

Document Number: MD00934
Revision 01.03
July 30, 2014

MIPS32® microAptiv™ UC Processor
Core Family Software User’s Manual

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 aLt{онϯ ƳƛŎǊƻ!ǇǘƛǾϰ ¦/ tǊƻŎŜǎǎƻǊ /ƻǊŜ CŀƳƛƭȅ {ƻŦǘǿŀǊŜ ¦ǎŜǊΩǎ aŀƴǳŀƭΣ wŜǾƛǎƛƻƴ лмΦло

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 3

4 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table of Contents

Chapter 1: Introduction to the MIPS32® microAptiv™ UC Processor Core 18
1.1: Features .. 19
1.2: microAptiv™ UC Core Block Diagram... 23

1.2.1: Required Logic Blocks ... 24
1.2.2: Optional Logic Blocks... 31

Chapter 2: Pipeline of the microAptiv™ UC Core.. 38
2.1: Pipeline Stages.. 38

2.1.1: I Stage: Instruction Fetch ... 40
2.1.2: E Stage: Execution... 40
2.1.3: M Stage: Memory Fetch... 41
2.1.4: A Stage: Align .. 41
2.1.5: W Stage: Writeback ... 41

2.2: Multiply/Divide Operations... 41
2.3: MDU Pipeline with DSP Module Enabled.. 42

2.3.1: MDU... 42
2.3.2: DSP Module Instruction Latencies ... 43
2.3.3: High-performance MDU Pipeline Stages ... 46
2.3.4: High-performance MDU Divide Operations.. 47

2.4: MDU Pipeline - High-performance MDU with DSP Module Disabled.. 48
2.4.1: 32x16 Multiply (High-Performance MDU) .. 51
2.4.2: 32x32 Multiply (High-Performance MDU) .. 51
2.4.3: Divide (High-Performance MDU) ... 52

2.5: MDU Pipeline - Area-Efficient MDU with DSP Module Disabled ... 53
2.5.1: Multiply (Area-Efficient MDU)... 54
2.5.2: Multiply Accumulate (Area-Efficient MDU) ... 54
2.5.3: Divide (Area-Efficient MDU) ... 55

2.6: Branch Delay ... 55
2.7: Data Bypassing ... 56

2.7.1: Load Delay ... 58
2.7.2: Move from HI/LO and CP0 Delay... 58

2.8: Coprocessor 2 Instructions.. 59
2.9: Interlock Handling.. 60
2.10: Slip Conditions... 61
2.11: Instruction Interlocks.. 61
2.12: Hazards ... 62

2.12.1: Types of Hazards... 63
2.12.2: Instruction Listing ... 64
2.12.3: Eliminating Hazards ... 64

Chapter 3: Floating-Point Unit of the microAptiv™ UC Core ... 65
3.1: Features Overview .. 65

3.1.1: IEEE Standard 754 .. 66
3.2: Enabling the Floating-Point Coprocessor .. 67
3.3: Data Formats... 67

3.3.1: Floating-Point Formats... 67
3.3.2: Fixed-Point Formats... 70

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 5

3.4: Floating-Point General Registers .. 71
3.4.1: FPRs and Formatted Operand Layout ... 71
3.4.2: Formats of Values Used in FP Registers ... 71
3.4.3: Binary Data Transfers (32-Bit and 64-Bit) .. 73

3.5: Floating-Point Control Registers.. 74
3.5.1: Floating-Point Implementation Register (FIR, CP1 Control Register 0)... 75
3.5.2: Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)................................... 77
3.5.3: Floating-Point Exceptions Register (FEXR, CP1 Control Register 26) .. 78
3.5.4: Floating-Point Enables Register (FENR, CP1 Control Register 28) .. 78
3.5.5: Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)................................ 79
3.5.6: Operation of the FS/FO/FN Bits ... 82
3.5.7: FCSR Cause Bit Update Flow.. 85

3.6: Instruction Overview .. 86
3.6.1: Data Transfer Instructions.. 86
3.6.2: Arithmetic Instructions.. 88
3.6.3: Conversion Instructions.. 89
3.6.4: Formatted Operand-Value Move Instructions .. 90
3.6.5: Conditional Branch Instructions ... 90
3.6.6: Miscellaneous Instructions ... 91

3.7: Exceptions ... 91
3.7.1: Precise Exception Mode .. 92
3.7.2: Exception Conditions ... 92

3.8: Pipeline and Performance ... 95
3.8.1: Pipeline Overview .. 95
3.8.2: Bypassing... 96
3.8.3: Repeat Rate and Latency .. 97

3.9: 2008 FPU Support... 97

Chapter 4: The MIPS® DSP Module .. 99
4.1: Additional Register State for the DSP Module... 99

4.1.1: HI-LO Registers ... 99
4.1.2: DSPControl Register.. 99

4.2: Software Detection of the DSP Module Revision 2 ... 101

Chapter 5: Memory Management of the microAptiv™ UC Core... 102
5.1: Introduction.. 102

5.1.1: Memory Management Unit (MMU) .. 102
5.2: Modes of Operation ... 103

5.2.1: Virtual Memory Segments.. 103
5.2.2: User Mode.. 105
5.2.3: Kernel Mode... 106
5.2.4: Debug Mode... 108

5.3: Fixed Mapping MMU ... 110
5.4: System Control Coprocessor... 112

Chapter 6: Exceptions and Interrupts in the microAptiv™ UC Core ... 113
6.1: Exception Conditions... 113
6.2: Exception Priority... 114
6.3: Interrupts ... 115

6.3.1: Interrupt Modes.. 115
6.3.2: Generation of Exception Vector Offsets for Vectored Interrupts .. 124
6.3.3: MCU ASE Enhancement for Interrupt Handling... 125

6 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

6.4: GPR Shadow Registers... 126
6.5: Exception Vector Locations ... 127
6.6: General Exception Processing .. 129
6.7: Debug Exception Processing .. 131
6.8: Exception Descriptions .. 132

6.8.1: Reset/SoftReset Exception .. 132
6.8.2: Debug Single Step Exception .. 133
6.8.3: Debug Interrupt Exception ... 134
6.8.4: Non-Maskable Interrupt (NMI) Exception... 134
6.8.5: Interrupt Exception ... 135
6.8.6: Debug Instruction Break Exception.. 135
6.8.7: Address Error Exception — Instruction Fetch/Data Access... 135
6.8.8: SRAM Parity Error Exception... 136
6.8.9: Bus Error Exception — Instruction Fetch or Data Access.. 136
6.8.10: Protection Exception .. 137
6.8.11: Debug Software Breakpoint Exception .. 137
6.8.12: Execution Exception — System Call.. 137
6.8.13: Execution Exception — Breakpoint.. 138
6.8.14: Execution Exception — Reserved Instruction .. 138
6.8.15: Execution Exception — Coprocessor Unusable .. 138
6.8.16: Execution Exception — CorExtend Unusable.. 139
6.8.17: Execution Exception — DSP Module State Disabled ... 139
6.8.18: Execution Exception — Coprocessor 2 Exception... 139
6.8.19: Execution Exception — Implementation-Specific 1 Exception... 140
6.8.20: Execution Exception — Integer Overflow... 140
6.8.21: Execution Exception — Trap.. 140
6.8.22: Debug Data Break Exception... 141
6.8.23: Complex Break Exception.. 141

6.9: Exception Handling and Servicing Flowcharts .. 141

Chapter 7: CP0 Registers of the microAptiv™ UC Core ... 145
7.1: CP0 Register Summary... 145
7.2: CP0 Register Descriptions .. 147

7.2.1: UserLocal Register (CP0 Register 4, Select 2).. 147
7.2.2: HWREna Register (CP0 Register 7, Select 0) ... 148
7.2.3: BadVAddr Register (CP0 Register 8, Select 0).. 149
7.2.4: BadInstr Register (CP0 Register 8, Select 1)... 149
7.2.5: BadInstrP Register (CP0 Register 8, Select 2) .. 150
7.2.6: Count Register (CP0 Register 9, Select 0) .. 151
7.2.7: Compare Register (CP0 Register 11, Select 0) ... 152
7.2.8: Status Register (CP0 Register 12, Select 0).. 152
7.2.9: IntCtl Register (CP0 Register 12, Select 1).. 157
7.2.10: SRSCtl Register (CP0 Register 12, Select 2) .. 161
7.2.11: SRSMap Register (CP0 Register 12, Select 3).. 164
7.2.12: View_IPL Register (CP0 Register 12, Select 4)... 165
7.2.13: SRSMap2 Register (CP0 Register 12, Select 5).. 165
7.2.14: Cause Register (CP0 Register 13, Select 0).. 166
7.2.15: View_RIPL Register (CP0 Register 13, Select 4) .. 171
7.2.16: NestedExc (CP0 Register 13, Select 5) ... 171
7.2.17: Exception Program Counter (CP0 Register 14, Select 0) .. 172
7.2.18: NestedEPC (CP0 Register 14, Select 2).. 173
7.2.19: Processor Identification (CP0 Register 15, Select 0) ... 174
7.2.20: EBase Register (CP0 Register 15, Select 1) ... 175

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 7

7.2.21: CDMMBase Register (CP0 Register 15, Select 2)... 176
7.2.22: Config Register (CP0 Register 16, Select 0).. 177
7.2.23: Config1 Register (CP0 Register 16, Select 1).. 179
7.2.24: Config2 Register (CP0 Register 16, Select 2).. 180
7.2.25: Config3 Register (CP0 Register 16, Select 3).. 181
7.2.26: Config4 Register (CP0 Register 16, Select 4).. 184
7.2.27: Config5 Register (CP0 Register 16, Select 5).. 184
7.2.28: Config7 Register (CP0 Register 16, Select 7).. 185
7.2.29: Debug Register (CP0 Register 23, Select 0) ... 186
7.2.30: Trace Control Register (CP0 Register 23, Select 1) .. 190
7.2.31: Trace Control2 Register (CP0 Register 23, Select 2) .. 192
7.2.32: User Trace Data1 Register (CP0 Register 23, Select 3)/User Trace Data2 Register (CP0 Register
24, Select 3) ... 194
7.2.33: TraceBPC Register (CP0 Register 23, Select 4) ... 195
7.2.34: Debug2 Register (CP0 Register 23, Select 6) ... 196
7.2.35: Debug Exception Program Counter Register (CP0 Register 24, Select 0) 197
7.2.36: Performance Counter Register (CP0 Register 25, select 0-3) ... 198
7.2.37: ErrCtl Register (CP0 Register 26, Select 0)... 202
7.2.38: CacheErr Register (CP0 Register 27, Select 0)... 203
7.2.39: ErrorEPC (CP0 Register 30, Select 0) ... 204
7.2.40: DeSave Register (CP0 Register 31, Select 0) ... 205
7.2.41: KScratchn Registers (CP0 Register 31, Selects 2 to 3)... 205

Chapter 8: Hardware and Software Initialization of the microAptiv™ UC Core............................ 207
8.1: Hardware-Initialized Processor State .. 207

8.1.1: Coprocessor 0 State .. 207
8.1.2: Bus State Machines ... 208
8.1.3: Static Configuration Inputs ... 208
8.1.4: Fetch Address.. 208

8.2: Software Initialized Processor State.. 208
8.2.1: Register File ... 208
8.2.2: Coprocessor 0 State .. 208

Chapter 9: Power Management of the microAptiv™ UC Core.. 210
9.1: Register-Controlled Power Management .. 210
9.2: Instruction-Controlled Power Management ... 211

Chapter 10: EJTAG Debug Support in the microAptiv™ UC Core... 212
10.1: Debug Control Register ... 212
10.2: Hardware Breakpoints ... 217

10.2.1: Data Breakpoints.. 218
10.2.2: Complex Breakpoints ... 218
10.2.3: Conditions for Matching Breakpoints ... 218
10.2.4: Debug Exceptions from Breakpoints.. 222
10.2.5: Breakpoint Used as Triggerpoint.. 223
10.2.6: Instruction Breakpoint Registers .. 223
10.2.7: Data Breakpoint Registers ... 228
10.2.8: Complex Breakpoint Registers... 235

10.3: Complex Breakpoint Usage... 239
10.3.1: Checking for Presence of Complex Break Support.. 239
10.3.2: General Complex Break Behavior.. 240
10.3.3: Usage of Pass Counters .. 241

8 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.3.4: Usage of Tuple Breakpoints... 241
10.3.5: Usage of Priming Conditions.. 241
10.3.6: Usage of Data Qualified Breakpoints ... 242
10.3.7: Usage of Stopwatch Timers ... 242

10.4: Test Access Port (TAP) ... 243
10.4.1: EJTAG Internal and External Interfaces... 243
10.4.2: Test Access Port Operation ... 244
10.4.3: Test Access Port (TAP) Instructions .. 247

10.5: EJTAG TAP Registers... 250
10.5.1: Instruction Register .. 250
10.5.2: Data Registers Overview ... 251
10.5.3: Processor Access Address Register.. 259
10.5.4: Fastdata Register (TAP Instruction FASTDATA) ... 260

10.6: TAP Processor Accesses .. 261
10.6.1: Fetch/Load and Store from/to EJTAG Probe Through dmseg... 262

10.7: SecureDebug... 263
10.7.1: Disabling EJTAG Debugging ... 263
10.7.2: EJTAG Features Unmodified by SecureDebug ... 264

10.8: iFlowtrace™ Mechanism ... 264
10.8.1: A Simple Instruction-Only Tracing Scheme ... 265
10.8.2: Special Trace Modes ... 266
10.8.3: ITCB Overview... 269
10.8.4: ITCB iFlowtrace Interface... 269
10.8.5: TCB Storage Representation ... 270
10.8.6: ITCB Register Interface for Software Configurability ... 271
10.8.7: ITCB iFlowtrace Off-Chip Interface .. 275
10.8.8: Breakpoint-Based Enabling of Tracing... 275

10.9: PC/Data Address Sampling... 276
10.9.1: PC Sampling in Wait State... 277
10.9.2: Data Address Sampling ... 277

10.10: Fast Debug Channel.. 277
10.10.1: Common Device Memory Map... 278
10.10.2: Fast Debug Channel Interrupt.. 278
10.10.3: microAptiv™ UC Core FDC Buffers ... 278
10.10.4: Sleep mode.. 280
10.10.5: FDC TAP Register ... 280
10.10.6: Fast Debug Channel Registers .. 281

10.11: cJTAG Interface... 285

Chapter 11: Instruction Set Overview... 286
11.1: CPU Instruction Formats ... 286
11.2: Load and Store Instructions... 287

11.2.1: Scheduling a Load Delay Slot .. 287
11.2.2: Defining Access Types... 287

11.3: Computational Instructions .. 288
11.3.1: Cycle Timing for Multiply and Divide Instructions... 289

11.4: Jump and Branch Instructions ... 289
11.4.1: Overview of Jump Instructions ... 289
11.4.2: Overview of Branch Instructions .. 289

11.5: Control Instructions.. 289
11.6: Coprocessor Instructions... 289
11.7: Enhancements to the MIPS Architecture... 289

11.7.1: CLO - Count Leading Ones.. 290

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 9

11.7.2: CLZ - Count Leading Zeros.. 290
11.7.3: MADD - Multiply and Add Word ... 290
11.7.4: MADDU - Multiply and Add Unsigned Word .. 290
11.7.5: MSUB - Multiply and Subtract Word .. 290
11.7.6: MSUBU - Multiply and Subtract Unsigned Word.. 291
11.7.7: MUL - Multiply Word... 291
11.7.8: SSNOP- Superscalar Inhibit NOP.. 291

11.8: MCU ASE Instructions... 291
11.8.1: ACLR.. 291
11.8.2: ASET.. 291
11.8.3: IRET... 291

Chapter 12: microAptiv™ UC Processor Core Instructions ... 292
12.1: Understanding the Instruction Descriptions... 292
12.2: microAptiv™ UC Core Opcode Map.. 292
12.3: MIPS32® Instruction Set for the microAptiv™ UC Core.. 297

ACLR... 303
ACLR... 304
ASET... 305
IRET .. 307
IRET .. 311
LL .. 315
SC ... 316
SYNC .. 318
WAIT ... 319

Chapter 13: microMIPS™ Instruction Set Architecture .. 320
13.1: Overview.. 320

13.1.1: MIPSr3™ Architecture ... 320
13.1.2: Default ISA Mode... 321
13.1.3: Software Detection... 321
13.1.4: Compliance and Subsetting ... 321
13.1.5: Mode Switch... 321
13.1.6: Branch and Jump Offsets... 322
13.1.7: Coprocessor Unusable Behavior ... 322

13.2: Instruction Formats.. 322
13.2.1: Instruction Stream Organization and Endianness.. 325

13.3: microMIPS Re-encoded Instructions ... 325
13.3.1: 16-Bit Category .. 326
13.3.2: 16-bit Instruction Register Set.. 330
13.3.3: 32-Bit Category .. 332

Appendix A: References .. 334

Appendix B: Revision History ... 336

10 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

List of Figures

Figure 1.1: microAptiv™ UC Processor Core Block Diagram .. 24
Figure 1.2: microAptiv™ UC Core Virtual Address Map .. 28
Figure 1.3: Address Translation During SRAM Access with FMT Implementation .. 29
Figure 1.4: Reference Design Block Diagram... 32
Figure 1.5: FPU Pipeline. .. 33
Figure 1.6: FDC Overview .. 36
Figure 1.7: cJTAG Support ... 37
Figure 2.1: microAptiv™ UC Core Pipeline Stages with high-performance MDU .. 39
Figure 2.2: microAptiv™ UC Core Pipeline Stages with area-efficient MDU ... 39
Figure 2.3: microAptiv™ UC Core Pipeline Stages .. 40
Figure 2.4: Multiply Pipeline ... 46
Figure 2.5: Multiply With Dependency From ALU .. 46
Figure 2.6: Multiply With Dependency From Load Hit .. 46
Figure 2.7: Multiply With Dependency From Load Miss ... 46
Figure 2.8: subtractMUL Bypassing Result to Integer Instructions .. 47
Figure 2.9: MDU Pipeline Flow During a 8-bit Divide (DIV) Operation ... 48
Figure 2.10: MDU Pipeline Flow During a 16-bit Divide (DIV) Operation ... 48
Figure 2.11: MDU Pipeline Flow During a 24-bit Divide (DIV) Operation ... 48
Figure 2.12: MDU Pipeline Flow During a 32-bit Divide (DIV) Operation ... 48
Figure 2.13: MDU Pipeline Behavior During Multiply Operations .. 50
Figure 2.14: MDU Pipeline Flow During a 32x16 Multiply Operation ... 51
Figure 2.15: MDU Pipeline Flow During a 32x32 Multiply Operation ... 52
Figure 2.16: High-Performance MDU Pipeline Flow During a 8-bit Divide (DIV) Operation 52
Figure 2.17: High-Performance MDU Pipeline Flow During a 16-bit Divide (DIV) Operation 52
Figure 2.18: High-Performance MDU Pipeline Flow During a 24-bit Divide (DIV) Operation 53
Figure 2.19: High-Performance MDU Pipeline Flow During a 32-bit Divide (DIV) Operation 53
Figure 2.20: microAptiv™ UC Area-Efficient MDU Pipeline Flow During a Multiply Operation 54
Figure 2.21: microAptiv™ UC Core Area-Efficient MDU Pipeline Flow During a Multiply Accumulate Operation . 54
Figure 2.22: microAptiv™ UC Core Area-Efficient MDU Pipeline Flow During a Divide (DIV) Operation 55
Figure 2.23: IU Pipeline Branch Delay ... 56
Figure 2.24: IU Pipeline Data bypass .. 57
Figure 2.25: IU Pipeline M to E bypass .. 58
Figure 2.26: IU Pipeline A to E Data bypass .. 58
Figure 2.27: IU Pipeline Slip after a MFHI ... 59
Figure 2.28: Coprocessor 2 Interface Transactions ... 60
Figure 2.29: Instruction Cache Miss Slip ... 61
Figure 3.1: FPU Block Diagram ... 66
Figure 3.2: Single-Precision Floating-Point Format (S) .. 68
Figure 3.3: Double-Precision Floating-Point Format (D) .. 68
Figure 3.4: Word Fixed-Point Format (W) .. 71
Figure 3.5: Longword Fixed-Point Format (L) .. 71
Figure 3.6: Single Floating-Point or Word Fixed-Point Operand in an FPR ... 71
Figure 3.7: Double Floating-Point or Longword Fixed-Point Operand in an FPR .. 71
Figure 3.8: Effect of FPU Operations on the Format of Values Held in FPRs ... 73
Figure 3.9: FPU Word Load and Move-to Operations ... 74
Figure 3.10: FPU Doubleword Load and Move-to Operations ... 74
Figure 3.11: FIR Format ... 76

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 11

Figure 3.12: FCCR Format .. 77
Figure 3.13: FEXR Format ... 78
Figure 3.14: FENR Format ... 78
Figure 3.15: FCSR Format ... 79
Figure 3.16: FS/FO/FN Bits Influence on Multiply and Addition Results .. 83
Figure 3.17: Flushing to Nearest when Rounding Mode is Round to Nearest ... 84
Figure 3.18: FPU Pipeline .. 95
Figure 3.19: Arithmetic Pipeline Bypass Paths .. 97
Figure 4.1: MIPS32® DSP Module Control Register (DSPControl) Format ... 99
Figure 5.1: Address Translation During SRAM Access ... 103
Figure 5.2: microAptiv™ UC processor core Virtual Memory Map .. 104
Figure 5.3: User Mode Virtual Address Space ... 105
Figure 5.4: Kernel Mode Virtual Address Space ... 107
Figure 5.5: Debug Mode Virtual Address Space .. 109
Figure 5.6: FMT Memory Map (ERL=0) in the microAptiv™ UC Processor Core .. 111
Figure 5.7: FMT Memory Map (ERL=1) in the microAptiv™ UC Processor Core .. 112
Figure 6.1: Interrupt Generation for Vectored Interrupt Mode .. 120
Figure 6.2: Interrupt Generation for External Interrupt Controller Interrupt Mode .. 123
Figure 6.3: General Exception Handler (HW) .. 142
Figure 6.4: General Exception Servicing Guidelines (SW) .. 143
Figure 6.5: Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines 144
Figure 7.1: UserLocal Register Format .. 148
Figure 7.2: HWREna Register Format .. 148
Figure 7.3: BadVAddr Register Format .. 149
Figure 7.4: BadInstr Register Format.. 150
Figure 7.5: BadInstrP Register Format ... 151
Figure 7.6: Count Register Format .. 151
Figure 7.7: Compare Register Format ... 152
Figure 7.8: Status Register Format ... 153
Figure 7.9: IntCtl Register Format... 157
Figure 7.10: SRSCtl Register Format ... 161
Figure 7.11: SRSMap Register Format... 164
Figure 7-12: View_IPL Register Format.. 165
Figure 7-13: SRSMap Register Format .. 166
Figure 7.14: Cause Register Format... 166
Figure 7-15: View_RIPL Register Format ... 171
Figure 7-16: NestedExc Register Format ... 172
Figure 7.17: EPC Register Format ... 173
Figure 7-18: NestedEPC Register Format .. 174
Figure 7.19: PRId Register Format .. 174
Figure 7.20: EBase Register Format .. 176
Figure 7.21: CDMMBase Register Format.. 176
Figure 7.22: Config Register Format — Select 0 ... 177
Figure 7.23: Config1 Register Format — Select 1 ... 179
Figure 7.24: Config2 Register Format — Select 2 ... 180
Figure 7-25: Config3 Register Format .. 181
Figure 7-26: Config4 Register Format .. 184
Figure 7-27: Config5 Register Format .. 185
Figure 7.28: Config7 Register Format .. 185
Figure 7.29: Debug Register Format ... 186
Figure 7.30: TraceControl Register Format ... 190
Figure 7.31: TraceControl2 Register Format ... 192
Figure 7.32: User Trace Data1/User Trace Data2 Register Format .. 194

12 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Figure 7.33: Trace BPC Register Format .. 195
Figure 7.34: Debug2 Register Format ... 196
Figure 7.35: DEPC Register Format .. 197
Figure 7.36: Performance Counter Control Register .. 198
Figure 7.37: Performance Counter Count Register ... 202
Figure 7.38: ErrCtl Register Format .. 203
Figure 7.39: CacheErr Register (Primary Caches) .. 203
Figure 7.40: ErrorEPC Register Format ... 205
Figure 7.41: DeSave Register Format ... 205
Figure 7-42: KScratchn Register Format .. 205
Figure 10.1: DCR Register Format ... 213
Figure 10.2: IBS Register Format .. 224
Figure 10.3: IBAn Register Format .. 224
Figure 10.4: IBMn Register Format .. 225
Figure 10.5: IBASIDn Register Format .. 225
Figure 10.6: IBCn Register Format .. 226
Figure 10.7: IBCCn Register Format ... 227
Figure 10.8: IBPCn Register Format .. 228
Figure 10.9: DBS Register Format ... 229
Figure 10.10: DBAn Register Format ... 229
Figure 10.11: DBMn Register Format .. 230
Figure 10.12: DBASIDn Register Format ... 230
Figure 10.13: DBCn Register Format .. 230
Figure 10.14: DBVn Register Format ... 232
Figure 10.15: DBCCn Register Format .. 233
Figure 10.16: DBPCn Register Format ... 234
Figure 10.17: DVM Register Format .. 234
Figure 10.18: CBTC Register Format ... 235
Figure 10.19: PrCndA Register Format ... 236
Figure 10.20: STCtl Register Format ... 238
Figure 10.21: STCnt Register Format .. 239
Figure 10.22: TAP Controller State Diagram ... 245
Figure 10.23: Concatenation of the EJTAG Address, Data and Control Registers .. 249
Figure 10.24: TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected 250
Figure 10.25: Device Identification Register Format .. 251
Figure 10.26: Implementation Register Format ... 252
Figure 10.27: EJTAG Control Register Format .. 253
Figure 10.28: Endian Formats for the PAD Register ... 260
Figure 10.29: Fastdata Register Format ... 260
Figure 10.30: Trace Logic Overview ... 269
Figure 10.31: Control/Status Register... 271
Figure 10.32: ITCBTW Register Format ... 273
Figure 10.33: ITCBRDP Register Format ... 274
Figure 10.34: ITCBWRP Register Format... 274
Figure 10.35: PCSAMPLE TAP Register Format (MIPS32) ... 276
Figure 10.36: Fast Debug Channel Buffer Organization... 279
Figure 10.37: FDC TAP Register Format.. 280
Figure 10.38: FDC Access Control and Status Register... 281
Figure 10.39: FDC Configuration Register.. 282
Figure 10.40: FDC Status Register ... 283
Figure 10.41: FDC Receive Register .. 284
Figure 10.42: FDC Transmit Register ... 284
Figure 10.43: cJTAG Interface.. 285

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 13

Figure 11.1: Instruction Formats .. 287
Figure 13.1: 16-Bit Instruction Formats... 323
Figure 13.2: 32-Bit Instruction Formats... 324
Figure 13.3: Immediate Fields within 32-Bit Instructions... 324

14 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

List of Tables

Table 2.1: High-performance MDU Stalls ... 43
Table 2.2: DSP Instruction Delays .. 44
Table 2.3: Delays for Interesting Sequences with DSPControl Dependency.. 45
Table 2.4: MDU Instruction Latencies (High-Performance MDU) ... 49
Table 2.5: MDU Instruction Repeat Rates (High-Performance MDU)... 50
Table 2.6: microAptiv™ UC Core Instruction Latencies (Area-Efficient MDU).. 53
Table 2.7: Pipeline Interlocks.. 60
Table 2.8: Instruction Interlocks .. 62
Table 2.9: Execution Hazards... 63
Table 2.10: Instruction Hazards .. 63
Table 2.11: Hazard Instruction Listing .. 64
Table 3.1: Parameters of Floating-Point Data Types.. 67
Table 3.2: Value of Single or Double Floating-Point Data Type Encoding.. 68
Table 3.3: Value Supplied When a New Quiet NaN is Created .. 70
Table 3.4: Coprocessor 1 Register Summary... 75
Table 3.5: Read/Write Properties.. 75
Table 3.6: FIR Bit Field Descriptions .. 76
Table 3.7: FCCR Bit Field Descriptions .. 78
Table 3.8: FEXR Bit Field Descriptions... 78
Table 3.9: FENR Bit Field Descriptions .. 79
Table 3.10: FCSR Bit Field Descriptions .. 80
Table 3.11: Cause, Enables, and Flags Definitions .. 81
Table 3.12: Rounding Mode Definitions.. 82
Table 3.13: Zero Flushing for Tiny Results ... 83
Table 3.14: Handling of Denormalized Operand Values and Tiny Results Based on FS Bit Setting...................... 83
Table 3.15: Handling of Tiny Intermediate Result Based on the FO and FS Bit Settings....................................... 83
Table 3.16: Handling of Tiny Final Result Based on FN and FS Bit Settings ... 84
Table 3.17: Recommended FS/FO/FN Settings ... 84
Table 3.18: FPU Data Transfer Instructions ... 87
Table 3.19: FPU Loads and Stores... 87
Table 3.20: FPU Move To and From Instructions ... 87
Table 3.21: FPU IEEE Arithmetic Operations ... 88
Table 3.22: FPU-Approximate Arithmetic Operations... 88
Table 3.23: FPU Multiply-Accumulate Arithmetic Operations ... 89
Table 3.24: FPU Conversion Operations Using the FCSR Rounding Mode... 89
Table 3.25: FPU Conversion Operations Using a Directed Rounding Mode .. 89
Table 3.26: FPU Formatted Operand Move Instruction .. 90
Table 3.27: FPU Conditional Move on True/False Instructions... 90
Table 3.28: FPU Conditional Move on Zero/Non-Zero Instructions .. 90
Table 3.29: FPU Conditional Branch Instructions ... 91
Table 3.30: Deprecated FPU Conditional Branch Likely Instructions ... 91
Table 3.31: CPU Conditional Move on FPU True/False Instructions .. 91
Table 3.32: Result for Exceptions Not Trapped .. 93
Table 3.33: microAptiv™ UC Core FPU Latency and Repeat Rate.. 97
Table 4.1: MIPS® DSP Module Control Register (DSPControl) Field Descriptions ... 100
Table 4.2: DSPControl ouflag Bits ... 101
Table 5.1: User Mode Segments .. 105

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 15

Table 5.2: Kernel Mode Segments ... 107
Table 5.3: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces 109
Table 5.4: CPU Access to drseg Address Range ... 109
Table 5.5: CPU Access to dmseg Address Range ... 110
Table 5.6: Cacheability of Segments with Block Address Translation .. 110
Table 6.1: Priority of Exceptions ... 114
Table 6.2: Interrupt Modes.. 116
Table 6.3: Relative Interrupt Priority for Vectored Interrupt Mode... 119
Table 6.4: Exception Vector Offsets for Vectored Interrupts... 124
Table 6.5: Exception Vector Base Addresses... 128
Table 6.6: Exception Vector Offsets ... 128
Table 6.7: Exception Vectors .. 128
Table 6.8: Value Stored in EPC, ErrorEPC, or DEPC on an Exception.. 129
Table 6.9: Debug Exception Vector Addresses .. 132
Table 6.10: Register States an Interrupt Exception .. 135
Table 6.11: CP0 Register States on an Address Exception Error... 136
Table 6.12: CP0 Register States on a SRAM Parity Error Exception ... 136
Table 6.13: Register States on a Coprocessor Unusable Exception .. 139
Table 7.1: CP0 Registers.. 145
Table 7.2: CP0 Register R/W Field Types .. 147
Table 7.3: UserLocal Register Field Descriptions... 148
Table 7.4: HWREna Register Field Descriptions .. 148
Table 7.5: BadVAddr Register Field Description .. 149
Table 7.6: BadInstr Register Field Descriptions.. 150
Table 7.7: BadInstrP Register Field Descriptions ... 151
Table 7.8: Count Register Field Description ... 151
Table 7.9: Compare Register Field Description .. 152
Table 7.10: Status Register Field Descriptions... 153
Table 7.11: IntCtl Register Field Descriptions... 158
Table 7.12: SRSCtl Register Field Descriptions ... 161
Table 7.13: Sources for new SRSCtlCSS on an Exception or Interrupt ... 164
Table 7.14: SRSMap Register Field Descriptions... 164
Table 7.15: View_IPL Register Field Descriptions .. 165
Table 7.16: SRSMap Register Field Descriptions... 166
Table 7.17: Cause Register Field Descriptions... 166
Table 7.18: Cause Register ExcCode Field .. 170
Table 7.19: View_RIPL Register Field Descriptions ... 171
Table 7.20: NestedExc Register Field Descriptions.. 172
Table 7.21: EPC Register Field Description ... 173
Table 7.22: NestedEPC Register Field Descriptions .. 174
Table 7.23: PRId Register Field Descriptions ... 174
Table 7.24: EBase Register Field Descriptions .. 176
Table 7.25: CDMMBase Register Field Descriptions.. 177
Table 7.26: Config Register Field Descriptions... 178
Table 7.27: Cache Coherency Attributes .. 179
Table 7.28: Config1 Register Field Descriptions — Select 1 .. 179
Table 7.29: Config2 Register Field Descriptions — Select 1 .. 180
Table 7.30: Config3 Register Field Descriptions... 181
Table 7.31: Config4 Register Field Descriptions... 184
Table 7.32: Config5 Register Field Descriptions... 185
Table 7.33: Config7 Register Field Descriptions... 186
Table 7.34: Debug Register Field Descriptions .. 187
Table 7.35: TraceControl Register Field Descriptions .. 190

16 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 7.36: TraceControl2 Register Field Descriptions .. 192
Table 7.37: UserTraceData1/UserTraceData2 Register Field Descriptions ... 194
Table 7.38: TraceBPC Register Field Descriptions... 195
Table 7.39: Debug2 Register Field Descriptions .. 196
Table 7.40: DEPC Register Formats .. 197
Table 7.41: Performance Counter Register Selects ... 198
Table 7.42: Performance Counter Control Register Field Descriptions .. 198
Table 7.43: Performance Counter Events Sorted by Event Number .. 199
Table 7.44: Performance Counter Event Descriptions Sorted by Event Type .. 201
Table 7.45: Performance Counter Count Register Field Descriptions .. 202
Table 7.46: Errctl Register Field Descriptions... 203
Table 7.47: CacheErr Register Field Descriptions (Primary Caches) ... 203
Table 7.48: ErrorEPC Register Field Description.. 205
Table 7.49: DeSave Register Field Description .. 205
Table 7.50: KScratchn Register Field Descriptions... 206
Table 10.1: DCR Register Field Descriptions ... 213
Table 10.2: Addresses for Instruction Breakpoint Registers ... 223
Table 10.3: IBS Register Field Descriptions ... 224
Table 10.4: IBAn Register Field Descriptions ... 224
Table 10.5: IBMn Register Field Descriptions... 225
Table 10.6: IBASIDn Register Field Descriptions ... 225
Table 10.7: IBCn Register Field Descriptions ... 226
Table 10.8: IBCCn Register Field Descriptions... 227
Table 10.9: IBPCn Register Field Descriptions... 228
Table 10.10: Addresses for Data Breakpoint Registers .. 228
Table 10.11: DBS Register Field Descriptions.. 229
Table 10.12: DBAn Register Field Descriptions.. 229
Table 10.13: DBMn Register Field Descriptions ... 230
Table 10.14: DBASIDn Register Field Descriptions.. 230
Table 10.15: DBCn Register Field Descriptions.. 231
Table 10.16: DBVn Register Field Descriptions.. 232
Table 10.17: DBCCn Register Field Descriptions... 233
Table 10.18: DBPCn Register Field Descriptions ... 234
Table 10.19: DVM Register Field Descriptions ... 234
Table 10.20: Addresses for Complex Breakpoint Registers ... 235
Table 10.21: CBTC Register Field Descriptions ... 235
Table 10.23: Priming Conditions and Register Values for 6I/2D Configuration .. 237
Table 10.24: Priming Conditions and Register Values for 8I/4D Configuration .. 237
Table 10.22: PrCndA Register Field Descriptions... 237
Table 10.25: STCtl Register Field Descriptions .. 238
Table 10.26: STCtl Register Field Descriptions .. 239
Table 10.27: EJTAG Interface Pins .. 243
Table 10.28: Implemented EJTAG Instructions .. 248
Table 10.30: Implementation Register Descriptions ... 252
Table 10.29: Device Identification Register .. 252
Table 10.31: EJTAG Control Register Descriptions.. 254
Table 10.32: Fastdata Register Field Description ... 260
Table 10.33: Operation of the FASTDATA access ... 261
Table 10.34: EJ_DisableProbeDebug Signal Overview.. 264
Table 10.35: Data Bus Encoding .. 270
Table 10.36: Tag Bit Encoding.. 270
Table 10.37: Control/Status Register Field Descriptions .. 272
Table 10.38: ITCBTW Register Field Descriptions ... 273

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 17

Table 10.39: ITCBRDP Register Field Descriptions ... 274
Table 10.40: ITCBWRP Register Field Descriptions... 274
Table 10.41: drseg Registers that Enable/Disable Trace from Breakpoint-Based Triggers.................................. 275
Table 10.42: FDC TAP Register Field Descriptions.. 280
Table 10.43: FDC Register Mapping .. 281
Table 10.44: FDC Access Control and Status Register Field Descriptions .. 281
Table 10.45: FDC Configuration Register Field Descriptions ... 282
Table 10.46: FDC Status Register Field Descriptions... 283
Table 10.47: FDC Receive Register Field Descriptions.. 284
Table 10.49: FDTXn Address Decode .. 285
Table 10.48: FDC Transmit Register Field Descriptions... 285
Table 11.1: Byte Access Within a Word.. 288
Table 12.1: Encoding of the Opcode Field.. 293
Table 12.2: Special Opcode Encoding of Function Field .. 293
Table 12.3: Special2 Opcode Encoding of Function Field .. 293
Table 12.4: Special3 Opcode Encoding of Function Field .. 294
Table 12.5: RegImm Encoding of rt Field ... 294
Table 12.6: COP2 Encoding of rs Field .. 294
Table 12.7: COP2 Encoding of rt Field When rs=BC2.. 294
Table 12.8: COP0 Encoding of rs Field .. 295
Table 12.9: COP0 Encoding of Function Field When rs=CO.. 295
Table 12.10: MIPS32 COP1 Encoding of rs Field... 295
Table 12.11: MIPS32 COP1 Encoding of Function Field When rs=S ... 296
Table 12.12: MIPS32 COP1 Encoding of Function Field When rs=D... 296
Table 12.13: MIPS32 COP1 Encoding of Function Field When rs=W or L... 296
Table 12.14: MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF.. 297
Table 12.15: Instruction Set .. 297
Table 13.1: 16-Bit Re-encoding of Frequent MIPS Instructions.. 327
Table 13.2: 16-Bit Re-encoding of Frequent MIPS Instruction Sequences... 328
Table 13.3: Instruction-Specific Register Specifiers and Immediate Field Values... 329
Table 13.4: 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 ... 330
Table 13.5: SB16, SH16, SW16 Source Registers - $0, $2-$7, $17 .. 331
Table 13.6: 16-Bit Instruction Implicit General-Purpose Registers ... 331
Table 13.7: 16-Bit Instruction Special-Purpose Registers... 332
Table 13.8: 32-bit Instructions introduced within microMIPS .. 332

Chapter 1

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 18

Introduction to the MIPS32® microAptiv™ UC Processor
Core

The MIPS32® microAptiv™ UC core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS
RISC processor core intended for custom system-on-silicon applications. The core is designed for semiconductor
manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic
and peripherals with a high-performance RISC processor. The microAptiv UC core is fully synthesizable to allow
maximum flexibility; it is highly portable across processes and can easily be integrated into full system-on-silicon
designs. This allows developers to focus their attention on end-user specific characteristics of their product.

