

Table 3.13 Zero Flushing for Tiny Results

Rounding Mode Negative Tiny Result Positive Tiny Result
RN (RM=0) 0 +0
RZ(RM=1) -0 +0
RP (RM=2) -0 +MinNorm
RM (RM=3) -MinNorm +0

The flushing of results is based on an intermediate result computed by rounding the mantissa using an unbounded
exponent range; that is, tiny numbers are not normalized into the supported exponent range by shifting in leading

zeros prior to rounding.

Handling of denormalized operand values and tiny results depends on the FS bit setting as shown in Table 3.14.

Table 3.14 Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting

FS Bit Handling of Denormalized Operand Values
0 An Unimplemented Operation exception is taken.
1 Instead of causing an Unimplemented Operation exception, operands are flushed to zero, and tiny
results are forced to zero or MinNorm.

3.5.6.2 Flush Override Bit

When the Flush Override (FO) bit is set, a tiny intermediate result of any multiply-add type instruction is not flushed
according to the FS bit. The intermediate result is maintained in an internal normalized format to improve accuracy.
FO only applies to the intermediate result of a multiply-add type instruction.

Handling of tiny intermediate results depends on the FO and FS bits as shown in Table 3.15.

Table 3.15 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit

Handling of Tiny Result Values

0 0

An Unimplemented Operation exception is taken.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

83



Floating-Point Unit of the microAptiv"™™ UC Core

Table 3.15 Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings

FO Bit FS Bit Handling of Tiny Result Values

0 1 The intermediate result is forced to the value that would have been delivered for an
untrapped underflow (see Table 3.32) instead of causing an Unimplemented Operation

exception.

1 Don’t care | The intermediate result is kept in an internal format, which can be perceived as having
the usual mantissa precision but with unlimited exponent precision and without forcing

to a specific value or taking an exception.

3.5.6.3 Flush to Nearest

When the Flush to Nearest (FN) bit is set and the rounding mode is Round to Nearest (RN), a tiny final result is
flushed to zero or MinNorm. If a tiny number is strictly below MinNorm/2, the result is flushed to zero; otherwise, it
is flushed to MinNorm (see Figure 3.17). The flushed result has the same sign as the result prior to flushing. Note that
the FN bit takes precedence over the FS bit.

Figure 3.17 Flushing to Nearest when Rounding Mode is Round to Nearest
-MinNorm/2 MinNorm/2

MinNorm

I I

_MinNorm : :
I I

i . i . i >
I I
I I

For all rounding modes other than Round to Nearest (RN), setting the FN bit causes final results to be flushed to zero
or MinNorm as if the FS bit was set.

Handling of tiny final results depends on the FN and FS bits as shown in Table 3.16.
Table 3.16 Handling of Tiny Final Result Based on FN and FS Bit Settings

FN Bit FS Bit Handling of Tiny Result Values
0 0 An Unimplemented Operation exception is taken.
0 1 Final result is forced to the value that would have been delivered for an untrapped under-
flow (see Table 3.32) rather than causing an Unimplemented Operation exception.
1 Don’tcare | Final result is rounded to either zero or 2E-mi0 (MinNorm), whichever is closest when in
Round to Nearest (RN) rounding mode. For other rounding modes, a final result is given
as if FS was set to 1.

3.5.6.4 Recommended FS/FO/FN Settings

Table 3.17 summarizes the recommended FS/FO/FN settings.

Table 3.17 Recommended FS/FO/FN Settings

FS Bit

FO Bit

FN Bit

Remarks

0 IEEE-compliant mode. Low performance on denormal operands and tiny results.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03




3.5 Floating-Point Control Registers

Table 3.17 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks

1 0 0 Regular embedded applications. High performance on denormal operands and
tiny results.

1 1 1

Highest accuracy and performance conﬁguration.1

1. Note that in this mode, MADD might return a different result other than the equivalent MUL and ADD operation
sequence.

3.5.7 FCSR Cause Bit Update Flow

3.5.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTC1 instruction causes the Enables and Cause fields of the FCSR to
be inspected in order to determine if an exception is to be thrown.

3.5.7.2 Generic Flow
Computations are performed in two steps:
1. Compute rounded mantissa with unbound exponent range.

2. Flush to default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms for
instructions supporting denorm results, such as MOV).

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 can set cause bits I, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U
and O. Thus when E, V, or Z is set in Step #1, no other cause bits can be set. However, note that [ and V both can be
set if a denormal operand was flushed (FS = 1). I, U, and O can be set alone or in pairs (IU or 10). U and O never can
be set simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range
supported by the normalized IEEE format.

Step #2 can set I if a default result is generated.

3.5.7.3 Multiply-Add Flow
For multiply-add type instructions, the computation is extended with two more steps:
1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flush to default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny results if
FO=1).

3. Compute rounded mantissa with unbounded exponent range for the add.
4. Flush to default result if the result from Step #3 is overflow or tiny.

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 85



Floating-Point Unit of the microAptiv’™ UC Core

Step #1 and Step #3 can set a cause bit as described for Step #1 in Section 3.5.7.2 “Generic Flow”.
Step #2 and Step #4 can set I if a default result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-add has
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3.

3.5.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit I when FS = 1. For example, SNaN+DeNorm set
I (and V) provided that Step #3 was reached (in case of a multiply-add type instruction).

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and QNaN
propagation) are detected in the step where the operand is logically used. For example, for multiply-add type instruc-
tions, exceptional conditions caused by the input operand fr are detected in Step #3.

3.5.7.5 Cause Update Flow for Unimplemented Operations

Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 caused E
to be set, any I, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field when an
Unimplemented Operation trap is taken.

3.6 Instruction Overview

86

The functional groups into which the FPU instructions are divided are described in the following subsections:
*  Section 3.6.1 “Data Transfer Instructions”

*  Section 3.6.2 “Arithmetic Instructions”

*  Section 3.6.3 “Conversion Instructions”

*  Section 3.6.4 “Formatted Operand-Value Move Instructions”

*  Section 3.6.5 “Conditional Branch Instructions”

*  Section 3.6.6 “Miscellaneous Instructions”

The instructions are described in detail in Chapter 12, “microAptivi™ UC Processor Core Instructions” on page 292,
including descriptions of supported formats (fmt).

3.6.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers (FPRs) and coprocessor control registers
(FCRs). The FPU has a load/store architecture; all computations are done on data held in coprocessor general regis-
ters. The control registers are used to control FPU operation. Data is transferred between registers and the rest of the
system with dedicated load, store, and move instructions. The transferred data is treated as unformatted binary data;
no format conversions are performed, and therefore no IEEE floating-point exceptions can occur.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.6 Instruction Overview

Table 3.18 lists the supported transfer operations.

Table 3.18 FPU Data Transfer Instructions

Transfer Direction Data Transferred
FPU general register © Memory Word/doubleword load/store
FPU general register > CPU general register Word move
FPU control register © CPU general register Word move

3.6.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally aligned data items. An attempt to load or store to an address that
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte ordering (the endian-
ness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine, this is
the most-significant byte; for a little-endian machine, this is the least-significant byte.

3.6.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 3.19 through 3.20 list the FPU data transfer instructions.

Table 3.19 FPU Loads and Stores

Mnemonic Instruction Addressing Mode
LDC1 Load Doubleword to Floating Point Register+offset
LWC1 Load Word to Floating Point Register+offset
SDC1 Store Doubleword from Floating Point Register+offset
SWC1 Store Word from Floating Point Register+offset

LDXC1 Load Doubleword Indexed to Floating Point Register+Register
LUXC1 Load Doubleword Indexed Unaligned to Floating Point Register+Register
LWXC1 Load Word Indexed to Floating Point Register+Register
SDXC1 Store Doubleword Indexed from Floating Point Register+Register
SUXC1 Store Doubleword Indexed Unaligned from Floating Point | Register+Register
SWXC1 Store Word Indexed from Floating Point Register+Register

Table 3.20 FPU Move To and From Instructions

Mnemonic Instruction
CFC1 Move Control Word From Floating Point
CTC1 Move Control Word To Floating Point
MECl1 Move Word From Floating Point

MFHC1 Move Word From High Half of Floating Point
MTC1 Move Word To Floating Point

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 87



Floating-Point Unit of the microAptiv’™ UC Core

Table 3.20 FPU Move To and From Instructions

Mnemonic Instruction

MTHCI1 Move Word to High Half of Floating Point

3.6.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations
meet IEEE Standard 754 for accuracy—a result is identical to an infinite-precision result that has been rounded to the
specified format using the current rounding mode. The rounded result differs from the exact result by less than one
Unit in the Least-significant Place (ULP).

In general, the arithmetic instructions take an Umimplemented Operation exception for denormalized numbers,
except for the ABS, C, and NEG instructions, which can handle denormalized numbers. The FS, FO, and FN bits in
the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of the FS/FO/FN Bits”.

Table 3.21 lists the FPU IEEE compliant arithmetic operations.

Table 3.21 FPU IEEE Arithmetic Operations

Mnemonic Instruction
ABS.fmt Floating-Point Absolute Value
ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare
DIV fmt Floating-Point Divide
MUL fmt Floating-Point Multiply
NEG.fmt Floating-Point Negate
SQRT fmt Floating-Point Square Root
SUB.fmt Floating-Point Subtract

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation
(RSQRT), might be less accurate than the IEEE specification:

*  The result of RECIP differs from the exact reciprocal by no more than one ULP.
*  The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Table 3.22 lists the FPU-approximate arithmetic operations.

Table 3.22 FPU-Approximate Arithmetic Operations

Mnemonic Instruction
RECIP fmt Floating-Point Reciprocal Approximation
RSQRT fmt Floating-Point Reciprocal Square Root Approximation

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply two
operands, accumulate the result to a third operand, and produce a result. These instructions are listed in Table 3.23.
The product is rounded according to thecurrent rounding mode prior to the accumulation. This model meets the IEEE

88 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.6 Instruction Overview

accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, subtract,

or negate instructions.

Table 3.23 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic

Instruction

MADD.fmt

Floating-Point Multiply Add

MSUB.fmt

Floating-Point Multiply Subtract

NMADD fmt

Floating-Point Negative Multiply Add

NMSUB fmt

Floating-Point Negative Multiply Subtract

3.6.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts
values from a number of operand formats to a particular result format. Sane conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

In general, the conversion instructions only take an Umimplemented Operation exception for denormalized numbers.
The FS and FN bits in the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of

the FS/FO/FN Bits”.

Table 3.24 and Table 3.25 list the FPU conversion instructions according to their rounding mode.

Table 3.24 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic

Instruction

CVT.D fmt

Floating-Point Convert to Double Floating Point

CVT.L fmt

Floating-Point Convert to Long Fixed Point

CVT.S fmt

Floating-Point Convert to Single Floating Point

CVT.W fmt

Floating-Point Convert to Word Fixed Point

Table 3.25 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic

Instruction

CEIL.L fmt

Floating-Point Ceiling to Long Fixed Point

CEIL.W fmt

Floating-Point Ceiling to Word Fixed Point

FLOOR.L fmt

Floating-Point Floor to Long Fixed Point

FLOOR.W.fmt

Floating-Point Floor to Word Fixed Point

ROUND.L fmt

Floating-Point Round to Long Fixed Point

ROUND.W fmt

Floating-Point Round to Word Fixed Point

TRUNC.L fmt

Floating-Point Truncate to Long Fixed Point

TRUNC.W.fmt

Floating-Point Truncate to Word Fixed Point

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

89



Floating-Point Unit of the microAptiv’™ UC Core

90

3.6.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be
moved by the instruction that handles that type. There are three kinds of move instructions:

*  Unconditional move

*  Conditional move that tests an FPU true/false condition code

*  Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that might be unexpected. They always force the value in the destina-
tion register to become a value of the format specified in the instruction. Ifthe destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become undefined. (For more
information, see the individual descriptions of the conditional move instructions in the MIPS32® Architecture Refer-

ence Manual, Volume 1l [7] and microMIPS32™ Architecture Reference Manual, Volume 11 [8].)

Table 3.26 through Table 3.28 list the formatted operand-value move instructions.

Table 3.26 FPU Formatted Operand Move Instruction

Mnemonic Instruction

MOV fmt Floating-Point Move

Table 3.27 FPU Conditional Move on True/False Instructions

Mnemonic Instruction
MOVF.fmt Floating-Point Move Conditional on FP False
MOVT fmt Floating-Point Move Conditional on FP True

Table 3.28 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction
MOVN.fmt Floating-Point Move Conditional on Nonzero
MOVZ fmt Floating-Point Move Conditional on Zero

3.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot; it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction

in the delay slot when the branch is not taken and execution falls through:

*  Branch instructions execute the instruction in the delay slot.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.7 Exceptions

*  Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructions are included, software is strongly encouraged to avoid the use of
the Branch Likely instructions, as they will be removed from a future revision of the MIPS Architecture.

The MIPS64 architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 through 7 are in dis-
continuous fields in the FCSR.

Table 3.29 lists the conditional branch (branch and branch likely) FPU instructions; Table 3.30 lists the deprecated
conditional branch likely instructions.

Table 3.29 FPU Conditional Branch Instructions

Mnemonic Instruction
BCIF Branch on FP False
BCIT Branch on FP True

Table 3.30 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction
BCI1FL Branch on FP False Likely
BCITL Branch on FP True Likely

3.6.6 Miscellaneous Instructions

The MIPS32 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 3.31 lists these conditional move instructions.

Table 3.31 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction
MOVN Move Conditional on FP False
MOVZ Move Conditional on FP True

3.7 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of the
FCSR. The flag bits implement IEEE exception status flags, and the cause and enable bits control exception trapping.
Each field has a bit for each of the five IEEE exception conditions. The Cause field has an additional exception bit,
Unimplemented Operation, used to trap for software emulation assistance. If an exception type is enabled through the
Enables field of the FCSR, then the FPU is operating in precise exception mode for this type of exception.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 91



Floating-Point Unit of the microAptiv’™ UC Core

3.7.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap or any following instruction can
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point
arithmetic operation to show any exception conditions that arise during the operation. A cause bit is set to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to 0.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs
either during the execution of a floating-point operation or when moving a value into the FCSR. There is no enable
bit for Unimplemented Operations; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating-point operations are reported in the
Cause field. Before returning from a floating-point interrupt or exception, or before setting cause bits with a move to
the FCSR, software first must clear the enabled cause bits by executing a move to the FCSR to prevent the trap from
being erroneously retaken.

If a floating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE
Standard 754 is stored (see Table 3.32). When a floating-point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flags field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise
the bits are unchanged. There isno flag bit for the MIPS Unimplemented Operation exception. The flag bits are never

cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the
FCSR.

3.7.2 Exception Conditions

The subsections below describe the following five exception conditions defined by IEEE Standard 754:

*  Section 3.7.2.1 “Invalid Operation Exception”

* Section 3.7.2.2 “Division By Zero Exception”

*  Section 3.7.2.3 “Underflow Exception”

*  Section 3.7.2.4 “Overflow Exception”

*  Section 3.7.2.5 “Inexact Exception”

Section 3.7.2.6 “Unimplemented Operation Exception” also describes a MIPS-specific exception condition, Unim-
plemented Operation Exception, that is used to signal a need for software emulation of an instruction. Normally an
IEEE arithmetic operation can cause only one exception condition; the only case in which two exceptions can occur

at the same time are Inexact With Overflow and Inexact With Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. IEEE Standard
754 specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the excep-

92 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.7 Exceptions

tion condition does not result in a trap. The default action taken depends on the type of exception condition and, in the
case of the Overflow and Underflow, the current rounding mode. Table 3.32 summarizes the default results.

Table 3.32 Result for Exceptions Not Trapped

Bit Description Default Action
Invalid Operation | Supplies a quiet NaN.
V4 Divide by zero Supplies a properly signed infinity.
Underflow Depends on the rounding mode as shown below:
0 (RN) and 1 (RZ): Supplies a zero with the sign of the exact result.
2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative underflow
values, supplies a positive zero.
3 (RM): For positive underflow values, supplies a negative zero. For negative underflow val-
ues, supplies a negative 25-™" (MinNorm).
Note that this behavior is only valid if the FCSR gy bit is cleared.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result. If caused by an underflow without the underflow trap enabled,
supplies the underflowed result.

(0] Overflow Depends on the rounding mode, as shown below:

0 (RN): Supplies an infinity with the sign of the exact result.

1 (RZ): Supplies the format’s largest finite number with the sign of the exact result.

2 (RP): For positive overflow values, supplies positive infinity. For negative overflow values,
supplies the format’s most negative finite number.

3 (RM): For positive overflow values, supplies the format’s largest finite number. For nega-
tive overflow values, supplies minus infinity.

3.7.2.1 Invalid Operation Exception

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result is a quiet NaN.

The following operations are invalid:

One or both operands are a signaling NaN (except for the non-arithmetic MOV.fmt, MOVT fmt, MOVF fmt,

MOVN fmt, and MOVZ.fmt instructions).

Addition or subtraction: magnitude subtraction of infinities, such as (+w) + (—) or (—©) — (—o0).

Multiplication: 0 x o, with any signs.

Division: 0/0 or «/c0, with any signs.

Square root: An operand of less than 0 (-0 is a valid operand value).

Conversion of a floating-point number to a fixed-point format when either an overflow or an operand value of
infinity or NaN precludes a faithful representation in that format.

Some comparison operations in which one or both of the operands is a QNaN value.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

93



Floating-Point Unit of the microAptiv’™ UC Core

94

3.7.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonzero
number. When no precise trap occurs, the result is a correctly signed infinity. Divisions (0/0 and «/0) do not cause the
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of («0/0) is a correctly
signed infinity.

3.7.2.3 Underflow Exception

Two related events contribute to underflow:

*  Tininess: The creation of a tiny, nonzero result between +2E_min which, because it is tiny, might cause some
other exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess
events. The MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed

as though the exponent range were unbounded would lie strictly between +oE_min,

*  Loss of accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by
denormalized numbers. IEEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS archi-
tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled:

¢ When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have

been detected. The delivered result might be zero, denormalized, or +2F_min,

*  When an underflow trap is enabled (through the FCSR Enables field), underflow is signaled when tininess is
detected regardless of loss of accuracy.

3.7.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent range is
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

3.7.2.5 Inexact Exception
An Inexact exception is signaled when one of the following occurs:
*  The rounded result of an operation is not exact.
*  The rounded result of an operation overflows without an overflow trap.

*  When a denormal operand is flushed to zero.

3.7.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation support.
This exception is not IEEE-compliant.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.8 Pipeline and Performance

The MIPS architecture is designed so that a combination of hardware and software can implement the architecture.
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to per-
form the operation.

There is no enable bit for this condition; it always causes a trap (but the condition is effectively masked for all opera-
tions when FS=1). After the appropriate emulation or other operation is done in a software exception handler, the
original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

*  when denormalized operands or tiny results are encountered for instructions not supporting denormal numbers
and where such are not handed by the FS/FO/FN bits.

3.8 Pipeline and Performance

This section describes the structure and operation of the FPU pipeline.

3.8.1 Pipeline Overview

The FPU has a seven stage pipeline to which the integer pipeline dispatches instructions. The FPU pipeline runs in
parallel with the microAptiv UC integer pipeline. The FPU can be built to run at either the same frequency as the inte-
ger core or at one-half the frequency of the integer core.

The FPU pipe is optimized for single-precision instructions, such that the basic multiply, ADD/SUB, and MADD/
MSUB instructions can be performed with single-cycle throughput and low latency. Executing double-precision mul-
tiply and MADD/MSUB instructions requires a second pass through the M1 stage to generate all 64 bits of the prod-
uct. Executing long latency instructions, such as DIV and RSQRT, extends the M1 stage. Figure 3.18 shows the FPU
pipeline.

Figure 3.18 FPU Pipeline

microAptiv UC integer RFAG EXMS ER WB

FPU instruction in general | FR M1 M2 A1l A2 FP FW

Dispatch

FPU double multiplication (for example, MUL, MADD) | FR M1 M1 M2 A1 A2 FP FW
Second
Pass
FPU long instructions (for example, DIV, RSQRT) »>| FR M1 : M1 : : : : : M2 Al A2 FP FW
. MuItipI.e c.ycI;es =

3.8.1.1 FR Stage - Decode, Register Read, and Unpack
The FR stage has the following functionality:

*  The dispatched instruction is decoded for register accesses.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 95



Floating-Point Unit of the microAptiv’™ UC Core

96

* Data is read from the register file.

*  The operands are unpacked into an internal format.

3.8.1.2 M1 Stage - Multiply Tree
The M1 stage has the following functionality:

* A single-cycle multiply array is provided for single-precision data format multiplication, and two cycles are pro-
vided for double-precision data format multiplication.

*  The long instructions, such as divide and square root, iterate for several cycles in this stage.

*  Sum of exponents is calculated.

3.8.1.3 M2 Stage - Multiply Complete
The M2 stage has the following functionality:
*  Multiplication is complete when the carry-save encoded product is compressed into binary.
*  Rounding is performed.

*  Exponent difference for addition path is calculated.

3.8.1.4 A1 Stage - Addition First Step

This stage performs the first step of the addition.

3.8.1.5 A2 Stage - Addition Second and Final Step

This stage performs the second and final step of the addition.

3.8.1.6 FP Stage - Result Pack
The FP stage has the following functionality:
e The result coming from the datapath is packed into IEEE 754 Standard format for the FPR register file.

e Overflow and underflow exceptional conditions are resolved.

3.8.1.7 FW Stage - Register Write

The result is written to the FPR register file.

3.8.2 Bypassing

The FPU pipeline implements extensive bypassing, as shown in Figure 3.19. Results do not need to be written into
the register file and read back before they can be used, but can be forwarded directly to an instruction already in the
pipe. Some bypassing is disabled when operating in 32-bit register file mode, the FP bit in the CP0 Status register is
0, due to the paired even-odd 32-bit registers that provide 64-bit registers.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



3.9 2008 FPU Support

Figure 3.19 Arithmetic Pipeline Bypass Paths

FR M1 M2 A1l A2 FP FW
\ A2 bypass /
\ FP bypass

\ FW bypass

3.8.3 Repeat Rate and Latency

Table 3.33 shows the repeat rate and latency for the FPU instructions. Note that cycles related to floating point oper-
ations are listed in terms of FPU clocks.

Table 3.33 microAptiv™™ UC Core FPU Latency and Repeat Rate

Latency Repeat Rate

Opcode1 (cycles) (cycles)
ABS.[S,D], NEG[S.D], ADD.[S.D], SUB.[S,D]. MUL.S, MADD.S, 4 1
MSUB.S, NMADD.S, NMSUB.S
MUL.D, MADD.D, MSUB.D, NMADD.D, NMSUB.D 5 2
RECIP.S 13 10
RECIP.D 25 21
RSQRT.S 17 14
RSQRT.D 35 31
DIV.S, SQRT.S 17 14
DIV.D, SQRT.D 32 29
C.cond.[S.D] to MOVF.fmt and MOVT.fmt instruction / MOVT, MOVN, 1/2 1
BC1 instruction
CVTD.S, CVT.[S.D].[W.L] 4 1
CVT.S.D 6 1
CVT.[W.L].[S.D]. 5 1
CEIL.[W,L].[S.D]. FLOOR.[W,L].[S.D]. ROUND.[W.L].[S.D].
TRUNC.[W,L].[S.D]
MOV[S.D], MOVE.[S,D], MOVN.[S.D], MOVT.[S,D]. MOVZ.[S,D] 4 1
LWC1, LDC1, LDXC1, LUXCI1, LWXC1 3 1
MTC1, MFC1 2 1

1. Format: S = Single, D = Double, W = Word, L = Longword.

3.9 2008 FPU Support

The microAptiv UC implements the following new status/control bits to provide greater compatibility with the new
IEEE Standard 754 Floating-point released in 2008, and to maintain compatibility with previous FPU implementa-
tions.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 97



Floating-Point Unit of the microAptiv’™ UC Core

*  The Has2008 bit in FIR will always read as 1 to signify that 2008 FPU is implemented.

*  The MAC2008 bit in FCSR will always read as 0 to signify that Fused Multiply Add operation is not yet imple-
mented.

e The ABS2008 bit in FCSR can be written as 1 (2008-IEEE). When ABS2008 = 1, which makes ABS and NEG
instructions non-arithmetic instructions. All floating-point exceptions will be disabled.

*  The NAN2008 bit in FCSR can be written as 1 (2008-IEEE). When NAN2008 = 1, it flips SNaN and QNaN
decoding from the former implementation. In addition, the following behaviors are implemented:

*  In the case of one or more QNaN operands (no SNaN), the QNaN operand is propagated from one of the
input operands (in order of priority): fs, ft, and ft.

*  When SNaN is used as an input, and exceptions are disabled, QNaN is the expected output.

*  The QNaN output will not be a fixed value. To comply with IEEE, an input NaN should produce a NaN with
the payload of the input NaN if representable in the destination format, where the payload is defined as the
Mantissa field less its most-significant bit.

* If ABS2008=1 and MAC2008=0 (as it always is in MUP/MUC), the sign of NMADD and NMSUB do not
flip the sign of any QNaN input, and the sign is retained and propagated to the output.

e When a NaN is an input, the output will be one of the input NaNs with as much of the mantissa preserved as
possible.

*  SNaN inputs have higher priority than QNaN inputs and then fs has higher priority than ft which has higher
priority than fr.

*  The sign of the selected NaN input is preserved. If the input that is selected for the output is already a QNaN,
then the entire mantissa is preserved. However, if the input that is selected for the output is an SNaN, then
the most significant bit of the SNaN mantissa is complemented to convert the SNaN into a QNaN. If this
conversion to a QNaN would result in an infinity, then the next most significant bit of the mantissa is set.

*  For CVT.s.d, the NaN mantissa msbs are preserved. For CVT.d.s, the NaN mantissa is padded with 0’s in
the Isbs.

*  For mult-add, if both fs/ft and fr are QNaNs, then the multiply produces a QNaN based upon fs/ft, and this
QNaN has priority over fr in the add operation. However, if both fs/ft and fr are SNaNs and the invalid trap
is not enabled, then the multiply generates a QNaN based upon fs/ft, which is then added to the signaling fr
and the signaling fr has priority

*  When a NaN is needed for output but there is no NaN input, a positive QNaN is created that has all other
mantissa bits set.

98 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



Chapter 4

The MIPS® DSP Module

The microAptiv UC includes support for the MIPS DSP Module Revision 2 that provides enhanced performance
capabilities for a wide range of signal-processing applications, with computational support for fractional data types,
SIMD, saturation, and other operations that are commonly used in these applications.

Refer to MIPS® Architecture For Programmers Volume IV-e [14] or [14] for a general description of the DSP Mod-
ule and detailed descriptions of the DSP instructions. Additional programming information is contained in Five Meth-
ods of Utilizing the MIPS® DSP Module [16], Efficient DSP Module Programming in C: Tips and Tricks [17], and
Accelerating DSP Filter Loops with MIPS® CorExtend® Instructions [18].

4.1 Additional Register State for the DSP Module

The DSP Module defines three additional accumulator registers and one additional control/status register, as
described below. These registers require the operating system to recognize the presence of the DSP Module and to
include these additional registers in the context save and restore operations.

4.1.1 HI-LO Registers

The DSP Module includes three HI/LO accumulator register pairs (acl, ac2, and ac3) in addition to the HI/LO regis-
ter pair (ac0) in the standard MIPS32 architecture. These registers improve the parallelization of independent accu-
mulation routines—for example, filter operations, convolutions, etc. DSP instructions that target the accumulators
use two instruction bits to specify the destination accumulator, with the zero value referring to the original accumula-
tor.

4.1.2 DSPControl Register

The DSPControl register contains control and status information used by DSP instructions. Figure 4.1 illustrates the
bits in this register, and Table 4.1 describes their usage.

Figure 4.1 MIPS32® DSP Module Control Register (DSPControl) Format

31 28 27 24 23 16 15 14 13 12 76 5 0
0 ccond ouflag |0 [EFI| ¢ | scount |0| pos

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 99



The MIPS® DSP Module

Table 4.1 MIPS® DSP Module Control Register (DSPControl) Field Descriptions

Fields

Read / Reset
Name Bits Description Write State Compliance

0 31:28 Reserved. Used in the MIPS64 architecture but not used 0 0 Required
in the MIPS32 architecture. Must be written as zero;
returns zero on read.

ccond 27:24 Condition code bits set by compare instructions. The R/W 0 Required
compare instruction sets the right-most bits as required
by the number of elements in the vector compare. Bits
not set by the instruction remain unchanged.

ouflag 23:16 This field is written by hardware when certain instruc- R/W 0 Required
tions overflow or underflow and may have been satu-
rated. See Table 4.2 for a full list of which bits are set by
what instructions.

EFI 14 Extract Fail Indicator. This bit is set to 1 when an EXTP, R/W 0 Required
EXTPV, EXTPDP, or EXTPDP instruction fails. These
instructions fail when there are insufficient bits to
extract, that is, when the value of pos in DSPControl is
less than the value of size specified in the instruction.
This bit is not sticky, so each invocation of one of the
four instructions will reset the bit depending on whether
or not the instruction failed.

c 13 Carry bit. This bit is set and used by special add instruc- R/W 0 Required
tions that implement a 64-bit add across two GPRs. The
ADDSC instruction sets the bit and the ADDWC
instruction uses this bit.

scount 12:7 This field is for use by the INSV instruction. The value R/W 0 Required
of this field is used to specify the size of the bit field to
be inserted.

pos 5:0 This field is used by the variable insert instructions R/W 0 Required
INSV to specify the insert position.

It is also used to indicate the extract position for the
EXTP, EXTPV, EXTPDP, and EXTPDPYV instructions.
The decrement pos (DP) varnants of these instructions on
completion will have decremented the value of pos (by
the size amount).

The MTHLIP instruction will increment the pos value by
32 after copying the value of LO to HI.

0 15:13 Must be written as zero; returns zero on read. 0 0 Reserved

100 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



4.2 Software Detection of the DSP Module Revision 2

The bits of the overflow flag ouflag field in the DSPControl register are set by a number of instructions, as described

in Table 4.2. These bits are sticky and can be reset only by an explicit write to these bits in the register (using the

WRDSP instruction).
Table 4.2 DSPControl ouflag Bits
Bit Number Description

16 This bit is set when the destination is accumulator (HI-LO pair) zero, and an operation overflow
or underflow occurs. These instructions are: DPAQ_S, DPAQ_SA, DPSQ_S, DPSQ_SA,
DPAQX S, DPAQX_SA, DPSQX S, DPSQX SA, MAQ S, MAQ SA and MULSAQ S.

17 Same instructions as above, when the destination is accumulator (HI-LO pair) one.

18 Same instructions as above, when the destination is accumulator (HI-LO pair) two.

19 Same instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that set this bit on an overflow/underflow: ABSQ_ S, ADDQ, ADDQ_S, ADDU,
ADDU_S, ADDWC, SUBQ, SUBQ_S, SUBU and SUBU_S.

21 Instructions that set this bit on an overflow/underflow: MUL, MUL_S, MULEQ_S, MULEU S,
MULQ_RS, and MULQ_S.

22 Instructions that set this bit on an overflow/underflow: PRECRQ RS, SHLL, SHLL_S, SHLLYV,
and SHLLV_S.

23 Instructions that set this bit on an overflow/underflow: EXTR, EXTR_S, EXTR RS, EXTRYV,
and EXTRV_RS.

4.2 Software Detection of the DSP Module Revision 2

The presence of the MIPS DSP Module in the microAptiv UC is indicated by two static bits in the Config3 register:
the DSPP (DSP Present) bit indicates the presence of the DSP Module, and the DSP2P (DSP Rev2 Present) bit indi-
cates the presence of the MIPS DSP Module Rev2. Because the DSP Module is configurable in the microAptiv UC
processor core, and it always comes with the DSP ModuleRev2 if the DSP Module is configured, therefore the DSPP
and DSP2P are always preset to 0’s or 1’s.

The MX (DSP Module Enable) read/write bit in the CPO Status register must be set to enable access to the additional
instructions defined by the DSP Module, as well as to the MTLO/HI, MFLO/HI instructions that access accumulators
acl, ac2, and ac3. Executing a DSP Module instruction or the MTLO/HI, MFLO/HI instructions with this bit set to
zero causes a DSP State Disabled Exception (exception code 26 in the CPO Cause register). This exception can be
used by system software to do lazy context switching.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

101



Chapter 5

Memory Management of the microAptiv™™ UC Core

The microAptivi™ UC processor core includes a Memory Management Unit (MMU) that interfaces between the exe-
cution unit and the cache controller. The core implements a simple Fixed Mapping Translation (FMT) style MMU.

This chapter contains the following sections:
* Section 5.1 “Introduction”

*  Section 5.2 “Modes of Operation”

*  Section 5.3 “Fixed Mapping MMU”

*  Section 5.4 “System Control Coprocessor”

5.1 Introduction

The MMU in a microAptiv UC processor core translates a virtual address to a physical address before the request is
sent to the SRAM interface for an external memory reference.

In the microAptiv UC processor core, the MMU is based on a simple algorithm to translate virtual addresses to phys-
ical addresses via a Fixed Mapping Translation (FMT) mechanism. These translations are different for various
regions of the virtual address space (useg/kuseg, kseg0, ksegl, kseg2/3).

5.1.1 Memory Management Unit (MMU)

The microAptiv UC core contains a simple Fixed Mapping Translation (FMT) MMU that interfaces between the exe-
cution unit and the SRAM controller.

5.1.1.1 Fixed Mapping Translation (FMT)
An FMT is smaller and simpler than the full Translation Lookaside Buffer (TLB) style MMU found in other MIPS

cores. Like a TLB, the FMT performs virtual-to-physical address translation and provides attributes for the different

segments. Those segments that are unmapped in a TLB implementation (kseg0 and ksegl) are translated identically
by the FMT.

Figure 5.1 shows how the memory management unit interacts with the SRAM access in the microAptiv UC core.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 102



5.2 Modes of Operation

Figure 5.1 Address Translation During SRAM Access

- Virtual Physical
Instruction Address Address
Address > I
Calculator , S";X\M
SRAM
FMT Interface
Data
Data —> SRAM
Address > m
Calculator Virtual
Address Address

5.2 Modes of Operation

The microAptiv UC core implements three modes of operation:
*  User mode is most often used for applications programs.

»  Kernel mode is typically used for handling exceptions and operating-system kernel functions, including CP0O
management and I/O device accesses.

*  Debug mode is used during system bring-up and software development. Refer to the EJTAG section for
more information on debug mode.

User mode is most often used for application programs. Kernel mode is typically used for handling exceptions and
privileged operating system functions, including CP0 management and I/O device accesses. Debug mode is used for
software debugging and most likely occurs within a software development tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.
5.2.1 Virtual Memory Segments

The Virtual memory segments differ depending on the mode of operation. Figure 5.2 shows the segmentation for the
4 GByte (232 bytes) virtual memory space addressed by a 32-bit virtual address, for the three modes of operation.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, software has
access to the entire address space, as well as all CPO registers. User mode accesses are limited to a subset of the vir-
tual address space (0x0000_0000 to Ox7FFF_FFFF) and can be inhibited from accessing CPO functions. In User
mode, virtual addresses 0x8000_0000 to OXFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CPO registers as for Kernel mode. In addition, while in Debug mode the core has access to the
debug segment dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned
on or off, allowing full access to the entire kseg3 in Debug mode. if so desired.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 103



Memory Management of the microAptiv’™™ UC Core

104

Figure 5.2 microAptiv™™ UC processor core Virtual Memory Map

Virtual Address User Mode Kernel Mode Debug Mode
0xFFFF_FFFF p—
0xFF40_0000  ___.-==-"7"777°7° [ s
0xXFF3F FFFF PR kseg3 .-

B - kseg3
0xFF20_0000 JPE R
0XFF1F_FFFF L.t
0xE000_0000 I kseg2 kseg2
0xDFFF_FFFF
0xC000_0000 e
0XBFFF_FFFF kseg1 kseg1
0xA000_0000 .- ==="77"77°7°7 R
0x9FFF_FFFF

kseg0 kseg0
0x8000_0000
0x7FFF_FFFF
useg kuseg kuseg
0x0000_0000

Each of the segments shown in Figure 5.2 are either mapped or unmapped. The following two sub-sections explain
the distinction. Then sections 5.2.2 “User Mode”, 5.2.3 “Kernel Mode” and 5.2.4 “Debug Mode” specify which
segments are actually mapped and unmapped.

5.2.1.1 Unmapped Segments
An unmapped segment does not use the FMT to translate from virtual-to-physical addresses.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the transla-
tions the FMT provides for the microAptiv UC core, but we will still make the distinction.

All segments are treated as uncached within the microAptiv UC core. Cache coherency attributes of cached or

uncached can be specified and this information will be sent with the request to allow the system to make a distinction
between the two.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



5.2 Modes of Operation

5.2.1.2 Mapped Segments
A mapped segment does use the FMT to translate from virtual-to-physical addresses.
For the microAptiv UC core, the mapped segments have a fixed translation from virtual to physical address. The

cacheability of the segment is defined in the CP0O Config register fields K23 and KU (see 7.2.22 “Config Register
(CPO Register 16, Select 0)”). Write protection of segments is not possible during FMT translation.

5.2.2 User Mode

In user mode, a single 2 GByte (231 bytes) uniform virtual address space called the user segment (useg) is available.

Figure 5.3 shows the location of user mode virtual address space.

Figure 5.3 User Mode Virtual Address Space

32 bit
0xFFFF_FFFF
Address
Error
0x8000_0000
0x7FFF_FFFF
2GB
Mapped useg
0x0000_0000

The user segment starts at address 0x0000_0000 and ends at address Ox7FFF_FFFF. Accesses to all other addresses
cause an address error exception.

The processor operates in User mode when the Stafus register contains the following bit values:

c UM=1
* EXL=0
 ERL=0

In addition to the above values, the DM bit in the Debug register must be 0.

Table 5.1 lists the characteristics of the useg User mode segments.

Table 5.1 User Mode Segments

Status Register
i Bit Value
Address Bit Segment
Value EXL ERL UM Name Address Range Segment Size
32-bit 0 0 1 useg 0x0000_0000 --> 2 GByte
A3 =0 0x7FFF_FFFF (23! bytes)

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 105



Memory Management of the microAptiv’™™ UC Core

106

All valid user mode virtual addresses have their most significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all references to useg through the FMT.

5.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

« UM=0
e ERL=1
e EXL=1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address,
as shown in Figure 5.4. Also, Table 5.2 lists the characteristics of the Kernel mode segments.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



OXFFFF_FFFF

0xE000_0000
OXDFFF_FFFF

0xC000_0000

Kernel virtual address space
Fix Mapped, 512MB

Kernel virtual address space
Fix Mapped, 512MB

0XBFFF_FFFF

0xA000_0000
0X9FFF_FFFF

0x8000_0000
0X7FFF_FFFF

0x0000_0000

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Unmapped, 512MB

Fixed Mapped, 2048MB

Figure 5.4 Kernel Mode Virtual Address Space

kseg3

kseg2

kseg1

kseg0

kuseg

Table 5.2 Kernel Mode Segments

5.2 Modes of Operation

Status Register Is One
. of These Values
Address Bit Segment Segment
Values UM | EXL ‘ ERL Name Address Range Size
A1 =0 (UM =0 kuseg 0x0000_0000 2 GBytes (23!
or through bytes)
EXL=1 O0x7FFF_FFFF
A(31:29) = 100, or kseg0 0x8000_0000 512 MBytes
ERL = 1)
and through (2% bytes)
DM =0 0x9FFF FFFF
A(31:29) =101, ksegl 0xA000 0000 512 MBytes
through (2% bytes)
0xBFFF_FFFF
A(31:29) =110, kseg2 0xC000_0000 512 MBytes
through (2% bytes)
0xDFFF_FFFF
A(31:29) =111, kseg3 0xE000_0000 512 MBytes
through (2% bytes)
O0xFFFF_FFFF

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

107



Memory Management of the microAptiv’™™ UC Core

5.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address

space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000 0000 - Ox7FFF_FFFF.

When the Status register’s ERL = 1, the user address region becomes a 229—byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address.

5.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 100,, 32-bit kseg0 virtual address

space is selected; it is the 229—byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtracting
0x8000 0000 from the virtual address. The KO field of the Config register controls cacheability.

5.2.3.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 101,, 32-bit ksegl virtual

address space is selected. ksegl is the 229—byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to ksegl are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address.

5.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM =0, ERL = 1, or EXL =1 in the Status register, and DM = 0 in the Debug register, and the
most-significant three bits of the 32-bit virtual address are 110,, 32-bit kseg2 virtual address space is selected. In the

microAptiv UC core, this 229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 -
0xDFFF_FFFF.

5.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 111, _the kseg3 virtual address

space is selected. In the microAptiv UC core, this 229

addresses 0xE000_0000 - OxFFFF_FFFF.

-byte (512-MByte) kernel virtual space is located at physical

5.2.4 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped areas,
except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range 0xFF20 0000 to
OxFF3F FFFF. The layout is shown in Figure 5.5.

108 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



Figure 5.5 Debug Mode Virtual Address Space

0xFFFF_FFFF

0xFF40_0000

0xFF20_0000

0x0000_0000

kseg1

kseg0

Unmapped

5.2 Modes of Operation

Mapped if mapped in Kemel Mode

The dseg is sub-divided into the dmseg segment at 0OXFF20_0000 to OxFF2F FFFF which is used when the probe ser-

vices the memory segment, and the drseg segment at 0OXFF30_ 0000 to OXFF3F_FFFF which is used when mem-
ory-mapped debug registers are accessed. The subdivision and attributes for the segments are shown in Table 5.3.

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-enter

debug mode via a debug mode exception.

The unmapped kseg0 and ksegl segments from kernel mode address space are available from debug mode, which
allows the debug handler to be executed from uncached and unmapped memory.

Table 5.3 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment | Sub-Segment Cache
Name Name Virtual Address | Generates Physical Address | Attribute
dseg dmseg 0xFF20_0000 dmseg maps to addresses Uncached
through 0x0_0000 - 0xF_FFFF in EJTAG
OxFF2F_FFFF probe memory space.
drseg OXIZSOOu_g(;?OO drseg maps to the breakpoint reg-
OXFF3F_FFFF 1sters 0x0_0000 - OxF_FFFF

5.2.4.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of CPU access to the drseg address range at 0xXFF30_0000 to OXFF3F_FFFF is determined as shown in

Table 5.4

Table 5.4 CPU Access to drseg Address Range

Transaction

LSNM Bit in Debug
Register

Access

Load / Store Kernel mode address space (kseg3)
Fetch Don’t care drseg, see comments below
Load / Store

Debug software is expected to read the Debug Control Register (DCR) to determine which other memory mapped
registers exist in drseg. The value returned in response to a read of any unimplemented memory mapped register is

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

109



Memory Management of the microAptiv’™™ UC Core

unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 10, “EJTAG
Debug Support in the microAptivi™ UC Core” on page 212 for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

5.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of CPU access to the dmseg address range at 0xFF20 0000 to OxFF2F FFFF is determined by the table
shown in Table 5.5.

Table 5.5 CPU Access to dmseg Address Range

ProbEn bit in LSNM bit in
Transaction DCR register Debug register Access
Load / Store Don’t care 1 Kernel mode address space (kseg3)
Fetch 1 Don’t care dmseg
Load / Store 1 0
Fetch 0 Don’t care See comments below
Load / Store 0 0

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If
such a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
there will never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

5.3 Fixed Mapping MMU

The microAptiv UC core implements a simple Fixed Mapping (FM) memory management unit that is smaller than
the a full translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FMT performs vir-
tual-to-physical address translation and provides attributes for the different memory segments. Those memory seg-
ments which are unmapped in a TLB implementation (kseg0 and ksegl) are translated identically by the FMT MMU.

The FMT also determines the cacheability of each segment. These attributes are controlled via bits in the Config reg-
ister. Table 5.6 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and KO (bits 2:0) of the Config register.

The microAptiv UC core does not contain cachesand will treat all references as uncached, butthese Config fields will
be sent out to the system with the request and it can choose to use them to control any external caching that may be

present..
Table 5.6 Cacheability of Segments with Block Address Translation
Virtual Address
Segment Range Cacheability
useg/kuseg 0x0000_0000- Controlled by the KU field (bits 27:25) of the Config register.
0x7FFF_FFFF

110 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



5.3 Fixed Mapping MMU

Table 5.6 Cacheability of Segments with Block Address Translation (Continued)

Virtual Address
Segment Range Cacheability

kseg0 0x8000_0000- Controlled by the KO0 field (bits 2:0) of the Config register.
O0x9FFF FFFF

ksegl 0xA000_0000- Always uncacheable.
0xBFFF_FFFF

kseg2 0xC000_0000- Controlled by the K23 field (bits 30:28) of the Config register.
0xDFFF_FFFF

kseg3 0xE000_0000- Controlled by K23 field (bits 30:28) of the Config register.
O0xFFFF_FFFF

The FMT performs a simple translation to map from virtual addresses to physical addresses. This mapping is shown
in Figure 5.6. When ERL=1, useg and kuseg become unmapped and uncached. The ERL behavior is the same as if
there was a TLB. The ERL mapping is shown in Figure 5.7.

The ERL bit is usually never asserted by software. It is asserted by hardware after a Reset, SoftReset or NMI. See
6.8 “Exception Descriptions™ on page 132 for further information on exceptions.

Figure 5.6 FMT Memory Map (ERL=0) in the microAptiv™ UC Processor Core

Virtual Address Physical Address
kseg3 kseg3
0xE000 0000 0xE000 0000
_ - _
kseg2 kseg2
0xC000 0000 0xC000 0000
_ - _
kseg1
0xA000_0000
kseg0
0x8000_0000
useg/kuseg
useg/kuseg 0x4000_0000
reserved
0x2000_0000
kseg0/kseg1
0x0000_0000 0x0000_0000

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 111



Memory Management of the microAptiv™™ UC Core

Figure 5.7 FMT Memory Map (ERL=1) in the microAptiv™™ UC Processor Core

Virtual Address Physical Address
kseg3 kseg3
0xE000_0000 0xE000_0000
kseg2 kseg2
0xC000_0000 0xC000_0000
_ - _
kseg1
0xA000_0000 e
kseg0
0x8000_0000 0x8000_0000
useg/kuseg
useg/kuseg
0x2000_0000
ksegO/kseg1
0x0000_0000 0x0000_0000

5.4 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part of microAptiv UC processor core and sup-
ports memory management, address translation, exception handling, and other privileged operations. Certain CP0O
registers are used to support memory management. Refer to Chapter 7, “CP0 Registers of the microAptiviM UC
Core” on page 145 for more information on the CPO register set.

112 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



Chapter 6

Exceptions and Interrupts in the microAptivi™ UC Core

The microAptivi™ UC processor core receives exceptions from a number of sources, including arithmetic overflows,
I/O interrupts, and system calls. When the CPU detects one of these exceptions, the normal sequence of instruction
execution is suspended and the processor enters kernel mode.

In kernel mode the core disables interrupts and forces execution of a software exception processor (called a handler)
located at a specific address. The handler saves the context of the processor, including the contents of the program
counter, the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it
can be restored when the exception has been serviced.

When an exception occurs, the core loads the Exception Program Counter (EPC) register with a location where exe-
cution can restart after the exception has been serviced. Most exceptions are precise, which mean that EPC can be
used to identify the instruction that caused the exception. For precise exceptions, the restart location in the EPC regis-
ter is the address of the instruction that caused the exception or, if the instruction was executing in a branch delay slot,
the address of the branch instruction immediately preceding the delay slot. To distinguish between the two, software
must read the BD bit in the CPO Cause register. Bus error exceptions and CP2 exceptions may be imprecise. For
imprecise exceptions the instruction that caused the exception cannot be identified.

This chapter contains the following sections:

*  Section 6.1 “Exception Conditions”

*  Section 6.2 “Exception Priority”

*  Section 6.3 “Interrupts”

*  Section 6.4 “GPR Shadow Registers”

*  Section 6.5 “Exception Vector Locations”

*  Section 6.6 “General Exception Processing”

*  Section 6.7 “Debug Exception Processing”

*  Section 6.8 “Exception Descriptions”

*  Section 6.9 “Exception Handling and Servicing Flowcharts”
6.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that follow it in the pipeline
are cancelled (“flushed”). Accordingly, any stall conditions and any later exception conditions that might have refer-
enced this instruction are inhibited—obviously there is no benefit in servicing stalls for a cancelled instruction.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 113



Exceptions and Interrupts in the microAptivi™™ UC Core

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the W stage, various CPO registers are written with the exception state,
change the current program counter (PC) to the appropriate exception vector address, and clearing the exception bits
of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instructions
from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug exceptions) is sufficient to
restart execution. It also ensures that exceptions are taken in the order ofexecution; an instruction taking an exception
may itself be killed by an instruction further down the pipeline that takes an exception in a later cycle.

6.2 Exception Priority

114

Table 6.1 contains a list and a brief description of all exception conditions, The exceptions are listed in the order of
their relative priority, from highest priority (Reset) to lowest priority. When several exceptions occur simultaneously,
the exception with the highest priority is taken.

Table 6.1 Priority of Exceptions

Exception Description
Reset Assertion of SI_ColdReset signal.
Soft Reset Assertion of SI_Reset signal.
DSS EJTAG Debug Single Step.
DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT
input, or by setting the EjtagBrk bit in the ECR register.
NMI Asserting edge of SI_NMI signal.
Interrupt Assertion of unmasked hardware or software interrupt signal.

Protection - Instruction fetch

Instruction fetch access to a protected memory region was attempted.

DIB

EJTAG debug hardware instruction break matched.

AdEL Fetch address alignment error.

User-mode fetch reference to kernel address.
ISRAM Parity Error Parity error on I-SRAM access
IBE Instruction fetch bus error.

Instruction Validity Exceptions

An instruction could not be completed because it was not allowed access to the
required resources (Coprocessor Unusable) or was illegal (Reserved Instruc-
tion). If exceptions occur on the same instruction, the Coprocessor Unusable
Exception take priority over the Reserved Instruction Exception.

Tr

Execution of a trap (when trap condition is true).

Protection - Data access

Data access to a protected memory region was attempted.

DDBL / DDBS EJTAG Data Address Break (address only) or EITAG Data Value Break on
Store (address and value).

AdEL Load address alignment error.
User mode load reference to kernel address.

AdES Store address alignment error.
User mode store to kernel address.

DSRAM Parity Error Parity error on D-SRAM access.

DBE Load or store bus error.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




6.3 Interrupts

Table 6.1 Priority of Exceptions (Continued)

Exception Description

DDBL EJTAG data hardware breakpoint matched in load data compare.
CBrk EJTAG complex breakpoint.

6.3 Interrupts

In the MIPS32® Release 1 architecture, support for exceptions included two software interrupts, six hardware inter-
rupts, and a special-purpose timer interrupt. The timer interrupt was provided external to the core and was typically
combined with hardware interrupt 5 in a system-dependent manner. Interrupts were handled either through the gen-
eral exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of CauselV. Software
was required to prioritize interrupts as a function of the CauselV bits in the interrupt handler prologue.

Release 2 of the Architecture, implemented by the microAptiv UC core, adds a number of upward-compatible exten-
sions to the Release 1 interrupt architecture, including support for vectored interrupts and the implementation of a
new interrupt mode that permits the use of an external interrupt controller.

The microAptiv UC core also includesthe Microcontroller Application-Specific Extension (MCU ASE) that provides
enhanced interrupt delivery and interrupt-latency reduction.

6.3.1 Interrupt Modes

The microAptiv UC core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

*  Interrupt Compatibility mode, in which the behavior of the microAptiv UC is identical to the behavior of a
Release 1 implementations.

*  Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the Vint bit in the Config3 register. Although this mode is architecturally optional, it is always present
on the microAptiv UC processor, so the Vint bit will always read as a 1.

»  External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support
for an external interrupt controller that handles prioritization and vectoring of interrupts. As with VI mode, this
mode is architecturally optional. The presence of this mode is denoted by the VEIC bit in the Config3 register. On
the microAptiv UC core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to
indicate the presence of an external interrupt controller.

Following reset, the microAptiv UC processor defaults to Compatibility mode, which is fully compatible with all
implementations of Release 1 of the Architecture.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 115



Exceptions and Interrupts in the microAptivi™™ UC Core

116

Table 6.2 shows the current interrupt mode of the processor as a function of the Coprocessor 0 register fields that can

affect the mode.

Table 6.2 Interrupt Modes

> A
D255
[} n = D ™
2|3 ]Q |28
AR
n 318 Interrupt Mode
1 |x x | x | x | Compatibly
x |0 x | x | x |Compatibility
X [x =0 | x | x |Compatibility
0|1 #0 | 1 Vectored Interrupt
011 #0 | x | 1 |External Interrupt Controller
0|1 #0 | 0 | 0 |Can’thappen - IntCtl,,g can not be non-zero if neither
Vectored Interrupt nor External Interrupt Controller mode
is implemented.

“x” denotes don’t care

6.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 16#180 (if Cause), = 0) or vector offset 16#200

(if Causey, = 1). This mode is in effect if any of the following conditions are true:

*  Causey=0

° StatUSBEV =1

*  IntCth,s = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

Here is a typical software handler for interrupt compatibility mode:

(1f it were zero,

the interrupt exception would have to

be isolated from the general exception vector before getting
here)

/*
* Assumptions:
* - Causey =1
*
*
*
*
*
*
*
*/
IVexception:
mfcO ko0,
mfcO k1,
andi ko,
and ko,
beqg ko,
clz ko,

- GPRs k0 and k1l are available

CO0_Cause /*
CO_Status /*
k0, M CauseIM /*
k0, k1 /*
zero, Dismiss /*
ko /*

compatibility mode)

- The software priority is IP9..IPO0 (HW7..HWO, SW1..SWO0)

Location: Offset 0x200 from exception base

Read Cause register for IP bits */
and Status register for IM bits */
Keep only IP bits from Cause */

and mask with IM bits */

no bits set - spurious interrupt */
Find first bit set, IP9..IPO; kO =

(no shadow register switches invoked in

14..23 */

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



L I R I N . R R I

6.3 Interrupts

xori ko0, kO, 0x17 /* 14..23 => 9..0 */

sll k0, kO, VS /* Shift to emulate software IntCtlyg */
la kl, VectorBase /* Get base of 10 interrupt vectors */
addu k0, ko, k1 /* Compute target from base and offset */
jr ko0 /* Jump to specific exception routine */
nop

Each interrupt processing routine processes a specific interrupt, analogous

to those reached in VI or EIC interrupt mode. Since each processing routine

is dedicated to a particular interrupt line, it has the context to know

which line was asserted. Each processing routine may need to look further

to determine the actual source of the interrupt if multiple interrupt requests
are ORed together on a single IP line. Once that task is performed, the
interrupt may be processed in one of two ways:

- Completely at interrupt level (e.g., a simply UART interrupt). The
SimpleInterrupt routine below is an example of this type.

- By saving sufficient state and re-enabling other interrupts. In this
case the software model determines which interrupts are disabled during
the processing of this interrupt. Typically, this is either the single
StatusIM bit that corresponds to the interrupt being processed, or some
collection of other Statusp, bits so that “lower” priority interrupts are
also disabled. The NestedInterrupt routine below is an example of this type.

SimpleInterrupt:

/*
*
*

*

*

*/

Process the device interrupt here and clear the interupt request

at the device. In order to do this, some registers may need to be
saved and restored. The coprocessor 0 state is such that an ERET

will simple return to the interrupted code.

eret /* Return to interrupted code */

NestedException:

/*

*

R

Nested exceptions typically require saving the EPC and Status registers,
any GPRs that may be modified by the nested exception routine, disabling
the appropriate IM bits in Status to prevent an interrupt loop, putting
the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only
to demonstrate the concepts.

/* Save GPRs here, and setup software context */

mfco k0, CO_EPC /* Get restart address */

s k0, EPCSave /* Save in memory */

mfc0 k0, CO_Status /* Get Status value */

sw k0, StatusSave /* Save in memory */

1i k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and ko, kO, ki1 /* Clear bits in copy of Status */

ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtco k0, CO_Status /* Modify mask, switch to kernel mode, */

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 117



Exceptions and Interrupts in the microAptivi™™ UC Core

/* re-enable interrupts */

* Process interrupt here, including clearing device interrupt.

* In some environments this may be done with a thread running in
kernel or user mode. Such an environment is well beyond the scope of
* this example.

*/

*

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1 k1, EPCSave /* and EPC */
mtcO k0, CO_Status /* Restore the original value */
mtcO k1, CO_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

6.3.1.2 Vectored Interrupt (VI) Mode
In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be
used to direct each interrupt to a dedicated handler routine. This mode also allows each interrupt to be mapped to a
GPR shadow register set for use by the interrupt handler. VI mode is in effect when all the following conditions are

true:

e Config3yn =1

. Config3VE|C =0

o IntCthS =0

*  Causey=1

o StatusBEV =0

In VI interrupt mode, the eight hardware interrupts are interpreted as individual hardware interrupt requests. The
timer interrupt is combined in a system-dependent way (external to the core) with the hardware interrupts (the inter-
rupt with which they are combined is indicated by the PT/ field in IntCtll) to provide the appropriate relative priority

of the timer interrupt with that of the hardware interrupts. The processor interrupt logic ANDs each of the Causep
bits with the corresponding Status, bits. If any of these values is 1, and if interrupts are enabled (Statusg = 1,

118 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.3 Interrupts

Statusgy, = 0, and Statusgg, = 0), an interrupt is signaled and a priority encoder scans the values in the order shown

in Table 6.3.

Table 6.3 Relative Interrupt Priority for Vectored Interrupt Mode

Interrupt Vector Number
Relative Interrupt Interrupt Request Generated by

Priority Type Source | Calculated From | Priority Encoder
Highest Priority | Hardware HW7 IP9 and IM9 9
HW6 IP8 and IM8 8
HW5 IP7 and IM7 7
HW4 IP6 and IM6 6
HW3 IP5 and IM5 5
HW2 [P4 and IM4 4
HWI1 IP3 and IM3 3
HWO IP2 and IM2 2
Software SW1 IP1 and IM1 1
Lowest Priority SWo0 IPO and IMO 0

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs

an encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
shown pictorially in Figure 6.1.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

119



Exceptions and Interrupts in the microAptiv™™ UC Core

Figure 6.1 Interrupt Generation for Vectored Interrupt Mode

Latch Mask Encode Generate
IntCtlpry
Any Interrupt
HW7 > 1po Y > % Request
U .
HW6 > P8 B 1M8 - Statuspp
kWS z [ [p7— M7 | IntCtlyg
£
HW4 g > 16— ve— 3 ;
Q| ' .
HW3 © | IP5 i TM5 P 5 Vector g Exception
HW2 | — | 1pa >4 » 2 Number g Vector Offset
HW1 —1p3 M3 > 3
HWO P2 12 > o
IP1—®IM1|—p
PO B TMO - '
Causery I SRSMap I
Shadow Set
Number >

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the IV excep-
tion label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dis-
patching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt
handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simple Inter-
rupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look as follows:

NestedException:
/*
* Nested exceptions typically require saving the EPC, Status and SRSCtl registers,

* setting up the appropriate GPR shadow set for the routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
* below can not cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/

/* Use the current GPR shadow set, and setup software context */

mfcO k0, CO_EPC /* Get restart address */

s k0, EPCSave /* Save in memory */

mfcO0 kO, CO_Status /* Get Status value */

sw k0, StatusSave /* Save in memory */

mfc0 k0, CO_SRSCtl /* Save SRSCtl if changing shadow sets */

sSw k0, SRSCtlSave

120 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



6.3 Interrupts

1i k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and ko, k0, k1 /* Clear bits in copy of Status */

/* If switching shadow sets, write new value to SRSCtlpgg here */
ins k0, zero, S StatusEXL, (W_StatusKSU+W_ StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtcO k0, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*
* Tf switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine

*/
/* Process interrupt here, including clearing device interrupt */

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1 k1, EPCSave /* and EPC */
mtc0 k0, CO_Status /* Restore the original value */
1w k0, SRSCtlSave /* Get saved SRSCtl */
mtco kl, CO_EPC /* and EPC */
mtc0 k0, CO_SRscCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

6.3.1.3 External Interrupt Controller Mode

External Internal Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to pro-
vide support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts,
including hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the
priority level and vector number of the highest priority interrupt. EIC interrupt mode is in effect if all of the following
conditions are true:

. COnﬁgsVEK: =1

Intct/\/s #0
*  Causey=1
. StatUSBEV =0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (Cause|p;_pg), the timer inter-
rupt request (Causer,), the performance counter interrupt request (Causepc)) and Fast Debug Channel Interrupt
(Causerp)) to the external interrupt controller, where it prioritizes these interrupts in a system-dependent way with
other hardware interrupts. The interrupt controller can be a hard-wired logic block, or it can be configurable based on
control and status registers. This allows the interrupt controller to be more specific or more general as a function of
the system environment and needs.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 121



Exceptions and Interrupts in the microAptivi™™ UC Core

122

The external interrupt controller prioritizes its interrupt requests and produces the priority level and the vector num-
ber of the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level
(RIPL), is an 8-bit encoded value in the range 0..255, inclusive. A value of 0 indicates that no interrupt requests are
pending. The values 1..255 represent the lowest (1) to highest (255) RIPL for the interrupt to be serviced. The inter-
rupt controller passes this value on the 8 hardware interrupt lines, which are treated as an encoded value in EIC inter-
rupt mode. There are two implementation options available for the vector offset:

1. The first option is to send a separate vector number along with the RIPL to the processor.

2. A second option is to send an entire vector offset along with the RIPL to the processor. This option is
enabled through the core’s configuration GUI, and it is not affected by software.

The microAptiv UC core does not support the option to treat the RIPL value as the vector number for the processor.

Statusip; (which overlays Statuslyg m2) 1S interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with Statusip; to determine if the requested
interrupt has higher priority than the current /PL. If RIPL is strictly greater than Statusp; , and interrupts are enabled
(Statusg = 1, Statusgy = 0, and Statusgg, = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into Causerp; (Which overlays Causepg po) and signals the external
interrupt controller to notify it that the request is being serviced. Because Causer,p, is only loaded by the processor
when an interrupt exception issignaled, it is available to software duringinterrupt processing. The vector number that
the EIC passes to the core is combined with the IntCth,g to determine where the interrupt service routine is located.

The vector number is not stored in any software-visible registers.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
Causegypy , it also loads the GPR shadow set number into SRSCtlg,css, which is copied to SRSCtl-gg when the inter-
rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 6.2.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.3 Interrupts

Figure 6.2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode

Interrupt Sources

b o

External Interrupt Controller

Interrupt Service

et

Requested

' %ﬁonl - Exglicit Vector Number

Latch Compare Generate

An

RIPTC y
g ausery 2 N Request Interrupt
ausepc = R Request
Causerpy £ = IPL T Swmep L T >

Causerpg 7

Interrupt

Gt Exception

*

Shadow Set
Mapping

Load IntCtl Y
VS
Fields . Option 1 -
g £ Exception Vector
& g Offset
§ o §1—--*>
D
| 5
e)
e
Option2 - Explicit Vector Offset e
g Shadow Set
i Number
3 —
7}
-4
17}

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the IV exception
label shown for the compatibility-mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may

take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simple Interrupt code

shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
Causegp; to Statuspp to prevent lower priority interrupts from interrupting the handler. Such a routine might look as

follows:

NestedException:

/*

* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
setting up the appropriate GPR shadow set for the routine, disabling
the appropriate IM bits in Status to prevent an interrupt loop, putting

* ¥ * ¥ * *

/

the processor in kernel mode,
below can not cover all nuances of this processing and is intended only

to demonstrate the concepts.

and re-enabling interrupts. The sample code

/* Use the current GPR shadow set, and setup software context */

mfcO
mfcO
srl
s
mfcO

k1, CO_Cause /*
k0, CO_EPC /*
k1, k1, S CauseRIPL /*
k0, EPCSave /*

kO, CO_Status /*

Read Cause to get RIPL value */
Get restart address */

Right justify RIPL field */
Save in memory */

Get Status value */

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

123



Exceptions and Interrupts in the microAptivi™™ UC Core

sw k0, StatusSave /* Save in memory */

ins k0, k1, S StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, CO_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave

/* If switching shadow sets, write new value to SRSCtlpgg here */

ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */

mtc0 k0, CO_Status /* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */

/*

* Tf switching shadow sets, clear only KSU above, write target

* address to EPC, and do execute an eret to clear EXL, switch

* shadow sets, and jump to routine

*/
/* Process interrupt here, including clearing device interrupt */

/*
* The interrupt completion code is identical to that shown for VI mode above.

*/
6.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with /ntCt/VS to create the interrupt offset, which is added to 16#200 to create the
exception vector offset. For VI interrupt mode, the vector number is in the range 0..9, inclusive. For EIC interrupt
mode, the vector number is in the range 0..63, inclusive. The IntCt/VS field specifies the spacing between vector loca-
tions. If this value is zero (the default reset state), the vector spacing is zero and the processor reverts to Interrupt
Compatibility Mode. A non-zero value enables vectored interrupts, and Table 6.4 shows the exception vector offset
for a representative subset of the vector numbers and values of the IntCt/VS field.

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtly Field
Vector Number 2#00001 | 2#00010 | 2#00100 | 2#01000 | 2#10000
0 16#0200 16#0200 16#0200 16#0200 16#0200
1 16#0220 16#0240 16#0280 16#0300 16#0400
2 16#0240 16#0280 16#0300 16#0400 16#0600
3 16#0260 16#02C0 16#0380 16#0500 16#0800
4 16#0280 16#0300 16#0400 16#0600 16#0A00
5 16#02A0 16#0340 16#0480 16#0700 16#0C00
6 16#02C0 16#0380 16#0500 16#0800 16#0E00
7 16#02E0 16#03C0 16#0580 16#0900 16#1000
.
o
61 16#09A0 16#1140 16#2080 16#3F00 16#7C00
62 16#09C0 16#1180 16#2100 16#4000 16#7E00
63 16#09E0 16#11C0 16#2180 16#4100 16#8000

124 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.3 Interrupts

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset <« 16#200 + (vectorNumber x (IntCtlyg | 2#00000))

When using large vector spacing and EIC mode, the offset value can overlap with bits that are specified in the EBase
register. Software must ensure that any overlapping bits are specified as 0 in EBase. This implementation ORs
together the offset and base registers, but it is architecturally undefined and software should not rely on this behavior.

Although there are 255 EIC priority interupts, only 64 vectors are provided. There is no one-to-one mapping for each
EIC interrupt to its interrupt vector. The 255 priority interrupts will share the 64 interrupt vectors as specified by the
SI_EICVector[5:0] input pins. However, as mentioned in option 2 of Section 6.3.1.3 “External Interrupt Controller
Mode”, the SI_Offset[17:1] input pins can be used to provide each EIC interrupt with a unique interrupt handler loca-
tion.

6.3.3 MCU ASE Enhancement for Interrupt Handling

The MCU ASE extends the MIPS/microMIPS Architecture with a set of new features designed for the microcontrol-
ler market. The MCU ASE contains enhancements in two key areas: interrupt delivery and interrupt latency. For
more details, refer to the The MCU Privileged Resource Architecture chapter of the MIPS® Architecture for Pro-
grammers Volume IV-h: The MCU Application-Specific Extension to the MIPS32 Architecture [10] or MIPS® Archi-
tecture for Programmers Volume 1V-h: The MCU Application-Specific Extension to the microMIPS32™ Architecture

[11].
6.3.3.1 Interrupt Delivery

The MCU ASE extends the number of hardware interrupt sources from 6 to 8. For legacy and vectored-interrupt
mode, this represents 8 external interrupt sources. For EIC mode, the widened /PL and RIPL fields can now represent
256 external interrupt sources.

6.3.3.2 Interrupt Latency Reduction

The MCU ASE includes a package of extensions to MIPS/microMIPS that decrease the latency of the processor’s
response to a signalled interrupt.

Interrupt Vector Prefetching

Normally on MIPS architecture processors, when an interrupt or exception is signalled, execution pipelines must be
flushed before the interrupt/exception handler is fetched. This is necessary to avoid mixing the contexts of the inter-
rupted/faulting program and the exception handler. The MCU ASE introduces a hardware mechanism in which the
interrupt exception vector is prefetched whenever the interrupt input signals change. The prefetch memory transac-
tion occurs in parallel with the pipeline flush and exception prioritization. This decreases the overall latency of the
execution of the interrupt handler’s first instruction.

Automated Interrupt Prologue

The use of Shadow Register Sets avoids the software steps of having to save general-purpose registers before han-
dling an interrupt.

The MCU ASE adds additional hardware logic that automatically saves some of the COPO state in the stack and auto-
matically updates some of the COPO registers in preparation for interrupt handling.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 125



Exceptions and Interrupts in the microAptivi™™ UC Core

Automated Interrupt Epilogue

A mirror to the Automated Prologue, this features automates the restoration of some of the COPO registers from the
stack and the preparation of some of the COPO registers for returning to non-exception mode. This feature is imple-
mented within the IRET instruction, which is introduced in this ASE.

Interrupt Chaining

An optional feature of the Automated Interrupt Epilogue, this feature allows handling a second interrupt after a pri-
mary interrupt is handled, without returning to non-exception mode (and the related pipeline flushes that would nor-
mally be necessary).

6.4 GPR Shadow Registers

126

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the microAptiv UC core. Although Release 2 of the Archi-
tecture defines a maximum of 16 shadow sets, the core allows one (the normal GPRs), two, four, eight or sixteen
shadow sets. The highest number actually implemented is indicated by the SRSCth,gg field. If this field is zero, only
the normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. When a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCt/register provides the
number of the current shadow register set, and the PSS field of the SRSCtl/ register provides the number of the previ-
ous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCt/
register. When an exception or interrupt occurs, the value of SRSCtl-gs is copied to SRSCtlpgg, and SRSCtlogg is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlpgg is copied back into SRSCtlgg

to restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, steps 2 and 3 are
skipped.

*  The exception is one that sets Statusgg, : Reset, Soft Reset, or NMI.

*  The exception causes entry into EJTAG Debug Mode.

* StatUSBEV =1

. StatUSEXL =1

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.5 Exception Vector Locations

2. SRSCT/CSS is Copied to SRSCHPSS
3. SRSCticss is updated from one of the following sources:

*  The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, Causey, = 1,
Config3ygic = 0, and Config3y,: = 1. These are the conditions for a vectored interrupt.

* The EICSS field of the SRSCtl register if the exception is an interrupt, Cause), = 1, and Config3,g|c = 1.
These are the conditions for a vectored EIC interrupt.

*  The ESS field of the SRSCt/register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCt/ register at the end of an exception or interrupt are as follows:
1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skipped.
* A DERET is executed.

*  An ERET is executed with Statusgg = 1.
2. SRSCHPSS 1S copied to SRSCHCSS

These rules have the effect of preserving the SRSCt/ register in any case of a nested exception or one which occurs
before the processor has been fully initialize (Statusggy = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCltlpgg, loading EPC with a
target address, and doing an ERET.

6.5 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 16#BFC0.0000. EJTAG Debug excep-
tions are vectored to location 16#BFC0.0480, or to location 16#FF20.0200 if the ProbTrap bit is zero or one, respec-
tively, in the EJTAG_Control_register. Addresses for all other exceptions are a combination of a vector offset and a
vector base address. In Release 1 of the architecture, the vector base address was fixed. In Release 2 of the architec-
ture, software is allowed to specify the vector base address via the EBase register for exceptions that occur when
Statusggy equals 0. Table 6.5 gives the vector base address as a function of the exception and whether the BEV bit is
set in the Status register. Table 6.6 gives the offsets from the vector base address as a function of the exception. Note
that the /V bit in the Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general
exception vector. For implementations of Release 2 of the Architecture,

Table 6.4 shows the offset from the base address in the case where Statusggy = 0 and Causeyy, = 1. For implementa-
tions of Release 1 of the architecture in which Cause), = 1, the vector offset is as if IntCty,5 were 0. Table 6.7 com-
bines these two tables into one that contains all possible vector addresses as a function of the state that can affect the

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 127



Exceptions and Interrupts in the microAptivi™™ UC Core

vector selection. To avoid complexity in the table, the vector address value assumes that the EBase register, as imple-
mented in Release 2 devices, is not changed from its reset state and that /IntCtys is 0.

Table 6.5 Exception Vector Base Addresses

StatusBEV
Exception 0 1
Reset, Soft Reset, NMI 16#BFC0.0000
EJTAG Debug (with ProbEn =0 in 16#BFC0.0480
the EJTAG Control Register)
EJTAG Debug (with ProbEn=1 in 16#FF20.0200
the EJTAG Control Register)
SRAM Parity Error EBases; 301/ 1| 16#BFC0.0300
EBa5628 12 || 16#000
Note that EBase;; 3¢ have the
fixed value 2#10
Other For Release 1 of the architecture: 16#BFC0.0200
16#8000.0000
For Release 2 of the architecture:
EBases; 12 || 16#000
Note that EBases; 3( have the
fixed value 2#10

Table 6.6 Exception Vector Offsets

Exception Vector Offset
General Exception 16#180
Interrupt, Causey, = 1 16#200 (In Release 2 implementa-

tions, this is the base of the vectored
interrupt table when Statusggy = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)

Table 6.7 Exception Vectors

Vector
For Release 2
Implementations, assumes
EJTAG that EBase retains its reset
Exception Statusggy | Statusgy, | Cause|y | ProbEn state and that IntCtl,,s =0
Reset, Soft Reset, NMI X X X X 16#BFC0.0000
EJTAG Debug X X X 0 16#BFC0.0480
EJTAG Debug X X X 1 16#FF20.0200
SRAM Parity Error 0 X X X 16#EBase [31:30] || 2#1
|| EBase[28:12] ||
16#100
SRAM Parity Error 1 X X X 16#BFC0.0300
Interrupt 0 0 0 X 16#8000.0180

128 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.6 General Exception Processing

Table 6.7 Exception Vectors (Continued)

Vector

For Release 2
Implementations, assumes
EJTAG that EBase retains its reset

Exception Statusggy | Statusgy, | Causep, | ProbEn state and that IntCtl,,s =0
Interrupt 0 0 1 X 16#8000.0200
Interrupt 1 0 0 X 16#BFC0.0380
Interrupt 1 0 1 X 16#BFC0.0400
All others 0 X X X 16#8000.0180
All others 1 X X X 16#BFC0.0380

‘x’ denotes don’t care

6.6 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own spe-
cial processing as described below, exceptions have the same basic processing flow:

« Ifthe EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 7.17). The value loaded into the EPC
register is dependent on whether the processor implements microMIPS, and whether the instruction is in the
delay slot of a branch or jump which has delay slots. Table 6.8 shows the value stored in each of the CPO PC reg-
isters, including EPC. For implementations of Release 2 of the Architecture if Statusggy, = 0, the CSS field in the
SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCH register is not changed.

Table 6.8 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

microMIPS In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper bits of the address of the instruction, combined with
the ISA Mode bit

Yes Yes Upper bits of the branch or jump instruction (PC-2 or
PC-4 depending on size of the instruction in the micro-
MIPS ISA Mode and PC-4 in the 32-bit ISA Mode), com-
bined with the ISA Mode bit

* The CE and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

e The EXL bit is set in the Status register.

*  The processor is started at the exception vector.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 129



Exceptions and Interrupts in the microAptivi™™ UC Core

130

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/*
/*
if

If Statusgyxy is 1, all exceptions go through the general exception vector */
and neither EPC nor Causepgp nor SRSCtl are modified */

Statusgy;, = 1 then

vectorOffset <« 16#180

else

if InstructionInBranchDelaySlot then

EPC « restartPC/* PC of branch/jump */
Causepp < 1

else
EPC « restartPC /* PC of instruction */
Causegp <« O

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet <« SRSCtlggg /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then
vectorOffset « 16#000
elseif (ExceptionType = Interrupt) then
if (Causey = 0) then
vectorOffset <« 16#180
else
if (Statusggy = 1) or (IntCtlyg = 0) then
vectorOffset <« 16#200
else
if Config3ygc = 1 then
VecNum < CausegpL
NewShadowSet < SRSCtlgicsg
else
VecNum <« VIntPriorityEncoder ()
NewShadowSet <« SRSMapIPLX4+3 IPLX4
endif
vectorOffset <« 16#200 + (VecNum x (IntCtlyg || 2#00000))
endif /* if (Statusggy = 1) or (IntCtlyg = 0) then */
endif /* if (Causey = 0) then */
endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */

/* Release 2 of the architecture */

if ((ArchitectureRevision > 2) and (SRSCtlpgg > 0) and (Statusggy = 0) and
(Statusggp = 0)) then
SRSCtlpSS < SRSCthSS
SRSCtlcgs < NewShadowSet

endif

endif /* if Statusgyy = 1 then */

Causepgp <« FaultingCoprocessorNumber
Causegyccoge < ExceptionType
Statusgy;, < 1

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.7 Debug Exception Processing

/* Calculate the vector base address */
if Statusggy = 1 then
vectorBase <« 16#BFC0.0200
else
if ArchitectureRevision > 2 then
/* The fixed value of EBasej; 3y forces the base to be in kseg0 or ksegl */
vectorBase < EBasej; |p || 16#000
else
vectorBase <« 16#8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */

PC « vectorBase 3 || (vectorBaseyg ( + vectorOffsetyy ()
/* No carry between bits 29 and 30 */

6.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

*  The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if
the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot
of a branch.

* The DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and DDBSImpr bits in the Debug register are
updated appropriately depending on the debug exception type.

*  The DebugZ2 register is updated with additional information for complex breakpoints.

*  Haltand Doze bits in the Debug register are updated appropriately.

*  DMbit in the Debug register is set to 1.

*  The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-

ter unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and
DDBSImpr bits in the Debug register.

No other CPO registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC <« PC-4
Debugpgp « 1

else
DEPC <« PC
Debugpgp « 0
endif

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 131



Exceptions and Interrupts in the microAptivi™™ UC Core

Debugp« pitg < DebugExceptionType
Debugy,1+ < HaltStatusAtDebugException
Debugpg,. ¢ DozeStatusAtDebugException
Debugpy « 1
if EJTAGControlRegisterp,gurrap = 1 then
PC <« OxFF20_0200
else
PC « OxBFCO_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Prob-
Trap bit in the EJTAG Control register (ECR), as shown in Table 6.9.

Table 6.9 Debug Exception Vector Addresses

ProbTrap bit in ECR
Register Debug Exception Vector Address
0 0xBFCO0_0480
1 0xFF20 0200 in dmseg

6.8 Exception Descriptions

132

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 6.1.

6.8.1 Reset/SoftReset Exception

A reset exception occurs when the SI_ColdReset signal is asserted to the processor; a soft reset occurs when the
SI_Reset signal is asserted. These exceptions are not maskable. When one of these exceptions occurs, the processor
performs a full reset initialization, including aborting state machines, establishing critical state, and generally placing
the processor in a state in which it can execute instructions from uncached, unmapped address space. On a Reset/Soft-
Reset exception, the state of the processor is not defined, with the following exceptions:

»  The Config register is initialized with its boot state.
* The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

*  The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may or
may not be predictable.

*  PC is loaded with 0xBFCO_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:
Reset (0xBFCO_0000)

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.8 Exception Descriptions

Operation:

Config <« ConfigurationState

Statusgp < O

Statuspgy < 1

Statuspg < 0

Statusgy <« 0/1 (depending on Reset or SoftReset)

Statusyyy < O

Statusgg, < 1

if InstructionInBranchDelaySlot then
ErrorEPC <« PC - 4

else
ErrorEPC <« PC

endif

PC « OxBFCO_0000

6.8.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction
in the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug regis-
ter, and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never
set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one
step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and DEPC points to the SDBBP instruction. However, returning to an instruction (not jump/branch) just
before the SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP instruc-
tion.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 133



Exceptions and Interrupts in the microAptivi™™ UC Core

134

6.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set
DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

6.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

 The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

*  The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

*  PCis loaded with 0OxBFCO_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Statuspgy < 1

Statusqg < O

Statusgy < O

Statusyyr < 1

Statusgyy, <« 1

if InstructionInBranchDelaySlot then

ErrorEPC <« PC - 4
else

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.8 Exception Descriptions

ErrorEPC <« PC
endif
PC <« 0xBFCO_0000

6.8.5 Interrupt Exception

The interrupt exception occurs when one or more of the eight hardware, two software, or timer interrupt requests is
enabled by the Status register, and the interrupt input is asserted. See 6.3 “Interrupts” on page 115 for more details
about the processing of interrupts.

Register ExcCode Value:
Int

Additional State Saved:

Table 6.10 Register States an Interrupt Exception

Register State Value

CauselP indicates the interrupts that are pending.

Entry Vector Used:

See 6.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts” on page 124 for the entry vector used,
depending on the interrupt mode the processor is operating in.

6.8.6 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:
DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.7 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

*  Fetch an instruction, load a word, or store a word that is not aligned on a word boundary
*  Load or store a halfword that is not aligned on a halfword boundary

*  Reference the kernel address space from user mode

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 135



Exceptions and Interrupts in the microAptivi™™ UC Core

136

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

Cause Register ExcCode Value:

AdEL: Reference was a load or an instruction fetch

AdES: Reference was a store
Additional State Saved:

Table 6.11 CPO Register States on an Address Exception Error

Register State Value

BadVAddr Failing address

Entry Vector Used:

General exception vector (offset 0x180)

6.8.8 SRAM Parity Error Exception

A SRAM error exception occurs when an instruction or data reference detects a data error. This exception is not
maskable. To avoid disturbing the error in the cache array the exception vector is to an unmapped, uncached address.
This exception is precise.

Cause Register ExcCode Value
N/A

Additional State Saved

Table 6.12 CP0 Register States on a SRAM Parity Error Exception

Register State Value

CacheErr Error state
ErrorEPC Restart PC

Entry Vector Used
Cache error vector (offset 16#100)

6.8.9 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus requestand that request terminates in an
error. The bus error exception can occur on either an instruction fetch or a data access. Bus error exceptions that occur
on an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Bus errors taken on any external access on the microAptiv UC core are always precise.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.8 Exception Descriptions

DBE: Error on a data reference

Additional State Saved:

None
Entry Vector Used:

General exception vector (offset 0x180)

6.8.10 Protection Exception

The protection exception occurs when an access to memory that has been protected by the Memory Protection Unit
has been attempted. Or under certain circumstances, attempted write to the EBase register. See the "Security Features
of the M14K™ Processor Family" (MD00896) for more information.

Register ExcCode Value:
Prot (Cause Code 29)

Additional State Saved:
MPU Config Register, Triggered Field
MPU StatusN Register, Cause* Fields

Entry Vector Used

General exception vector (offset 0x180)

6.8.11 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:

None
Entry Vector Used:
Debug exception vector

6.8.12 Execution Exception — System Call

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A sys-
tem call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 137



Exceptions and Interrupts in the microAptivi™™ UC Core

Entry Vector Used:

General exception vector (offset 0x180)

6.8.13 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:
Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.14 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed.
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:
RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.15 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of
the following:

* acorresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

*  CPO instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:
CpU

138 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.8 Exception Descriptions

Additional State Saved:

Table 6.13 Register States on a Coprocessor Unusable Exception

Register State Value

Causecg Unit number of the coprocessor being referenced

Entry Vector Used:

General exception vector (offset 0x180)

6.8.16 Execution Exception — CorExtend Unusable

The CorExtend unusable exception is one of the execution exceptions. All of these exceptions have the same priority.
A CorExtend Unusable exception occurs when an attempt is made to execute a CorExtend instruction when
Statuscgg is cleared. It is implementation-dependent whether this functionality is supported. Generally, the function-
ality will only be supported if a CorExtend block contains local destination registers

Cause Register ExcCode Value:
CEU

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.17 Execution Exception — DSP Module State Disabled

The DSP Module State Disabled exception is an execution exception. It occurs when an attempt is made to execute a
DSP Module instruction when the MX bit in the Status register is not set. This allows an OS to do “lazy” context
switching.

Cause Register ExcCode Value:
DSPDis

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)
6.8.18 Execution Exception — Coprocessor 2 Exception

The Coprocessor 2 exception is one of the execution exceptions. All of these exceptions have the same priority. A
Coprocessor 2 exception occurs when a valid Coprocessor 2 instruction cause a general exception in the Coprocessor
2.

Cause Register ExcCode Value:
C2E

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 139



Exceptions and Interrupts in the microAptivi™™ UC Core

140

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be saved in a
Coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

6.8.19 Execution Exception — Implementation-Specific 1 Exception

The Implementation-Specific 1 exception is one of the execution exceptions. All of these exceptions have the same
priority. An implementation-specific 1 exception occurs when a valid coprocessor 2 instruction cause an implementa-
tion-specific 1 exception in the Coprocessor 2.

Cause Register ExcCode Value:
IS1

Additional State Saved:

Depending on the coprocessor 2 implementation, additional state information of the exception can be saved in a
coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

6.8.20 Execution Exception — Integer Overflow

The integer overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:
Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.21 Execution Exception — Trap

The trap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap excep-
tion occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:
Tr

Additional State Saved:

None

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



6.9 Exception Handling and Servicing Flowcharts

Entry Vector Used:

General exception vector (offset 0x180)

6.8.22 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception
has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the
debug handler.

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.23 Complex Break Exception

A complex data break exception occurs when the complex hardware breakpoint detects an enabled breakpoint. Com-
plex breaks are taken imprecisely—the instruction that actually caused the exception is allowed to complete and the
DEPC register and DBD bit in the Debug register point to a following instruction.

Debug Register Debug Status Bit Set:
DIBImpr, DDBLImpr, and/or DDBSImpr

Additional State Saved:
Debug2 fields indicate which type(s) of complex breakpoints were detected.

Entry Vector Used:

Debug exception vector
6.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:
*  General exceptions and their exception handler
*  Reset, soft reset and NMI exceptions, and a guideline to their handler

*  Debug exceptions

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 141



Exceptions and Interrupts in the microAptiv™™ UC Core

Figure 6.3 General Exception Handler (HW)

Exceptions other than Reset, Soft Reset, NMI, EJTag Debug and cache error, or first-level TLB miss.
Note: Interrupts can be masked by IE or IMs and Watch is masked if EXL =1

Comments

BadVA is set only for AAEL/S
Set Cause EXCCode,CE exceptions. Note: not set if it is a Bus
BadVA « VA Error

Check if exception within
another exception =1
Yes No
Instr.in Br.Dly.
Slot? '
EPC « (PC - 4) EPC « PC
CauseBD « 1 Causegp < 0
EXL « 1 -
Processor forced to Kemel Mode
&interrupt disabled
=0 (normal) =1 (bootstrap)

Y Y

PC « 0x8000_0000 + 180 PC « 0xBFCO0_0200 + 180
(unmapped, cached) (unmapped, uncached)

P
Vl‘

To General Exception Servicing Guidelines

142 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



6.9 Exception Handling and Servicing Flowcharts

Figure 6.4 General Exception Servicing Guidelines (SW)

Comments
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
MFCO - * Only Reset, Soft Reset, NMI exceptions possible.
EPC, Status, Cause <
|
MTCO -
Set Status bits: (Optional - only to enable Interrupts while keeping Kemel
UM « 0, EXL <0,
IE1 Mode)

Check Cause value & Jump to

appropriate Service Code After EXL=0, all exceptions allowed.

(except interrupt if masked by IE)

Service Code
Y
EXL=1
MTCO -
EPC,STATUS
Y * ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction whichis in
ERET the ERET’s branch delay slot
*PC« EPC;EXL«0
*LLbit« 0

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 143



Exceptions and Interrupts in the microAptiv™™ UC Core

Figure 6.5 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

Reset Exception

Config < Reset state
= Soft Reset or NMI Exception Status:
= 5 RP « 0
L BEV « 1 BEV < 1
o TS«0 TS« 0
E— SR« 1/0 SR« 0
c NMI « 0/1 NMI « 0
:(E“ ERL « 1 ERL « 1
c
o
a
)
o
P4
L
=
=z
o3 >
—
L)
7]
)
o EmorEPC « PC
=
3]
w
@
o PC « 0xBFC0_0000
o

(=2
£
K]
2
3
s
2z ,
22 /
- £ =0
) Q
e
[ NMI Service Code Status.SR
o2
%‘ 0]
»n -1
g Y
8 ERET Soft Reset Service Code Reset Service Code
4
(Optional)

144 MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



Chapter 7

CPO0 Registers of the microAptivi™ UC Core

The System Control Coprocessor (CP0O) provides the register interface to the microAptiv UC processor core for the
support of memory management, address translation, exception handling, and other privileged operations. Each CP0
register is identified by a Register Number, from 0 through 31, and a Select Number that is used as the value in thesel
field of the MFCO and MTCO instructions. For instance, the EBase register is Register Number 15, Select 1.

After updating a CPO register, there is a hazard period of zero or more instructions from the update by the MTCO
instruction until the update has taken effect in the core. For a detailed description of CP0 hazards, refer to Section
2.12 “Hazards”.

This chapter contains the following sections:

* Section 7.1 “CP0 Register Summary”

*  Section 7.2 “CP0 Register Descriptions”

The EJTAG registers are described in Chapter 10, “EJTAG Debug Support in the microAptivi™ UC Core” on
page 212.

7.1 CPO Register Summary

Table 7.1 lists the CPO registers in numerical order. Individual registers are described in Section 7.2 “CPO Register
Descriptions”.

Table 7.1 CP0 Registers

Register| Select

Number | Number| Register Name Function
0-3 Reserved Reserved in the microAptiv UC core
4 2 UserLocal User information that can be written by privileged software and
read via RDHWAR register 29
5-6 Reserved Reserved in the microAptiv UC core
7 0 HWREna Enables access via the RDHWR instruction to selected hardware
registers in non-privileged mode
8 0 BadVAdadr! Reports the address for the most recent address-related exception
1 Badlnstr Reports the instruction that caused the most recent exception
2 BadlnstrP Reports the branch instruction if a delay slot caused the most
recent exception
9 0 Count! Processor cycle count
10 0 Reserved Reserved in the microAptiv UC core

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 145



CPO Registers of the microAptivi™ UC Core

146

Table 7.1 CP0 Registers (Continued)

Register | Select
Number | Number| Register Name Function
11 0 Compare! Timer interrupt control
12 0 Status Processor status and control
1 IntCtl Interrupt system status and control
2 SRSCtl Shadow Register Sets status and control
3 SRSMap1 Shadow set IPL mapping
4 View_IPL Contiguous view of IM and IPL fields
5 SRSMAP2 Shadow set IPL mapping
13 0 Cause' Cause of last exception
4 View_RIPL
5 NestedExc
14 0 EPC! Program counter at last exception
2 | NestedEPc
15 0 PRId/ Processor identification and revision; exception base address;
1 EBase Common Device Memory Map Base register
2 CDMMBase
16 0 Config Configuration registers
1 Config1
2 Config2
3 Config3
4 Config4
5 Configs
7 Config7
17-22 Reserved Reserved in the microAptiv UC core
23 0 Debug EJTAG Debug register
1 TraceControl EJTAG Trace Control register
2 TraceControl2 EJTAG Trace Control register2
3 UserTraceData1 EJTAG User Trace Datal register
4 TraceBPC? EJTAG Trace Breakpoint Register
6 Debug2 EJTAG Debug register 2
24 0 DEPC? Program counter at last debug exception
3 UserTraceData2 EJTAG User Trace Data2 register
25 0 PerfCtlo Performance counter 0 control
1 PerfCnt0 Performance counter 0
2 PerfCtl1 Performance counter 1control
3 PerfCnt1 Performance counter 1
26 0 ErrCtl Software parity check enable
27 0 CacheErr Records information about SRAM parity errors
28-29 Reserved Reserved in the microAptiv UC core
30 0 ErrorEPC! Program counter at last error
31 0 DeSAVE? Debug handler scratchpad register
2 KScratch1 Scratch Register for Kernel Mode
3 Kscratch2 Scratch Register for Kernel Mode

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.1 CP0 Registers (Continued)

Register
Number

Select
Number

Register Name

Function

1. Registers used in exception processing
2. Registers used in debug

7.2 CPO Register Descriptions

This section contains descriptions of each CPO register.The registers are listed in numerical order, first by Register
Number, then by Select Number.

For each register described below, field descriptions include the read/write properties of the field (shown in Table
7.2) and the reset state of the field. .

Table 7.2 CPO Register R/W Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are vis-
ible by hardware reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.
R A field that is either static or is updated only by | A field to which the value written by software is
hardware. ignored by hardware. Software may write any
If the Reset State of this field is either “0” or value to this field without affecting hardware
“Preset”, hardware initializes this field to zero | behavior. Software reads of this field return the
or to the appropriate state, respectively, on pow- | last value updated by hardware.
erup. If the Reset State of this field is “Undefined,”
If the Reset State of this field is “Undefined”, software reads of this field result in an UNPRE-
hardware updates this field only under those DICTABLE value except after a hardware
conditions specified in the description of the update done under the conditions specified in
field. the description of the field.
w A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.
0 A field that hardware does not update, and for | A field to which the value written by software
which hardware can assume a zero value. must be zero. Software writes of non-zero val-
ues to this field may result in UNDEFINED
behavior of the hardware. Software reads of this
field return zero as long as all previous software
writes are zero.
If the Reset State of this field is “Undefined,”
software must write this field with zero before it
is guaranteed to read as zero.

7.2.1 UserLocal Register (CP0 Register 4, Select 2)

The UserLocal register is a read-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

147



CPO Registers of the microAptivi™ UC Core

Figure 7.1 shows the format of the UserLocal register; Table 7.3 describes the UserLocal register fields.

Figure 7.1 UserLocal Register Format
31 0

UserLocal

Table 7.3 UserLocal Register Field Descriptions

Fields
Read /
Name Bit(s) Description Write Reset State
UserLocal 31:0 This field contains software information that is not interpreted by R/W Undefined
hardware.

Programming Notes
Privileged software may write this register with arbitrary information and make it accessible to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a 1 to enable

unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer to a
thread-specific storage block that is obtained via the RDHWR register.

7.2.2 HWREna Register (CP0 Register 7, Select 0)

The HWREnha register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction.

Figure 7.2 shows the format of the HWREna Register; Table 7.4 describes the HWREna register fields.

Figure 7.2 HWREna Register Format
31 30 29 28 4 3 0

0 |ULR 0 Mask

Table 7.4 HWREna Register Field Descriptions

Fields
Name Bits Description Read/Write | Reset State
0 31:30 Must be written with zero; returns zero on read 0 0
0 28:4 Must be written with zero; returns zero on read 0 0
ULR 29 User Local Register. This register provides read R/W 0
access to the coprocessor 0 UserLocal register. In
some operating environments, the UserLocal regis-
ter is a pointer to a thread-specific storage block.

148 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.4 HWREna Register Field Descriptions (Continued)

Fields

Name Bits Description Read/Write | Reset State

Mask 3:0 Each bit in this field enables access by the RDHWR R/W 0
instruction to a particular hardware register (which
may not be an actual register). If bit ‘n’ in this field is
a 1, access is enabled to hardware register ‘n’. If bit
‘n’ of this field is a 0, access is disabled.