The microAptiv UC core is especially well-suited for microcontrollers and applications that have real-time require-
ments with a high level of performance efficiency and security requirements.

The microAptiv UC core implements the MIPS Architecture in a 5-stage pipeline. It includes support for the micro-
MIPS™ ISA, an Instruction Set Architecture with optimized MIPS32 16-bit and 32-bit instructions that provides a
significant reduction in code size with a performance equivalent to MIPS32. The microAptiv UC core is a successor
to the M14K™, designed from the same microarchitecture, including the Microcontroller Application-Specific
Extension (MCU™ ASE), enhanced interrupt handling, lower interrupt latency, a reference design of an optimized
interface for flash memory and built-in native AMBA®-3 AHB-Lite Bus Interface Unit (BIU), with additional power
saving, debug, and profiling features.

The microAptiv UC core has an option to include the MIPS Architecture DSP Module Revision 2 that provides digi-
tal signal processing capabilities, with support for a number of powerful data processing operations. The microAptiv
UC core has a microAptiv UCF version that features an optional IEEE 754 compliant Floating-Point Unit (FPU). The
FPU supports both single- and double-precision instructions.

The microAptiv UC core is cacheless; in lieu of caches, it includes a simple interface to SRAM-style devices. This
interface may be configured for independent instruction and data devices or combined into a unified interface. The
SRAM interface allows deterministic latency to memory, while still maintaining high performance.

A distinguishing characteristic of the microAptiv UC family is the inclusion of a configurable MIPS DSP Module.
The MIPS DSP Module provides support for a number of powerful data processing operations. It includes instruc-
tions for executing fractional arithmetic (Q15/Q31) and saturating arithmetic. Additionally, for smaller data sizes,
SIMD operations are supported, allowing 2x16b or 4x8b operations to occur simultaneously. Another feature of the
DSP Module is the inclusion of additional HI/LO accumulator registers that improve the parallelization of indepen-
dent accumulation routines.

The core includes one of two different Multiply/Divide Unit (MDU) implementations, selectable at build-time if the
DSP Module is not configured in, allowing the user to trade-off performance and area for integer multiply and divide
operations. The high-performance MDU option implements single-cycle multiply and multiply-accumulate (MAC)
instructions that enable DSP algorithms to be performed efficiently. It allows 32-bit x 16-bit MAC instructions to be
issued every cycle, while a 32-bit x 32-bit MAC instruction can be issued every other cycle. The area-efficient MDU
option handles multiplies with a one-bit-per-clock iterative algorithm.

1.1 Features

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 19

If the core is configured with the DSP Module, the Multiply-Divide Unit (MDU) is fully pipelined and supports a
maximum issue rate of one 32x32 multiply (MUL/MULT/MULTU), multiply-add (MADD/MADDU), or multi-
ply-subtract (MSUB/MSUBU) operations per clock.

 The MMU consists of a simple Fixed Mapping Translation (FMT) mechanism, for applications that do not require
the full capabilities of a Translation Lookaside Buffer- (TLB-) based MMU available on other MIPS cores.

The basic Enhanced JTAG (EJTAG) features provide CPU run control with stop, single-stepping and re-start, and
with software breakpoints using the SDBBP instruction. Additional EJTAG features such as instruction and data vir-
tual address hardware breakpoints, complex hardware breakpoints, connection to an external EJTAG probe through
the Test Access Port (TAP), and PC/Data tracing, may be included as an option.

1.1 Features

• 5-stage pipeline

• 32-bit Address and Data Paths

• MIPS32 Instruction Set Architecture

• MIPS32 Enhanced Architecture Features

• Vectored interrupts and support for external interrupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow registers (one, three, seven, or fifteen additional shadows can be optionally added to minimize
latency for interrupt handlers)

• Bit field manipulation instructions

• microMIPS Instruction Set Architecture

• microMIPS ISA is a build-time configurable option that reduces code size over MIPS32, while maintaining
MIPS32 performance.

• Combining both 16-bit and 32-bit opcodes, microMIPS supports all MIPS32 instructions (except
branch-likely instructions) with new optimized encoding. Frequently used MIPS32 instructions are available
as 16-bit instructions.

• Added fifteen new 32-bit instructions and thirty-nine 16-bit instructions.

• Stack pointer implicit in instruction.

• MIPS32 assembly and ABI-compatible.

• Supports MIPS architecture Modules and User-defined Instructions (UDIs).

• MCU™ ASE

 Introduction to the MIPS32® microAptiv™ UC Processor Core

20 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• Increases the number of interrupt hardware inputs from 6 to 8 for Vectored Interrupt (VI) mode, and from 63
to 255 for External Interrupt Controller (EIC) mode.

• Separate priority and vector generation. 16-bit vector address is provided.

• Hardware assist combined with the use of Shadow Register Sets to reduce interrupt latency during the pro-
logue and epilogue of an interrupt.

• An interrupt return with automated interrupt epilogue handling instruction (IRET) improves interrupt
latency.

• Supports optional interrupt chaining.

• Two memory-to-memory atomic read-modify-write instructions (ASET and ACLR) eases commonly used
semaphore manipulation in microcontroller applications. Interrupts are automatically disabled during the
operation to maintain coherency.

• Memory Management Unit

• Simple Fixed Mapping Translation (FMT) mechanism

• Simple SRAM-Style Interface

• Cacheless operation enables deterministic response and reduces die-size

• 32-bit address and data; input byte-enables enable simple connection to narrower devices

• Single or multi-cycle latencies

• Configuration option for dual or unified instruction/data interfaces

• Redirection mechanism on dual I/D interfaces permits D-side references to be handled by I-side

• Transactions can be aborted

• Reference Design

• A typical SRAM reference design is provided.

• An AHB-Lite BIU reference design is provided between the SRAM interface and AHB-Lite Bus.

• An optimized interface for slow memory (Flash) access using prefetch buffer scheme is provided.

• Parity Support

• The ISRAM and DSRAM support optional parity detection.

• MIPS DSP Module (Revision 2.0)

• Support for MAC operations with 3 additional pairs of Hi/Lo accumulator registers (Ac0 - Ac3)

• Fractional data types (Q15, Q31) with rounding support

1.1 Features

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 21

• Saturating arithmetic with overflow handling

• SIMD instructions operate on 2x16-bit or 4x8-bit operands simultaneously

• Separate MDU pipeline with full-sized hardware multiplier to support back-to-back operations

• The DSP Module is build-time configurable.

• Multiply/Divide Unit (area-efficient configuration without DSP)

• 32 clock latency on multiply

• 34 clock latency on multiply-accumulate

• 33-35 clock latency on divide (sign-dependent)

• Multiply/Divide Unit (high-performance configuration without DSP)

• Maximum issue rate of one 32x16 multiply per clock via on-chip 32x16 hardware multiplier array.

• Maximum issue rate of one 32x32 multiply every other clock

• Early-in iterative divide. Minimum 11 and maximum 34 clock latency (dividend (rs) sign extension-depen-
dent)

• Multiply/Divide Unit (with DSP configuration)

• Maximum issue rate of one 32x32 multiply per clock via on-chip 32x32 hardware multiplier array

• Maximum issue rate of one 32x32 multiply every clock

• Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (rs) sign extension-depen-
dent)

• Floating Point Unit (FPU) - available in microAptiv UCF version only.

• 1985 IEEE-754 compliant Floating Point Unit.

• Supports single and double precision datatypes

• 2008 IEEE-754 compatibility control for NaN handling and Abs/Neg instructions

• Runs at 1:1 core/FPU clock ratio.

• The FPU is build-time configurable.

• CorExtend® User-Defined Instruction Set Extensions

• Allows user to define and add instructions to the core at build time

• Maintains full MIPS32 compatibility

• Supported by industry-standard development tools

 Introduction to the MIPS32® microAptiv™ UC Processor Core

22 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• Single or multi-cycle instructions

• Multi-Core Support

• External lock indication enables multi-processor semaphores based on LL/SC instructions

• External sync indication allows memory ordering

• Debug support includes cross-core triggers

• Coprocessor 2 interface

• 32-bit interface to an external coprocessor

• Power Control

• Minimum frequency: 0 MHz

• Power-down mode (triggered by WAIT instruction)

• Support for software-controlled clock divider

• Support for extensive use of local gated clocks

• EJTAG Debug/Profiling and iFlowtrace™ Mechanism

• CPU control with start, stop, and single stepping

• Virtual instruction and data address/value breakpoints

• Hardware breakpoint supports both address match and address range triggering

• Optional simple hardware breakpoints on virtual addresses; 8I/4D, 6I/2D, 4I/2D, 2I/1D breakpoints, or no
breakpoints

• Optional complex hardware breakpoints with 8I/4D, 6I/2D simple breakpoints

• TAP controller is chainable for multi-CPU debug

• Supports EJTAG (IEEE 1149.1) and compatible with cJTAG 2-wire (IEEE 1149.7) extension protocol

• Cross-CPU breakpoint support

• iFlowtrace support for real-time instruction PC and special events

• PC and/or load/store address sampling for profiling

• Performance Counters

• Support for Fast Debug Channel (FDC)

• SecureDebug

1.2 microAptiv™ UC Core Block Diagram

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 23

• An optional feature that disables access via EJTAG in an untrusted environment

• Testability

• Full scan design achieves test coverage in excess of 99% (dependent on library and configuration options)

1.2 microAptiv™ UC Core Block Diagram

The microAptiv UC core contains both required and optional blocks, as shown in the block diagram in Figure 1.1.
Required blocks are the lightly shaded areas of the block diagram and are always present in any core implementation.
Optional blocks may be added to the base core, depending on the needs of a specific implementation. The required
blocks are as follows:

• Instruction Decode

• Execution Unit

• General Purposed Registers (GPR)

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• I/D SRAM Interfaces

• Power Management

Optional blocks include:

• Configurable instruction decoder supporting three ISA modes: MIPS32-only, MIPS32 and microMIPS, or
microMIPS-only

• DSP (integrated with MDU)

• Floating-point Unit (FPU) - available in microAptiv UCF version only

• Reference Design of I/D-SRAM, BIU, Slow Memory Interface

• Coprocessor 2 interface

• CorExtend® User-Defined Instruction (UDI) interface

• Debug/Profiling with Enhanced JTAG (EJTAG) Controller, Break points, Sampling, Performance counters, Fast
Debug Channel, and iFlowtrace logic

1.2 microAptiv™ UC Core Block Diagram

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 25

• A separate DSP ALU and Logic block for performing part of DSP Module instructions, such as arith-
metic/shift/compare operations, if the DSP function is configured.

1.2.1.2 General Purposed Register (GPR) Shadow Registers

The microAptiv UC core contains thirty-two 32-bit general-purpose registers used for integer operations and address
calculation. Optionally, one, three, seven or fifteen additional register file shadow sets (each containing thirty-two
registers) can be added to minimize context switching overhead during interrupt/exception processing. The register
file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

1.2.1.3 Multiply/Divide Unit (MDU)

The microAptiv UC core includes a multiply/divide unit (MDU) that contains a separate, dedicated pipeline for inte-
ger multiply/divide operations, and DSP Module multiply instructions. This pipeline operates in parallel with the
integer unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows the long-running MDU opera-
tions to be partially masked by system stalls and/or other integer unit instructions.

The MIPS architecture defines that the result of a multiply or divide operation be placed in a pair (without DSP
enabled) or one of 4 pairs (with DSP enabled) of HI and LO registers. Using the Move-From-HI (MFHI) and
Move-From-LO (MFLO) instructions, these values can be transferred to the general-purpose register file.

There are three configuration options for the MDU: 1) a full 32x32 multiplier block; 2) a higher performance 32x16
multiplier block; 3) an area-efficient iterative multiplier block. Option 2 and 3 are available if the DSP configuration
option is disabled. If the DSP configuration option is enabled, option 1 is the default. The selection of the MDU style
allows the implementor to determine the appropriate performance and area trade-off for the application.

MDU with 32x32 DSP Multiplier

With the DSP configuration option enabled, the MDU supports execution of one 16x16, 32x16, or 32x32 multiply or
multiply-accumulate operation every clock cycle with the built in 32x32 multiplier array. The multiplier is shared
with DSP Module operations.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as
defined in the DSP Module. It supports all the data types required for this purpose and includes three extra HI/LO
registers as defined by the Module.

MDU with 32x16 High-Performance Multiplier

The high-performance MDU consists of a 32x16 Booth-recoded multiplier, a pair of result/accumulation registers (HI
and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown (‘32’ of
32x16) represents the rs operand. The second number (‘16’ of 32x16) represents the rt operand. The microAptiv UC
core only checks the value of the rt operand to determine how many times the operation must pass through the multi-
plier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multi-
plier twice.

The MDU supports execution of one 16x16 or 32x16 multiply or multiply-accumulate operation every clock cycle;
32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic
built into the MDU.

 Introduction to the MIPS32® microAptiv™ UC Processor Core

26 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

MDU with Area-Efficient Option

With the area-efficient option, multiply and divide operations are implemented with a simple 1-bit-per-clock iterative
algorithm. Any attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes an MDU
pipeline stall until the operation is completed.

Regardless of the multiplier array implementation, divide operations are implemented with a simple 1-bit-per-clock
iterative algorithm. An early-in detection checks the sign extension of the dividend (rs) operand. If rs is 8 bits wide,
23 iterations are skipped. For a 16-bit-wide rs, 15 iterations are skipped, and for a 24-bit-wide rs, 7 iterations are
skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall
until the divide operation has completed.

1.2.1.4 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control sys-
tem, the processor’s diagnostics capability, the operating modes (kernel, user, and debug), and whether interrupts are
enabled or disabled. Configuration information, such as presence of build-time options like microMIPS, CorExtend
Module or Coprocessor 2 interface, is also available by accessing the CP0 registers.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events, or program errors.

Interrupt Handling

The microAptiv UC core includes support for eight hardware interrupt pins, two software interrupts, and a timer
interrupt. These interrupts can be used in any of three interrupt modes, as defined by Release 2 of the MIPS32 Archi-
tecture:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This mode is architecturally optional; but it is always present on
the microAptiv UC core, so the VInt bit will always read as a 1 for the microAptiv UC core.

• External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. The presence of
this mode denoted by the VEIC bit in the Config3 register. Again, this mode is architecturally optional. On the
microAptiv UC core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to
indicate the presence of an external interrupt controller.

The reset state of the processor is interrupt compatibility mode, such that a processor supporting Release 2 of the
Architecture, the microAptiv UC core for example, is fully compatible with implementations of Release 1 of the
Architecture.

VI or EIC interrupt modes can be combined with the optional shadow registers to specify which shadow set should be
used on entry to a particular vector. The shadow registers further improve interrupt latency by avoiding the need to
save context when invoking an interrupt handler.

In the microAptiv UC core, interrupt latency is reduced by:

• Speculative interrupt vector prefetching during the pipeline flush.

1.2 microAptiv™ UC Core Block Diagram

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 27

• Interrupt Automated Prologue (IAP) in hardware: Shadow Register Sets remove the need to save GPRs, and IAP
removes the need to save specific Control Registers when handling an interrupt.

• Interrupt Automated Epilogue (IAE) in hardware: Shadow Register Sets remove the need to restore GPRs, and
IAE removes the need to restore specific Control Registers when returning from an interrupt.

• Allow interrupt chaining. When servicing an interrupt and interrupt chaining is enabled, there is no need to return
from the current Interrupt Service Routine (ISR) if there is another valid interrupt pending to be serviced. The
control of the processor can jump directly from the current ISR to the next ISR without IAE and IAP.

GPR Shadow Registers

The MIPS32 Architecture optionally removes the need to save and restore GPRs on entry to high-priority interrupts
or exceptions, and to provide specified processor modes with the same capability. This is done by introducing multi-
ple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with entry to
kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option. The microAptiv UC core allows 1 (the normal GPRs), 2, 4, 8,
or 16 shadow sets. The highest number actually implemented is indicated by the SRSCtlHSS field. If this field is zero,
only the normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. When a shadow set is bound to a kernel-mode entry condition, references to GPRs operate
exactly as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged soft-
ware may need to reference all GPRs in the register file, even specific shadow registers that are not visible in the cur-
rent mode, and the RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl
register provides the number of the current shadow register set, and the PSS field of the SRSCtl register provides the
number of the previous shadow register set that was current before the last exception or interrupt occurred.

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS
to restore the shadow set of the mode to which control returns.

Refer to Chapter 7, “CP0 Registers of the microAptiv™ UC Core” on page 145 for more information on the CP0 reg-
isters. Refer to Chapter 10, “EJTAG Debug Support in the microAptiv™ UC Core” on page 212 for more informa-
tion on EJTAG debug registers.

1.2.1.5 Memory Management Unit (MMU)

Modes of Operation

The microAptiv UC core implements three modes of operation:

• User mode is most often used for applications programs.

• Kernel mode is typically used for handling exceptions and operating-system kernel functions, including CP0
management and I/O device accesses.

 Introduction to the MIPS32® microAptiv™ UC Processor Core

28 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• Debug mode is used during system bring-up and software development. Refer to the EJTAG section for
more information on debug mode.

Figure 1.2 shows the virtual address map of the MIPS Architecture.

Figure 1.2 microAptiv™ UC Core Virtual Address Map

Memory Management Unit (MMU)

The microAptiv UC core contains a simple Fixed Mapping Translation (FMT) MMU that interfaces between the exe-
cution unit and the SRAM controller.

• Fixed Mapping Translation (FMT)

A FMT is smaller and simpler than the full Translation Lookaside Buffer (TLB) style MMU found in other MIPS
cores. Like a TLB, the FMT performs virtual-to-physical address translation and provides attributes for the dif-
ferent segments. Those segments that are unmapped in a TLB implementation (kseg0 and kseg1) are translated
identically by the FMT.

Figure 1.3 shows how the FMT is implemented in the microAptiv UC core.

kuseg

kseg0

kseg1

kseg2

kseg3

0x00000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF

0xA0000000

0xBFFFFFFF

0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Kernel Virtual Address Space

Unmapped, 512 MB
Kernel Virtual Address Space

Uncached

Unmapped, 512 MB
Kernel Virtual Address Space

User Virtual Address Space

1. This space is mapped to memory in user or kernel mode,
 and by the EJTAG module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/EJTAG1

Mapped, 2048 MB

Fix Mapped, 512 MB

Fix Mapped

Fix Mapped

 Introduction to the MIPS32® microAptiv™ UC Processor Core

30 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

core, and thus eliminate the need for external registers to gather the entire 32 bits of data. External muxes are required
to redirect the narrower data to the appropriate byte lanes.

Lock Mechanism

The SRAM interface includes a protocol to identify a locked sequence, and is used in conjunction with the LL/SC
atomic read-modify-write semaphore instructions.

Sync Mechanism

The interface includes a protocol that externalizes the execution of the SYNC instruction. External logic might
choose to use this information to enforce memory ordering between various elements in the system.

External Call Indication

The instruction fetch interface contains signals that indicate that the core is fetching the target of a subroutine
call-type instruction such as JAL or BAL. At some point after a call, there will typically be a return to the original
code sequence. If a system prefetches instructions, it can make use of this information to save instructions that were
prefetched and are likely to be executed after the return.

1.2.1.7 Power Management

The microAptiv UC core offers a number of power management features, including low-power design, active power
management, and power-down modes of operation. The core is a static design that supports slowing or halting the
clocks, which reduces system power consumption during idle periods.

The microAptiv UC core provides two mechanisms for system-level low-power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CP0 Status register provides a software mechanism for placing the system into a low-power state.
The state of the RP bit is available externally via the SI_RP signal. The external agent then decides whether to place
the device in a low-power mode, such as reducing the system clock frequency.

Three additional bits,StatusEXL, StatusERL, and DebugDM support the power management function by allowing the
user to change the power state if an exception or error occurs while the microAptiv UC core is in a low-power state.
Depending on what type of exception is taken, one of these three bits will be asserted and reflected on the SI_EXL,
SI_ERL, or EJ_DebugM outputs. The external agent can look at these signals and determine whether to leave the
low-power state to service the exception.

The following four power-down signals are part of the system interface and change state as the corresponding bits in
the CP0 registers are set or cleared:

• The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

• The EJ_DebugM signal represents the state of the DM bit (30) in the CP0 Debug register.

1.2 microAptiv™ UC Core Block Diagram

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 31

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is by executing the WAIT instruction. When the WAIT
instruction is executed, the internal clock is suspended; however, the internal timer and some of the input pins
(SI_Int[5:0], SI_NMI, SI_Reset, and SI_ColdReset) continue to run. When the CPU is in instruction-controlled power
management mode, any interrupt, NMI, or reset condition causes the CPU to exit this mode and resume normal oper-
ation.

The microAptiv UC core asserts the SI_Sleep signal, which is part of the system interface bus, whenever the WAIT
instruction is executed. The assertion of SI_Sleep indicates that the clock has stopped and the microAptiv UC core is
waiting for an interrupt.

Local clock gating

The majority of the power consumed by the microAptiv UC core is in the clock tree and clocking registers. The core
has support for extensive use of local gated clocks. Power-conscious implementors can use these gated clocks to sig-
nificantly reduce power consumption within the core.

Refer to Chapter 9, “Power Management of the microAptiv™ UC Core” on page 210 for more information on power
management.

1.2.2 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagram in Figure 1.1.

1.2.2.1 Reference Design

The microAptiv UC core contains a reference design that shows a typical usage of the core with:

• Dual I-SRAM and D-SRAM interface with fast memories (i.e., SRAM) for instruction and data storage.

• Optimized interface for slow memory (i.e., Flash memory) access by having a prefetch buffer and a wider Data
Read bus (i.e., IS_RData[127:0]) to speed up I-Fetch performance.

• AHB-lite bus interface to the system bus if the memory accesses are outside the memory map for the SRAM and
Flash regions. AHB-Lite is a subset of the AHB bus protocol that supports a single bus master. The interface
shares the same 32-bit Read and Write address bus and has two unidirectional 32-bit buses for Read and Write
data.

The reference design is optional and can be modified by the user to better fit the SOC design requirement.

 Introduction to the MIPS32® microAptiv™ UC Processor Core

34 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

The coprocessor interface is designed to ease integration with customer IP. The interface allows high-performance
communication between the core and coprocessor. There are no late or critical signals on the interface.

Refer to Chapter 12, “microAptiv™ UC Processor Core Instructions” on page 292 for more information on the
Coprocessor 2 supported instructions.

1.2.2.6 CorExtend® User-defined Instruction Extensions

An optional CorExtend User-defined Instruction (UDI) block enables the implementation of a small number of appli-
cation-specific instructions that are tightly coupled to the core’s execution unit. The interface to the UDI block is
external to the microAptiv UC core.

Such instructions may operate on a general-purpose register, immediate data specified by the instruction word, or
local state stored within the UDI block. The destination may be a general-purpose register or local UDI state. The
operation may complete in one cycle or multiple cycles, if desired.

Refer to Table 12.3 “Special2 Opcode Encoding of Function Field” for a specification of the opcode map available
for user-defined instructions.

1.2.2.7 EJTAG Debug Support

The microAptiv UC core provides for an optional Enhanced JTAG (EJTAG) interface for use in the software debug
of application and kernel code. In addition to standard user and kernel modes of operation, the microAptiv UC core
provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step
exception, etc.) is taken and continues until a debug exception return (DERET) instruction is executed. During this
time, the processor executes the debug exception-handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring
test data in and out of the microAptiv UC core. In addition to the standard JTAG instructions, special instructions
defined in the EJTAG specification specify which registers are selected and how they are used.

Debug Registers

Four debug registers (DEBUG, DEBUG2, DEPC, and DESAVE) have been added to the MIPS Coprocessor 0 (CP0)
register set. The DEBUG and DEBUG2 registers show the cause of the debug exception and are used for setting up
single-step operations. The DEPC (Debug Exception Program Counter) register holds the address on which the debug
exception was taken, which is used to resume program execution after the debug operation finishes. Finally, the
DESAVE (Debug Exception Save) register enables the saving of general-purpose registers used during execution of
the debug exception handler.

To exit debug mode, a Debug Exception Return (DERET) instruction is executed. When this instruction is executed,
the system exits debug mode, allowing normal execution of application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug mode. There are two types of simple hardware breakpoints
implemented in the microAptiv UC core: Instruction breakpoints and Data breakpoints. Additionally, complex hard-
ware breakpoints can be included, which allow detection of more intricate sequences of events.

The microAptiv UC core can be configured with the following breakpoint options:

• No data or instruction, or complex breakpoints

1.2 microAptiv™ UC Core Block Diagram

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 35

• One data and two instruction breakpoints, without complex breakpoints

• Two data and four instruction breakpoints, without complex breakpoints

• Two data and six instruction breakpoints, with or without complex breakpoints

• Four data and eight instruction breakpoints, with or without complex breakpoints

Instruction breakpoints occur on instruction execution operations, and the breakpoint is set on the virtual address. A
mask can be applied to the virtual address to set breakpoints on a binary range of instructions.

Data breakpoints occur on load/store transactions, and the breakpoint is set on a virtual address value, with the same
single address or binary address range as the Instruction breakpoint. Data breakpoints can be set on a load, a store, or
both. Data breakpoints can also be set to match on the operand value of the load/store operation, with byte-granularity
masking. Finally, masks can be applied to both the virtual address and the load/store value.

In addition, the microAptiv UC core has a configurable feature to support data and instruction address-range trig-
gered breakpoints, where a breakpoint can occur when a virtual address is either within or outside a pair of 32-bit
addresses. Unlike the traditional address-mask control, address-range triggering is not restricted to a power-of-two
binary boundary.

Complex breakpoints utilize the simple instruction and data breakpoints and break when combinations of events are
seen. Complex break features include:

• Pass Counters - Each time a matching condition is seen, a counter is decremented. The break or trigger will only
be enabled when the counter has counted down to 0.

• Tuples - A tuple is the pairing of an instruction and a data breakpoint. The tuple will match if both the virtual
address of the load or store instruction matches the instruction breakpoint, and the data breakpoint of the result-
ing load or store address and optional data value matches.

• Priming - This allows a breakpoint to be enabled only after other break conditions have been met. Also called
sequential or armed triggering.

• Qualified - This feature uses a data breakpoint to qualify when an instruction breakpoint can be taken. When a
load matches the data address and the data value, the instruction break will be enabled. If a load matches the
address, but has mis-matching data, the instruction break will be disabled.

Performance Counters

Performance counters are used to accumulate occurrences of internal predefined events/cycles/conditions for pro-
gram analysis, debug, or profiling. A few examples of event types are clock cycles, instructions executed, specific
instruction types executed, loads, stores, exceptions, and cycles while the CPU is stalled. There are two, 32-bit
counters. Each can count one of the 64 internal predefined events selected by a corresponding control register. A
counter overflow can be programmed to generate an interrupt, where the interrupt-handler software can maintain
larger total counts.

PC/Address Sampling

This sampling function is used for program profiling and hot-spots analysis. Instruction PC and/or Load/Store
addresses can be sampled periodically. The result is scanned out through the EJTAG port. The Debug Control
Register (DCR) is used to specify the sample period and the sample trigger.

Chapter 2

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 38

Pipeline of the microAptiv™ UC Core

The microAptiv UC processor core implements a 5-stage pipeline similar to the original M4K pipeline. The pipeline
allows the processor to achieve high frequency while minimizing device complexity, reducing both cost and power
consumption. This chapter contains the following sections:

• Section 2.1 “Pipeline Stages”

• Section 2.2 “Multiply/Divide Operations”

• Section 2.3 “MDU Pipeline with DSP Module Enabled”

• Section 2.4 “MDU Pipeline - High-performance MDU with DSP Module Disabled”

• Section 2.5 “MDU Pipeline - Area-Efficient MDU with DSP Module Disabled”

• Section 2.6 “Branch Delay”

• Section 2.7 “Data Bypassing”

• Section 2.9 “Interlock Handling”

• Section 2.10 “Slip Conditions”

• Section 2.11 “Instruction Interlocks”

• Section 2.12 “Hazards”

2.1 Pipeline Stages

The microAptiv UC core implements a 5-stage pipeline with a performance similar to the M14K pipeline. The pipe-
line allows the processor to achieve high frequency while minimizing device complexity, reducing both cost and
power consumption.

The microAptiv UC core pipeline consists of five stages:

• Instruction (I Stage)

• Execution (E Stage)

• Memory (M Stage)

• Align (A Stage)

• Writeback (W stage)

2.2 Multiply/Divide Operations

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 41

2.1.3 M Stage: Memory Fetch

During the Memory fetch stage:

• The arithmetic ALU operation completes.

• The data SRAM access is performed for load and store instructions.

• A 16x16, 32x16 or 32x32 multiply calculation completes (with DSP configuration).

• A 32x32 multiply operation stalls the MDU pipeline for one clock in the M stage (high-performance MDU
option without DSP configuration).

• A multiply operation stalls the MDU pipeline for 31 clocks in the M stage (area-efficient MDU option without
DSP configuration).

• A multiply-accumulate operation stalls the MDU pipeline for 33 clocks in the M stage (area-efficient MDU
option without DSP configuration).

• A divide operation stalls the MDU pipeline for a maximum of 38 clocks in the M stage. Early-in sign extension
detection on the dividend will skip 7, 15, or 23 stall clocks (only the divider in the fast MDU option supports
early-in detection).

2.1.4 A Stage: Align

During the Align stage:

• Load data is aligned to its word boundary.

• A multiply/divide operation updates the HI/LO registers (area-efficient MDU option).

• Multiply operation performs the carry-propagate-add. The actual register writeback is performed in the W stage
(high-performance MDU option).

• A MUL operation makes the result available for writeback. The actual register writeback is performed in the W
stage.

• EJTAG complex break conditions are evaluated.

2.1.5 W Stage: Writeback

During the Writeback stage:

• For register-to-register or load instructions, the result is written back to the register file.

2.2 Multiply/Divide Operations

The microAptiv UC core implements the standard MIPS II™ multiply and divide instructions. Additionally, several
new instructions were standardized in the MIPS32 architecture for enhanced performance.

 Pipeline of the microAptiv™ UC Core

42 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general-purpose register file
instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register,
and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU), multiply-subtract (MSUB), and multi-
ply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract operations. The
MADD/MADDU instruction multiplies two numbers and then adds the product to the current contents of the HI and
LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and then subtracts the product from
the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are commonly used in DSP algo-
rithms.

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations write to
the general purpose registers (GPR). Because MDU operations write to different registers than integer operations,
integer instructions that follow can execute before the MDU operation has completed. The MFLO and MFHI instruc-
tions are used to move data from the HI/LO register pair to the GPR file. If an MFLO or MFHI instruction is issued
before the MDU operation completes, it will stall to wait for the data.

2.3 MDU Pipeline with DSP Module Enabled

The microAptiv UC processor core contains a high-performance Multiply-Divide Unit (MDU) and a DSP unit to han-
dle integer multiply, divide, and DSP Module instructions.

The autonomous multiply/divide unit (MDU) has a separate pipeline for multiply and divide operations. This pipeline
operates in parallel with the integer unit (ALU) pipeline and does not stall when the ALU pipeline stalls. This allows
multi-cycle MDU operations, such as a divide, to be partially masked by system stalls and/or other integer unit
instructions.

The following subsections describe the MDU pipeline in more detail.

2.3.1 MDU

The high-performance MDU consists of a 32x32 Booth-recoded multiplier array, separate carry-lookahead adders for
multiply and divide, result/accumulation registers (HI and LO), multiply and divide state machines, and all necessary
multiplexers and control logic.

Due to the multiplier array, the high-performance MDU supports execution of a multiply operation every clock cycle.
Divide operations are implemented with a simple 1 bit-per-clock iterative algorithm with an early in detection of sign
extension on the dividend (rs). An attempt to issue a subsequent MDU instruction which would access the HI or LO
register before the divide completes causes a delay in starting the subsequent MDU instruction. Some concurrency is
enabled by the separate adders for the multiply and divide data paths. The MDU instruction may start executing when
the divide is ensured of writing to the HI and LO registers before the MDU instruction will access them. A MUL
instruction, which does not access the HI or LO register, may start executing anytime relative to a previous divide
instruction.

2.3 MDU Pipeline with DSP Module Enabled

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 43

Table 2.1 lists the number of stall cycles incurred between two dependent instructions. A stall of 0 clock cycles means
that the first and second instructions can be issued back-to-back in the code, without the MDU causing any stalls in
the ALU pipeline.

2.3.2 DSP Module Instruction Latencies

The microAptiv UC processor core includes support for DSP Module. Logic for these instructions is located prima-
rily in the ALU and MDU blocks. Any DSP instructions accessing the accumulators or performing multiplication are
implemented in the MDU. All others are implemented in the ALU. In addition to the “normal” MIPS32 HI/LO accu-
mulator, the DSP Module introduces three additional HI/LO accumulator pairs.

The latency and repeat rate for the BPOSGE32 instruction is similar to those for a MIPS32 conditional branch
instruction. However, unlike a MIPS32 conditional branch instruction, BPOSGE32 is dependent on DSPControl.Pos
and not on a GPR. The LHX and LWX instructions are treated as non-blocking loads by the core; they have depen-
dencies on the index and base registers. The delay and repeat rates for other DSP instructions are shown in the follow-
ing tables. The ‘delay’ in Table 2.2 is in terms of pipeline clocks and refers to the number of cycles the pipeline must
stall the second instruction in order to wait for the result of the first instruction. A delay of zero means that the first

Table 2.1 High-performance MDU Stalls

Size of Operand
1st Instruction[1]

Instruction Sequence
Delay

Clocks1st Instruction 2nd Instruction

32 bit MULT/MULTU,
MADD/MADDU, or

MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or MFHI/MFLO

0

32 bit MUL Integer operation[1] 3

8 bit DIVU MFHI/MFLO 8

16 bit DIVU MFHI/MFLO 16

24 bit DIVU MFHI/MFLO 24

32 bit DIVU MFHI/MFLO 32

8 bit DIV MFHI/MFLO 10[2]

16 bit DIV MFHI/MFLO 18[2]

24 bit DIV MFHI/MFLO 26[2]

32 bit DIV MFHI/MFLO 34[2]

any MFHI/MFLO Integer operation[1] 1

any MTHI/MTLO MADD/MADDU,
MSUB/MSUBU

1

any MTHI/MTLO MFHI/MFLO 1

[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
[2] If both operands are positive, then the two Sign Adjust stages are bypassed. Delay is then the same as

for DIVU.

 Pipeline of the microAptiv™ UC Core

44 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

and second instructions can be issued back-to-back without stalling the pipeline. A delay of one means that if issued
back-to-back, the pipeline will stall for one cycle.

The delays shown in table Table 2.2 with a dependency on a HI/LO accumulator pair assume that the dependent
instruction sequence is operating on the same accumulator pair. This is the worst case situation. The delay clock value
can be reduced when the second instruction operates on a different accumulator. For example, consider the following
sequence:

MULT (writing to accumulator 0)
MADD (writing to accumulator 1)
MSUB (writing to accumulator 2)
EXTR (reading from accumulator n)

Table 2.2 DSP Instruction Delays

Dependency on1

1. For dependencies on a HI/LO accumulator, the delay clocks shown assume that the 1st and 2nd instruc-
tion are operating on the same accumulator.

Instruction Sequence
Delay

Clocks1st Instruction 2nd Instruction

GPR MUL*, EXT*, MFHI, MFLO
(multiplies or HI/LO reads that

write to a GPR)

Instruction with GPR input 3

GPR Other (ALU) DSP instruction
with GPR result

Instruction with GPR input 0

HI/LO DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*,

MULT*, MTHI, MTLO, MTTR,
SHILO*, MTHLIP

(HI/LO writes)

MFHI, MFLO, MFTR
(HI/LO reads)

1

HI/LO *_SA
(MAC’s that saturates after accu-

mulate)

 DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*

(MAC’s)

1

HI/LO DPAQ_S.*, DPSQ_S.*, MUL-
SAQ*, MAQ_S.*, MADD*,

MSUB*
(MAC’s that do not saturate after

accumulate)

DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*

(MAC’s)

1

HI/LO MTHI, MTLO, MTTR, SHILO*,
MTHLIP

(HI/LO writes that are not multi-
plies)

DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*

(MAC’s)

1

HI/LO DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*,

MULT*, MTHI, MTLO, MTTR,
EXT*, SHILO*, MTHLIP

(HI/LO writes)

EXT*, SHILO*
(HI/LO shifts)

3

HI/LO DPAQ*, DPSQ*, MULSAQ*,
MAQ*, MADD*, MSUB*,

MULT*, MTHI, MTLO, MTTR,
SHILO*, MTHLIP

(HI/LO writes)

MTHLIP 3

2.3 MDU Pipeline with DSP Module Enabled

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 45

If the EXTR instruction is reading accumulator 2 (n=2), then a delay of 3 cycles would apply between the MSUB and
EXTR operation, as indicated in Table 2.2. If the EXTR reads accumulator 1, then a delay of 2 cycles would apply
between the MADD and EXTR, since there is already one unrelated instruction between the dependent ones. If the
EXTR reads accumulator 0, then a delay of 1 would apply between the MULT and EXTR. Finally, if the EXTR
instruction is reading accumulator 3, no delay would be incurred in the sequence.

Table 2.3 shows the repeat rates of all possible instruction sequences between two integer arithmetic, multiply,
divide, or DSP instructions, with and without data dependencies.

[1] : The number cycles depends on the size of input operands.
[2] : An extra cycle is needed if Saturation arithmetic is needed.

Table 2.3 Delays for Interesting Sequences with DSPControl Dependency

MIPS32
or

microMIPS

Instruction Sequence Repeat Rate

1st Instruction 2nd Instruction
Without Data
Dependency

With Data
DependencyInstruction

Type Target
Instruction

Type Target

Normal
Integer

Instructions

Integer Arithmetic

GPR Integer Arithmetic GPR 1 1

Multiply GPR 1 1

Multiply Hi/Lo 1 1

Divide Hi/Lo 1 1

Multiply

GPR Integer Arithmetic GPR 3 4

Multiply GPR 1 4

Multiply Hi/Lo 1 4

Divide Hi/Lo 1 4

Multiply

Hi/Lo Integer Arithmetic GPR 1 1

Multiply GPR 1 1

Multiply Hi/Lo 1 1

Divide Hi/Lo 1 1

Divide

Hi/Lo Integer Arithmetic GPR 1 1

Multiply GPR 10, 18, 26, 34[1] 10, 18, 26, 34[1]

Multiply Hi/Lo 10, 18, 26, 34[1] 10, 18, 26, 34[1]

Divide Hi/Lo 10, 18, 26, 34[1] 10, 18, 26, 34[1]

DSP Module
Instructions

Integer Arithmetic
GPR Integer Arithmetic GPR 1 1

Multiply GPR 1 1

Multiply Hi/Lo 1 1

Multiply
GPR Integer Arithmetic GPR 3 4

Multiply GPR 1 4

Multiply Hi/Lo 1 4

Multiply
Hi/Lo Integer Arithmetic GPR 1 1

Multiply GPR 1 1

Multiply Hi/Lo 1 1, 2[2]

2.4 MDU Pipeline - High-performance MDU with DSP Module Disabled

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 49

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations
can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back
32x32 multiply operations. Multiply operand size is automatically determined by logic built into the MDU. Divide
operations are implemented with a simple 1 bit per clock iterative algorithm with an early in detection of sign exten-
sion on the dividend (rs). Any attempt to issue a subsequent MDU instruction while a divide is still active causes an
IU pipeline stall until the divide operation is completed.