See the RDHWR instruction for a list of valid hard-
ware registers.

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In
doing so, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to provide direct access tothe Count
register, access to that register may be individually disabled and the return value can be virtualized by the operating
system.

7.2.3 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is a read-only register that captures the most recent virtual address that caused the following
exception:

e Address error (AdEL or AdES)
The BadVAddr register does not capture address information for bus errors, because they are not addressing errors.
Figure 7.3 BadVAddr Register Format

31 0

BadVAddr

Table 7.5 BadVAddr Register Field Description

Fields
Name Bits Description Read/Write | Reset State
BadVAddr 31:0 Bad virtual address. R Undefined

7.2.4 Badlnstr Register (CP0 Register 8, Select 1)

The Badlnstrregister is an optional read-only register that captures the most recent instruction that caused one of the
following exceptions:

*  Instruction Validity
Coprocessor Unusable, Reserved Instruction

*  Execution Exception

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 149



CPO Registers of the microAptivi™ UC Core

150

31

Integer Overflow, Trap, System Call, Breakpoint, Floating-point, Coprocessor 2 exception
e Addressing

Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified
The Badinstrregister is provided to allow acceleration of instruction emulation. The Badlnstr register is only set by
exceptions that are synchronous to an instruction. The Badlnstr register is not set by Interrupts or by NMI,

Machine check, Bus Error, Cache Error, Watch, or EJTAG exceptions.

When a synchronous exception occurs for which there is no valid instruction word (for example TLB Refill - Instruc-
tion Fetch), the value stored in Badinstris UNPREDICTABLE.

Presence of the Badinstr register is indicated by the Config3g,bit. The Badinstr register is instantiated per-VPE in an
MT ASE processor.

Figure 7.4 shows the proposed format of the Badinstr register; Table 7.6 describes the Badinstr register fields.

Figure 7.4 Badinstr Register Format

Badlnstr

Table 7.6 BadlInstr Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
BadlInstr 31:0 Faulting instruction word. R Undefined

Instruction words smaller than 32 bits are placed in bits
15:0, with bits 31:16 containing zero.

7.2.5 BadInstrP Register (CP0 Register 8, Select 2)

The BadlnstrP register is an optional register that is used in conjunction with the Badlnstr register. The BadinstrP reg-
ister contains the prior branch instruction when the faulting instruction is in a branch delay slot.

The BadinstrP register is updated for these exceptions:
*  Instruction Validity
Coprocessor Unusable, Reserved Instruction
*  Execution Exception
Integer Overflow, Trap, System Call, Breakpoint, Floating-point, Coprocessor 2 exception
e Addressing

Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

The BadlnstrP register is provided to allow acceleration of instruction emulation. The BadinstrP register is only set by
exceptions that are synchronous to an instruction. The BadlinstrP register is not set by Interrupts or by NMI, Machine
check, Bus Error, Cache Error, Watch, or EJTAG exceptions. When a synchronous exception occurs, and the faulting
instruction is not in a branch delay slot, then the value stored in BadiInstrP is UNPREDICTABLE.

Presence of the BadinstrP register is indicated by the Config3gp bit. The BadinstrP register is instantiated per-VPE in
an MT ASE processor.

Figure 7.5 shows the proposed format of the BadinstrP register; Table 7.7 describes the BadlnstrP register fields.

Figure 7.5 BadlnstrP Register Format
31 0
BadInstrP

Table 7.7 BadinstrP Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
BadInstrP 31:0 Prior branch instruction. R Undefined

Instruction words smaller than 32 bits are placed in bits
15:0, with bits 31:16 containing zero.

7.2.6 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The counter increments every other clock if the DC bit in the
Cause register is 0.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor is in debug mode.

Figure 7.6 Count Register Format

Count

Table 7.8 Count Register Field Description

Fields
Name Bits Description Read/Write | Reset State
Count 31:0 Interval counter. R/W Undefined

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 151



CPO Registers of the microAptivi™ UC Core

7.2.7 Compare Register (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The timer interrupt is an output of the cores. The Compare register maintains a stable value and does not change on
its own.

When the value of the Count register equals the value of the Compare register, the SI_TimerInt pin is asserted. This
pin will remain asserted until the Compare register is written. The SI_TimerInt pin can be fed back into the core on
one of the interrupt pins to generate an interrupt. However, this is no longer needed as the core will internally route
the interrupt to the IP number set by the IntCtl.IPTI field.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare register
is write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

Figure 7.7 Compare Register Format

31 0

Compare

Table 7.9 Compare Register Field Description

Fields
Name Bit(s) Description Read/Write | Reset State
Compare 31:0 Interval count compare value. R/W Undefined

7.2.8 Status Register (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to

5.2 “Modes of Operation” on page 103 for a discussion of operating modes, and 6.3 “Interrupts” on page 115 for a
discussion of interrupt modes.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

e IE=1

e EXL=0
* ERL=0
« DM=0

If these conditions are met, then the settings of the /M and /E bits enable the interrupts.

Operating Modes: If the DM bit in the Debug register is 1, then the processor is in debug mode; otherwise the pro-
cessor is in either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode:

e Usermode: UM=1, EXL=0,and ERL=10

152 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Kernel mode: UM=0,0or EXL=1, 0or ERL=1

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any coprocessor is unus-
able, then an instruction that accesses it generates an exception.

Figure 7.8 shows the format of the Status register; Table 7.10 describes the Status register fields.

Figure 7.8 Status Register Format

31 28 27 26 25 24 23 22 21 20 19 18 17 16 10 9 8 7 6 5 4 3 2 1 0
CU3..CUO |RP|FR| RE | MX| R |BEV|TS|SR|NMI/IM9| CEE IM8..IM2 IM1..IMO R UM| R [ERL|EXL| IE
IPL IPL
Table 7.10 Status Register Field Descriptions
Fields
Name Bits Description Read/Write | Reset State
CuU3 31 Controls access to coprocessor 3. COP3 is not supported. R 0
This bit cannot be written and will read as 0.
Ccu2 30 Controls access to coprocessor 2. This bit can only be writ- R/W 0
ten if coprocessor is attached to the COP2 interface. (C2
bit in Configl is set). This bit will read as 0 if no coproces-
sor is present.
CU1 29 Controls access to coprocessor 1. This bit can only be R/W 0
written if the FPU is configured. This bit will read as 0 if
the FPU is not present.
Cuo0 28 Controls access to coprocessor 0: R/W Undefined
Encoding Meaning
0 Access not allowed
1 Access allowed
Coprocessor 0 is always usable when the processor is run-
ning in kernel mode, independent of the state of the CUO
bit.
RP 27 Enables reduced power mode. The state of the RP bit is R/W 0 for Cold
available on the external core interface as the SI_RP sig- Reset only.
nal.
MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 153




CPO Registers of the microAptivi™ UC Core

Table 7.10 Status Register Field Descriptions (Continued)

Fields

Name Bits Description Read/Write | Reset State

FR 26 This bit is used to control the floating-point register mode R/W 0
for 64-bit floating-point units:

Encoding Meaning

0 Floating-point registers can contain
any 32-bit data type. 64-bit data types
are stored in even-odd pairs of regis-
ters

1 Floating-point registers can contain
any data type

This bit must be ignored on write and read as zero under
the following conditions:

» No floating-point unit is implementation

* 64-bit floating-point unit is not implemented.

RE 25 Used to enable reverse-endian memory references while R/W Undefined
the processor is running in user mode:

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianness

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

MX 24 MIPS DSP Extension. Enables access to DSP Module R/'W 0
resources:

Encoding Meaning

0 Access not allowed

1 Access allowed

An attempt to execute any DSP Module instruction before
this bit has been set to 1 will cause a DSP State Disabled
exception. The state of this bit is reflected in
Config3pspp

R 23 Reserved. This field is ignored on writes and reads as 0. R 0

BEV 22 Controls the location of exception vectors: R/W 1

Encoding Meaning

0 Normal
1 Bootstrap

TS 21 TLB shutdown.Because the microAptiv UC core does not R 0
contain a TLB, this bit is ignored on writes and reads as 0.

154 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.10 Status Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write | Reset State
SR 20 Indicates that the entry through the reset exception vector R/W 1 for Soft
was due to a Soft Reset: Reset; 0 other-
- p wise
Encoding Meaning
0 Not Soft Reset (NMI or Reset)
1 Soft Reset
Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.
NMI 19 Indicates that the entry through the reset exception vector R/W 1 for NMIL; 0
was due to an NMI: otherwise
Encoding Meaning
0 Not NMI (Soft Reset or Reset)
1 NMI

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

CEE 17 CorExtend Enable: Implementation-dependent. If CorEx- R/W Undefined
tend block indicates that this bit should be used, any
attempt to execute a CorExtend instruction with this bit
cleared will result in a CorExtend Unusable exception.
This bit is reserved if CorExtend is not present.

IM9:IM2 18, | Interrupt Mask: Controls the enabling of each of the hard- R/W Undefined for
16:10 | ware interrupts. Referto 6.3 “Interrupts” on page 115 fora IM7:1M2
complete discussion of enabled interrupts.

0 for IM9:IM8

Encoding Meaning
0 Interrupt request disabled
1 Interrupt request enabled

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3ygic= 1),

these bits have a different meaning and are interpreted as
the /PL field, described below.

IPL 18, Interrupt Priority Level. R/W Undefined for
16:10 | In implementations of Release 2 of the Architecture in IPL15:1PL10
which EIC interrupt mode is enabled (Config3yg;c= 1),
this field is the encoded (0:255) value of the current IPL. 0 for
An interrupt will be signaled only if the requested IPL is IPL18:IPL17

higher than this value.
If EIC interrupt mode is not enabled (Config3y/g;c = 0),

these bits have a different meaning and are interpreted as
the IM7..IM2 bits, described above.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 155



CPO Registers of the microAptivi™ UC Core

156

Table 7.10 Status Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset State

IM1:IMO

9:8

Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to Section 6.3 “Interrupts”for a
complete discussion of enabled interrupts.

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled, these bits are writ-
able, but have no effect on the interrupt system.

R/W

Undefined

7:5

Reserved. This field is ignored on writes and reads as 0.

0

UM

This bit denotes the base operating mode of the processor.
See Section 5.2 “Modes of Operation” for a full discussion
of operating modes. The encoding of this bit is:

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Note that the processor can also be in kernel mode if ERL
or EXL is set, regardless of the state of the UM bit.

R/W

Undefined

This bit is reserved. This bit is ignored on writes and reads
as zero.

ERL

Error Level; Set by the processor when a Reset, Soft Reset,
NMI or Cache Error exception are taken.

Encoding

Meaning

0

Normal level

1

Error level

When ERL is set:

The processor is running in kernel mode
Interrupts are disabled

* The ERET instruction will use the return address held in
ErrorEPC instead of EPC

« The lower 22% bytes of kuseg are treated as an unmapped

and uncached region. See Chapter 5, “Memory
Management of the microAptivi™ UC Core” on

page 102. This allows main memory to be accessed in
the presence of cache errors. The operation of the pro-
cessor is UNDEFINED if the ERL bit is set while the
processor is executing instructions from kuseg.

R/W

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.10 Status Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset State

EXL

1

Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, or NMI exceptions is taken.

Encoding

Meaning

0

Normal level

1

Exception level

R/W

Undefined

When EXL is set:

» The processor is running in Kernel Mode

* Interrupts are disabled.

» EPC, Causegp and SRSCtl (implementations of
Release 2 of the Architecture only) will not be updated if
another exception is taken

1IE 0 Interrupt Enable: Acts as the master enable for software R/W Undefined

and hardware interrupts:

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled

In Release 2 of the Architecture, this bit may be modified
separately via the DI and EI instructions.

7.2.9 IntCtl Register (CPO Register 12, Select 1)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure 7.9 shows the format of the IntCtl register; Table 7.11 describes the IntCtl register fields.

Figure 7.9 IntCtl Register Format

31 29 28 26 25 23 22 21 20 16 15 14 13 12 10 9 5 4 0
IPTI IPPCI | IPFDC |PF| ICE StkD Clr | ape | U 400 VS 0
cc EXL KStk

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 157



CPO Registers of the microAptivi™ UC Core

Table 7.11 IntCtl Register Field Descriptions

Fields
Reset

Name Bits Description Read/Write State

IPTI 31:29 | For Interrupt Compatibility and Vectored Interrupt R Externally
modes, this field specifies the IP number to which the Set

Timer Interrupt request is merged, and allows software
to determine whether to consider Causer; for a poten-

tial interrupt.

Hardware Interrupt
Encoding IP bit Source

2 HWO0
HW1
HW2
HW3
HwW4
HWS5

NN | B W

3
4
5
6
7

The value of this bit is set by the static input,
SI_IPTI[2:0]. This allows external logic to communi-
cate the specific SI_Int hardware interrupt pin to which
the SI_TimerInt signal is attached.

The value of this field is not meaningful if External
Interrupt Controller Mode is enabled. The external inter-
rupt controller is expected to provide this information
for that interrupt mode.

IPPCI 28:26 | For Interrupt Compatibility and Vectored Interrupt R 0
modes, this field specifies the IP number to which the
Performance Counter Interrupt request is merged, and
allows software to determine whether to consider
Causep for a potential interrupt.

Hardware Interrupt
Encoding| IP bit Source
2 2 HWO
3 3 HWI
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HWS5

The value of this bit is set by the static input,
S|_IPPCI[2:0]. This allows external logic to communi-
cate the specific SI_Int hardware interrupt pin to which
the SI_PClint signal is attached.

The value of this field is not meaningful if External
Interrupt Controller Mode is enabled. The external inter-
rupt controller is expected to provide this information
for that interrupt mode.

158 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.11 IntCtl Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset
State

IPFDC

25:23

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Fast Debug Channel Interrupt request is merged, and
allows software to determine whether to consider
Causerp for a potential interrupt.

Hardware

Encoding IP bit Interrupt Source

2 HWO0
HW1
HW2
HW3
HW4

HW5

NN | AW
NN | | B WD

The value of this field is UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

If EJTAG FDC is not implemented, this field returns
zero on read.

R

Preset or
Externally
Set

PF

22

Enables Vector Prefetching Feature.

Encoding Meaning

0 Vector Prefetching disabled.

1 Vector Prefetching enabled.

RW

ICE

21

For IRET instruction. Enables Interrupt Chaining.

Encoding Meaning

0 Interrupt Chaining disabled

1 Interrupt Chaining enabled

RW

StkDec

20:16

For Auto-Prologue feature. This is the number of 4-byte
words that is decremented from the value of GPR29

Encoding

Decrement
Amountin
Words

Decrement
Amountin
Bytes

0-3

3

12

Others

As encoded,
e.g. 0x5
means 5

words

4 * encoded
value
e.g. 0x5
means 20
bytes

RW

0x3

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

159



CPO Registers of the microAptivi™ UC Core

160

Table 7.11 IntCtl Register Field Descriptions (Continued)

Fields
Reset
Name Bits Description Read/Write State
CItEXL 15 For Auto-Prologue feature and IRET instruction. RW 0
If set, during Auto-Prologue and IRET interrupt chain-
ing, the KSU/ERL/EXL fields are cleared.
Encoding Meaning
0 Fields are not cleared by these opera-
tions.
1 Fields are cleared by these operations.
APE 14 Enables Auto-Prologue feature. RW 0
Encoding Meaning
0 Auto-Prologue disabled
1 Auto-Prologue enabled
UseKStk 13 Chooses which Stack to use during Interrupt Automated RW 0
Prologue.
Encoding Meaning
0 Copy $29 of the Previous SRS to the
Current SRS at the beginning of IAP.
This is used for Bare-Iron environ-
ments with only one stack.
1 Use $29 of the Current SRS at the
beginning of IAP.
This is used for environments where
there are separate User-mode and Ker-
nel mode stacks. In this case, $29 of
the SRS used during IAP must be
pre-initialized by software to hold the
Kernel mode stack pointer.
0 12:10 | Must be written as zero; returns zero on read. 0 0

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.11 IntCtl Register Field Descriptions (Continued)

Fields
Reset
Name Bits Description Read/Write State
VS 9:5 Vector Spacing. If vectored interrupts are implemented R/W 0
(as denoted by Config3/,or Config3ygic), this field
specifies the spacing between vectored interrupts.
Spacing
Spacing Between
Between Vectors
Encoding | Vectors (hex) (decimal)
16#00 16#000 0
16#01 16#020 32
16#02 16#040 64
16#04 16#080 128
16#08 16#100 256
16#10 16#200 512
All other values are reserved. The operation of the pro-
cessor is UNDEFINED if a reserved value is written to
this field.
0 4:0 Must be written as zero; returns zero on read. 0 0

7.2.10 SRSCtl Register (CP0O Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor. This register does not exist in imple-
mentations of the architecture prior to Release 2.

Figure 7.10 shows the format of the SRSCt/ register; Table 7.12 describes the SRSCH register fields.

Figure 7.10 SRSCtl Register Format

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0
0 0 0 0 0
00 HSS 00 00 EICSS 00 ESS 00 PSS 00 CSS
Table 7.12 SRSCtl Register Field Descriptions
Fields
Reset
Name Bits Description Read/Write State
0 31:30 | Must be written as zeros; returns zero on read. 0 0

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 161



CPO Registers of the microAptivi™ UC Core

162

Table 7.12 SRSCtl Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset
State

HSS

29:26

Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this proces-
sor. A value of zero in this field indicates that only the
normal GPRs are implemented.

Possible values of this field for the microAptiv UC pro-
cessor are:

Encoding

Meaning

0 One shadow set (normal GPR set) is
present.

1 Two shadow sets are present.

Four shadow sets are present.

7 Eight shadow sets are present

15 Sixteen shadow sets are present
2,4-6, 8-14 |Reserved

The value in this field also represents the highest value
that can be written to the ESS, EICSS, PSS, and CSS
fields of this register, or to any of the fields of the
SRSMap register. The operation of the processor is
UNDEFINED if a value larger than the one in this field
is written to any of these other fields.

R

Preset

25:22

Must be written as zeros; returns zero on read.

0

EICSS

21:18

EIC interrupt mode shadow set. If Config3\/gicis 1
(EIC interrupt mode is enabled), this field is loaded from
the external interrupt controller for each interrupt
request and is used in place of the SRSMap register to
select the current shadow set for the interrupt.

See Section 6.3.1 “Interrupt Modes” for a discussion of
EIC interrupt mode. If Config3\/gc is 0, this field must
be written as zero, and returns zero on read.

Undefined

17:16

Must be written as zeros; returns zero on read.

ESS

15:12

Exception Shadow Set. This field specifies the shadow
set to use on entry to Kernel Mode caused by any excep-
tion other than a vectored interrupt.

The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W

11:10

Must be written as zeros; returns zero on read.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.12 SRSCtl Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset
State

PSS

9:6

Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the next
paragraph, this field is copied from the CSS field when
an exception or interrupt occurs. An ERET instruction
copies this value back into the CSS field if Statusggy
=0.

This field is not updated on any exception which sets
Statusgpg to 1 (i.e., Reset, Soft Reset, NMI, cache
error), an entry into EITAG Debug mode, or any excep-
tion or interrupt that occurs with Statusgy; =1, or
Statusggy= 1. This field is notupdated on an exception
that occurs while Stfatusgg, = 1.

The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W

5:4

Must be written as zeros; returns zero on read.

CSS

3:0

Current Shadow Set. If GPR shadow registers are imple-
mented, this field is the number of the current GPR set.
With the exclusions noted in the next paragraph, this
field is updated with a new value on any interrupt or
exception, and restored from the PSS field on an ERET.
Table 7.13 describes the various sources from which the
CSS field is updated on an exception or interrupt.

This field is not updated on any exception which sets
Statusgpg to 1 (i.e., Reset, Soft Reset, NMI, cache
error), an entry into EITAG Debug mode, or any excep-
tion or interrupt that occurs with Statusgy; =1, or
Statusggy = 1. Neither is it updated on an ERET with
StatusERL =1or StatusBEV= 1. This field is not
updated on an exception that occurs while Statusgg, =
1.

The value of CSS can be changed directly by software
only by writing the PSS field and executing an ERET
instruction.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

163



CPO Registers of the microAptivi™ UC Core

164

7.2.11 SRSMap Register (CP0 Register 12, Select 3)

31

Table 7.13 Sources for new SRSCtlcgs on an Exception or Interrupt

Exception Type Condition SRSCtlcss Source Comment
Exception All SRSCtlggs
Non-Vectored Cause;,=0 SRSCtlggs Treat as exception
Interrupt
Vectored Interrupt Causej,=1 and SRSMapyectnum Source is internal map register.
Config3ygic= 0 and (for VECTNUM see Table 6.3)
CO”ﬁQ3VInt =1
Vectored EIC Inter- Causej =1 and SRSCtlgicss Source is external interrupt con-
rupt Conﬁg3VEIC =1 troller.

The SRSMap register contains 8, 4-bit fields that provide the mapping from a vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (Cause, = 0 or IntCtl,g = 0). In such cases, the shadow set number comes from

SRSCtlgss.
If SRSCtl5g is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlyss.

The SRSMap register contains the shadow register set numbers for vector numbers 7:0. The same shadow set number
can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single shadow
register set number.

Figure 7.11 shows the format of the SRSMap register; Table 7.14 describes the SRSMap register fields.

Figure 7.11 SRSMap Register Format
28 27 24 23 20 19 16 15 12 1 8 7 4 3 0

SSv7 SSVeé SSV5 SSv4 SSV3 SSv2 SSV1 SSVO0

Table 7.14 SRSMap Register Field Descriptions

Fields
Name Bits Description Read/Write | Reset State
SSV7 31:28 | Shadow register set number for Vector Number 7 R/W 0
SSve6 27:24 | Shadow register set number for Vector Number 6 R/W 0
SSV5 23:20 | Shadow register set number for Vector Number 5 R/W 0
SSv4 19:16 | Shadow register set number for Vector Number 4 R/W 0
SSV3 15:12 | Shadow register set number for Vector Number 3 R/W 0
SSv2 11:8 Shadow register set number for Vector Number 2 R/W 0
SSV1 7:4 Shadow register set number for Vector Number 1 R/W 0
SSVo 3:0 Shadow register set number for Vector Number 0 R/W 0

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

7.2.12 View_IPL Register (CP0 Register 12, Select 4)

Figure 7-12 View_IPL Register Format
31 10 9 0

IPL

Table 7.15 View_IPL Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
M 9:0 Interrupt Mask. R/W Undefined for
If EIC interrupt mode is not enabled, controls which inter- IM7:IM2
rupts are enabled.
0 for IM9:IM8
IPL 9:2 Interrupt Priority Level. R/'W Undefined
If EIC interrupt mode is enabled, this field is the encoded
value of the current /PL.
0 31:10,1:0 | Must be written as zero; returns zero on read. 0 0

This register gives read and write access to the /M or IPL field that is also available in the Status Register. The use of
this register allows the Interrupt Mask or the Priority Level to be read/written without extracting/inserting that bit
field from/to the Status Register.

The IPL field might be located in non-contiguous bits within the Status Register. All of the /PL bits are presented as a
contiguous field within this register.

7.2.13 SRSMap2 Register (CP0 Register 12, Select 5)

The SRSMap2 register contains 2 4-bit fields that provide the mapping from an vector number to the shadow set
number to use when servicing such an interrupt. The values from this register are not used for a non-interrupt excep-
tion, or a non-vectored interrupt (Cause;, = 0 or IntCtl,5 = 0). In such cases, the shadow set number comes from

SRSCtlgss.
If SRSCtlgg is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlyss.

The SRSMap2 register contains the shadow register set numbers for vector numbers 9:8. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single

shadow register set number.

Figure 7-13 shows the format of the SRSMap2 register; Table 7.16 describes the SRSMap2 register fields.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 165



CPO Registers of the microAptivi™ UC Core

Figure 7-13 SRSMap Register Format
31 8 7 4 3 0

0 SSV9 SSV8

Table 7.16 SRSMap Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
0 31:8 Must be written as zero; returns zero on read. R 0
SSV9 7:4 Shadow register set number for Vector Number 9 R/W 0
SSV8 3:0 Shadow register set number for Vector Number 8 R/W 0

7.2.14 Cause Register (CP0 Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the /P1..0, DC,
1V, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which /P7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 7.14 shows the format of the Cause register; Table 7.17 describes the Cause register fields.

Figure 7.14 Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 20 18 17 107 9 8 7 6 2 1 0
FD
BD|T] CE |DCPCI|IC|AP| IV | WP 1 0 1P9..1P2 1P1..IPO| O Exc Code 0
RIPL

Table 7.17 Cause Register Field Descriptions

Fields
Name Bits Description Read/Write | Reset State
BD 31 Indicates whether the last exception taken occurred in a R Undefined
branch delay slot:
Encoding Meaning
0 Not in delay slot
1 In delay slot

The processor updates BD only if Statusgy; was zero
when the exception occurred.

166 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



Table 7.17 Cause Register Field Descriptions (Continued)

7.2 CPO Register Descriptions

Fields

Name Bits

Description

Read/Write

Reset State

TI 30

Timer Interrupt. This bit denotes whether a timer inter-
rupt is pending (analogous to the /P bits for other inter-
rupt types):

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

The state of the T/bit is available on the external core
interface as the SI_Timerlnt signal

R

Undefined

CE 29:28

Coprocessor unit number referenced when a Coproces-
sor Unusable exception is taken. This field is loaded by
hardware on every exception, but is UNPREDICT-
ABLE for all exceptions except for Coprocessor Unus-
able.

Undefined

DC 27

Disable Count register. In some power-sensitive appli-
cations, the Count register is not used and is the source
of meaningful power dissipation. This bit allows the
Count register to be stopped in such situations.

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

R/W

PCI 26

Performance Counter Interrupt. In an implementation of
Release 2 of the Architecture, this bit denotes whether a
performance counter interrupt is pending (analogous to
the IP bits for other interrupt types):

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

The state of the PClI bit is available on the external
microAptiv UC interface as the SI_PClnt signal.

IC 25

Indicates if Interrupt Chaining occurred on the last IRET
instruction.

Encoding Meaning

0 Interrupt Chaining did not happen on
last IRET

1 Interrupt Chaining occurred during
last IRET

Undefined

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

167



CPO Registers of the microAptivi™ UC Core

168

Table 7.17 Cause Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset State

AP

24

Indicates whether an exception occurred during Inter-
rupt Auto-Prologue.

Encoding Meaning

0 Exception did not occur during
Auto-Prologue operation.

1 Exception occurred during Auto-Pro-
logue operation.

R

Undefined

v

23

Indicates whether an interrupt exception uses the gen-
eral exception vector or a special interrupt vector:

Encoding Meaning

0 Use the general exception vector
(16#180)

1 Use the special interrupt vector
(16#200)

In implementations of Release 2 of the architecture, if
the Cause)y is 1 and Statusggy is 0, the special inter-
rupt vector represents the base of the vectored interrupt
table.

R/W

Undefined

WP

22

Indicates that a watch exception was deferred because
Statusgy; or Statusgg; had a value of 1 at the time the
watch exception was detected. This bit indicates that the
watch exception was deferred, and it causes the excep-
tion to be initiated when Statusgy; and Statusgg, are
both zero. As such, software must clear this bitas part of
the watch exception handler to prevent a watch excep-
tion loop.

Software should not write a 1 to this bit when itsvalue is
0, thereby causing a 0-to-1 transition. If such atransition
is caused by software, it is UNPREDICTABLE
whether hardware ignores the write, accepts the write
with no side effects, or accepts the write and initiates a
watch exception when Statusgy; and Statusgg; are
both zero.

Because watch registers are not implemented on the
microAptiv UC core, this bit is ignored on writes and
reads as zero.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




Table 7.17 Cause Register Field Descriptions (Continued)

7.2 CPO Register Descriptions

Fields

Name

Bits

Description

Read/Write

Reset State

FDCI

21

Fast Debug Channel Interrupt. This bit denotes whether
a FDC Interrupt is pending (analogous to the /P bits for
other interrupt types):

Encoding Meaning

0 No Fast Debug Channel interrupt is
pending

1 Fast Debug Channel interrupt is pend-
ing

R

Undefined

IP9:1P2

17:10

Indicates an interrupt is pending:

Bit Name Meaning

17 1P9 Hardware Interrupt 7

16 1P8 Hardware Interrupt 6

15 1P7 Hardware interrupt 5

14 1P6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 1P4 Hardware interrupt 2

11 1P3 Hardware interrupt 1

10 P2 Hardware interrupt 0

In implementations of Release 1 of the Architecture,
timer and performance counter interrupts are combined
in an implementation-dependent way with hardware
interrupt 5.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is not enabled (Config3ygjc
= 0), timer and performance counter interrupts are com-
bined in an implementation-dependent way with any
hardware interrupt. If EIC interrupt mode is enabled
(Config3ygic= 1), these bits have a different meaning,
and are interpreted as the R/PL field, described below.

Undefined
for IP7:1P2

0 for IP9:1P8

RIPL

17:10

Requested Interrupt Priority Level.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3yg;c =
1), this field is the encoded (0..255) value of the
requested interrupt. A value of zero indicates that no
interrupt is requested.

If EIC interrupt mode is not enabled (Config3yg;c = 0),
these bits have a different meaning and are interpreted
as the IP7..IP2 bits, described above.

Undefined for
bits 15:10

0 for bits 17:16

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

169



CPO Registers of the microAptivi™ UC Core

Table 7.17 Cause Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write | Reset State
IP1:1PO 9:8 Controls the request for software interrupts: R/W Undefined
Bit Name Meaning
9 IP1  |Request software interrupt 1
8 IPO | Request software interrupt 0
These bits are exported to an external interrupt control-
ler for prioritization in EIC interrupt mode with other
interrupt sources. The state of these bits is available on
the external core interface as the SI_SWInt[1:0] bus.
ExcCode 6:2 Exception code - see Table 7.18 R Undefined
0 20:18, 7, | Must be written as zero; returns zero on read. 0 0
1:0

Table 7.18 Cause Register ExcCode Field

Exception Code Value
Decimal Hexadecimal Mnemonic Description
0 16#00 Int Interrupt
1-3 16#01-16#03 - Reserved
4 16#04 AdEL Address error exception (load or instruction fetch)
5 16#05 AdES Address error exception (store)
6 16#06 IBE Bus error exception (instruction fetch)
7 16#07 DBE Bus error exception (data reference: load or store)
8 16#08 Sys Syscall exception
9 16#09 Bp Breakpoint exception
10 16#0a RI Reserved instruction exception
11 16#0b CpU Coprocessor Unusable exception
12 16#0c Ov Arithmetic Overflow exception
13 16#0d Tr Trap exception
14 16#0e - Reserved
15 16#0f FPE Floating-point exception
16 16#10 IS1 Implementation-Specific Exception 1 (COP2)
17 16#11 CEU CorExtend Unusable
18 16#12 C2E Coprocessor 2 exceptions
19-25 16#13-16#19 - Reserved
26 16#1a DSPDis DSP Module State Disabled exception
27-28 16#1b-16#1c - Reserved
29 16#1d MPU MPU Exception

170 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.18 Cause Register ExcCode Field (Continued)

Exception Code Value
Decimal Hexadecimal Mnemonic Description

30 16#le Parity Error | Parity error. In normal mode, a parity error exception has a dedicated
vector and the Cause register is not updated. If a parity error occurs
while in Debug Mode, this code is written to the Debugpexccode
field to indicate that re-entry to Debug Mode was caused by a parity
error.

31 16#1f - Reserved

7.2.15 View_RIPL Register (CP0 Register 13, Select 4)

This register gives read access to the /P or RIPL field that is also available in the Cause Register. The use of this reg-
ister allows the Interrupt Pending or the Requested Priority Level to be read without extracting that bit field from the

Cause Register.
Figure 7-15 View_RIPL Register Format
31 10 9 2 1 0
0 IP9..1P2 IP1|IPO
RIPL
Table 7.19 View_RIPL Register Field Descriptions
Fields
Name Bits Description Read / Write | Reset State
0 31:10 Must be written as zero; returns zero on read. 0 0
1P9:1P2 9:2 HW Interrupt Pending. R Undefined for
If EIC interrupt mode is not enabled, indicates which HW 1P7:1P2
interrupts are pending.
0 for IP9:IP8
RIPL 9:2 Interrupt Priority Level. R Undefined
If EIC interrupt mode is enabled, this field indicates the
Requested Priority Level of the pending interrupt.
IP1:1IPO 1:0 SW Interrupt Pending. R/W Undefined
If EIC interrupt mode is not enabled, controls which SW
interrupts are pending.

7.2.16 NestedExc (CPO Register 13, Select 5)

The Nested Exception (NestedExc) register is an optional read-only register containing the values of Statusgy; and
Statusgg, prior to acceptance of the current exception.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

171



CPO Registers of the microAptivi™ UC Core

31

This register is part of the Nested Fault feature. The existence of the register can be determined by reading the
Config5N,:EX,-3ts bit.

Figure 7-16 shows the format of the NestedExc register; Table 7.20 describes the NestedExc register fields.

Figure 7-16 NestedExc Register Format

0 ERL|EXL| 0

172

Table 7.20 NestedExc Register Field Descriptions

Fields

Read / Reset
Name Bits Description Write State

0 31:3 Reserved, read as 0. RO 0

ERL 2 Value of Statusgpg, prior to acceptance of current R Undefined
exception.

Updated by all exceptions that would set either
Statusgy; or Statusgpg, . Not updated by Debug excep-

tions.

EXL 1 Value of Statusgy; prior to acceptance of current R Undefined
exception.

Updated by exceptions which would update EPC if
Statusgy; is not set (MCheck, Interrupt, Address Error,
all TLB exceptions, Bus Error, CopUnusable, Reserved
Instruction, Overflow, Trap, Syscall, FPU, etc.) . For
these exception types, this register field is updated
regardless of the value of Statusgy; .

Not updated by exception types which updite ErrorEPC
- (Reset, Soft Reset, NMI, Cache Error). Not updated by
Debug exceptions.

0 0 Reserved, read as 0. RO 0

7.217 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

e The virtual address of the instruction that was the direct cause of the exception

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

¢ The virtual address of the immediately preceding branch or jump instruction, when the exception-causing
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status register is set;
however, the register can still be written via the MTCO instruction.

In processors that implement microMIPS, a read of the EPC register (via MFCO) returns the following value in the
destination GPR:

GPR[rt] « ExceptionPCy; ; || ISAMode,

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field and written to the
GPR.

Similarly, a write to the EPC register (via MTCO) takes the value from the GPR and distributes that value to the
exception PC and the /ISAMode field, as follows:

ExceptionPC « GPR[rtls; 1 || O
ISAMode « 2#0 || GPR[rtl,

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared, and the lower bit is loaded from the lower bit

of the GPR.
Figure 7.17 EPC Register Format
31 0
EPC
Table 7.21 EPC Register Field Description
Fields
Name Bit(s) Description Read/Write | Reset State
EPC 31:0 Exception Program Counter. R/W Undefined

7.2.18 NestedEPC (CPO Register 14, Select 2)

The Nested Exception Program Counter (NestedEPC) is an optional read/write register with the same behavior as the
EPC register, except that:

*  The NestedEPC register ignores the value of Statusgy; and is therefore updated on the occurrence of any excep-
tion, including nested exceptions.

*  The NestedEPC register is not used by the ERET/DERET/IRET instructions. To return to the address stored in
NestedEPC, software must copy the value of the NestedEPC register to the EPC register.

This register is part of the Nested Fault feature. The existence of the register can be determined by reading the
Config5NFEXxists bit.

Figure 7-16 shows the format of the NestedEPC register; Table 7.20 describes the NestedEPC register fields.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 173



CPO Registers of the microAptivi™ UC Core

Figure 7-18 NestedEPC Register Format

NestedEPC

Table 7.22 NestedEPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
NestedEPC :0 Nested Exception Program Counter R/W Undefined

Updated by exceptions which would update EPC if
Statusgy; is not set (MCheck, Interrupt, Address Error,
all TLB exceptions, Bus Error, CopUnusable, Reserved
Instruction, Overflow, Trap, Syscall, FPU, etc.) . For
these exception types, this register field is updated
regardless of the value of Statusgy; .

Not updated by exception types which updite ErrorEPC
i.e., Reset, Soft Reset, NMI, and Cache Error.
Not updated by Debug exceptions.

7.2.19 Processor ldentification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32-bit, read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 7.19 PRId Register Format

31 24 23 16 15 8 7 5 4 2 10

Company Opt Company ID Processor ID Revision

Table 7.23 PRId Register Field Descriptions

Fields

Name Bit(s) Description Read/Write Reset State

Company Opt | 31:24 | Company Option. Whatever name is specified by the SoC R Preset
builder who synthesizes the microAptiv UC core; refer to
your SoC manual. This field should be preset by the config
GUI with a number between 0x00 and 0x7F; higher values
(0x80-0xFF) are reserved by MIPS Technologies.

Company ID 23:16 Company Identifier. Identifies the company that designed R 1
or manufactured the processor. In the microAptiv UC this
field contains a value of 1 to indicate MIPS Technologies,
Inc.

174 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.23 PRId Register Field Descriptions (Continued)

Fields
Name Bit(s) Description Read/Write Reset State
Processor ID 15:8 Processor Identifier. Identifies the type of processor. This R 0x9D
field allows software to distinguish between the various
types of MIPS Technologies processors.
Revision 7:0 Processor Revision. Specifies the revision number of the R Preset

processor. This field allows software to distinguish
between different revisions of the same processor type.
This field contains the following three subfields:

Read/
Bits | Name Meaning Write | Reset
7:5 | Major |This number is R |Preset

Revision |increased on major
revisions of the pro-
cessor core.

4:2 | Minor |This number is R |Preset
Revision |increased on each
incremental revi-
sion of the proces-
sor and reset on
each new major
revision.

1:0 | Patch |Ifapatchismadeto| R | Preset
Level |modify an older
revision of the pro-
cessor, this field is
incremented.

7.2.20 EBase Register (CP0 Register 15, Select 1)

The EBase register is a read/write register containing the base address of the exception vectors used when Statusggy
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multiprocessor system.

The EBase register provides the ability for software to identify the specific processor within a multiprocessor system,
and allows the exception vectors for each processor to be different, especially in systems composed of heterogeneous
processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception vectors
when Statusggy is 0. The exception vector base address comes from the fixed defaults (see Section 6.5 “Exception
Vector Locations”) when Statusggy/is 1, or for any EJTAG Debug exception. The reset state of bits 31:12 of the EBase
register initialize the exception base register to 16#8000 . 0000, providing backward compatibility with Release 1
implementations.

Bits 31:30 of the EBase Register are fixed with the value 2#1 0 to force the exception base address to be in the kseg0
or ksegl unmapped virtual address segments.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 175




CPO Registers of the microAptivi™ UC Core

If the value of the exception base register is to be changed, this must be done with Statusgg), equal 1. The operation of
the processor is UNDEFINED if the Exception Base field is written with a different value when Statusggy is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectors to be placed at
any 4KByte page boundary. If vectored interrupts are used, a vector offset greater than 4KBytes can be generated. In
this case, bit 12 of the Exception Base field must be zero. The operation of the processor is UNDEFINED if software
writes bit 12 of the Exception Base field with a 1 and enables the use of a vectored interrupt whose offset is greater
than 4KBytes from the exception base address.

Figure 7.20 shows the format of the EBase Register; Table 7.24 describes the EBase register fields.

Figure 7.20 EBase Register Format
31 30 29 122 11 10 9 0

10 Exception Base 00 CPUNum

Table 7.24 EBase Register Field Descriptions

Fields
Name Bits Description Read/Write | Reset State
1 31 This bit is ignored on writes and returns one on reads. R 1
0 30 This bit is ignored on writes and returns zero on reads. R 0
Exception 29:12 In conjunction with bits 31:30, this field specifies the base R/W 0
Base address of the exception vectors when Statusggy is zero.
0 11:10 Must be written as zero; returns zero on reads. 0 0
CPUNum 9:0 This field specifies the number of the CPU in a multipro- R Externally Set
cessor system and can be used by software to distinguish a
particular processor from the others. The value in this field
is set by the SI_CPUNum[9:0] static input pins to the
core. In a single processor system, this value should be set
to zero.

7.2.21 CDMMBase Register (CP0 Register 15, Select 2)

The 36-bit physical base address for the Common Device Memory Map facility is defined by this register. This regis-
ter only exists if Config3cppmis set to one.

Figure 7.21 shows the format of the CDMMBase register, and Table 7.25 describes the register fields.

Figure 7.21 CDMMBase Register Format
31 1 10 9 8 0

CDMM_UPPER _ADDR EN| CI CDMMSize

176 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.25 CDMMBase Register Field Descriptions

Fields

Name

Bits

Description

Read/Write

Reset State

CDMM_UP
PER_ADDR

31:11

Bits 35:15 of the base physical address of the mem-
ory mapped registers.

The number of implemented physical address bits is
implementation-specific. For the unimplemented
address bits, writes are ignored and reads return zero.

R/W

Undefined

EN

10

Enables the CDMM region.

If this bit is cleared, memory requests to this address
region access regular system memory. If this bit is
set, memory requests to this region access the
CDMM logic

Encoding

0 CDMM Region is disabled.
1 CDMM Region is enabled.

Meaning

R/W

CI

If set to 1, this indicates that the first 64-byte Device
Register Block of the CDMM is reserved for addi-
tional registers that manage CDMM region behavior
and are not 10 device registers.

CDMMSize

8:0

This field represents the number of 64-byte Device
Register Blocks instantiated in the core.

Encoding
0 1 DRB
1 2 DRBs
2 3 DRBs

Meaning

511 512 DRBs

Preset

7.2.22 Config Register (CP0 Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset exception process, or are constant.Figure 7.22 shows the format of
the Config Register Format - Select 0, and Table 7.26 describes the register fields.

Figure 7.22 Config Register Format — Select 0

31 30 2827 25 24 23 22 21 20 19 17 16 15 14 13 12 10 9 7 6 3 2 0

M| K23 | KU 0 |UDI|SB MDU 0 DS |BE| AT AR MT 0 KO

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 177



CPO Registers of the microAptivi™ UC Core

178

Table 7.26 Config Register Field Descriptions

Fields

Name Bit(s)

Description

Read/Write

Reset State

M 31

This bit is hardwired to ‘1” to indicate the presence of the
Configl register.

R

1

K23 30:28

This field controls the cacheability of the kseg2 and kseg3
address segments in FM implementations.
Refer to Table 7.27 for the field encoding.

FM: R/'W

FM: 010

KU 27:25

This field controls the cacheability of the kuseg and useg
address segments in FM implementations.
Refer to Table 7.27 for the field encoding.

FM: R/'W

FM: 010

0 24:23

Must be written as 0. Returns zero on reads.

UDI 22

This bit indicates that CorExtend User Defined Instructions
have been implemented.

0 =No User Defined Instructions are implemented

1 = User Defined Instructions are implemented

Preset

SB 21

Indicates whether SimpleBE bus mode is enabled. Set via
SI_SimpleBE[0] input pin:

0 = No reserved byte enables on SRAM interface

1 = Only simple byte enables allowed on SRAM interface

Externally Set

MDU 20

This bit indicates the type of Multiply/Divide Unit present.
0 = Fast, high-performance MDU
1 = Iterative, area-efficient MDU

Preset

0 19:17

Must be written as 0. Returns zero on reads.

0

DS 16

Dual SRAM interface.
0: Unified instruction/data SRAM interface
1: Dual instruction/data SRAM interfaces

Preset

BE 15

Indicates the endian mode in which the processor is run-
ning. Set via SI_Endian input pin.

0: Little endian

1: Big endian

Externally Set

AT 14:13

Architecture type implemented by the processor. This field
is always 00 to indicate the MIPS32 architecture.

00

AR 12:10

Architecture revision level. This field is always 001 to indi-
cate MIPS32 Release 2.

0: Release 1

1: Release 2

2-7: Reserved

001

MT 9:7

MMU Type:
3: Fixed Mapping
0-2, 4-7: Reserved

Must be written as zeros; returns zeros on reads.

KO 2:0

Kseg0 coherency algorithm. Refer to Table 7.27 for the
field encoding.

R/W

010

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.27 Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute
2 Uncached.
3 Cached (Core treats as uncached, but passes attribute to the system for use with any exter-
nal caching mechanisms)

7.2.23 Config1 Register (CP0 Register 16, Select 1)

The Config1 register is an adjunct to the Config register and encodes additional information about capabilities present
on the core. All fields in the Config1 register are read-only.

Figure 7.23 Config1 Register Format — Select 1

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 10

M MMU Size IS IL IA DS DL DA |C2|MD|PC| WR |CA|EP|FP

Table 7.28 Config1 Register Field Descriptions — Select 1

Fields

Name Bit(s) Description Read/Write Reset State

M 31 This bit is hardwired to ‘1’ to indicate the presence of the R 1
Config2 register.

MMU Size 30:25 This field contains the number of entries in the TLB minus R 0
one.

IS 24:22 This field contains the number of instruction cache sets per R 0
way. Because the microAptiv UC core does not include
caches, this field is always read as 0.

IL 21:19 This field contains the instruction cache line size. Because R 0
the microAptiv UC core does not include caches, this field
is always read as 0.

1A 18:16 This field contains the level of instruction cache associativ- R 0
ity. Because the microAptiv UC core does not include
caches, this field is always read as 0.

DS 15:13 This field contains the number of data cache sets per way. R 0
Because the microAptiv UC core does not include caches,
this field is always read as 0.

DL 12:10 This field contains the data cache line size. Because the R 0
microAptiv UC core does not include caches, this field is
always read as 0.

DA 9:7 This field contains the type of set associativity for the data R 0
cache. Because the microAptiv UC core does not include
caches, this field is always read as 0.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 179



CPO Registers of the microAptivi™ UC Core

180

Table 7.28 Config1 Register Field Descriptions — Select 1 (Continued)

Fields
Name Bit(s) Description Read/Write Reset State

C2 6 Coprocessor 2 present. R Preset
0: No coprocessor is attached to the COP2 interface
1: A coprocessor is attached to the COP2 interface
If the Cop2 interface logic is not implemented, this bit will
read 0.

MD 5 MDMX implemented. This bit always reads as 0 because R 0
MDMX is not supported.

PC 4 Performance Counter registers implemented. R Preset
0: No Performance Counter registers are implemented
1: Performance Counter registers are implemented

WR 3 Watch registers implemented. R 0

0: No Watch registers are implemented

1: One or more Watch registers are implemented

This bit is always read as 0, because the microAptiv UC
core does not contain Watch registers.

CA 2 Code compression (MIPS16¢) implemented. R 0
0: MIPS16e is not implemented
1: MIPS16e is implemented

EP 1 EJTAG present: This bit is always set to indicate that the R 1
core implements EJTAG.

FP 0 FPU implemented. R Preset
0: No FPU

1: FPU is implemented

7.2.24 Config2 Register (CP0 Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilities information.
Config2 is allocated for showing the configuration of level 2/3 caches. These fields are reset to 0 because L2/L3
caches are not supported by the microAptiv UC core. All fields in the Config2 register are read-only.

Figure 7.24 Config2 Register Format — Select 2

31 30 0

Table 7.29 Config2 Register Field Descriptions — Select 1

Fields
Name Bit(s) Description Read/Write | Reset State
M 31 This bit is hardwired to ‘1’ to indicate the presence of the R 1
Config3 register.
0 30:0 These bits are reserved. R 0

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2.25 Config3 Register (CP0 Register 16, Select 3)

7.2 CPO Register Descriptions

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

Figure 7-25 shows the format of the Config3 register; Table 7.30 describes the Config3 register fields.

Figure 7-25 Config3 Register Format

31 30 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D
5 | MM
M 000000000 IPLW | MMAR [MCU| On | ISA | ULRI |RXI| P P 0 |ITL|LPA I n SP| M| 0 |[SM|TL
Exc 2 P clt M
P
Table 7.30 Config3 Register Field Descriptions
Fields
Name Bits Description Read/Write | Reset State
M 31 This bit is reserved to indicate that a Config4 register is present. R 1
0 30:23,9,2 | Must be written as zeros; returns zeros on read. 0 0
IPLW 22:21 Width of the StatUS/pL and CauseH,pL fields: R 1
Encoding Meaning
0 IPL and RIPL fields are 6-bits in
width.
1 IPL and RIPL fields are 8-bits in
width.
Others Reserved.
If the IPL field is 8-bits in width, bits 18 and 16 of Status are
used as the most significant bit and second most significant bit,
respectively, of that field.
If the RIPL field is 8-bits in width, bits 17 and 16 of Cause are
used as the most significant bit and second most significant bit,
respectively, of that field.
MMAR 20:18 microMIPS Architecture revision level: R 0
Encoding Meaning
0 Release 1
1-7 Reserved
MCU 17 MIPS MCU ASE implemented. R 1
Encoding Meaning
0 MCU ASE is not implemented.
1 MCU ASE is implemented.
MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 181



CPO Registers of the microAptivi™ UC Core

182

Table 7.30 Config3 Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write | Reset State
ISAOnExc 16 Reflects the Instruction Set Architecture used when vectoring to RW Preset, driven
an exception. Affects exceptions whose vectors are offsets from by signal
EBASE. external to
CPU
Encoding Meaning core
0 MIPS32 ISA is used onentrance to an
exception vector.
1 microMIPS is used on entrance to an
exception vector.
ISA 15:14 Indicates Instruction Set Availability. R Preset, driven
by signal
- . Ito
Encodin Meanin externa
9 9 CPU core
0 Only MIPS32 is implemented.
1 Only microMIPS is implemented.
2 Both MIPS32 and microMIPS are
implemented. MIPS32 ISA used when
coming out of reset.
3 Both MIPS32 and microMIPS are
implemented. microMIPS is used
when coming out of reset.
ULRI 13 UserLocal register implemented. This bit indicates whether the R 1
UserLocal coprocessor 0 register is implemented.
Encoding Meaning
0 UserlLocal register is not imple-
mented
1 UserLocal register is implemented
RXI 12 Indicates whether the R/IE and X/E bits exist within the R 0
PageGrain register..
Encoding Meaning
0 The RIE and XIE bits are not imple-
mented within the PageGrain regis-
ter.
1 The RIE and X/E bits are implemented
within the PageGrain register
DSP2P 11 Reads 1 to indicate that Revision 2 of the MIPS DSP Module is R Preset
implemented
DSPP 10 Reads 1 to indicate that the MIPS DSP Module extension is R Preset
implemented.
ITL 8 Indicates that iFlowtrace hardware is present. R Preset

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.30 Config3 Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write | Reset State

LPA

7

Denotes the presence of support for large physical addresses on
MIPS64 processors. Not used by MIPS32 processors and returns
zero on read.

Encoding Meaning

0 Large physical address support is not
implemented

1 Large physical address support is
implemented

For implementations of Release 1 of the Architecture, this bit
returns zero on read.

R 0

VEIC

Indicates support for an external interrupt controller.

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

The value of this bit is set by the static input, SI_EICPresent.
This allows external logic to communicate whether an external
interrupt controller is attached to the processor or not.

R Externally Set

Vint

Indicates implementation of Vectored interrupts.

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

On the microAptiv UC core, this bit is always a 1, because vec-
tored interrupts are implemented.

SP

When set, indicates that Small (1KByte) page support is imple-
mented.

Encoding Meaning

0 Small page support is not implemented

1 Small page support is implemented

CDMM

Common Device Memory Map implemented. This bit indicates
whether the CDMM is implemented.

Encoding Meaning

0 CDMM is not implemented
1 CDMM is implemented

R Preset

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

183



CPO Registers of the microAptivi™ UC Core

Table 7.30 Config3 Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset State

SM

1

SmartMIPS™ ASE implemented. This bit indicates whether the
SmartMIPS ASE is implemented. Because SmartMIPS isnot
present on the microAptiv UC core, this bit will always be 0.

Encoding Meaning

0 SmartMIPS ASE is not implemented
1 SmartMIPS ASE is implemented

R

0

TL

Trace Logic implemented. This bit indicates whether PC or data
trace is implemented.

Encoding Meaning
0 Trace logic is not implemented
1 Trace logic is implemented

Preset

7.2.26 Config4 Register (CP0 Register 16, Select 4)

The Config4 register encodes additional capabilities. This register is required if any optional feature described by this

register is implemented and is otherwise optional.

Figure 7-26 shows the format of the Config4 register; Table 7.31 describes the Config4 register fields.

Figure 7-26 Config4 Register Format

31 30 0
M 000...000
Table 7.31 Config4 Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State
M 31 This bit is reserved to indicate that a Config5 register is R 1
present.
0 30:0 Must be written as zeros; returns zeros on read. 0 0

7.2.27 Config5 Register (CP0 Register 16, Select 5)

The Config5 register encodes additional capabilities. This register is required if any optional feature described by this

register is implemented and is otherwise optional.

184

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Figure 7-27 shows the format of the Config5 register; Table 7.32 describes the Config5 register fields.

Figure 7-27 Config5 Register Format

31 30 3 2 1 0
M 000...000 [f{F 0 |NF

Table 7.32 Config5 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
M 31 This bit is reserved. With the current architectural defini- R 0
tion, this bit should always read as a 0.
0 30:3,1 Must be written as zeros; returns zeros on read. 0 0
UFR 2 Release 5 feature. This feature allows user mode access R/W 0
to Statusgg with CTC1 and CFC1.
Encoding Meaning
0 User mode FR instructions not
allowed
1 User mode FR instructions allowed
NFExists 0 Indicates that the Nested Fault feature is present. R 1
The Nested Fault feature allows recognition of faulting
behavior within an exception handler.

7.2.28 Config7 Register (CP0 Register 16, Select 7)

The Config7 register contains implementation specific configuration information. A number of these bits are write-
able to disable certain performance enhancing features within the microAptiv UC core.

Figure 7.28 Config7 Register Format
31 30 19 18 17 0

WIIL 0 HCI 0

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 185



CPO Registers of the microAptivi™ UC Core

Table 7.33 Config7 Register Field Descriptions

Fields Read |
ea

Name Bits Description Write Reset State

WIL 31 Wait IE Ignore. Indicates that this processor will allow an interrupt R 1
to unblock a WAIT instruction, even if /E is preventing the interrupt
from being taken. This avoids problems using the WAIT instruction
for ‘bottom half” interrupt servicing.

In WII mode when /E=0, waking up from Sleep mode will not enter
an Interrupt Service Routine.

0 30:19,17:0 | These bits are unused and should be written as 0. R 0

HCI 18 Hardware Cache Initialization: Indicates that a cache does not R 0
require initialization by software.

This bit will most likely only be set on simulation-only cache mod-
els and not on real hardware.

7.2.29 Debug Register (CP0 Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug
exception and also when re-entering at the debug exception vector due to a normal exception in debug mode. The
read-only information bits are updated every time the debug exception is taken, or when a normal exception is taken
when already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and
fields are UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written in
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

* DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, DDBSImpr are updated on both debug exceptions and
on exceptions in debug modes.

*  DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception.
*  Haltand Doze are updated on a debug exception, and are undefined after an exception in debug mode.
*  DBD is updated on both debug and on exceptions in debug modes.

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.,
EJTAGver and DM.

Figure 7.29 Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19
DDB-
DBD DM NoDCR | LSNM Doze Halt |CountDM | IBusEP |MCheckP | CacheEP | DBusEP | IEXI STmpr
18 17 15 14 10 9 8 7 6 5 4 3 2 1 0
DDBLI Ver DExcCode NoSSt | SSt R DIBI DINT| DIB | DDBS | DDBL | DBp | DSS
mpr mpr
186 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.34 Debug Register Field Descriptions

Fields
Name Bit(s) Description Read/Write | Reset State
DBD 31 Indicates whether the last debug exception or exception R Undefined
in debug mode occurred in a branch delay slot:
Encoding Meaning
0 Not in delay slot
1 In delay slot
DM 30 Indicates that the processor is operating in debug mode: R 0
Encoding Meaning
0 Processor is operating in non-debug
mode
1 Processor is operating in debug mode
NoDCR 29 Indicates whether the dseg memory segment is present R 0
and the Debug Control Register is accessible:
Encoding Meaning
0 dseg is present
1 No dseg present
LSNM 28 Controls access of load/store between dseg and main R/W 0
memory:
Encoding Meaning
0 Load/stores in dseg address range
goes to dseg
1 Load/stores in dseg address range
goes to main memory
Doze 27 Indicates that the processor was in any kind of low R Undefined
power mode when a debug exception occurred:
Encoding Meaning
0 Processor not in low-power mode
when debug exception occurred
1 Processor in low-power mode when
debug exception occurred
Halt 26 Indicates that the internal system bus clock was stopped R Undefined
when the debug exception occurred:
Encoding Meaning
0 Internal system bus clock stopped
1 Internal system bus clock running

MIPS32® microAptiv™

UC Processor Core Family Software User's Manual, Revision 01.03

187



CPO Registers of the microAptivi™ UC Core

188

Table 7.34 Debug Register Field Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/Write

Reset State

CountDM

25

Indicates the Count register behavior in debug mode:

Encoding Meaning

0 Count register stopped in debug mode

1 Count register is running in debug
mode

R/W

1

IBusEP

24

Instruction fetch Bus Error exception Pending. Set when
an instruction fetch bus error event occurs, or if a 1 is
written to the bit by software. Cleared when a Bus Error
exception on an instruction fetch is taken by the proces-
sor, and by reset. If IBUSEP is set when IEX] is cleared,
a Bus Error exception on an instruction fetch is taken by
the processor, and /IBUSEP is cleared.

R/W1

MCheckP

23

Indicates that an imprecise Machine Check exception is
pending. All Machine Check exceptions are precise on
the microAptiv UC processor, so this bit will always
read as 0.

CacheEP

22

Indicates that an imprecise Cache Error is pending.
Cache Errors cannot be taken by the microAptiv UC
core, so this bit will always read as 0

DBusEP

21

Data access Bus Error exception Pending. Covers
imprecise bus errors on data access, similar to the
behavior of IBusEP for imprecise bus errors on an
instruction fetch.

R/W1

IEXI

20

Imprecise Error eXception Inhibit controls exceptions
taken due to imprecise error indications. Set when the
processor takes a debug exception or exception in debug
mode. Cleared by execution of the DERET instruction;
otherwise modifiable by debug mode software. When
IEX] is set, the imprecise error exception from a bus
error on an instruction fetch or data access, cache error,
or machine check is inhibited and deferred until the bit
is cleared.

R/W

DDBSImpr

19

Indicates that an imprecise Debug Data Break Store
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

Undefined

DDBLImpr

18

Indicates that an imprecise Debug Data Break Load
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

Undefined

Ver

17:15

EJTAG version.

101

DExcCode

14:10

Indicates the cause of the latest exception in debug
mode. The field is encoded as the ExcCode field in the
Cause register for those normal exceptions that may
occur in debug mode.

Value is undefined after a debug exception.

Undefined

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




7.2 CPO Register Descriptions

Table 7.34 Debug Register Field Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/Write

Reset State

NoSST

9

Indicates whether the single-step feature controllable by
the SStbit is available in this implementation:

Encoding

Meaning

0

Single-step feature available

1

No single-step feature available

R

0

SSt

Controls if debug single step exception is enabled:

Encoding

Meaning

0

No debug single-step exception
enabled

1

Debug single step exception enabled

R/W

R

Reserved. Must be written as zeros; returns zeros on

reads.

DIBImpr

Indicates that an Imprecise debug instruction break
exception occurred (due to a complex breakpoint).
Cleared on exception in debug mode.

Undefined

DINT

Indicates that a debug interrupt exception occurred.
Cleared on exception in debug mode.

Encoding

Meaning

0

No debug interrupt exception

1

Debug interrupt exception

Undefined

DIB

Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.

Encoding

Meaning

0

No debug instruction exception

1

Debug instruction exception

Undefined

DDBS

Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.

Encoding

Meaning

0

No debug data exception on a store

1

Debug instruction exception on a store

Undefined

DDBL

Indicates that a debug data break exception occurred on
a load. Cleared on exception in debug mode.

Encoding

Meaning

0

No debug data exception on a load

1

Debug instruction exception on a load

Undefined

MIPS32® microAptiv™

UC Processor Core Family Software User's Manual, Revision 01.03

189



CPO Registers of the microAptivi™ UC Core

Table 7.34 Debug Register Field Descriptions (Continued)

Fields
Name Bit(s) Description Read/Write | Reset State
DBp 1 Indicates that a debug software breakpoint exception R Undefined
occurred. Cleared on exception in debug mode.
Encoding Meaning
0 No debug software breakpoint excep-
tion
1 Debug software breakpoint exception
DSS 0 Indicates that a debug single-step exception occurred. R Undefined
Cleared on exception in debug mode.
Encoding Meaning
0 No debug single-step exception
1 Debug single-step exception

7.2.30 Trace Control Register (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below.
This register is only implemented if the EJTAG PDtrace capability is present.

Figure 7.30 TraceControl Register Format
31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 1 0

TS|UT| O TB|IO|D|E|K|S|U ASID M ASID G| Mode On

Table 7.35 TraceControl Register Field Descriptions

Fields

Name Bits Description Read/Write | Reset State

TS 31 The trace select bit is used to select between the hard- R/W 0
ware and the software trace control bits. A value of
zero selects the external hardware trace block signals,
and a value of one selects the trace control bits in this
software control register.

UT 30 This bit is used to indicate the type of user-triggered R/W Undefined
trace record. A value of zero implies a usertype 1, and
a value of one implies a user type 2.

The actual triggering of a user trace record occurs on a
write to the UserTraceDatla register.

0 29:28 Reserved for future use; Must be written as zero; 0 0
returns zero on read.

190 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.35 TraceControl Register Field Descriptions (Continued)

Fields

Name Bits Description Read/Write | Reset State

TB 27 Trace All Branch. When set to one, this tells the pro- R/W Undefined
cessor to trace the PC value for all taken branches, not
just the ones whose branch target address is statically
unpredictable.

10 26 Inhibit Overflow. This signal is used to indicate to the R/W Undefined
core trace logic that slow but complete tracing is
desired. When set to one, the core tracing logic does
not allow a FIFO overflow or discard trace data. This
is achieved by stalling the pipeline when the FIFO is
nearly full, so that no trace records are ever lost.

D 25 When set to one, this enables tracing in Debug Mode R/W Undefined
For trace to be enabled in Debug mode, the On bit
must be one.

When set to zero, trace is disabled in Debug Mode,
irrespective of other bits.

E 24 When set to one, this enables tracing in Exception R/W Undefined
Mode. For trace to be enabled in Exception mode, the
On bit must be one.

When set to zero, trace is disabled in Exception Mode,
irrespective of other bits.

K 23 When set to one, this enables tracing in Kernel Mode. R/W Undefined
For trace to be enabled in Kernel mode, the On bit
must be one.

When set to zero, trace is disabled in Kernel Mode,
irrespective of other bits.

0 22 This bit is reserved. Must be written as zero; returns 0 0
zero on read.

U 21 When set to one, this enables tracing in User Mode. R/W Undefined
For trace to be enabled in User mode, the On bit must
be one.

When set to zero, trace is disabled in User Mode, irre-
spective of other bits.

ASID M 20:13 In an FM-based MMU core in which ASID is not sup- R 0
ported, this field is ignored on writes and returns zero
on reads.

ASID 12:5 In an FM-based MMU core in which ASID is not sup- R 0
ported, this field is ignored on writes and returns zero
on reads.

G 4 In an FM-based MMU core in which ASID is not sup- R 1
ported, this field is ignored on writes and returns 1 on
reads. This causes all match equations to work cor-
rectly in the absence of an ASID.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 191



CPO Registers of the microAptivi™ UC Core

Table 7.35 TraceControl Register Field Descriptions (Continued)

Fields

Name Bits Description Read/Write | Reset State

Mode 3:1 These three bits control the trace mode function. R/W Undefined

Mode Trace Mode

000 |Trace PC

001 |Trace PC and load address

010 |Trace PC and store address

011 |Trace PC and both load/store addresses
100 |Trace PC and load data

101  |Trace PC and load address and data
110  |Trace PC and store address and data

111 Trace PC and both load/store address and
data

The TraceControl2,4jidmodes field determines which
of these encodings are supported by the processor. The
operation of the processor is UNPREDICTABLE if
this field is set to a value which is not supported by the
Pprocessor.

On 0 This is the master trace enable switch in software con- R/W 0
trol. When zero, tracing is always disabled. When set
to one, tracing is enabled whenever the other enabling
functions are also true.

7.2.31 Trace Control2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB) (see Section 10.8.6 “ITCB Register Interface for Software Configurability”). As such,
these fields in the TraceControl2 register will not have valid values until the TCB asserts these values.

This register is only implemented if the EJTAG PDTrace capability is present.

Figure 7.31 TraceControl2 Register Format

31 7 6 5 4 3 2 0
Valid-
0 Modes TBI| TBU SyP

Table 7.36 TraceControl2 Register Field Descriptions

Fields

Name Bits Description Read/Write Reset State

0 31:5 Reserved for future use; Must be written as zero; 0 0
returns zero on read.

192 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.36 TraceControl2 Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write Reset State
ValidModes 6:5 This field specifies the type of tracing that is supported R 10
by the processor.
Encoding Meaning
00 PC tracing only
01 PC and load and store address
tracing only
10 PC, load and store address, and
load and store data
11 Reserved
TBI 4 This bit indicates how many trace buffers are imple- R Per implementation
mented by the TCB.
Encoding Meaning
0 Only one trace buffer is imple-
mented, and the Debug sin-
gle-step exception bit of this
register indicates which trace
buffer is implemented
1 Both on-chip and off-chip trace
buffers are implemented by the
TCB, and the TBU bit of this
register indicates to which trace
buffer the trace is currently writ-
ten.
TBU 3 This bit denotes which trace buffer is currently being R Undefined
written by the trace and is used to select the appropri-
ate interpretation of the TraceControl2g,p field.
Encoding Meaning
0 Trace data is being sent to an on-chip
trace buffer
1 Trace Data is being sent to an off-chip
trace buffer

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 193



CPO Registers of the microAptivi™ UC Core

194

Table 7.36 TraceControl2 Register Field Descriptions (Continued)

Fields

Name

Bits

Description Read/Write Reset State

SyP

2:0

Used to indicate the synchronization period. R Undefined
The period (in cycles) between which the periodic syn-
chronization information is to be sent is defined as

shown below, for both when the trace buffer is on-chip

and off-chip.
SyP On-chip Off-chip
000 22 27
001 23 58
010 74 29
011 25 10
100 26 Sl
101 77 512
110 28 H13
111 29 Sl4

The “On-chip” column value is used when the trace
data is being written to an on-chip trace buffer (e.g,
TraceControl27g= 0). Conversely, the “Off-chip”
column is used when the trace data is being written to
an off-chip trace buffer (e.g, TraceControl2TBU = 1).

7.2.32 User Trace Data1 Register (CP0 Register 23, Select 3)/User Trace Data2 Regis-
ter (CPO Register 24, Select 3)

A software write to any bits in the UserTraceData1 or UserTraceData2 registers will trigger a trace record to be writ-
ten indicating a type 1 or type 2 user format respectively. The trace output data is UNPREDICTABLE if these regis-
ters are written in consecutive cycles.

This register is only implemented if the MIPS iFlowtrace capability is present.

Figure 7.32 User Trace Data1/User Trace Data2 Register Format

31 0
Data
Table 7.37 UserTraceData1/UserTraceData2 Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
Data 31:0 Software readable/writable data. When written, this triggers a user R/W 0
format trace record out of the PDtrace interface that transmits the
Data field to trace memory.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

7.2.33 TraceBPC Register (CP0 Register 23, Select 4)

This register is used to start and stop tracing using an EJTAG Hardware breakpoint. The Hardware breakpoint can
then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if hardware breakpoints and the EJTAG PDTrace capability are both present.

Figure 7.33 Trace BPC Register Format
31 30 18 17 16 15 14 6 5 0

DE 0 DBPOn |IE 0 IBPOn

Table 7.38 TraceBPC Register Field Descriptions

Fields

Name Bits Description Read/Write | Reset State

DE 31 Used to specify whether the trigger signal from R/W 0
EJTAG data breakpoint should trigger tracing func-
tions or not:

Encoding Meaning

0 Disables trigger signals from data
breakpoints

1 Enables trigger signals from data
breakpoints

0 30:18 Reserved 0 0

DBPOn 17:16 Each of the 2 bits corresponds to the 2 possible R/W 0
EJTAG hardware data breakpoints that may be imple-
mented. For example, bit 16 corresponds to the first
data breakpoint. If 2 data breakpoints are present in the
EJTAG implementation, then they correspond to bits
16 and 17. The rest are always ignored by the tracing
logic because they will never be triggered.

A value of one for each bit implies that a trigger from
the corresponding data breakpoint should start tracing.
And a value of zero implies that tracing should be
turned off with the trigger signal.

IE 15 Used to specify whether the trigger signal from R/W 0
EJTAG instruction breakpoint should trigger tracing
functions or not:

Encoding Meaning

0 Disables trigger signals from instruc-
tion breakpoints

1 Enables trigger signals from instruc-
tion breakpoints

0 14:6 Reserved 0 0

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 195



CPO Registers of the microAptivi™ UC Core

Table 7.38 TraceBPC Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write | Reset State
IBPOn 5:0 Each of the 6 bits corresponds to the 6 possible R/W 0

EJTAG hardware instruction breakpoints that may be
implemented. Bit 0 corresponds to the first instruction
breakpoint, and so on. If only 2 instruction breakpoints
are present in the EJTAG implementation, then only
bits 0 and 1 are used. The rest are always ignored by
the tracing logic because they will never be triggered.
A value of one for each bit implies that a trigger from
the corresponding instruction breakpoint should start
tracing. And a value of zeroimplies that tracing should
be turned off with the trigger signal.

7.2.34 Debug2 Register (CP0 Register 23, Select 6)

This register holds additional information about Complex Breakpoint exceptions.
This register is only implemented if complex hardware breakpoints are present.

Figure 7.34 Debug2 Register Format
31 4 3 2 1 0

0 Prm |DQ| Tup | PaCo

Table 7.39 Debug2 Register Field Descriptions

Fields
Name Bits Description Read/Write | Reset State
0 31:4 Reserved 0 0
Prm 3 Primed - indicates whether a complex breakpoint with R Undefined
an active priming condition was seen on the last debug
exception.
DQ 2 Data Qualified - indicates whether a complex break- R Undefined
point with an active data qualifier was seen on the last
debug exception.
Tup 1 Tuple - indicates whether a tuple breakpoint was seen R Undefined
on the last debug exception.
PaCo 0 Pass Counter - indicates whether a complex breakpoint R Undefined
with an active pass counter was seen on the last debug
exception

196 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

7.2.35 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:
*  The virtual address of the instruction that was the direct cause of the debug exception, or

*  The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot, and the Debug Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC contains the virtual address of the
instruction where execution should resume after the debug handler code is executed.

In processors that implement microMIPS, a read of the DEPC register (via MFCO) returns the following value in the
destination GPR:

GPR[rt] <« DebugExceptionPC;; ; || ISAMode,

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the /ISAMode field and written
to the GPR.

Similarly, a write to the DEPC register (via MTCO) takes the value from the GPR and distributes that value to the
debug exception PC and the /ISAMode field, as follows

DebugExceptionPC « GPR[rtls; , || O
ISAMode « 2#0 || GPRIrtl,

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the

lower bit of the GPR.
Figure 7.35 DEPC Register Format
31 0
DEPC
Table 7.40 DEPC Register Formats
Fields
Name Bit(s) Description Read/Write Reset
DEPC 31:0 | The DEPC register is updated with the virtual address of R/W Undefined

the instruction that caused the debug exception. If the
instruction is in the branch delay slot, then the virtual
address of the immediately preceding branch or jump
instruction is placed in this register.

Execution of the DERET instruction causes a jump to the
address in the DEPC.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 197



CPO Registers of the microAptivi™ UC Core

198

7.2.36 Performance Counter Register (CP0 Register 25, select 0-3)

The microAptiv UC processor defines two performance counters and two associated control registers, which are
mapped to CPO register 25. The select field of the MTCO/MFCO instructions are used to select the specific register
accessed by the instruction, as shown in Table 7.41.

Table 7.41 Performance Counter Register Selects

Select[2:0] Register
0 Register 0 Control
1 Register 0 Count
2 Register 1 Control
3 Register 1 Count

Each counter is a 32-bit read/write register and is incremented by one each time the countable event, specified in its
associated control register, occurs. Each counter can independently count one type of event at a time.

Bit 31 of each of the counters are ANDed with an interrupt enable bit, /E, of their respective control register to deter-
mine if a performance counter interrupt should be signalled. The two values are then ORed together to create the
SI_PCI output. Traditionally, this signal is combined with one of the SI_Int pins to signal an interrupt to the microAp-
tiv UC. However, this is no longer needed as the core will internally route the interrupt to the IP number set by the
IntCtl.IPPCI field. Counting is not affected by the interrupt indication. This output is cleared when the counter wraps
to zero, and may be cleared in software by writing a value with bit 31 = 0 to the Performance Counter Count registers.

NOTE: The performance counter registers are connected to a clock that is stopped when the processor is in sleep
mode (if the top-level clock gater is present). Most events would not be active during that time, but others would be,
notably the cycle count. This behavior should be considered when analyzing measurements taken on a system. Fur-
ther, note that FPGA implementations of the core would generally not have the clock gater present and thus would
have different behavior than a typical ASIC implementation.

Figure 7.36 Performance Counter Control Register
31 30 15 14 110 5 4 3 2 1 0

M 0 EventExt Event IE|U| 0| K|EXL

Table 7.42 Performance Counter Control Register Field Descriptions

Fields
Name Bits Description Read/Write | Reset State
M 31 If this bit is one, another pair of Performance Control and Counter R Preset
registers is implemented at an MTCO or MFCO select field value of
‘n+2’ and ‘nt+3’.
EventExt 14:11 Event specific to Virtualization Module if supported. Possible R/W Undefined
events are listed in Table 7.43.
Event 10:5 Counter event enabled for this counter. Possible events are listed in R/W Undefined
Table 7.43.
IE 4 Counter Interrupt Enable. This bit masks bit 31 of the associated R/W 0
count register from the interrupt exception request output.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.42 Performance Counter Control Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write | Reset State

U 3 Count in User Mode. When this bit is set, the specified event is R/W Undefined
counted in User Mode.

K 1 Count in Kernel Mode. When this bit is set, count the event in Ker- R/W Undefined
nel Mode when EXL and ERL both are 0.

EXL 0 Count when EXL. When this bit is set, count the event when EXL = R/W Undefined

1 and ERL =0.

0 30:12, 2 | Must be written as zeroes; returns zeroes when read. 0 0

Table 7.43 describes the events countable with the two performance counters. The mode column indicates whether the
event counting is influenced by the mode bits (U,K,EXL). The operation of a counter is UNPREDICTABLE for
events which are specified as Reserved.

Performance counters never count in debug mode or when ERL = 1.

The performance counter resets to a low-power state, in which none of the counters will start counting events until
software has enabled event counting, using an MTCO instruction to the Performance Counter Control Registers.

Table 7.43 Performance Counter Events Sorted by Event Number

Event Num Counter 0 Mode Counter 1 Mode
0 Cycles No Cycles No
1 Instructions completed Yes Instructions completed Yes
2 branch instructions Yes Reserved NA
3 JR 131 (return) instructions Yes Reserved NA
4 JR (not r31) instructions Yes Reserved NA
5 Reserved NA Reserved NA
6 Reserved NA Reserved NA
7 Reserved NA Reserved NA
8 Reserved NA Reserved NA
9 Reserved NA Reserved NA
10 Reserved NA Reserved NA
11 Reserved NA Reserved NA
12 Reserved NA Reserved NA
13 Reserved NA Reserved NA
14 integer instructions completed Yes Reserved NA
15 loads completed Yes Stores completed Yes
16 J/JAL completed Yes microMIPS instructions completed Yes
17 no-ops completed Yes Integer multiply/divide completed Yes
18 Stall cycles No Reserved NA
19 SC instructions completed Yes SC instructions failed Yes

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 199



CPO Registers of the microAptivi™ UC Core

Table 7.43 Performance Counter Events Sorted by Event Number (Continued)

Event Num Counter 0 Mode Counter 1 Mode
20 Prefetch instructions completed Yes Reserved NA
21 Reserved NA Reserved NA
22 Reserved NA Reserved NA
23 Exceptions taken Yes Reserved NA
24 Reserved NA Reserved NA
25 Reserved NA ALU stall cycles No
26 Reserved NA Reserved NA
27 Reserved NA Reserved NA
28 Reserved NA Implementation-specific CP2 event Yes
29 Reserved NA Reserved NA
30 Implementation-specific CorExtend event Yes Reserved NA
31 Reserved NA Reserved NA
32 Reserved NA Reserved NA
33 Reserved NA Reserved NA
34 Reserved NA Reserved NA
35 Reserved NA CP2 To/From Instructions completed Yes
36 Reserved NA Reserved NA
37 Reserved NA Reserved NA
38 Reserved NA Reserved NA
39 Reserved NA Reserved NA
40 Uncached stall cycles Yes Reserved NA
41 MDU stall cycles Yes Reserved NA
42 CP2 stall cycles Yes CorExtend stall cycles Yes
43 Reserved NA Reserved NA
44 Reserved NA Reserved NA
45 Load to Use stall cycles Yes Reserved NA
46 Other interlock stall cycles Yes Reserved NA
47 Reserved NA Reserved NA
48 Reserved NA Reserved NA
49 EJTAG Instruction Triggerpoints Yes EJTAG Data Triggerpoints Yes
50 Reserved NA Reserved NA
51 Reserved NA Reserved NA
52 Reserved NA Reserved NA
53 Reserved NA Reserved NA
54 Reserved NA Reserved NA
55 Reserved NA Reserved NA

56-1023 Reserved NA Reserved NA

200 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Table 7.44 Performance Counter Event Descriptions Sorted by Event Type

Event
Event Name Counter | Number Description
Cycles 0/1 0 Total number of cycles.

The performance counters are clocked by the top-level gated clock. If
the microAptiv UC is built with that clock gater present, none of the
counters will increment while the clock is stopped, e.g., due to a
WAIT instruction.

Instruction Completion: The following events indi

cate completion of various types of instructions

Instructions 0/1 1 Total number of instructions completed.
Branch instns 0 2 Counts all branch instructions that completed.
JR R31 (return) instns 0 3 Counts all JR R31 instructions that completed.
JR (not R31) 0 4 Counts all JR $xx (not $31) and JALR instructions (indirect jumps).
Integer instns 0 14 Non-floating-point, non-Coprocessor 2 instructions.
Loads 0 15 Includes both integer and coprocessor loads.
Stores 1 15 Includes both integer and coprocessor stores.
J/IJAL 0 16 Direct Jump (And Link) instruction.
microMIPS 1 16 All microMIPS instructions.
no-ops 0 17 This includes all instructions that normally write to a GPR, but where
the destination register was set to r0.
Integer Multiply/Divide 1 17 Counts all Integer Multiply/Divide instructions (MULxx, DIVx,
MADDx, MSUBX).
SC 0 19 Counts conditional stores regardless of whether they succeeded.
PREF 0 20 Note that this only counts PREFs that are actually attempted. PREFs
to uncached addresses or ones with translation errors are not counted
Cp2 To/From instns 1 35 Includes move to/from, control to/from, and cop2 loads and stores.
Instruction execution events
SC instructions failed 1 19 SC instruction that did not update memory.
Note: While this event and the SC instruction count event can be con-
figured to count in specific operating modes, the timing of the events
is much different, and the observed operating mode could change
between them, causing some inaccuracy in the measured ratio.
Exceptions Taken 0 23 Any type of exception taken.
EJTAG instruction triggers 0 49 Number of times an EJTAG Instruction Trigger Point condition
matched.
EJTAG data triggers 1 49 Number of times an EJTAG Data Trigger Point condition matched.
General Stalls
ALU stall cycles 1 25 Counts the number of cycles in which the ALU pipeline cannot

advance.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 201



CPO Registers of the microAptivi™ UC Core

Table 7.44 Performance Counter Event Descriptions Sorted by Event Type (Continued)

Event
Event Name Counter | Number Description
Stall cycles 0 18 Counts the total number of cycles in which no instructions are issued

by SRAM to ALU (the RF stage does not advance). This includes both
of the previous two events. However, this is different from the sum of
them, because cycles when both stalls are active will only be counted
once.

Specific stalls - these events will count the number of cycles lost due to this. This will include bubbles introduced by replays within the
pipe. If multiple stall sources are active simultaneously, the counters for each of the active events will be incremented.

Uncached stall cycles 0 40 Cycles in which the processor is stalled on an uncached fetch, load, or
store.
MDU stall cycles 0 41 Counts all cycles in which the integer pipeline waits on MDU return
data.
Cp2 stall cycles 0 42 Counts all cycles in which the integer pipeline waits on CP2 return
data.
CorExtend stall cycles 1 42 Counts all cycles in which the integer pipeline waits on CorExtend
return data.
Load to Use stall cycles 0 45 Counts all cycles in which the integer pipeline waits on Load return
dependent data.
Other interlocks stall cycles 0 46 Counts all cycles in which the integer pipeline waits on return data

from MFCO0 and RDHWR instructions.

Implementation-specific events - Modules that can be replaced by the customer will have an event signal associated with them.

Cp2 1 28 Set to 1 if COP2 is implemented.

CorExtend 0 30 Set to 1 if CorExtend is implemented.

Figure 7.37 Performance Counter Count Register
31 0

Counter

Table 7.45 Performance Counter Count Register Field Descriptions

Fields
Name Bits Description Read / Write Reset State
Counter 31:0 Counter R/W Undefined

7.2.37 ErrCtl Register (CP0 Register 26, Select 0)

The ErrCtl register controls parity protection of data and instruction SRAM. Parity protection can be enabled or dis-
abled using the PE bit.

202 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Figure 7.38 ErrCtl Register Format

31 30 0

PE R

Table 7.46 Errctl Register Field Descriptions

Fields

Name Bit(s) Description Read/Write | Reset State

PE 31 Parity Enable. This bit enables or disables the parity protec- R or R/'W 0
tion for both the instruction SRAM and the data SRAM.

Encoding Meaning

0 Parity disabled
1 Parity enabled

This field is only write-able if the parity option was imple-
mented when the microAptiv UC was built. If parity is not
supported, this field is always read as 0. Software can test
for parity support by attempting to write a 1 to this field,
then read back the value.

R 30:0 Must be written as zero; returns zero on reads. 0 0

7.2.38 CacheErr Register (CP0 Register 27, Select 0)

The CacheErrregister provides an interface with the cache error-detection logic. When a SRAM Parity Error excep-
tion is signaled, the fields of this register are set accordingly.

Figure 7.39 CacheErr Register (Primary Caches)
31 30 29 0

ER |EB Addr

Table 7.47 CacheErr Register Field Descriptions (Primary Caches)

Fields
Name Bits Description Read / Write | Reset State
ER 31 Error Reference. Indicates the type of reference that encountered an R Undefined
error.
Encoding Meaning
0 Instruction

1 Data

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 203



CPO Registers of the microAptivi™ UC Core

204

Table 7.47 CacheErr Register Field Descriptions (Primary Caches) (Continued)

Fields

Name Bits Description Read / Write | Reset State

EB 30 Error Both. Indicates that a data SRAM parity error occurred in R Undefined
addition to an instruction SRAM parity error.

Encoding Meaning

0 No additional data SRAM parity error
1 Additional data SRam parity error

In the case of an additional data SRAM parity error, the remainder
of the bits in this register are set according to the instruction SRAM
parity error.

Addr 29:0 Error address. Specifies on which address the error was detected. R Undefined

7.2.39 ErrorEPC (CPO Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.
This address can be:

*  The virtual address of the instruction that caused the exception

e The virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

In processors that implement microMIPS, a read of the ErrorEPC register (via MFCO) returns the following value in
the destination GPR:

GPR[rt] <« ErrorExceptionPC;; ; || ISAMode,

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the ErrorEPC register (via MTCO) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC « GPR[rtls; 1 || O
ISAMode « 2#0 || GPRI[rtl,

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the

error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lowerbit is loaded from the lower
bit of the GPR.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



7.2 CPO Register Descriptions

Figure 7.40 ErrorEPC Register Format

31 0

ErrorEPC

Table 7.48 ErrorEPC Register Field Description

Fields
Name Bit(s) Description Read/Write | Reset State
ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

7.2.40 DeSave Register (CP0 Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of the context
to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of exception
handlers and other types of code in which the existence of a valid stack for context saving cannot be assumed.

Figure 7.41 DeSave Register Format

31 0

DESAVE

Table 7.49 DeSave Register Field Description

Fields
Name Bit(s) Description Read/Write | Reset State
DESAVE 31:0 Debug exception save contents. R/W Undefined

7.2.41 KScratchn Registers (CP0 Register 31, Selects 2 to 3)

The KScratchn registers are optional read/write registers available for scratchpad storage by kernel-mode software.
These registers are 32 bits in width for 32-bit processors and 64 bits for 64-bit processors.

The existence of these registers is indicated by the KScrExist field in the Config4 register. The KScrExist field speci-
fies which of the selects are populated with a kernel scratch register.

Debug-mode software should not use these registers, but should instead use the DeSave register. If EITAG is imple-
mented, select 0 should not be used for a KScratch register. Select 1 is being reserved for future debug use and should
not be used for a KScratch register.

Figure 7-42 KScratchn Register Format
31 0

Data

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 205



CPO Registers of the microAptivi™ UC Core

Table 7.50 KScratchn Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
Data 31:0 Scratch pad data saved by kernel software. R/W Undefined

206 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



Chapter 8

Hardware and Software Initialization of the microAptiv™
UC Core

The microAptiv UC processor core contains only a minimal amount of hardware initialization and relies on software
to fully initialize the device.

This chapter contains the following sections:
*  Section 8.1 “Hardware-Initialized Processor State”

e Section 8.2 “Software Initialized Processor State”
8.1 Hardware-Initialized Processor State

The microAptiv UC processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only
a minimal subset of the processor stateis cleared. This is enough to bring the core up while running in unmapped and
uncached code space. All other processor state can then be initialized by software. SI_ColdReset is asserted after
power-up to bring the device into a known state. Soft reset can be forced by asserting the SI_Reset pin. This distinc-
tion is made for compatibility with other MIPS processors. In practice, both resets are handled identically with the
exception of the setting of Statusgg.

8.1.1 Coprocessor 0 State
Much of the hardware initialization occurs in Coprocessor 0.
*  Statusggy - cleared to 1 on Reset/SoftReset
*  Statusrg - cleared to 0 on Reset/SoftReset
*  Statusgg - cleared to 0 on Reset, set to 1 on SoftReset
*  Statusyy - cleared to 0 on Reset/SoftReset
*  Statusgg, - set to 1 on Reset/SoftReset
*  Statusgp - cleared to 0 on Reset/SoftReset

*  Config fields related to static inputs - set to input value by Reset/SoftReset
*  Configkg - set to 010 (uncached) on Reset/SoftReset

*  Debugpy - cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode, see
Chapter 10, “EJTAG Debug Support in the microAptiv™ UC Core” on page 212 for details)

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 207



Hardware and Software Initialization of the microAptivi™ UC Core

*  Debug snwm - cleared to 0 on Reset/SoftReset

*  Debuggsep - cleared to 0 on Reset/SoftReset
*  Debugpgysep - cleared to 0 on Reset/SoftReset
*  Debuggy - cleared to 0 on Reset/SoftReset

*  Debugss; - cleared to 0 on Reset/SoftReset

8.1.2 Bus State Machines

All pending bus transactions are aborted and the state machines in the SRAM interface unit are reset when a Reset or
SoftReset exception is taken.

8.1.3 Static Configuration Inputs

All static configuration inputs should only be changed during Reset.
8.1.4 Fetch Address

Upon Reset/SoftReset, unless the EITAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FC00000). This address is in KSegl,which is unmapped and uncached.

8.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.
8.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the rest of the
register file is not required for proper operation in hardware. However, when simulating the operation of the core,
unknown values can cause problems. Thus, initializing the register file in the boot code may avoid simulation prob-
lems.

8.2.2 Coprocessor 0 State

Miscellaneous COPO states need to be initialized prior to leaving the boot code. There are various exceptions which

are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious

exceptions when leaving the boot code.

*  Cause: WP (Watch Pending), SWO0/1 (Software Interrupts) should be cleared.

*  Config: Typically, the KO, KU and K23 fields should be set to the desired Cache Coherency Algorithm (CCA)
value prior to accessing the corresponding memory regions. But in the microAptiv UC core, all CCA values are

treated identically, so the hardware reset value of these fields need not be modified.

*  Count. Should be set to a known value if Timer Interrupts are used.

208 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



8.2 Software Initialized Processor State

*  Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (Thus, Count should be set before Compare to avoid any unexpected interrupts).

e Status: Desired state of the device should be set.

*  Other COPO state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should

be masked off after reading these registers.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 209



Chapter 9

Power Management of the microAptivi™ UC Core

The microAptiv UC processor core offers a number of power management features, including low-power design,

active power management and power-down modes of operation. The core is a static design that supports a WAIT

instruction designed to signal the rest of the device that execution and clocking should be halted, reducing system
power consumption during idle periods.

The core provides two mechanisms for system level low-power support discussed in the following sections.
*  Section 9.1 “Register-Controlled Power Management”

*  Section 9.2 “Instruction-Controlled Power Management”
9.1 Register-Controlled Power Management

The RPbit in the CPO Status register enables a standard software mechanism for placing the system into a low power
state. The state of the RP bit is available externally via the SI_RP output signal. Three additional pins, SI_EXL,
SI_ERL, and EJ_DebugM support the power management function by allowing the user to change the power state if
an exception or error occurs while the core is in a low power state.

Setting the RP bit of the CP0 Status register causes the core to assert the SI_RP signal. The external agent can then
decide whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending on
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting
of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an
interrupt has occurred. At this time the external agent can choose to either speed up the clocks and service the inter-
rupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks and service

the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the pro-
cessor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides four power down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CP0 Status register are set or cleared. The fourth pin indicates that the processor is in debug
mode:

* The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.

»  The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

* The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 210



9.2 Instruction-Controlled Power Management

*  The EJ_DebugM signal indicates that the processor has entered debug mode.

9.2 Instruction-Controlled Power Management

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus is
idle at the time the WAIT instruction reaches the M stage of the pipeline the internal clocks are suspended and the
pipeline is frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset,
SI_ColdReset, and EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the M
stage, the pipeline stalls until the bus becomes idle, at which time the clocks are stopped. When the CPU is in instruc-
tion controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the
CPU to exit this mode and resume normal operation. While the part is in this low-power mode, the SI_SLEEP signal
is asserted to indicate to external agents what the state of the chip is.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 211



Chapter 10

EJTAG Debug Support in the microAptiv™™ UC Core

The EJTAG debug logic in the microAptiv UC processor core provides three optional modules:

1. Hardware breakpoints

2. Test Access Port (TAP) for a dedicated connection to a debug host

3. Tracing of program counter/data address/data value trace to On-chip memory or to a Trace probe
These features are covered in the following sections:

*  Section 10.1 “Debug Control Register”

*  Section 10.2 “Hardware Breakpoints”

*  Section 10.3 “Complex Breakpoint Usage”
*  Section 10.4 “Test Access Port (TAP)”

* Section 10.5 “EJTAG TAP Registers”

*  Section 10.6 “TAP Processor Accesses”

*  Section 10.7 “SecureDebug”

*  Section 10.8 “iFlowtrace™ Mechanism”

*  Section 10.9 “PC/Data Address Sampling”

*  Section 10.10 “Fast Debug Channel”

e Section 10.11 “cJTAG Interface”

10.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always pro-
vided with the CPU core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug software
is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to the

other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit, and a
pending NMI is indicated through the NMIP bit.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 212



10.1 Debug Control Register

The SRE bit allows implementation-dependent masking of none, some or all sources for soft reset. The soft reset
masking may only be applied to a soft reset source if that source can be efficiently masked in the system, thus result-
ing in no reset at all. If that is not possible, then that soft reset source should not be masked, since a partial soft reset
may cause the system to fail or hang. There is no automatic indication of whether the SRE is effective, so the user
must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table below
takes effect on both hard and soft resets.

Figure 10.1 DCR Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
EJTAG Brk PCno FDC | Data | Inst
Override 0 | ENM 0 PCIM ASID DASQ| DASe | DAS 0 fmpl | Brk | Brk
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
IVM DVM 0 RD CBT | PCS PCR PCSe | IntE |NMIE NMI SRstE Prob
Vec pend En
Table 10.1 DCR Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State
EJTAG_Brk 31 Override EjtagBrk and DINT disable. Refer to Section R/W 0
_Opverride 10.7 “SecureDebug”.
If not
Re-enable EjtagBrk and DINT signal during boot. imple-
mented,
Allows EjtagBrk to be asserted by an EJTAG probe (or must be
assertion of DINT signal), resulting in a request for a written as
Debug Interrupt exception from the processor. This pro- Zero;
vides a means of recovering the cpu from crash, hang, return
loop or low-power mode. Zeros on
reads.
This feature can allow a Debug Executive to communi-
cate with the probe over the Fast Debug Channel (FDC)
and provides a host-based debugger the ability to query
the target processor via Debug Executive commands,
useful for determining cause of hang.
Software can write this bit and read back to determine if
the Secure Debug feature is implemented.
ENM 29 Endianess in which the processor is running in kernel R Externally
and Debug Mode: Set
Encoding Meaning
0 Little endian
1 Big endian
MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 213



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.1 DCR Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State

PCIM 26 Configure PC Sampling to capture all executed R 0
addresses or only those that miss the instruction cache
This feature is not supported and this bit will read as 0.

Encoding Meaning

0 All PCs captured
1 Capture only PCs that miss the cache.

PCnoASID 25 Controls whether the PCSAMPLE scan chain includes R 0
or omits the ASID field
An ASID is always included, so this bit will read as 0.

Encoding Meaning

0 ASID included in PCSAMPLE scan
1 ASID omitted from PCSAMPLE scan

DASQ 24 Qualifies Data Address Sampling using a data break- R 0
point.

Data address sampling is not supported so this bit will
read as 0

Encoding Meaning

0 All data addresses are sampled

1 Sample matches of data breakpoint 0

DASe 23 Enables Data Address Sampling R 0
Data address sampling is not supported so this bit will
read as 0

Encoding Meaning

0 Data Address sampling disabled.

1 Data Address sampling enabled.

DAS 22 Indicates if the Data Address Sampling feature is imple- R 0
mented.

Data address sampling is not supported so this bit will
read as 0.