Table 2.4 lists the latencies (number of cycles until a result is available) for multiply, and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the
first instruction to produce the result needed by the second instruction.

In Table 2.4, a latency of one means that the first and second instructions can be issued back-to-back in the code,
without the MDU causing any stalls in the IU pipeline. A latency of two means that if issued back-to-back, the IU
pipeline will be stalled for one cycle. MUL operations are special, because the MDU needs to stall the IU pipeline in
order to maintain its register file write slot. As a result, the MUL 16x16 or 32x16 operation will always force a one-
cycle stall of the IU pipeline, and the MUL 32x32 will force a two-cycle stall. If the integer instruction immediately
following the MUL operation uses its result, an additional stall is forced on the IU pipeline.

Table 2.4 MDU Instruction Latencies (High-Performance MDU)

Size of Operand
1st Instruction[1]

Instruction Sequence
Latency
Clocks1st Instruction 2nd Instruction

16 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU or

MFHI/MFLO

1

32 bit MULT/MULTU,
MADD/MADDU, or

MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU or

MFHI/MFLO

2

16 bit MUL Integer operation[2] 2[3]

32 bit MUL Integer operation[2] 2[3]

8 bit DIVU MFHI/MFLO 9

16 bit DIVU MFHI/MFLO 17

24 bit DIVU MFHI/MFLO 25

32 bit DIVU MFHI/MFLO 33

8 bit DIV MFHI/MFLO 10[4]

16 bit DIV MFHI/MFLO 18[4]

24 bit DIV MFHI/MFLO 26[4]

32 bit DIV MFHI/MFLO 34[4]

any MFHI/MFLO Integer operation[2] 2

any MTHI/MTLO MADD/MADDU or
MSUB/MSUBU

1

[1] For multiply operations, this is the rt operand. For divide operations, this is the rs operand.
[2] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
[3] This does not include the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that the MUL operation causes irre-

spective of the following instruction.These stalls do not add to the latency of 2.
[4] If both operands are positive, then the Sign Adjust stage is bypassed. Latency is then the same as for

DIVU.

 Pipeline of the microAptiv™ UC Core

50 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 2.5 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply accumu-
late/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repeat rate’ refers to the
case where the first MDU instruction (in the table below) if back-to-back with the second instruction.

Figure 2.13 below shows the pipeline flow for the following sequence:

1. 32x16 multiply (Mult1)

2. Add

3. 32x32 multiply (Mult2)

4. Subtract (Sub)

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 multiply operation
requires two clocks in the MMDU pipe-stage. The MDU pipeline is shown as the shaded areas of Figure 2.13 and
always starts a computation in the final phase of the E stage. As shown in the figure, the MMDU pipe-stage of the
MDU pipeline occurs in parallel with the M stage of the IU pipeline, the AMDU stage occurs in parallel with the A
stage, and the WMDU stage occurs in parallel with the W stage. In general this need not be the case. Following the 1st
cycle of the M stages, the two pipelines need not be synchronized. This does not present a problem because results in
the MDU pipeline are written to the HI and LO registers, while the integer pipeline results are written to the register
file.

Figure 2.13 MDU Pipeline Behavior During Multiply Operations

The following is a cycle-by-cycle analysis of Figure 2.13.

1. The first 32x16 multiply operation (Mult1) is fetched from the instruction cache and enters the I stage.

Table 2.5 MDU Instruction Repeat Rates (High-Performance MDU)

Operand Size of 1st
Instruction

Instruction Sequence
Repeat

Rate1st Instruction 2nd Instruction

16 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU

1

32 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU, MSUB/MSUBU 2

I E A WM

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

Mult1

Add

Mult2

I E AMDU WMDUMMDU

I E AMDU WMDUMMDUMMDU

Sub

I E A WM

 Pipeline of the microAptiv™ UC Core

62 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

able. Table 2.8 details the instruction interactions that prevent an instruction from advancing in the processor pipe-
line.

2.12 Hazards

In general, the microAptiv UC core ensures that instructions are executed following a fully sequential program model
in which each instruction in the program sees the results of the previous instruction. There are some deviations to this
model, referred to as hazards.

Prior to Release 2 of the MIPS Architecture, hazards (primarily CP0 hazards) were relegated to implementa-
tion-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such a way that they are back-
ward-compatible with existing MIPS processors.

Table 2.8 Instruction Interlocks

Instruction Interlocks

First Instruction Second Instruction
Issue Delay (in
Clock Cycles) Slip Stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage

MFC0 Consumer of destination regis-
ter

1 E stage

MULTx/MADDx/MSUBx
(high-performance MDU with
DSP Module disabled)

16bx32b MFLO/MFHI 0

32bx32b 1 M stage

MUL
(high-performance MDU with
DSP Module disabled)

16bx32b Consumer of target data 2 E stage

32bx32b 3 E stage

MUL
(high-performance MDU with
DSP Module disabled)

16bx32b Non-Consumer of target data 1 E stage

32bx32b 2 E stage

MFHI/MFLO Consumer of target data 1 E stage

MULTx/MADDx/MSUBx
(high-performance MDU with
DSP Module disabled)

16bx32b MULT/MUL/MADD/MSUB
MTHI/MTLO/DIV

0[1] E stage

32bx32b 1[1] E stage

DIV MUL/MULTx/MADDx/
MSUBx/MTHI/MTLO/
MFHI/MFLO/DIV

Until DIV completes E stage

MULT/MUL/MADD/MSUB/MTHI/MTLO/MFH
I/MFLO/DIV
(area-efficient MDU with DSP Module disabled)

MULT/MUL/MADD/MSUB/
MTHI/MTLO/MFHI/MFLO/
DIV

Until 1st MDU op
completes

E stage

MUL
(area-efficient MDU with DSP Module disabled)

Any Instruction Until MUL completes E stage

MFC0/MFC2/CFC2 Consumer of target data 1 E stage

2.12 Hazards

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 63

2.12.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two types of hazards: execution hazards and instruction hazards.

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 2.9 lists execution hazards.

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 2.10 lists instruction hazards.

Table 2.9 Execution Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

MTC0 → Coprocessor instruction execution depends on the new value of Sta-
tusCU

StatusCU 1

MTC0 → ERET EPC
DEPC

ErrorEPC

1

MTC0 → ERET Status 0

MTC0, EI, DI → Interrupted Instruction StatusIE 1

MTC0 → Interrupted Instruction CauseIP 3

MTC0 → RDPGPR
WRPGPR

SRSCtlPSS 1

MTC0 → Instruction not seeing a Timer Interrupt Compare
update that

clears Timer
Interrupt

41

1. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic between the SI_TimerInt
output and the external logic which feeds SI_TimerInt back into one of the SI_Int inputs, or a function of the method for handling
SI_TimerInt in an external interrupt controller.

MTC0 → Instruction affected by change Any other CP0
register

2

Table 2.10 Instruction Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

MTC0 → Instruction fetch seeing the new value (including a change to ERL fol-
lowed by an instruction fetch from the useg segment)

Status

Instruction stream
write via redi-
rected store

→ Instruction fetch seeing the new instruction stream Cache entries 3

 Pipeline of the microAptiv™ UC Core

64 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

2.12.2 Instruction Listing

Table 2.11 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture for
Programmers Volume II: The MIPS32® Instruction Set (MD00086) for a more detailed description of these instruc-
tions.

2.12.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

2.12.3 Eliminating Hazards

The Spacing column shown in Table 2.9 and Table 2.10 indicates the number of unrelated instructions (such as NOPs
or SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and consumer
of the hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entries in the
table that are listed as 0 are traditional MIPS hazards which are not hazards on the microAptiv UC core.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazards is to place
one of the instructions listed in Table 2.11 between the producer and consumer of the hazard. Execution hazards can
be removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the
JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction. Since the microAptiv UC core does not
contain caches, the SYNCI instruction is not strictly necessary, but is still recommended to create portable code that
can be run on other MIPS processors that may contain caches.

Table 2.11 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write

Chapter 3

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 65

Floating-Point Unit of the microAptiv™ UC Core

This chapter describes the MIPS64® Floating-Point Unit (FPU) included in the microAptiv UC core. This chapter
contains the following sections:

• Section 3.1 “Features Overview”

• Section 3.2 “Enabling the Floating-Point Coprocessor”

• Section 3.3 “Data Formats”

• Section 3.4 “Floating-Point General Registers”

• Section 3.5 “Floating-Point Control Registers”

• Section 3.6 “Instruction Overview”

• Section 3.7 “Exceptions”

• Section 3.8 “Pipeline and Performance”

• Section 3.9 “2008 FPU Support”

3.1 Features Overview

The FPU is provided via Coprocessor 1. Together with its dedicated system software, the FPU fully complies with the
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. The MIPS architecture sup-
ports the recommendations of IEEE Standard 754, and the coprocessor implements a precise exception model. The
key features of the FPU are listed below:

• Full 64-bit operation is implemented in both the register file and functional units.

• A 32-bit Floating-Point Control Register controls the operation of the FPU, and monitors condition codes and
exception conditions.

• Like the main processor core, Coprocessor 1 is programmed and operated using a Load/Store instruction set. The
processor core communicates with Coprocessor 1 using a dedicated coprocessor interface. The FPU functions as
an autonomous unit. The hardware is completely interlocked such that, when writing software, the programmer
does not have to worry about inserting delay slots after loads and between dependent instructions.

• Additional arithmetic operations not specified by IEEE Standard 754 (for example, reciprocal and reciprocal
square root) are specified by the MIPS architecture and are implemented by the FPU. In order to achieve low
latency counts, these instructions satisfy more relaxed precision requirements.

3.2 Enabling the Floating-Point Coprocessor

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 67

3.2 Enabling the Floating-Point Coprocessor

3.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE Standard 754.

• The fixed-point types are signed integers provided by the MIPS architecture.

3.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

• a 32-bit single-precision floating point (type S, shown in Figure 3.2)

• a 64-bit double-precision floating point (type D, shown in Figure 3.3)

The floating-point data types represent numeric values as well as the following special entities:

• Two infinities, +∞ and -∞

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

• s = 0 or 1

• E = any integer between E_min and E_max, inclusive

• bi = 0 or 1 (the high bit, b0, is to the left of the binary point)

• p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes
are listed in Table 3.1.

Table 3.1 Parameters of Floating-Point Data Types

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

 Floating-Point Unit of the microAptiv™ UC Core

68 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Layouts of these three fields are shown in Figure 3.2 and Figure 3.3 below. The fields are:

• 1-bit sign, s

• Biased exponent, e = E + bias

• Binary fraction, f=.b1 b2..bp-1 (the b0 bit is hidden; it is not recorded)

Figure 3.2 Single-Precision Floating-Point Format (S)

Figure 3.3 Double-Precision Floating-Point Format (D)

Values are encoded in the specified format using the unbiased exponent, fraction, and sign values listed in Table 3.2.
The high-order bit of the Fraction field, identified as b1, is also important for NaNs.

Bits in fraction field, f 23 52

Total format width in bits 32 64

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction
1 8 23

63 62 52 51 0

S Exponent Fraction
1 11 52

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased
E f s b1 Value V Type of Value

Typical Single
Bit Pattern1

Typical Double
Bit Pattern1

E_max + 1 ≠ 0 1 SNaN Signaling NaN
(FCSRNAN2008 = 0)

0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN
(FCSRNAN2008 = 0)

0x7fbfffff 0x7ff7ffff ffffffff

E_max + 1 ≠ 0 1 QNaN Quiet NaN
(FCSRNAN2008 = 1)

0x7fffffff 0x7fffffff ffffffff

0 SNaN Signaling NaN
(FCSRNAN2008 = 1)

0x7fbfffff 0x7ff7ffff ffffffff

E_max +1 0 1 - ∞ Minus infinity 0xff800000 0xfff00000 00000000

0 + ∞ Plus infinity 0x7f800000 0x7ff00000 00000000

Table 3.1 Parameters of Floating-Point Data Types (Continued)

Parameter Single Double

3.3 Data Formats

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 69

3.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min – 1, and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

3.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap IEEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format
defines representations (listed in Table 3.2) for plus infinity (+∞), minus infinity (-∞), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

3.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format; it represents a magnitude
overflow during a computation. A correctly signed ∞ is generated as the default result in division by zero operations
and some cases of overflow as described in Section 3.7.2 “Exception Conditions”.

When created as a default result, ∞ can become an operand in a subsequent operation. The infinities are interpreted
such that -∞ < (every finite number) < +∞. Arithmetic with ∞ is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on ∞ is regarded as exact, and exception
conditions do not arise. The out-of-range indication represented by ∞ is propagated through subsequent computa-
tions. For some cases, there is no meaningful limiting case in real arithmetic for operands of ∞. These cases raise the
Invalid Operation exception condition as described in Section 3.7.2.1 “Invalid Operation Exception”.

E_max
 to

E_min

1 - (2E)(1.f) Negative normalized num-
ber

0x80800000
 through
0xff7fffff

0x80100000 00000000
 through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number 0x00800000
 through
0x7f7fffff

0x00100000 00000000
 through
0x7fefffff ffffffff

E_min -1 ≠ 0 1 - (2E_min)(0.f) Negative denormalized
number

0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized num-
ber

0x007fffff 0x000fffff ffffffff

E_min -1 0 1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 positive zero 0x00000000 0x00000000 00000000

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either
value (NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in
a class of potential values that represent these special values.

Table 3.2 Value of Single or Double Floating-Point Data Type Encoding (Continued)

Unbiased
E f s b1 Value V Type of Value

Typical Single
Bit Pattern1

Typical Double
Bit Pattern1

 Floating-Point Unit of the microAptiv™ UC Core

70 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

3.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-
tions (MOV.fmt, MOVT.fmt, MOVF fmt, MOVN fmt, MOVZ.fmt) non-arithmetic; they do not signal IEEE 754
exceptions.

3.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga-
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is
one1 of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), a new QNaN value is created. Table 3.3 shows the QNaN value generated when no input operand QNaN
value can be copied. The values listed for the fixed-point formats are the values supplied to satisfy IEEE Standard
754 when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architec-
ture that detects or makes use of these “integer QNaN” values.

3.3.2 Fixed-Point Formats

The FPU provides two fixed-point data types:

• a 32-bit Word fixed point (type W), shown in Figure 3.4

• a 64-bit Longword fixed point (type L), shown in Figure 3.5

The fixed-point values are held in 2’s complement format, which is used for signed integers in the CPU. Unsigned
fixed-point data types are not provided by the architecture; application software can synthesize computations for
unsigned integers from the existing instructions and data types.

1. In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority:
1: fs, 2: ft, 3: fr.

Table 3.3 Value Supplied When a New Quiet NaN is Created

Format
New QNaN value

(FCSRNAN2008 = 0)
New QNaN value

(FCSRNAN2008 = 1)

Single floating-point 0x7fbf ffff 0x7fff ffff

Double floating-point 0x7ff7 ffff ffff ffff 0x7fff ffff ffff ffff

Word fixed-point 0x7fff ffff 0x7fff ffff

Longword fixed-point 0x7fff ffff ffff ffff 0x7fff ffff ffff ffff

3.4 Floating-Point General Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 71

Figure 3.4 Word Fixed-Point Format (W)

Figure 3.5 Longword Fixed-Point Format (L)

3.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRs). The FPU is a 64b
FPU, but a 32b register mode for backwards compatibility is also supported. The FR bit in the CP0 Status register
determines which mode is selected:

• When the FR bit is a 1, the FPU is in FR64 mode and the 64b register model is used, which defines 32 64-bit reg-
isters with all formats supported in a register.

• When the FR bit is a 0, the FPU is in FR32 mode and the 32b register model is used, which defines 32 32-bit reg-
isters with D-format values stored in even-odd pairs of registers; thus the register file can also be viewed as hav-
ing 16 64-bit registers. When configured this way, there are several restrictions for double operation:

– Any double operations which specify an odd register as a source or destination will cause a
ReservedInstruction exception

– MTHC1/MFHC1 instructions which access an odd FPU register will signal a Reserved Instruction exception.

3.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register (FPR) that holds the
value. Operands that are only 32 bits wide (W and S formats) use only half the space in an FPR.

Figure 3.6 and Figure 3.7 show the FPR organization and the way that operand data is stored in them.

Figure 3.6 Single Floating-Point or Word Fixed-Point Operand in an FPR

Figure 3.7 Double Floating-Point or Longword Fixed-Point Operand in an FPR

3.4.2 Formats of Values Used in FP Registers

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of
results for every operation. The value held in a floating-point operand register (FPR) has a format, or type, and it can

31 0

Integer
32

63 0

Integer
64

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword

 Floating-Point Unit of the microAptiv™ UC Core

72 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

be used only by instructions that operate on that format. The format of a value is either uninterpreted, unknown, or
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is always set when a value is written to the register as follows:

• When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value that is
uninterpreted.

• A computational or FP register move instruction that produces a result of type fmt puts a value of type fmt into
the result register.

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of for-
mat fmt, the binary contents are interpreted as an encoded value in format fmt, and the value in the FPR changes to a
value of format fmt. The binary contents cannot be reinterpreted in a different format.

If an FPR contains a value of format fmt, a computational instruction must not use the FPR as a source operand of a
different format. If this case occurs, the value in the register becomes unknown, and the result of the instruction is also
a value that is unknown. Using an FPR containing an unknown value as a source operand produces a result that has an
unknown value.

The format of the value in the FPR is unchanged when it is read by a data transfer instruction (a store). A data transfer
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR is unknown, the
encoded binary value produced by the operation is not defined.

The state diagram in Figure 3.8 illustrates the manner in which the formatted value in an FPR is set and changed.

3.5 Floating-Point Control Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 75

CP1 control registers are summarized in Table 3.4 and are described individually in the following subsections of this
chapter. Each register’s description includes the read/write properties and the reset state of each field.

Table 3.5 defines the notation used for the read/write properties of the register bit fields.

3.5.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 3.11
shows the format of the FIR; Table 3.6 describes the FIR bit fields.

Table 3.4 Coprocessor 1 Register Summary

Register Number Register Name Function

0 FIR Floating-Point Implementation register. Contains information that identifies the
FPU.

25 FCCR Floating-Point Condition Codes register.

26 FEXR Floating-Point Exceptions register.

28 FENR Floating-Point Enables register.

31 FCSR Floating-Point Control and Status register.

Table 3.5 Read/Write Properties

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W All bits in this field are readable and writable by software and potentially by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by
hardware reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the
first read returns a predictable value. This definition should not be confused with the formal definition of
UNDEFINED behavior.

R This field is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Pre-
set”, hardware initializes this field to zero or to the
appropriate state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hard-
ware updates this field only under those conditions
specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value
to this field without affecting hardware behavior.
Software reads of this field return the last value
updated by hardware.
If the Reset State of this field is “Undefined,” soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

0 Hardware does not update this field. Hardware can
assume a zero value.

The value software writes to this field must be zero.
Software writes of non-zero values to this field might
result in UNDEFINED behavior of the hardware.
Software reads of this field return zero as long as all
previous software writes are zero.
If the Reset State of this field is “Undefined,” soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

 Floating-Point Unit of the microAptiv™ UC Core

76 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Figure 3.11 FIR Format

31 29 28 27 25 24 23 22 21 20 19 18 17 16 15 8 7 0

0 UFRP 0 FC Has
2008 F64 L W 3D PS D S ProcessorID Revision

Table 3.6 FIR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

UFRP 28 See Release 5 definition of CFC1 and CTC1 R 1

FC 24 Indicates that full convert ranges are implemented:
0: Full convert ranges not implemented
1: Full convert ranges implemented
This bit is always 1 to indicate that full convert ranges are
implemented. This means that all numbers can be con-
verted to another type by the FPU (If FS bit in FCSR is not
set Unimplemented Operation exception can still occur on
denormal operands though).

R 1

Has2008 23 Indicates that one or more IEEE-754-2008 features are
implemented. This bit is always set in the microAptiv
UCF to indicate that the MAC2008, ABS2008, NAN2008
bits within the FCSR register exist. For more information,
refer to Section 3.5.5 “Floating-Point Control and Status
Register (FCSR, CP1 Control Register 31)”.

R 1

F64 22 Indicates that this is a 64-bit FPU:
0: Not a 64-bit FPU
1: A 64-bit FPU.
This bit is always 1 to indicate that this is a 64-bit FPU.

R 1

L 21 Indicates that the long fixed point (L) data type and
instructions are implemented:
0: Long type not implemented
1: Long implemented
This bit is always 1 to indicate that long fixed-point data
types are implemented.

R 1

W 20 Indicates that the word fixed point (W) data type and
instructions are implemented:
0: Word type not implemented
1: Word implemented
This bit is always 1 to indicate that word fixed point data
types are implemented.

R 1

Encoding Meaning

0 User mode FR switching instructions
not supported.

1 User mode FR switching instructions
supported.

3.5 Floating-Point Control Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 77

3.5.2 Floating-Point Condition Codes Register (FCCR, CP1 Control Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point condi-
tion code values that also appear in the FCSR. Unlike the FCSR, all eight FCC bits are contiguous in the FCCR.
Figure 3.12 shows the format of the FCCR; Table 3.7 describes the FCCR bit fields.

Figure 3.12 FCCR Format

3D 19 Indicates that the MIPS-3D ASE is implemented:
0: MIPS-3D not implemented
1: MIPS-3D implemented
This bit is always 0 to indicate that MIPS-3D is not imple-
mented.

R 0

PS 18 Indicates that the paired-single (PS) floating-point data
type and instructions are implemented:
0: PS floating-point not implemented
1: PS floating-point implemented
This bit is always 0 to indicate that paired-single floating-
point data types are not implemented.

R 0

D 17 Indicates that the double-precision (D) floating-point data
type and instructions are implemented:
0: D floating-point not implemented
1: D floating-point implemented
This bit is always 1 to indicate that double-precision float-
ing-point data types are implemented.

R 1

S 16 Indicates that the single-precision (S) floating-point data
type and instructions are implemented:
0: S floating-point not implemented
1: S floating-point implemented
This bit is always 1 to indicate that single-precision float-
ing-point data types are implemented.

R 1

Processor ID 15:8 This value matches the corresponding field of the CP0
PRId register.

R 0x9D

Revision 7:0 Specifies the revision number of the FPU. This field
allows software to distinguish between different revisions
of the same floating-point processor type.

R Preset

0 31:25, 23 These bits must be written as zeros; they return zeros on
reads.

0 0

31 8 7 0

0 FCC

Table 3.6 FIR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

 Floating-Point Unit of the microAptiv™ UC Core

78 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

3.5.3 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields that
also appear in the FCSR. Figure 3.13 shows the format of the FEXR; Table 3.8 describes the FEXR bit fields.

Figure 3.13 FEXR Format

3.5.4 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields
that also appear in the FCSR. Figure 3.14 shows the format of the FENR; Table 3.9 describes the FENR bit fields.

Figure 3.14 FENR Format

Table 3.7 FCCR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

FCC 7:0 Floating-point condition code. Refer to the description of
this field in Section 3.5.5 “Floating-Point Control and
Status Register (FCSR, CP1 Control Register 31)”.

R/W Undefined

0 31:8 These bits must be written as zeros; they return zeros on
reads.

0 0

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0

0 Cause 0 Flags 0

E V Z O U I V Z O U I

Table 3.8 FEXR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Cause 17:12 Cause bits. Refer to the description of this field in Section
3.5.5, "Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)".

R/W Undefined

Flags 6:2 Flag bits. Refer to the description of this field in Section
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

0 31:18, 11:7,
1:0

These bits must be written as zeros; they return zeros on
reads.

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enables 0 FS RM

V Z O U I

3.5 Floating-Point Control Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 79

3.5.5 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

• selects the default rounding mode for FPU arithmetic operations

• selectively enables traps of FPU exception conditions

• controls some denormalized number handling options

• reports any IEEE exceptions that arose during the most recently executed instruction

• reports any IEEE exceptions that cumulatively arose in completed instructions

• indicates the condition code result of FP compare instructions

Access to the FCSR is not privileged; it can be read or written by any program that has access to the FPU (via the
coprocessor enables in the Status register). Figure 3.15 shows the format of the FCSR; Table 3.10 describes the FCSR
bit fields.

Figure 3.15 FCSR Format

Table 3.9 FENR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Enables 11:7 Enable bits. Refer to the description of this field in Section
3.5.5 “Floating-Point Control and Status Register (FCSR,
CP1 Control Register 31)”.

R/W Undefined

FS 2 Flush to Zero bit. Refer to the description of this field in
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

R/W Undefined

RM 1:0 Rounding mode. Refer to the description of this field in
Section 3.5.5, "Floating-Point Control and Status Register
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 31:12, 6:3 These bits must be written as zeros; they return zeros on
reads.

0 0

31 25 24 23 22 21 20 19 18 17 12 11 7 6 2 1 0

FCC FS FCC FO FN MAC
2008

ABS
2008

NAN
2008 Cause Enables Flags RM

7 6 5 4 3 2 1 0 0 1 1 E V Z O U I V Z O U I V Z O U I

 Floating-Point Unit of the microAptiv™ UC Core

80 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 3.10 FCSR Bit Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit

FCC 31:25, 23 Floating-point condition codes. These bits record the
result of floating-point compares and are tested for float-
ing-point conditional branches and conditional moves.
The FCC bit to use is specified in the compare, branch, or
conditional move instruction. For backward compatibility
with previous MIPS ISAs, the FCC bits are separated into
two non-contiguous fields.

R/W Undefined

FS 24 Flush to Zero (FS). Refer to Section 3.5.6 “Operation of
the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

FO 22 Flush Override (FO). Refer to Section 3.5.6 “Operation of
the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

FN 21 Flush to Nearest (FN). Refer to Section 3.5.6 “Operation
of the FS/FO/FN Bits” for more details on this bit.

R/W Undefined

MAC2008 20 Fused multiply-add mode, compliant with IEEE Standard
754-2008.The fused multiply-add operation multiplies and
adds with unbounded range and precision, rounding only
once to the destination format.
The fused multiply-add is not supported in the microAptiv
UCF core. microAptiv UCF implements the unfused mul-
tiply-add, which rounds the intermediary multiplication
result to the destination format.
This field applies to the MADD fmt, NMADD fmt,
MSUB.fmt, and NMSUB fmt instructions.
0: Unfused multiply-add
1: IEEE 754-2008 fused multiply-add

R 0

ABS2008 19 ABS fmt & NEG fmt instructions compliant with IEEE
Standard 754-2008. The IEEE 754-2008 standard requires
that the ABS and NEG functions accept QNAN inputs
without trapping. This bit is always set in the microAptiv
UCF core to indicate support for the IEEE 754-2008 stan-
dard.
0: ABS & NEG trap for QNAN input
1: ABS & NEG accept QNAN input without trapping.
IEEE 754-2008 behavior.

R 1

NAN2008 18 Quiet and signaling NaN encodings recommended by the
IEEE Standard 754-2008, i.e. a quiet NaN is encoded with
the first bit of the fraction being 1 and a signaling NaN is
encoded with the first bit of the fraction field being 0.
In the microAptiv UCF core, this bit is always set to indi-
cate support for the IEEE Standard 754-2008 encoding.
0: MIPS NaN encoding
1: IEEE 754-2008 NaN encoding

R 1

3.5 Floating-Point Control Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 81

Cause 17:12 Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 when the corresponding exception
condition arises during the execution of an instruction;
otherwise, it is cleared to 0. By reading the registers, the
exception condition caused by the preceding FPU arith-
metic instruction can be determined.
Refer to Table 3.11 for the meaning of each cause bit.

R/W Undefined

Enables 11:7 Enable bits. These bits control whether or not a trap is
taken when an IEEE exception condition occurs for any of
the five conditions. The trap occurs when both an enable
bit and its corresponding cause bit are set either during an
FPU arithmetic operation or by moving a value to the
FCSR or one of its alternative representations. Note that
Cause bit E (CauseE) has no corresponding enable bit; the
MIPS architecture defines non-IEEE Unimplemented
Operation exceptions as always enabled.
Refer to Table 3.11 for the meaning of each enable bit.

R/W Undefined

Flags 6:2 Flag bits. This field shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.
When an FPU arithmetic operation raises an IEEE excep-
tion condition that does not result in a Floating-Point
Exception (the enable bit was off), the corresponding
bit(s) in the Flags field are set, while the others remain
unchanged. Arithmetic operations that result in a Floating-
Point Exception (the enable bit was on) do not update the
Flags field.
Hardware never resets this field; software must explicitly
reset this field.
Refer to Table 3.11 for the meaning of each flag bit.

R/W Undefined

RM 1:0 Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).
Refer to Table 3.12 for the encoding of this field.

R/W Undefined

0 20:18 These bits must be written as zeros; they return zeros on
reads.

0 0

Table 3.11 Cause, Enables, and Flags Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the Cause field).

V Invalid Operations

Z Divide by Zero

O Overflow

U Underflow

Table 3.10 FCSR Bit Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bit

 Floating-Point Unit of the microAptiv™ UC Core

82 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

3.5.6 Operation of the FS/FO/FN Bits

The FS, FO, and FN bits in the CP1 FCSR register control handling of denormalized operands and tiny results (i.e.
nonzero result between ±2E_min), whereby the FPU can handle these cases right away instead of relying on the much
slower software handler. The trade-off is a loss of IEEE compliance and accuracy (except for use of the FO bit),
because a minimal normalized or zero result is provided by the FPU instead of the more accurate denormalized result
that a software handler would give. The benefit is a significantly improved performance and precision.

Use of the FS, FO, and FN bits affects handling of denormalized floating-point numbers and tiny results for the
instructions listed below:

Instructions not listed above do not cause Unimplemented Operation exceptions on denormalized numbers in oper-
ands or results.

Figure 3.16 depicts how the FS, FO, and FN bits control handling of denormalized numbers. For instructions that are
not multiply or add types (such as DIV), only the FS and FN bits apply.

I Inexact

Table 3.12 Rounding Mode Definitions

RM Field
Encoding Meaning

0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (even).

1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater in magnitude than the result.

2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

FS and FN bit: ADD, CEIL, CVT, DIV, FLOOR, MADD, MSUB, MUL, NMADD, NMSUB, RECIP, ROUND,
RSQRT, SQRT, TRUNC, SUB, ABS, C.cond, and NEG1

1. For ABS, C.cond, and NEG, denormal input operands or tiny results doe not result in Unimplemented exceptions when
FS = 0. Flushing to zero nonetheless is implemented when FS = 1 such that these operations return the same result as an
equivalent sequence of arithmetic FPU operations.

FO bit: MADD, MSUB, NMADD, and NMSUB

Table 3.11 Cause, Enables, and Flags Definitions (Continued)

Bit Name Bit Meaning

3.5 Floating-Point Control Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 85

3.5.7 FCSR Cause Bit Update Flow

3.5.7.1 Exceptions Triggered by CTC1

Regardless of the targeted control register, the CTC1 instruction causes the Enables and Cause fields of the FCSR to
be inspected in order to determine if an exception is to be thrown.

3.5.7.2 Generic Flow

Computations are performed in two steps:

1. Compute rounded mantissa with unbound exponent range.

2. Flush to default result if the result from Step #1 above is overflow or tiny (no flushing happens on denorms for
instructions supporting denorm results, such as MOV).

The Cause field is updated after each of these two steps. Any enabled exceptions detected in these two steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

Step #1 can set cause bits I, U, O, Z, V, and E. E has priority over V; V has priority over Z; and Z has priority over U
and O. Thus when E, V, or Z is set in Step #1, no other cause bits can be set. However, note that I and V both can be
set if a denormal operand was flushed (FS = 1). I, U, and O can be set alone or in pairs (IU or IO). U and O never can
be set simultaneously in Step #1. U and O are set if the computed unbounded exponent is outside the exponent range
supported by the normalized IEEE format.

Step #2 can set I if a default result is generated.

3.5.7.3 Multiply-Add Flow

For multiply-add type instructions, the computation is extended with two more steps:

1. Compute rounded mantissa with unbound exponent range for the multiply.

2. Flush to default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny results if
FO = 1).

3. Compute rounded mantissa with unbounded exponent range for the add.

4. Flush to default result if the result from Step #3 is overflow or tiny.

The Cause field is updated after each of these four steps. Any enabled exceptions detected in these four steps cause a
trap, and no further updates to the Cause field are done by subsequent steps.

1 0 0 Regular embedded applications. High performance on denormal operands and
tiny results.

1 1 1 Highest accuracy and performance configuration.1

1. Note that in this mode, MADD might return a different result other than the equivalent MUL and ADD operation
sequence.

Table 3.17 Recommended FS/FO/FN Settings

FS Bit FO Bit FN Bit Remarks

 Floating-Point Unit of the microAptiv™ UC Core

86 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Step #1 and Step #3 can set a cause bit as described for Step #1 in Section 3.5.7.2 “Generic Flow”.

Step #2 and Step #4 can set I if a default result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-add has
executed in Step #3 because U might be set in Step #1 and O might be set in Step #3.

3.5.7.4 Cause Update Flow for Input Operands

Denormal input operands to Step #1 or Step #3 always set Cause bit I when FS = 1. For example, SNaN+DeNorm set
I (and V) provided that Step #3 was reached (in case of a multiply-add type instruction).

Conditions directly related to the input operand (for example, I/E set due to DeNorm, V set due to SNaN and QNaN
propagation) are detected in the step where the operand is logically used. For example, for multiply-add type instruc-
tions, exceptional conditions caused by the input operand fr are detected in Step #3.

3.5.7.5 Cause Update Flow for Unimplemented Operations

Note that Cause bit E is special; it clears any Cause updates done in previous steps. For example, if Step #3 caused E
to be set, any I, U, or O Cause update done in Step #1 or Step #2 is cleared. Only E is set in the Cause field when an
Unimplemented Operation trap is taken.

3.6 Instruction Overview

The functional groups into which the FPU instructions are divided are described in the following subsections:

• Section 3.6.1 “Data Transfer Instructions”

• Section 3.6.2 “Arithmetic Instructions”

• Section 3.6.3 “Conversion Instructions”

• Section 3.6.4 “Formatted Operand-Value Move Instructions”

• Section 3.6.5 “Conditional Branch Instructions”

• Section 3.6.6 “Miscellaneous Instructions”

The instructions are described in detail in Chapter 12, “microAptiv™ UC Processor Core Instructions” on page 292,
including descriptions of supported formats (fmt).

3.6.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers (FPRs) and coprocessor control registers
(FCRs). The FPU has a load/store architecture; all computations are done on data held in coprocessor general regis-
ters. The control registers are used to control FPU operation. Data is transferred between registers and the rest of the
system with dedicated load, store, and move instructions. The transferred data is treated as unformatted binary data;
no format conversions are performed, and therefore no IEEE floating-point exceptions can occur.

3.6 Instruction Overview

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 87

Table 3.18 lists the supported transfer operations.

3.6.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally aligned data items. An attempt to load or store to an address that
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte ordering (the endian-
ness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine, this is
the most-significant byte; for a little-endian machine, this is the least-significant byte.

3.6.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 3.19 through 3.20 list the FPU data transfer instructions.

Table 3.18 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general register ↔ Memory Word/doubleword load/store

FPU general register ↔ CPU general register Word move

FPU control register ↔ CPU general register Word move

Table 3.19 FPU Loads and Stores

Mnemonic Instruction Addressing Mode

LDC1 Load Doubleword to Floating Point Register+offset

LWC1 Load Word to Floating Point Register+offset

SDC1 Store Doubleword from Floating Point Register+offset

SWC1 Store Word from Floating Point Register+offset

LDXC1 Load Doubleword Indexed to Floating Point Register+Register

LUXC1 Load Doubleword Indexed Unaligned to Floating Point Register+Register

LWXC1 Load Word Indexed to Floating Point Register+Register

SDXC1 Store Doubleword Indexed from Floating Point Register+Register

SUXC1 Store Doubleword Indexed Unaligned from Floating Point Register+Register

SWXC1 Store Word Indexed from Floating Point Register+Register

Table 3.20 FPU Move To and From Instructions

Mnemonic Instruction

CFC1 Move Control Word From Floating Point

CTC1 Move Control Word To Floating Point

MFC1 Move Word From Floating Point

MFHC1 Move Word From High Half of Floating Point

MTC1 Move Word To Floating Point

 Floating-Point Unit of the microAptiv™ UC Core

88 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

3.6.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations
meet IEEE Standard 754 for accuracy—a result is identical to an infinite-precision result that has been rounded to the
specified format using the current rounding mode. The rounded result differs from the exact result by less than one
Unit in the Least-significant Place (ULP).

In general, the arithmetic instructions take an Umimplemented Operation exception for denormalized numbers,
except for the ABS, C, and NEG instructions, which can handle denormalized numbers. The FS, FO, and FN bits in
the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of the FS/FO/FN Bits”.

Table 3.21 lists the FPU IEEE compliant arithmetic operations.

The two low latency operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation
(RSQRT), might be less accurate than the IEEE specification:

• The result of RECIP differs from the exact reciprocal by no more than one ULP.

• The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Table 3.22 lists the FPU-approximate arithmetic operations.

Four compound-operation instructions perform variations of multiply-accumulate operations; that is, multiply two
operands, accumulate the result to a third operand, and produce a result. These instructions are listed in Table 3.23.
The product is rounded according to the current rounding mode prior to the accumulation. This model meets the IEEE

MTHC1 Move Word to High Half of Floating Point

Table 3.21 FPU IEEE Arithmetic Operations

Mnemonic Instruction

ABS.fmt Floating-Point Absolute Value

ADD.fmt Floating-Point Add

C.cond.fmt Floating-Point Compare

DIVfmt Floating-Point Divide

MUL fmt Floating-Point Multiply

NEG.fmt Floating-Point Negate

SQRT fmt Floating-Point Square Root

SUB.fmt Floating-Point Subtract

Table 3.22 FPU-Approximate Arithmetic Operations

Mnemonic Instruction

RECIP fmt Floating-Point Reciprocal Approximation

RSQRT fmt Floating-Point Reciprocal Square Root Approximation

Table 3.20 FPU Move To and From Instructions

Mnemonic Instruction

3.6 Instruction Overview

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 89

accuracy specification; the result is numerically identical to an equivalent computation using multiply, add, subtract,
or negate instructions.

3.6.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

In general, the conversion instructions only take an Umimplemented Operation exception for denormalized numbers.
The FS and FN bits in the CP1 FCSR register can override this behavior as described in Section 3.5.6 “Operation of
the FS/FO/FN Bits”.

Table 3.24 and Table 3.25 list the FPU conversion instructions according to their rounding mode.