Encoding Meaning

0 No DA Sampling implemented

1 DA Sampling implemented

FDClImpl 18 Indicates if the fast debug channel is implemented R 1

Encoding Meaning

0 No fast debug channel implemented

1 Fast debug channel implemented

214 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.1 Debug Control Register

Table 10.1 DCR Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State

DataBrk 17 Indicates if data hardware breakpoint is implemented: R Preset

Encoding Meaning

0 No data hardware breakpoint imple-
mented

1 Data hardware breakpoint imple-
mented

InstBrk 16 Indicates if instruction hardware breakpoint is imple- R Preset
mented:

Encoding Meaning

0 No instruction hardware breakpoint
implemented

1 Instruction hardware breakpoint
implemented

IVM 15 Indicates if inverted data value match on data hardware R Preset
breakpoints is implemented:

Encoding Meaning

0 No inverted data value match on data
hardware breakpoints implemented

1 Inverted data value match on data
hardware breakpoints implemented

DVM 14 Indicates if a data value store on a data value breakpoint R Preset
match is implemented:

Encoding Meaning

0 No data value store on a data value
breakpoint match implemented

1 Data value store on a data value break-
point match implemented

RDVec 11 Enables relocation of the debug exception vector. The R/W 0
value in the DebugVectorAddr register is used for
EJTAG exceptions when ProbTrap=0,and RDVec=1.

CBT 10 Indicates if complex breakpoint block is implemented: R Preset

Encoding Meaning

0 No complex breakpoint block imple-
mented

1 Complex breakpoint block imple-
mented

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 215



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.1 DCR Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State

PCS 9 Indicates if the PC Sampling feature is implemented. R 1

Encoding Meaning

0 No PC Sampling implemented

1 PC Sampling implemented

PCR 8:6 PC Sampling rate. Values 0 to 7 map to values 210212 R/W 7
cycles, respectively. That is, a PC sample is written out

every 32, 64, 128, 256, 512, 1024, 2048, or 4096 cycles
respectively. The external probe or software is allowed

to set this value to the desired sample rate.

PCSe 5 If the PC sampling feature is implemented, then indi- R/W 0
cates whether PC sampling is initiated or not. That is, a
value of 0 indicates that PC sampling is not enabled and
when the bit value is 1, then PC sampling is enabled and
the counters are operational.

IntE 4 Hardware and software interrupt enable for Non-Debug R/W 1
Mode, in conjunction with other disable mechanisms:

Encoding Meaning

0 Interrupt disabled

1 Interrupt enabled depending on other
enabling mechanisms

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug R/W 1
Mode:

Encoding Meaning

0 NMI disabled
1 NMI enabled

NMIpend 2 Indication for pending NMI: R 0

Encoding Meaning

0 No NMI pending
1 NMI pending

SRstE 1 Soft Reset Enable R/W 1
This bit allows the system to mask soft resets. The core
does not internally mask soft resets. Rather the state of
this bit appears on the EJ_SRStE external output signal,
allowing the system to mask soft resets if desired.

216 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

Table 10.1 DCR Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State
ProbEn 0 Probe Enable. This bit reflects the ProbEn bit in the R Same value
EJTAG Control register: as ProbEn
in ECR
Encoding Meaning (see Table
9-4
0 No accesses to dmseg allowed )
1 Accesses to dmseg by EJTAG probe ser-
vices allowed
0 30, 28:27, Must be written as zeros; return zeros on reads. 0 0
21:19,
13:12

10.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area. Data breakpoints can be set to cause
a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many
aspects, and are thus described in parallel in the following. The term hardware is not generally added to breakpoint,
unless required to distinguish it from a software breakpoint.

There are two types of simple hardware breakpoints implemented in the microAptiv UC core: Instruction breakpoints
and Data breakpoints. The microAptiv UC core may also contain a complex breakpoint unit.

A core may be configured with the following breakpoint options:

*  No data or instruction breakpoints, without complex break support

*  Two instruction and one data breakpoint, without complex break support

*  Four instruction and two data breakpoints, without complex break support

»  Six instruction and two data breakpoints, without support for complex breaks

*  Six instruction and two data breakpoints, with support for complex breaks

»  Eight instruction and four data breakpoints, without support for complex breaks

*  Eight instruction and four data breakpoints, with support for complex breaks

Instruction breaks occur on instruction fetch operations, and the break is set on the virtual address on the bus between
the CPU and the instruction cache. Finally, a mask can be applied to the virtual address to set breakpoints on a range

of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (the value of PC) with the registers
for each instruction breakpoint, including masking of address. When an instruction breakpoint matches, a debug

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 217



EJTAG Debug Support in the microAptiv™ UC Core

218

exception and/or a trigger is generated. An internal bit in the instruction breakpoint registers is set to indicate that the
match occurred.

10.2.1 Data Breakpoints

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address values, similar to the Instruc-
tion breakpoint. Data breakpoints can be set on a load, a store, or both. Data breakpoints can also be set based on the
value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), accessed bytes (BYTELANE) and data value (DATA), with the registers for each data breakpoint
including masking or qualification on the transaction properties. When a data breakpoint matches, a debug exception
and/or a trigger is generated, and an internal bit in the data breakpoint registers is set to indicate that the match
occurred. The match is precise in that the debug exception or trigger occurs on the instruction that caused the break-
point to match.

10.2.2 Complex Breakpoints

The complex breakpoint unit utilizes the instruction and data breakpoint hardware and looks for more specific match-
ing conditions. There are several different types of enabling that allow more exact breakpoint specification. Tuples
add an additional condition to data breakpoints of requiring an instruction breakpoint on the same instructions. Pass
counters are counters that decrement each time a matching breakpoint condition is taken. When the counter reaches 0,
the break or trigger effect of the breakpoint is enabled. Priming allows a breakpoint to only be enabled when another
trigger condition has been detected. Data qualification allows instruction breakpoints to only be enabled when a cor-
responding load data triggerpoint has matched both address and data. Data qualified breakpoints are also disabled ifa
load is executed that matches on the address portion of the triggerpoint, but has a mismatching data value. The com-
plex breakpoint features can be combined to create very complex sequences to match on.

In addition to the breakpoint logic, the complex break unit also includes a Stopwatch Timer block. This counter can
be used to measure time spent in various sections. It can either be free-running, or it can be set up to start and stop
counting based on a trigger from instruction breakpoints.

10.2.3 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or TE
bits in the /BCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

10.2.3.1 Conditions for Matching Instruction Breakpoints

There are two methods for matching conditions:, Equality and Mask or Address Range.

Equality and Mask

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level.
The registers for each instruction breakpoint have the values and mask used in the compare, and the equation that
determines the match is shown below in C-like notation.

IB match =
( <all 1's> == ( IBMnigy | ~ ( PC * IBAnigy ) )

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the
IB_match to be true.

Address Range

Cores may optionally support the address range triggered instruction breakpoints. When this feature is configured, the
following changes are made to the instruction breakpoint registers:

*  IBAn: represents the upper limit of a address range boundary
*  IBMn: represents the lower limit of the address range boundary
In addition, the following bits must be supported:

IBCn[6].hwarts : a preset value of 1 indicates that the address range triggered instruction breakpoint feature is sup-
ported for this particular instruction breakpoint channel. This bit is read-only.

IBCn[5].excl : a value of 0 indicates that the breakpoint will match for addresses inclusive (within) the range defined
by IBMn and IBAn. A value of 1 indicatesthat the breakpoint will match for addresses exclusive (outside) to the range
defined by /BMn and IBAn. This bit is writeable.

IBCn[4].hwart : a value of 0 indicates that the breakpoint will match using the “Equality and Mask” equation as found
in Section 10.2.3.1 “Conditions for Matching Instruction Breakpoints”. A value of 1 indicates that the breakpoint
will match using address ranges using the equation below:

IB match =
(1IBCnTCuse || ( TC == IBCnIC ) ) &&
( ! IBCnASIDuse || ( ASID == IBASIDnASID ) ) &&
( ((~IBCnhwarts || ~IBCnhwart) &&
(( IBMnIBM | ~ ( PC * IBAnIBA ) ) == ~0) ||
(( IBCnhwarts && IBCnhwart) &&

((~IBCnexcl && (IBM <= PC <= IBA)) ||
( IBCnexcl && (IBM > PC || PC > IBA)
)
Or if microMIPS is supported:

IB_range_match =

(1IBCnTCuse || ( TC == IBCnTC ) ) &&
( ! IBCnASIDuse || ( ASID == IBASIDnASID ) ) &&
| ~IBCnhwart) &&

|
( ((~IBCnhwarts |
|

(( IBMnIBM | ~ ( ( ( PC[MSB:1] << 1 ) + ISAmode ) * IBAnIBA ) ) == ~0 ) ||
(( IBCnhwarts && IBCnhwart) &&
( IBMnIBM[0] | ~ ( ISAmode * IBAnIBA[0] ) ) == ~0) &&

((~IBCnexcl && (IBM[MSB:1] <= PC[MSB:1] <= IBA[MSB:11)) ||

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 219



EJTAG Debug Support in the microAptiv™ UC Core

220

( IBCnexcl && (IBM[MSB:1] > PC[MSB:1] || PC[MSB:1] > IBA[MSB:1])
)

Also note that addresses that overlap a boundary is considered for both exclusive and inclusive breakpoint matches.

10.2.3.2 Conditions for Matching Data Breakpoints

There are two methods for matching conditions, namely 1) by Equality and Mask or 2) by Address Range:

Equality and Mask

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or
destination address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data
value of a transaction. The registers for each data breakpoint have the values and mask used in the compare, and the

equation that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB _match =
( ( ( TYPE == load ) && ! DBCnygg ) ||
( ( TYPE == store ) && ! DBChnyygg ) ) &&
DB addr match && ( DB no value compare || DB value match )

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR) and the
accessed bytes (BYTELANE) where BYTELANE[O] is 1 only if the byte at bits [7:0] on the bus is accessed, and
BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr match is shown below.

DB_addr_match =
( <all 1's> == ( DBMnppy | ~ ( ADDR
( <all 0's> != ( ~ BAI & BYTELANE ) )

A

DBAnNpp, ) ) ) &&

The size of DBCngy and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BY TELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB _no_value compare
is shown below.

DB_no_value_compare =
( <all 1's> == ( DBCngyy | DBCngar | ~ BYTELANE ) )

The size of DBCnpgj \j, DBCngay and BYTELANE is 4 bits.

In case a data value compare is required, DB no_value compare is false, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The DBCIVM bit inverts the sense of the
match - if set, the value match term will be high if the data value is not the same as the data in the DBVn register. The
endianess is not considered in these match equations for value, as the compare uses the data bus value directly, thus
debug software is responsible for setup of the breakpoint corresponding with endianess.

DB _value match =

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

A

DBCnIVM
(((DATA[7:0] == DBVnppy(7.0;) || ! BYTELANE[O] || DBCnppy[o] || DBChgarpo; ) &&
((DATA[15:8] == DBVnpgy[is.g7) || ! BYTELANE[1] || DBCngpy; || DBChgarpiy ) &&
((DATA[23:16] == DBVnppy(z3:.16]) || ! BYTELANE[2] || DBCnppy(p; || DBCngarra) &&
((DATA[31:24] == DBVnpgy(31:247) || ! BYTELANE[3] || DBCngpys; || DBChgarpa; ))

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the
DB _match to be true.

Address Range

Cores may optionally support the address range triggered data breakpoints. When this feature is configured, the fol-
lowing changes are made to the data breakpoint registers:

*  DBAn : represents the upper limit of a address range boundary
*  DBMn : represents the lower limit of the address range boundary
In addition, the following bits must be supported:

DBCn[10].hwarts: a preset value of 1 indicates that the address range triggered data breakpoint feature is supported
for this particular data breakpoint channel. This bit is read-only.

DBCn[9].exc : a value of 0 indicates that the breakpoint will match for addresses inclusive (within) the range defined
by DBMn and DBAn. A value of 1 indicates that the breakpoint will match for addresses exclusive (outside) to the
range defined by DBMn and DBAn. This bit is writeable.

DBCn[8].hwart: a value of 0 indicates that the breakpoint will match using the “Equality and Mask” equation as found
in Section 10.2.3.2 “Conditions for Matching Data Breakpoints”. A value of 1 indicates that the breakpoint will
match using address ranges using the equation below:

DB match =

(!DBCnTCuse || ( TC == DBCnTC ) ) &&

( ( ( TYPE == load ) && ! DBCnNoLB ) || ( ( TYPE == store ) && ! DBCnNoSB ) ) &&
DB addr_ range match && ( DB no value compare || DB value match )

DB _addr_range match =

( ! DBCnASIDuse || ( ASID == DBASIDnASID ) ) &&
( ((~DBCnhwarts || ~DBCnhwart) &&
(( DBMNDBM | ~ ( ADDR * DBAnDBA ) ) == ~0 ) ||

(( DBCnhwarts && DBCnhwart) &&
((~DBCnexcl && (DBMn <= ADDR <= DBAn)) ||
( DBCnexcl && (DBMn > ADDR || ADDR > DBAn)

When address range triggered data breakpoints is enabled, DBCn.BLM[3:0] must be set to 4'b1111 because value
matching is not supported with this feature. Addresses that overlap a boundary is considered for both exclusive and
inclusive breakpoint matches.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 221



EJTAG Debug Support in the microAptiv™ UC Core

222

10.2.4 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.

10.2.4.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the /BCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in the /BS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register
point to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions
receiving a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

10.2.4.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match con-
dition is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug excep-
tion.

A debug data break exception occurs when a data breakpoint indicates a match. In this case the DEPC register and
DBD bit in the Debug register points to the instruction that caused the DB_match equation to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

* A store transaction is not allowed to complete the store to the memory system.

*  Aload transaction with no data value compare, i.e. where the DB_no_value_ compare is true for the match,
is not allowed to complete the load.

* A load transaction for a breakpoint with data value compare must occur from the memory system, since the value
is required in order to evaluate the breakpoint.

The result of this is that the load or store instruction causing the debug data break exception appears as not executed,
with the exception that a load from the memory system does occur for a breakpoint with data value compare, but the

register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the following rules apply with respect to updating the BS[n] bits.

*  On both a load and store the BS[n] bits are required to be set for all matching breakpoints without a data value
compare.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

*  On a store the BS[n] bits are allowed but not required to be set for all matching breakpoints with a data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

*  On aload then none of the BS[n] bits for breakpoints with data value compare are allowed to be set, since the
load is not allowed to occur due to the debug exception from a breakpoint without a data value compare, and a
valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
is re-executed. This re-execution may result in a repeated load from system memory, since the load may have
occurred previously in order to evaluate the breakpoint as described above. I/O devices with side effects on loads may
not be re-accessible without changing the system behavior. The Load Data Value register was introduced to capture
the value that was read and allow debug software to synthesize the load instruction without re-accessing memory.
Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise the debug data
break exception will reoccur.

10.2.5 Breakpoint Used as Triggerpoint

Both instruction and data hardware breakpoints can be setup by software so that a matching breakpoint does not gen-
erate a debug exception, but only an indication through the BS[n] bit. The TE bit in the /BCn or DBCn register con-
trols if an instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints,
only compared for instructions executed in non-debug mode.

The BS[n] bit in the /BS or DBS register is set when the respective /B_match or DB_match bit is true.

The triggerpoint feature can be used to start and stop tracing.

10.2.6 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 10.2.

Table 10.2 Addresses for Instruction Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1000 IBS Instruction Breakpoint Status
0x1100 +n * 0x100 IBAn Instruction Breakpoint Address n
0x1108 +n * 0x100 I1BMn Instruction Breakpoint Address Mask n
0x1110 + n * 0x100 IBASIDn | Instruction Breakpoint ASID n
0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n
0x1120 +n * 0x100 IBCCn Instruction Breakpoint Complex Control n
0x1128 +n * 0x100 IBPCn Instruction Breakpoint Pass Counter n
n is breakpoint number in range 0 to 5 (or 3 or 1, depending on the implemented hardware)

An example of some of the registers; /BAO is at offset 0x1100 and /BC2 is at offset 0x1318.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 223



EJTAG Debug Support in the microAptiv™ UC Core

224

10.2.6.1 Instruction Breakpoint Status (IBS) Register (0x1000)

Figure 10.2 IBS Register Format

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints. This register is required only if instruction breakpoints are implemented.

31 30 29 28 27 24 23
Res| ASIDsup | Res BCN Res BS
Table 10.3 IBS Register Field Descriptions
Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31 Must be written as zero; returns zero on read. R 0
ASIDsup 30 Indicates that ASID compare is supported in instruction R 0
breakpoints.
0: No ASID compare.
1: ASID compare (jgasipn register implemented).
Res 29:28 Must be written as zero; returns zero on read. R 0
BCN 27:24 Number of instruction breakpoints implemented. 0,2,4,6or 8
Res 23:8 Must be written as zero; returns zero on read. R 0
BS 7:0 Break status for breakpoint n is at BS[n], with n from 0 R/W Undefined
to 7°. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched and IBCnTE or
IBCNBE are set

[a] Based on actual hardware implemented.
[b] In case of fewer than 8 Instruction breakpoints the upper bits become reserved.

31

Figure 10.3 IBAn Register Format

10.2.6.2 Instruction Breakpoint Address n (IBAn) Register (0x1100 + n * 0x100)

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint
n. This register is required only if instruction breakpoints are implemented.

IBA

Table 10.4 IBAn Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
IBA 31:0 Instruction breakpoint address for condition. R/W Undefined

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




10.2 Hardware Breakpoints

10.2.6.3 Instruction Breakpoint Address Mask n (IBMn) Register (0x1108 + n*0x100)

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match.
A mask value of all 0’s would require an exact address match, while a mask value of all 1’s would match on any
address. This register is required only if instruction breakpoints are implemented.

Figure 10.4 IBMn Register Format
31 0

IBM

Table 10.5 IBMn Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
IBM 31:0 Instruction breakpoint address mask for condition: R/W Undefined
Encoding Meaning
0 Corresponding address bit not masked.
1 Corresponding address bit masked.

10.2.6.4 Instruction Breakpoint ASID n (IBASIDn) Register (0x1110 + n*0x100)

For processors with a TLB-based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the microAptiv UC processor, this register is reserved and reads as 0. This register is required only if instruc-
tion breakpoints are implemented.

Figure 10.5 IBASIDn Register Format
31 8 7 0

Res ASID

Table 10.6 IBASIDn Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7:0 Instruction breakpoint ASID value for a compare. R 0

10.2.6.5 Instruction Breakpoint Control n (IBCn) Register (0x1118 + n*0x100)

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n. This register is
required only if instruction breakpoints are implemented.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 225



EJTAG Debug Support in the microAptiv™ UC Core

Figure 10.6 IBCn Register Format
31 24 23 22 7 6 5 4 3.2 1 0

Res ASIDuse Res hwarts | excl | hwart | Res | TE | Res | BE

Table 10.7 IBCn Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
Res 31:24 | Must be written as zero; returns zero on read. R 0
ASIDuse 23 Use ASID value in compare for instruction breakpoint n: R 0
Encoding Meaning
0 Don’t use ASID value in compare
1 Use ASID value in compare
Res 227 Must be written as zero; returns zero on read. R 0
hwarts 6 A preset value of 1 indicates that the address- range trig- R Preset
gered instruction breakpoint feature is supported for this
particular instruction breakpoint channel.
excl 5 A value of 0 indicates that the breakpoint will match for R/W 0

addresses within (inclusive of) the range defined by
IBMn and IBAn. A value of 1 indicates that the break-
point will match for addresses outside (exclusive to) the
range defined by /IBMn and IBAnN.

hwart 4 A value of 0 indicates that the breakpoint will match R/W 0
using the “Equality and Mask” equation as found section
under 10.2.3.1 “Conditions for Matching Instruction
Breakpoints”.

A value of 1 indicates that the breakpoint will match
using the “Address Range” equation in section

10.2.3.1 “Conditions for Matching Instruction
Breakpoints”

Res 3 Must be written as zero; returns zero on read. R 0

TE 2 Use instruction breakpoint n as triggerpoint: R/W 0

Encoding Meaning

0 Don’t use it as triggerpoint

1 Use it as triggerpoint

Res 1 Must be written as zero; returns zero on read. R 0

BE 0 Use instruction breakpoint n as breakpoint: R/W 0

Encoding Meaning

0 Don’t use it as breakpoint

1 Use it as breakpoint

226 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

10.2.6.6 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n*0x100)

The Instruction Breakpoint Complex Control n (IBCCn) register controls the complex break conditions for instruction
breakpoint n. This register is required only if complex breakpoints are implemented and only for implemented
instruction breakpoints.

Figure 10.7 IBCCn Register Format

31 14 13 10 9 8 5 4 3 2 1 0
Res PrCnd CBE | DBrkNum |Q Res
Table 10.8 IBCCn Register Field Descriptions
Fields
Name Bits Description Read/Write Reset State
Res 31:14, | Must be written as zero; returns zero on read. R 0
3:0
PrCnd 13:12 | Upper bits of priming condition for instruction breakpoint R 0
n. The microAptiv UC core only supports 4 priming con-
ditions, so the upper 2 bits are read as 0.
PrCnd 11:10 | Priming condition for instruction breakpoint n. R/W 0
00 - Bypass, no priming needed
Other - Varies depending on the break number; refer to
Table 10.10 for mapping.
CBE 9 Complex Break Enable. Enables this breakpoint for use R/W 0
in a complex sequence as a priming condition for another
breakpoint, to start or stop the stopwatch timer, or as part
of a tuple breakpoint.
DBrkNum 8:5 Indicates which data breakpoint channel is used to qualify R 61/2D Complex Breakpoint
this instruction breakpoint. Configuration:
IBCCO0..2-0
IBCC3..6- 1
81/4D Complex Breakpoint
Configuration:
IBCCO0..1-0
IBCC2.3-1
IBCC4..5-2
IBCC6..7 - 3
Q 4 Qualify this breakpoint based on the data breakpoint indi- R/W 0
cated in DBrkNum.
0 - Not dependent on qualification
1 - Breakpoint must be qualified to be taken

10.2.6.7 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)

The Instruction Breakpoint Pass Counter n (IBPCn) register controls the pass counter associated with instruction
breakpoint n. This register is required only if complex breakpoints are implemented and only for implemented
instruction breakpoints.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

227



EJTAG Debug Support in the microAptiv™ UC Core

If complex breakpoints are implemented, there will be an 8b pass counter for each of the instruction breakpoints on
the microAptiv UC core.

Figure 10.8 IBPCn Register Format
31 8 7 0

0 PassCnt

Table 10.9 IBPCn Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
0 31:8 | Ignored on write, returns zero on read. R 0
PassCnt 7:0 Prevents a break/trigger action until the matching condi- R/W 0
tions on breakpoint n have been seen this number of
times.

Each time the matching condition is seen, this value will
be decremented by 1.When the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at 0.

The break or trigger action is imprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register is written to 0 by soft-
ware.

The instruction pass counter should not be set on instruc-
tion breakpoints that are being used as part of a tuple
breakpoint.

10.2.7 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 10.10.

Table 10.10 Addresses for Data Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n

0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n
0x2f0 DVM Data Value Match Register

n is breakpoint number as 0, 1, 2 or 3 (or just 0, depending on the implemented hardware)

228 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

An example of some of the registers; DBMO is at offset 0x2108 and DBV/1 is at offset 0x2220.

10.2.7.1 Data Breakpoint Status (DBS) Register (0x2000)

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.
This register is required only if data breakpoints are implemented.

31 30

29 28

Figure 10.9 DBS Register Format
27 24 23

Res | ASIDsup | Res

BCN Res

BS

Table 10.11 DBS Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31 Must be written as zero; returns zero on read. R 0
ASID 30 Indicates that ASID compares are supported in data R 0
breakpoints.
0: Not supported
1: Supported
Res 29:28 Must be written as zero; returns zero on read. R 0
BCN 27:24 Number of data breakpoints implemented. R 4,2,10r0?
Res 23:4 Must be written as zero; returns zero on read. R 0
BS 3:0 Break status for breakpoint n is at BS[n], with n from 0 R/WO Undefined
to 1°. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched.
[a] Based on actual hardware implemented.
[b] In case of only 1 data breakpoint bit 1 become reserved.

10.2.7.2 Data Breakpoint Address n (DBAnN) Register (0x2100 + 0x100 * n)

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n. This reg-
ister is required only if data breakpoints are implemented.

31

Figure 10.10 DBAnN Register Format

DBA

Table 10.12 DBAN Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
DBA 31:0 Data breakpoint address for condition. R/W Undefined

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

229



EJTAG Debug Support in the microAptiv™ UC Core

10.2.7.3 Data Breakpoint Address Mask n (DBMn) Register (0x2108 + 0x100 * n)

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for
data breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match. A mask value
of all 0’s would require an exact address match, while a mask value of all 1’s would match on any address. This reg-
ister is required only if data breakpoints are implemented.

Figure 10.11 DBMn Register Format
31 0
DBM

Table 10.13 DBMn Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
DBM 31:0 Data breakpoint address mask for condition: R/W Undefined

0: Corresponding address bit not masked
1: Corresponding address bit masked

10.2.7.4 Data Breakpoint ASID n (DBASIDn) Register (0x2110 + 0x100 * n)

For processors with a TLB-based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the microAptiv UC processor, this register is reserved and reads as 0. This register is required only if data
breakpoints are implemented.

Figure 10.12 DBASIDn Register Format
31 8 7 0
ASID

Res

Table 10.14 DBASIDn Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7:0 Data breakpoint ASID value for compares. R 0

10.2.7.5 Data Breakpoint Control n (DBCn) Register (0x2118 + 0x100 * n)

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n. This register is required only if
data breakpoints are implemented.

Figure 10.13 DBCn Register Format
31 24 23 22 18 17 14 13 12 11 10 9 8 7 4 3 2 1 0

Re ASIDuse Res BAI NoSB | NoLB | Res |hwarts | excl | hwart | BLM | Res | TE |IVM | BE

230 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

Table 10.15 DBCn Register Field Descriptions

Fields

Name Bits Description Read/Write Reset State

Res 31:24 Must be written as zero; returns zero on reads. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n: R 0

Encoding Meaning

0 Don’t use ASID value in compare

1 Use ASID value in compare

Res 22:18 Must be written as zero; returns zero on reads. R 0

BAI 17:14 | Byte access ignore controlsignore of access to a specific R/W Undefined
byte. BAI[0] ignores access to byte at bits [7:0] of the
data bus, BAI[1] ignores access to byte at bits [15:8], etc.

Encoding Meaning

0 Condition depends on access to corre-
sponding byte

1 Access for corresponding byte is
ignored

NoSB 13 Controls if condition for data breakpoint is not fulfilled R/W Undefined
on a store transaction:

Encoding Meaning

0 Condition may be fulfilled on store
transaction

1 Condition is never fulfilled on store
transaction

NoLB 12 Controls if condition for data breakpoint is not fulfilled R/W Undefined
on a load transaction:

Encoding Meaning

0 Condition may be fulfilled on load
transaction

1 Condition is never fulfilled on load
transaction

Res 11 Must be written as zero; returns zero on reads. R 0

hwarts 10 A preset value of 1 indicates that the address range trig- R Preset
gered data breakpoint feature is supported for this par-
ticular data breakpoint channel.

excl 9 A value of 0 indicates that the breakpoint will match for R/W 0
addresses inclusive (within) the range defined by DBMn
and DBAnN. A value of 1 indicates that the breakpoint
will match for addresses exclusive (outside) of the
range defined by DBMn and DBAnN.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 231



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.15 DBCn Register Field Descriptions (Continued)

Fields

Name Bits Description Read/Write Reset State

hwart 8 A value of 0 indicates that the breakpoint will match R/W 0
using the “Equality and Mask” equation as found sec-
tion under 10.2.3.2 “Conditions for Matching Data
Breakpoints”.

A value of 1 indicates that the breakpoint will match
using the “Address Range”equation in section
10.2.3.2 “Conditions for Matching Data Breakpoints”

BLM 7:4 Byte lane mask for value compare on data breakpoint. R/W Undefined
BLM][0] masks byte at bits [7:0] of the data bus, BLM[1]
masks byte at bits [15:8], etc.:

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

Res 3 Must be written as zero; returns zero on reads. R 0

TE 2 Use data breakpoint n as triggerpoint: R/W 0

Encoding Meaning

0 Don’t use it as triggerpoint

1 Use it as triggerpoint

VM 1 Invert Value Match. When set, the data value compare R/W 0
will be inverted. i.e., a break or trigger will be taken if
the value does not match the specified value

BE 0 Use data breakpoint n as breakpoint: R/W 0

Encoding Meaning

0 Don’t use it as breakpoint

1 Use it as breakpoint

10.2.7.6 Data Breakpoint Value n (DBVn) Register (0x2120 + 0x100 * n)

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. This register is
required only if data breakpoints are implemented.

Figure 10.14 DBVn Register Format

31 0

DBV

Table 10.16 DBVn Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
DBV 31:0 Data breakpoint value for condition. R/W Undefined

232 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

10.2.7.7 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n*0x100)

The Data Breakpoint Complex Control n (DBCCn) register controls the complex break conditions for data breakpoint
n. This register is required only if complex breakpoints are implemented and only for implemented data breakpoints.

Figure 10.15 DBCCn Register Format
31 20 19 16 15 14 13 10 9 8 5 43210

Res TIBrkNum TUP | Res PrCnd CBE | DBrkNum [Q Res

Table 10.17 DBCCn Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
Res 31:20, | Must be written as zero; returns zero on read. R 0
14, 3:0
TIBrkNum 19:16 | Tuple Instruction Break Number. Indicates which R 61/2D Complex Breakpoint
instruction breakpoint will be paired with this data break- Configuration:
point to form a tuple breakpoint. DBCCO - 0
DBCCI -3
81/4D Complex Breakpoint
Configuration:
DBCCO -0
DBCCI -2
DBCC2 -4
DBCC3 - 6
TUP 15 Tuple Enable. Qualify this data breakpoint with a match R/W 0
on the TIBrkNum instruction breakpoint on the same
instruction.
PrCnd 13:12 | Upper bits of priming condition for D breakpoint n. R 0

microAptiv UC only suppotts 4 priming conditions so the
upper 2 bits are read only as 0.

PrCnd 11:10 | Priming condition for D Breakpoint n. R/W 0
00 - Bypass, no priming needed

Other - Varies depending on the break number, refer to
Table 10.20 for mapping.

CBE 9 Complex Break Enable - enables this breakpoint for use R/W 0
as a priming or qualifying condition for another break-
point.
DQBrkNum 8:5 Indicates which data breakpoint channel is used to qualify R 0

this data breakpoint.

Data qualification of data breakpoints is not supported on
the microAptiv UC core and this field will read as 0 and
cannot be written.

DQ 4 Qualify this breakpoint based on the data breakpoint indi- R 0
cated in DBrkNum.

Data qualification of data breakpoints is not supported on
the microAptiv UC core and this field will read as 0 and
cannot be written.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 233



EJTAG Debug Support in the microAptiv™ UC Core

10.2.7.8 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)

The Data Breakpoint Pass Counter n (DBPCn) register controls the pass counter associated with data breakpoint n.
This register is required only if complex breakpoints are implemented and only for implemented data breakpoints.

If complex breakpoints are implemented, there will be an 16b pass counter for each of the data breakpoints on the
microAptiv UC core.

Figure 10.16 DBPCn Register Format
31 16 15 0

0 PassCnt

Table 10.18 DBPCn Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
0 31:16 |Ignored on write, returns zero on read. R 0
PassCnt 15:0 | Prevents a break/trigger action until the matching condi- R/W 0
tions on data breakpoint n have been seen this number of
times.

Each time the matching condition is seen, this value will
be decremented by 1. When the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at 0.

The break or trigger action is imprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register is written to 0 by soft-
ware.

10.2.7.9 Data Value Match (DVM) Register (0x2ffo)

The Data Value Match (DVM) register captures the data value of a load that takes a precise data value breakpoint. This
allows debug software to synthesize the load instruction without re-executing it in case it is to a system register that
has destructive reads. This register is required only if data breakpoints are implemented.

Figure 10.17 DVM Register Format
31 0

LDV

Table 10.19 DVM Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
LDV 31:0 Load data value for the last precise load data value R Undefined
breakpoint taken.

234 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

10.2.8 Complex Breakpoint Registers

The registers for complex breakpoints are described Table 10.20. These registers have implementation information
and are used to setup the data breakpoints. All registers are in drseg.

Table 10.20 Addresses for Complex Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1120 + 0x100 * n IBCCn Instruction Breakpoint Complex Control n - described above
with instruction breakpoint registers
0x1128 + 0x100 * n IBPCn Instruction Breakpoint Pass Counter n - described abovewith
instruction breakpoint registers
0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n - described above with
data breakpoint registers
0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n - described above with data
breakpoint registers
0x8000 CBTControl | Complex Break and Triggerpoint Control - indicates which
of the complex breakpoint features are implemented
0x8300 + 0x20 * n PrCndAin Prime Condition Register A for Instruction breakpoint n
0x84e0 + 0x20 * n PrCndADn Prime Condition Register A for Data breakpoint n
0x8900 STCil Stopwatch Timer Control
0x8908 STCnt Stopwatch Timer Count
n is breakpoint number from 0 to 7 (range dependent on implemented hardware)

10.2.8.1 Complex Break and Trigger Control (CBTC) Register (0x8000)

The CBTC register contains configuration bits that indicate which features of complex break are implemented as well
as a control bit for the stopwatch timer. On the microAptiv UC core, if complex break is implemented, all of the sep-
arate features will be present. This register is required only if complex breakpoints are implemented.

Figure 10.18 CBTC Register Format
31 9 8 7 5 4 3 2 1 0

Res STMode| Res |STP| PP |DQP|TP|PCP

Table 10.21 CBTC Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
Res 31:9, 7:5 | Reserved R 0
STMode 8 Stopwatch Timer Mode: controls whether the stopwatch R/W 1

timer is free-running or controlled by triggerpoints:
0 - free-running
1 - started and stopped by instruction triggers

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 235



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.21 CBTC Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write Reset State
STP 4 Stopwatch Timer Present - indicates whether stopwatch R 1
timer is implemented.
PP 3 Priming Present - indicates whether primed breakpoints R 1
are supported
DQP 2 Data Qualify Present - indicates whether data qualified R 1
breakpoints are supported.
TP 1 Tuple Present - indicates whether any tuple breakpoints R 1
are implemented.
PCP 0 Pass Counters Present - indicates whether any break- R 1
points have pass counters associated with them.

10.2.8.2 Priming Condition A (PrCndAl/Dn) Registers

The Prime Condition registers hold implementation specific information about which triggerpoints are used for the
priming conditions for each breakpoint register. On the microAptiv UC core, these connections are predetermined
and these registers are read-only. This register is required only if complex breakpoints are implemented.

The architecture allows for up to 16 priming conditions to be specified and there can be up to 4 priming condition
registers per breakpoint (A/B/C/D). The microAptiv UC core only allows for 4 priming conditions and thus only
implements the PrCndA registers. The general description is shown in Table 10.22. The actual priming conditions for
each of the breakpoints are shown in Table 10.23.

Figure 10.19 PrCndA Register Format
31 24 23 16 15 8 7 0

Cond3 Cond2 Condl1 Cond0

236 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.2 Hardware Breakpoints

Table 10.22 PrCndA Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
CondN 31:24 Specifies which triggerpoint is connected to priming R Preset

23:16 condition 3, 2, 1, or 02 for the current breakpoint.

15:8

7:0
31:30 Reserved R 0
23:22

15:14

7:6
29:28 Trigger type R Preset
21:20 00 - Special/Bypass

13:12 01 - Instruction

5:4 10 - Data

11 - Reserved

27:24 Break Number, 0-14 R Preset
19:16

11:8

3:0

[a] Condition 0 is always Bypass and will read as 8 b0

Table 10.23 Priming Conditions and Register Values for 61/2D Configuration

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value :;fsseea
Inst0 Bypass Data0 Instl Inst2 0x1211 2000 0x8300
Inst1 Bypass Data0 Inst0 Inst2 0x1210_2000 0x8320
Inst2 Bypass Data0 Inst0 Instl 0x1110_2000 0x8340
Inst3 Bypass Datal Inst4 Inst5 0x1514 2100 0x8360
Inst4 Bypass Datal Inst3 Inst5 0x1513 2100 0x8380
Inst5 Bypass Datal Inst3 Inst4 0x1413 2100 0x83a0
Data0 Bypass Inst0 Instl Inst2 0x1211_1000 0x84¢0
Datal Bypass Inst3 Inst4 Inst5 0x1514 1300 0x8500

Table 10.24 Priming Conditions and Register Values for 81/4D Configuration

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value g;:seegz
Inst0 Bypass Data0 Instl Inst2 0x1211 2000 0x8300
Instl Bypass Data0 Inst0 Inst2 0x1210_2000 0x8320
Inst2 Bypass Datal Inst3 Inst4 0x1413 2100 0x8340
Inst3 Bypass Datal Inst2 Inst4 0x1412 2100 0x8360
Inst4 Bypass Data2 Inst5 Inst6 0x1615 2200 0x8380

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

237



EJTAG Debug Support in the microAptiv™ UC Core

238

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value g;?seegt
InstS Bypass Data2 Inst4 Inst6 0x1614 2200 0x83a0
Inst6 Bypass Data3 Inst7 Inst0 0x1017_2300 0x83c0
Inst7 Bypass Data3 Inst6 Inst0 0x1016_2300 0x83e0

Data0 Bypass Inst0 Instl Datal 0x2111 1000 0x84e0

Datal Bypass Inst2 Inst3 Data2 0x2213 1200 0x8500

Data2 Bypass Inst4 Inst5 Data3 0x2315_ 1400 0x8520

Data3 Bypass Inst6 Inst7 Data0 0x2017_1600 0x8540

10.2.8.3 Stopwatch Timer Control (STCtl) Register (0x8900)

The Stopwatch Timer Control (STCtl) register gives configuration information about how the stopwatch timer register
is controlled. On the microAptiv UC core, the break channels that control the stopwatch timer are fixed and this reg-
ister is read-only. This register is required only if stopwatch timer is implemented.

Figure 10.20 STCtl Register Format

31 18 17 14 13 10 9 8 5 4 1 0
Res StopChanl | StartChanl |Enl | StopChanO | StartChan0O | En0
Table 10.25 STCtl Register Field Descriptions
Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31:18 Must be written as zero; returns zero on read. R 0

StopChanl 17:14 Indicates the instruction breakpoint channel that will R 0
stop the counter if the timer is under pairl breakpoint
control

StartChanl 13:10 Indicates the instruction breakpoint channel that will R 0
start the counter if the timer is under pairl breakpoint
control

Enl 9 Enables the second pair (pairl) of breakpoint registers to R 0

control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlSTM)and this bit is set,
the breakpoints indicated in the StartChanl and
StopChan1 fields will control the timer.
The microAptiv UC core only supports 1 pair of stop-
watch control breakpoints so this field is not writable
and will read as 0.

StopChan0 8:5 Indicates the instruction breakpoint channel that will R 0x4
stop the counter if the timer is under pairQ breakpoint
control.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.3 Complex Breakpoint Usage

Table 10.25 STCtl Register Field Descriptions

Fields

Read/Wr
Name Bit(s) Description ite Reset State
StartChan0 4:1 Indicates the instruction breakpoint channel that will R 0x1
start the counter if the timer is under pair0 breakpoint
control.
En0O 0 Enables the first pair (pair0) of breakpoint registers to R 1

control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlSTM)and this bit is set,
the breakpoints indicated in the StartChan0 and
StopChan0 fields will control the timer.

The microAptiv UC core only supports 1 pair of stop-
watch control breakpoints so this field is not writable
and will read as 1.

10.2.8.4 Stopwatch Timer Count (STCnt) Register (0x8908)

The Stopwatch Timer Count (STCnt) register is the count value for the stopwatch timer. This register is required only
if the stopwatch timer is implemented.

Figure 10.21 STCnt Register Format

Count

Table 10.26 STCtl Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Count 31:0 Current counter value R/W 0

10.3 Complex Breakpoint Usage

10.3.1 Checking for Presence of Complex Break Support

Software should verify that the complex breakpoint hardware is implemented prior to attempting to use it. The full
sequence of steps is shown below for general use. Spots where the microAptiv UC core has restricted behavior are
noted.

1. Read the Config1EP bit to check for the presence of EJTAG logic. EITAG logic is always present on the
microAptiv UC core.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 239



EJTAG Debug Support in the microAptiv™ UC Core

240

2. Read the DebugNoDCR bit to check for the presence of the Debug Control Register (DCR). The DCR will always
be implemented on the microAptiv UC core.

3. Read the DCRCBT bit to check for the presence of any complex break and trigger features

4. Read the CBTControl register to check for the presence of each individual feature. If the microAptiv UC core
implements any complex break and trigger features, it will implement all of them

5. If Pass Counters are implemented, they may not be implemented for all break channels and may have different
counter sizes. To determine the size and presence of each pass counter, software can write -1 to each of the
IBPCn and DBPCn registers and read it back. If the microAptiv UC core implements pass counters, it will imple-
ment an 8b counter for each instruction breakpoint and a 16b counter for each data breakpoint.

6. If tuples are implemented, they may only be supported on a subset of the data breakpoint channels. This can be
checked by seeing if the DBBCn+p bit can be set to 1. Additionally, some cores may support dynamically
changing which instruction breakpoint is associated with a given data breakpoint. This can be checked by
attempting to write the DBCCnygynum field. If the microAptiv UC core implements tuple support, it will support
it for all data breakpoint channels and the instruction breakpoint association will be fixed.

7. If Priming Conditions are supported, a core may only support a subset of the possible priming condition values.
This can be checked by 4’hf to the xBCCnPrCnd field. If only 1 or 2 bits can be written, the available priming
conditions will be described in the PrCndA registers. If 3 bits are writable, PrCndA and PrCndB will describe the
conditions, and if all 4 bits are writable, the PrCndA,PrCndB,PrCndC, and PrCndD registers will all exist. Some
cores may also support changing the priming conditions and this can be checked by attempting to write to the
PrCnd registers. If the microAptiv UC core supports priming conditions, it will support 4 statically mapped prim-
ing conditions per breakpoint which will be described in the PrCndA registers.

8. If support for qualified breakpoints is indicated, it may only be supported for some of the breakpoints. Addition-
ally, the data breakpoint used for the qualification may be configurable. Software can check this by writing to the
xBCCnDQ and xBCCnDQBrkNum fields. If the microAptiv UC core support qualified breakpoints, it will only
support it on instruction breakpoints and the data break used for qualification will be fixed for each instruction
breakpoint.

9. If the stopwatch timer is implemented, either one or two pairs of instruction breakpoints may be available for
controlling it and it may be possible to dynamically select which instruction breakpoints are used. This can be

tested by writing to the STCH register.

10.3.2 General Complex Break Behavior

There is some general complex break behavior that is common to all complex breakpoints. . This behavior is
described below:

* Resets to a disabled state - when the core is reset, the complex break functionality will be disabled and debug
software that is not aware of complex break should continue to function normally.

*  Complex break state is not updated on exceptional instructions

*  Complex breakpoints are evaluated at the end of the pipeline and complex breakpoint exceptions are taken
imprecisely on the following instruction.

*  There is no hazard between enabling and enabled events. When an instruction causes an enabling event, the fol-
lowing instruction sees the enabled state and reacts accordingly.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.3 Complex Breakpoint Usage

10.3.3 Usage of Pass Counters

Pass counters specify that the breakpoint conditions must match N times before the breakpoint action will be enabled.

*  Controlled by writing to the per-breakpoint pass counter register

* Resetsto 0

*  Writing to a non-zero value enables the pass counter. When enabled, each time the breakpoint conditions match,
the counter will be decremented by 1. After the counter value reaches 0, the breakpoint action (breakpoint excep-
tion, trigger, or complex break enable) will occur on any subsequent matches and the counter will not decrement

further. The action does not occur on the match that causes the 1->0 counter decrement.

»  If the breakpoint also has priming conditions and/or data qualified specified, the pass counter will only decre-
ment when the priming and/or qualified conditions have been met.

» If a data breakpoint is configured to be a tuple breakpoint, the data pass counter will only decrement on instruc-
tions where both the instruction and data break conditions match. The pass counter for the instruction break
involved in a tuple should not be enabled if the tuple is enabled.

*  When a pass counter has been enabled, it will be treated as enabled until the pass counter is explicitly written to
0. Namely, breakpoint exceptions will continue to be taken imprecisely until the pass counter is disabled by writ-

ing to 0.

*  The counter register will be updated as matches are detected. The current count value can be read from the regis-
ter while operating in debug mode. Note that this behavior is architecturally recommended, but not required.

10.3.4 Usage of Tuple Breakpoints

A tuple breakpoint is the logical AND of a data breakpoint and an instruction breakpoint. Tuple breakpoints are spec-
ified as a condition on a data breakpoint. If the DBCCnTUP bit is set, the data breakpoint will not match unless there
the corresponding instruction breakpoint conditions are also met.

*  Uses the data breakpoint resources to specify the break action, break status, pass counters, and priming condi-
tions.

*  The instruction breakpoint involved in the tuple should be configured as follows:
o IBCCnCBE =1
* IBCCnprcnd = IBCCnDQ = IBCnTE = IBCnBE = IBPCn= O

10.3.5 Usage of Priming Conditions

Priming conditions provide a way to have one breakpoint enabled by another one. Prior to the priming condition
being satisfied, any breakpoint matches are ignored.

*  Priming condition resets to bypass which specifies that no priming is required
* 3 other priming conditions are available for each breakpoint. These condition vary from breakpoint to breakpoint

(since it makes no sense for a breakpoint to prime itself). The conditions for each of the breakpoints are listed in
Table 10.23.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 241



EJTAG Debug Support in the microAptiv™ UC Core

242

*  The priming breakpoint must have xBCnyg or xBCCncgg set.

*  When the priming condition has been seen, the primed breakpoint will remain primed until its xBCCn register is
written

*  The primed state is stored with the breakpoint being primed and not with the breakpoint that is doing the priming.
»  Each Prime condition is the comparator output after it has been qualified by its own Prime condition, data quali-

fication, and pass counter. Using this, several stages of priming are possible (e.g. data cycle D followed by
instruction A followed by instruction B N times followed by instruction C).

10.3.6 Usage of Data Qualified Breakpoints

Each of the instruction breakpoints can be set to be data qualified. In qualified mode, a breakpoint will recognize its
conditions only after the specified data breakpoint matches both address and data. If the data breakpoint matches
address, but has a mismatch on the data value, the instruction breakpoint will be unqualified and will not match until
a subsequent qualifying match.

This feature can be used similarly to the ASID qualification that is available on cores with TLBs. If an RTOS loads a
process ID for the current process, that load can be used as the qualifying breakpoint. When a matching process ID is
loaded (entering the desired RTOS process), qualified instruction breakpoints will be enabled. When a different pro-
cess ID is loaded (leaving the desired RTOS process), the qualified instruction breakpoints are disabled. Alterna-
tively, with the InvertValueMatch feature of the data breakpoint, the instruction breakpoints could be enabled on any
process ID other than the specified one.

*  The qualifying data break must have DBCnyg or DBCCncgg set.

*  The qualifying data break should have data comparison enabled (via settings of DBCng| \y and DBCngp)

*  The qualifying data break should not have pass counters, priming conditions, or tuples enabled.

*  The qualifying data access can be either a load or store, depending on the settings of DBCnyosg and DBCnyg g

*  The Qualified/Unqualified state is stored with the instruction breakpoint that is being qualified. Writing its
IBCCn register will disqualify that breakpoint.

*  Qualified instruction breakpoint can also have priming conditions and/or pass counters enabled. The pass counter
will only decrement when the priming and qualifying conditions have been met. The instruction breakpoint
action (break, trigger, or complex enable) will only occur when all priming, qualifying, and pass counter condi-
tions have been met.

e Qualified instruction breakpoint can be used to prime another breakpoint

10.3.7 Usage of Stopwatch Timers

The stopwatch timer is a drseg memory mapped count register. It can be configured to be free running or controlled
by instruction breakpoints. This could be used to measure the amount of time that is spent in a particular function by
starting the counter upon function entry and stopping it upon exit.

¢ Count value is reset to 0

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.4

10.4 Test Access Port (TAP)
Reset state has counter stopped and under breakpoint control so that the counter is not running when the core is
not being debugged.
Bit in CBTControl register controls whether the counter is free-running or breakpoint controlled.
Counter does not count in debug mode

When breakpoint controlled, the involved instruction breakpoints must have /BCng or IBCCncgg set in order to
start or stop the timer.

Test Access Port (TAP)

The following main features are supported by the TAP module:

5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible
with IEEE Std. 1149.1.

Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.
The processor can access external memory on the EITAG Probe serially through the EITAG pins. This is
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-

tines.

Support for both ROM based debugger and debugging both through TAP.

10.4.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

Table 10.27 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input

Input clock used to shift data into or out of the Instruction or data regis-
ters. The TCK clock is independent of the processor clock, so the EITAG
probe can drive TCK independently of the processor clock frequency.
The core signal for this is called EJ_TCK.

™S I Test Mode Select Input

The TMS input signal is decoded by the TAP controller to control test
operation. TMS is sampled on the rising edge of TCK.

The core signal for this is called EJ_TMS.

TDI 1 Test Data Input

Serial input data (TDI) is shifted into the Instruction register or data regis-
ters on the rising edge of the TCK clock, depending on the TAP controller
state.

The core signal for this is called EJ_TDI.

TDO (0] Test Data Output

Serial output data is shifted from the Instruction or data register to the
TDO pin on the falling edge of the TCK clock. When no data is shifted
out, the TDO is 3-stated.

The core signal for this is called EJ_TDO with output enable controlled
by EJ_TDOzstate.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 243



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.27 EJTAG Interface Pins (Continued)

Pin Type Description

TRST N I Test Reset Input (Optional pin)

The TRST_N pin is an active-low signal for asynchronous reset of the
TAP controller and instruction in the TAP module, independent of the
processor logic. The processor is not reset by the assertion of TRST_N.
The core signal for this is called EJ_TRST_N

This signal is optional, but power-on reset must apply a low pulse on this
signal at power-on and then leave ithigh, in case the signal is not available
as a pin on the chip. If available on the chip, then it must be low on the
board when the EJTAG debug features are unused by the probe.

10.4.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an Instruction register scan or data register scan is performed. The TAP consists of a small con-
troller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 10.22. The
TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on the
falling edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is
thereby reset to IDCODE. No other parts of the EITAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 10.22.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers,
the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruction
register, the Capture-IR state is used to capture status information into the Instruction register.

From the Capture states, the TAP transitions to either the Shift or Exitl states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/ldle state via the Exitl and Update states or enters the Pause
state via Exitl. The reason for entering the Pause state is to temporarily suspend the shifting of data through either the
Data or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the EXit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

244 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.4 Test Access Port (TAP)

Figure 10.22 TAP Controller State Diagram

est-Logic-Resell¢

10.4.2.1 Test-Logic-Reset State
In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state
when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is forced into the

instruction register output latches during this state. The controller remains in the Zest-Logic-Reset state as long as
TMS is HIGH.

10.4.2.2 Run-Test/Idle State
The controller enters the Run-Test/Idle state between scan operations. The controller remains in this state as long as
TMS is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot

change when the TAP controller is in this state.

When TMS is sampled HIGH on the rising edge of TCK. the controller transitions to the Select DR state.

10.4.2.3 Select_DR_Scan State
This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture DR state.

A HIGH on TMS causes the controller to transition to the Select IR state. The instruction cannot change while the
TAP controller is in this state.

10.4.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture IR state. A

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 245



EJTAG Debug Support in the microAptiv™ UC Core

246

HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller is in this state.

10.4.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
value is then shifted out in the Shift_ DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exitl_DR state. The instruction can-
not change while the TAP controller is in this state.

10.4.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the EXitl DR state. The
instruction cannot change while the TAP controller is in this state.

10.4.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A
HIGH on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

10.4.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state.
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in
this state.

10.4.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state.

10.4.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge
of the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select DR_Scan state. The instruction cannot change while the TAP
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.4 Test Access Port (TAP)

10.4.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (00001,) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exitl_IR state. The instruction cannot change while the TAP controller is in
this state.

10.4.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exitl_IR state.

10.4.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition

to the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP control-

ler is in this state and the instruction register retains its previous state.

10.4.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller is in this state.

10.4.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A
HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

10.4.2.16 Update_IR State
The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select DR_Scan state.

10.4.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 247



EJTAG Debug Support in the microAptiv™ UC Core

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BYPASS instruction.

Table 10.28 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data, and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn, and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn, and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block
0x11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block
0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x14 PCSAMPLE Selects the PCsample register

0x17 FDC Selects Fast Debug Channel.

0x1F BYPASS Bypass mode

10.4.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register
to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the
IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

10.4.3.2 IDCODE Instruction
The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, access to the Identification Register is immediately available, via a

TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

10.4.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

10.4.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe shifts
32 bits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

248 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.4 Test Access Port (TAP)

10.4.3.5 DATA Instruction

This instruction is used to select the Data register to be connected between TD/ and TDO. The EJTAG Probe shifts 32
bits of TD/ data into the Data register and shifts out the captured data via the TDO pin.

10.4.3.6 CONTROL Instruction
This instruction is used to select the EJTAG Control register to be connected between TD/ and TDO. The EJTAG

Probe shifts 32 bits of TD/ data into the EJTAG Control register and shifts out the EJTAG Control register bits via
TDO.

10.4.3.7 ALL Instruction
This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control register
between TD/ and TDO. It can be used in particular if switching instructions in the instruction register takes too many

TCK cycles. The first bit shifted out is bit 0.

Figure 10.23 Concatenation of the EJTAG Address, Data and Control Registers

TDI _.l Address 0 I_l

|_p{Data 0|_I

| p{EJTAG Contrdl 0| — TDO

10.4.3.8 EJTAGBOOT Instruction

When the ETTAGBOOT instruction is given and the Update-IR state is left, then the reset values of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 1 after a hard or soft reset.

This ETTAGBOOT indication is effective until a NORMALBOOT instruction is given, TRST_N is asserted or a ris-
ing edge of TCK occurs when the TAP controller is in Test-Logic-Reset state.

It is possible to make the CPU go into debug mode just after a hard or soft reset, without fetching or executing any
instructions from the normal memory area. This can be used for download of code to a system which have no code in

ROM.

The Bypass register is selected when the ETTAGBOOT instruction is given.

10.4.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and the Update-IR state is left. then the reset value of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 0 after hard or soft reset.

The Bypass register is selected when the NORMALBOOT instruction is given.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 249



EJTAG Debug Support in the microAptiv™ UC Core

10.4.3.10 FASTDATA Instruction
This selects the Data and the Fastdata registers at once, as shown in Figure 10.24.

Figure 10.24 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

TDI — | Data 0| Fastdata | 5 TDO

10.4.3.11 PCsample Register (PCSAMPLE Instruction)

This selects the PCsample Register. The use of the PCsample Register is described in more detail in Section
10.9 “PC/Data Address Sampling”

10.4.3.12 FDC Instruction

This selects the Fast Debug Channel. The use of the FDC is described in more detail in Section 10.10 “Fast Debug
Channel”.

10.4.3.13 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected between TD/ and TDO. This register
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

10.4.3.14 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TD/ and TDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

10.4.3.15 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TD/ and TDO. This register is only
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of
the TCBDATA register is dependent on the specific TCB register.

10.5 EJTAG TAP Registers

250

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

10.5.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruc-
tion register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The
shift register consists of a series of bits arranged to form a single scan path between 7D/ and TDO. During an Instruc-
tion register scan operations, the TAP controls the register to capture status information and shift data from TD/ to
TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03



10.5 EJTAG TAP Registers

TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is
set to 000015, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device

ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data regis-
ter scan operation. A list of the implemented instructions are listed in Table 10.28.

10.5.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control sig-
nals to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the
output of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the
write bits.

This description applies in general to the following data registers:

*  Bypass Register

*  Device Identification Register

*  Implementation Register

*  EJTAG Control Register (ECR)

*  Processor Access Address Register

*  Processor Access Data Register

* FastData Register

10.5.2.1 Bypass Register

The Bypass register consists of a single scanregister bit. When selected, the Bypass register provides a single bit scan
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to
satisfy the IEEE 1149.1 Bypass instruction requirement.

10.5.2.2 Device ldentification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 10.29 shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out of the
ID register after being selected. The register is selected when the Instruction register is loaded with the IDCODE
instruction.

Figure 10.25 Device ldentification Register Format
31 28 27 12 1 10

Version PartNumber ManufID R

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 251



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.29 Device ldentification Register

Fields
Read/

Name Bit(s) Description Write Reset State

Version 31:28 | Version (4 bits) R EJ_Version[3:0]
This field identifies the version number of the proces-
sor derivative.

PartNumber 27:12 | Part Number (16 bits) R EJ_PartNumber[15:0]
This field identifies the part number of the processor
derivative.
ManufID 11:1 Manufacturer Identity (11 bits) R EJ_ManufID[10:0]
Accordingly to IEEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.
R 0 Reserved R 1

10.5.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE

instruction.
Figure 10.26 Implementation Register Format
31 29 28 25 24 23 21 20 17 16 15 14 13 0
DINT- .
EJTAGver | Reserved sup ASIDsize | Reserved | MIPS16 | 0 | NoDMA Reserved
Table 10.30 Implementation Register Descriptions
Fields
Read/Wr
Name Bit(s) Description ite Reset State
EJTAGver 31:29 | EJTAG Version. R 5
2: Version 2.6
Reserved 28:25 | Reserved R 0
DINTsup 24 DINT Signal Supported from Probe R EJ_DINTsup
This bit indicates if the DINT signal from the probe is supported:
Encoding Meaning
0 DINT signal from the probe is not sup-
ported
1 Probe can use DINT signal to make

debug interrupt.

252 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.5 EJTAG TAP Registers

Table 10.30 Implementation Register Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
ASIDsize 23:21 | Size of ASID field in implementation: R 0
Encoding Meaning
0 No ASID in implementation
1 6-bit ASID
2 8-bit ASID
3 Reserved
Reserved 20:17 |Reserved R 0
MIPS16 16 Indicates whether MIPS16 is implemented: R 0
Encoding Meaning
0 No MIPS16 support
1 MIPS16 implemented
Reserved 15 Reserved R 0
NoDMA 14 No EJTAG DMA Support R 1
Reserved 13:0 |Reserved R 0

10.5.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the

CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0

or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on both hard and soft CPU resets, but not on TAP
controller resets by e.g. TRST_N. TCK clock is not required when the hard or soft CPU reset occurs, but the bits are
still updated to the reset value when the TCK applies. The first 5 TCK clocks after hard or soft CPU resets may result
in reset of the bits, due to synchronization between clock domains.

Figure 10.27 EJTAG Control Register Format

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 1 4 3 20
Prob- Ejtag-
Rocc| Psz | Res |Doze | Halt |PerRst|PRnW |PrAcc|Res| PrRst | ProbEn Trap Res Brk Res |DM| Rs

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

253



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.31 EJTAG Control Register Descriptions

Fields
Read/

Name Bit(s) Description Write Reset State

Rocc 31 Reset Occurred R/W 1
The bit indicates if a CPU reset has occurred:

Encoding Meaning

0 No reset occurred since bit last
cleared.

1 Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value as long as reset is
applied.

This bit must be cleared by the probe, to acknowledge
that the incident was detected.

The EJTAG Control register is not updated in the
Update-DR state unless Rocc is 0, or written to 0. This is
in order to ensure proper handling of processor access.

Psz[1:0] 30:29 Processor Access Transfer Size R Undefined
These bits are used in combination with the lower two
address bits of the Address register to determine the size
of a processor access transaction. The bits are only valid
when processor access is pending.

PAA[1:0] | Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte
3)
01 00 Byte (LE, byte 1; BE, byte
2)
10 00 Byte (LE, byte 2; BE, byte
1)
11 00 Byte (LE, byte 3; BE, byte
0)
00 01 Halfword (LE, bytes 1:0;
BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2;
BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1,
0)

00 11 Triple (LE, bytes 2, 1,0; BE,
bytes 3, 2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE,
bytes 2, 1, 0)

All others Reserved

Note: LE=little endian, BE=big endian, the byte# refers to
the byte number in a 32-bit register, where byte 3 = bits
31:24; byte 2 = bits 23:16; byte 1 = bits 15:8; byte 0=bits
7:0, independently of the endianess.

Res 28:23 Reserved R 0

254 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.5 EJTAG TAP Registers

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

Doze

22

Doze state

The Doze bit indicates any kind of low-power mode. The
value is sampled in the Capture-DR state of the TAP con-
troller:

Encoding Meaning

0 CPU not in low-power mode.

1 CPU is in low-power mode.

Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.

R

0

Halt

21

Halt state

The Halt bit indicates if the internal system bus clock is
running or stopped. The value is sampled in the Cap-
ture-DR state of the TAP controller:

Encoding Meaning

0 Internal system clock is running

1 Internal system clock is stopped

PerRst

20

Peripheral Reset

When the bit is set to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the read
value of this bit is also 1. This is to ensure that the setting
from the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared in
the CPU clock domain also.

This bit controls the EJ_PerRst signal on the core.

R/W

PRaW

19

Processor Access Read and Write

This bit indicates if the pending processor access is for a
read or write transaction, and the bit is only valid while
PrAcc s set.

Encoding Meaning

0 Read transaction

1 Write transaction

Undefined

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

255



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields

Read/
Name Bit(s) Description Write Reset State

PrAcc 18 Processor Access (PA) R/WO 0
Read value of this bit indicates if a Processor Access (PA)
to the EJTAG memory is pending:

Encoding Meaning

0 No pending processor access

1 Pending processor access

The probe’s software must clear this bit to 0 to indicate
the end of the PA. Write of 1 is ignored.

A pending Processor Access is cleared when Rocc is set,
but another PA may occur just after the reset if a debug
exception occurs.

Finishing a Processor Access is not accepted while the
Roccbit is set. This is to avoid that a Processor Access
occurring after the reset is finished due to indication of a
Processor Access that occurred before the reset.

The FASTDATA access can clear this bit.

Res 17 Reserved R 0

PrRst 16 Processor Reset (implementation-dependent behavior) R/W 0
When the bit is set to 1, then it is only guaranteed that this
setting has taken effect in the system when the read value
of this bit is also 1. This is to ensure that the setting from
the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared in
the CPU clock domain also.

This bit controls the EJ_PrRst signal. If the signal is
used in the system, then it must be ensured that both the
processor and all devices required for a reset are properly
reset. Otherwise the system may fail or hang. The bit
resets itself, since the EJTAG Control register is reset by
hard or soft reset.

256 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.5 EJTAG TAP Registers

Table 10.31 EJTAG Control Register Descriptions (Continued)

Encoding Meaning
0 The probe does not handle EJTAG
memory transactions

1 The probe does handle EJTAG mem-
ory transactions

It is an error by the software controlling the probe if itsets
the ProbTrap bit to 1, but resets the ProbEnto 0. The
operation of the processor is UNDEFINED in this case.
The ProbEn bit is reflected as a read-only bit in the
ProbEn bit, bit 0, in the Debug Control Register
(DCR).

The read value indicates the effective value in the DCR,
due to synchronization issues between TCK and CPU
clock domains; however, it is ensured that change of the
ProbEn prior to setting the EjtagBrk bit will have effect
for the debug handler executed due to the debug excep-
tion.

The reset value of the bit depends on whether the EJTAG-
BOOT indication is given or not:

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

Fields
Read/
Name Bit(s) Description Write Reset State
ProbEn 15 Probe Enable R/W Oorl
This bit indicates to the CPU if the EJTAG memory is from
handled by the probe so processor accesses are answered: EJTAGBOOT

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

257



EJTAG Debug Support in the microAptiv™ UC Core

258

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

ProbTrap

14

Probe Trap
This bit controls the location of the debug exception vec-
tor:

Encoding

0 In normal memory 0xBFC0.0480

1 In EJTAG memory at 0xFF20.0200 in
dmseg

Meaning

Valid setting of the ProbTrap bit depends on the setting
of the ProbEn bit, as described for the ProbEn bit.

The ProbTrap should not be set to 1, for debug exception
vector in EJTAG memory, unless the ProbEn bit is also
set to 1 to indicate that the EJTAG memory may be
accessed.

The read value indicates the effective value to the CPU,
due to synchronization issues between TCK and CPU
clock domains; however, it is ensured that change of the
ProbTrap bit prior to setting the EjtagBrk bit will have
effect for the EjtagBrk.

The reset value of the bit depends on whether the EITAG-
BOOT indication is given or not:

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

R/W

Oorl
from
EJTAGBOOT

Res

13

Reserved

0

EjtagBrk

12

EJTAG Break

Setting this bit to 1 causes a debug exception to the pro-
cessor, unless the CPU was in debug mode or another
debug exception occurred.

When the debug exception occurs, the processor core
clock is restarted if the CPU was in low-power mode. This
bit is cleared by hardware when the debug exception is
taken.

The reset value of the bit depends on whether the EITAG-
BOOT indication is given or not:

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

R/W1

Oorl
from
EJTAGBOOT

Res

11:4

Reserved

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




10.5 EJTAG TAP Registers

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields
Read/
Name Bit(s) Description Write Reset State
DM 3 Debug Mode R 0
This bit indicates the debug or non-debug mode:
Encoding Meaning
0 Processor is in non-debug mode
1 Processor is in debug mode
The bit is sampled in the Capture-DR state of the TAP
controller.
Res 2:0 Reserved R 0

10.5.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

10.5.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of

the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from

this register is only valid when a processor access write is pending. The register is used to provide the data value fora
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bits wide. Data alignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read then 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in the PAD register depends on the endianess of the core, as shown in Figure 10.28. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

259



EJTAG Debug Support in the microAptiv™ UC Core

Figure 10.28 Endian Formats for the PAD Register

MSB LSB
bit 31 24 23 16 15 87 0
BIG-ENDIAN lamo=4 || 5 |[ e || 7 | Am2=
[Amo=o|| 1+ || 2 || 3 | Anzeo

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

MSB LSB
bit 31 2423 16 15 87 0
urrieenpian LAROET ][ 6 [ 5 [ 4 | An2e
lano=3 ]| 2 || 1 [0 | Amn2z=0

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

10.5.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata Register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a
bit is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies
whether the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the
Fastdata access was successful or not (if completion was requested).

Figure 10.29 Fastdata Register Format

0

Table 10.32 Fastdata Register Field Description

Fields
Read/ | Power-up
Name Bits Description Write State
SPrAcc 0 Shifting in a zero value requests completion of the Fast- R/W Undefined

data access. The PrAcc bit in the EJTAG Control regis-
ter is overwritten with zero when the access succeeds.
(The access succeeds if PrAcc is one and the operation
address is in the legal dmseg Fastdata area.) When suc-
cessful, a one is shifted out. Shifting out a zero indicates a
Fastdata access failure.

Shifting in a one does not complete the Fastdata access
and the PrAcc bit is unchanged. Shifting out a one indi-
cates that the access would have been successful if
allowed to complete and a zero indicates the access would
not have successfully completed.

260 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.6 TAP Processor Accesses

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies
the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The
Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata
area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download
accesses are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to
see if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used).
Downloads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will
shift out the data being stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

*  PrAcc must be 1, i.e., there must be a pending processor access.

*  The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

Table 10.33 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

Table 10.33 Operation of the FASTDATA access

PrAccin
Address the LSB PrAcc LSB
Probe Match Control (SPrAcc) Action in the Changes Shifted Data Shifted
Operation Check Register | Shifted In | Data Register To Out Out
Download using Fails X X none unchanged 0 invalid
FASTDATA
Passes 1 1 none unchanged 1 invalid
1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data
0 X none unchanged 0 invalid
Upload using Fails X X none unchanged 0 invalid
FASTDATA
Passes 1 1 none unchanged 1 invalid
1 0 read data 0 (SPrAcc) 1 valid data
0 X none unchanged 0 invalid

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

10.6 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like a slave unit connected to the on-chip bus. The core can then execute code taken
from the EJTAG Probe and it can access data (via a load or store) which is located on the EITAG Probe. This occurs

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 261



EJTAG Debug Support in the microAptiv™ UC Core

262

in a serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without
occupying the memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from 0xFF20.0000 to OxFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM bit in the CP0O Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a soft or hard reset.

10.6.1 Fetch/Load and Store from/to EJTAG Probe Through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug excep-
tion: 0xFF20.0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc =1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EITAG Probe’s memory. For
this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: 0xFF20.0000 to OxFF2F.FFFF, the ProbEn bit must be set and the processor has to
be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register

2. The internal hardware latches the data to be written into the PA Data register.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.7 SecureDebug

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW =1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

5. The EJTAG Probe checks the PRnWW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

Note: Probe accesses and external bus accesses are serialized by the core. A probe access will not begin until all

external bus requests have completed. Similarly, a new probe or external bus access will not begin until a pending
probe access has completed.

10.7 SecureDebug

For security reasons, users can optionally disable certain EJTAG capabilities via the SecureDebug feature in order to
prevent untrusted access to the core through debug mode.

10.7.1 Disabling EJTAG Debugging

10.7.1.1 EJ_DisableProbeDebug Signal

An input signal to the core is defined, EJ_DisableProbeDebug, which when asserted, forces ProbEn=0 and
ProbTrap=0. EJ_DisableProbeDebug overrides any other ProbEn or ProbTrap settings.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 263



EJTAG Debug Support in the microAptiv™ UC Core

Suggested implementation of the EJ_DisableProbeDebug signal is for a microcontroller to provide a bit within
non-volatile memory (outside the core) that is pre-programmed to set or clear this control signal.

Table 10.34 EJ_DisableProbeDebug Signal Overview

Signal Description Direction | Compliance
EJ DisableProbeDebug When asserted: Input Required for
* ProbEn=0 SecureDebug

* ProbTrap=0

« EjtagBrk is disabled'.

* EJTAGBOOT is disabled.
« PC Sampling is disabled.

* DINT signal is ignoredl.

1. An override is provided.

10.7.1.2 Override for EjtagBrk and DINT Disable

An override for the EjtagBrk and DINT disable caused by the EJ_DisableProbeDebug signal is provided by the Mem-
ory Protection Unit (MPU) Config register field EjtagBrk_Override. This override feature is only available if the Mem-
ory Protection Unit is implemented.

The override can be asserted by the CPU during the trusted boot process. Its purpose is to allow a probe to assert
EjtagBrk or the assertion of the DINT signal, which requests a Debug Interrupt exception, thus providing a means of
recovering the CPU from a crash or hang. This feature allows a Debug Executive, if one is provided in target firm-
ware, to communicate with the probe over the Fast Debug Channel (FDC) in order to get the attention of the target by
causing a debug exception. It also allows a host-based debugger to query the target via Debug Executive commands
to determine the cause of the hang.

10.7.2 EJTAG Features Unmodified by SecureDebug

SecureDebug will not modify the following EJTAG features:

*  FDC (Fast Debug Channel) over EJTAG. This is required to provide a path for an EJTAG probe to send and
receive messages via the Debug Executive when one is included in the target code. The physical EJTAG serial
connection, pins, and protocol must function correctly as well as a cJTAG (2-wire) connection for FDC.

*  RST* signal. This is the hardware signal on the EJTAG connector that connects to the target system reset circuit.
It can be asserted by an EJTAG probe.

10.8 iFlowtrace™ Mechanism

264

There is only one optional trace mechanism that is available to extract additional information about program execu-
tion. iFlowtrace is a light-weight instruction-only tracing scheme that is sufficient to reconstruct the execution flow in
the core and it can only be controlled by debug software. This tracing scheme has been kept very simple to minimize
the impact on die size.

The iFlowtrace tracing scheme is not a strict subset of the PDtrace tracing methodology, and its trace format outputs

differ from those of PDtrace. Trace formats, using simplified instruction state descriptors, were designed for the
iFlowtrace trace to simplify the trace mechanism and to obtain better compression.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.8 iFlowtrace™ Mechanism

Tracing is disabled if the processor enters Debug Mode (refer to the EJTAG specification for description of Debug
Mode). This is true for both Normal Trace Mode as well as Special Trace Mode.

The presence of the iFlowtrace mechanism is indicated by the CPO Config3jy register bit.

10.8.1 A Simple Instruction-Only Tracing Scheme

A trace methodology can often be mostly defined by its inputs and outputs. Hence this basic scheme is described by
the inputs to the core tracing logic and by the trace output format from the core. We assume here that the execution
flow of the program is traced at the end of the execution path in the core similar to PDtrace.

10.8.1.1 Trace Inputs

1.

In_TraceOn: when on, legal trace words are coming from the core and at the point when it is turned on, that is for
the first traced instruction, a full PC value is output. When off, it cannot be assumed that legal trace words are
available at the core interface.

In_Stall: This says, stall the processor to avoid buffer overflow that can lose trace information. When off, a buffer
overflow will simply throw away trace data and start over again. When on, the processor is signalled from the
tracing logic to stall until the buffer is sufficiently drained and then the pipeline is restarted.

10.8.1.2 Normal Trace Mode Outputs

1.

Stall cycles in the pipe are ignored by the tracing logic and are not traced. This is indicated by the signal
Out_Valid that is turned off when no valid instruction is being traced. When Out_Valid is asserted, instructions
are traced out as described in the rest of this section. The traced instruction PC is a virtual address.

In the output format, every sequentially executed instruction is traced as 1°b0.

Every instruction that is not sequential to the previous one is traced as either a 10 or an 11 (read this as a serial
bitstream from left to right). This implies that the target instruction of a branch or jump is traced this way, not the
actual branch or jump instruction (this is similar to PDtrace):

A 10 instruction implies a taken branch for a conditional branch instruction whose condition is unpredictable
statically, but whose branch target can be computed statically and hence the new PC does not need to be traced
out. Note that if this branch was not taken, it would have been indicated by a 0 bit, that is sequential flow.

A 11 instruction implies a taken branch for an indirect jump-like instruction whose branch target could not be
computed statically and hence the taken branch address is now given in the trace. This includes, for example,
instructions like jr, jalr, and interrupts:

e 1100 - followed by 8 bits of 1-bit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:

[3:0]1=4’b0011
[11:4] = PCdelta[8:1]

* 1101 - followed by 16 bits of 1-bit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 265



EJTAG Debug Support in the microAptiv™ UC Core

266

[3:0] =4°b1011
[19:4] = PCdelta[16:1]

* 1110 - followed by 31 of the most significant bits of the PC value, followed by a bit (NCC) that indicates no
code compression. Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for microMIPS instruction
NCC=0. This trace record will appear at all transition points between MIPS32/MIPS64 and microMIPS
instruction execution.

This form is also a special case of the 11 format and it is used when the instruction is not a branch or jump,
but nevertheless the full PC value needs to be reconstructed. This is used for synchronization purposes, sim-
ilar to the Sync in PDtrace. In iFlowtrace rev 2.0 onwards, the sync period is user-defined, and is counted
down and when an internal counter runs through all the values, this format is used. The bit assignments of
this format on the bus between the core tracing logic and the ITCB is:

[3:0]=4"b0111
[34:4] = PC[31:1]
[35] = NCC

* 1111 - Used to indicate trace resumption after a discontinuity occurred. The next format is a 1110 that sends
a full PC value. A discontinuity might happen due to various reasons, for example, an internal buffer over-
flow, and at trace-on/trace-off trigger action.

10.8.2 Special Trace Modes

iFlowtrace 2.0 adds special trace modes which can only be active when the nomal tracing mode is disabled. Software
can determine which modes are supported by attempting to write the enable bits in the /FCTL register. Software can
check the Illegal bit in the /FCTL register—if an unsupported combination of modes is requested, the bit will be set
and the trace contents will be unpredictable. The special trace modes are described below.

10.8.2.1 Mode Descriptions

Delta Cycle Mode

This mode is specified in combination with the other special trace modes. It is enabled via the CYC bit in the Con-
trol/Status Register. When delta cycle reporting is enabled, each trace message will include a 10b delta cycle value
which reports the number of cycles that have elapsed since the last message was generated. A value of 0 indicates that
the two messages were generated in the same cycle. A value of 1 indicates that they were generated in consecutive
cycles. If 1023 cycles elapse without an event being traced, a counter rollover message is generated.

Note: If the processor clocks stop due to execution of the WAIT instruction, the delta cycle counter will also stop and
will report ‘active’ cycles between events rather than ‘total” cycles.

Breakpoint Match Mode

This modes uses EJTAG data and instruction breakpoint hardware to enable a trace of PC values. Instead of starting
or stopping trace, a triggerpoint will cause a single breakpoint match trace record. This record indicates that there was
a triggerpoint match, the breakpoint ID of the matching breakpoint, and the PC value of an instruction that matched
the instruction of data breakpoint.This mode can only be used when normal tracing mode is turned off. This mode can
not be used in conjunction with other special trace modes. This mode is enabled or disabled via the BM field in the
Control/Status register (see Section 10.8.6 “ITCB Register Interface for Software Configurability™).

The breakpoints used in this mode must have the TE bet set to enable the match condition.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.8 iFlowtrace™ Mechanism

Software should avoid setting up overlapping breakpoints. The behavior when multiple matches occur on the same
instruction is to report a BreakpointID of 7.

Filtered Data Tracing Mode

This mode uses EJTAG data breakpoint hardware to enable a trace of data values. Rather than starting or stopping
trace as in normal trace mode, a data triggerpoint will cause a filtered data trace record. This record indicates that
there was a data triggerpoint match, the breakpoint ID of the matching breakpoint, whether it was a load or store, the
size of the request, low order address bits, and the data value. This mode can only be used when normal tracing mode
is turned off. This mode can not be used in conjunction with other special trace modes. This mode can be enabled or
disabled via the FDT bit in the Control/Status register (see Section 10.8.6 “ITCB Register Interface for Software
Configurability”).

The corresponding data breakpoint must have the TE bit set to enable the match condition.

Software should avoid setting up overlapping data breakpoints. The behavior when multiple matches on one load or
store are detected is to report a BreakpointID of 7.

Extended Filtered Data Tracing Mode

Extends Filtered Data Tracing Mode by adding the virtual address of the load/store instruction to the generated trace
information. (see Section “Filtered Data Tracing Mode” above).

This behavior is enabled/disabled by the FDT CAUSE field in the IFCTL Control/Status register (see Section
10.8.6 “ITCB Register Interface for Software Configurability””). FDT CAUSE only has effect if the FDT field is

also set.

The extended trace sequence is a FDT trace message followed by the Breakpoint Match (BM) trace message. If the
IFCTLy( field is set, the FDTtrace message will have a DeltaCycle Message value of ‘0’ directly followed by the

Breakpoint Match message. This message sequence (FDT, delta cycle of 0, and BM) indicates to the trace disassem-
bler that Extended Filtered Data Tracing mode is enabled (IFCTLgpt cause=1)-

Function Call/Return and Exception Tracing Mode

In this mode, the PC value of function calls and returns and/or exceptions and returns are traced out. This mode can
only be used when normal tracing mode is turned off. This mode cannot be used in conjunction with other special
trace modes. The function call/return and exception/return are independently enabled or disabled via the FCR and ER
bits in the Control//Status register (see Section 10.8.6 “ITCB Register Interface for Software Configurability”).
These events are reported for the following instructions:

*  MIPS32 function calls: JAL, JALR, JALR.HB, JALX

*  microMIPS function calls: JAL, JALR, JALR.HB, JALX, JALR16, JALRS16, JALRS, JALRS.HB, JALS

e MIPS32 function returns: JR, JR.HB

*  microMIPS function returns: JR, JR.HB, JRC, JRADDIUSP, JR16

»  Exceptions: Reported on the first instruction of the exception handler

*  Exception returns: ERET

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 267



EJTAG Debug Support in the microAptiv™ UC Core

268

*  MCU ASE Interrupt returns: IRET

Other Trace Messages

In any of the special trace modes, it is possible to embed messages into the trace stream directly from a program. This
is done by writing to the UserTraceData1 or UseTraceData2 Cop0 registers. When UserTraceData1 register is writ-
ten, a trace message of type “User Triggered Message 17 (UTM1) is generated. When UserTraceDataZ2 register is
written, a trace message of type “User Triggered Message 2” (UTM2) is generated. Please refer to7.2.32 “User Trace
Datal Register (CPO Register 23, Select 3)/User Trace Data2 Register (CPO Register 24, Select 3)” on page 194.

Overflow messages can also be generated when tracing off-chip if the 1O control bit is 0 and trace data is generated
faster than it is consumed. No overflow will be generated when using on-chip trace.

10.8.2.2 Special Trace Mode Outputs

The normal and special trace modes cannot be enabled at the same time because the trace message encoding is not
unique between the two modes. The software reading the trace stream must be aware of which mode is selected to
know how to interpret the bits in the trace stream. The message types for each type of special trace message are
unique.

00 (as above, read a bitstream from left to right) - Delta Cycle Rollover message. The output format is:
[1:0] =2’b00

* 010 - User Trace Message. The format of this type of message is:
[2:0] =3"b010
[34:3] = Data[31:0]
[35] = UTM2/UTM1 (1=UTM2, 0=UTM1)
[44:36] = DeltaCycle (if enabled)

e 011 - Reserved

* 10 - Breakpoint Match Message. The output format during this trace mode is:
[1:0]=2’b01
[5:2] = BreakpointID
[6] = Instruction Breakpoint
[37:7] = MatchingPC[31:1]
[38]=NCC
[48:39] = DeltaCycle (if enabled)
Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for microMIPS instruction NCC=0.

* 110 - Filtered Data Message. The output format during this trace mode is:
[2:0]1=3"bO11
[6:3] = BreakpointID
[7] = Load/Store (1=Load, 0=Store)
[8] = FullWord (1=32b data, 0= <32b)
[14:5] = Addr[7:2]
[46:15] = {32b data value} OR
[46:15] = {BE[3:0], 4’b0, 24b data value} OR
[46:15] = {BE[3:0], 12°b0, 16b data value} OR
[46:15] = {BE[3:0],20°b0, 8b data value}
[56:47] = DeltaCycle (if enabled)

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.8 iFlowtrace™ Mechanism

e 1110 - Function Call/Return/Exception Tracing. The output format during this trace mode is:
[3:0]=4"b0111
[4]=FC
[5]=Ex
[6]=R
[37:8] =PC[31:1]
[38] =NCC
[48:39] = Delta Cycle (if enabled)
Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for microMIPS instruction NCC=0. FC=1 implies a
function call, Ex=1 implies the start of an exception handler, and R=1 implies a function or exception return.

e 1111- Overflow message. The format of this type of message is:
[3:0]=4’b1111

10.8.3 ITCB Overview

The iFlowtrace Control Block (ITCB) is responsible for accepting trace signals from the CPU core, formatting them,
and storing them into an on-chip FIFO. The figure also shows the Probe Interface Block (PIB) which reads the FIFO
and outputs the memory contents through a narrow off-chip trace port.

MIPS®
Core

Figure 10.30 Trace Logic Overview

10.8.4 ITCB iFlowtrace Interface

MIPS® drseg bus
control rd/wr port
Out Valid
- SRAM :

iFlowtrace write read

port port

Optional
ITCB
In_TraceOn PIB
B ——
In_Stall
«——p| FIFO
Control -
trace-on trace-off

From trigger block

Off-chip

frace
port

The iFlowtrace interface consists of 57 data signals plus a valid signal. The 57 data signals encode information about
what the CPU is doing in each clock cycle. Valid indicates that the CPU is executing an instruction in this cycle and

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

269



EJTAG Debug Support in the microAptiv™ UC Core

270

therefore the 57 data signals carry valid execution information. The iFlowtrace data bus is encoded as shown in Table
10.35. Note that all the non-defined upper bits of the bus are zeroes.

Table 10.35 Data Bus Encoding

Valid Data (LSBs) Description

0 X No instructions executed in this cycle

1 0 Normal Mode: Sequential instruction executed

1 01 Normal Mode: Branch executed, destination predictable from code

1 <8>0011 Normal Mode: Discontinuous instruction executed, PC offset is § bit signed offset

1 <16>1011 Normal Mode: Discontinuous instruction executed, PC offset is 16 bit signed off-
set

1 <NCC><31>0111 Normal Mode: Discontinuous instruction or synchronization record, No Code
Compression (NCC) bit included as well as 31 MSBs of the PC value

1 00 Special Mode: Delta Cycle Rollover message

1 <10><32>010 Special Mode: User add-in Trace Message. 32 bit user data as well as 10 bit delta
cycle if enabled.

1 <10><NCC><31><1><4>01 Special Mode: Breakpoint Match Message. 4-bit breakpoint ID, 1 bit indicates

breakpoint type, 31 MSBs of the PC value, NCC bit included as well as 10-bit
delta cycle if enable.

1 <10><32><6><1><1><4>011 Special Mode: Filtered Data Message. 4 bit breakpoint ID, 1 bit load or store indi-
cation, 1 bit full word indication, 6 bit of addr[7:2], 32 bit of the data information
included as well as 10 bit delta cycle if enabled.

1 <10><NCC><31><R><Ex><FC>011  Special Mode: Function Call/Return/Exception Tracing. 1 bit function call indica-
tion, 1 bit exception indication, 1 bit function or exception return indication, 31
MSBs of the PC value, NCC bit included as well as 10 bit delta cycle if enabled.

1 1111 Internal overflow
10.8.5 TCB Storage Representation

Records from iFlowtrace are inserted into a memory stream exactly as they appear in the iFlowtrace data output.
Records are concatenated into a continuous stream starting at the LSB. When a trace word is filled, it is written to
memory along with some tag bits. Each record consists of a 64-bit word, which comprises 58 message bits and 6 tag
bits or header bits that clarify information about the message in that word.

The ITCB includes a 58-bit shift register to accumulate trace messages. When 58 or more bits are accumulated, the 58
bits and 6 tag bits are sent to the memory write interface. Messages may span a trace word boundary; in this case, the
6 tag bits indicate the bit number of the first full trace message in the 58-bit data field.

The tag bits are slightly encoded so they can serve a secondary purpose of indicating to off-chip trace hardware when
a valid trace word transmission begins. The encoding ensures that at least one of the 4 LSBs of the tag is always a 1
for a valid trace message. The tag values are shown in Table 10.36. The longest trace message is 57 bits (filtered data
trace in special trace mode with delta cycle), so the starting position indicated by the tag bits is always between 0 and
56.

Table 10.36 Tag Bit Encoding

Starting Bit of First Full Encoding
Trace Message (decimal)
0 58

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.8 iFlowtrace™ Mechanism

Table 10.36 Tag Bit Encoding

Starting Bit of First Full Encoding
Trace Message (decimal)
16 59
32 60
48 61
Unused 0,16,32,48
Reserved 62,63
Others StartingBit

When trace stops (ON set to zero), any partially filled trace words are written to memory. Any unused space above
the final message is filled with 1’s. The decoder distinguishes 1111 patterns used for fill in this position from an 1111
overflow message by recognizing that it is the last trace word.

These trace formats are written to a trace memory that is either on-chip or off-chip. No particular size of SRAM is
specified; the size is user selectable based on the application needs and area trade-offs. Each trace word can typically
store about 20 to 30 instructions in normal trace mode, so a | KWord trace memory could store the history of 20K to
30K executed instructions.

The on-chip SRAM or trace memory is written continuously as a circular buffer. It is accessible via drseg address
mapped registers. There are registers for the read pointer, write pointer, and trace word. The write pointer register
includes a wrap bit that indicates that the pointer has wrapped since the last time the register was written. Before start-
ing trace, the write pointer would typically be set to 0. To read the trace memory, the read pointer should be set to 0 if
there has not been a wrap, or to the value of the write pointer if there has been. Reading the trace word register will
read the entry pointed to by the read pointer and will automatically increment the read pointer. Software can continue
reading until all valid entries have been read out.

10.8.6 ITCB Register Interface for Software Configurability

The ITCB includes a drseg memory interface to allow software to set up tracing and read the current status. If an
on-chip trace buffer is also implemented, there are additional registers included for accessing it.

10.8.6.1 iFlowtrace Control/Status (IFCTL) Register (offset 0x3fc0)

The Control/Status register provides the mechanism for turning on the different trace modes. Figure 10.31 has the for-
mat of the register and Table 10.37 describes the register fields.

Figure 10.31 Control/Status Register

31 30 16 15 14 13 12 1 10 9 8 5 4 3 2 1 0
g3
=

Illegal 0 ‘(; CYC|FDT|BM | ER |FCR|EST SyP OfClk [OfC | 1O | En | On
c
w2
jes]

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 271



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.37 Control/Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
0 30:16 Reserved for future use. Read as zeros, must be written as R 0 Required

Zeros

Illegal 31 This bit is set by hardware and indicates if the currently R 0 Required
enabled trace output modes are an illegal combination. A
value of 1 indicates an unsupported setting. A value of 0
indicates that the currently selected settings are legal.

FDT CAUSE 15 Extended Filtered Data Trace mode (FDT). Adds causing R/W 0 Optional for

load/store virtual address to Filtered Data Trace. iFlowtrace rev
FDT_CAUSE only has effect if FDT is set. 2.0+
The extended trace sequence is a FDT trace message fol-
lowed by the Breakpoint Match (BM) trace message. If
CYC is set, the FDT trace message will have a DeltaCycle
Message value of ‘0’ directly followed by the Breakpoint
match (BM) message. This message sequence (FDT, delta
cycle of 0, and BM) indicates to the trace disassembler
that Extended Filtered Data Tracing mode is enabled.

CYC 14 Delta Cycle Mode: This mode can be set in combination R/W 0 Optional for
with the EST special trace modes. When set, a delta cycle iFlowtrace rev
value is included in each of the trace messages and indi- 2.0+
cates the number of cycles since the last message was gen-
erated. If this tracing mode is not implemented, the field is
read-only and read as zero.

FDT 13 Filtered Data Trace mode. If set, on a data breakpoint R/'W 0 Optional for
match, the data value of the matching breakpoint is traced. iFlowtrace rev
Normal tracing is inhibited when this mode is active. If 2.0+
this tracing mode is not implemented, the field is
read-only and read as zero.

BM 12 Breakpoint Match. If set, only instructions that match R/'W 0 Optional for
instruction or data breakpoints are traced. Normal tracing iFlowtrace rev
is inhibited when this mode is active. If this tracing mode 2.0+
is not implemented, the field is read-only and read as zero.

ER 11 Trace exceptions and exception returns. If set, trace R/W 0 Optional for
includes markers for exceptions and exception returns. iFlowtrace rev
Can be used in conjunction with the FCR bit. Inhibits nor- 2.0+
mal tracing. If this tracing mode is not implemented, the
field is read-only and read as zero.

FCR 10 Trace Function Calls and Returns. If set, trace includes R/W 0 Optional for
markers for function calls and returns. Can be used in con- iFlowtrace rev
junction with the ER bit. If this tracing mode is not imple- 2.0+
mented, the field is read-only and read as zero.

EST 9 Enable Special Tracing Modes. If set, normal tracing is R/W 0 Optional for
inhibited, allowing the user to choose one of several spe- iFlowtrace rev
cial tracing modes. Setting this bit inhibits normal trace 2.0+
mode. If no special tracing modes are implemented, this
field is read-only, and read as zero.

SyP 8:5 Synchronization Period. The synchronization period is set R/W 0 Required for
to 25YP*8) instructions. Thus a value of 0x0 implies 256 iFlowtrace rev
instructions, and a value of OxF implies 8M instructions. 2.0+

272

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




10.8 iFlowtrace™ Mechanism

Table 10.37 Control/Status Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

OfClk

Controls the Off-chip clock ratio. When the bit is set, this
implies 1:2, that is, the trace clock is running at 1/2 the
core clock, and when the bit is clear, implies 1:4 ratio, that
is, the trace clock is at 1/4 the core clock. Ignored unless
OfC is also set.

R/W

0

Required

OfC

Off-chip. 1 enables the PIB (if present) to unload the trace
memory. 0 disables the PIB and would be used when
on-chip storage is desired or if a PIB is not present. This
bit is settable only if the design supports both on-chip and
off-chip modes. Otherwise is a read-only bit indicating
which mode is supported.

R/W
or

Preset

Required

10

Inhibit overflow. If set, the CPU is stalled whenever the
trace memory is full. Ignored unless OfC is also set.

R/W

Required

En

Trace enable. This bit may be set by software or by
Trace-on/Trace-off action bits from the Complex Trigger
block. Software writes EN with the desired initial state of
tracing when the ITCB is first turned on and EN is con-
trolled by hardware thereafter. EN turning on and off does
not flush partly filled trace words.

R/W

Required

Software control of trace collection. 0 disables all collec-
tion and flushes out any partially filled trace words.

R/W

Required

10.8.6.2 ITCBTW Register (offset 0x3F80)

The ITCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the TW pointed to
by the ITCBRDP register. A side effect of reading the ITCBTW register is that the ITCBRDP register increments to the

next TW in the on-chip trace memory. If ITCBRDP is at the max size of the on-chip trace memory, the increment

wraps back to address zero.

Note that this is a 64b register.On a 32b processor, software must read the upper word (offset 0x3F84) first as the

address increment takes place on a read of the lower word (0x3F80).

The format of the ITCBTW register is shown below, and the field is described in Table 10.38.

Figure 10.32 ITCBTW Register Format

63 0
Data
Table 10.38 ITCBTW Register Field Descriptions
Fields Description Read/ Reset Compliance
- Write State
Names Bits
Data 63:0 Trace Word Undefined Required
MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

273



EJTAG Debug Support in the microAptiv™ UC Core

10.8.6.3 ITCBRDP Register (Offset 0x3f88)

The ITCBRDPregister is the addresspointer to on-chiptrace memory. It points to the TW read when reading the ITCBTW
register. This value will be automatically incremented after a read of the ITCBTW register.

The format of the ITCBRDP register is shown below, and the field is described in Table 10.39. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 10.33 ITCBRDP Register Format
31 n+l n 0

Address

Table 10.39 ITCBRDP Register Field Descriptions

Fields Description Read/ Reset Compliance
- Write State
Names Bits
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0 0 Required
Address n:0 Byte address of on-chip trace memory word. R/W Undefined Required

10.8.6.4 ITCBWRP Register (Offset 0x3f90)

The ITCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new
TW for on-chip trace will be written. The top bit in the register indicates whether the pointer has wrapped. If it has,
then the write pointer will also point to the oldest trace word. and the read pointer can be set to that to read the entire
array in order. If it is cleared, then the read pointer can be set to 0 to read up to the write pointer position.

The format of the ITCBWRP register is shown below, and the field is described in Table 10.40. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always

ZEro.
Figure 10.34 ITCBWRP Register Format
31 30 n+l n 0
‘ Wrap ‘ 0 Address
Table 10.40 ITCBWRP Register Field Descriptions
Fields Description Read/ Reset Compliance
- Write State
Names Bits
Wrap 3 Lr;(iigates that the entire array has been written at least RIW Undefined Required
0 30:(n+1) | Reserved. Must be written zero, reads back zero. 0 0 Required
Address 00 Eyte address of the next on-chip trace memory word to RIW Undefined Required
e written

274

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.8 iFlowtrace™ Mechanism

10.8.7 ITCB iFlowtrace Off-Chip Interface

The off-chip interface consists of a 4-bit data port (TR_DATA) and a trace clock (TR_CLK). TR_CLK can be a DDR
clock; that is, both edges are significant. TR_DATA and TR_CLK follow the same timing and have the same output
structure as the PDtrace TCB described in MIPS specifications. The trace clock is synchronous to the system clock
but running at a divided frequency. The OfCIk bit in the Control/Status register indicates the ratio between the trace
clock and the core clock. The Trace clock is always 1/2 of the trace port data rate, hence the “full speed” ITCB out-
puts data at the CPU core clockrate but the trace clock is half that, hence the 1:2 OfClk value is the full speed, and the
1:4 OfClIk ratio is half-speed.