Table 3.23 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction

MADD.fmt Floating-Point Multiply Add

MSUB.fmt Floating-Point Multiply Subtract

NMADD fmt Floating-Point Negative Multiply Add

NMSUB fmt Floating-Point Negative Multiply Subtract

Table 3.24 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction

CVT.D fmt Floating-Point Convert to Double Floating Point

CVT.L fmt Floating-Point Convert to Long Fixed Point

CVT.S fmt Floating-Point Convert to Single Floating Point

CVT.W fmt Floating-Point Convert to Word Fixed Point

Table 3.25 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction

CEIL.L fmt Floating-Point Ceiling to Long Fixed Point

CEIL.W fmt Floating-Point Ceiling to Word Fixed Point

FLOOR.L fmt Floating-Point Floor to Long Fixed Point

FLOOR.W.fmt Floating-Point Floor to Word Fixed Point

ROUND.L fmt Floating-Point Round to Long Fixed Point

ROUND.W fmt Floating-Point Round to Word Fixed Point

TRUNC.L fmt Floating-Point Truncate to Long Fixed Point

TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point

 Floating-Point Unit of the microAptiv™ UC Core

90 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

3.6.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be
moved by the instruction that handles that type. There are three kinds of move instructions:

• Unconditional move

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that might be unexpected. They always force the value in the destina-
tion register to become a value of the format specified in the instruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become undefined. (For more
information, see the individual descriptions of the conditional move instructions in the MIPS32® Architecture Refer-
ence Manual, Volume II [7] and microMIPS32™ Architecture Reference Manual, Volume II [8].)

Table 3.26 through Table 3.28 list the formatted operand-value move instructions.

3.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot; it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction
in the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

Table 3.26 FPU Formatted Operand Move Instruction

Mnemonic Instruction

MOVfmt Floating-Point Move

Table 3.27 FPU Conditional Move on True/False Instructions

Mnemonic Instruction

MOVF.fmt Floating-Point Move Conditional on FP False

MOVT fmt Floating-Point Move Conditional on FP True

Table 3.28 FPU Conditional Move on Zero/Non-Zero Instructions

Mnemonic Instruction

MOVN.fmt Floating-Point Move Conditional on Nonzero

MOVZ fmt Floating-Point Move Conditional on Zero

3.7 Exceptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 91

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructions are included, software is strongly encouraged to avoid the use of
the Branch Likely instructions, as they will be removed from a future revision of the MIPS Architecture.

The MIPS64 architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 through 7 are in dis-
continuous fields in the FCSR.

Table 3.29 lists the conditional branch (branch and branch likely) FPU instructions; Table 3.30 lists the deprecated
conditional branch likely instructions.

3.6.6 Miscellaneous Instructions

The MIPS32 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 3.31 lists these conditional move instructions.

3.7 Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enables, and Flags fields of the
FCSR. The flag bits implement IEEE exception status flags, and the cause and enable bits control exception trapping.
Each field has a bit for each of the five IEEE exception conditions. The Cause field has an additional exception bit,
Unimplemented Operation, used to trap for software emulation assistance. If an exception type is enabled through the
Enables field of the FCSR, then the FPU is operating in precise exception mode for this type of exception.

Table 3.29 FPU Conditional Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True

Table 3.30 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 3.31 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction

MOVN Move Conditional on FP False

MOVZ Move Conditional on FP True

 Floating-Point Unit of the microAptiv™ UC Core

92 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

3.7.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap or any following instruction can
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point
arithmetic operation to show any exception conditions that arise during the operation. A cause bit is set to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to 0.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs
either during the execution of a floating-point operation or when moving a value into the FCSR. There is no enable
bit for Unimplemented Operations; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating-point operations are reported in the
Cause field. Before returning from a floating-point interrupt or exception, or before setting cause bits with a move to
the FCSR, software first must clear the enabled cause bits by executing a move to the FCSR to prevent the trap from
being erroneously retaken.

If a floating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE
Standard 754 is stored (see Table 3.32). When a floating-point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flags field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise
the bits are unchanged. There is no flag bit for the MIPS Unimplemented Operation exception. The flag bits are never
cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the
FCSR.

3.7.2 Exception Conditions

The subsections below describe the following five exception conditions defined by IEEE Standard 754:

• Section 3.7.2.1 “Invalid Operation Exception”

• Section 3.7.2.2 “Division By Zero Exception”

• Section 3.7.2.3 “Underflow Exception”

• Section 3.7.2.4 “Overflow Exception”

• Section 3.7.2.5 “Inexact Exception”

Section 3.7.2.6 “Unimplemented Operation Exception” also describes a MIPS-specific exception condition, Unim-
plemented Operation Exception, that is used to signal a need for software emulation of an instruction. Normally an
IEEE arithmetic operation can cause only one exception condition; the only case in which two exceptions can occur
at the same time are Inexact With Overflow and Inexact With Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. IEEE Standard
754 specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the excep-

3.7 Exceptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 93

tion condition does not result in a trap. The default action taken depends on the type of exception condition and, in the
case of the Overflow and Underflow, the current rounding mode. Table 3.32 summarizes the default results.

3.7.2.1 Invalid Operation Exception

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result is a quiet NaN.

The following operations are invalid:

• One or both operands are a signaling NaN (except for the non-arithmetic MOV.fmt, MOVT fmt, MOVF fmt,
MOVN fmt, and MOVZ.fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (−∞) or (−∞) − (−∞).

• Multiplication: 0 × ∞, with any signs.

• Division: 0/0 or ∞/∞, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating-point number to a fixed-point format when either an overflow or an operand value of
infinity or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value.

Table 3.32 Result for Exceptions Not Trapped

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

U Underflow Depends on the rounding mode as shown below:
0 (RN) and 1 (RZ): Supplies a zero with the sign of the exact result.
2 (RP): For positive underflow values, supplies 2E_min (MinNorm). For negative underflow
values, supplies a positive zero.
3 (RM): For positive underflow values, supplies a negative zero. For negative underflow val-
ues, supplies a negative 2E_min (MinNorm).
Note that this behavior is only valid if the FCSR FN bit is cleared.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result. If caused by an underflow without the underflow trap enabled,
supplies the underflowed result.

O Overflow Depends on the rounding mode, as shown below:
0 (RN): Supplies an infinity with the sign of the exact result.
1 (RZ): Supplies the format’s largest finite number with the sign of the exact result.
2 (RP): For positive overflow values, supplies positive infinity. For negative overflow values,
supplies the format’s most negative finite number.
3 (RM): For positive overflow values, supplies the format’s largest finite number. For nega-
tive overflow values, supplies minus infinity.

 Floating-Point Unit of the microAptiv™ UC Core

94 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

3.7.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonzero
number. When no precise trap occurs, the result is a correctly signed infinity. Divisions (0/0 and ∞/0) do not cause the
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (∞/0) is a correctly
signed infinity.

3.7.2.3 Underflow Exception

Two related events contribute to underflow:

• Tininess: The creation of a tiny, nonzero result between ±2E_min which, because it is tiny, might cause some
other exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess
events. The MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed
as though the exponent range were unbounded would lie strictly between ±2E_min.

• Loss of accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by
denormalized numbers. IEEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS archi-
tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled:

• When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have
been detected. The delivered result might be zero, denormalized, or ±2E_min.

• When an underflow trap is enabled (through the FCSR Enables field), underflow is signaled when tininess is
detected regardless of loss of accuracy.

3.7.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent range is
unbounded) is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

3.7.2.5 Inexact Exception

An Inexact exception is signaled when one of the following occurs:

• The rounded result of an operation is not exact.

• The rounded result of an operation overflows without an overflow trap.

• When a denormal operand is flushed to zero.

3.7.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation support.
This exception is not IEEE-compliant.

 Floating-Point Unit of the microAptiv™ UC Core

96 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• Data is read from the register file.

• The operands are unpacked into an internal format.

3.8.1.2 M1 Stage - Multiply Tree

The M1 stage has the following functionality:

• A single-cycle multiply array is provided for single-precision data format multiplication, and two cycles are pro-
vided for double-precision data format multiplication.

• The long instructions, such as divide and square root, iterate for several cycles in this stage.

• Sum of exponents is calculated.

3.8.1.3 M2 Stage - Multiply Complete

The M2 stage has the following functionality:

• Multiplication is complete when the carry-save encoded product is compressed into binary.

• Rounding is performed.

• Exponent difference for addition path is calculated.

3.8.1.4 A1 Stage - Addition First Step

This stage performs the first step of the addition.

3.8.1.5 A2 Stage - Addition Second and Final Step

This stage performs the second and final step of the addition.

3.8.1.6 FP Stage - Result Pack

The FP stage has the following functionality:

• The result coming from the datapath is packed into IEEE 754 Standard format for the FPR register file.

• Overflow and underflow exceptional conditions are resolved.

3.8.1.7 FW Stage - Register Write

The result is written to the FPR register file.

3.8.2 Bypassing

The FPU pipeline implements extensive bypassing, as shown in Figure 3.19. Results do not need to be written into
the register file and read back before they can be used, but can be forwarded directly to an instruction already in the
pipe. Some bypassing is disabled when operating in 32-bit register file mode, the FP bit in the CP0 Status register is
0, due to the paired even-odd 32-bit registers that provide 64-bit registers.

 Floating-Point Unit of the microAptiv™ UC Core

98 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• The Has2008 bit in FIR will always read as 1 to signify that 2008 FPU is implemented.

• The MAC2008 bit in FCSR will always read as 0 to signify that Fused Multiply Add operation is not yet imple-
mented.

• The ABS2008 bit in FCSR can be written as 1 (2008-IEEE). When ABS2008 = 1, which makes ABS and NEG
instructions non-arithmetic instructions. All floating-point exceptions will be disabled.

• The NAN2008 bit in FCSR can be written as 1 (2008-IEEE). When NAN2008 = 1, it flips SNaN and QNaN
decoding from the former implementation. In addition, the following behaviors are implemented:

• In the case of one or more QNaN operands (no SNaN), the QNaN operand is propagated from one of the
input operands (in order of priority): fs, ft, and fr.

• When SNaN is used as an input, and exceptions are disabled, QNaN is the expected output.

• The QNaN output will not be a fixed value. To comply with IEEE, an input NaN should produce a NaN with
the payload of the input NaN if representable in the destination format, where the payload is defined as the
Mantissa field less its most-significant bit.

• If ABS2008=1 and MAC2008=0 (as it always is in MUP/MUC), the sign of NMADD and NMSUB do not
flip the sign of any QNaN input, and the sign is retained and propagated to the output.

• When a NaN is an input, the output will be one of the input NaNs with as much of the mantissa preserved as
possible.

• SNaN inputs have higher priority than QNaN inputs and then fs has higher priority than ft which has higher
priority than fr.

• The sign of the selected NaN input is preserved. If the input that is selected for the output is already a QNaN,
then the entire mantissa is preserved. However, if the input that is selected for the output is an SNaN, then
the most significant bit of the SNaN mantissa is complemented to convert the SNaN into a QNaN. If this
conversion to a QNaN would result in an infinity, then the next most significant bit of the mantissa is set.

• For CVT.s.d, the NaN mantissa msbs are preserved. For CVT.d.s, the NaN mantissa is padded with 0’s in
the lsbs.

• For mult-add, if both fs/ft and fr are QNaNs, then the multiply produces a QNaN based upon fs/ft, and this
QNaN has priority over fr in the add operation. However, if both fs/ft and fr are SNaNs and the invalid trap
is not enabled, then the multiply generates a QNaN based upon fs/ft, which is then added to the signaling fr
and the signaling fr has priority

• When a NaN is needed for output but there is no NaN input, a positive QNaN is created that has all other
mantissa bits set.

Chapter 4

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 99

The MIPS® DSP Module

The microAptiv UC includes support for the MIPS DSP Module Revision 2 that provides enhanced performance
capabilities for a wide range of signal-processing applications, with computational support for fractional data types,
SIMD, saturation, and other operations that are commonly used in these applications.

Refer to MIPS® Architecture For Programmers Volume IV-e [14] or [14] for a general description of the DSP Mod-
ule and detailed descriptions of the DSP instructions. Additional programming information is contained in Five Meth-
ods of Utilizing the MIPS® DSP Module [16], Efficient DSP Module Programming in C: Tips and Tricks [17], and
Accelerating DSP Filter Loops with MIPS® CorExtend® Instructions [18].

4.1 Additional Register State for the DSP Module

The DSP Module defines three additional accumulator registers and one additional control/status register, as
described below. These registers require the operating system to recognize the presence of the DSP Module and to
include these additional registers in the context save and restore operations.

4.1.1 HI-LO Registers

The DSP Module includes three HI/LO accumulator register pairs (ac1, ac2, and ac3) in addition to the HI/LO regis-
ter pair (ac0) in the standard MIPS32 architecture. These registers improve the parallelization of independent accu-
mulation routines—for example, filter operations, convolutions, etc. DSP instructions that target the accumulators
use two instruction bits to specify the destination accumulator, with the zero value referring to the original accumula-
tor.

4.1.2 DSPControl Register

The DSPControl register contains control and status information used by DSP instructions. Figure 4.1 illustrates the
bits in this register, and Table 4.1 describes their usage.

Figure 4.1 MIPS32® DSP Module Control Register (DSPControl) Format

scount
31 06

ouflag
7

0
121516

ccond pos
24 23 13

c
14

0
2728 5

0EFI

 The MIPS® DSP Module

100 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 4.1 MIPS® DSP Module Control Register (DSPControl) Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:28 Reserved. Used in the MIPS64 architecture but not used
in the MIPS32 architecture. Must be written as zero;
returns zero on read.

0 0 Required

ccond 27:24 Condition code bits set by compare instructions. The
compare instruction sets the right-most bits as required
by the number of elements in the vector compare. Bits
not set by the instruction remain unchanged.

R/W 0 Required

ouflag 23:16 This field is written by hardware when certain instruc-
tions overflow or underflow and may have been satu-
rated. See Table 4.2 for a full list of which bits are set by
what instructions.

R/W 0 Required

EFI 14 Extract Fail Indicator. This bit is set to 1 when an EXTP,
EXTPV, EXTPDP, or EXTPDP instruction fails. These
instructions fail when there are insufficient bits to
extract, that is, when the value of pos in DSPControl is
less than the value of size specified in the instruction.
This bit is not sticky, so each invocation of one of the
four instructions will reset the bit depending on whether
or not the instruction failed.

R/W 0 Required

c 13 Carry bit. This bit is set and used by special add instruc-
tions that implement a 64-bit add across two GPRs. The
ADDSC instruction sets the bit and the ADDWC
instruction uses this bit.

R/W 0 Required

scount 12:7 This field is for use by the INSV instruction. The value
of this field is used to specify the size of the bit field to
be inserted.

R/W 0 Required

pos 5:0 This field is used by the variable insert instructions
INSV to specify the insert position.
It is also used to indicate the extract position for the
EXTP, EXTPV, EXTPDP, and EXTPDPV instructions.
The decrement pos (DP) variants of these instructions on
completion will have decremented the value of pos (by
the size amount).
The MTHLIP instruction will increment the pos value by
32 after copying the value of LO to HI.

R/W 0 Required

0 15:13 Must be written as zero; returns zero on read. 0 0 Reserved

4.2 Software Detection of the DSP Module Revision 2

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 101

The bits of the overflow flag ouflag field in the DSPControl register are set by a number of instructions, as described
in Table 4.2. These bits are sticky and can be reset only by an explicit write to these bits in the register (using the
WRDSP instruction).

4.2 Software Detection of the DSP Module Revision 2

The presence of the MIPS DSP Module in the microAptiv UC is indicated by two static bits in the Config3 register:
the DSPP (DSP Present) bit indicates the presence of the DSP Module, and the DSP2P (DSP Rev2 Present) bit indi-
cates the presence of the MIPS DSP Module Rev2. Because the DSP Module is configurable in the microAptiv UC
processor core, and it always comes with the DSP Module Rev2 if the DSP Module is configured, therefore the DSPP
and DSP2P are always preset to 0’s or 1’s.

The MX (DSP Module Enable) read/write bit in the CP0 Status register must be set to enable access to the additional
instructions defined by the DSP Module, as well as to the MTLO/HI, MFLO/HI instructions that access accumulators
ac1, ac2, and ac3. Executing a DSP Module instruction or the MTLO/HI, MFLO/HI instructions with this bit set to
zero causes a DSP State Disabled Exception (exception code 26 in the CP0 Cause register). This exception can be
used by system software to do lazy context switching.

Table 4.2 DSPControl ouflag Bits

Bit Number Description

16 This bit is set when the destination is accumulator (HI-LO pair) zero, and an operation overflow
or underflow occurs. These instructions are: DPAQ_S, DPAQ_SA, DPSQ_S, DPSQ_SA,
DPAQX_S, DPAQX_SA, DPSQX_S, DPSQX_SA, MAQ_S, MAQ_SA and MULSAQ_S.

17 Same instructions as above, when the destination is accumulator (HI-LO pair) one.

18 Same instructions as above, when the destination is accumulator (HI-LO pair) two.

19 Same instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that set this bit on an overflow/underflow: ABSQ_S, ADDQ, ADDQ_S, ADDU,
ADDU_S, ADDWC, SUBQ, SUBQ_S, SUBU and SUBU_S.

21 Instructions that set this bit on an overflow/underflow: MUL, MUL_S, MULEQ_S, MULEU_S,
MULQ_RS, and MULQ_S.

22 Instructions that set this bit on an overflow/underflow: PRECRQ_RS, SHLL, SHLL_S, SHLLV,
and SHLLV_S.

23 Instructions that set this bit on an overflow/underflow: EXTR, EXTR_S, EXTR_RS, EXTRV,
and EXTRV_RS.

Chapter 5

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 102

Memory Management of the microAptiv™ UC Core

The microAptiv™ UC processor core includes a Memory Management Unit (MMU) that interfaces between the exe-
cution unit and the cache controller. The core implements a simple Fixed Mapping Translation (FMT) style MMU.

This chapter contains the following sections:

• Section 5.1 “Introduction”

• Section 5.2 “Modes of Operation”

• Section 5.3 “Fixed Mapping MMU”

• Section 5.4 “System Control Coprocessor”

5.1 Introduction

The MMU in a microAptiv UC processor core translates a virtual address to a physical address before the request is
sent to the SRAM interface for an external memory reference.

In the microAptiv UC processor core, the MMU is based on a simple algorithm to translate virtual addresses to phys-
ical addresses via a Fixed Mapping Translation (FMT) mechanism. These translations are different for various
regions of the virtual address space (useg/kuseg, kseg0, kseg1, kseg2/3).

5.1.1 Memory Management Unit (MMU)

The microAptiv UC core contains a simple Fixed Mapping Translation (FMT) MMU that interfaces between the exe-
cution unit and the SRAM controller.

5.1.1.1 Fixed Mapping Translation (FMT)

An FMT is smaller and simpler than the full Translation Lookaside Buffer (TLB) style MMU found in other MIPS
cores. Like a TLB, the FMT performs virtual-to-physical address translation and provides attributes for the different
segments. Those segments that are unmapped in a TLB implementation (kseg0 and kseg1) are translated identically
by the FMT.

Figure 5.1 shows how the memory management unit interacts with the SRAM access in the microAptiv UC core.

 Memory Management of the microAptiv™ UC Core

104 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Figure 5.2 microAptiv™ UC processor core Virtual Memory Map

Each of the segments shown in Figure 5.2 are either mapped or unmapped. The following two sub-sections explain
the distinction. Then sections 5.2.2 “User Mode”, 5.2.3 “Kernel Mode” and 5.2.4 “Debug Mode” specify which
segments are actually mapped and unmapped.

5.2.1.1 Unmapped Segments

An unmapped segment does not use the FMT to translate from virtual-to-physical addresses.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the transla-
tions the FMT provides for the microAptiv UC core, but we will still make the distinction.

All segments are treated as uncached within the microAptiv UC core. Cache coherency attributes of cached or
uncached can be specified and this information will be sent with the request to allow the system to make a distinction
between the two.

useg kuseg kuseg

kseg0

kseg1

kseg2

kseg3

kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000

 Memory Management of the microAptiv™ UC Core

106 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

All valid user mode virtual addresses have their most significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all references to useg through the FMT.

5.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

• UM = 0

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address,
as shown in Figure 5.4. Also, Table 5.2 lists the characteristics of the Kernel mode segments.

5.2 Modes of Operation

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 107

Figure 5.4 Kernel Mode Virtual Address Space

Table 5.2 Kernel Mode Segments

Address Bit
Values

Status Register Is One
of These Values

Segment
Name Address Range

Segment
SizeUM EXL ERL

A(31) = 0 (UM = 0
or

EXL = 1
or

ERL = 1)
and

DM = 0

kuseg 0x0000_0000
through

0x7FFF_FFFF

2 GBytes (231
bytes)

A(31:29) = 1002 kseg0 0x8000_0000
through

0x9FFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1012 kseg1 0xA000_0000
through

0xBFFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1102 kseg2 0xC000_0000
through

0xDFFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1112 kseg3 0xE000_0000
through

0xFFFF_FFFF

512 MBytes
(229 bytes)

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

kseg2

kseg3

Fixed Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Fix Mapped, 512MB

Kernel virtual address space
Fix Mapped, 512MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

 Memory Management of the microAptiv™ UC Core

108 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

5.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address
space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF.

When the Status register’s ERL = 1, the user address region becomes a 229-byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address.

5.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address

space is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The K0 field of the Config register controls cacheability.

5.2.3.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual

address space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address.

5.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM = 0, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and the
most-significant three bits of the 32-bit virtual address are 1102, 32-bit kseg2 virtual address space is selected. In the

microAptiv UC core, this 229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 -
0xDFFF_FFFF.

5.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112 , the kseg3 virtual address

space is selected. In the microAptiv UC core, this 229-byte (512-MByte) kernel virtual space is located at physical
addresses 0xE000_0000 - 0xFFFF_FFFF.

5.2.4 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped areas,
except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range 0xFF20_0000 to
0xFF3F_FFFF. The layout is shown in Figure 5.5.

 Memory Management of the microAptiv™ UC Core

110 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 10, “EJTAG
Debug Support in the microAptiv™ UC Core” on page 212 for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

5.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of CPU access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is determined by the table
shown in Table 5.5.

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If
such a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
there will never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

5.3 Fixed Mapping MMU

The microAptiv UC core implements a simple Fixed Mapping (FM) memory management unit that is smaller than
the a full translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FMT performs vir-
tual-to-physical address translation and provides attributes for the different memory segments. Those memory seg-
ments which are unmapped in a TLB implementation (kseg0 and kseg1) are translated identically by the FMT MMU.

The FMT also determines the cacheability of each segment. These attributes are controlled via bits in the Config reg-
ister. Table 5.6 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) of the Config register.

The microAptiv UC core does not contain caches and will treat all references as uncached, but these Config fields will
be sent out to the system with the request and it can choose to use them to control any external caching that may be
present..

Table 5.5 CPU Access to dmseg Address Range

Transaction
ProbEn bit in
DCR register

LSNM bit in
Debug register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0

Fetch 0 Don’t care See comments below

Load / Store 0 0

Table 5.6 Cacheability of Segments with Block Address Translation

Segment
Virtual Address

Range Cacheability

useg/kuseg 0x0000_0000-
0x7FFF_FFFF

Controlled by the KU field (bits 27:25) of the Config register.

Chapter 6

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 113

Exceptions and Interrupts in the microAptiv™ UC Core

The microAptiv™ UC processor core receives exceptions from a number of sources, including arithmetic overflows,
I/O interrupts, and system calls. When the CPU detects one of these exceptions, the normal sequence of instruction
execution is suspended and the processor enters kernel mode.

In kernel mode the core disables interrupts and forces execution of a software exception processor (called a handler)
located at a specific address. The handler saves the context of the processor, including the contents of the program
counter, the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it
can be restored when the exception has been serviced.

When an exception occurs, the core loads the Exception Program Counter (EPC) register with a location where exe-
cution can restart after the exception has been serviced. Most exceptions are precise, which mean that EPC can be
used to identify the instruction that caused the exception. For precise exceptions, the restart location in the EPC regis-
ter is the address of the instruction that caused the exception or, if the instruction was executing in a branch delay slot,
the address of the branch instruction immediately preceding the delay slot. To distinguish between the two, software
must read the BD bit in the CP0 Cause register. Bus error exceptions and CP2 exceptions may be imprecise. For
imprecise exceptions the instruction that caused the exception cannot be identified.

This chapter contains the following sections:

• Section 6.1 “Exception Conditions”

• Section 6.2 “Exception Priority”

• Section 6.3 “Interrupts”

• Section 6.4 “GPR Shadow Registers”

• Section 6.5 “Exception Vector Locations”

• Section 6.6 “General Exception Processing”

• Section 6.7 “Debug Exception Processing”

• Section 6.8 “Exception Descriptions”

• Section 6.9 “Exception Handling and Servicing Flowcharts”

6.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that follow it in the pipeline
are cancelled (“flushed”). Accordingly, any stall conditions and any later exception conditions that might have refer-
enced this instruction are inhibited—obviously there is no benefit in servicing stalls for a cancelled instruction.

 Exceptions and Interrupts in the microAptiv™ UC Core

114 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the W stage, various CP0 registers are written with the exception state,
change the current program counter (PC) to the appropriate exception vector address, and clearing the exception bits
of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instructions
from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug exceptions) is sufficient to
restart execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception
may itself be killed by an instruction further down the pipeline that takes an exception in a later cycle.

6.2 Exception Priority

Table 6.1 contains a list and a brief description of all exception conditions, The exceptions are listed in the order of
their relative priority, from highest priority (Reset) to lowest priority. When several exceptions occur simultaneously,
the exception with the highest priority is taken.

Table 6.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT
input, or by setting the EjtagBrk bit in the ECR register.

NMI Asserting edge of SI_NMI signal.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Protection - Instruction fetch Instruction fetch access to a protected memory region was attempted.

DIB EJTAG debug hardware instruction break matched.

AdEL Fetch address alignment error.
User-mode fetch reference to kernel address.

ISRAM Parity Error Parity error on I-SRAM access

IBE Instruction fetch bus error.

Instruction Validity Exceptions An instruction could not be completed because it was not allowed access to the
required resources (Coprocessor Unusable) or was illegal (Reserved Instruc-
tion). If exceptions occur on the same instruction, the Coprocessor Unusable
Exception take priority over the Reserved Instruction Exception.

Tr Execution of a trap (when trap condition is true).

Protection - Data access Data access to a protected memory region was attempted.

DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Value Break on
Store (address and value).

AdEL Load address alignment error.
User mode load reference to kernel address.

AdES Store address alignment error.
User mode store to kernel address.

DSRAM Parity Error Parity error on D-SRAM access.

DBE Load or store bus error.

6.3 Interrupts

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 115

6.3 Interrupts

In the MIPS32® Release 1 architecture, support for exceptions included two software interrupts, six hardware inter-
rupts, and a special-purpose timer interrupt. The timer interrupt was provided external to the core and was typically
combined with hardware interrupt 5 in a system-dependent manner. Interrupts were handled either through the gen-
eral exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of CauseIV. Software
was required to prioritize interrupts as a function of the CauseIV bits in the interrupt handler prologue.

Release 2 of the Architecture, implemented by the microAptiv UC core, adds a number of upward-compatible exten-
sions to the Release 1 interrupt architecture, including support for vectored interrupts and the implementation of a
new interrupt mode that permits the use of an external interrupt controller.

The microAptiv UC core also includes the Microcontroller Application-Specific Extension (MCU ASE) that provides
enhanced interrupt delivery and interrupt-latency reduction.

6.3.1 Interrupt Modes

The microAptiv UC core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

• Interrupt Compatibility mode, in which the behavior of the microAptiv UC is identical to the behavior of a
Release 1 implementations.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. Although this mode is architecturally optional, it is always present
on the microAptiv UC processor, so the VInt bit will always read as a 1.

• External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support
for an external interrupt controller that handles prioritization and vectoring of interrupts. As with VI mode, this
mode is architecturally optional. The presence of this mode is denoted by the VEIC bit in the Config3 register. On
the microAptiv UC core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to
indicate the presence of an external interrupt controller.

Following reset, the microAptiv UC processor defaults to Compatibility mode, which is fully compatible with all
implementations of Release 1 of the Architecture.

DDBL EJTAG data hardware breakpoint matched in load data compare.

CBrk EJTAG complex breakpoint.

Table 6.1 Priority of Exceptions (Continued)

Exception Description

 Exceptions and Interrupts in the microAptiv™ UC Core

116 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 6.2 shows the current interrupt mode of the processor as a function of the Coprocessor 0 register fields that can
affect the mode.

6.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 16#180 (if CauseIV = 0) or vector offset 16#200
(if CauseIV = 1). This mode is in effect if any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

Here is a typical software handler for interrupt compatibility mode:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP9..IP0 (HW7..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP9..IP0; k0 = 14..23 */

Table 6.2 Interrupt Modes

St
at

us
B

E
V

C
au

se
IV

In
tC

tl V
S

C
on

fig
3 V

IN
T

C
on

fig
3 V

E
IC

Interrupt Mode

1 x x x x Compatibly

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller

0 1 ≠0 0 0 Can’t happen - IntCtlVS can not be non-zero if neither
Vectored Interrupt nor External Interrupt Controller mode
is implemented.

“x” denotes don’t care

6.3 Interrupts

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 117

xori k0, k0, 0x17 /* 14..23 => 9..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 10 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simple return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
s k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

 Exceptions and Interrupts in the microAptiv™ UC Core

118 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
l k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

6.3.1.2 Vectored Interrupt (VI) Mode

In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be
used to direct each interrupt to a dedicated handler routine. This mode also allows each interrupt to be mapped to a
GPR shadow register set for use by the interrupt handler. VI mode is in effect when all the following conditions are
true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the eight hardware interrupts are interpreted as individual hardware interrupt requests. The
timer interrupt is combined in a system-dependent way (external to the core) with the hardware interrupts (the inter-
rupt with which they are combined is indicated by the PTI field in IntCtlI) to provide the appropriate relative priority
of the timer interrupt with that of the hardware interrupts. The processor interrupt logic ANDs each of the CauseIP
bits with the corresponding StatusIM bits. If any of these values is 1, and if interrupts are enabled (StatusIE = 1,

6.3 Interrupts

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 119

StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority encoder scans the values in the order shown
in Table 6.3.

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs
an encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
shown pictorially in Figure 6.1.

Table 6.3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt
Request

Calculated From

Vector Number
Generated by

Priority Encoder

Highest Priority Hardware HW7 IP9 and IM9 9

HW6 IP8 and IM8 8

HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

HW0 IP2 and IM2 2

Software SW1 IP1 and IM1 1

Lowest Priority SW0 IP0 and IM0 0

6.3 Interrupts

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 121

li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
l k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

6.3.1.3 External Interrupt Controller Mode

External Internal Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to pro-
vide support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts,
including hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the
priority level and vector number of the highest priority interrupt. EIC interrupt mode is in effect if all of the following
conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0), the timer inter-
rupt request (CauseTI), the performance counter interrupt request (CausePCI) and Fast Debug Channel Interrupt
(CauseFDCI) to the external interrupt controller, where it prioritizes these interrupts in a system-dependent way with
other hardware interrupts. The interrupt controller can be a hard-wired logic block, or it can be configurable based on
control and status registers. This allows the interrupt controller to be more specific or more general as a function of
the system environment and needs.

 Exceptions and Interrupts in the microAptiv™ UC Core

122 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

The external interrupt controller prioritizes its interrupt requests and produces the priority level and the vector num-
ber of the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level
(RIPL), is an 8-bit encoded value in the range 0..255, inclusive. A value of 0 indicates that no interrupt requests are
pending. The values 1..255 represent the lowest (1) to highest (255) RIPL for the interrupt to be serviced. The inter-
rupt controller passes this value on the 8 hardware interrupt lines, which are treated as an encoded value in EIC inter-
rupt mode. There are two implementation options available for the vector offset:

1. The first option is to send a separate vector number along with the RIPL to the processor.

2. A second option is to send an entire vector offset along with the RIPL to the processor. This option is
enabled through the core’s configuration GUI, and it is not affected by software.

The microAptiv UC core does not support the option to treat the RIPL value as the vector number for the processor.

StatusIPL (which overlays StatusIM9..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP9..IP2) and signals the external
interrupt controller to notify it that the request is being serviced. Because CauseRIPL is only loaded by the processor
when an interrupt exception is signaled, it is available to software during interrupt processing. The vector number that
the EIC passes to the core is combined with the IntCtlVS to determine where the interrupt service routine is located.
The vector number is not stored in any software-visible registers.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
CauseRIPL, it also loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the inter-
rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 6.2.

 Exceptions and Interrupts in the microAptiv™ UC Core

124 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

6.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 16#200 to create the
exception vector offset. For VI interrupt mode, the vector number is in the range 0..9, inclusive. For EIC interrupt
mode, the vector number is in the range 0..63, inclusive. The IntCtlVS field specifies the spacing between vector loca-
tions. If this value is zero (the default reset state), the vector spacing is zero and the processor reverts to Interrupt
Compatibility Mode. A non-zero value enables vectored interrupts, and Table 6.4 shows the exception vector offset
for a representative subset of the vector numbers and values of the IntCtlVS field.

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

2#00001 2#00010 2#00100 2#01000 2#10000

0 16#0200 16#0200 16#0200 16#0200 16#0200

1 16#0220 16#0240 16#0280 16#0300 16#0400

2 16#0240 16#0280 16#0300 16#0400 16#0600

3 16#0260 16#02C0 16#0380 16#0500 16#0800

4 16#0280 16#0300 16#0400 16#0600 16#0A00

5 16#02A0 16#0340 16#0480 16#0700 16#0C00

6 16#02C0 16#0380 16#0500 16#0800 16#0E00

7 16#02E0 16#03C0 16#0580 16#0900 16#1000

•
•
•

61 16#09A0 16#1140 16#2080 16#3F00 16#7C00

62 16#09C0 16#1180 16#2100 16#4000 16#7E00

63 16#09E0 16#11C0 16#2180 16#4100 16#8000

6.3 Interrupts

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 125

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 16#200 + (vectorNumber × (IntCtlVS || 2#00000))

When using large vector spacing and EIC mode, the offset value can overlap with bits that are specified in the EBase
register. Software must ensure that any overlapping bits are specified as 0 in EBase. This implementation ORs
together the offset and base registers, but it is architecturally undefined and software should not rely on this behavior.

Although there are 255 EIC priority interrupts, only 64 vectors are provided. There is no one-to-one mapping for each
EIC interrupt to its interrupt vector. The 255 priority interrupts will share the 64 interrupt vectors as specified by the
SI_EICVector[5:0] input pins. However, as mentioned in option 2 of Section 6.3.1.3 “External Interrupt Controller
Mode”, the SI_Offset[17:1] input pins can be used to provide each EIC interrupt with a unique interrupt handler loca-
tion.

6.3.3 MCU ASE Enhancement for Interrupt Handling

The MCU ASE extends the MIPS/microMIPS Architecture with a set of new features designed for the microcontrol-
ler market. The MCU ASE contains enhancements in two key areas: interrupt delivery and interrupt latency. For
more details, refer to the The MCU Privileged Resource Architecture chapter of the MIPS® Architecture for Pro-
grammers Volume IV-h: The MCU Application-Specific Extension to the MIPS32 Architecture [10] or MIPS® Archi-
tecture for Programmers Volume IV-h: The MCU Application-Specific Extension to the microMIPS32™ Architecture
[11].

6.3.3.1 Interrupt Delivery

The MCU ASE extends the number of hardware interrupt sources from 6 to 8. For legacy and vectored-interrupt
mode, this represents 8 external interrupt sources. For EIC mode, the widened IPL and RIPL fields can now represent
256 external interrupt sources.

6.3.3.2 Interrupt Latency Reduction

The MCU ASE includes a package of extensions to MIPS/microMIPS that decrease the latency of the processor’s
response to a signalled interrupt.

Interrupt Vector Prefetching

Normally on MIPS architecture processors, when an interrupt or exception is signalled, execution pipelines must be
flushed before the interrupt/exception handler is fetched. This is necessary to avoid mixing the contexts of the inter-
rupted/faulting program and the exception handler. The MCU ASE introduces a hardware mechanism in which the
interrupt exception vector is prefetched whenever the interrupt input signals change. The prefetch memory transac-
tion occurs in parallel with the pipeline flush and exception prioritization. This decreases the overall latency of the
execution of the interrupt handler’s first instruction.

Automated Interrupt Prologue

The use of Shadow Register Sets avoids the software steps of having to save general-purpose registers before han-
dling an interrupt.

The MCU ASE adds additional hardware logic that automatically saves some of the COP0 state in the stack and auto-
matically updates some of the COP0 registers in preparation for interrupt handling.

 Exceptions and Interrupts in the microAptiv™ UC Core

126 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Automated Interrupt Epilogue

A mirror to the Automated Prologue, this features automates the restoration of some of the COP0 registers from the
stack and the preparation of some of the COP0 registers for returning to non-exception mode. This feature is imple-
mented within the IRET instruction, which is introduced in this ASE.

Interrupt Chaining

An optional feature of the Automated Interrupt Epilogue, this feature allows handling a second interrupt after a pri-
mary interrupt is handled, without returning to non-exception mode (and the related pipeline flushes that would nor-
mally be necessary).

6.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the microAptiv UC core. Although Release 2 of the Archi-
tecture defines a maximum of 16 shadow sets, the core allows one (the normal GPRs), two, four, eight or sixteen
shadow sets. The highest number actually implemented is indicated by the SRSCtlHSS field. If this field is zero, only
the normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. When a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register provides the
number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of the previ-
ous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS
to restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, steps 2 and 3 are
skipped.

• The exception is one that sets StatusERL: Reset, Soft Reset, or NMI.

• The exception causes entry into EJTAG Debug Mode.

• StatusBEV = 1

• StatusEXL = 1

6.5 Exception Vector Locations

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 127

2. SRSCtlCSS is copied to SRSCtlPSS.

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of the SRSCtl register if the exception is an interrupt, CauseIV = 1, and Config3VEIC = 1.
These are the conditions for a vectored EIC interrupt.

• The ESS field of the SRSCtl register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skipped.

• A DERET is executed.

• An ERET is executed with StatusERL = 1.

2. SRSCtlPSS is copied to SRSCtlCSS.

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialize (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a
target address, and doing an ERET.

6.5 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 16#BFC0.0000. EJTAG Debug excep-
tions are vectored to location 16#BFC0.0480, or to location 16#FF20.0200 if the ProbTrap bit is zero or one, respec-
tively, in the EJTAG_Control_register. Addresses for all other exceptions are a combination of a vector offset and a
vector base address. In Release 1 of the architecture, the vector base address was fixed. In Release 2 of the architec-
ture, software is allowed to specify the vector base address via the EBase register for exceptions that occur when
StatusBEV equals 0. Table 6.5 gives the vector base address as a function of the exception and whether the BEV bit is
set in the Status register. Table 6.6 gives the offsets from the vector base address as a function of the exception. Note
that the IV bit in the Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general
exception vector. For implementations of Release 2 of the Architecture,

Table 6.4 shows the offset from the base address in the case where StatusBEV = 0 and CauseIV = 1. For implementa-
tions of Release 1 of the architecture in which CauseIV = 1, the vector offset is as if IntCtlVS were 0. Table 6.7 com-
bines these two tables into one that contains all possible vector addresses as a function of the state that can affect the

 Exceptions and Interrupts in the microAptiv™ UC Core

128 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

vector selection. To avoid complexity in the table, the vector address value assumes that the EBase register, as imple-
mented in Release 2 devices, is not changed from its reset state and that IntCtlVS is 0.