When a 64-bit trace word is ready to transmit, the PIBreads it from the FIFO and begins sending it out on TR_DATA.
It is sent in 4-bit increments starting at the LSBs. In a valid trace word, the 4 LSBs are never all zero, so a probe lis-
tening on the TR_DATA port can easily determine when the transmission begins and then count 15 additional cycles
to collect the whole 64-bit word. Between valid transmissions, TR_DATA Is held at zero and TR_CLK continues to
run.

TR_CLK runs continuously whenever a probe is connected. An optional signal TR_PROBE_N may be pulled high
when a probe is not connected and could be used to disable the off-chip trace port. If not present, this signal must be

tied low at the Probe Interface Block (PIB) input.

The following encoding is used for the 6 tag bits to tell the PIB receiver that a valid transmission is starting:

// if (srcount == 0), EncodedSrCount = 111010 = 58

// else if (srcount == 16) EncodedSrCount = 111011 = 59
// else if (srcount == 32) EncodedSrCount = 111100 = 60
// else if (srcount == 48) EncodedSrCount = 111101 = 61
// else EncodedSrCount = srcount

10.8.8 Breakpoint-Based Enabling of Tracing

Each hardware breakpoint in the EITAG block (see the MIPS EJTAG Specification, MD00047, revision 4.14) has a
control bit associated with it that enables a trigger signal to be generated on a break match condition. In special trace
mode, this trigger can be used to insert an event record into the trace stream. In normal trace mode, this trigger signal
can be used to turn trace on or off, thus allowing a user to control the trace on/off functionality using breakpoints.
Similar to the TraceIBPC and TraceDBPC registers in PDtrace, registers are defined to control the start and stop of
iFlowtrace. The details on the actual register names and drseg addresses are shown in Table 10.41.

Table 10.41 drseg Registers that Enable/Disable Trace from Breakpoint-Based Triggers

Register Name drseg Address Reset Value Description

ITrigiFlowTrcEn 0x3FDO 0 Register that controls whether or not hard-
ware instruction breakpoints can trigger
iFlowtrace tracing functionality

DTrigiFlowTrcEn 0x3FDS8 0 Register that controls whether or not hard-
ware data and tuple breakpoints can trig-
ger iFlowtrace tracing functionality

The bits in each register are defined as follows:

» Bit 28 (IE/DE): Used to specify whether the trigger signal from EJTAG simple or complex instruction (data or
tuple) break should trigger iFlowtrace tracing functions or not. A value of 0 disables trigger signals from EJTAG
instruction breaks, and 1 enables triggers for the same.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 275



EJTAG Debug Support in the microAptiv™ UC Core

*  Bits 14:0 (IBrk/DBrk): Used to explicitly specify which instruction (data or tuple) breaks enable or disable
iFlowtrace. A value of 0 implies that trace is turned off (unconditional trace stop) and a value of 1 specifies that
the trigger enables trace (unconditional trace start).

10.9 PC/Data Address Sampling

276

It is often useful for program profiling and analysis to periodically sample the value of the PC. This information can
be used for statistical profiling akin to gprof, and is also very useful for detecting hot-spots in the code. In a
multi-threaded environment, this information can be used to understand thread behavior, and to verify thread schedul-
ing mechanisms in the absence of a full-fledged tracing facility like PDtrace.

The PC sampling feature is optional within EJTAG, but EJITAG and the TAP controller must be implemented if PC
Sampling is required. When implemented, PC sampling can be turned on or off using an enable bit; when the feature
is enabled, the PC value is continually sampled.

The presence or absence of the PC Sampling feature is indicated by the PCS (PC Sample) bit in the Debug Control
Register. If PC sampling is implemented, and the PCSe (PC Sample Enable) bit in the Debug Control Register is also
set to one, then the PC values are constantly sampled at the defined rate (DCRpcR) and written to a TAP register. The

old value in the TAP register is overwritten by the new value, even if this register has not been read out by the debug
probe.

The presence or absence of Data Address Sampling is indicated by the DAS (Data Address Sample) bit in the Debug
Control Register and enabled by the DASe (Data Address Sampling Enable) bit in the Debug Control Register.

The sample rate is specified by the 3-bit PCR (PC Sample Rate) field (bits 8:6) in the Debug Control Register (DCR).

These three bits encode a value 2° to 2!2 in a manner similar to the specification of SyncPeriod. When the implemen-
tation allows these bits to be written, the internal PC sample counter will be reset by each write, so that counting for
the requested sample rate is immediately restarted.

The sample format includes a New data bit, the sampled value, the ASID of the sampled value (if not disabled by
PCnoASID, bit 25 in DCR). Figure 10.35shows the format of the sampled values in the PCSAMPLE TAP register for
MIPS32. The New data bit is used by the probe to determine if the sampled data just read out is new or has already
been read and must be discarded.

Figure 10.35 PCSAMPLE TAP Register Format (MIPS32)

40 33 32 1 0
ASID (if enabled) PC or Data Address ‘ New ‘

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

Note that some of the smaller sample periods can be shorter than the time needed to read out the sampled value. That
is, it might take 41 (TCK) clock ticks to read a MIPS32 sample, while the smallest sample period is 32 (processor)
clocks. While the sample is being read out, multiple samples may be taken and discarded, needlessly wasting power.
To reduce unnecessary overhead, the TAP register includes only those fields that are enabled. If both PC Sampling
and Data Sampling are enabled, then both samples are included in the PCSample scan register. PC Sample is in the
least significant bits followed by a Data Address Sample. If either PC Sampling or Data Address Sampling is dis-
abled, then the TAP register does not include that sample. The total scan length is 49 * 2 = 82 bits if all fields are
present and enabled.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.10 Fast Debug Channel

10.9.1 PC Sampling in Wait State

Note that the processor samples PC even when it is asleep, that is, in a WAIT state. This permits an analysis of the
amount of time spent by a processor in WAIT state which may be used for example to revert to a low power mode
during the non-execution phase of a real-time application. But counting cycles to update the PC sample value is a
waste of power. Hence, when in a WAIT state, the processor must simply switch the New bit to 1 each time it is set to
0 by the probe hardware. Hence, the external agent or probe reading the PC value will detect a WAIT instruction for
as long as the processor remains in the WAIT state. When the processor leaves the WAIT state, then counting is
resumed as before.

10.9.2 Data Address Sampling

EJTAG revision 5.0 extends the PC sampling mechanism to allow sampling of data (load and store) addresses. This
feature is enabled with DASe, bit 23 in the Debug Control Register. When enabled, the PCSAMPLE scan register
includes a data address sample. All load and store addresses can be captured, or they can be qualified using a data
breakpoint trigger. DASQ=1 configures data sampling to record a data address only when it triggers data breakpoint
0. To be used for Data Address Sampling qualification, data breakpoint 0 must be enabled using its TE (trigger
enable) bit.

PCSR controls how often data addresses are sampled. When the PCSR counter triggers, the most recent load/store
address generated is accepted and made available to shift out through PCSAMPLE.

10.10 Fast Debug Channel

The Fast Debug Channel (FDC) mechanism provides an efficient means to transfer data between the core and an
external device using the EJTAG TAP pins. The external device would typically be an EJTAG probe and that is the
term used here, but it could be something else. FDC utilizes two First In First Out (FIFO) structures to buffer data
between the core and probe. The probe uses the FDC TAP instruction to access these FIFOs, while the core itself
accesses them using memory accesses. To transfer data out of the core, the core writes one or more pieces of data to
the transmit FIFO. At this time, the core can resume doing other work. An external probe would examine the status of
the transmit FIFO periodically. If there is data to be read, the probe starts to receive data from the FIFO, one entry at
a time. When all data from the FIFO has been drained, the probe goes back to waiting for more data. The core can
either choose to be informed of the empty transmit FIFO via an interrupt, or it can choose to periodically check the
status. Receiving data works in a similar manner - the probe writes to the receive FIFO. At that time, the core is either
interrupted, or finds out via polling a status bit. The core can then do load accesses to the receive FIFO and receive
data being sent to it by the probe. The TAP transfer is bidirectional - a single shift can be pulling transmit data and
putting receive data at the same time.

The primary advantage of FDC over normal processor accesses or fastdata accesses is that it does not require the core
to be blocked when the probe is reading or writing to the data transfer FIFOs. This significantly reduces the core

overhead and makes the data transfer far less intrusive to the code executing on the core.

Refer to the EITAG Specification [12] for the general details on FDC. The remainder of this section describes imple-
mentation specific behavior and register values.

The FDC memory mapped registers are located in the common device memory map (CDMM) region. FDC has a
device ID of OxFD.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 277



EJTAG Debug Support in the microAptiv™ UC Core

278

10.10.1 Common Device Memory Map

Software on the core accesses FDC through memory-mapped registers, located within the Common Device Memory
Map (CDMM). The CDMM is a region of physical address space that is reserved for mapping IO device configura-
tion registers within a MIPS processor. The base address and enabling of this region is controlled by the CDMMBase
CPO register, as described in 7.2.21 “CDMMBase Register (CP0 Register 15, Select 2)”” on page 176.

Refer to MIPS® Architecture For Programmers Volume 111 [9] for full details on the CDMM.

10.10.2 Fast Debug Channel Interrupt

The FDC block can generate an interrupt to inform software of incoming data being available or space being avail-
able in the outgoing FIFO. This interrupt is handled similarly to the timer or performance counter interrupts. The
CauseFDCI bit indicates that the interrupt is pending. Traditionally, this interrupt is also sent to the core output

SI FDCI where it is combined with one of the SI_ Int pins. However, this is no longer needed as the core will inter-
nally route the interrupt to the IP number set by the /ntCt.IPFDCI field. Note that this interrupt is a regular interrupt
and not a debug interrupt.

The FDC Configuration Register (see Section 10.10.6.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”)
includes fields for enabling and setting the threshold for generating each interrupt. Receive and transmit interrupt
thresholds are specified independently, but they are ORed together to form a single interrupt.

The following interrupt thresholds are supported:

* Interrupts Disabled: No interrupt will be generated and software must poll the status registers to determine if
incoming data is available or if there is space for outgoing data.

*  Minimum Core Overhead: This setting minimizes the core overhead by not generating an interrupt until the
receive FIFO (RxFIFO) is completely full or the transmit FIFO (TxFIFO) is completely empty.

*  Minimum latency: To have the core take data as soon as it is available, the receive interrupt can be fired when-
ever the RXFIFO is not empty. There is a complimentary TXxFIFO not full setting although that may not be quite
as useful.

*  Maximum bandwidth: When configured for minimum core overhead, bandwidth between the probe and core can
be wasted if the core does not service the interrupt before the next transfer occurs. To reduce the chances of this
happening, the interrupt threshold can be set to almost full or almost empty to generate an interrupt earlier. This
setting causes receive interrupts to be generated when there are 0 or 1 unused RxFIFO entries. Transmit inter-
rupts are generated when there are 0 or 1 used TXFIFO ertries (see note in following section about this condition)

10.10.3 microAptiv™™ UC Core FDC Buffers

Figure 10.36 shows the general organization of the transmit and receive buffers on the microAptiv UC core.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.10 Fast Debug Channel

Figure 10.36 Fast Debug Channel Buffer Organization

Store Address  Store Data to FDTXn Load from FDSTAT Load from FDRX

:' R TXFIFO I rrr - = —RXEIEO 1
I Chan | Data | : Chan | Data :
| O I | O |
I O I | O |
| O | | O |
: Chan | Data : Il chan | Data |
I I
I | N lSI_C kin
[ I | | EJ_TCK
| I | |
| | Chan | Data | | | Chan | Data | I
T U ———— a . A |
Capture-D pdate DR
EJ_TDI EJ_TDO
__>| Status | Chan | Data
t Shift Register

One

ontro
Logic

particular thing to note is the asynchronous crossings between the EJ_TCK and S/_Clkin clock domains. This

crossing is handled with a handshake interface that safely transfers data between the domains. Two data registers are
included in this interface, one in the source domain and one in the destination domain. The control logic actively
manages these registers so that they can be used as FIFO entries. The fact that one FIFO entry is in the EJ_TCK clock
domain is normally transparent, but it can create some unexpected behavior:

TXFIFO availability: Data is first written into the S/_Clk FIFO entries, then into the EJ_TCK FIFO entry, requir-
ing several EJ_TCK cycles to complete the handshake and move the data. EJ_TCK is generally much slower than
SI_Clkin, and may even be stopped (although that would be uncommon when this feature is in use). This can
result in not enough space for new data. even though there are only N-1 data values queued up. To prevent the
loss of data, the TxF flag in FDSTAT is set when all of the S/_Clkin FIFO entries are full. Software writes to the
FIFO should always check the TxF bit before attempting the write and should not make any assumptions about
being able to use all entries arbitrarily. i.e., software seeing the FXE bit set should not assume that it can write
TxCnt data words without checking for full.

TXFIFO Almost Empty Interrupt: As transmit data moves from S/_Clkin to EJ_TCK, both of the flops will tem-
porarily look full. This makes it difficult to determine when just 1 FIFO entry is in use. To enable a simpler con-
dition, the almost empty TxInterrupt condition is set when all of the S/_Clkin FIFO entries are empty. When this

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 279



EJTAG Debug Support in the microAptiv™ UC Core

condition is met, there will be 0 or 1 valid entries. However, the interrupt will not be asserted when there is only
one valid entry if it is an SI_CIkIn entry

¢ The RXFIFO has similar characteristics, but these are even less visible to software since SI_Clkin must be run-
ning to access the FDC registers.

10.10.4 Sleep mode

FDC data transfers do not prevent the core from entering sleep mode and will proceed normally in sleep mode. The
FDC block monitors the TAP interface signals with a free-running clock. When new receive data is available or trans-
mit data can be sent, the gated clock will be enabled for a few cycles to transfer the data and then allowed to stop
again. If FDC interrupts are enabled, transferring data may cause an interrupt to be generated which can wake the
core up.

10.10.5 FDC TAP Register

The FDC TAP instruction performs a 38-bit bidirectional transfer of the FDC TAP register. The register format is
shown in Figure 10.37 and the fields are described in Figure 10.42

Figure 10.37 FDC TAP Register Format

37 36 35 32 31 0
In Probe Data| Data In
Accept Valid
ChannellD Data
Out Receive | Data Out
" Buffer Full|  Valid

Table 10.42 FDC TAP Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
Probe Data 37 Indicates to core that the probe is accepting the data that w Undefined
Accept was scanned out.
Data In 36 Indicates to core that the probe is sending new data to the w Undefined
Valid receive FIFO.
Receive 37 Indicates to probe that the receive buffer is full and the R 0x0
Buffer Full core will not accept the data being scanned in. Analogous
to ProbeDataAccept, but opposite polarity
Data Out 36 Indicates to probe that the core is sending new data from R 0
Valid the transmit FIFO
ChannellD 35:32 Channel number associated with the data being scanned in R/W Undefined
or out. This field can be used to indicate the type of data
that is being sent and allow independent communication
channels
Scanning in a value with ChannellD=0xd and Data In
Valid = 0 will generate a receive interrupt. This can be
used when the probe has completed sending data to the
core.

280 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.10 Fast Debug Channel

Table 10.42 FDC TAP Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
Data 31:0 Data value being scanned in or out R/W Undefined

10.10.6 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU access to FDC is via loads and stores to the FDC
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration
and status information, as well as access to the transmit and receive FIFOs. The registers and their respective offsets
are shown in Table 10.43

Table 10.43 FDC Register Mapping

Offset in CDOMM Register
device block Mnemonic Register Name and Description
0x0 FDACSR | FDC Access Control and Status Register
0x8 FDCFG FDC Configuration Register
0x10 FDSTAT FDC Status Register
0x18 FDRX FDC Receive Register
0x20 + 0x8* n FDTXn FDC Transmit Register n (0 <n < 15)

10.10.6.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

This is the general CDMM Access Control and Status register which defines the device type and size and controls
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself is only acces-
sible in kernel mode. Figure 10.38 has the format of an Access Control and Status register (shown as a 64-bit regis-
ter), and Table 10.44 describes the register fields.

Figure 10.38 FDC Access Control and Status Register

63 32 31 24 23 22 21 16 15 12 1 4 3 2 1 0

0 DevID ‘ 0 ‘ DevSize ‘ DevRev ‘ 0 ‘ Uw ‘ Ur ‘ Sw ‘ Sr ‘

Table 10.44 FDC Access Control and Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
DevType 31:24 This field specifies the type of device. R Oxfd
DevSize 21:16 This field specifies the number of extra 64-byte blocks R 0x2
allocated to this device. The value 0x2 indicates that this
device uses 2 extra, or 3 total blocks.
DevRev 15:12 This field specifies the revision number of the device. The R 0x0
value 0x0 indicates that this is the initial version of FDC

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 281



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.44 FDC Access Control and Status Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State

Uw 3 This bit indicates if user-mode write access to this device R/W 0
is enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
write to the device while in user mode with access dis-
abled is ignored.

Ur 2 This bit indicates if user-mode read access to this device is R/W 0
enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
read from the device while in user mode with access dis-
abled will return 0 and not change any state.

Sw 1 This bit indicates if supervisor-mode write access to this R/W 0
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to write to the device while in supervisor mode
with access disabled is ignored.

Sr 0 This bit indicates if supervisor-mode read access to this R/W 0
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to read from the device while in supervisor mode
with access disabled will return 0 and not change any
state.

0 11:4 Reserved for future use. Ignored on write; returns zero on R 0
read.

10.10.6.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 10.39 has the format of the FDC Configuration register, and Table 10.45 describes the register fields.

Figure 10.39 FDC Configuration Register

31 20 19 18 17 16 15 8 7 0
0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize
Table 10.45 FDC Configuration Register Field Descriptions
Fields

Read / Reset

Name Bits Description Write State

0 31:20 Reserved for future use. Read as zeros, must be written as R 0
Zeros.
282 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.10 Fast Debug Channel

Table 10.45 FDC Configuration Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State

TxIntThresh 19:18 Controls whether transmit interrupts are enabled and the R/W 0
state of the TxFIFO needed to generate an interrupt.

Encoding Meaning

0 Transmit Interrupt Disabled

1 Empty
2 Not Full
3

Almost Empty - zero or one entry in
use (see 10.10.2 for specifics)

RxIntThresh 17:16 Controls whether receive interrupts are enabled and the R/W 0
state of the RXFIFO needed to generate an interrupt.

Encoding Meaning

0 Receive Interrupt Disabled
1 Full

2 Not empty
3

Almost Full - zero or one entry free

TXFIFOSize 15:8 This field holds the total number of entries in the transmit R Preset
FIFO.

RxFIFOSize 7:0 This field holds the total number of entries in the receive R Preset
FIFO.

10.10.6.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 10.40 shows the format of
the FDC Status register, and Table 10.46 describes the register fields.

Figure 10.40 FDC Status Register

31 24 23 16 15 8 7 4 3 2 1 0
Tx_Count Rx_Count 0 ‘ RxChan ‘RXE | RxF ’TXE ‘ TXF‘

Table 10.46 FDC Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
Tx_Count 31:24 This optional field is not implemented and will read as 0 R 0
Rx_Count 23:16 This optional field is not implemented and will read as 0 R 0
0 15:8 Reserved for future use. Must be written as zeros and read R 0
as zeros.
RxChan 7:4 This field indicates the channel number used by the top R Undefined
item in the receive FIFO. This field is only valid if RxE=0.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 283



EJTAG Debug Support in the microAptiv™ UC Core

Table 10.46 FDC Status Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State
RxE 3 If RXE is set, the receive FIFO is empty. If RXE is not set, R 1
the FIFO is not empty.
RxF 2 If RXF is set, the receive FIFO is full. If RxF is not set, the R 0
FIFO is not full.
TxE 1 If TXE is set, the transmit FIFO is empty. If TXE is not set, R 1
the FIFO is not empty.
TxF 0 If TXF is set, the transmit FIFO is full. If TXF is not set, the R 0
FIFO is not full.

10.10.6.4 FDC Receive (FDRX) Register (Offset 0x18)

This register exposes the top entry in the receive FIFO. A read from this register returns the top item in the FIFO and
removes it from the FIFO itself. The result of a write to this register is UNDEFINED. The result of a read when the
FIFO is empty is also UNDEFINED so software must check the RxE flag in FDSTAT prior to reading. Figure 10.41
shows the format of the FDC Receive register, and Table 10.47 describes the register fields.

Figure 10.41 FDC Receive Register

31 0
RxData

Table 10.47 FDC Receive Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
RxData 31:0 This register holds the top entry in the receive FIFO R Undefined

10.10.6.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers access the bottom entry in the transmit FIFO. The different addresses are used to generate a4b
channel identifier that is attached to the data value. This allows software to track different event types without need-
ing to reserve a portion of the 32b data as a tag. A write to one of these registers results in a write to the transmit FIFO
of the data value and channel ID corresponding to the register being written. Reads from these registers are UNDE-
FINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software running
on the core must check the TxF flag in FDSTAT to ensure that there is space for the write. Figure 10.42 shows the for-
mat of the FDC Transmit register, and Table 10.48 describes the register fields.

Figure 10.42 FDC Transmit Register

31 0
TxData

284 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



10.11 cJTAG Interface

Table 10.48 FDC Transmit Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
TxData 31:0 This register holds the bottom entry in the transmit FIFO | W, Unde- | Undefined
fined value
on read

Table 10.49 FDTXn Address Decode

Address | Channel || Address | Channel || Address | Channel || Address | Channel
0x20 0x0 0x40 0x4 0x60 0x8 0x80 Oxc
0x28 0x1 0x48 0x5 0x68 0x9 0x88 Oxd
0x30 0x2 0x50 0x6 0x70 Oxa 0x90 Oxe
0x38 0x3 0x58 0x7 0x78 0xb 0x98 0xf

10.11 cJTAG Interface

The cJTAG external IP block, provided as part of the microAptiv UC processor core, converts a 4-wire EITAG
(IEEE 1149.1) interface to a 2-wire cJTAG (IEEE1149.7) interface. A high-level view of cJTAG is shown in Figure
10.43. Operation of the conversion adapter is transparent to software.

Refer to the cJTAG Adapter User’s Manual [13] for more details.

Figure 10.43 cJTAG Interface

microAptiv
EJTAG cJTAG
EITAG 4-wire 2-wire
interface interface
TDI
Tap TDO cJTAG TMSC
Controller TCK _ |AdapterIP| TCK
™S Block

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 285



Chapter 11

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immedi-
ate, Jump, and Register. Refer to Chapter 12, “microAptiv™ UC Processor Core Instructions” on page 292 for a com-
plete listing and description of instructions.

This chapter discusses the following topics

* Section 11.1 “CPU Instruction Formats”

e Section 11.2 “Load and Store Instructions”

*  Section 11.3 “Computational Instructions”

*  Section 11.4 “Jump and Branch Instructions”

*  Section 11.5 “Control Instructions”

*  Section 11.6 “Coprocessor Instructions”

e Section 11.7 “Enhancements to the MIPS Architecture”

e Section 11.8 “MCU ASE Instructions”

11.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction for-
mats: immediate (I-type), jump (J-type), and register (R-type) (shown in Figure 11.1). The use of a small number of
instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less
frequently used) operations and addressing modes from these three formats as needed.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 286



11.2 Load and Store Instructions

Figure 11.1 Instruction Formats

I-Type (Immediate)
31 2625 2120 1615 0
op s rt immediate

J-Type (Jump)

31 26 25 0
| op | target .
R-Type (Register)
31 26 25 2120 1615 1110 65 0
op rs rt rd sa funct
op 6-bit operation code
IS 5-bit source register specifier
1t 5-bit target (source/destination) register or branch
condition
immediate 16-bit immediate value, branch displacement or
address displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

11.2 Load and Store Instructions

11.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a delayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as the /oad
delay slot.

In the microAptiv UC core, the instruction immediately following a load instruction can use the contents of the
loaded register; however in such cases hardware interlocks insert additional real cycles. Although not required, the

scheduling of load delay slots can be desirable, both for performance and R-Series processor compatibility.

11.2.2 Defining Access Types

Access type indicates the size of a core data item to be loaded or stored, set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian
configuration, the low-order byte is the least-significant byte.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 287



Instruction Set Overview

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown in Table 11.1. Only the combinations shown in Table 11.1 are permissible; other combinations cause
address error exceptions.

Table 11.1 Byte Access Within a Word

Bytes Accessed
Low Order Big Endian Little Endian
Address Bits (31 === mmmmmm | 0) (31 -==mmm | 0)
Access Type 2 1
Word 0 0
Triplebyte 0 0
0 0
Halfword 0 0
0 1
Byte 0 0
0 0
0 1
0 1

11.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in imme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

e Arithmetic

* Logical
«  Shift

e Multiply
+ Divide

These operations fit in the following four categories of computational instructions:
*  ALU Immediate instructions

*  Three-operand Register-type Instructions

*  Shift Instructions

e Multiply And Divide Instructions

288 MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



11.4 Jump and Branch Instructions

11.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the microAptivT™ UC Core” on page 38 for more information
on instruction latency and repeat rates.

11.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch (this is known as the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

11.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general

purpose registers.

For more information about jump instructions, refer to the individual instructions in Chapter 12, “microAptivi™ UC
Processor Core Instructions” on page 292.

11.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.
11.5 Control Instructions
Control instructions allow the software to initiate traps; they are always R-type.

11.6 Coprocessor Instructions

CPO instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 12, “microAptivT™ UC Processor Core
Instructions” on page 292 for a listing of CPO instructions.

11.7 Enhancements to the MIPS Architecture
The core execution unit implements the MIPS32 architecture, which includes the following instructions.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 289



Instruction Set Overview

290

*  CLOCount Leading Ones

*  CLZCount Leading Zeros

«  MADDMultiply and Add Word

*  MADDUMultiply and Add Unsigned Word

*  MSUBMultiply and Subtract Word

*  MSUBUMultiply and Subtract Unsigned Word
*  MULMultiply Word to Register

*  SSNOPSuperscalar Inhibit NOP

11.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in the GPR rs is scanned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written to the GPR rd.
If all 32 bits are set in the GPR rs, the result written to the GPR rd is 32.

11.7.2 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in the GPR rs is scanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to the GPR
rd. If all 32 bits are cleared in the GPR rs, the result written to the GPR rd is 32.

11.7.3 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word value in
the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as signed values, to produce a 64-bit
result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The resulting value is
then written back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

11.7.4 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 32-bit
word value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as unsigned values, to
produce a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The
resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any conditions.

11.7.5 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit word
value in the GPR rsis multiplied by the 32-bit value in the GPR rt, treating both operands as signed values, to produce
a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO register pair. The
resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any circum-
stances.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



11.8 MCU ASE Instructions

11.7.6 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair. The
32-bit word value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO reg-
ister pair. The resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under
any circumstances.

11.7.7 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in the GPR rsis
multiplied by the 32-bit value in the GPR rt, treating both operands as signed values, to produce a 64-bit result. The
least-significant 32-bits of the product are written to the GPR rd. The contents of the HI and LO register pair are not
defined after the operation. No arithmetic exception occurs under any circumstances.

11.7.8 SSNOP- Superscalar Inhibit NOP

The MIPS32 microAptiv UC processor cores treat this instruction as a regular NOP.
11.8 MCU ASE Instructions

The MCU ASE includes some new instructions which are particularly useful in microcontroller applications.

11.8.1 ACLR

This instruction allows a bit within an uncached I/O control register to be atomically cleared; that is, the read-modify
byte write sequence performed by this instruction cannot be interrupted.

11.8.2 ASET

This instruction allows a bit within anuncached I/O control register to be atomically set; that is, the read-modify byte
write sequence performed by this instruction cannot be interrupted.

11.8.3 IRET

This instruction can be used as a replacement for the ERET instruction when returning from an interrupt. This
instruction implements the Automated Interrupt Epilogue feature, which automates restoring some of the COPO reg-
isters from the stack and updating the CO_Status register in preparation for returning to non-exception mode. This
instruction also implements the optional Interrupt Chaining feature, which allows a subsequent interrupt to be han-
dled without returning to non-exception mode.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 291



Chapter 12

microAptiv™™ UC Processor Core Instructions

This chapter supplements the MIPS32® Architecture Reference Manual, Volume 11 by describing instruction behav-
ior that is specific to a MIPS32 microAptiv UC processor core. For complete descriptions of all MIPS32 and
mciroMIPS32 instructions, refer to MIPS® Architecture For Programmers, Volume II: The MIPS32® Instruction Set
[7] and MIPS® Architecture For Programmers, Volume 11: The microMIPS32® Instruction Set [8].

This chapter is divided into the following sections:

*  Section 12.1 “Understanding the Instruction Descriptions”

*  Section 12.2 “microAptivi™™ UC Core Opcode Map”

e Section 12.3 “MIPS32® Instruction Set for the microAptivi™ UC Core”

The microAptiv UC processor core also supports theMIPS32 microMIPS architecture. The microMIPS instruction
set is described in Chapter 13, “microMIPS™ Instruction Set Architecture” on page 320.

The microAptiv UC processor core also supports the instructions in the MIPS DSP Module Revision 2. The MIPS
DSP Module Revision 2 instruction set is described in Chapter 4, “The MIPS® DSP Module” on page 99.

12.1 Understanding the Instruction Descriptions

Refer to Volume Il of the MIPS32 Architecture Reference Manual for detailed information about the instruction
descriptions, namely, the instruction fields, definition of terms, and functional notation. This section provides basic
information

12.2 microAptiv™™ UC Core Opcode Map

Key

CAPITALIZED text indicates an opcode mnemonic
» ltalicized text refers the reader to indicates to the specified opcode submap for further instruction bit decode.

«  Entries containing the o symbol indicate that a reserved instruction fault occurs if the core executes this instruc-
tion.

*  Entries containing the § symbol indicate that a coprocessor unusable exception occurs if the core executes this
instruction

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 292



12.2 microAptiv™™ UC Core Opcode Map

Table 12.1 Encoding of the Opcode Field

opcode | bits 28..26
0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0 | 000 Special Reglmm J JAL BEQ BNE BLEZ BGTZ
1] 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 | 010 COPO B COP2 B BEQL BNEL BLEZL BGTZL
31011 a a o a Special2 SAAE o Ereylanl
4 | 100 LB LH LWL Lw LBU LHU LWR a
5] 101 SB SH SWL SW o o SWR CACHE
6 | 110 LL B LWC2 PREF a B ) o
71 111 SC B SWC2 o o B o o
Table 12.2 Special Opcode Encoding of Function Field
function | bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 SLL B SRL/ SRA SLLV o SRLV/ SRAV
ROTR ROTRV
1] 001 JR JALR MOVZ MOVN SYSCALL | BREAK o) SYNC
2 1010 MFHI MTHI MFLO MTLO a a o a
3] 011 MULT MULTU DIV DIVU a a a a
4 | 100 ADD ADDU SUB SUBU AND OR XOR NOR
51101 a o SLT SLTU o o o o
6 | 110 TGE TGEU TLT TLTU TEQ a TNE a
7| 111 o o o o a o o o
Table 12.3 Special2 Opcode Encoding of Function Field
function | bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 MADD MADDU MUL o MSUB MSUBU a a
1| 001 o o o o o o o
2 | 010 UDI! or
3| 011
4 | 100 CLZ CLO o a o o o o
51101 a o o a o o o o
6 | 110 o o o o o o o o
71 111 o o o o o o o SDBBP

1. CorExtend instructions are a build-time option of the microAptiv UC Pro core, if not implemented this instructions
space will cause a reserved instruction exception. If assembler support exists, the mnemonics for CorExtend

instructions are most likely UDIO, UDI1, .., UDI15.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03




microAptiv™™ UC Processor Core Instructions

Table 12.4 Special3 Opcode Encoding of Function Field

function | bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 EXT o o o INS o o o
1] 001 o o o o o o o o
2 | 010 o o o o o o o o
3| 011 o o o o o a o a
4 | 100 BSHFL a a o a a o (o}
5| 101 o o o o o a o a
6| 110 o a o o o o o a
7| 111 a o a PAHQP o o a o
Table 12.5 Reglmm Encoding of rt Field
rt bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL BGEZL o o o o
1] 01 TGEI TGEIU TLTI TLTIU TEQI o TNEI o
2| 10 | BLTZAL | BGEZAL | BLTZALL | BGEZALL o a o a
31 11 o o o o a o o SWNXI
Table 12.6 COP2 Encoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MEFC2 o CFC2 M®HX?2 MTC2 a CTC2 MTHX2
1| 01 BC2 BC2!
21 10 Cco
3] 11

1. The core will treat the entire row as a BC2 instruction. However compiler and assembler support only exists for the

first one. Some compiler and assembler products may allow the user to add new instructions.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03

rt bits 16

bits 17 0 1
0 BC2F BC2T
1 BC2FL BC2TL

Table 12.7 COP2 Encoding of rt Field When rs=BC2




12.2 microAptiv™™ UC Core Opcode Map

Table 12.8 COP0 Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFCO o o o MTCO o o o
1| 01 a a PAIITTIP | M®MXO0 a a QPIIT'TIP a
21 10 CcO
3011

Table 12.9 COP0 Encoding of Function Field When rs=CO

function | bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 o a o a o o o a
1] 001 o o o o o o o o
2 | 010 o o o o o o o o
3] 011 ERET IAXK o o o o o DERET
4 | 100 WAIT o o o o o o a
5] 101 o o o o o a o a
6| 110 o a o o o o o a
7| 111 o o o o o a o o
Table 12.10 MIPS32 COP1 Encoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MEC1 * CFC1 MFHC1 MTC1 * CTC1 MTHCI1
1] 01 BC13 * * * * * * *
2| 10 S8 D3 * * Wsé Ld * *
3] 11 * * * * * * * %

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 295



microAptiv™™ UC Processor Core Instructions

Table 12.11 MIPS32 COP1 Encoding of Function Field When rs=S

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 | 001 |ROUND.L V| TRUNCLV | CEILLV |FLOOR.LV | ROUND.W | TRUNC.W CEIL.W FLOOR.W
2 | 010 * MOVCF & MOVZ MOVN * RECIP V RSQRT V *
31011 * * * * * * * *
4 | 100 * CVT.D * * CVT.W CVTLV * *
6| 110 * * * * * * * *
7 1111 * * * * * * * *
Table 12.12 MIPS32 COP1 Encoding of Function Field When rs=D
function bits 2..0
0 1 2 3 4 5 6 7
bits 5.3 000 001 010 011 100 101 110 111
0 | 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 | 001 |ROUND.LV | TRUNCLV | CEILLV |FLOORLYV | ROUND.W | TRUNC.W CEIL.W FLOOR.W
2| 010 * MOVCF & MOVZ MOVN * RECIP V RSQRT V *
31011 * * * * * * * *
4 | 100 CVTS * * * CVT.W CVTLV * *
6| 110 * * * * * * * *
71 111 * * * * * * * *
Table 12.13 MIPS32 COP1 Encoding of Function Field When rs=W or L'
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
4 | 100 CVT.S CVT.D * * * * * *

1. Format type L is legal only if 64-bit floating point operations are enabled.

296

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




Table 12.14 MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF

12.3 MIPS32® Instruction Set for the microAptiv™ UC Core

tf bit 16

0 1

MOVE.fmt | MOVT.fmt

12.3 MIPS32® Instruction Set for the microAptiv™™ UC Core

This section provides a summary of the MIPS32 instructions for the microAptiv UC cores (microMIPS32 instructions
are described in Chapter 13, “microMIPS™ Instruction Set Architecture” on page 320).

Table 12.15 lists the instructions in alphabetical order. Instructions that have implementation-dependent behavior are
described in subsequent sections; all other MIPS32 instructions are described in detail in the MIPS® Architecture For
Programmers, Volume 11: The MIPS32® Instruction Set [7] and are not duplicated here.

Table 12.15 Instruction Set

Instruction Description Function
ADD Integer Add Rd=Rs+Rt
ADDI Integer Add Immediate Rt =Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt =Rs +{; Immed
ADDU Unsigned Integer Add Rd=Rs+y Rt
AND Logical AND Rd=Rs & Rt
ANDI Logical AND Immediate Rt=Rs & (014 || Immed)
ACLR Atomic Bit Clear See MCU ASE Instructions
ASET Atomic Bit Set See MCU ASE Instructions
B Unconditional Branch PC += (int)offset
(Assembler idiom for: BEQ 10, r0, offset)
BAL Branch and Link GPR[31]=PC +8
(Assembler idiom for: BGEZAL 10, offset) PC += (int)offset
BC2F Branch On COP2 Condition False if COP2Condition(cc) ==
PC += (int)offset
BC2FL Branch On COP2 Condition False Likely if COP2Condition(cc) ==
PC += (int)offset
else
Ignore Next Instruction
BC2T Branch On COP2 Condition True if COP2Condition(cc) ==
PC += (int)offset
BC2TL Branch On COP2 Condition True Likely if COP2Condition(cc) ==
PC += (int)offset
else
Ignore Next Instruction
BEQ Branch On Equal if Rs==Rt
PC += (int)offset

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

297



microAptiv™™ UC Processor Core Instructions

208

Table 12.15 Instruction Set (Continued)

Instruction

Description

Function

BEQL

Branch On Equal Likely

if Rs==Rt
PC += (int)offset
else
Ignore Next Instruction

BGEZ

Branch on Greater Than or Equal To Zero

if IRs[31]
PC += (int)offset

BGEZAL

Branch on Greater Than or Equal To Zero And
Link

GPR[31]=PC+8
if IRs[31]
PC += (int)offset

BGEZALL

Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31]=PC+38
if IRs[31]
PC += (int)offset
else
Ignore Next Instruction

BGEZL

Branch on Greater Than or Equal To Zero
Likely

if IRs[31]
PC += (int)offset
else
Ignore Next Instruction

BGTZ

Branch on Greater Than Zero

if IRs[31] && Rs !=0
PC += (int)offset

BGTZL

Branch on Greater Than Zero Likely

if IRs[31] && Rs 1= 0
PC += (int)offset

else
Ignore Next Instruction

BLEZ

Branch on Less Than or Equal to Zero

if Rs[31] || Rs ==
PC += (int)offset

BLEZL

Branch on Less Than or Equal to Zero Likely

if Rs[31] || Rs ==
PC += (int)offset
else
Ignore Next Instruction

BLTZ

Branch on Less Than Zero

if Rs[31]
PC += (int)offset

BLTZAL

Branch on Less Than Zero And Link

GPR[31]=PC+38
if Rs[31]
PC += (int)offset

BLTZALL

Branch on Less Than Zero And Link Likely

GPR[31]=PC+8
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BLTZL

Branch on Less Than Zero Likely

if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BNE

Branch on Not Equal

if Rs I=Rt
PC += (int)offset

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




12.3 MIPS32® Instruction Set for the microAptiv™ UC Core

Table 12.15 Instruction Set (Continued)

Instruction Description Function
BNEL Branch on Not Equal Likely if Rs I=Rt
PC += (int)offset
else
Ignore Next Instruction
BREAK Breakpoint Break Exception
CACHE Cache Operation NOP
CFC2 Move Control Word From Coprocessor 2 Rt=CCR[2, n]
CLO Count Leading Ones Rd = NumLeadingOnes(Rs)
CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)
COPO Coprocessor 0 Operation See Coprocessor Description
COP2 Coprocessor 2 Operation See Coprocessor 2 Description
CTC2 Move Control Word To Coprocessor 2 CCR[2,n] =Rt
DERET Return from Debug Exception PC=DEPC
Exit Debug Mode
DI Disable Interrupts Rt=Status
Status;g=0
DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt
DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt
EHB Execution Hazard Barrier Stall until execution hazards are
cleared
EI Enable Interrupts Rt=Status
Statusjg=1
ERET Return from Exception if SR[2]
PC = ErrorEPC
else
PC=EPC
SR[1]=0
SR[2]=0
LL=0
EXT Extract Bit Field Rt=ExtractField(Rs,msbd,lsb)
INS Insert Bit Field Rt=InsertField(Rt,Rs,msb,lsb)
IRET Return from Exception See MCU ASE Instructions
J Unconditional Jump PC =PC[31:28] || offset<<2
JAL Jump and Link GPR[31]=PC+38
PC =PC[31:28] || offset<<2
JALR Jump and Link Register Rd=PC+8
PC=Rs
JALR.HB Jump and Link Register with Hazard Barrier Rd=PC+8
PC=Rs
Stall until all execution and instruc-
tion hazards are cleared

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

299



microAptiv™™ UC Processor Core Instructions

Table 12.15 Instruction Set (Continued)

Instruction Description Function
JR Jump Register PC=Rs
JR.HB Jump Register with Hazard Barrier PC=Rs

Stall until all execution and instruc-
tion hazards are cleared

LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]
LL Load Linked Word Rt = Mem[Rs+offset]
LL=1
LLAdr =Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
Lw Load Word Rt = Mem[Rs+offset]
LwC2 Load Word To Coprocessor 2 CPR]2, n, 0] = Mem[Rs+offset]
LWL Load Word Left See LWL instruction.
LWR Load Word Right See LWR instruction.
MADD Multiply-Add HI, LO += (int)Rs * (int)Rt
MFCO0 Move From Coprocessor 0 Rt = CPRJO0, n, sel]
MFC2 Move From Coprocessor 2 Rt=CPRJ[2, n, sel3; (]
MFHC2 Move From High Word Coprocessor2 Rt= CPR[2,n,sel]g3 32
MFHI Move From HI Rd=HI
MFLO Move From LO Rd=LO
MOVN Move Conditional on Not Zero if GPR[rt] # 0 then
GPR[rd] = GPR[rs]
MOVZ Move Conditional on Zero if GPR[rt] = 0 then
GPR[rd] = GPR[rs]
MSUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPR][O, n, sel] =Rt
MTC2 Move To Coprocessor 2 CPR[2, n, sel]3; o =Rt
MTHC2 Move To High Word Coprocessor 2 CPR[2, n, sel]g3 30 =Rt
MTHI Move To HI HI=Rs
MTLO Move To LO LO=Rs
MUL Multiply with register write HI | LO =Unpredictable
Rd=LO
MULT Integer Multiply HI | LO = (int)Rs * (int)Rd
NOP No Operation
(Assembler idiom for: SLL r0, 10, r0)
NOR Logical NOR Rd=~(Rs|Rt)

300 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



12.3 MIPS32® Instruction Set for the microAptiv™ UC Core

Table 12.15 Instruction Set (Continued)

Instruction Description Function
OR Logical OR Rd=Rs|Rt
ORI Logical OR Immediate Rt=Rs | Immed
PREF Prefetch NOP
RDHWR Read HardWare Register Rt=HWR[Rd]
RDPGPR Read GPR from Previous Shadow Set Rd=SGPR[SRSCtlpgg, Rt]
ROTR Rotate Word Right Rd=Rtg, | ollRt31 ga
ROTRV Rotate Word Right Variable Rd=Rtgsq ¢l Rt31 grs
SB Store Byte (byte)Mem[Rs+offset] = Rt
SC Store Conditional Word if LL =1
mem[Rxoffs] = Rt
Rt=LL
SDBBP Software Debug Breakpoint Trap to SW Debug Handler
SEB Sign Extend Byte Rd=SignExtend(Rt; ()
SEH Sign Extend Half Rd=SignExtend(Rt;5 ()
SH Store Halfword (half)Mem[Rs+offset] = Rt
SLL Shift Left Logical Rd=Rt<<sa
SLLV Shift Left Logical Variable Rd =Rt << Rs[4:0]
SLT Set on Less Than if (int)Rs < (int)Rt
Rd=1
else
Rd=0
SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt=1
else
Rt=0
SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt=1
else
Rt=0
SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd=1
else
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation Nop
SUB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
Sw Store Word Mem[Rs+offset] = Rt

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

301



microAptiv™™ UC Processor Core Instructions

302

Table 12.15 Instruction Set (Continued)

Instruction Description Function
SWC2 Store Word From Coprocessor 2 Mem|[Rs+offset] = CPR[2, n, 0]
SWL Store Word Left See SWL instruction description.
SWR Store Word Right See SWR instruction description.
SYNC Synchronize See SYNC instruction below.
SYNCI Synchronize Caches to Make Instruction Writes | NOP
Effective
SYSCALL System Call SystemCallException
TEQ Trap if Equal if Rs==Rt
TrapException
TEQI Trap if Equal Immediate if Rs == (int)Immed
TrapException
TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
TrapException
TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)Immed
Unsigned TrapException
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException
TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException
TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
TrapException
TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
TrapException
TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException
TNE Trap if Not Equal if Rs I=Rt
TrapException
TNEI Trap if Not Equal Immediate if Rs != (int)lmmed
TrapException
WAIT Wait for Interrupts Stall until interrupt occurs
WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlpgg,Rd]=Rt
WSBH Word Swap Bytes within Halfwords Rd=SwapBytesWithinHalfs(Rt)
XOR Exclusive OR Rd=Rs "Rt
XORI Exclusive OR Immediate Rt =Rs * (uns)Immed

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




31 26 25 21 20 16 15 14 12 1 4 3 0

REGIMM ATOMIC .
000001 base 00111 0 Bit offset
6 5 5 1 3 12
Format: ACLR bit, offset (base) MIPS and MCU ASE

Purpose: Atomically Clear Bit within Byte

Description: Disable interrupts; temp < memory [GPR[base] + offset]; temp <« (temp and ~(1
<< bit)) ; memory[GPR[base] + offset] <« temp; Enable Interrupts

The contents of the 8-bit byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is cleared to zero. The modified byte is stored in memory at the location specified by the effective
address. The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-
write sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNDEFINED if an ACLR instruction is executed in the delay slot of a branch or
jump instruction.

Operation:

vAddr <« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
PAddr « pAddrpgrzg.1.. || (pAddr , xor ReverseEndian)
TempIE <« Statusig

Statusig < O

memword <« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr , xor BigEndianCPU

temp < memword7+8*byte..8*byt¢

temp <« temp and (( 1 || 0Pit) xor O0xFF))

dataword <« temp
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
Statusiy < TemplE

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error, a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions
such as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 303



31 26 25 24 23 21 20 16 15 12 1 0

POOL32B A0 . ACLR
001000 0 bit base 1011 offset
6 2 3 5 4 12
Format: ACLR bit, offset (base) microMIPS and MCU ASE

Purpose: Atomically Clear Bit within Byte

Description: Disable interrupts; temp < memory [GPR[base] + offset]; temp <« (temp and ~(1
<< bit)) ; memory[GPR[base] + offset] <« temp; Enable Interrupts

The contents of the byte at the memo ry location specified by the effective address are fetched. The specified bit
within the byte is cleared to zero. The modified byte is stored in memory at the location specified by the effective
address. The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-
write sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNDEFINED if an ACLR instruction is executed in the delay slot of a branch or
jump instruction.

Operation:

vAddr <« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
PAddr « pAddrpgrzg.1.. || (pAddr , xor ReverseEndian)
TempIE <« Statusig

Statusig < O

memword <« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr , xor BigEndianCPU

temp < memword7+8*byte..8*byt¢

temp <« temp and (( 1 || 0Pit) xor O0xFF))

dataword <« temp
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
Statusiy < TemplE

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error, a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions
such as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

304 MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



31 26 25 21 20 16 15 14 12 1 4 3 0

REGIMM ATOMIC .
000001 base 00111 1 Bit offset
6 5 5 1 3 12
Format: ASET bit, offset (base) MIPS and MCU ASE

Purpose: Atomically Set Bit within Byte

Description: Disable interrupts;temp < memory [GPR[base] + offset]; temp <« (temp or (1 <<
bit)) ; memory[GPR[base] + offset] <« temp; Enable Interrupts

The contents of the 8-bit byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is set to one. The modified byte is stored in memory at the location specified by the effective address.
The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-write
sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNDEFINED if an ASET instruction is executed in the delay slot of a branch or
jump instruction.

Operation:

vAddr <« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
PAddr « pAddrpgrzg.1.. || (pAddr , xor ReverseEndian)
TempIE <« Statusig

Statusig < O

memword <« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr , xor BigEndianCPU

temp <« memword;,gipyte.. grhyte

temp <« temp or ( 1 || oPiT)

dataword <« temp || 0®*PYte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
Statusiy < TemplE

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error, a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions
such as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 305



31 26 25 24 23 21 20 16 15 12 1 0

POOL32B A0 . ASET
001000 0 bit base 0011 offset
6 2 3 5 4 12
Format: ASET bit, offset (base) microMIPS AND MCU ASE

Purpose: Atomically Set Bit within Byte

Description: Disable interrupts;temp < memory [GPR[base] + offset]; temp <« (temp or (1 <<
bit)) ; memory[GPR[base] + offset] <« temp; Enable Interrupts

The contents of the byte at the memo ry location specified by the effective address are fetched. The specified bit
within the byte is set to one. The modified byte is stored in memory at the location specified by the effective address.
The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-write
sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNDEFINED if an ASET instruction is executed in the delay slot of a branch or
jump instruction.

Operation:

vAddr <« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
PAddr « pAddrpgrzg.1.. || (pAddr , xor ReverseEndian)
TempIE <« Statusig

Statusig < O

memword <« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr , xor BigEndianCPU

temp <« memword;,gipyte.. grhyte

temp <« temp or ( 1 || oPiT)

dataword <« temp || 0®*PYte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
Statusiy < TemplE

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error, a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions
such as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

306 MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



31 26 25 6 5 0

COPO Co 0 IRET
010000 1 00 0000 0000 0000 0000 111000
6 1 20 6
Format: IRET MIPS and MCU ASE

Purpose: Interrupt Return with Automated Interrupt Epilogue

Optionally jump directly to another interrupt vector without returning to original return address.

Description:

IRET is used to automate some of the operations that are required when returning from an interrupt handler. It can be
used in place of the ERET instruction at the end of interrupt handlers. The IRET instruction is only appropriate when
using Shadow Register Sets and EIC Interrupt mode. The automated operations of this instruction can be used to
reverse the effects of the automated operations of the Auto-Prologue feature.

If the EIC mode of interrupts and the Interrupt Chaining feature are used, the IRET instruction can be used to shorten
the time between returning from the current interrupt handler and handling the next requested interrupt.

If Automated Prologue feature is disabled, then IRET behaves exactly as ERET.
If either Statusgg, or Statusggy bits are set, then IRET behaves exactly as ERET.
If Interrupt Chaining is disabled:

*  Interrupts are disabled. COPO Status, SRSCtl, and EPC registers are restored from the stack. GPR 29 is
incremented for the stack frame size. IRET then clears execution and instruction hazards, conditionally
restores SRSCltlcgg from SRSCtlpgg, and returns to the interrupted instruction pointed by the EPC register at

the completion of interrupt processing.
If Interrupt Chaining is enabled:

* Interrupts are disabled. COPO Status register is restored from the stack. The priority output of the External
Interrupt Controller is compared with the /PL field of the Status register.

» If Status|p|_has a higher priority than that of the External Interrupt Controller value:

COPO SRSCtland EPC registers are restored from the stack. GPR 29 is incremented for the stack frame size.
IRET then clears execution and instruction hazards, conditionally restores SRSCHl-gg from SRSCtipgs, and
returns to the interrupted instruction pointed by the EPC register at the completion of interrupt processing.

» If Status|p,_field has a lower priority than that of the External Interrupt Controller value:

The value of GPR 29 is first saved to a temporary register then GPR 29 is incremented for the stack frame
size. The EIC is signalled that the next pending interrupt has been accepted. This signalling will update the
Causegp; and SRSCltlgcsg fields from the EIC output values. The SRSCtig css field is copied to the
SRSCtlcgg field while the Causegp| field is copied to the Status;p field. The saved temporary register is
copied to the GPR 29 of the current SRS. The KSU, ERL and EXL fields of the Status register are optionally
set to zero. No barrier for execution hazards nor instruction hazards is created. IRET finishes by jumping to
the interrupt vector driven by the EIC.

IRET does not execute the next instruction (i.e., it has no delay slot).

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 307



308

Restrictions:

The operation of the processor is UNDEFINED if an IRET is executed in the delay slot of a branch or jump instruc-
tion.

The operation of the processor is UNDEFINED if an IRET is executed when eith er Shadow Register Sets are not
enabled or when EIC interrupt mode is not enabled.

An IRET placed between an LL and SC instruction will always cause the SC to fail.

The effective addresses used for the stack memory transactions must be naturally-aligned. If either of the two least-
significant bits of the address is non-zero, an Address Error exception occurs.

IRET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0 state
changes (for Release 2 implementations, refer to the SY NCI instruction for ad ditional information on resolving
instruction hazards created by writing the instruction stream). The ef fects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the IRET returns.

In a Release 2 implementation, IRET does not restore SRSCtlcgg from SRSCtlpgs if Statusggy, = 1, or if Statusgg, =
1 because any exception that sets Statusgg, to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlcgg in
SRSCltlpgs. If software sets Statusgg, to 1, it must be aware of the operation of an IRET that may be subsequently
executed.

The stack memory transactions behave as individual L W operations with respect to exception reporting. BadVAddr
would report the faulting addr ess for unaligned access and the faulting word address for un privileged access, TLB
Refill and TLB Invalid exceptions. For TLB exceptions, the faulting word address would be reflected in the Context,
and EntryHi registers. The CacheError register would reflect the faulting word address for Cache Errors.

Operation:
if (( IntCtlppg == 0) | (Statusgg, == 1) | (Statusggy== 1))
Act as ERET // read Operation section of ERET description
else
if (ISAMode)
EPC « PC 4 || 1 // in case of memory exception
else
EPC « PC // in case of memory exception
endif

temp « 0x4 + GPR[29]
tempStatus <« LoadStackWord (temp)
ClearHazards ()
if ( (IntCtlyecg == 0) | ((IntCtlycy == 1) &
(tempStatusip;, > EICr1pr)) )

temp <« 0x8 + GPR[29]

tempSRSCtl <« LoadStackWord (temp)

temp <« 0x0 + GPR[29]

tempEPC <« LoadStackWord (temp)

endif
Status <« tempStatus
if ( (IntCtlieg == 0) | ((IntCtlieg == 1) &

(tempStatusyp;, > EICr1pn)) )
GPR[29] < GPR[29] + DecodedValue (IntCtlgiypec)
SRSCtl <« tempSRSCtl
EPC <« tempEPC
temp <« EPC
Statusgy, < 0
if (ArchitectureRevision > 2) and (SRSCtlygg > 0)
and (Statusggy = 0) then
SRSCtlpgg ¢ SRSCtlpgg

MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



endif
if IsMicroMIPSImplemented() then
PC « temp , || ©
ISAMode <« tempg
else
PC <« temp
endif
LLbit « 0
Causerc < O
ClearHazards ()
else
Signal EIC for Next Interrupt ()
(wait for EIC outputs to update)
Causegpr, ¢ EICy7py,
SRSCtlgtcgg ¢ EICgg
temp29 <« GPR[29]
GPR[29] < GPR[29] + DecodedValue (IntCtlgiypec)
Statusqp;, < Causegrpr,
SRSCtlngg ¢ SRSCtlgress
NewShadowSet < SRSCtlgpyegg
GPR[29] <« temp29
if (IntCtlpypgxr == 1)
Statusgy;, < 0
Statusggy < 0
endif
Causerqc < 1
ClearHazards ()
PC <« CalcIntrptAddress ()
endif
endif

function LoadStackWord (vaddr)
if vAddr,; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord <« memword
endfunction LoadStackWord

function CalcIntrptAddress ()
if Statusggy = 1
vectorBase <« 0xBFCO0.0200
else
if ( ArchitectureRevision > 2)
vectorBase < EBase ,, | 0'%)
else
vectorBase <« 0x8000.0000
endif
endif
if (Causery = 0)
vectorOffset = 0x180
else
if (Statusggy = 1) or (IntCtlyg = 0)
vectorOffset = 0x200

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

309



else
if ( Config3ygiec = 1 and EIC Option=1)
VectorNum = Causegypy,
elseif (Config3ygrec = 1 and EIC_Option=2)
VectorNum = EIC_VectorNum
elseif (Config3ygie = 0 )
VectorNum = VIntPriorityEncoder ()
endif
if (Config3ygrec = 1 and EIC Option=3)
vectorOffset = EIC VectorOffset
else
vectorOffset = 0x200 + (VectorNum x (IntCthS||05))
endif
endif

endif
CalcIntrptAddress = vectorBase | vectorOffset
endfunction CalcIntrptAddress

Exceptions:
Coprocessor Unusable Exception, TLB Refill, TLB Invalid, Address Error, Watch, Cache Error, Bus Error
Exceptions

310 MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



31 26 25 6 5 0

POOL32A POOL32AXf
000000 000 0000 0011 0100 1101 111100
6 20 6
Format: IRET microMIPS and MCU ASE

Purpose: Interrupt Return with Automated Interrupt Epilogue

Optionally jump directly to another interrupt vector without returning to original return address.

Description:

IRET automates some of the operations that are required when returning from an interrupt handler and can be used in
place of the ERET instruction at the end of interrupt handlers. IRET is only appropriate when using Shadow Register
Sets and the EIC Interrupt mode. The automated operations of this instruction can be used to reverse the effects of the
automated operations of the Auto-Prologue feature.

If the EIC interrupt mode and the Interrupt Chaining feature are used, the IRET instruction can be used to shorten the
time between returning from the current interrupt handler and handling the next requested interrupt.

If the Automated Prologue feature is disabled, then IRET behaves exactly like ERET.
If either the Statusgg, or Statusggy bits are set, then IRET behaves exactly like ERET.

If Interrupt Chaining is disabled:

Interrupts are disabled. COPO Status, SRSCtl, and EPC registers are restored from the stack. GPR 29 is incre-
mented for the stack frame size. IRET then clears execution and instruction hazards, conditionally restores
SRSCtcss from SRSCtlpss, and returns at the completion of interrupt processing to the interrupted instruction

pointed to by the EPC register. If Interrupt Chaining is enabled:

Interrupts are disabled. COPO Status register is restored from the stack. The priority output of the External Inter-
rupt Controller is compared with the IPL field of the Status register.

If Statusp| has a higher priority than the External Interrupt Controller value:

COPO SRSCtl and EPC registers are restored from the stack. GPR 29 is incremented for the stack frame size.
IRET then clears execution and instruction hazards, conditionally restores SRSCtlcgg from SRSCtlpgs, and
returns to the interrupted instruction pointed to by the EPC register at the completion of interrupt processing.

If Statusp| has a lower priority than the External Interrupt Controller value:

The value of GPR 29 is first saved to a temporary register and then GPR 29 is incremented for the stack
frame size. The EIC is signalled that the next pending interrupt has been accepted. This signalling will
update the Causerp; and SRSCtlg|css fields from the EIC output values. The SRSCtig s field is copied to
the SRSCltl-gg field, while the Causegp, field is copied to the Status;p| field. The saved temporary register

is copied to the GPR 29 of the curraxt SRS. The KSU and EXL fields of the Status register are optionally set
to zero. No barrier for execution hazards or instruction hazards is created. IRET finishes by jumping to the
interrupt vector driven by the EIC.

IRET does not execute the next instruction (i.e., it has no delay slot).

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 311



312

Restrictions:
The operation of the processor is UNDEFINED if IRET is executed in the delay slot of a branch or jump instruction.

The operation of the processor is UNDEFINED if IRET is executed when either Shadow Register Sets are not
enabled, or the EIC interrupt mode is not enabled.

An IRET placed between an LL and SC instruction will always cause the SC to fail.

The effective addresses used for stack transactions must be naturally-aligned. If either of the two least-significant bits
of the address is non-zero, an Address Error exception occurs.

IRET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0 state
changes (for Release 2 implementations, refer to the SY NCI instruction for ad ditional information on resolving
instruction hazards created by writing th e instruction stream). The effects of this barrier begin with the instruction
fetch and decode of the instruction at the PC to which the IRET returns.

In a Release 2 implementation, IRET does not restore SRSCtlcgg from SRSCtlpgg if Statusggy = 1 or Statusgr = 1,
because any exception that sets Statusgg, to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlcgg in
SRSCltlpgs. If software sets Statusgg, to 1, it must be aware of the operation of an IRET that may be subsequently
executed.

The stack transactions behave as individual L W operations with respect to exception reporting. BadVAddr would
report the faulting address for an unaligned access, and the faulting word address for unprivileged access, TLB Refill,
and TLB Invalid exceptions. For TLB exceptions, the faulting word address would be reflected in the Context and
EntryHi registers. The CacheError register would reflect the faulting word address for Cache Errors.

Operation:
if (( IntCtlppg == 0) | (Statusgg, == 1) | (Statusggy== 1))
Act as ERET // read Operation section of ERET description
else
if (ISAMode)
EPC « PC 4 || 1 // in case of memory exception
else
EPC « PC // in case of memory exception
endif

temp « 0x4 + GPR[29]
tempStatus <« LoadStackWord (temp)
ClearHazards ()
if ( (IntCtlieg == 0) | ((IntCtlieg == 1) &
(tempStatusip;, > EICp1pr)) )

temp <« 0x8 + GPR[29]

tempSRSCtl <« LoadStackWord (temp)

temp <« 0x0 + GPR[29]

tempEPC <« LoadStackWord (temp)

endif
Status <« tempStatus
if ( (IntCtlieg == 0) | ((IntCtlieg == 1) &

(tempStatusyp;, > EICr1pn)) )

GPR[29] < GPR[29] + DecodedValue (IntCtlgiypec)

SRSCtl <« tempSRSCtl

EPC <« tempEPC

temp <« EPC

Statusgy, < 0

if (ArchitectureRevision > 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlegg ¢ SRSCtlpgg

endif

if IsMicroMIPSImplemented() then

MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



PC « temp 4, || O
ISAMode <« temp,
else
PC <« temp
endif
LLbit « 0
Cause;c < O
ClearHazards ()
else
Signal_ EIC_for Next Interrupt ()
(wait for EIC outputs to update)
Causegrpy, ¢ EICRipp,
SRSCtlgregs ¢ EICgg
temp29 <« GPR[29]
GPR[29] <« GPR[29] + DecodedvValue (IntCtlgiypec)
Statusip;, ¢ Causegrpy,
SRSCtlegg ¢ SRSCtlpress
NewShadowSet < SRSCtlgrcgg
GPR[29] <« temp29
if (IntCtloyppxn == 1)
Statusgy, < O
Statusggy < O
endif
Causerc < 1
ClearHazards ()
PC ¢« CalcIntrptAddress()
endif
endif

function LoadStackWord (vaddr)
if vAddr; , # 07 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord < memword
endfunction LoadStackWord

function CalcIntrptAddress ()
if StatusBEV = 1
vectorBase <« 0xBFCO0.0200
else
if ( ArchitectureRevision > 2)
vectorBase <« EBase ., || 0%1)
else
vectorBase <« 0x8000.0000
endif
endif
if (Causery = 0)
vectorOffset = 0x180
else
if (Statusggy = 1) or (IntCtlyg = 0)
vectorOffset = 0x200
else
if ( Config3ygic = 1 and EIC Option=1)

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

313



VectorNum = Causegypy,
elseif (Config3ygre = 1 and EIC_Option=2)
VectorNum = EIC VectorNum
elseif (Config3ygrc = 0 )
VectorNum = VIntPriorityEncoder ()
endif
if (Config3ygrec = 1 and EIC Option=3)
vectorOffset = EIC VectorOffset
else
vectorOffset = 0x200 + (VectorNum x (IntCtlyg || 0°))
endif
endif
endif
CalcIntrptAddress = vectorBase | vectorOffset
endfunction CalcIntrptAddress

Exceptions:
Coprocessor Unusable Exception, TLB Refill, TLB Invalid, Address Error, Watch, Cache Error, Bus Error
Exceptions

314 MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



31 26 25 21 20 16 15 0

LL
110000 base rt offset
6 5 5 16
Format: LL rt, offset (base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] <« memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a p rogram is free t o abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition. The addressed location may be uncached
for the microAptiv UC core.

The effective address must be naturally-aligned. If either of the 2 least-s ignificant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr <« sign extend(offset) + GPR[base]
if vAddr,; , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] <« memword
LLbit « 1

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 315



316

31

26 25 21 20 16 15 0

SC
111000 base rt offset
6 5 5 16
Format: sc rt, offset (base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write
Description: if atomic_update then memory [GPR[base] + offset] <« GPR[rt], GPR[rt] « 1
else GPR[rt] « 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL ingruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

e The32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

* A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt. On the microAptiv UC core, the
SRAM interface supports a lock protocol and the success or failure can be indicated by external hardware.

If the following event occurs between the execution of LL and SC, the SC fails:

« An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

* A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

*  The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:
»  Execution of SC must have been preceded by execution of an LL instruction.

*  An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



Operation:

vAddr <« sign_extend(offset) + GPR[base]
if vAddr,; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

dataword <« GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

endif
GPR[rt] « 0 || LLbit

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1l, (T0) # load counter
ADDI T2, T1l, 1 # increment
sC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC caus e SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on

uniprocessor systems that do not support cached coherent memory access types.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

317



31 26 25 21 20 16 15 1 10 6 5 0

SPECIAL 0 StvDe SYNC
000000 00 0000 0000 0000 0 P 001111
6 15 5 6
Format: SyYNC (stype = 0 implied) MIPS32

Purpose: Synchronize Shared Memory

To order loads and stores.

Description:
Simple Description:

*  SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the
SYNC must be completed before the loads and stores after the SYNC are allowed to start.

*  Loads are completed when the destination register is written. Stores are completed when the stored value is visi-
ble to every other processor in the system.

*  SYNC is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture) or EHB (in Release
2 of the Architecture), to guarantee that memory reference results are visible across operating mode changes. For
example, a SYNC is required on entry to and exit from Debug Mode to guarantee that memory affects are han-
dled correctly.

Detailed Description:

*  SYNC does not guarantee the order in which instruction fetches are performed. The stype values 1-31 are
reserved for future extensions to the architecture. A value of zero will always be defined such that it performs all
defined synchronization operations. Non-zero values may be defined to remove some synchronization opera-

tions. As such, software should never use a non-zero value of the stype field, as this may inadvertently cause
future failures if non-zero values remove synchronization operations.

*  The SYNC instruction is externalized on the SRAM interface of the microAptiv UC core. External logic can use
this information in a system-dependent manner to enforce memory ordering between various memory elements
in the system.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached

coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:

None

318 MIPS32® microAptiv™ UC Processor Core Family Software User’'s Manual, Revision 01.03



31 26 25 24 6 5 0

COP0O CO p— SE— SR Cod WAIT
010000 1 mplementation-Dependen ode 100000
6 1 19 6
Format: warT MIPS32

Purpose: Enter Standby Mode
Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or SI_ColdReset)
is signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that themicroAptiv UC core does
not use the code field in this instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).
Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter lower power mode
I+l:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 319



Chapter 13

microMIPS™ |nstruction Set Architecture

13.1

The microMIPS™ architecture minimizes the code footprint of applications, thus reducing the cost of memory,
which is particularly high for embedded memory. At the same time, the high performance of MIPS cores is main-
tained. Using this technology, the customer can generate best results without spending time to profile its application.
The smaller code footprint typically leads to reduced power consumption per executed task because of the smaller
number of memory accesses.

microMIPS is a replacement for the existing MIPS16e ASE. It is also an alternative to the MIPS instruction encoding
and can be implemented in parallel or stand-alone.

Overview of changes from the existing MIPS ISA:

*  16-bit and 32-bit opcodes; for MIPS64, also includes 48-bit opcodes

*  Optimized opcode/operand field definitions based on statistics

*  Branch and jump delay slots are retained for maximum compatibility and lowest risk
*  Removal of branch likely instructions, emulation by assembler

*  Fine-tuned register allocation algorithm in compilers for smallest code size

Overview

13.1.1 MIPSr3™ Architecture

MIPSr13 is a family of architectures which includes Release 3.0 of the MIPS Architecture and the first release of the
microMIPS architecture. Enhancements included in the MIPSr3 Architecture are:

«  MIPS Release 3 ISA and microMIPS ISA.

*  The MIPS16e ASE is phased out and is replaced by microMIPS. Therefore these two ASEs never co-exist within
the same processor core.

*  Branch likely instructions are phased out in microMIPS and are emulated by the assembler. They remain avail-
able in the MIPS encoding.

Unless otherwise described in this document, all other aspects of the MIPSr3 architecture are identical to MIPS
Release 2.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 320



13.1 Overview

13.1.2 Default ISA Mode

The instruction sets available in an implementation are reported in the Config3 g, register field (bits 15:14).
Config1cp (bit 2) is not used for microMIPS.

For implementations that support both microMIPS and MIPS, the selected ISA mode following reset is determined
by the setting of the Config3igp register field, which is a read-only field set by a hardware signal external to the pro-

CEsSor core.

For implementations that support both microMIPS and MIPS, the selected ISA mode of an exception handler is deter-
mined by the setting of the Config3;saonexc register field (bit 16). The Config3;saonexc register field is writeable by
software and has a reset value that is set by a hardware signal external to the processor core. This register field allows
privileged software to change the ISA mode to be used for subsequent exceptions. All exception types whose vectors
are offsets of the EBASE register have this capability.

For implementations that support both microMIPS and MIPS, the selected ISA mode of a debug exception is deter-

mined by the setting of the /ISAonDebug register field in the EJTAG TAP Control register. This register field is write-
able by EJTAG probe software and has a reset value that is set by a hardware signal external to the processor core.

13.1.3 Software Detection

Software can determine if microMIPS is implemented by checking the state of the /SA (Instruction Set Architecture)
field in the Config3 CPO register. Config1ca (bit 2) is not used for microMIPS.

Software can determine if the MIPS ISA is implemented by checking the state of the /SA (Instruction Set Architec-
ture) register field in the Config3 CPO register.

Software can determine which ISA is used when handling an exception by checking the state of the ISAOnExc (ISA
on Exception) field in the Config3 CPO register.

Debug Probe Software can determine which ISA is used when handling a debug exception by checking the state of
the ISAOnDebug field in the EJTAG TAP Control register.

13.1.4 Compliance and Subsetting

This document does not change the instruction subsets as defined by the other MIPS architecture reference manuals,
including the subsets defined by the various ASEs.

13.1.5 Mode Switch

The MIPS architecture defines an ISA mode for each processor. An ISA mode value of 0 indicates MIPS instruction
decoding. In processors implementing microMIPS, an ISA mode value of 1 selects microMIPS instruction decoding.

In microMIPS implementations, the ISA mode is not directly visible to normal software. When EJTAG is imple-
mented, the ISA mode is reflected in the EJTAG TAP Control register.

Mode switching between MIPS and microMIPS uses the same mechanism used by MIPS16e, namely, the JALX, JR,
JR.HB, JALR, and JALR.HB instructions, as described below.

¢ The JALX instruction executes a JAL and switches to the other mode.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 321



microMIPS™ Instruction Set Architecture

¢ The JR and JALR instructions interpret bit 0 of the source registers as the target ISA mode (0=MIPS, 1=micro-
MIPS) and therefore set the ISA Mode bit according to the contents of bit 0 of the source register. For the actual
jump operation, the PC is loaded with the value of the source register with bit 0 set to 0. The same applies to
JR.HB and JALR.HB. The instructions JALR and JALR.HB save the ISA mode into bit 0 of the destination reg-
1ster.

*  When exceptions or interrupts occur and the processor writes to EPC, DEPC, or ErrorEPC, the ISA Mode bit is
saved into bit 0 of these registers. Then the ISA Mode bit is set according to the Config3,s register field. On
return from an exception, the processor loads the ISA Mode bit based on the value from either EPC, DEPC, or
ErrorEPC.

If only one ISA mode exists (either MIPS or microMIPS), then this mode switch mechanism does not exist, and the
ISA mode has a fixed value (0=MIPS, 1=microMIPS). Executing the JALX instruction will cause a Reserved Instruc-
tion exception. JR and JALR instructions cause an Address exception on the target instruction fetch when bit 0 of the
source register is different from the ISA mode. The same applies to JR.HB and JALR.HB. Exception handlers must
be encoded in the instruction format supported by the processor.

13.1.6 Branch and Jump Offsets

In the MIPS architecture, because instructions are always 32 bits in size, the jump and branch target addresses are
word (32-bit) aligned. Jump/branch offset fields are shifted left by two bits to create a word-aligned effective address.

In the microMIPS architecture, because instructions can be either bits in size, the jump and branch target addresses
are halfword (16-bit) aligned. Branch/jump offset fields are shifted left by only one bit to create halfword-aligned
effective addresses.

To maintain the existing MIPS ABIs, link unit/object file entry points are restricted to 32-bit word alignments. In the
future, a microMIPS-only ABI can be created to remove this restriction.

13.1.7 Coprocessor Unusable Behavior

If an instruction associated with a non-implemented coprocessor is executed, it is implementation-specific whether a
processor executing in microMIPS mode raises an RI exception or a coprocessor unusable exception. While in micro-
MIPS mode, the microAptiv UC has the same behavior as in MIPS32 mode; coprocessor unusable exceptions will be
raised.

13.2 Instruction Formats

322

This section defines the formats of microMIPS instructions.

The 6-bit major opcode is left-aligned within the instruction encoding. Instructions can have 0 to 4 register fields. For
32-bit instructions, the register field width is 5 bits, while for most 16-bit instructions, the register field width is 3
bits, utilizing instruction-specific register encoding. All 5-bit register fields are located at a constant position within
the instruction encoding.

The immediate field is right-aligned in the following instructions:

* some 16-bit instructions with 3-bit register fields

*  32-bit instructions with 16-bit or 26-bit immediate field

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



13.2 Instruction Formats

The name ‘immediate field’ as used here includes the address offset field for branches and load/store instructions as

well as the jump target field.

Other instruction-specific fields are typically located between the immediate and minor opcode fields. Instructions

that have multiple “other” fields are listed in alphabetical order according to the name of the field, with the first name
of the order located at the lower bit position. An empty bit field that is not explicitly shown in the instruction format
is located next to the minor opcode field.

Figure 13.1 and Figure 13.2 show the 16-bit and 32-bit instruction formats.

S3R0

S3R117

S3R210

S3R213

S3R214

S3R3I0

S5R110

S5R115

S5R210

Figure 13.1 16-Bit Instruction Formats

15 10 9 0

‘ Major Opcode ‘ Minor Opc/Imm ‘
15 10 9 7 6 0

‘ Major Opcode ‘ rs1/d ‘ Minor Opc/lmm ‘
15 10 9 6 5 3 2 0

‘ Major Opcode ‘ Minor Opc | rs2/d ‘ rs1 ‘
15 10 9 7 6 4 3 1 0

‘ Major Opcode ‘ rs2/d ‘ rs1 ‘ Imm | M ‘
15 10 9 7 6 4 3 0

‘ Major Opcode ‘ rs2/d ‘ rs1 ‘ Minor Opc/Imm ‘
15 10 9 7 6 4 3 1 0

‘ Major Opcode ‘ rd ‘ rs2 ‘ rs1 | M ‘
15 10 9 5 4 0

‘ Major Opcode ‘ Minor opc ‘ rs1/d ‘
15 10 9 5 4 0

‘ Major Opcode ‘ rd ‘ Minor Opc/lmm ‘
15 10 9 5 4 0

‘ Major Opcode ‘ rd ‘ rs1 ‘

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

323



microMIPS™ Instruction Set Architecture

Figure 13.2 32-Bit Instruction Formats

31 26 25 0
RO ‘ Major Opcode ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 0
R1 ‘ Major Opcode ‘ Imm/Other ‘ rs/fs/base ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 0
R2 ‘ Major Opcode ‘ rt/ft/index ‘ rs/fs/base ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 11 10 0
R3 ‘ Major Opcode ‘ rt/ft/index ‘ rs/fs/base ‘ rd/fd ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 11 10 6 5 0
R4 ‘ Major Opcode ‘ rt/ft ‘ rsifs ‘ rd/fd ‘ rr/fr Minor Opcode/Other ‘

Figure 13.3 Immediate Fields within 32-Bit Instructions

32-bit instruction formats with 26-bit immediate fields:

31 26 25 0

RO0I26 ‘ Major Opcode ‘ Immediate ‘

31 26 25 16 15 0

ROI16 ‘ Major Opcode ‘ Minor Opcode/Other Immediate ‘

32-bit instruction formats with 16-bit immediate fields:

31 26 25 21 20 16 15 0
R1116 ‘ Major Opcode ‘ Minor Opcode/Other ‘ rs/fs ‘ Immediate ‘

31 26 25 21 20 16 15 0
R2116 ‘ Major Opcode ‘ rt/ft ‘ rs/fs ‘ Immediate ‘

32-bit instruction formats with 12-bit immediate fields:

31 26 25 21 20 16 15 12 11 0
R1112 ‘ Major Opcode ‘ Other ‘ rs/fs ‘ Minor Opcode ‘ Immediate ‘

31 26 25 21 20 16 15 12 11 0
R2112 ‘ Major Opcode ‘ rt/ft ‘ rs/fs ‘ Minor Opcode ‘ Immediate ’

324 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



13.3 microMIPS Re-encoded Instructions
The instruction size can be completely derived from the major opcode. For 32-bit instructions, the major opcode also
defines the position of the minor opcode field and whether or not the immediate field is right-aligned.
Instructions formats are named according to the number of the register fields and the size of the immediate field. The
names have the structure R<x>I<y>. For example, an instruction based on the format R2I16 has 2 register fields and

a 16-bit immediate field.

13.2.1 Instruction Stream Organization and Endianness

16-bit instructions are placed within the 32-bit (or 64-bit) memory element according to system endianness.

*  On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16, and the second instruction
is read from bits 15..0.

e Ona 32-bit processor in little-endian mode, the first instruction is read from bits 15..0, and the second instruction
is read from bits 31..16.

The above rule also applies to the halfwords of 32-bit instructions. This means that a 32-bit instruction is not treated
as a word data type; instead, the halfwords are treated in the same way as individual 16-bit instructions. The halfword
containing the major opcode is always the first in the sequence.

Example:
SRL rl, rl, 7 binary opcode fields: 000000 00001 00001 00111 00001 000O0OO
hex representation: 0021 3840
Address: 3 2 1 0
Little Endian: Data: 38 40 00 21
Address: 0 1 2 3
Big Endian: Data: 00 21 38 40

Instructions are placed in memory such that they are in-order with respect to the address.

13.3 microMIPS Re-encoded Instructions

In the 16-bit category:

*  Frequent MIPS instructions and macros, re-encoded as 16-bit. Register and immediate fields are reduced in size
by using encodings of frequently occurring values.

In the 32-bit category:

*  Opcode space for user-defined instructions (UDIs).

*  New instructions designed primarily to reduce code size.
ADD16, ADD32, ADD32.PS

If these suffixes are omitted, the assembler automatically chooses the smallest instruction size.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 325



microMIPS™ Instruction Set Architecture

326

For each instruction, the tables in this chapter provide all necessary information about the bit fields. The formats of
the instructions are defined in Section 11.1 “CPU Instruction Formats”. Together with the major and minor opcode
encodings, which can be derived from the tables in Section 12.2 “microAptivi™ UC Core Opcode Map”, the complete
instruction encoding is provided.

Most register fields have a width of 5 bits. 5-bit register fields use linear encoding (rf0="00000’, r1="00001", etc.). For
16-bit instructions, whose register field size is variable, the register field width is explicitly stated in the instruction
table (Table 13.1 and Table 13.2), and the individual register and immediate encodings are shown in Table 13.3. The
‘other fields’ are defined by the respective column, with the order of these fields in the instruction encoding defined
by the order in the tables.

13.3.1 16-Bit Category

13.3.1.1 Frequent MIPS Instructions

These are frequent MIPS instructions with reduced register and immediate fields containing frequently used registers
and immediate values.

MOVE is a very frequent instruction. It therefore supports full 5-bit unrestricted register fields for maximum effi-
ciency. In fact, MOVE used to be a simplified macro of an existing MIPS instruction.

There are 2 variants of the LW and SW instructions. One variant implicitly uses the SP register to allow for a larger
offset field. The value in the offset field is shifted left by 2 before it is added to the base address.

There are four variants of the ADDIU instruction:

1. A variant with one 5-bit register specifier that allows any GPR to be the source and destination register

2. A variant that uses the stack pointer as the implicit source and destination register

3. A variant that has separate 3-bit source and destination register specifiers

4. A variant that has the stack pointer as the implicit source register and one 3-bit destination register specifier
A 16-bit NOP instruction is needed because of the new 16-bit instruction alignment and the need in specific cases to

align instructions on a 32-bit boundary. It can save code size as well. NOP is not shown in the table because it is real-
ized as a macro (as is NEGU).

NOP16 = MOVElé6 r0, rO

NEGUl6 rt, rs = SUBUlé6 rt, r0, rs

Because microMIPS instructions are 16-bit aligned, the 16-bit branch instructions support 16-bit aligned branch tar-
get addresses. The offset field is left shifted by 1 before it is added to the PC.

The compact instruction JRC is to be used instead of JR, when the jump delay slot after JR cannot be filled. This
saves code size. Because JRC may execute as fast as JR with a NOP in the delay slot, JR is preferred if the delay slot
can be filled.

The breakpoint instructions, BREAK and SDBBP, include a 16-bit variant that allows a breakpoint to be inserted at
any instruction address without overwriting more than a single instruction.

MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



13.3 microMIPS Re-encoded Instructions

Table 13.1 16-Bit Re-encoding of Frequent MIPS Instructions

Register | Total
Major Number of | Immediate Field Size of | Empty 0 Minor
Opcode Register | Field Size Width | Other |FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
ADDIUSS POOL16D Shit:1 4 5 0 1 Add Immediate
Unsigned Word Same
Register
ADDIUSP POOL16D 0 9 0 0 1 Add Immediate
Unsigned Word to
Stack Pointer
ADDIUR2 POOLI16E 2 3 3 0 1 Add Immediate
Unsigned Word
Two Registers
ADDIURISP | POOLI16E 1 6 3 0 1 Add Immediate
Unsigned Word
One Registers and
Stack Pointer
ADDUI16 POOLI16A 3 0 3 0 1 Add Unsigned Word
ANDI6 POOL16C 2 0 3 0 4 AND
ANDI16 ANDI16 2 4 3 0 0 AND Immediate
B16 B16 0 10 0 0 Branch
BREAK16 POOL16C 0 0 4 0 6 Cause Breakpoint
Exception
JALRI16 POOL16C 1 0 5 0 5 Jump and Link
Register, 32-bit
delay-slot
JALRS16 POOL16C 1 0 5 0 5 Jump and Link
Register, 16-bit
delay-slot
JR16 POOL16C 1 0 5 0 5 Jump Register
LBU16 LBU16 2 4 3 0 0 Load Byte Unsigned
LHUI16 LHUI16 2 4 3 0 0 Load Halfword
LI16 LI16 1 7 3 0 0 Load Immediate
LW16 LW16 2 4 3 0 0 Load Word
LWGP LWGP16 1 7 3 0 0 Load Word GP
LWSP LWSP16 Sbit:1 5 5 0 0 Load Word SP
MFHI16 POOL16C 1 0 5 0 5 Move from
HI Register
MFLO16 POOL16C 1 0 5 0 5 Move from
LO Register
MOVEI16 MOVEI16 2 0 5 0 0 Move
NOT16 POOL16C 2 0 3 0 4 NOT
OR16 POOL16C 2 0 3 0 4 OR

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

327




microMIPS™ Instruction Set Architecture

Table 13.1 16-Bit Re-encoding of Frequent MIPS Instructions (Continued)

Register | Total
Major Number of | Immediate Field Size of | Empty 0 Minor
Opcode Register Field Size Width Other | FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
SB16 SB16 2 4 3 0 0 Store Byte
SDBBP16 POOL16C 0 0 4 0 6 Cause Debug
Breakpoint Exception
SH16 SH16 2 4 3 0 0 Store Halfword
SLL16 POOL16B 2 3 3 0 1 Shift Word Left
Logical
SRL16 POOL16B 2 3 3 0 1 Shift Word Right
Logical
SUBU16 POOLI16A 3 0 3 0 1 Sub Unsigned
SW16 SW16 2 4 3 0 0 Store Word
SWSP SWSP16 Sbit:1 5 5 0 0 Store Word SP
XOR16 POOL16C 2 0 3 0 4 XOR

13.3.1.2 Frequent MIPS Instruction Sequences

These 16-bit instructions are equivalent to frequently-used short sequences of MIPS instructions. The instruction-spe-

cific register and immediate value selection are shown in Table 13.3.

Table 13.2 16-Bit Re-encoding of Frequent MIPS Instruction Sequences

Register | Total
Major Number of | Immediate Field Sizeof | Empty 0 Minor
Opcode Register | Field Size Width Other |FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
BEQZ16 BEQZ16 1 7 3 0 0 Branch on Equal Zero
BNEZ16 BNEZ16 1 7 3 0 0 Branch on
Not Equal Zero
JRADDIUSP | POOL16C 0 5 5 Jump Register;
ADDIU SP
JRC POOL16C 1 0 5 0 5 Jump Register Com-
pact
LWMI16 POOL16C 0 4 2 0 4 Load Word Multiple
SWMI16 POOL16C 0 4 2 0 4 Store Word Multiple
328 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




13.3 microMIPS Re-encoded Instructions

13.3.1.3 Instruction-Specific Register Specifiers and Immediate Field Encodings

Table 13.3 Instruction-Specific Register Specifiers and Immediate Field Values

Number
of Immediate Register 1 Register 2 Register 3
Register | Field Size Decoded Decoded Decoded Immediate Field Decoded
Instruction Fields (bit) Value Value Value Value
ADDIUSS Shit:1 4 rd: 5-bit field -8..0..7
ADDIUSP 0 9 (-258..-3,2.257) << 2
ADDIUR2 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 -1, 1,4, 8,12, 16, 20, 24
ADDIURISP 1 6 rd:2-7,16, 17 (0..63) <<2
ADDU16 3 0 rs1:2-7,16, 17 | 1s2:2-7,16, 17 rd:2-7,16, 17
AND16 2 0 rsl:2-7,16, 17 rd:2-7,16, 17
ANDII6 2 4 rs1:2-7,16, 17 rd:2-7,16, 17 1,2,3,4,7,8,15, 16, 31, 32, 63,
64, 128, 255, 32768, 65535
Bl16 0 10 (-512.511) << 1
BEQZ16 1 7 rsl:2-7,16, 17 (-64..63) << 1
BNEZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1
BREAK16 0 4 0..15
JALR16 Sbit:1 0 rs1:5-bit field
JALRS16 Sbit:1 0 rs1:5-bit field
JRADDIUSP 0 5 (0.31)<<2
JR16 Sbit:1 0 rsl:5 bit field
JRC 5bit:1 0 rs1:5 bit field
LBUI6 2 4 b:2-7,16,17 rd:2-7,16, 17 -1,0..14
LHU16 2 4 h:2-7,16,17 rd:2-7,16, 17 (0..15) << 1
LI16 1 7 rd:2-7,16, 17 -1,0..126
LW16 2 4 b:2-7,16,17 rd:2-7,16, 17 (0..15)<<2
LWM16 2bit list:1 4 (0..15)<<2
LWGP 1 7 rd:2-7,16,17 (-64..63)<<2
LWSP 5bit:1 5 rd:5-bit field (0.31)<<2
MFHI16 Shit:1 0 rd:5-bit field
MFLO16 Sbit:1 0 rd:5-bit field
MOVEI16 Sbit:2 0 rd:5-bit field rs1:5-bit field
NOTI16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17
OR16 2 0 rs1:2-7,16,17 | rd:2-7,16,17
SB16 2 4 h:2-7,16,17 rs1:0, 2-7, 17 0..15
SDBBP16 0 0 0..15
SH16 2 4 b:2-7,16,17 1s1:0, 2-7, 17 0..15) << 1
SLLI16 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

329




microMIPS™ Instruction Set Architecture

Table 13.3 Instruction-Specific Register Specifiers and Immediate Field Values (Continued)

Number
of Immediate Register 1 Register 2 Register 3
Register | Field Size Decoded Decoded Decoded Immediate Field Decoded
Instruction Fields (bit) Value Value Value Value
SRL16 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)
SUBU16 3 0 rsl:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17
SW16 2 4 :2-7,16,17 rs1:0,2-7, 17 (0..15) <<2
SWSP 5bit:1 5 rsl: 5 bit field (0.31)<<2
SWM16 2- bit list:1 4 (0..15)<<2
XOR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

13.3.2 16-bit Instruction Register Set

Many of the 16-bit instructions use 3-bit register specifiers in their binary encodings. The register set used for most of
these 3-bit register specifiers is listed in Table 13.4. The register set used for SB16, SH16, SW16 source register is
listed in Table 13.5. These register sets are a true subset of the register set available in 32-bit mode; the 3-bit register
specifiers can directly access 8 of the 32 registers available in 32-bit mode (which uses 5-bit register specifiers).

In addition, specific instructions in the 16-bit instruction set implicitly reference the stack pointer register (sp), global
pointer register (gp), the return address register (ra), the integer multiplier/divider output registers (HI/LO) and the
program counter (PC). Of these, Table 13.6 lists sp, gp and ra. Table 13.7 lists the microMIPS special-purpose regis-
ters, including PC, HI and LO.

The microMIPS also contains some 16-bit instructions that use 5-bit register specifiers. Such 16-bit instructions pro-
vide access to all 32 general-purpose registers.

Table 13.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17

16-Bit 32-Bit MIPS | symbolic Name
Register Register (From
Encoding1 Encoding2 ArchDefs.h) Description
0 16 sO General-purpose register
1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register

330 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03



13.3 microMIPS Re-encoded Instructions

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or sl, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tion using 3-bit register specifiers. The Move instruction can access all 32 general-purpose
registers.

Table 13.5 SB16, SH16, SW16 Source Registers - $0, $2-$7, $17

16-Bit 32-Bit MIPS | symbolic Name
Register Register (From
Encoding’ Encoding? ArchDefs.h) Description

0 0 Zero Hard-wired Zero

1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register

—_

. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-

tions using 3-bit register specifier. The Move instruction can access all 32 general-purpose

registers.

Table 13.6 16-Bit Instruction Implicit General-Purpose Registers

16-Bit 32-Bit MIPS | Symbolic Name

Register Register (From

Encoding Encoding ArchDefs.h) Description
Implicit 28 ep Global pointer register
Implicit 29 sp Stack pointer register
Implicit 31 ra Return address register

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

331



microMIPS™ Instruction Set Architecture

Table 13.7 16-Bit Instruction Special-Purpose Registers

Symbolic Name

Purpose

PC Program counter. The PC-relative ADDIU can access this
register as an operand.

HI Contains high-order word of multiply or divide result.

LO Contains low-order word of multiply or divide result.

13.3.3 32-Bit Category

13.3.3.1 New 32-bit instructions

The following table lists the 32-bit instructions introduced in the microMIPS ISA.

Table 13.8 32-bit Instructions introduced within microMIPS

Register | Total
Major Number of | Immediate Field Sizeof | Empty 0 Minor
Opcode Register Field Size Width Other | FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
ADDIUPC ADDIUPC 1 23 3 0 0 ADDIU PC-Relative
BEQZC POOL321 2:5 bit 16 5 0 Branch on
Equal to Zero, No
Delay Slot
BNEZC POOL32I 2:5 bit 16 5 0 Branch on
Not Equal to Zero, No
Delay Slot
JALRS POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter, Short Delay Slot
JALRS.HB POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter with Hazard Bar-
rier, Short Delay Slot
JALS JALS32 0 26 0 Jump and Link, Short
Delay Slot
JALX JALX 26 5 0 5 Jump and Link
Exchange
LWP POOL32B 2:5 bit 12 5 0 4 Load Word Pair
LWXS POOL32A 3:5 bit 0 5 0 1 10 Load Word Indexed,
Scale
LWM32 POOL32B 1:5bit 12 5 0 4 Load Word Multiple
SWP POOL32B 2:5 bit 12 0 4 Load Word Pair
SWM32 POOL32B 1:5bits 12 5 0 4 Store Word Multiple
332 MIPS32® microAptiv™ UC Processor Core Family Software User's Manual, Revision 01.03




13.3 microMIPS Re-encoded Instructions

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03 333



Appendix A

References

This appendix lists other publications available from MIPS Technologies, Inc. that are referenced in this document.
These documents may be included in the SMIPS PROJECT/doc area of a typical microAptiv UC soft or hard core
release, or in some cases may be available on the MIPS web site https://www.mips.com.

1.

10.

11.

12.

MIPS32® microAptivT™ UC Processor Core Family Data Sheet
MIPS Document: MD00931

MIPS32® microAptivT™ UC Processor Core Family Integrator’s Guide
MIPS Document: MD00933

MIPS32® microAptivi™ UC Processor Core Family Implementor’s Guide
MIPS Document: MD00932

MIPS32® microAptivi™ UC Processor Core Family System Package & Simulation Flow User’s Manual
MIPS Document: MD00935

MIPS® Architecture For Programmers, Volume I: Introduction to the MIPS32® Architecture
MIPS Document: MD0082

MIPS® Architecture For Programmers, Volume I: Introduction to the microMIPS32™ Architecture
MIPS Document: MD0741

MIPS® Architecture For Programmers, Volume II: The MIPS32® Instruction Set
MIPS Document: MD0086

MIPS® Architecture For Programmers, Volume II: The microMIPS32™ Instruction Set
MIPS Document: MD0582

MIPS® Architecture For Programmers Volume III: The MIPS32® and microMIPS32™ Privileged Resource

Architecture
MIPS Document: MD00090

MIPS® Architecture for Programmers Volume I'V-h: The MCU Application-Specific Extension to the MIPS32®

Architectures
MIPS Document: MD00834

MIPS® Architecture for Programmers Volume IV-h: The MCU Application-Specific Extension to the
microMIPS32™ Architectures
MIPS Document: MD00838

MIPS® EJTAG Specification
MIPS Document: MD00047

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

334



13.

14.

15.

16.

17.

18.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

MIPS® cJTAG Adapter User's Manual
MIPS Document: MD00862

MIPS® Architecture Reference Manual Volume IV-e: The MIPS® DSP Module of the MIPS32® Architecture

MIPS Document: MD00372

MIPS® Architecture Reference Manual Volume IV-e: The MIPS® DSP Module of the microMIPS32® Archi-

tecture
MIPS Document: MD00762

Five Methods of Utilizing the MIPS® DSP Module
MIPS Document: MD00783

Efficient DSP Module Programming in C: Tips and Tricks
MIPS Document: MD00485

Accelerating DSP Filter Loops with MIPS® CorExtend® Instructions
MIPS Document: MD00303

l[9dd

Adeulwl

335



#&Vigion History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture

document.

Description

Initial 3 0 O release

No technical changes

Update Iegal text to retlect new

combanv_ownershin
i J A r

Revision Date
01.00 June 14, 2013
01.01 July 31,2013
01.02 November 12,2013
01.03 July 30,2014

Updates to CACHE instruction

Changes to timer interrupt input.

MIPS32® microAptiv™™ UC Processor Core Family Software User's Manual, Revision 01.03

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

336