Table 6.5 Exception Vector Base Addresses

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 16#BFC0.0000

EJTAG Debug (with ProbEn = 0 in
the EJTAG Control Register)

16#BFC0.0480

EJTAG Debug (with ProbEn = 1 in
the EJTAG Control Register)

16#FF20.0200

SRAM Parity Error EBase31 30 || 1 ||
EBase28 12 || 16#000

Note that EBase31 30 have the
fixed value 2#10

16#BFC0.0300

Other For Release 1 of the architecture:
16#8000.0000

For Release 2 of the architecture:
EBase31 12 || 16#000

Note that EBase31 30 have the
fixed value 2#10

16#BFC0.0200

Table 6.6 Exception Vector Offsets

Exception Vector Offset

General Exception 16#180

Interrupt, CauseIV = 1 16#200 (In Release 2 implementa-
tions, this is the base of the vectored
interrupt table when StatusBEV = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)

Table 6.7 Exception Vectors

Exception StatusBEV StatusEXL CauseIV
EJTAG
ProbEn

Vector

For Release 2
Implementations, assumes
that EBase retains its reset
state and that IntCtlVS = 0

Reset, Soft Reset, NMI x x x x 16#BFC0.0000

EJTAG Debug x x x 0 16#BFC0.0480

EJTAG Debug x x x 1 16#FF20.0200

SRAM Parity Error 0 x x x 16#EBase[31:30] || 2#1
|| EBase[28:12] ||

16#100

SRAM Parity Error 1 x x x 16#BFC0.0300

Interrupt 0 0 0 x 16#8000.0180

6.6 General Exception Processing

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 129

6.6 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own spe-
cial processing as described below, exceptions have the same basic processing flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 7.17). The value loaded into the EPC
register is dependent on whether the processor implements microMIPS, and whether the instruction is in the
delay slot of a branch or jump which has delay slots. Table 6.8 shows the value stored in each of the CP0 PC reg-
isters, including EPC. For implementations of Release 2 of the Architecture if StatusBEV = 0, the CSS field in the
SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

• The CE and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor is started at the exception vector.

Interrupt 0 0 1 x 16#8000.0200

Interrupt 1 0 0 x 16#BFC0.0380

Interrupt 1 0 1 x 16#BFC0.0400

All others 0 x x x 16#8000.0180

All others 1 x x x 16#BFC0.0380

‘x’ denotes don’t care

Table 6.8 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

microMIPS
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper bits of the address of the instruction, combined with
the ISA Mode bit

Yes Yes Upper bits of the branch or jump instruction (PC-2 or
PC-4 depending on size of the instruction in the micro-
MIPS ISA Mode and PC-4 in the 32-bit ISA Mode), com-
bined with the ISA Mode bit

Table 6.7 Exception Vectors (Continued)

Exception StatusBEV StatusEXL CauseIV
EJTAG
ProbEn

Vector

For Release 2
Implementations, assumes
that EBase retains its reset
state and that IntCtlVS = 0

 Exceptions and Interrupts in the microAptiv™ UC Core

130 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:
/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor CauseBD nor SRSCtl are modified */
if StatusEXL = 1 then

vectorOffset ← 16#180
else

if InstructionInBranchDelaySlot then
EPC ← restartPC/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtlESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset ← 16#000
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset ← 16#180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset ← 16#200
else

if Config3VEIC = 1 then
VecNum ← CauseRIPL
NewShadowSet ← SRSCtlEICSS

else
VecNum ← VIntPriorityEncoder()
NewShadowSet ← SRSMapIPL×4+3 IPL×4

endif
vectorOffset ← 16#200 + (VecNum × (IntCtlVS || 2#00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if ((ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) and

(StatusERL = 0)) then
SRSCtlPSS ← SRSCtlCSS
SRSCtlCSS ← NewShadowSet

endif
endif /* if StatusEXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
StatusEXL ← 1

6.7 Debug Exception Processing

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 131

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase ← 16#BFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31 30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase31 12 || 16#000

else
vectorBase ← 16#8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC ← vectorBase 30 || (vectorBase29 0 + vectorOffset29 0)

/* No carry between bits 29 and 30 */

6.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if
the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot
of a branch.

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and DDBSImpr bits in the Debug register are
updated appropriately depending on the debug exception type.

• The Debug2 register is updated with additional information for complex breakpoints.

• Halt and Doze bits in the Debug register are updated appropriately.

• DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-
ter unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and
DDBSImpr bits in the Debug register.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:
if InstructionInBranchDelaySlot then

DEPC ← PC-4
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif

 Exceptions and Interrupts in the microAptiv™ UC Core

132 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

DebugD* bits ← DebugExceptionType
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugDM ← 1
if EJTAGControlRegisterProbTrap = 1 then

PC ← 0xFF20_0200
else

PC ← 0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Prob-
Trap bit in the EJTAG Control register (ECR), as shown in Table 6.9.

6.8 Exception Descriptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 6.1.

6.8.1 Reset/SoftReset Exception

A reset exception occurs when the SI_ColdReset signal is asserted to the processor; a soft reset occurs when the
SI_Reset signal is asserted. These exceptions are not maskable. When one of these exceptions occurs, the processor
performs a full reset initialization, including aborting state machines, establishing critical state, and generally placing
the processor in a state in which it can execute instructions from uncached, unmapped address space. On a Reset/Soft-
Reset exception, the state of the processor is not defined, with the following exceptions:

• The Config register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may or
may not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Table 6.9 Debug Exception Vector Addresses

ProbTrap bit in ECR
Register Debug Exception Vector Address

0 0xBFC0_0480

1 0xFF20_0200 in dmseg

6.8 Exception Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 133

Operation:
Config ← ConfigurationState
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0/1 (depending on Reset or SoftReset)
StatusNMI ← 0
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

6.8.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction
in the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug regis-
ter, and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never
set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one
step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and DEPC points to the SDBBP instruction. However, returning to an instruction (not jump/branch) just
before the SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP instruc-
tion.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

 Exceptions and Interrupts in the microAptiv™ UC Core

134 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

6.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

6.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 1
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

6.8 Exception Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 135

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

6.8.5 Interrupt Exception

The interrupt exception occurs when one or more of the eight hardware, two software, or timer interrupt requests is
enabled by the Status register, and the interrupt input is asserted. See 6.3 “Interrupts” on page 115 for more details
about the processing of interrupts.

Register ExcCode Value:

Int

Additional State Saved:

Entry Vector Used:

See 6.3.2 “Generation of Exception Vector Offsets fo r Vectored Interrupts” on page 124 for the entry vector used,
depending on the interrupt mode the processor is operating in.

6.8.6 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.7 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

Table 6.10 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.

 Exceptions and Interrupts in the microAptiv™ UC Core

136 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

Cause Register ExcCode Value:

AdEL: Reference was a load or an instruction fetch

AdES: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.8 SRAM Parity Error Exception

A SRAM error exception occurs when an instruction or data reference detects a data error. This exception is not
maskable. To avoid disturbing the error in the cache array the exception vector is to an unmapped, uncached address.
This exception is precise.

Cause Register ExcCode Value

N/A

Additional State Saved

Entry Vector Used

Cache error vector (offset 16#100)

6.8.9 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request and that request terminates in an
error. The bus error exception can occur on either an instruction fetch or a data access. Bus error exceptions that occur
on an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Bus errors taken on any external access on the microAptiv UC core are always precise.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

Table 6.11 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr Failing address

Table 6.12 CP0 Register States on a SRAM Parity Error Exception

Register State Value

CacheErr Error state

ErrorEPC Restart PC

6.8 Exception Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 137

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.10 Protection Exception

The protection exception occurs when an access to memory that has been protected by the Memory Protection Unit
has been attempted. Or under certain circumstances, attempted write to the EBase register. See the "Security Features
of the M14K™ Processor Family" (MD00896) for more information.

Register ExcCode Value:

Prot (Cause Code 29)

Additional State Saved:

MPU Config Register, Triggered Field

MPU StatusN Register, Cause* Fields

Entry Vector Used

General exception vector (offset 0x180)

6.8.11 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:

DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.12 Execution Exception — System Call

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A sys-
tem call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

 Exceptions and Interrupts in the microAptiv™ UC Core

138 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Entry Vector Used:

General exception vector (offset 0x180)

6.8.13 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.14 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed.
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:

RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.15 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of
the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU

6.8 Exception Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 139

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

6.8.16 Execution Exception — CorExtend Unusable

The CorExtend unusable exception is one of the execution exceptions. All of these exceptions have the same priority.
A CorExtend Unusable exception occurs when an attempt is made to execute a CorExtend instruction when
StatusCEE is cleared. It is implementation-dependent whether this functionality is supported. Generally, the function-
ality will only be supported if a CorExtend block contains local destination registers

Cause Register ExcCode Value:

CEU

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.17 Execution Exception — DSP Module State Disabled

The DSP Module State Disabled exception is an execution exception. It occurs when an attempt is made to execute a
DSP Module instruction when the MX bit in the Status register is not set. This allows an OS to do “lazy” context
switching.

Cause Register ExcCode Value:

DSPDis

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.18 Execution Exception — Coprocessor 2 Exception

The Coprocessor 2 exception is one of the execution exceptions. All of these exceptions have the same priority. A
Coprocessor 2 exception occurs when a valid Coprocessor 2 instruction cause a general exception in the Coprocessor
2.

Cause Register ExcCode Value:

C2E

Table 6.13 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE Unit number of the coprocessor being referenced

 Exceptions and Interrupts in the microAptiv™ UC Core

140 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be saved in a
Coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

6.8.19 Execution Exception — Implementation-Specific 1 Exception

The Implementation-Specific 1 exception is one of the execution exceptions. All of these exceptions have the same
priority. An implementation-specific 1 exception occurs when a valid coprocessor 2 instruction cause an implementa-
tion-specific 1 exception in the Coprocessor 2.

Cause Register ExcCode Value:

IS1

Additional State Saved:

Depending on the coprocessor 2 implementation, additional state information of the exception can be saved in a
coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

6.8.20 Execution Exception — Integer Overflow

The integer overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

6.8.21 Execution Exception — Trap

The trap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap excep-
tion occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Additional State Saved:

None

6.9 Exception Handling and Servicing Flowcharts

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 141

Entry Vector Used:

General exception vector (offset 0x180)

6.8.22 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception
has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the
debug handler.

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

6.8.23 Complex Break Exception

A complex data break exception occurs when the complex hardware breakpoint detects an enabled breakpoint. Com-
plex breaks are taken imprecisely—the instruction that actually caused the exception is allowed to complete and the
DEPC register and DBD bit in the Debug register point to a following instruction.

Debug Register Debug Status Bit Set:

DIBImpr, DDBLImpr, and/or DDBSImpr

Additional State Saved:

Debug2 fields indicate which type(s) of complex breakpoints were detected.

Entry Vector Used:

Debug exception vector

6.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions and their exception handler

• Reset, soft reset and NMI exceptions, and a guideline to their handler

• Debug exceptions

Chapter 7

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 145

CP0 Registers of the microAptiv™ UC Core

The System Control Coprocessor (CP0) provides the register interface to the microAptiv UC processor core for the
support of memory management, address translation, exception handling, and other privileged operations. Each CP0
register is identified by a Register Number, from 0 through 31, and a Select Number that is used as the value in the sel
field of the MFC0 and MTC0 instructions. For instance, the EBase register is Register Number 15, Select 1.

After updating a CP0 register, there is a hazard period of zero or more instructions from the update by the MTC0
instruction until the update has taken effect in the core. For a detailed description of CP0 hazards, refer to Section
2.12 “Hazards”.

This chapter contains the following sections:

• Section 7.1 “CP0 Register Summary”

• Section 7.2 “CP0 Register Descriptions”

The EJTAG registers are described in Chapter 10, “EJTAG Debug Support in the microAptiv™ UC Core” on
page 212.

7.1 CP0 Register Summary

Table 7.1 lists the CP0 registers in numerical order. Individual registers are described in Section 7.2 “CP0 Register
Descriptions”.

Table 7.1 CP0 Registers

Register
Number

Select
Number Register Name Function

0-3 Reserved Reserved in the microAptiv UC core

4 2 UserLocal User information that can be written by privileged software and
read via RDHWR register 29

5-6 Reserved Reserved in the microAptiv UC core

7 0 HWREna Enables access via the RDHWR instruction to selected hardware
registers in non-privileged mode

8 0
1
2

BadVAddr1

BadInstr
BadInstrP

Reports the address for the most recent address-related exception
Reports the instruction that caused the most recent exception
Reports the branch instruction if a delay slot caused the most
recent exception

9 0 Count1 Processor cycle count

10 0 Reserved Reserved in the microAptiv UC core

 CP0 Registers of the microAptiv™ UC Core

146 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

11 0 Compare1 Timer interrupt control

12 0
1
2
3
4
5

Status
IntCtl
SRSCtl
SRSMap1
View_IPL
SRSMAP2

Processor status and control
Interrupt system status and control
Shadow Register Sets status and control
Shadow set IPL mapping
Contiguous view of IM and IPL fields
Shadow set IPL mapping

13 0
4
5

Cause1

View_RIPL
NestedExc

Cause of last exception

14 0
2

EPC1

NestedEPc

Program counter at last exception

15 0
1
2

PRId/
EBase
CDMMBase

Processor identification and revision; exception base address;
Common Device Memory Map Base register

16 0
1
2
3
4
5
7

Config
Config1
Config2
Config3
Config4
Config5
Config7

Configuration registers

17-22 Reserved Reserved in the microAptiv UC core

23 0
1
2
3
4
6

Debug
TraceControl
TraceControl2
UserTraceData1

TraceBPC2

Debug2

EJTAG Debug register
EJTAG Trace Control register
EJTAG Trace Control register2
EJTAG User Trace Data1 register
EJTAG Trace Breakpoint Register
EJTAG Debug register 2

24 0
3

DEPC2

UserTraceData2

Program counter at last debug exception
EJTAG User Trace Data2 register

25 0
1
2
3

PerfCtl0
PerfCnt0
PerfCtl1
PerfCnt1

Performance counter 0 control
Performance counter 0
Performance counter 1control
Performance counter 1

26 0 ErrCtl Software parity check enable

27 0 CacheErr Records information about SRAM parity errors

28-29 Reserved Reserved in the microAptiv UC core

30 0 ErrorEPC1 Program counter at last error

31 0
2
3

DeSAVE2

KScratch1
Kscratch2

Debug handler scratchpad register
Scratch Register for Kernel Mode
Scratch Register for Kernel Mode

Table 7.1 CP0 Registers (Continued)

Register
Number

Select
Number Register Name Function

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 147

7.2 CP0 Register Descriptions

This section contains descriptions of each CP0 register.The registers are listed in numerical order, first by Register
Number, then by Select Number.

For each register described below, field descriptions include the read/write properties of the field (shown in Table
7.2) and the reset state of the field. .

7.2.1 UserLocal Register (CP0 Register 4, Select 2)

The UserLocal register is a read-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

1. Registers used in exception processing
2. Registers used in debug

Table 7.2 CP0 Register R/W Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are vis-
ible by hardware reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

R A field that is either static or is updated only by
hardware.
If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
or to the appropriate state, respectively, on pow-
erup.
If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software is
ignored by hardware. Software may write any
value to this field without affecting hardware
behavior. Software reads of this field return the
last value updated by hardware.
If the Reset State of this field is “Undefined,”
software reads of this field result in an UNPRE-
DICTABLE value except after a hardware
update done under the conditions specified in
the description of the field.

W A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero val-
ues to this field may result in UNDEFINED
behavior of the hardware. Software reads of this
field return zero as long as all previous software
writes are zero.
If the Reset State of this field is “Undefined,”
software must write this field with zero before it
is guaranteed to read as zero.

Table 7.1 CP0 Registers (Continued)

Register
Number

Select
Number Register Name Function

 CP0 Registers of the microAptiv™ UC Core

148 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Figure 7.1 shows the format of the UserLocal register; Table 7.3 describes the UserLocal register fields.

Figure 7.1 UserLocal Register Format

Programming Notes

Privileged software may write this register with arbitrary information and make it accessible to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a 1 to enable
unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer to a
thread-specific storage block that is obtained via the RDHWR register.

7.2.2 HWREna Register (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction.

Figure 7.2 shows the format of the HWREna Register; Table 7.4 describes the HWREna register fields.

31 0

UserLocal

Table 7.3 UserLocal Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

UserLocal 31:0 This field contains software information that is not interpreted by
hardware.

R/W Undefined

Figure 7.2 HWREna Register Format
31 30 29 28 4 3 0

0 ULR 0 Mask

Table 7.4 HWREna Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:30 Must be written with zero; returns zero on read 0 0

0 28:4 Must be written with zero; returns zero on read 0 0

ULR 29 User Local Register. This register provides read
access to the coprocessor 0 UserLocal register. In
some operating environments, the UserLocal regis-
ter is a pointer to a thread-specific storage block.

R/W 0

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 149

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In
doing so, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to provide direct access to the Count
register, access to that register may be individually disabled and the return value can be virtualized by the operating
system.

7.2.3 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is a read-only register that captures the most recent virtual address that caused the following
exception:

• Address error (AdEL or AdES)

The BadVAddr register does not capture address information for bus errors, because they are not addressing errors.

Figure 7.3 BadVAddr Register Format

7.2.4 BadInstr Register (CP0 Register 8, Select 1)

The BadInstr register is an optional read-only register that captures the most recent instruction that caused one of the
following exceptions:

• Instruction Validity

Coprocessor Unusable, Reserved Instruction

• Execution Exception

Mask 3:0 Each bit in this field enables access by the RDHWR
instruction to a particular hardware register (which
may not be an actual register). If bit ‘n’ in this field is
a 1, access is enabled to hardware register ‘n’. If bit
‘n’ of this field is a 0, access is disabled.
See the RDHWR instruction for a list of valid hard-
ware registers.

R/W 0

31 0

BadVAddr

Table 7.5 BadVAddr Register Field Description

Fields

Description Read/Write Reset StateName Bits

BadVAddr 31:0 Bad virtual address. R Undefined

Table 7.4 HWREna Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

 CP0 Registers of the microAptiv™ UC Core

150 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Integer Overflow, Trap, System Call, Breakpoint, Floating-point, Coprocessor 2 exception

• Addressing

Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

The BadInstr register is provided to allow acceleration of instruction emulation. The BadInstr register is only set by
exceptions that are synchronous to an instruction. The BadInstr register is not set by Interrupts or by NMI,
Machine check, Bus Error, Cache Error, Watch, or EJTAG exceptions.

When a synchronous exception occurs for which there is no valid instruction word (for example TLB Refill - Instruc-
tion Fetch), the value stored in BadInstr is UNPREDICTABLE.

Presence of the BadInstr register is indicated by the Config3BI bit. The BadInstr register is instantiated per-VPE in an
MT ASE processor.

Figure 7.4 shows the proposed format of the BadInstr register; Table 7.6 describes the BadInstr register fields.

Figure 7.4 BadInstr Register Format

7.2.5 BadInstrP Register (CP0 Register 8, Select 2)

The BadInstrP register is an optional register that is used in conjunction with the BadInstr register. The BadInstrP reg-
ister contains the prior branch instruction when the faulting instruction is in a branch delay slot.

The BadInstrP register is updated for these exceptions:

• Instruction Validity

Coprocessor Unusable, Reserved Instruction

• Execution Exception

Integer Overflow, Trap, System Call, Breakpoint, Floating-point, Coprocessor 2 exception

• Addressing

Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

31 0

BadInstr

Table 7.6 BadInstr Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

BadInstr 31:0 Faulting instruction word.
Instruction words smaller than 32 bits are placed in bits
15:0, with bits 31:16 containing zero.

R Undefined

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 151

The BadInstrP register is provided to allow acceleration of instruction emulation. The BadInstrP register is only set by
exceptions that are synchronous to an instruction. The BadInstrP register is not set by Interrupts or by NMI, Machine
check, Bus Error, Cache Error, Watch, or EJTAG exceptions. When a synchronous exception occurs, and the faulting
instruction is not in a branch delay slot, then the value stored in BadInstrP is UNPREDICTABLE.

Presence of the BadInstrP register is indicated by the Config3BP bit. The BadInstrP register is instantiated per-VPE in
an MT ASE processor.

Figure 7.5 shows the proposed format of the BadInstrP register; Table 7.7 describes the BadInstrP register fields.

Figure 7.5 BadInstrP Register Format

7.2.6 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The counter increments every other clock if the DC bit in the
Cause register is 0.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor is in debug mode.

Figure 7.6 Count Register Format

31 0

BadInstrP

Table 7.7 BadInstrP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

BadInstrP 31:0 Prior branch instruction.
Instruction words smaller than 32 bits are placed in bits
15:0, with bits 31:16 containing zero.

R Undefined

31 0

Count

Table 7.8 Count Register Field Description

Fields

Description Read/Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined

 CP0 Registers of the microAptiv™ UC Core

152 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.7 Compare Register (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The timer interrupt is an output of the cores. The Compare register maintains a stable value and does not change on
its own.

When the value of the Count register equals the value of the Compare register, the SI_TimerInt pin is asserted. This
pin will remain asserted until the Compare register is written. The SI_TimerInt pin can be fed back into the core on
one of the interrupt pins to generate an interrupt. However, this is no longer needed as the core will internally route
the interrupt to the IP number set by the IntCtl.IPTI field.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare register
is write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

Figure 7.7 Compare Register Format

7.2.8 Status Register (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to
5.2 “Modes of Operation” on page 103 for a discussion of operating modes, and 6.3 “Interrupts” on page 115 for a
discussion of interrupt modes.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

Operating Modes: If the DM bit in the Debug register is 1, then the processor is in debug mode; otherwise the pro-
cessor is in either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode:

• User mode: UM = 1, EXL = 0, and ERL = 0

31 0

Compare

Table 7.9 Compare Register Field Description

Fields

Description Read/Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 153

• Kernel mode: UM = 0, or EXL = 1, or ERL = 1

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any coprocessor is unus-
able, then an instruction that accesses it generates an exception.

Figure 7.8 shows the format of the Status register; Table 7.10 describes the Status register fields.

Figure 7.8 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 10 9 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE MX R BEV TS SR NMI IM9 CEE IM8..IM2 IM1..IM0 R UM R ERL EXL IE

IPL IPL

Table 7.10 Status Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

CU3 31 Controls access to coprocessor 3. COP3 is not supported.
This bit cannot be written and will read as 0.

R 0

CU2 30 Controls access to coprocessor 2. This bit can only be writ-
ten if coprocessor is attached to the COP2 interface. (C2
bit in Config1 is set). This bit will read as 0 if no coproces-
sor is present.

R/W 0

CU1 29 Controls access to coprocessor 1. This bit can only be
written if the FPU is configured. This bit will read as 0 if
the FPU is not present.

R/W 0

CU0 28 Controls access to coprocessor 0:

Coprocessor 0 is always usable when the processor is run-
ning in kernel mode, independent of the state of the CU0
bit.

R/W Undefined

RP 27 Enables reduced power mode. The state of the RP bit is
available on the external core interface as the SI_RP sig-
nal.

R/W 0 for Cold
Reset only.

Encoding Meaning

0 Access not allowed
1 Access allowed

 CP0 Registers of the microAptiv™ UC Core

154 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

FR 26 This bit is used to control the floating-point register mode
for 64-bit floating-point units:

This bit must be ignored on write and read as zero under
the following conditions:
• No floating-point unit is implementation
• 64-bit floating-point unit is not implemented.

R/W 0

RE 25 Used to enable reverse-endian memory references while
the processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

R/W Undefined

MX 24 MIPS DSP Extension. Enables access to DSP Module
resources:

An attempt to execute any DSP Module instruction before
this bit has been set to 1 will cause a DSP State Disabled
exception. The state of this bit is reflected in
Config3DSPP.

R/W 0

R 23 Reserved. This field is ignored on writes and reads as 0. R 0

BEV 22 Controls the location of exception vectors: R/W 1

TS 21 TLB shutdown.Because the microAptiv UC core does not
contain a TLB, this bit is ignored on writes and reads as 0.

R 0

Table 7.10 Status Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Floating-point registers can contain
any 32-bit data type. 64-bit data types
are stored in even-odd pairs of regis-
ters

1 Floating-point registers can contain
any data type

Encoding Meaning

0 User mode uses configured endianness
1 User mode uses reversed endianness

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Normal
1 Bootstrap

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 155

SR 20 Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W 1 for Soft
Reset; 0 other-

wise

NMI 19 Indicates that the entry through the reset exception vector
was due to an NMI:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W 1 for NMI; 0
otherwise

CEE 17 CorExtend Enable: Implementation-dependent. If CorEx-
tend block indicates that this bit should be used, any
attempt to execute a CorExtend instruction with this bit
cleared will result in a CorExtend Unusable exception.
This bit is reserved if CorExtend is not present.

R/W Undefined

IM9:IM2 18,
16:10

Interrupt Mask: Controls the enabling of each of the hard-
ware interrupts. Refer to 6.3 “Interrupts” on page 115 for a
complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
these bits have a different meaning and are interpreted as
the IPL field, described below.

R/W Undefined for
IM7:IM2

0 for IM9:IM8

IPL 18,
16:10

Interrupt Priority Level.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
this field is the encoded (0:255) value of the current IPL.
An interrupt will be signaled only if the requested IPL is
higher than this value.
If EIC interrupt mode is not enabled (Config3VEIC = 0),
these bits have a different meaning and are interpreted as
the IM7..IM2 bits, described above.

R/W Undefined for
IPL15:IPL10

0 for
IPL18:IPL17

Table 7.10 Status Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Not Soft Reset (NMI or Reset)
1 Soft Reset

Encoding Meaning

0 Not NMI (Soft Reset or Reset)
1 NMI

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

 CP0 Registers of the microAptiv™ UC Core

156 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

IM1:IM0 9:8 Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to Section 6.3 “Interrupts”for a
complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled, these bits are writ-
able, but have no effect on the interrupt system.

R/W Undefined

R 7:5 Reserved. This field is ignored on writes and reads as 0. R 0

UM 4 This bit denotes the base operating mode of the processor.
See Section 5.2 “Modes of Operation” for a full discussion
of operating modes. The encoding of this bit is:

Note that the processor can also be in kernel mode if ERL
or EXL is set, regardless of the state of the UM bit.

R/W Undefined

R 3 This bit is reserved. This bit is ignored on writes and reads
as zero.

R 0

ERL 2 Error Level; Set by the processor when a Reset, Soft Reset,
NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in

ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an unmapped
and uncached region. See Chapter 5, “Memory
Management of the microAptiv™ UC Core” on
page 102. This allows main memory to be accessed in
the presence of cache errors. The operation of the pro-
cessor is UNDEFINED if the ERL bit is set while the
processor is executing instructions from kuseg.

R/W 1

Table 7.10 Status Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

Encoding Meaning

0 Base mode is Kernel Mode
1 Base mode is User Mode

Encoding Meaning

0 Normal level
1 Error level

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 157

7.2.9 IntCtl Register (CP0 Register 12, Select 1)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure 7.9 shows the format of the IntCtl register; Table 7.11 describes the IntCtl register fields.

EXL 1 Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, or NMI exceptions is taken.

When EXL is set:
• The processor is running in Kernel Mode
• Interrupts are disabled.
• EPC, CauseBD and SRSCtl (implementations of

Release 2 of the Architecture only) will not be updated if
another exception is taken

R/W Undefined

IE 0 Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

In Release 2 of the Architecture, this bit may be modified
separately via the DI and EI instructions.

R/W Undefined

Figure 7.9 IntCtl Register Format
31 29 28 26 25 23 22 21 20 16 15 14 13 12 10 9 5 4 0

IPTI IPPCI IPFDC PF ICE StkDec Clr
EXL APE Use

KStk 000 VS 0

Table 7.10 Status Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Normal level
1 Exception level

Encoding Meaning

0 Interrupts are disabled
1 Interrupts are enabled

 CP0 Registers of the microAptiv™ UC Core

158 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 7.11 IntCtl Register Field Descriptions

Fields

Description Read/Write
Reset
StateName Bits

IPTI 31:29 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Timer Interrupt request is merged, and allows software
to determine whether to consider CauseTI for a poten-
tial interrupt.

The value of this bit is set by the static input,
SI_IPTI[2:0]. This allows external logic to communi-
cate the specific SI_Int hardware interrupt pin to which
the SI_TimerInt signal is attached.
The value of this field is not meaningful if External
Interrupt Controller Mode is enabled. The external inter-
rupt controller is expected to provide this information
for that interrupt mode.

R Externally
Set

IPPCI 28:26 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Performance Counter Interrupt request is merged, and
allows software to determine whether to consider
CausePCI for a potential interrupt.

The value of this bit is set by the static input,
SI_IPPCI[2:0]. This allows external logic to communi-
cate the specific SI_Int hardware interrupt pin to which
the SI_PCInt signal is attached.
The value of this field is not meaningful if External
Interrupt Controller Mode is enabled. The external inter-
rupt controller is expected to provide this information
for that interrupt mode.

R 0

Encoding IP bit
Hardware Interrupt

Source

2 2 HW0
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

Encoding IP bit
Hardware Interrupt

Source

2 2 HW0
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 159

IPFDC 25:23 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Fast Debug Channel Interrupt request is merged, and
allows software to determine whether to consider
CauseFDC for a potential interrupt.

The value of this field is UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.
If EJTAG FDC is not implemented, this field returns
zero on read.

R Preset or
Externally
Set

PF 22 Enables Vector Prefetching Feature. RW 0

ICE 21 For IRET instruction. Enables Interrupt Chaining. RW 0

StkDec 20:16 For Auto-Prologue feature. This is the number of 4-byte
words that is decremented from the value of GPR29

RW 0x3

Table 7.11 IntCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding Meaning

0 Vector Prefetching disabled.

1 Vector Prefetching enabled.

Encoding Meaning

0 Interrupt Chaining disabled

1 Interrupt Chaining enabled

Encoding

Decrement
Amount in

Words

Decrement
Amount in

Bytes

0-3 3 12

Others As encoded,
e.g. 0x5
means 5
words

4 * encoded
value

e.g. 0x5
means 20

bytes

 CP0 Registers of the microAptiv™ UC Core

160 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

ClrEXL 15 For Auto-Prologue feature and IRET instruction.
If set, during Auto-Prologue and IRET interrupt chain-
ing, the KSU/ERL/EXL fields are cleared.

RW 0

APE 14 Enables Auto-Prologue feature. RW 0

UseKStk 13 Chooses which Stack to use during Interrupt Automated
Prologue.

RW 0

0 12:10 Must be written as zero; returns zero on read. 0 0

Table 7.11 IntCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

Encoding Meaning

0 Fields are not cleared by these opera-
tions.

1 Fields are cleared by these operations.

Encoding Meaning

0 Auto-Prologue disabled

1 Auto-Prologue enabled

Encoding Meaning

0 Copy $29 of the Previous SRS to the
Current SRS at the beginning of IAP.

This is used for Bare-Iron environ-
ments with only one stack.

1 Use $29 of the Current SRS at the
beginning of IAP.
This is used for environments where
there are separate User-mode and Ker-
nel mode stacks. In this case, $29 of
the SRS used during IAP must be
pre-initialized by software to hold the
Kernel mode stack pointer.

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 161

7.2.10 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor. This register does not exist in imple-
mentations of the architecture prior to Release 2.

Figure 7.10 shows the format of the SRSCtl register; Table 7.12 describes the SRSCtl register fields.

VS 9:5 Vector Spacing. If vectored interrupts are implemented
(as denoted by Config3VInt or Config3VEIC), this field
specifies the spacing between vectored interrupts.

All other values are reserved. The operation of the pro-
cessor is UNDEFINED if a reserved value is written to
this field.

R/W 0

0 4:0 Must be written as zero; returns zero on read. 0 0

Figure 7.10 SRSCtl Register Format
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0
00 HSS 0

00 00 EICSS 0
00 ESS 0

00 PSS 0
00 CSS

Table 7.12 SRSCtl Register Field Descriptions

Fields

Description Read/Write
Reset
StateName Bits

0 31:30 Must be written as zeros; returns zero on read. 0 0

Table 7.11 IntCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

Encoding

Spacing
Between

Vectors (hex)

Spacing
Between
Vectors

(decimal)

16#00 16#000 0
16#01 16#020 32
16#02 16#040 64
16#04 16#080 128
16#08 16#100 256
16#10 16#200 512

 CP0 Registers of the microAptiv™ UC Core

162 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

HSS 29:26 Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this proces-
sor. A value of zero in this field indicates that only the
normal GPRs are implemented.
Possible values of this field for the microAptiv UC pro-
cessor are:

The value in this field also represents the highest value
that can be written to the ESS, EICSS, PSS, and CSS
fields of this register, or to any of the fields of the
SRSMap register. The operation of the processor is
UNDEFINED if a value larger than the one in this field
is written to any of these other fields.

R Preset

0 25:22 Must be written as zeros; returns zero on read. 0 0

EICSS 21:18 EIC interrupt mode shadow set. If Config3VEIC is 1
(EIC interrupt mode is enabled), this field is loaded from
the external interrupt controller for each interrupt
request and is used in place of the SRSMap register to
select the current shadow set for the interrupt.
See Section 6.3.1 “Interrupt Modes” for a discussion of
EIC interrupt mode. If Config3VEIC is 0, this field must
be written as zero, and returns zero on read.

R Undefined

0 17:16 Must be written as zeros; returns zero on read. 0 0

ESS 15:12 Exception Shadow Set. This field specifies the shadow
set to use on entry to Kernel Mode caused by any excep-
tion other than a vectored interrupt.
The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W 0

0 11:10 Must be written as zeros; returns zero on read. 0 0

Table 7.12 SRSCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

Encoding Meaning

0 One shadow set (normal GPR set) is
present.

1 Two shadow sets are present.
3 Four shadow sets are present.
7 Eight shadow sets are present

15 Sixteen shadow sets are present
2, 4-6, 8-14 Reserved

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 163

PSS 9:6 Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the next
paragraph, this field is copied from the CSS field when
an exception or interrupt occurs. An ERET instruction
copies this value back into the CSS field if StatusBEV
= 0.
This field is not updated on any exception which sets
StatusERL to 1 (i.e., Reset, Soft Reset, NMI, cache
error), an entry into EJTAG Debug mode, or any excep-
tion or interrupt that occurs with StatusEXL = 1, or
StatusBEV = 1. This field is not updated on an exception
that occurs while StatusERL = 1.
The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W 0

0 5:4 Must be written as zeros; returns zero on read. 0 0

CSS 3:0 Current Shadow Set. If GPR shadow registers are imple-
mented, this field is the number of the current GPR set.
With the exclusions noted in the next paragraph, this
field is updated with a new value on any interrupt or
exception, and restored from the PSS field on an ERET.
Table 7.13 describes the various sources from which the
CSS field is updated on an exception or interrupt.
This field is not updated on any exception which sets
StatusERL to 1 (i.e., Reset, Soft Reset, NMI, cache
error), an entry into EJTAG Debug mode, or any excep-
tion or interrupt that occurs with StatusEXL = 1, or
StatusBEV = 1. Neither is it updated on an ERET with
StatusERL = 1 or StatusBEV = 1. This field is not
updated on an exception that occurs while StatusERL =
1.
 The value of CSS can be changed directly by software
only by writing the PSS field and executing an ERET
instruction.

R 0

Table 7.12 SRSCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

 CP0 Registers of the microAptiv™ UC Core

164 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.11 SRSMap Register (CP0 Register 12, Select 3)

The SRSMap register contains 8, 4-bit fields that provide the mapping from a vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

The SRSMap register contains the shadow register set numbers for vector numbers 7:0. The same shadow set number
can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single shadow
register set number.

Figure 7.11 shows the format of the SRSMap register; Table 7.14 describes the SRSMap register fields.

Table 7.13 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored
Interrupt

CauseIV = 0 SRSCtlESS Treat as exception

Vectored Interrupt CauseIV = 1 and
Config3VEIC = 0 and

Config3VInt = 1

SRSMapVECTNUM Source is internal map register.
(for VECTNUM see Table 6.3)

Vectored EIC Inter-
rupt

CauseIV = 1 and
Config3VEIC = 1

SRSCtlEICSS Source is external interrupt con-
troller.

Figure 7.11 SRSMap Register Format
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 7.14 SRSMap Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

SSV7 31:28 Shadow register set number for Vector Number 7 R/W 0

SSV6 27:24 Shadow register set number for Vector Number 6 R/W 0

SSV5 23:20 Shadow register set number for Vector Number 5 R/W 0

SSV4 19:16 Shadow register set number for Vector Number 4 R/W 0

SSV3 15:12 Shadow register set number for Vector Number 3 R/W 0

SSV2 11:8 Shadow register set number for Vector Number 2 R/W 0

SSV1 7:4 Shadow register set number for Vector Number 1 R/W 0

SSV0 3:0 Shadow register set number for Vector Number 0 R/W 0

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 165

7.2.12 View_IPL Register (CP0 Register 12, Select 4)

This register gives read and write access to the IM or IPL field that is also available in the Status Register. The use of
this register allows the Interrupt Mask or the Priority Level to be read/written without extracting/inserting that bit
field from/to the Status Register.

The IPL field might be located in non-contiguous bits within the Status Register. All of the IPL bits are presented as a
contiguous field within this register.

7.2.13 SRSMap2 Register (CP0 Register 12, Select 5)

The SRSMap2 register contains 2 4-bit fields that provide the mapping from an vector number to the shadow set
number to use when servicing such an interrupt. The values from this register are not used for a non-interrupt excep-
tion, or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

The SRSMap2 register contains the shadow register set numbers for vector numbers 9:8. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 7-13 shows the format of the SRSMap2 register; Table 7.16 describes the SRSMap2 register fields.

Figure 7-12 View_IPL Register Format
31 10 9 0

0 IM

IPL

Table 7.15 View_IPL Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

IM 9:0 Interrupt Mask.
If EIC interrupt mode is not enabled, controls which inter-
rupts are enabled.

R/W Undefined for
IM7:IM2

0 for IM9:IM8

IPL 9:2 Interrupt Priority Level.
If EIC interrupt mode is enabled, this field is the encoded
value of the current IPL.

R/W Undefined

0 31:10,1:0 Must be written as zero; returns zero on read. 0 0

 CP0 Registers of the microAptiv™ UC Core

166 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.14 Cause Register (CP0 Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 7.14 shows the format of the Cause register; Table 7.17 describes the Cause register fields.

Figure 7-13 SRSMap Register Format
31 8 7 4 3 0

0 SSV9 SSV8

Table 7.16 SRSMap Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

0 31:8 Must be written as zero; returns zero on read. R 0

SSV9 7:4 Shadow register set number for Vector Number 9 R/W 0

SSV8 3:0 Shadow register set number for Vector Number 8 R/W 0

Figure 7.14 Cause Register Format
31 30 29 28 27 26 25 24 23 22 21 20 18 17 10 9 8 7 6 2 1 0

BD TI CE DC PCI IC AP IV WP FD
CI 0 IP9..IP2 IP1..IP0 0 Exc Code 0

RIPL

Table 7.17 Cause Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

BD 31 Indicates whether the last exception taken occurred in a
branch delay slot:

The processor updates BD only if StatusEXL was zero
when the exception occurred.

R Undefined

Encoding Meaning

0 Not in delay slot
1 In delay slot

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 167

TI 30 Timer Interrupt. This bit denotes whether a timer inter-
rupt is pending (analogous to the IP bits for other inter-
rupt types):

The state of the TI bit is available on the external core
interface as the SI_TimerInt signal

R Undefined

CE 29:28 Coprocessor unit number referenced when a Coproces-
sor Unusable exception is taken. This field is loaded by
hardware on every exception, but is UNPREDICT-
ABLE for all exceptions except for Coprocessor Unus-
able.

R Undefined

DC 27 Disable Count register. In some power-sensitive appli-
cations, the Count register is not used and is the source
of meaningful power dissipation. This bit allows the
Count register to be stopped in such situations.

R/W 0

PCI 26 Performance Counter Interrupt. In an implementation of
Release 2 of the Architecture, this bit denotes whether a
performance counter interrupt is pending (analogous to
the IP bits for other interrupt types):

The state of the PCI bit is available on the external
microAptiv UC interface as the SI_PCInt signal.

R 0

IC 25 Indicates if Interrupt Chaining occurred on the last IRET
instruction.

R Undefined

Table 7.17 Cause Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 No timer interrupt is pending
1 Timer interrupt is pending

Encoding Meaning

0 Enable counting of Count register
1 Disable counting of Count register

Encoding Meaning

0 No timer interrupt is pending
1 Timer interrupt is pending

Encoding Meaning

0 Interrupt Chaining did not happen on
last IRET

1 Interrupt Chaining occurred during
last IRET

 CP0 Registers of the microAptiv™ UC Core

168 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

AP 24 Indicates whether an exception occurred during Inter-
rupt Auto-Prologue.

R Undefined

IV 23 Indicates whether an interrupt exception uses the gen-
eral exception vector or a special interrupt vector:

In implementations of Release 2 of the architecture, if
the CauseIV is 1 and StatusBEV is 0, the special inter-
rupt vector represents the base of the vectored interrupt
table.

R/W Undefined

WP 22 Indicates that a watch exception was deferred because
StatusEXL or StatusERL had a value of 1 at the time the
watch exception was detected. This bit indicates that the
watch exception was deferred, and it causes the excep-
tion to be initiated when StatusEXL and StatusERL are
both zero. As such, software must clear this bit as part of
the watch exception handler to prevent a watch excep-
tion loop.
Software should not write a 1 to this bit when its value is
0, thereby causing a 0-to-1 transition. If such a transition
is caused by software, it is UNPREDICTABLE
whether hardware ignores the write, accepts the write
with no side effects, or accepts the write and initiates a
watch exception when StatusEXL and StatusERL are
both zero.
Because watch registers are not implemented on the
microAptiv UC core, this bit is ignored on writes and
reads as zero.

R 0

Table 7.17 Cause Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Exception did not occur during
Auto-Prologue operation.

1 Exception occurred during Auto-Pro-
logue operation.

Encoding Meaning

0 Use the general exception vector
(16#180)

1 Use the special interrupt vector
(16#200)

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 169

FDCI 21 Fast Debug Channel Interrupt. This bit denotes whether
a FDC Interrupt is pending (analogous to the IP bits for
other interrupt types):

R Undefined

IP9:IP2 17:10 Indicates an interrupt is pending:

In implementations of Release 1 of the Architecture,
timer and performance counter interrupts are combined
in an implementation-dependent way with hardware
interrupt 5.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is not enabled (Config3VEIC
= 0), timer and performance counter interrupts are com-
bined in an implementation-dependent way with any
hardware interrupt. If EIC interrupt mode is enabled
(Config3VEIC = 1), these bits have a different meaning,
and are interpreted as the RIPL field, described below.

R Undefined
for IP7:IP2

0 for IP9:IP8

RIPL 17:10 Requested Interrupt Priority Level.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC =
1), this field is the encoded (0..255) value of the
requested interrupt. A value of zero indicates that no
interrupt is requested.
If EIC interrupt mode is not enabled (Config3VEIC = 0),
these bits have a different meaning and are interpreted
as the IP7..IP2 bits, described above.

R Undefined for
bits 15:10

0 for bits 17:16

Table 7.17 Cause Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 No Fast Debug Channel interrupt is
pending

1 Fast Debug Channel interrupt is pend-
ing

Bit Name Meaning

17 IP9 Hardware Interrupt 7

16 IP8 Hardware Interrupt 6

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

 CP0 Registers of the microAptiv™ UC Core

170 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

IP1:IP0 9:8 Controls the request for software interrupts:

These bits are exported to an external interrupt control-
ler for prioritization in EIC interrupt mode with other
interrupt sources. The state of these bits is available on
the external core interface as the SI_SWInt[1:0] bus.

R/W Undefined

ExcCode 6:2 Exception code - see Table 7.18 R Undefined

0 20:18, 7,
1:0

Must be written as zero; returns zero on read. 0 0

Table 7.18 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 16#00 Int Interrupt

1-3 16#01-16#03 - Reserved

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

14 16#0e - Reserved

15 16#0f FPE Floating-point exception

16 16#10 IS1 Implementation-Specific Exception 1 (COP2)

17 16#11 CEU CorExtend Unusable

18 16#12 C2E Coprocessor 2 exceptions

19-25 16#13-16#19 - Reserved

26 16#1a DSPDis DSP Module State Disabled exception

27-28 16#1b-16#1c - Reserved

29 16#1d MPU MPU Exception

Table 7.17 Cause Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Bit Name Meaning

9 IP1 Request software interrupt 1
8 IP0 Request software interrupt 0

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 171

7.2.15 View_RIPL Register (CP0 Register 13, Select 4)

This register gives read access to the IP or RIPL field that is also available in the Cause Register. The use of this reg-
ister allows the Interrupt Pending or the Requested Priority Level to be read without extracting that bit field from the
Cause Register.

7.2.16 NestedExc (CP0 Register 13, Select 5)

The Nested Exception (NestedExc) register is an optional read-only register containing the values of StatusEXL and
StatusERL prior to acceptance of the current exception.

30 16#1e Parity Error Parity error. In normal mode, a parity error exception has a dedicated
vector and the Cause register is not updated. If a parity error occurs
while in Debug Mode, this code is written to the DebugDExcCode
field to indicate that re-entry to Debug Mode was caused by a parity
error.

31 16#1f - Reserved

Figure 7-15 View_RIPL Register Format
31 10 9 2 1 0

0 IP9..IP2 IP1 IP0

RIPL

Table 7.19 View_RIPL Register Field Descriptions

Fields

Description Read / Write Reset StateName Bits

0 31:10 Must be written as zero; returns zero on read. 0 0

IP9:IP2 9:2 HW Interrupt Pending.
If EIC interrupt mode is not enabled, indicates which HW
interrupts are pending.

R Undefined for
IP7:IP2

0 for IP9:IP8

RIPL 9:2 Interrupt Priority Level.
If EIC interrupt mode is enabled, this field indicates the
Requested Priority Level of the pending interrupt.

R Undefined

IP1:IP0 1:0 SW Interrupt Pending.
If EIC interrupt mode is not enabled, controls which SW
interrupts are pending.

R/W Undefined

Table 7.18 Cause Register ExcCode Field (Continued)

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

 CP0 Registers of the microAptiv™ UC Core

172 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

This register is part of the Nested Fault feature. The existence of the register can be determined by reading the
Config5NFExists bit.

Figure 7-16 shows the format of the NestedExc register; Table 7.20 describes the NestedExc register fields.

7.2.17 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

Figure 7-16 NestedExc Register Format
31 3 2 1 0

0 ERL EXL 0

Table 7.20 NestedExc Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

0 31:3 Reserved, read as 0. R0 0

ERL 2 Value of StatusERL prior to acceptance of current
exception.

Updated by all exceptions that would set either
StatusEXL or StatusERL. Not updated by Debug excep-
tions.

R Undefined

EXL 1 Value of StatusEXL prior to acceptance of current
exception.

Updated by exceptions which would update EPC if
StatusEXL is not set (MCheck, Interrupt, Address Error,
all TLB exceptions, Bus Error, CopUnusable, Reserved
Instruction, Overflow, Trap, Syscall, FPU, etc.) . For
these exception types, this register field is updated
regardless of the value of StatusEXL.

Not updated by exception types which update ErrorEPC
- (Reset, Soft Reset, NMI, Cache Error). Not updated by
Debug exceptions.

R Undefined

0 0 Reserved, read as 0. R0 0

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 173

• The virtual address of the immediately preceding branch or jump instruction, when the exception-causing
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status register is set;
however, the register can still be written via the MTC0 instruction.

In processors that implement microMIPS, a read of the EPC register (via MFC0) returns the following value in the
destination GPR:

GPR[rt] ← ExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field and written to the
GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, as follows:

ExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared, and the lower bit is loaded from the lower bit
of the GPR.

Figure 7.17 EPC Register Format

7.2.18 NestedEPC (CP0 Register 14, Select 2)

The Nested Exception Program Counter (NestedEPC) is an optional read/write register with the same behavior as the
EPC register, except that:

• The NestedEPC register ignores the value of StatusEXL and is therefore updated on the occurrence of any excep-
tion, including nested exceptions.

• The NestedEPC register is not used by the ERET/DERET/IRET instructions. To return to the address stored in
NestedEPC, software must copy the value of the NestedEPC register to the EPC register.

This register is part of the Nested Fault feature. The existence of the register can be determined by reading the
Config5NFExists bit.

Figure 7-16 shows the format of the NestedEPC register; Table 7.20 describes the NestedEPC register fields.

31 0

EPC

Table 7.21 EPC Register Field Description

Fields

Description Read/Write Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined

 CP0 Registers of the microAptiv™ UC Core

174 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.19 Processor Identification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32-bit, read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 7.19 PRId Register Format

Figure 7-18 NestedEPC Register Format
0

NestedEPC

Table 7.22 NestedEPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

NestedEPC :0 Nested Exception Program Counter

Updated by exceptions which would update EPC if
StatusEXL is not set (MCheck, Interrupt, Address Error,
all TLB exceptions, Bus Error, CopUnusable, Reserved
Instruction, Overflow, Trap, Syscall, FPU, etc.) . For
these exception types, this register field is updated
regardless of the value of StatusEXL.

Not updated by exception types which update ErrorEPC
i.e., Reset, Soft Reset, NMI, and Cache Error.
Not updated by Debug exceptions.

R/W Undefined

31 24 23 16 15 8 7 5 4 2 1 0

Company Opt Company ID Processor ID Revision

Table 7.23 PRId Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)

Company Opt 31:24 Company Option. Whatever name is specified by the SoC
builder who synthesizes the microAptiv UC core; refer to
your SoC manual. This field should be preset by the config
GUI with a number between 0x00 and 0x7F; higher values
(0x80-0xFF) are reserved by MIPS Technologies.

R Preset

Company ID 23:16 Company Identifier. Identifies the company that designed
or manufactured the processor. In the microAptiv UC this
field contains a value of 1 to indicate MIPS Technologies,
Inc.

R 1

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 175

7.2.20 EBase Register (CP0 Register 15, Select 1)

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multiprocessor system.

The EBase register provides the ability for software to identify the specific processor within a multiprocessor system,
and allows the exception vectors for each processor to be different, especially in systems composed of heterogeneous
processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception vectors
when StatusBEV is 0. The exception vector base address comes from the fixed defaults (see Section 6.5 “Exception
Vector Locations”) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits 31:12 of the EBase
register initialize the exception base register to 16#8000.0000, providing backward compatibility with Release 1
implementations.

Bits 31:30 of the EBase Register are fixed with the value 2#10 to force the exception base address to be in the kseg0
or kseg1 unmapped virtual address segments.

Processor ID 15:8 Processor Identifier. Identifies the type of processor. This
field allows software to distinguish between the various
types of MIPS Technologies processors.

R 0x9D

Revision 7:0 Processor Revision. Specifies the revision number of the
processor. This field allows software to distinguish
between different revisions of the same processor type.
This field contains the following three subfields:

R Preset

Table 7.23 PRId Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

Bits Name Meaning
Read/
Write Reset

7:5 Major
Revision

This number is
increased on major
revisions of the pro-
cessor core.

R Preset

4:2 Minor
Revision

This number is
increased on each
incremental revi-
sion of the proces-
sor and reset on
each new major
revision.

R Preset

1:0 Patch
Level

If a patch is made to
modify an older
revision of the pro-
cessor, this field is
incremented.

R Preset

 CP0 Registers of the microAptiv™ UC Core

176 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation of
the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectors to be placed at
any 4KByte page boundary. If vectored interrupts are used, a vector offset greater than 4KBytes can be generated. In
this case, bit 12 of the Exception Base field must be zero. The operation of the processor is UNDEFINED if software
writes bit 12 of the Exception Base field with a 1 and enables the use of a vectored interrupt whose offset is greater
than 4KBytes from the exception base address.

Figure 7.20 shows the format of the EBase Register; Table 7.24 describes the EBase register fields.

7.2.21 CDMMBase Register (CP0 Register 15, Select 2)

The 36-bit physical base address for the Common Device Memory Map facility is defined by this register. This regis-
ter only exists if Config3CDMM is set to one.

Figure 7.21 shows the format of the CDMMBase register, and Table 7.25 describes the register fields.

Figure 7.20 EBase Register Format
31 30 29 12 11 10 9 0

1 0 Exception Base 0 0 CPUNum

Table 7.24 EBase Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

1 31 This bit is ignored on writes and returns one on reads. R 1

0 30 This bit is ignored on writes and returns zero on reads. R 0

Exception
Base

29:12 In conjunction with bits 31:30, this field specifies the base
address of the exception vectors when StatusBEV is zero.

R/W 0

0 11:10 Must be written as zero; returns zero on reads. 0 0

CPUNum 9:0 This field specifies the number of the CPU in a multipro-
cessor system and can be used by software to distinguish a
particular processor from the others. The value in this field
is set by the SI_CPUNum[9:0] static input pins to the
core. In a single processor system, this value should be set
to zero.

R Externally Set

Figure 7.21 CDMMBase Register Format
31 11 10 9 8 0

CDMM_UPPER_ADDR EN CI CDMMSize

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 177

7.2.22 Config Register (CP0 Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset exception process, or are constant.Figure 7.22 shows the format of
the Config Register Format - Select 0, and Table 7.26 describes the register fields.

Figure 7.22 Config Register Format — Select 0

Table 7.25 CDMMBase Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

CDMM_UP
PER_ADDR

31:11 Bits 35:15 of the base physical address of the mem-
ory mapped registers.
The number of implemented physical address bits is
implementation-specific. For the unimplemented
address bits, writes are ignored and reads return zero.

R/W Undefined

EN 10 Enables the CDMM region.
If this bit is cleared, memory requests to this address
region access regular system memory. If this bit is
set, memory requests to this region access the
CDMM logic

R/W 0

CI 9 If set to 1, this indicates that the first 64-byte Device
Register Block of the CDMM is reserved for addi-
tional registers that manage CDMM region behavior
and are not IO device registers.

R 0

CDMMSize 8:0 This field represents the number of 64-byte Device
Register Blocks instantiated in the core.

R Preset

31 30 28 27 25 24 23 22 21 20 19 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU 0 UDI SB MDU 0 DS BE AT AR MT 0 K0

Encoding Meaning

0 CDMM Region is disabled.
1 CDMM Region is enabled.

Encoding Meaning

0 1 DRB
1 2 DRBs
2 3 DRBs
... ...

511 512 DRBs

 CP0 Registers of the microAptiv™ UC Core

178 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 7.26 Config Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config1 register.

R 1

K23 30:28 This field controls the cacheability of the kseg2 and kseg3
address segments in FM implementations.
Refer to Table 7.27 for the field encoding.

FM: R/W FM: 010

KU 27:25 This field controls the cacheability of the kuseg and useg
address segments in FM implementations.
Refer to Table 7.27 for the field encoding.

FM: R/W FM: 010

0 24:23 Must be written as 0. Returns zero on reads. 0 0

UDI 22 This bit indicates that CorExtend User Defined Instructions
have been implemented.
0 = No User Defined Instructions are implemented
1 = User Defined Instructions are implemented

R Preset

SB 21 Indicates whether SimpleBE bus mode is enabled. Set via
SI_SimpleBE[0] input pin:
0 = No reserved byte enables on SRAM interface
1 = Only simple byte enables allowed on SRAM interface

R Externally Set

MDU 20 This bit indicates the type of Multiply/Divide Unit present.
0 = Fast, high-performance MDU
1 = Iterative, area-efficient MDU

R Preset

0 19:17 Must be written as 0. Returns zero on reads. 0 0

DS 16 Dual SRAM interface.
0: Unified instruction/data SRAM interface
1: Dual instruction/data SRAM interfaces

R Preset

BE 15 Indicates the endian mode in which the processor is run-
ning. Set via SI_Endian input pin.
0: Little endian
1: Big endian

R Externally Set

AT 14:13 Architecture type implemented by the processor. This field
is always 00 to indicate the MIPS32 architecture.

R 00

AR 12:10 Architecture revision level. This field is always 001 to indi-
cate MIPS32 Release 2.
0: Release 1
1: Release 2
2-7: Reserved

R 001

MT 9:7 MMU Type:
3: Fixed Mapping
0-2, 4-7: Reserved

R 3

0 6:3 Must be written as zeros; returns zeros on reads. 0 0

K0 2:0 Kseg0 coherency algorithm. Refer to Table 7.27 for the
field encoding.

R/W 010

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 179

7.2.23 Config1 Register (CP0 Register 16, Select 1)

The Config1 register is an adjunct to the Config register and encodes additional information about capabilities present
on the core. All fields in the Config1 register are read-only.

Figure 7.23 Config1 Register Format — Select 1

Table 7.27 Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute

2 Uncached.

3 Cached (Core treats as uncached, but passes attribute to the system for use with any exter-
nal caching mechanisms)

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 7.28 Config1 Register Field Descriptions — Select 1

Fields

Description Read/Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config2 register.

R 1

MMU Size 30:25 This field contains the number of entries in the TLB minus
one.

R 0

IS 24:22 This field contains the number of instruction cache sets per
way. Because the microAptiv UC core does not include
caches, this field is always read as 0.

R 0

IL 21:19 This field contains the instruction cache line size. Because
the microAptiv UC core does not include caches, this field
is always read as 0.

R 0

IA 18:16 This field contains the level of instruction cache associativ-
ity. Because the microAptiv UC core does not include
caches, this field is always read as 0.

R 0

DS 15:13 This field contains the number of data cache sets per way.
Because the microAptiv UC core does not include caches,
this field is always read as 0.

R 0

DL 12:10 This field contains the data cache line size. Because the
microAptiv UC core does not include caches, this field is
always read as 0.

R 0

DA 9:7 This field contains the type of set associativity for the data
cache. Because the microAptiv UC core does not include
caches, this field is always read as 0.

R 0

 CP0 Registers of the microAptiv™ UC Core

180 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.24 Config2 Register (CP0 Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilities information.
Config2 is allocated for showing the configuration of level 2/3 caches. These fields are reset to 0 because L2/L3
caches are not supported by the microAptiv UC core. All fields in the Config2 register are read-only.

Figure 7.24 Config2 Register Format — Select 2

C2 6 Coprocessor 2 present.
0: No coprocessor is attached to the COP2 interface
1: A coprocessor is attached to the COP2 interface
If the Cop2 interface logic is not implemented, this bit will
read 0.

R Preset

MD 5 MDMX implemented. This bit always reads as 0 because
MDMX is not supported.

R 0

PC 4 Performance Counter registers implemented.
0: No Performance Counter registers are implemented
1: Performance Counter registers are implemented

R Preset

WR 3 Watch registers implemented.
0: No Watch registers are implemented
1: One or more Watch registers are implemented
This bit is always read as 0, because the microAptiv UC
core does not contain Watch registers.

R 0

CA 2 Code compression (MIPS16e) implemented.
0: MIPS16e is not implemented
1: MIPS16e is implemented

R 0

EP 1 EJTAG present: This bit is always set to indicate that the
core implements EJTAG.

R 1

FP 0 FPU implemented.
0: No FPU
1: FPU is implemented

R Preset

31 30 0

M 0

Table 7.29 Config2 Register Field Descriptions — Select 1

Fields

Description Read/Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config3 register.

R 1

0 30:0 These bits are reserved. R 0

Table 7.28 Config1 Register Field Descriptions — Select 1 (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 181

7.2.25 Config3 Register (CP0 Register 16, Select 3)

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

Figure 7-25 shows the format of the Config3 register; Table 7.30 describes the Config3 register fields.

Figure 7-25 Config3 Register Format

31 30 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 000000000 IPLW MMAR MCU
ISA
On
Exc

ISA ULRI RXI

D
S
P
2
P

D
S
P
P

0 ITL LPA

V
E
I
C

V
I
n
t

SP
CD
M
M

0 SM TL

Table 7.30 Config3 Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

M 31 This bit is reserved to indicate that a Config4 register is present. R 1

0 30:23,9,2 Must be written as zeros; returns zeros on read. 0 0

IPLW 22:21 Width of the StatusIPL and CauseRIPL fields:

If the IPL field is 8-bits in width, bits 18 and 16 of Status are
used as the most significant bit and second most significant bit,
respectively, of that field.

If the RIPL field is 8-bits in width, bits 17 and 16 of Cause are
used as the most significant bit and second most significant bit,
respectively, of that field.

R 1

MMAR 20:18 microMIPS Architecture revision level: R 0

MCU 17 MIPS MCU ASE implemented. R 1

Encoding Meaning

0 IPL and RIPL fields are 6-bits in
width.

1 IPL and RIPL fields are 8-bits in
width.

Others Reserved.

Encoding Meaning

0 Release 1

1-7 Reserved

Encoding Meaning

0 MCU ASE is not implemented.

1 MCU ASE is implemented.

 CP0 Registers of the microAptiv™ UC Core

182 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

ISAOnExc 16 Reflects the Instruction Set Architecture used when vectoring to
an exception. Affects exceptions whose vectors are offsets from
EBASE.

RW Preset, driven
by signal
external to
CPU core

ISA 15:14 Indicates Instruction Set Availability. R Preset, driven
by signal
external to
CPU core

ULRI 13 UserLocal register implemented. This bit indicates whether the
UserLocal coprocessor 0 register is implemented.

R 1

RXI 12 Indicates whether the RIE and XIE bits exist within the
PageGrain register..

R 0

DSP2P 11 Reads 1 to indicate that Revision 2 of the MIPS DSP Module is
implemented

R Preset

DSPP 10 Reads 1 to indicate that the MIPS DSP Module extension is
implemented.

R Preset

ITL 8 Indicates that iFlowtrace hardware is present. R Preset

Table 7.30 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 MIPS32 ISA is used on entrance to an
exception vector.

1 microMIPS is used on entrance to an
exception vector.

Encoding Meaning

0 Only MIPS32 is implemented.

1 Only microMIPS is implemented.

2 Both MIPS32 and microMIPS are
implemented. MIPS32 ISA used when
coming out of reset.

3 Both MIPS32 and microMIPS are
implemented. microMIPS is used
when coming out of reset.

Encoding Meaning

0 UserLocal register is not imple-
mented

1 UserLocal register is implemented

Encoding Meaning

0 The RIE and XIE bits are not imple-
mented within the PageGrain regis-
ter.

1 The RIE and XIE bits are implemented
within the PageGrain register

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 183

LPA 7 Denotes the presence of support for large physical addresses on
MIPS64 processors. Not used by MIPS32 processors and returns
zero on read.

For implementations of Release 1 of the Architecture, this bit
returns zero on read.

R 0

VEIC 6 Indicates support for an external interrupt controller.

The value of this bit is set by the static input, SI_EICPresent.
This allows external logic to communicate whether an external
interrupt controller is attached to the processor or not.

R Externally Set

VInt 5 Indicates implementation of Vectored interrupts.

On the microAptiv UC core, this bit is always a 1, because vec-
tored interrupts are implemented.

R 1

SP 4 When set, indicates that Small (1KByte) page support is imple-
mented.

R 0

CDMM 3 Common Device Memory Map implemented. This bit indicates
whether the CDMM is implemented.

R Preset

Table 7.30 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Large physical address support is not
implemented

1 Large physical address support is
implemented

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

Encoding Meaning

0 Vector interrupts are not implemented
1 Vectored interrupts are implemented

Encoding Meaning

0 Small page support is not implemented
1 Small page support is implemented

Encoding Meaning

0 CDMM is not implemented

1 CDMM is implemented

 CP0 Registers of the microAptiv™ UC Core

184 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.26 Config4 Register (CP0 Register 16, Select 4)

The Config4 register encodes additional capabilities. This register is required if any optional feature described by this
register is implemented and is otherwise optional.

Figure 7-26 shows the format of the Config4 register; Table 7.31 describes the Config4 register fields.

7.2.27 Config5 Register (CP0 Register 16, Select 5)

The Config5 register encodes additional capabilities. This register is required if any optional feature described by this
register is implemented and is otherwise optional.

SM 1 SmartMIPS™ ASE implemented. This bit indicates whether the
SmartMIPS ASE is implemented. Because SmartMIPS isnot
present on the microAptiv UC core, this bit will always be 0.

R 0

TL 0 Trace Logic implemented. This bit indicates whether PC or data
trace is implemented.

R Preset

Figure 7-26 Config4 Register Format
31 30 0

M 000...000

Table 7.31 Config4 Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

M 31 This bit is reserved to indicate that a Config5 register is
present.

R 1

0 30:0 Must be written as zeros; returns zeros on read. 0 0

Table 7.30 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 SmartMIPS ASE is not implemented
1 SmartMIPS ASE is implemented

Encoding Meaning

0 Trace logic is not implemented
1 Trace logic is implemented

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 185

Figure 7-27 shows the format of the Config5 register; Table 7.32 describes the Config5 register fields.

7.2.28 Config7 Register (CP0 Register 16, Select 7)

The Config7 register contains implementation specific configuration information. A number of these bits are write-
able to disable certain performance enhancing features within the microAptiv UC core.

Figure 7.28 Config7 Register Format

Figure 7-27 Config5 Register Format
31 30 3 2 1 0

M 000...000 UF
R 0 NF

Table 7.32 Config5 Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

M 31 This bit is reserved. With the current architectural defini-
tion, this bit should always read as a 0.

R 0

0 30:3,1 Must be written as zeros; returns zeros on read. 0 0

UFR 2 Release 5 feature. This feature allows user mode access
to StatusFR with CTC1 and CFC1.

R/W 0

NFExists 0 Indicates that the Nested Fault feature is present.
The Nested Fault feature allows recognition of faulting
behavior within an exception handler.

R 1

31 30 19 18 17 0

WII 0 HCI 0

Encoding Meaning

0 User mode FR instructions not
allowed

1 User mode FR instructions allowed

 CP0 Registers of the microAptiv™ UC Core

186 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.29 Debug Register (CP0 Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug
exception and also when re-entering at the debug exception vector due to a normal exception in debug mode. The
read-only information bits are updated every time the debug exception is taken, or when a normal exception is taken
when already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and
fields are UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written in
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

• DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, DDBSImpr are updated on both debug exceptions and
on exceptions in debug modes.

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception.

• Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode.

• DBD is updated on both debug and on exceptions in debug modes.

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.,
EJTAGver and DM.

Figure 7.29 Debug Register Format

Table 7.33 Config7 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

WII 31 Wait IE Ignore. Indicates that this processor will allow an interrupt
to unblock a WAIT instruction, even if IE is preventing the interrupt
from being taken. This avoids problems using the WAIT instruction
for ‘bottom half’ interrupt servicing.
In WII mode when IE=0, waking up from Sleep mode will not enter
an Interrupt Service Routine.

R 1

0 30:19,17:0 These bits are unused and should be written as 0. R 0

HCI 18 Hardware Cache Initialization: Indicates that a cache does not
require initialization by software.
This bit will most likely only be set on simulation-only cache mod-
els and not on real hardware.

R 0

31 30 29 28 27 26 25 24 23 22 21 20 19

DBD DM NoDCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI DDB-
SImpr

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBLI
mpr Ver DExcCode NoSSt SSt R DIBI

mpr DINT DIB DDBS DDBL DBp DSS

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 187

Table 7.34 Debug Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)

DBD 31 Indicates whether the last debug exception or exception
in debug mode occurred in a branch delay slot:

R Undefined

DM 30 Indicates that the processor is operating in debug mode: R 0

NoDCR 29 Indicates whether the dseg memory segment is present
and the Debug Control Register is accessible:

R 0

LSNM 28 Controls access of load/store between dseg and main
memory:

R/W 0

Doze 27 Indicates that the processor was in any kind of low
power mode when a debug exception occurred:

R Undefined

Halt 26 Indicates that the internal system bus clock was stopped
when the debug exception occurred:

R Undefined

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 Processor is operating in non-debug
mode

1 Processor is operating in debug mode

Encoding Meaning

0 dseg is present

1 No dseg present

Encoding Meaning

0 Load/stores in dseg address range
goes to dseg

1 Load/stores in dseg address range
goes to main memory

Encoding Meaning

0 Processor not in low-power mode
when debug exception occurred

1 Processor in low-power mode when
debug exception occurred

Encoding Meaning

0 Internal system bus clock stopped

1 Internal system bus clock running

 CP0 Registers of the microAptiv™ UC Core

188 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

CountDM 25 Indicates the Count register behavior in debug mode: R/W 1

IBusEP 24 Instruction fetch Bus Error exception Pending. Set when
an instruction fetch bus error event occurs, or if a 1 is
written to the bit by software. Cleared when a Bus Error
exception on an instruction fetch is taken by the proces-
sor, and by reset. If IBusEP is set when IEXI is cleared,
a Bus Error exception on an instruction fetch is taken by
the processor, and IBusEP is cleared.

R/W1 0

MCheckP 23 Indicates that an imprecise Machine Check exception is
pending. All Machine Check exceptions are precise on
the microAptiv UC processor, so this bit will always
read as 0.

R 0

CacheEP 22 Indicates that an imprecise Cache Error is pending.
Cache Errors cannot be taken by the microAptiv UC
core, so this bit will always read as 0

R 0

DBusEP 21 Data access Bus Error exception Pending. Covers
imprecise bus errors on data access, similar to the
behavior of IBusEP for imprecise bus errors on an
instruction fetch.

R/W1 0

IEXI 20 Imprecise Error eXception Inhibit controls exceptions
taken due to imprecise error indications. Set when the
processor takes a debug exception or exception in debug
mode. Cleared by execution of the DERET instruction;
otherwise modifiable by debug mode software. When
IEXI is set, the imprecise error exception from a bus
error on an instruction fetch or data access, cache error,
or machine check is inhibited and deferred until the bit
is cleared.

R/W 0

DDBSImpr 19 Indicates that an imprecise Debug Data Break Store
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

R Undefined

DDBLImpr 18 Indicates that an imprecise Debug Data Break Load
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

R Undefined

Ver 17:15 EJTAG version. R 101

DExcCode 14:10 Indicates the cause of the latest exception in debug
mode. The field is encoded as the ExcCode field in the
Cause register for those normal exceptions that may
occur in debug mode.
Value is undefined after a debug exception.

R Undefined

Table 7.34 Debug Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

Encoding Meaning

0 Count register stopped in debug mode

1 Count register is running in debug
mode

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 189

NoSST 9 Indicates whether the single-step feature controllable by
the SSt bit is available in this implementation:

R 0

SSt 8 Controls if debug single step exception is enabled: R/W 0

R 7 Reserved. Must be written as zeros; returns zeros on
reads.

R 0

DIBImpr 6 Indicates that an Imprecise debug instruction break
exception occurred (due to a complex breakpoint).
Cleared on exception in debug mode.

R Undefined

DINT 5 Indicates that a debug interrupt exception occurred.
Cleared on exception in debug mode.

R Undefined

DIB 4 Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.

R Undefined

DDBS 3 Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.

R Undefined

DDBL 2 Indicates that a debug data break exception occurred on
a load. Cleared on exception in debug mode.

R Undefined

Table 7.34 Debug Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

Encoding Meaning

0 Single-step feature available

1 No single-step feature available

Encoding Meaning

0 No debug single-step exception
enabled

1 Debug single step exception enabled

Encoding Meaning

0 No debug interrupt exception

1 Debug interrupt exception

Encoding Meaning

0 No debug instruction exception

1 Debug instruction exception

Encoding Meaning

0 No debug data exception on a store

1 Debug instruction exception on a store

Encoding Meaning

0 No debug data exception on a load

1 Debug instruction exception on a load

 CP0 Registers of the microAptiv™ UC Core

190 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.30 Trace Control Register (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below.

This register is only implemented if the EJTAG PDtrace capability is present.

Figure 7.30 TraceControl Register Format

DBp 1 Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.

R Undefined

DSS 0 Indicates that a debug single-step exception occurred.
Cleared on exception in debug mode.

R Undefined

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 1 0

TS UT 0 TB IO D E K S U ASID_M ASID G Mode On

Table 7.35 TraceControl Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

TS 31 The trace select bit is used to select between the hard-
ware and the software trace control bits. A value of
zero selects the external hardware trace block signals,
and a value of one selects the trace control bits in this
software control register.

R/W 0

UT 30 This bit is used to indicate the type of user-triggered
trace record. A value of zero implies a user type 1, and
a value of one implies a user type 2.
The actual triggering of a user trace record occurs on a
write to the UserTraceData register.

R/W Undefined

0 29:28 Reserved for future use; Must be written as zero;
returns zero on read.

0 0

Table 7.34 Debug Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

Encoding Meaning

0 No debug software breakpoint excep-
tion

1 Debug software breakpoint exception

Encoding Meaning

0 No debug single-step exception

1 Debug single-step exception

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 191

TB 27 Trace All Branch. When set to one, this tells the pro-
cessor to trace the PC value for all taken branches, not
just the ones whose branch target address is statically
unpredictable.

R/W Undefined

IO 26 Inhibit Overflow. This signal is used to indicate to the
core trace logic that slow but complete tracing is
desired. When set to one, the core tracing logic does
not allow a FIFO overflow or discard trace data. This
is achieved by stalling the pipeline when the FIFO is
nearly full, so that no trace records are ever lost.

R/W Undefined

D 25 When set to one, this enables tracing in Debug Mode
For trace to be enabled in Debug mode, the On bit
must be one.
When set to zero, trace is disabled in Debug Mode,
irrespective of other bits.

R/W Undefined

E 24 When set to one, this enables tracing in Exception
Mode. For trace to be enabled in Exception mode, the
On bit must be one.
When set to zero, trace is disabled in Exception Mode,
irrespective of other bits.

R/W Undefined

K 23 When set to one, this enables tracing in Kernel Mode.
For trace to be enabled in Kernel mode, the On bit
must be one.
When set to zero, trace is disabled in Kernel Mode,
irrespective of other bits.

R/W Undefined

0 22 This bit is reserved. Must be written as zero; returns
zero on read.

0 0

U 21 When set to one, this enables tracing in User Mode.
For trace to be enabled in User mode, the On bit must
be one.
When set to zero, trace is disabled in User Mode, irre-
spective of other bits.

R/W Undefined

ASID_M 20:13 In an FM-based MMU core in which ASID is not sup-
ported, this field is ignored on writes and returns zero
on reads.

R 0

ASID 12:5 In an FM-based MMU core in which ASID is not sup-
ported, this field is ignored on writes and returns zero
on reads.

R 0

G 4 In an FM-based MMU core in which ASID is not sup-
ported, this field is ignored on writes and returns 1 on
reads. This causes all match equations to work cor-
rectly in the absence of an ASID.

R 1

Table 7.35 TraceControl Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

 CP0 Registers of the microAptiv™ UC Core

192 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.31 Trace Control2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB) (see Section 10.8.6 “ITCB Register Interface for Software Configurability”). As such,
these fields in the TraceControl2 register will not have valid values until the TCB asserts these values.

This register is only implemented if the EJTAG PDTrace capability is present.

Figure 7.31 TraceControl2 Register Format

Mode 3:1 These three bits control the trace mode function.

The TraceControl2ValidModes field determines which
of these encodings are supported by the processor. The
operation of the processor is UNPREDICTABLE if
this field is set to a value which is not supported by the
processor.

R/W Undefined

On 0 This is the master trace enable switch in software con-
trol. When zero, tracing is always disabled. When set
to one, tracing is enabled whenever the other enabling
functions are also true.

R/W 0

31 7 6 5 4 3 2 0

0 Valid-
Modes TBI TBU SyP

Table 7.36 TraceControl2 Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:5 Reserved for future use; Must be written as zero;
returns zero on read.

0 0

Table 7.35 TraceControl Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Mode Trace Mode

000 Trace PC
001 Trace PC and load address
010 Trace PC and store address
011 Trace PC and both load/store addresses
100 Trace PC and load data
101 Trace PC and load address and data
110 Trace PC and store address and data
111 Trace PC and both load/store address and

data

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 193

ValidModes 6:5 This field specifies the type of tracing that is supported
by the processor.

R 10

TBI 4 This bit indicates how many trace buffers are imple-
mented by the TCB.

R Per implementation

TBU 3 This bit denotes which trace buffer is currently being
written by the trace and is used to select the appropri-
ate interpretation of the TraceControl2SyP field.

R Undefined

Table 7.36 TraceControl2 Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

00 PC tracing only
01 PC and load and store address

tracing only
10 PC, load and store address, and

load and store data
11 Reserved

Encoding Meaning

0 Only one trace buffer is imple-
mented, and the Debug sin-
gle-step exception bit of this
register indicates which trace
buffer is implemented

1 Both on-chip and off-chip trace
buffers are implemented by the
TCB, and the TBU bit of this
register indicates to which trace
buffer the trace is currently writ-
ten.

Encoding Meaning

0 Trace data is being sent to an on-chip
trace buffer

1 Trace Data is being sent to an off-chip
trace buffer

 CP0 Registers of the microAptiv™ UC Core

194 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.32 User Trace Data1 Register (CP0 Register 23, Select 3)/User Trace Data2 Regis-
ter (CP0 Register 24, Select 3)

A software write to any bits in the UserTraceData1 or UserTraceData2 registers will trigger a trace record to be writ-
ten indicating a type 1 or type 2 user format respectively. The trace output data is UNPREDICTABLE if these regis-
ters are written in consecutive cycles.

This register is only implemented if the MIPS iFlowtrace capability is present.

Figure 7.32 User Trace Data1/User Trace Data2 Register Format

SyP 2:0 Used to indicate the synchronization period.
The period (in cycles) between which the periodic syn-
chronization information is to be sent is defined as
shown below, for both when the trace buffer is on-chip
and off-chip.

The “On-chip” column value is used when the trace
data is being written to an on-chip trace buffer (e.g,
TraceControl2TBU = 0). Conversely, the “Off-chip”
column is used when the trace data is being written to
an off-chip trace buffer (e.g, TraceControl2TBU = 1).

R Undefined

31 0

Data

Table 7.37 UserTraceData1/UserTraceData2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this triggers a user
format trace record out of the PDtrace interface that transmits the
Data field to trace memory.

R/W 0

Table 7.36 TraceControl2 Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

SyP On-chip Off-chip

000 22 27

001 23 28

010 24 29

011 25 210

100 26 211

101 27 212

110 28 213

111 29 214

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 195

7.2.33 TraceBPC Register (CP0 Register 23, Select 4)

This register is used to start and stop tracing using an EJTAG Hardware breakpoint. The Hardware breakpoint can
then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if hardware breakpoints and the EJTAG PDTrace capability are both present.

Figure 7.33 Trace BPC Register Format
31 30 18 17 16 15 14 6 5 0

DE 0 DBPOn IE 0 IBPOn

Table 7.38 TraceBPC Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

DE 31 Used to specify whether the trigger signal from
EJTAG data breakpoint should trigger tracing func-
tions or not:

R/W 0

0 30:18 Reserved 0 0

DBPOn 17:16 Each of the 2 bits corresponds to the 2 possible
EJTAG hardware data breakpoints that may be imple-
mented. For example, bit 16 corresponds to the first
data breakpoint. If 2 data breakpoints are present in the
EJTAG implementation, then they correspond to bits
16 and 17. The rest are always ignored by the tracing
logic because they will never be triggered.
A value of one for each bit implies that a trigger from
the corresponding data breakpoint should start tracing.
And a value of zero implies that tracing should be
turned off with the trigger signal.

R/W 0

IE 15 Used to specify whether the trigger signal from
EJTAG instruction breakpoint should trigger tracing
functions or not:

R/W 0

0 14:6 Reserved 0 0

Encoding Meaning

0 Disables trigger signals from data
breakpoints

1 Enables trigger signals from data
breakpoints

Encoding Meaning

0 Disables trigger signals from instruc-
tion breakpoints

1 Enables trigger signals from instruc-
tion breakpoints

 CP0 Registers of the microAptiv™ UC Core

196 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.34 Debug2 Register (CP0 Register 23, Select 6)

This register holds additional information about Complex Breakpoint exceptions.

This register is only implemented if complex hardware breakpoints are present.

Figure 7.34 Debug2 Register Format

IBPOn 5:0 Each of the 6 bits corresponds to the 6 possible
EJTAG hardware instruction breakpoints that may be
implemented. Bit 0 corresponds to the first instruction
breakpoint, and so on. If only 2 instruction breakpoints
are present in the EJTAG implementation, then only
bits 0 and 1 are used. The rest are always ignored by
the tracing logic because they will never be triggered.
A value of one for each bit implies that a trigger from
the corresponding instruction breakpoint should start
tracing. And a value of zero implies that tracing should
be turned off with the trigger signal.

R/W 0

31 4 3 2 1 0

0 Prm DQ Tup PaCo

Table 7.39 Debug2 Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:4 Reserved 0 0

Prm 3 Primed - indicates whether a complex breakpoint with
an active priming condition was seen on the last debug
exception.

R Undefined

DQ 2 Data Qualified - indicates whether a complex break-
point with an active data qualifier was seen on the last
debug exception.

R Undefined

Tup 1 Tuple - indicates whether a tuple breakpoint was seen
on the last debug exception.

R Undefined

PaCo 0 Pass Counter - indicates whether a complex breakpoint
with an active pass counter was seen on the last debug
exception

R Undefined

Table 7.38 TraceBPC Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 197

7.2.35 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot, and the Debug Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC contains the virtual address of the
instruction where execution should resume after the debug handler code is executed.

In processors that implement microMIPS, a read of the DEPC register (via MFC0) returns the following value in the
destination GPR:

GPR[rt] ← DebugExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes that value to the
debug exception PC and the ISAMode field, as follows

DebugExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure 7.35 DEPC Register Format

31 0

DEPC

Table 7.40 DEPC Register Formats

Fields

Description Read/Write ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot, then the virtual
address of the immediately preceding branch or jump
instruction is placed in this register.
Execution of the DERET instruction causes a jump to the
address in the DEPC.

 R/W Undefined

 CP0 Registers of the microAptiv™ UC Core

198 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.36 Performance Counter Register (CP0 Register 25, select 0-3)

The microAptiv UC processor defines two performance counters and two associated control registers, which are
mapped to CP0 register 25. The select field of the MTC0/MFC0 instructions are used to select the specific register
accessed by the instruction, as shown in Table 7.41.

Each counter is a 32-bit read/write register and is incremented by one each time the countable event, specified in its
associated control register, occurs. Each counter can independently count one type of event at a time.

Bit 31 of each of the counters are ANDed with an interrupt enable bit, IE, of their respective control register to deter-
mine if a performance counter interrupt should be signalled. The two values are then ORed together to create the
SI_PCI output. Traditionally, this signal is combined with one of the SI_Int pins to signal an interrupt to the microAp-
tiv UC. However, this is no longer needed as the core will internally route the interrupt to the IP number set by the
IntCtl.IPPCI field. Counting is not affected by the interrupt indication. This output is cleared when the counter wraps
to zero, and may be cleared in software by writing a value with bit 31 = 0 to the Performance Counter Count registers.

NOTE: The performance counter registers are connected to a clock that is stopped when the processor is in sleep
mode (if the top-level clock gater is present). Most events would not be active during that time, but others would be,
notably the cycle count. This behavior should be considered when analyzing measurements taken on a system. Fur-
ther, note that FPGA implementations of the core would generally not have the clock gater present and thus would
have different behavior than a typical ASIC implementation.

Figure 7.36 Performance Counter Control Register

Table 7.41 Performance Counter Register Selects

Select[2:0] Register

0 Register 0 Control

1 Register 0 Count

2 Register 1 Control

3 Register 1 Count

31 30 15 14 11 10 5 4 3 2 1 0

M 0 EventExt Event IE U 0 K EXL

Table 7.42 Performance Counter Control Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

M 31 If this bit is one, another pair of Performance Control and Counter
registers is implemented at an MTC0 or MFC0 select field value of
‘n+2’ and ‘n+3’.

R Preset

EventExt 14:11 Event specific to Virtualization Module if supported. Possible
events are listed in Table 7.43.

R/W Undefined

Event 10:5 Counter event enabled for this counter. Possible events are listed in
Table 7.43.

R/W Undefined

IE 4 Counter Interrupt Enable. This bit masks bit 31 of the associated
count register from the interrupt exception request output.

R/W 0

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 199

Table 7.43 describes the events countable with the two performance counters. The mode column indicates whether the
event counting is influenced by the mode bits (U,K,EXL). The operation of a counter is UNPREDICTABLE for
events which are specified as Reserved.

Performance counters never count in debug mode or when ERL = 1.

The performance counter resets to a low-power state, in which none of the counters will start counting events until
software has enabled event counting, using an MTC0 instruction to the Performance Counter Control Registers.

U 3 Count in User Mode. When this bit is set, the specified event is
counted in User Mode.

R/W Undefined

K 1 Count in Kernel Mode. When this bit is set, count the event in Ker-
nel Mode when EXL and ERL both are 0.

R/W Undefined

EXL 0 Count when EXL. When this bit is set, count the event when EXL =
1 and ERL = 0.

R/W Undefined

0 30:12, 2 Must be written as zeroes; returns zeroes when read. 0 0

Table 7.43 Performance Counter Events Sorted by Event Number

Event Num Counter 0 Mode Counter 1 Mode

0 Cycles No Cycles No

1 Instructions completed Yes Instructions completed Yes

2 branch instructions Yes Reserved NA

3 JR r31 (return) instructions Yes Reserved NA

4 JR (not r31) instructions Yes Reserved NA

5 Reserved NA Reserved NA

6 Reserved NA Reserved NA

7 Reserved NA Reserved NA

8 Reserved NA Reserved NA

9 Reserved NA Reserved NA

10 Reserved NA Reserved NA

11 Reserved NA Reserved NA

12 Reserved NA Reserved NA

13 Reserved NA Reserved NA

14 integer instructions completed Yes Reserved NA

15 loads completed Yes Stores completed Yes

16 J/JAL completed Yes microMIPS instructions completed Yes

17 no-ops completed Yes Integer multiply/divide completed Yes

18 Stall cycles No Reserved NA

19 SC instructions completed Yes SC instructions failed Yes

Table 7.42 Performance Counter Control Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

 CP0 Registers of the microAptiv™ UC Core

200 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

20 Prefetch instructions completed Yes Reserved NA

21 Reserved NA Reserved NA

22 Reserved NA Reserved NA

23 Exceptions taken Yes Reserved NA

24 Reserved NA Reserved NA

25 Reserved NA ALU stall cycles No

26 Reserved NA Reserved NA

27 Reserved NA Reserved NA

28 Reserved NA Implementation-specific CP2 event Yes

29 Reserved NA Reserved NA

30 Implementation-specific CorExtend event Yes Reserved NA

31 Reserved NA Reserved NA

32 Reserved NA Reserved NA

33 Reserved NA Reserved NA

34 Reserved NA Reserved NA

35 Reserved NA CP2 To/From Instructions completed Yes

36 Reserved NA Reserved NA

37 Reserved NA Reserved NA

38 Reserved NA Reserved NA

39 Reserved NA Reserved NA

40 Uncached stall cycles Yes Reserved NA

41 MDU stall cycles Yes Reserved NA

42 CP2 stall cycles Yes CorExtend stall cycles Yes

43 Reserved NA Reserved NA

44 Reserved NA Reserved NA

45 Load to Use stall cycles Yes Reserved NA

46 Other interlock stall cycles Yes Reserved NA

47 Reserved NA Reserved NA

48 Reserved NA Reserved NA

49 EJTAG Instruction Triggerpoints Yes EJTAG Data Triggerpoints Yes

50 Reserved NA Reserved NA

51 Reserved NA Reserved NA

52 Reserved NA Reserved NA

53 Reserved NA Reserved NA

54 Reserved NA Reserved NA

55 Reserved NA Reserved NA

56-1023 Reserved NA Reserved NA

Table 7.43 Performance Counter Events Sorted by Event Number (Continued)

Event Num Counter 0 Mode Counter 1 Mode

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 201

Table 7.44 Performance Counter Event Descriptions Sorted by Event Type

Event Name Counter
Event

Number Description

Cycles 0/1 0 Total number of cycles.
The performance counters are clocked by the top-level gated clock. If
the microAptiv UC is built with that clock gater present, none of the
counters will increment while the clock is stopped, e.g., due to a
WAIT instruction.

Instruction Completion: The following events indicate completion of various types of instructions

Instructions 0/1 1 Total number of instructions completed.

Branch instns 0 2 Counts all branch instructions that completed.

JR R31 (return) instns 0 3 Counts all JR R31 instructions that completed.

JR (not R31) 0 4 Counts all JR $xx (not $31) and JALR instructions (indirect jumps).

Integer instns 0 14 Non-floating-point, non-Coprocessor 2 instructions.

Loads 0 15 Includes both integer and coprocessor loads.

Stores 1 15 Includes both integer and coprocessor stores.

J/JAL 0 16 Direct Jump (And Link) instruction.

microMIPS 1 16 All microMIPS instructions.

no-ops 0 17 This includes all instructions that normally write to a GPR, but where
the destination register was set to r0.

Integer Multiply/Divide 1 17 Counts all Integer Multiply/Divide instructions (MULxx, DIVx,
MADDx, MSUBx).

SC 0 19 Counts conditional stores regardless of whether they succeeded.

PREF 0 20 Note that this only counts PREFs that are actually attempted. PREFs
to uncached addresses or ones with translation errors are not counted

Cp2 To/From instns 1 35 Includes move to/from, control to/from, and cop2 loads and stores.

Instruction execution events

SC instructions failed 1 19 SC instruction that did not update memory.
Note: While this event and the SC instruction count event can be con-
figured to count in specific operating modes, the timing of the events
is much different, and the observed operating mode could change
between them, causing some inaccuracy in the measured ratio.

Exceptions Taken 0 23 Any type of exception taken.

EJTAG instruction triggers 0 49 Number of times an EJTAG Instruction Trigger Point condition
matched.

EJTAG data triggers 1 49 Number of times an EJTAG Data Trigger Point condition matched.

General Stalls

ALU stall cycles 1 25 Counts the number of cycles in which the ALU pipeline cannot
advance.

 CP0 Registers of the microAptiv™ UC Core

202 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Figure 7.37 Performance Counter Count Register

7.2.37 ErrCtl Register (CP0 Register 26, Select 0)

The ErrCtl register controls parity protection of data and instruction SRAM. Parity protection can be enabled or dis-
abled using the PE bit.

Stall cycles 0 18 Counts the total number of cycles in which no instructions are issued
by SRAM to ALU (the RF stage does not advance). This includes both
of the previous two events. However, this is different from the sum of
them, because cycles when both stalls are active will only be counted
once.

Specific stalls - these events will count the number of cycles lost due to this. This will include bubbles introduced by replays within the
pipe. If multiple stall sources are active simultaneously, the counters for each of the active events will be incremented.

Uncached stall cycles 0 40 Cycles in which the processor is stalled on an uncached fetch, load, or
store.

MDU stall cycles 0 41 Counts all cycles in which the integer pipeline waits on MDU return
data.

Cp2 stall cycles 0 42 Counts all cycles in which the integer pipeline waits on CP2 return
data.

CorExtend stall cycles 1 42 Counts all cycles in which the integer pipeline waits on CorExtend
return data.

Load to Use stall cycles 0 45 Counts all cycles in which the integer pipeline waits on Load return
dependent data.

Other interlocks stall cycles 0 46 Counts all cycles in which the integer pipeline waits on return data
from MFC0 and RDHWR instructions.

Implementation-specific events - Modules that can be replaced by the customer will have an event signal associated with them.

Cp2 1 28 Set to 1 if COP2 is implemented.

CorExtend 0 30 Set to 1 if CorExtend is implemented.

31 0

Counter

Table 7.45 Performance Counter Count Register Field Descriptions

Fields

Description Read / Write Reset StateName Bits

Counter 31:0 Counter R/W Undefined

Table 7.44 Performance Counter Event Descriptions Sorted by Event Type (Continued)

Event Name Counter
Event

Number Description

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 203

Figure 7.38 ErrCtl Register Format

7.2.38 CacheErr Register (CP0 Register 27, Select 0)

The CacheErr register provides an interface with the cache error-detection logic. When a SRAM Parity Error excep-
tion is signaled, the fields of this register are set accordingly.

Figure 7.39 CacheErr Register (Primary Caches)

31 30 0

PE R

Table 7.46 Errctl Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)

PE 31 Parity Enable. This bit enables or disables the parity protec-
tion for both the instruction SRAM and the data SRAM.

This field is only write-able if the parity option was imple-
mented when the microAptiv UC was built. If parity is not
supported, this field is always read as 0. Software can test
for parity support by attempting to write a 1 to this field,
then read back the value.

R or R/W 0

R 30:0 Must be written as zero; returns zero on reads. 0 0

31 30 29 0

ER EB Addr

Table 7.47 CacheErr Register Field Descriptions (Primary Caches)

Fields

Description Read / Write Reset StateName Bits

ER 31 Error Reference. Indicates the type of reference that encountered an
error.

R Undefined

Encoding Meaning

0 Parity disabled
1 Parity enabled

Encoding Meaning

0 Instruction
1 Data

 CP0 Registers of the microAptiv™ UC Core

204 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

7.2.39 ErrorEPC (CP0 Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.
This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

In processors that implement microMIPS, a read of the ErrorEPC register (via MFC0) returns the following value in
the destination GPR:

GPR[rt] ← ErrorExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower
bit of the GPR.

EB 30 Error Both. Indicates that a data SRAM parity error occurred in
addition to an instruction SRAM parity error.

In the case of an additional data SRAM parity error, the remainder
of the bits in this register are set according to the instruction SRAM
parity error.

R Undefined

Addr 29:0 Error address. Specifies on which address the error was detected. R Undefined

Table 7.47 CacheErr Register Field Descriptions (Primary Caches) (Continued)

Fields

Description Read / Write Reset StateName Bits

Encoding Meaning

0 No additional data SRAM parity error
1 Additional data SRam parity error

7.2 CP0 Register Descriptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 205

Figure 7.40 ErrorEPC Register Format

7.2.40 DeSave Register (CP0 Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of the context
to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of exception
handlers and other types of code in which the existence of a valid stack for context saving cannot be assumed.

Figure 7.41 DeSave Register Format

7.2.41 KScratchn Registers (CP0 Register 31, Selects 2 to 3)

The KScratchn registers are optional read/write registers available for scratchpad storage by kernel-mode software.
These registers are 32 bits in width for 32-bit processors and 64 bits for 64-bit processors.

The existence of these registers is indicated by the KScrExist field in the Config4 register. The KScrExist field speci-
fies which of the selects are populated with a kernel scratch register.

Debug-mode software should not use these registers, but should instead use the DeSave register. If EJTAG is imple-
mented, select 0 should not be used for a KScratch register. Select 1 is being reserved for future debug use and should
not be used for a KScratch register.

31 0

ErrorEPC

Table 7.48 ErrorEPC Register Field Description

Fields

Description Read/Write Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

31 0

DESAVE

Table 7.49 DeSave Register Field Description

Fields

Description Read/Write Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined

Figure 7-42 KScratchn Register Format
31 0

Data

 CP0 Registers of the microAptiv™ UC Core

206 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 7.50 KScratchn Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Data 31:0 Scratch pad data saved by kernel software. R/W Undefined

Chapter 8

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 207

Hardware and Software Initialization of the microAptiv™
UC Core

The microAptiv UC processor core contains only a minimal amount of hardware initialization and relies on software
to fully initialize the device.

This chapter contains the following sections:

• Section 8.1 “Hardware-Initialized Processor State”

• Section 8.2 “Software Initialized Processor State”

8.1 Hardware-Initialized Processor State

The microAptiv UC processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only
a minimal subset of the processor state is cleared. This is enough to bring the core up while running in unmapped and
uncached code space. All other processor state can then be initialized by software. SI_ColdReset is asserted after
power-up to bring the device into a known state. Soft reset can be forced by asserting the SI_Reset pin. This distinc-
tion is made for compatibility with other MIPS processors. In practice, both resets are handled identically with the
exception of the setting of StatusSR.

8.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0.

• StatusBEV - cleared to 1 on Reset/SoftReset

• StatusTS - cleared to 0 on Reset/SoftReset

• StatusSR - cleared to 0 on Reset, set to 1 on SoftReset

• StatusNMI - cleared to 0 on Reset/SoftReset

• StatusERL - set to 1 on Reset/SoftReset

• StatusRP - cleared to 0 on Reset/SoftReset

• Config fields related to static inputs - set to input value by Reset/SoftReset

• ConfigK0 - set to 010 (uncached) on Reset/SoftReset

• DebugDM - cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode, see
Chapter 10, “EJTAG Debug Support in the microAptiv™ UC Core” on page 212 for details)

 Hardware and Software Initialization of the microAptiv™ UC Core

208 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• DebugLSNM - cleared to 0 on Reset/SoftReset

• DebugIBusEP - cleared to 0 on Reset/SoftReset

• DebugDBusEP - cleared to 0 on Reset/SoftReset

• DebugIEXI - cleared to 0 on Reset/SoftReset

• DebugSSt - cleared to 0 on Reset/SoftReset

8.1.2 Bus State Machines

All pending bus transactions are aborted and the state machines in the SRAM interface unit are reset when a Reset or
SoftReset exception is taken.

8.1.3 Static Configuration Inputs

All static configuration inputs should only be changed during Reset.

8.1.4 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FC00000). This address is in KSeg1,which is unmapped and uncached.

8.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

8.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the rest of the
register file is not required for proper operation in hardware. However, when simulating the operation of the core,
unknown values can cause problems. Thus, initializing the register file in the boot code may avoid simulation prob-
lems.

8.2.2 Coprocessor 0 State

Miscellaneous COP0 states need to be initialized prior to leaving the boot code. There are various exceptions which
are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

• Cause: WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.

• Config: Typically, the K0, KU and K23 fields should be set to the desired Cache Coherency Algorithm (CCA)
value prior to accessing the corresponding memory regions. But in the microAptiv UC core, all CCA values are
treated identically, so the hardware reset value of these fields need not be modified.

• Count: Should be set to a known value if Timer Interrupts are used.

8.2 Software Initialized Processor State

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 209

• Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (Thus, Count should be set before Compare to avoid any unexpected interrupts).

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should
be masked off after reading these registers.

Chapter 9

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 210

Power Management of the microAptiv™ UC Core

The microAptiv UC processor core offers a number of power management features, including low-power design,
active power management and power-down modes of operation. The core is a static design that supports a WAIT
instruction designed to signal the rest of the device that execution and clocking should be halted, reducing system
power consumption during idle periods.

The core provides two mechanisms for system level low-power support discussed in the following sections.

• Section 9.1 “Register-Controlled Power Management”

• Section 9.2 “Instruction-Controlled Power Management”

9.1 Register-Controlled Power Management

The RP bit in the CP0 Status register enables a standard software mechanism for placing the system into a low power
state. The state of the RP bit is available externally via the SI_RP output signal. Three additional pins, SI_EXL,
SI_ERL, and EJ_DebugM support the power management function by allowing the user to change the power state if
an exception or error occurs while the core is in a low power state.

Setting the RP bit of the CP0 Status register causes the core to assert the SI_RP signal. The external agent can then
decide whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending on
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting
of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an
interrupt has occurred. At this time the external agent can choose to either speed up the clocks and service the inter-
rupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the pro-
cessor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides four power down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CP0 Status register are set or cleared. The fourth pin indicates that the processor is in debug
mode:

• The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

9.2 Instruction-Controlled Power Management

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 211

• The EJ_DebugM signal indicates that the processor has entered debug mode.

9.2 Instruction-Controlled Power Management

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus is
idle at the time the WAIT instruction reaches the M stage of the pipeline the internal clocks are suspended and the
pipeline is frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset,
SI_ColdReset, and EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the M
stage, the pipeline stalls until the bus becomes idle, at which time the clocks are stopped. When the CPU is in instruc-
tion controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the
CPU to exit this mode and resume normal operation. While the part is in this low-power mode, the SI_SLEEP signal
is asserted to indicate to external agents what the state of the chip is.

Chapter 10

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 212

EJTAG Debug Support in the microAptiv™ UC Core

The EJTAG debug logic in the microAptiv UC processor core provides three optional modules:

1. Hardware breakpoints

2. Test Access Port (TAP) for a dedicated connection to a debug host

3. Tracing of program counter/data address/data value trace to On-chip memory or to a Trace probe

These features are covered in the following sections:

• Section 10.1 “Debug Control Register”

• Section 10.2 “Hardware Breakpoints”

• Section 10.3 “Complex Breakpoint Usage”

• Section 10.4 “Test Access Port (TAP)”

• Section 10.5 “EJTAG TAP Registers”

• Section 10.6 “TAP Processor Accesses”

• Section 10.7 “SecureDebug”

• Section 10.8 “iFlowtrace™ Mechanism”

• Section 10.9 “PC/Data Address Sampling”

• Section 10.10 “Fast Debug Channel”

• Section 10.11 “cJTAG Interface”

10.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always pro-
vided with the CPU core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug software
is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to the
other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit, and a
pending NMI is indicated through the NMIP bit.

10.1 Debug Control Register

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 213

The SRE bit allows implementation-dependent masking of none, some or all sources for soft reset. The soft reset
masking may only be applied to a soft reset source if that source can be efficiently masked in the system, thus result-
ing in no reset at all. If that is not possible, then that soft reset source should not be masked, since a partial soft reset
may cause the system to fail or hang. There is no automatic indication of whether the SRE is effective, so the user
must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table below
takes effect on both hard and soft resets.

Figure 10.1 DCR Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EJTAG_Brk_
Override 0 ENM 0 PCIM PCno

ASID DASQ DASe DAS 0 FDC
Impl

Data
Brk

Inst
Brk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVM DVM 0 RD
Vec CBT PCS PCR PCSe IntE NMIE NMI

pend SRstE Prob
En

Table 10.1 DCR Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

EJTAG_Brk
_Override

31 Override EjtagBrk and DINT disable. Refer to Section
10.7 “SecureDebug”.

Re-enable EjtagBrk and DINT signal during boot.

Allows EjtagBrk to be asserted by an EJTAG probe (or
assertion of DINT signal), resulting in a request for a
Debug Interrupt exception from the processor. This pro-
vides a means of recovering the cpu from crash, hang,
loop or low-power mode.

This feature can allow a Debug Executive to communi-
cate with the probe over the Fast Debug Channel (FDC)
and provides a host-based debugger the ability to query
the target processor via Debug Executive commands,
useful for determining cause of hang.

Software can write this bit and read back to determine if
the Secure Debug feature is implemented.

R/W

If not
imple-

mented,
must be

written as
zero;
return

zeros on
reads.

0

ENM 29 Endianess in which the processor is running in kernel
and Debug Mode:

R Externally
Set

Encoding Meaning

0 Little endian
1 Big endian

 EJTAG Debug Support in the microAptiv™ UC Core

214 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

PCIM 26 Configure PC Sampling to capture all executed
addresses or only those that miss the instruction cache
This feature is not supported and this bit will read as 0.

R 0

PCnoASID 25 Controls whether the PCSAMPLE scan chain includes
or omits the ASID field
An ASID is always included, so this bit will read as 0.

R 0

DASQ 24 Qualifies Data Address Sampling using a data break-
point.
Data address sampling is not supported so this bit will
read as 0

R 0

DASe 23 Enables Data Address Sampling
Data address sampling is not supported so this bit will
read as 0

R 0

DAS 22 Indicates if the Data Address Sampling feature is imple-
mented.
Data address sampling is not supported so this bit will
read as 0.

R 0

FDCImpl 18 Indicates if the fast debug channel is implemented R 1

Table 10.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 All PCs captured
1 Capture only PCs that miss the cache.

Encoding Meaning

0 ASID included in PCSAMPLE scan
1 ASID omitted from PCSAMPLE scan

Encoding Meaning

0 All data addresses are sampled
1 Sample matches of data breakpoint 0

Encoding Meaning

0 Data Address sampling disabled.
1 Data Address sampling enabled.

Encoding Meaning

0 No DA Sampling implemented
1 DA Sampling implemented

Encoding Meaning

0 No fast debug channel implemented
1 Fast debug channel implemented

10.1 Debug Control Register

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 215

DataBrk 17 Indicates if data hardware breakpoint is implemented: R Preset

InstBrk 16 Indicates if instruction hardware breakpoint is imple-
mented:

R Preset

IVM 15 Indicates if inverted data value match on data hardware
breakpoints is implemented:

R Preset

DVM 14 Indicates if a data value store on a data value breakpoint
match is implemented:

R Preset

RDVec 11 Enables relocation of the debug exception vector. The
value in the DebugVectorAddr register is used for
EJTAG exceptions when ProbTrap=0,and RDVec=1.

R/W 0

CBT 10 Indicates if complex breakpoint block is implemented: R Preset

Table 10.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 No data hardware breakpoint imple-
mented

1 Data hardware breakpoint imple-
mented

Encoding Meaning

0 No instruction hardware breakpoint
implemented

1 Instruction hardware breakpoint
implemented

Encoding Meaning

0 No inverted data value match on data
hardware breakpoints implemented

1 Inverted data value match on data
hardware breakpoints implemented

Encoding Meaning

0 No data value store on a data value
breakpoint match implemented

1 Data value store on a data value break-
point match implemented

Encoding Meaning

0 No complex breakpoint block imple-
mented

1 Complex breakpoint block imple-
mented

 EJTAG Debug Support in the microAptiv™ UC Core

216 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

PCS 9 Indicates if the PC Sampling feature is implemented. R 1

PCR 8:6 PC Sampling rate. Values 0 to 7 map to values 25 to 212
cycles, respectively. That is, a PC sample is written out
every 32, 64, 128, 256, 512, 1024, 2048, or 4096 cycles
respectively. The external probe or software is allowed
to set this value to the desired sample rate.

R/W 7

PCSe 5 If the PC sampling feature is implemented, then indi-
cates whether PC sampling is initiated or not. That is, a
value of 0 indicates that PC sampling is not enabled and
when the bit value is 1, then PC sampling is enabled and
the counters are operational.

R/W 0

IntE 4 Hardware and software interrupt enable for Non-Debug
Mode, in conjunction with other disable mechanisms:

R/W 1

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug
Mode:

R/W 1

NMIpend 2 Indication for pending NMI: R 0

SRstE 1 Soft Reset Enable
This bit allows the system to mask soft resets. The core
does not internally mask soft resets. Rather the state of
this bit appears on the EJ_SRstE external output signal,
allowing the system to mask soft resets if desired.

R/W 1

Table 10.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 No PC Sampling implemented
1 PC Sampling implemented

Encoding Meaning

0 Interrupt disabled
1 Interrupt enabled depending on other

enabling mechanisms

Encoding Meaning

0 NMI disabled
1 NMI enabled

Encoding Meaning

0 No NMI pending
1 NMI pending

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 217

10.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area. Data breakpoints can be set to cause
a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many
aspects, and are thus described in parallel in the following. The term hardware is not generally added to breakpoint,
unless required to distinguish it from a software breakpoint.

There are two types of simple hardware breakpoints implemented in the microAptiv UC core: Instruction breakpoints
and Data breakpoints. The microAptiv UC core may also contain a complex breakpoint unit.

A core may be configured with the following breakpoint options:

• No data or instruction breakpoints, without complex break support

• Two instruction and one data breakpoint, without complex break support

• Four instruction and two data breakpoints, without complex break support

• Six instruction and two data breakpoints, without support for complex breaks

• Six instruction and two data breakpoints, with support for complex breaks

• Eight instruction and four data breakpoints, without support for complex breaks

• Eight instruction and four data breakpoints, with support for complex breaks

Instruction breaks occur on instruction fetch operations, and the break is set on the virtual address on the bus between
the CPU and the instruction cache. Finally, a mask can be applied to the virtual address to set breakpoints on a range
of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (the value of PC) with the registers
for each instruction breakpoint, including masking of address. When an instruction breakpoint matches, a debug

ProbEn 0 Probe Enable. This bit reflects the ProbEn bit in the
EJTAG Control register:

R Same value
as ProbEn

in ECR
(see Table

9-4)

0 30, 28:27,
21:19,
13:12

Must be written as zeros; return zeros on reads. 0 0

Table 10.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 No accesses to dmseg allowed
1 Accesses to dmseg by EJTAG probe ser-

vices allowed

 EJTAG Debug Support in the microAptiv™ UC Core

218 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

exception and/or a trigger is generated. An internal bit in the instruction breakpoint registers is set to indicate that the
match occurred.

10.2.1 Data Breakpoints

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address values, similar to the Instruc-
tion breakpoint. Data breakpoints can be set on a load, a store, or both. Data breakpoints can also be set based on the
value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), accessed bytes (BYTELANE) and data value (DATA), with the registers for each data breakpoint
including masking or qualification on the transaction properties. When a data breakpoint matches, a debug exception
and/or a trigger is generated, and an internal bit in the data breakpoint registers is set to indicate that the match
occurred. The match is precise in that the debug exception or trigger occurs on the instruction that caused the break-
point to match.

10.2.2 Complex Breakpoints

The complex breakpoint unit utilizes the instruction and data breakpoint hardware and looks for more specific match-
ing conditions. There are several different types of enabling that allow more exact breakpoint specification. Tuples
add an additional condition to data breakpoints of requiring an instruction breakpoint on the same instructions. Pass
counters are counters that decrement each time a matching breakpoint condition is taken. When the counter reaches 0,
the break or trigger effect of the breakpoint is enabled. Priming allows a breakpoint to only be enabled when another
trigger condition has been detected. Data qualification allows instruction breakpoints to only be enabled when a cor-
responding load data triggerpoint has matched both address and data. Data qualified breakpoints are also disabled if a
load is executed that matches on the address portion of the triggerpoint, but has a mismatching data value. The com-
plex breakpoint features can be combined to create very complex sequences to match on.

In addition to the breakpoint logic, the complex break unit also includes a Stopwatch Timer block. This counter can
be used to measure time spent in various sections. It can either be free-running, or it can be set up to start and stop
counting based on a trigger from instruction breakpoints.

10.2.3 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or TE
bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

10.2.3.1 Conditions for Matching Instruction Breakpoints

There are two methods for matching conditions:, Equality and Mask or Address Range.

Equality and Mask

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 219

The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level.
The registers for each instruction breakpoint have the values and mask used in the compare, and the equation that
determines the match is shown below in C-like notation.

IB_match =
(<all 1’s> == (IBMnIBM | ~ (PC ^ IBAnIBA))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the
IB_match to be true.

Address Range

Cores may optionally support the address range triggered instruction breakpoints.When this feature is configured, the
following changes are made to the instruction breakpoint registers:

• IBAn : represents the upper limit of a address range boundary

• IBMn : represents the lower limit of the address range boundary

In addition, the following bits must be supported:

IBCn[6].hwarts : a preset value of 1 indicates that the address range triggered instruction breakpoint feature is sup-
ported for this particular instruction breakpoint channel. This bit is read-only.

IBCn[5].excl : a value of 0 indicates that the breakpoint will match for addresses inclusive (within) the range defined
by IBMn and IBAn. A value of 1 indicates that the breakpoint will match for addresses exclusive (outside) to the range
defined by IBMn and IBAn. This bit is writeable.

IBCn[4].hwart : a value of 0 indicates that the breakpoint will match using the “Equality and Mask” equation as found
in Section 10.2.3.1 “Conditions for Matching Instruction Breakpoints”. A value of 1 indicates that the breakpoint
will match using address ranges using the equation below:

IB_match =
(!IBCnTCuse || (TC == IBCnTC)) &&
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(((~IBCnhwarts || ~IBCnhwart) &&
 ((IBMnIBM | ~ (PC ^ IBAnIBA)) == ~0) ||
 ((IBCnhwarts && IBCnhwart) &&
 ((~IBCnexcl && (IBM <= PC <= IBA)) ||
 (IBCnexcl && (IBM > PC || PC > IBA)
)

Or if microMIPS is supported:

IB_range_match =
(!IBCnTCuse || (TC == IBCnTC)) &&
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(((~IBCnhwarts || ~IBCnhwart) &&
 ((IBMnIBM | ~ (((PC[MSB:1] << 1) + ISAmode) ^ IBAnIBA)) == ~0) ||
 ((IBCnhwarts && IBCnhwart) &&
 (IBMnIBM[0] | ~ (ISAmode ^ IBAnIBA[0])) == ~0) &&
 ((~IBCnexcl && (IBM[MSB:1] <= PC[MSB:1] <= IBA[MSB:1])) ||

 EJTAG Debug Support in the microAptiv™ UC Core

220 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

 (IBCnexcl && (IBM[MSB:1] > PC[MSB:1] || PC[MSB:1] > IBA[MSB:1])
)

Also note that addresses that overlap a boundary is considered for both exclusive and inclusive breakpoint matches.

10.2.3.2 Conditions for Matching Data Breakpoints

There are two methods for matching conditions, namely 1) by Equality and Mask or 2) by Address Range:

Equality and Mask

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or
destination address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data
value of a transaction. The registers for each data breakpoint have the values and mask used in the compare, and the
equation that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE == load) && ! DBCnNoLB) ||

((TYPE == store) && ! DBCnNoSB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR) and the
accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is accessed, and
BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown below.

DB_addr_match =
(<all 1’s> == (DBMnDBM | ~ (ADDR ^ DBAnDBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCnBAI and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare
is shown below.

DB_no_value_compare =
(<all 1’s> == (DBCnBLM | DBCnBAI | ~ BYTELANE))

The size of DBCnBLM, DBCnBAI and BYTELANE is 4 bits.

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The DBCIVM bit inverts the sense of the
match - if set, the value match term will be high if the data value is not the same as the data in the DBVn register. The
endianess is not considered in these match equations for value, as the compare uses the data bus value directly, thus
debug software is responsible for setup of the breakpoint corresponding with endianess.

DB_value_match =

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 221

DBCnIVM ^
(((DATA[7:0] == DBVnDBV[7:0]) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
 ((DATA[15:8] == DBVnDBV[15:8]) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
 ((DATA[23:16] == DBVnDBV[23:16]) || ! BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2]) &&
 ((DATA[31:24] == DBVnDBV[31:24]) || ! BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3]))

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the
DB_match to be true.

Address Range

Cores may optionally support the address range triggered data breakpoints. When this feature is configured, the fol-
lowing changes are made to the data breakpoint registers:

• DBAn : represents the upper limit of a address range boundary

• DBMn : represents the lower limit of the address range boundary

In addition, the following bits must be supported:

DBCn[10].hwarts: a preset value of 1 indicates that the address range triggered data breakpoint feature is supported
for this particular data breakpoint channel. This bit is read-only.

DBCn[9].exc : a value of 0 indicates that the breakpoint will match for addresses inclusive (within) the range defined
by DBMn and DBAn. A value of 1 indicates that the breakpoint will match for addresses exclusive (outside) to the
range defined by DBMn and DBAn. This bit is writeable.

DBCn[8].hwart: a value of 0 indicates that the breakpoint will match using the “Equality and Mask” equation as found
in Section 10.2.3.2 “Conditions for Matching Data Breakpoints”. A value of 1 indicates that the breakpoint will
match using address ranges using the equation below:

DB_match =
(!DBCnTCuse || (TC == DBCnTC)) &&
(((TYPE == load) && ! DBCnNoLB) || ((TYPE == store) && ! DBCnNoSB)) &&
DB_addr_range_match && (DB_no_value_compare || DB_value_match)

DB_addr_range_match =
(! DBCnASIDuse || (ASID == DBASIDnASID)) &&
(((~DBCnhwarts || ~DBCnhwart) &&
 ((DBMnDBM | ~ (ADDR ^ DBAnDBA)) == ~0) ||
 ((DBCnhwarts && DBCnhwart) &&
 ((~DBCnexcl && (DBMn <= ADDR <= DBAn)) ||
 (DBCnexcl && (DBMn > ADDR || ADDR > DBAn)
)

When address range triggered data breakpoints is enabled, DBCn.BLM[3:0] must be set to 4'b1111 because value
matching is not supported with this feature. Addresses that overlap a boundary is considered for both exclusive and
inclusive breakpoint matches.

 EJTAG Debug Support in the microAptiv™ UC Core

222 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.2.4 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.

10.2.4.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the IBCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register
point to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions
receiving a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

10.2.4.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match con-
dition is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug excep-
tion.

A debug data break exception occurs when a data breakpoint indicates a match. In this case the DEPC register and
DBD bit in the Debug register points to the instruction that caused the DB_match equation to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match,
is not allowed to complete the load.

• A load transaction for a breakpoint with data value compare must occur from the memory system, since the value
is required in order to evaluate the breakpoint.

The result of this is that the load or store instruction causing the debug data break exception appears as not executed,
with the exception that a load from the memory system does occur for a breakpoint with data value compare, but the
register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the following rules apply with respect to updating the BS[n] bits.

• On both a load and store the BS[n] bits are required to be set for all matching breakpoints without a data value
compare.

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 223

• On a store the BS[n] bits are allowed but not required to be set for all matching breakpoints with a data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

• On a load then none of the BS[n] bits for breakpoints with data value compare are allowed to be set, since the
load is not allowed to occur due to the debug exception from a breakpoint without a data value compare, and a
valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
is re-executed. This re-execution may result in a repeated load from system memory, since the load may have
occurred previously in order to evaluate the breakpoint as described above. I/O devices with side effects on loads may
not be re-accessible without changing the system behavior. The Load Data Value register was introduced to capture
the value that was read and allow debug software to synthesize the load instruction without re-accessing memory.
Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise the debug data
break exception will reoccur.

10.2.5 Breakpoint Used as Triggerpoint

Both instruction and data hardware breakpoints can be setup by software so that a matching breakpoint does not gen-
erate a debug exception, but only an indication through the BS[n] bit. The TE bit in the IBCn or DBCn register con-
trols if an instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints,
only compared for instructions executed in non-debug mode.

The BS[n] bit in the IBS or DBS register is set when the respective IB_match or DB_match bit is true.

The triggerpoint feature can be used to start and stop tracing.

10.2.6 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 10.2.

An example of some of the registers; IBA0 is at offset 0x1100 and IBC2 is at offset 0x1318.

Table 10.2 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

0x1120 + n * 0x100 IBCCn Instruction Breakpoint Complex Control n

0x1128 + n * 0x100 IBPCn Instruction Breakpoint Pass Counter n

n is breakpoint number in range 0 to 5 (or 3 or 1, depending on the implemented hardware)

 EJTAG Debug Support in the microAptiv™ UC Core

224 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.2.6.1 Instruction Breakpoint Status (IBS) Register (0x1000)

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints. This register is required only if instruction breakpoints are implemented.

Figure 10.2 IBS Register Format

10.2.6.2 Instruction Breakpoint Address n (IBAn) Register (0x1100 + n * 0x100)

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint
n. This register is required only if instruction breakpoints are implemented.

Figure 10.3 IBAn Register Format

31 30 29 28 27 24 23 6 5 0

Res ASIDsup Res BCN Res BS

Table 10.3 IBS Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Indicates that ASID compare is supported in instruction
breakpoints.
0: No ASID compare.
1: ASID compare (IBASIDn register implemented).

R 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 0, 2, 4, 6 or 8a

Res 23:8 Must be written as zero; returns zero on read. R 0

BS 7:0 Break status for breakpoint n is at BS[n], with n from 0
to 7b. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched and IBCnTE or
IBCnBE are set

R/W Undefined

[a] Based on actual hardware implemented.
[b] In case of fewer than 8 Instruction breakpoints the upper bits become reserved.

31 0

IBA

Table 10.4 IBAn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

IBA 31:0 Instruction breakpoint address for condition. R/W Undefined

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 225

10.2.6.3 Instruction Breakpoint Address Mask n (IBMn) Register (0x1108 + n*0x100)

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match.
A mask value of all 0’s would require an exact address match, while a mask value of all 1’s would match on any
address. This register is required only if instruction breakpoints are implemented.

Figure 10.4 IBMn Register Format

10.2.6.4 Instruction Breakpoint ASID n (IBASIDn) Register (0x1110 + n*0x100)

For processors with a TLB-based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the microAptiv UC processor, this register is reserved and reads as 0. This register is required only if instruc-
tion breakpoints are implemented.

Figure 10.5 IBASIDn Register Format

10.2.6.5 Instruction Breakpoint Control n (IBCn) Register (0x1118 + n*0x100)

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n. This register is
required only if instruction breakpoints are implemented.

31 0

IBM

Table 10.5 IBMn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

IBM 31:0 Instruction breakpoint address mask for condition: R/W Undefined

31 8 7 0

Res ASID

Table 10.6 IBASIDn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for a compare. R 0

Encoding Meaning

0 Corresponding address bit not masked.
1 Corresponding address bit masked.

 EJTAG Debug Support in the microAptiv™ UC Core

226 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Figure 10.6 IBCn Register Format
31 24 23 22 7 6 5 4 3 2 1 0

Res ASIDuse Res hwarts excl hwart Res TE Res BE

Table 10.7 IBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for instruction breakpoint n: R 0

Res 22:7 Must be written as zero; returns zero on read. R 0

hwarts 6 A preset value of 1 indicates that the address- range trig-
gered instruction breakpoint feature is supported for this
particular instruction breakpoint channel.

R Preset

excl 5 A value of 0 indicates that the breakpoint will match for
addresses within (inclusive of) the range defined by
IBMn and IBAn. A value of 1 indicates that the break-
point will match for addresses outside (exclusive to) the
range defined by IBMn and IBAn.

R/W 0

hwart 4 A value of 0 indicates that the breakpoint will match
using the “Equality and Mask” equation as found section
under 10.2.3.1 “Conditions for Matching Instruction
Breakpoints”.
A value of 1 indicates that the breakpoint will match
using the “Address Range” equation in section
10.2.3.1 “Conditions for Matching Instruction
Breakpoints”

R/W 0

Res 3 Must be written as zero; returns zero on read. R 0

TE 2 Use instruction breakpoint n as triggerpoint: R/W 0

Res 1 Must be written as zero; returns zero on read. R 0

BE 0 Use instruction breakpoint n as breakpoint: R/W 0

Encoding Meaning

0 Don’t use ASID value in compare
1 Use ASID value in compare

Encoding Meaning

0 Don’t use it as triggerpoint
1 Use it as triggerpoint

Encoding Meaning

0 Don’t use it as breakpoint
1 Use it as breakpoint

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 227

10.2.6.6 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n*0x100)

The Instruction Breakpoint Complex Control n (IBCCn) register controls the complex break conditions for instruction
breakpoint n. This register is required only if complex breakpoints are implemented and only for implemented
instruction breakpoints.

Figure 10.7 IBCCn Register Format

10.2.6.7 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)

The Instruction Breakpoint Pass Counter n (IBPCn) register controls the pass counter associated with instruction
breakpoint n. This register is required only if complex breakpoints are implemented and only for implemented
instruction breakpoints.

31 14 13 10 9 8 5 4 3 2 1 0

Res PrCnd CBE DBrkNum Q Res

Table 10.8 IBCCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:14,
3:0

Must be written as zero; returns zero on read. R 0

PrCnd 13:12 Upper bits of priming condition for instruction breakpoint
n. The microAptiv UC core only supports 4 priming con-
ditions, so the upper 2 bits are read as 0.

R 0

PrCnd 11:10 Priming condition for instruction breakpoint n.
00 - Bypass, no priming needed
Other - Varies depending on the break number; refer to
Table 10.10 for mapping.

R/W 0

CBE 9 Complex Break Enable. Enables this breakpoint for use
in a complex sequence as a priming condition for another
breakpoint, to start or stop the stopwatch timer, or as part
of a tuple breakpoint.

R/W 0

DBrkNum 8:5 Indicates which data breakpoint channel is used to qualify
this instruction breakpoint.

R 6I/2D Complex Breakpoint
Configuration:

IBCC0..2 - 0
IBCC3..6 - 1

8I/4D Complex Breakpoint
Configuration:

IBCC0..1 - 0
IBCC2..3 - 1
IBCC4..5 - 2
IBCC6..7 - 3

Q 4 Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum.
0 - Not dependent on qualification
1 - Breakpoint must be qualified to be taken

R/W 0

 EJTAG Debug Support in the microAptiv™ UC Core

228 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

If complex breakpoints are implemented, there will be an 8b pass counter for each of the instruction breakpoints on
the microAptiv UC core.

Figure 10.8 IBPCn Register Format

10.2.7 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 10.10.

31 8 7 0

0 PassCnt

Table 10.9 IBPCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:8 Ignored on write, returns zero on read. R 0

PassCnt 7:0 Prevents a break/trigger action until the matching condi-
tions on breakpoint n have been seen this number of
times.
Each time the matching condition is seen, this value will
be decremented by 1.When the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at 0.
The break or trigger action is imprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register is written to 0 by soft-
ware.
The instruction pass counter should not be set on instruc-
tion breakpoints that are being used as part of a tuple
breakpoint.

R/W 0

Table 10.10 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n

0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n

0x2ff0 DVM Data Value Match Register

n is breakpoint number as 0, 1, 2 or 3 (or just 0, depending on the implemented hardware)

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 229

An example of some of the registers; DBM0 is at offset 0x2108 and DBV1 is at offset 0x2220.

10.2.7.1 Data Breakpoint Status (DBS) Register (0x2000)

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.
This register is required only if data breakpoints are implemented.

Figure 10.9 DBS Register Format

10.2.7.2 Data Breakpoint Address n (DBAn) Register (0x2100 + 0x100 * n)

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n. This reg-
ister is required only if data breakpoints are implemented.

Figure 10.10 DBAn Register Format

31 30 29 28 27 24 23 2 1 0

Res ASIDsup Res BCN Res BS

Table 10.11 DBS Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASID 30 Indicates that ASID compares are supported in data
breakpoints.
0: Not supported
1: Supported

R 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of data breakpoints implemented. R 4, 2, 1 or 0a

Res 23:4 Must be written as zero; returns zero on read. R 0

BS 3:0 Break status for breakpoint n is at BS[n], with n from 0
to 1b. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched.

R/W0 Undefined

[a] Based on actual hardware implemented.
[b] In case of only 1 data breakpoint bit 1 become reserved.

31 0

DBA

Table 10.12 DBAn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

DBA 31:0 Data breakpoint address for condition. R/W Undefined

 EJTAG Debug Support in the microAptiv™ UC Core

230 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.2.7.3 Data Breakpoint Address Mask n (DBMn) Register (0x2108 + 0x100 * n)

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for
data breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match. A mask value
of all 0’s would require an exact address match, while a mask value of all 1’s would match on any address. This reg-
ister is required only if data breakpoints are implemented.

Figure 10.11 DBMn Register Format

10.2.7.4 Data Breakpoint ASID n (DBASIDn) Register (0x2110 + 0x100 * n)

 For processors with a TLB-based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the microAptiv UC processor, this register is reserved and reads as 0. This register is required only if data
breakpoints are implemented.

Figure 10.12 DBASIDn Register Format

10.2.7.5 Data Breakpoint Control n (DBCn) Register (0x2118 + 0x100 * n)

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n. This register is required only if
data breakpoints are implemented.

Figure 10.13 DBCn Register Format

31 0

DBM

Table 10.13 DBMn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

DBM 31:0 Data breakpoint address mask for condition:
0: Corresponding address bit not masked
1: Corresponding address bit masked

R/W Undefined

31 8 7 0

Res ASID

Table 10.14 DBASIDn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compares. R 0

31 24 23 22 18 17 14 13 12 11 10 9 8 7 4 3 2 1 0

Re ASIDuse Res BAI NoSB NoLB Res hwarts excl hwart BLM Res TE IVM BE

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 231

Table 10.15 DBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on reads. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n: R 0

Res 22:18 Must be written as zero; returns zero on reads. R 0

BAI 17:14 Byte access ignore controls ignore of access to a specific
byte. BAI[0] ignores access to byte at bits [7:0] of the
data bus, BAI[1] ignores access to byte at bits [15:8], etc.

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is not fulfilled
on a store transaction:

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is not fulfilled
on a load transaction:

R/W Undefined

Res 11 Must be written as zero; returns zero on reads. R 0

hwarts 10 A preset value of 1 indicates that the address range trig-
gered data breakpoint feature is supported for this par-
ticular data breakpoint channel.

R Preset

excl 9 A value of 0 indicates that the breakpoint will match for
addresses inclusive (within) the range defined by DBMn
and DBAn. A value of 1 indicates that the breakpoint
will match for addresses exclusive (outside) of the
range defined by DBMn and DBAn.

R/W 0

Encoding Meaning

0 Don’t use ASID value in compare
1 Use ASID value in compare

Encoding Meaning

0 Condition depends on access to corre-
sponding byte

1 Access for corresponding byte is
ignored

Encoding Meaning

0 Condition may be fulfilled on store
transaction

1 Condition is never fulfilled on store
transaction

Encoding Meaning

0 Condition may be fulfilled on load
transaction

1 Condition is never fulfilled on load
transaction

 EJTAG Debug Support in the microAptiv™ UC Core

232 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.2.7.6 Data Breakpoint Value n (DBVn) Register (0x2120 + 0x100 * n)

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. This register is
required only if data breakpoints are implemented.

Figure 10.14 DBVn Register Format

hwart 8 A value of 0 indicates that the breakpoint will match
using the “Equality and Mask” equation as found sec-
tion under 10.2.3.2 “Conditions for Matching Data
Breakpoints”.
A value of 1 indicates that the breakpoint will match
using the “Address Range”equation in section
10.2.3.2 “Conditions for Matching Data Breakpoints”

R/W 0

BLM 7:4 Byte lane mask for value compare on data breakpoint.
BLM[0] masks byte at bits [7:0] of the data bus, BLM[1]
masks byte at bits [15:8], etc.:

R/W Undefined

Res 3 Must be written as zero; returns zero on reads. R 0

TE 2 Use data breakpoint n as triggerpoint: R/W 0

IVM 1 Invert Value Match. When set, the data value compare
will be inverted. i.e., a break or trigger will be taken if
the value does not match the specified value

R/W 0

BE 0 Use data breakpoint n as breakpoint: R/W 0

31 0

DBV

Table 10.16 DBVn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

DBV 31:0 Data breakpoint value for condition. R/W Undefined

Table 10.15 DBCn Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Compare corresponding byte lane
1 Mask corresponding byte lane

Encoding Meaning

0 Don’t use it as triggerpoint
1 Use it as triggerpoint

Encoding Meaning

0 Don’t use it as breakpoint
1 Use it as breakpoint

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 233

10.2.7.7 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n*0x100)

The Data Breakpoint Complex Control n (DBCCn) register controls the complex break conditions for data breakpoint
n. This register is required only if complex breakpoints are implemented and only for implemented data breakpoints.

Figure 10.15 DBCCn Register Format
31 20 19 16 15 14 13 10 9 8 5 4 3 2 1 0

Res TIBrkNum TUP Res PrCnd CBE DBrkNum Q Res

Table 10.17 DBCCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:20,
14, 3:0

Must be written as zero; returns zero on read. R 0

TIBrkNum 19:16 Tuple Instruction Break Number. Indicates which
instruction breakpoint will be paired with this data break-
point to form a tuple breakpoint.

R 6I/2D Complex Breakpoint
Configuration:

DBCC0 - 0
DBCC1 - 3

8I/4D Complex Breakpoint
Configuration:

DBCC0 - 0
DBCC1 - 2
DBCC2 - 4
DBCC3 - 6

TUP 15 Tuple Enable. Qualify this data breakpoint with a match
on the TIBrkNum instruction breakpoint on the same
instruction.

R/W 0

PrCnd 13:12 Upper bits of priming condition for D breakpoint n.
microAptiv UC only supports 4 priming conditions so the
upper 2 bits are read only as 0.

R 0

PrCnd 11:10 Priming condition for D Breakpoint n.
00 - Bypass, no priming needed
Other - Varies depending on the break number, refer to
Table 10.20 for mapping.

R/W 0

CBE 9 Complex Break Enable - enables this breakpoint for use
as a priming or qualifying condition for another break-
point.

R/W 0

DQBrkNum 8:5 Indicates which data breakpoint channel is used to qualify
this data breakpoint.
Data qualification of data breakpoints is not supported on
the microAptiv UC core and this field will read as 0 and
cannot be written.

R 0

DQ 4 Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum.
Data qualification of data breakpoints is not supported on
the microAptiv UC core and this field will read as 0 and
cannot be written.

R 0

 EJTAG Debug Support in the microAptiv™ UC Core

234 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.2.7.8 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)

The Data Breakpoint Pass Counter n (DBPCn) register controls the pass counter associated with data breakpoint n.
This register is required only if complex breakpoints are implemented and only for implemented data breakpoints.

If complex breakpoints are implemented, there will be an 16b pass counter for each of the data breakpoints on the
microAptiv UC core.

Figure 10.16 DBPCn Register Format

10.2.7.9 Data Value Match (DVM) Register (0x2ffo)

The Data Value Match (DVM) register captures the data value of a load that takes a precise data value breakpoint. This
allows debug software to synthesize the load instruction without re-executing it in case it is to a system register that
has destructive reads. This register is required only if data breakpoints are implemented.

Figure 10.17 DVM Register Format

31 16 15 0

0 PassCnt

Table 10.18 DBPCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:16 Ignored on write, returns zero on read. R 0

PassCnt 15:0 Prevents a break/trigger action until the matching condi-
tions on data breakpoint n have been seen this number of
times.
Each time the matching condition is seen, this value will
be decremented by 1. When the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at 0.
The break or trigger action is imprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register is written to 0 by soft-
ware.

R/W 0

31 0

LDV

Table 10.19 DVM Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

LDV 31:0 Load data value for the last precise load data value
breakpoint taken.

R Undefined

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 235

10.2.8 Complex Breakpoint Registers

The registers for complex breakpoints are described Table 10.20. These registers have implementation information
and are used to setup the data breakpoints. All registers are in drseg.

10.2.8.1 Complex Break and Trigger Control (CBTC) Register (0x8000)

The CBTC register contains configuration bits that indicate which features of complex break are implemented as well
as a control bit for the stopwatch timer. On the microAptiv UC core, if complex break is implemented, all of the sep-
arate features will be present. This register is required only if complex breakpoints are implemented.

Figure 10.18 CBTC Register Format

Table 10.20 Addresses for Complex Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1120 + 0x100 * n IBCCn Instruction Breakpoint Complex Control n - described above
with instruction breakpoint registers

0x1128 + 0x100 * n IBPCn Instruction Breakpoint Pass Counter n - described above with
instruction breakpoint registers

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n - described above with
data breakpoint registers

0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n - described above with data
breakpoint registers

0x8000 CBTControl Complex Break and Triggerpoint Control - indicates which
of the complex breakpoint features are implemented

0x8300 + 0x20 * n PrCndAIn Prime Condition Register A for Instruction breakpoint n

0x84e0 + 0x20 * n PrCndADn Prime Condition Register A for Data breakpoint n

0x8900 STCtl Stopwatch Timer Control

0x8908 STCnt Stopwatch Timer Count

n is breakpoint number from 0 to 7 (range dependent on implemented hardware)

31 9 8 7 5 4 3 2 1 0

Res STMode Res STP PP DQP TP PCP

Table 10.21 CBTC Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:9, 7:5 Reserved R 0

STMode 8 Stopwatch Timer Mode: controls whether the stopwatch
timer is free-running or controlled by triggerpoints:
0 - free-running
1 - started and stopped by instruction triggers

R/W 1

 EJTAG Debug Support in the microAptiv™ UC Core

236 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.2.8.2 Priming Condition A (PrCndAI/Dn) Registers

The Prime Condition registers hold implementation specific information about which triggerpoints are used for the
priming conditions for each breakpoint register. On the microAptiv UC core, these connections are predetermined
and these registers are read-only. This register is required only if complex breakpoints are implemented.

The architecture allows for up to 16 priming conditions to be specified and there can be up to 4 priming condition
registers per breakpoint (A/B/C/D). The microAptiv UC core only allows for 4 priming conditions and thus only
implements the PrCndA registers. The general description is shown in Table 10.22. The actual priming conditions for
each of the breakpoints are shown in Table 10.23.

Figure 10.19 PrCndA Register Format

STP 4 Stopwatch Timer Present - indicates whether stopwatch
timer is implemented.

R 1

PP 3 Priming Present - indicates whether primed breakpoints
are supported

R 1

DQP 2 Data Qualify Present - indicates whether data qualified
breakpoints are supported.

R 1

TP 1 Tuple Present - indicates whether any tuple breakpoints
are implemented.

R 1

PCP 0 Pass Counters Present - indicates whether any break-
points have pass counters associated with them.

R 1

31 24 23 16 15 8 7 0

Cond3 Cond2 Cond1 Cond0

Table 10.21 CBTC Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

10.2 Hardware Breakpoints

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 237

Table 10.24 Priming Conditions and Register Values for 8I/4D Configuration

Table 10.22 PrCndA Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

CondN 31:24
23:16
15:8
7:0

Specifies which triggerpoint is connected to priming
condition 3, 2, 1, or 0a for the current breakpoint.

R Preset

31:30
23:22
15:14
7:6

Reserved R 0

29:28
21:20
13:12
5:4

Trigger type
00 - Special/Bypass
01 - Instruction
10 - Data
11 - Reserved

R Preset

27:24
19:16
11:8
3:0

Break Number, 0-14 R Preset

[a] Condition 0 is always Bypass and will read as 8 b0

Table 10.23 Priming Conditions and Register Values for 6I/2D Configuration

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value
drseg
offset

Inst0 Bypass Data0 Inst1 Inst2 0x1211_2000 0x8300

Inst1 Bypass Data0 Inst0 Inst2 0x1210_2000 0x8320

Inst2 Bypass Data0 Inst0 Inst1 0x1110_2000 0x8340

Inst3 Bypass Data1 Inst4 Inst5 0x1514_2100 0x8360

Inst4 Bypass Data1 Inst3 Inst5 0x1513_2100 0x8380

Inst5 Bypass Data1 Inst3 Inst4 0x1413_2100 0x83a0

Data0 Bypass Inst0 Inst1 Inst2 0x1211_1000 0x84e0

Data1 Bypass Inst3 Inst4 Inst5 0x1514_1300 0x8500

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value
drseg
offset

Inst0 Bypass Data0 Inst1 Inst2 0x1211_2000 0x8300

Inst1 Bypass Data0 Inst0 Inst2 0x1210_2000 0x8320

Inst2 Bypass Data1 Inst3 Inst4 0x1413_2100 0x8340

Inst3 Bypass Data1 Inst2 Inst4 0x1412_2100 0x8360

Inst4 Bypass Data2 Inst5 Inst6 0x1615_2200 0x8380

 EJTAG Debug Support in the microAptiv™ UC Core

238 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.2.8.3 Stopwatch Timer Control (STCtl) Register (0x8900)

The Stopwatch Timer Control (STCtl) register gives configuration information about how the stopwatch timer register
is controlled. On the microAptiv UC core, the break channels that control the stopwatch timer are fixed and this reg-
ister is read-only. This register is required only if stopwatch timer is implemented.

Figure 10.20 STCtl Register Format

Inst5 Bypass Data2 Inst4 Inst6 0x1614_2200 0x83a0

Inst6 Bypass Data3 Inst7 Inst0 0x1017_2300 0x83c0

Inst7 Bypass Data3 Inst6 Inst0 0x1016_2300 0x83e0

Data0 Bypass Inst0 Inst1 Data1 0x2111_1000 0x84e0

Data1 Bypass Inst2 Inst3 Data2 0x2213_1200 0x8500

Data2 Bypass Inst4 Inst5 Data3 0x2315_1400 0x8520

Data3 Bypass Inst6 Inst7 Data0 0x2017_1600 0x8540

31 18 17 14 13 10 9 8 5 4 1 0

Res StopChan1 StartChan1 En1 StopChan0 StartChan0 En0

Table 10.25 STCtl Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:18 Must be written as zero; returns zero on read. R 0

StopChan1 17:14 Indicates the instruction breakpoint channel that will
stop the counter if the timer is under pair1 breakpoint
control

R 0

StartChan1 13:10 Indicates the instruction breakpoint channel that will
start the counter if the timer is under pair1 breakpoint
control

R 0

En1 9 Enables the second pair (pair1) of breakpoint registers to
control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlSTM)and this bit is set,
the breakpoints indicated in the StartChan1 and
StopChan1 fields will control the timer.

The microAptiv UC core only supports 1 pair of stop-
watch control breakpoints so this field is not writable
and will read as 0.

R 0

StopChan0 8:5 Indicates the instruction breakpoint channel that will
stop the counter if the timer is under pair0 breakpoint
control.

R 0x4

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value
drseg
offset

10.3 Complex Breakpoint Usage

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 239

10.2.8.4 Stopwatch Timer Count (STCnt) Register (0x8908)

The Stopwatch Timer Count (STCnt) register is the count value for the stopwatch timer. This register is required only
if the stopwatch timer is implemented.

Figure 10.21 STCnt Register Format

10.3 Complex Breakpoint Usage

10.3.1 Checking for Presence of Complex Break Support

Software should verify that the complex breakpoint hardware is implemented prior to attempting to use it. The full
sequence of steps is shown below for general use. Spots where the microAptiv UC core has restricted behavior are
noted.

1. Read the Config1EP bit to check for the presence of EJTAG logic. EJTAG logic is always present on the
microAptiv UC core.

StartChan0 4:1 Indicates the instruction breakpoint channel that will
start the counter if the timer is under pair0 breakpoint
control.

R 0x1

En0 0 Enables the first pair (pair0) of breakpoint registers to
control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlSTM)and this bit is set,
the breakpoints indicated in the StartChan0 and
StopChan0 fields will control the timer.

The microAptiv UC core only supports 1 pair of stop-
watch control breakpoints so this field is not writable
and will read as 1.

R 1

31 0

Count

Table 10.26 STCtl Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Count 31:0 Current counter value R/W 0

Table 10.25 STCtl Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

 EJTAG Debug Support in the microAptiv™ UC Core

240 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

2. Read the DebugNoDCR bit to check for the presence of the Debug Control Register (DCR). The DCR will always
be implemented on the microAptiv UC core.

3. Read the DCRCBT bit to check for the presence of any complex break and trigger features

4. Read the CBTControl register to check for the presence of each individual feature. If the microAptiv UC core
implements any complex break and trigger features, it will implement all of them

5. If Pass Counters are implemented, they may not be implemented for all break channels and may have different
counter sizes. To determine the size and presence of each pass counter, software can write -1 to each of the
IBPCn and DBPCn registers and read it back. If the microAptiv UC core implements pass counters, it will imple-
ment an 8b counter for each instruction breakpoint and a 16b counter for each data breakpoint.

6. If tuples are implemented, they may only be supported on a subset of the data breakpoint channels. This can be
checked by seeing if the DBBCnTUP bit can be set to 1. Additionally, some cores may support dynamically
changing which instruction breakpoint is associated with a given data breakpoint. This can be checked by
attempting to write the DBCCnTIBrkNum field. If the microAptiv UC core implements tuple support, it will support
it for all data breakpoint channels and the instruction breakpoint association will be fixed.

7. If Priming Conditions are supported, a core may only support a subset of the possible priming condition values.
This can be checked by 4’hf to the xBCCnPrCnd field. If only 1 or 2 bits can be written, the available priming
conditions will be described in the PrCndA registers. If 3 bits are writable, PrCndA and PrCndB will describe the
conditions, and if all 4 bits are writable, the PrCndA,PrCndB,PrCndC, and PrCndD registers will all exist. Some
cores may also support changing the priming conditions and this can be checked by attempting to write to the
PrCnd registers. If the microAptiv UC core supports priming conditions, it will support 4 statically mapped prim-
ing conditions per breakpoint which will be described in the PrCndA registers.

8. If support for qualified breakpoints is indicated, it may only be supported for some of the breakpoints. Addition-
ally, the data breakpoint used for the qualification may be configurable. Software can check this by writing to the
xBCCnDQ and xBCCnDQBrkNum fields. If the microAptiv UC core support qualified breakpoints, it will only
support it on instruction breakpoints and the data break used for qualification will be fixed for each instruction
breakpoint.

9. If the stopwatch timer is implemented, either one or two pairs of instruction breakpoints may be available for
controlling it and it may be possible to dynamically select which instruction breakpoints are used. This can be
tested by writing to the STCtl register.

10.3.2 General Complex Break Behavior

There is some general complex break behavior that is common to all complex breakpoints. . This behavior is
described below:

• Resets to a disabled state - when the core is reset, the complex break functionality will be disabled and debug
software that is not aware of complex break should continue to function normally.

• Complex break state is not updated on exceptional instructions

• Complex breakpoints are evaluated at the end of the pipeline and complex breakpoint exceptions are taken
imprecisely on the following instruction.

• There is no hazard between enabling and enabled events. When an instruction causes an enabling event, the fol-
lowing instruction sees the enabled state and reacts accordingly.

10.3 Complex Breakpoint Usage

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 241

10.3.3 Usage of Pass Counters

Pass counters specify that the breakpoint conditions must match N times before the breakpoint action will be enabled.

• Controlled by writing to the per-breakpoint pass counter register

• Resets to 0

• Writing to a non-zero value enables the pass counter. When enabled, each time the breakpoint conditions match,
the counter will be decremented by 1. After the counter value reaches 0, the breakpoint action (breakpoint excep-
tion, trigger, or complex break enable) will occur on any subsequent matches and the counter will not decrement
further. The action does not occur on the match that causes the 1->0 counter decrement.

• If the breakpoint also has priming conditions and/or data qualified specified, the pass counter will only decre-
ment when the priming and/or qualified conditions have been met.

• If a data breakpoint is configured to be a tuple breakpoint, the data pass counter will only decrement on instruc-
tions where both the instruction and data break conditions match. The pass counter for the instruction break
involved in a tuple should not be enabled if the tuple is enabled.

• When a pass counter has been enabled, it will be treated as enabled until the pass counter is explicitly written to
0. Namely, breakpoint exceptions will continue to be taken imprecisely until the pass counter is disabled by writ-
ing to 0.

• The counter register will be updated as matches are detected. The current count value can be read from the regis-
ter while operating in debug mode. Note that this behavior is architecturally recommended, but not required.

10.3.4 Usage of Tuple Breakpoints

A tuple breakpoint is the logical AND of a data breakpoint and an instruction breakpoint. Tuple breakpoints are spec-
ified as a condition on a data breakpoint. If the DBCCnTUP bit is set, the data breakpoint will not match unless there
the corresponding instruction breakpoint conditions are also met.

• Uses the data breakpoint resources to specify the break action, break status, pass counters, and priming condi-
tions.

• The instruction breakpoint involved in the tuple should be configured as follows:

• IBCCnCBE = 1

• IBCCnPrCnd = IBCCnDQ = IBCnTE = IBCnBE = IBPCn = 0

10.3.5 Usage of Priming Conditions

Priming conditions provide a way to have one breakpoint enabled by another one. Prior to the priming condition
being satisfied, any breakpoint matches are ignored.

• Priming condition resets to bypass which specifies that no priming is required

• 3 other priming conditions are available for each breakpoint. These condition vary from breakpoint to breakpoint
(since it makes no sense for a breakpoint to prime itself). The conditions for each of the breakpoints are listed in
Table 10.23.

 EJTAG Debug Support in the microAptiv™ UC Core

242 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• The priming breakpoint must have xBCnTE or xBCCnCBE set.

• When the priming condition has been seen, the primed breakpoint will remain primed until its xBCCn register is
written

• The primed state is stored with the breakpoint being primed and not with the breakpoint that is doing the priming.

• Each Prime condition is the comparator output after it has been qualified by its own Prime condition, data quali-
fication, and pass counter. Using this, several stages of priming are possible (e.g. data cycle D followed by
instruction A followed by instruction B N times followed by instruction C).

10.3.6 Usage of Data Qualified Breakpoints

Each of the instruction breakpoints can be set to be data qualified. In qualified mode, a breakpoint will recognize its
conditions only after the specified data breakpoint matches both address and data. If the data breakpoint matches
address, but has a mismatch on the data value, the instruction breakpoint will be unqualified and will not match until
a subsequent qualifying match.

This feature can be used similarly to the ASID qualification that is available on cores with TLBs. If an RTOS loads a
process ID for the current process, that load can be used as the qualifying breakpoint. When a matching process ID is
loaded (entering the desired RTOS process), qualified instruction breakpoints will be enabled. When a different pro-
cess ID is loaded (leaving the desired RTOS process), the qualified instruction breakpoints are disabled. Alterna-
tively, with the InvertValueMatch feature of the data breakpoint, the instruction breakpoints could be enabled on any
process ID other than the specified one.

• The qualifying data break must have DBCnTE or DBCCnCBE set.

• The qualifying data break should have data comparison enabled (via settings of DBCnBLM and DBCnBAI)

• The qualifying data break should not have pass counters, priming conditions, or tuples enabled.

• The qualifying data access can be either a load or store, depending on the settings of DBCnNoSB and DBCnNoLB

• The Qualified/Unqualified state is stored with the instruction breakpoint that is being qualified. Writing its
IBCCn register will disqualify that breakpoint.

• Qualified instruction breakpoint can also have priming conditions and/or pass counters enabled. The pass counter
will only decrement when the priming and qualifying conditions have been met. The instruction breakpoint
action (break, trigger, or complex enable) will only occur when all priming, qualifying, and pass counter condi-
tions have been met.

• Qualified instruction breakpoint can be used to prime another breakpoint

10.3.7 Usage of Stopwatch Timers

The stopwatch timer is a drseg memory mapped count register. It can be configured to be free running or controlled
by instruction breakpoints. This could be used to measure the amount of time that is spent in a particular function by
starting the counter upon function entry and stopping it upon exit.

• Count value is reset to 0

10.4 Test Access Port (TAP)

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 243

• Reset state has counter stopped and under breakpoint control so that the counter is not running when the core is
not being debugged.

• Bit in CBTControl register controls whether the counter is free-running or breakpoint controlled.

• Counter does not count in debug mode

• When breakpoint controlled, the involved instruction breakpoints must have IBCnTE or IBCCnCBE set in order to
start or stop the timer.

10.4 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible
with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

• Support for both ROM based debugger and debugging both through TAP.

10.4.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

Table 10.27 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data regis-
ters. The TCK clock is independent of the processor clock, so the EJTAG
probe can drive TCK independently of the processor clock frequency.
The core signal for this is called EJ_TCK.

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test
operation. TMS is sampled on the rising edge of TCK.
The core signal for this is called EJ_TMS.

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data regis-
ters on the rising edge of the TCK clock, depending on the TAP controller
state.
The core signal for this is called EJ_TDI.

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the
TDO pin on the falling edge of the TCK clock. When no data is shifted
out, the TDO is 3-stated.
The core signal for this is called EJ_TDO with output enable controlled
by EJ_TDOzstate.

 EJTAG Debug Support in the microAptiv™ UC Core

244 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.4.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an Instruction register scan or data register scan is performed. The TAP consists of a small con-
troller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 10.22. The
TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on the
falling edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 10.22.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers,
the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruction
register, the Capture-IR state is used to capture status information into the Instruction register.

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause
state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting of data through either the
Data or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the
TAP controller and instruction in the TAP module, independent of the
processor logic. The processor is not reset by the assertion of TRST_N.
The core signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this
signal at power-on and then leave it high, in case the signal is not available
as a pin on the chip. If available on the chip, then it must be low on the
board when the EJTAG debug features are unused by the probe.

Table 10.27 EJTAG Interface Pins (Continued)

Pin Type Description

 EJTAG Debug Support in the microAptiv™ UC Core

246 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller is in this state.

10.4.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction can-
not change while the TAP controller is in this state.

10.4.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The
instruction cannot change while the TAP controller is in this state.

10.4.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A
HIGH on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

10.4.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state.
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in
this state.

10.4.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state.

10.4.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge
of the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

10.4 Test Access Port (TAP)

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 247

10.4.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in
this state.

10.4.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

10.4.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition
to the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP control-
ler is in this state and the instruction register retains its previous state.

10.4.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller is in this state.

10.4.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A
HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

10.4.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state.

10.4.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

 EJTAG Debug Support in the microAptiv™ UC Core

248 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BYPASS instruction.

10.4.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register
to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the
IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

10.4.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, access to the Identification Register is immediately available, via a
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

10.4.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

10.4.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe shifts
32 bits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

Table 10.28 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data, and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn, and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn, and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block

0x11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x14 PCSAMPLE Selects the PCsample register

0x17 FDC Selects Fast Debug Channel.

0x1F BYPASS Bypass mode

10.5 EJTAG TAP Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 251

TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is
set to 000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device
ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data regis-
ter scan operation. A list of the implemented instructions are listed in Table 10.28.

10.5.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control sig-
nals to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the
output of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the
write bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

• Processor Access Address Register

• Processor Access Data Register

• FastData Register

10.5.2.1 Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit scan
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to
satisfy the IEEE 1149.1 Bypass instruction requirement.

10.5.2.2 Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 10.29 shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out of the
ID register after being selected. The register is selected when the Instruction register is loaded with the IDCODE
instruction.

Figure 10.25 Device Identification Register Format
31 28 27 12 11 1 0

Version PartNumber ManufID R

 EJTAG Debug Support in the microAptiv™ UC Core

252 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.5.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE
instruction.

Figure 10.26 Implementation Register Format

Table 10.29 Device Identification Register

Fields

Description
Read/
Write Reset StateName Bit(s)

Version 31:28 Version (4 bits)
This field identifies the version number of the proces-
sor derivative.

 R EJ_Version[3:0]

PartNumber 27:12 Part Number (16 bits)
This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.

 R EJ_ManufID[10:0]

R 0 Reserved R 1

31 29 28 25 24 23 21 20 17 16 15 14 13 0

EJTAGver Reserved DINT-
sup ASIDsize Reserved MIPS16 0 NoDMA Reserved

Table 10.30 Implementation Register Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

EJTAGver 31:29 EJTAG Version.
2: Version 2.6

R 5

Reserved 28:25 Reserved R 0

DINTsup 24 DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is supported:

R EJ_DINTsup

Encoding Meaning

0 DINT signal from the probe is not sup-
ported

1 Probe can use DINT signal to make
debug interrupt.

10.5 EJTAG TAP Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 253

10.5.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0
or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on both hard and soft CPU resets, but not on TAP
controller resets by e.g. TRST_N. TCK clock is not required when the hard or soft CPU reset occurs, but the bits are
still updated to the reset value when the TCK applies. The first 5 TCK clocks after hard or soft CPU resets may result
in reset of the bits, due to synchronization between clock domains.

Figure 10.27 EJTAG Control Register Format

ASIDsize 23:21 Size of ASID field in implementation: R 0

Reserved 20:17 Reserved R 0

MIPS16 16 Indicates whether MIPS16 is implemented: R 0

Reserved 15 Reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

Reserved 13:0 Reserved R 0

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn Prob-
Trap Res Ejtag-

Brk Res DM Rs

Table 10.30 Implementation Register Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Encoding Meaning

0 No ASID in implementation
1 6-bit ASID
2 8-bit ASID
3 Reserved

Encoding Meaning

0 No MIPS16 support
1 MIPS16 implemented

 EJTAG Debug Support in the microAptiv™ UC Core

254 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 10.31 EJTAG Control Register Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a CPU reset has occurred:

The Rocc bit will keep the 1 value as long as reset is
applied.
This bit must be cleared by the probe, to acknowledge
that the incident was detected.
The EJTAG Control register is not updated in the
Update-DR state unless Rocc is 0, or written to 0. This is
in order to ensure proper handling of processor access.

R/W 1

Psz[1:0] 30:29 Processor Access Transfer Size
These bits are used in combination with the lower two
address bits of the Address register to determine the size
of a processor access transaction. The bits are only valid
when processor access is pending.

Note: LE=little endian, BE=big endian, the byte# refers to
the byte number in a 32-bit register, where byte 3 = bits
31:24; byte 2 = bits 23:16; byte 1 = bits 15:8; byte 0=bits
7:0, independently of the endianess.

R Undefined

Res 28:23 Reserved R 0

Encoding Meaning

0 No reset occurred since bit last
cleared.

1 Reset occurred since bit last cleared.

PAA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte
3)

01 00 Byte (LE, byte 1; BE, byte
2)

10 00 Byte (LE, byte 2; BE, byte
1)

11 00 Byte (LE, byte 3; BE, byte
0)

00 01 Halfword (LE, bytes 1:0;
BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2;
BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1,
0)

00 11 Triple (LE, bytes 2, 1, 0; BE,
bytes 3, 2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE,
bytes 2, 1, 0)

All others Reserved

10.5 EJTAG TAP Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 255

Doze 22 Doze state
The Doze bit indicates any kind of low-power mode. The
value is sampled in the Capture-DR state of the TAP con-
troller:

Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.

R 0

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is
running or stopped. The value is sampled in the Cap-
ture-DR state of the TAP controller:

R 0

PerRst 20 Peripheral Reset
When the bit is set to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the read
value of this bit is also 1. This is to ensure that the setting
from the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.
When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared in
the CPU clock domain also.
This bit controls the EJ_PerRst signal on the core.

R/W 0

PRnW 19 Processor Access Read and Write
This bit indicates if the pending processor access is for a
read or write transaction, and the bit is only valid while
PrAcc is set.

R Undefined

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

Encoding Meaning

0 CPU not in low-power mode.
1 CPU is in low-power mode.

Encoding Meaning

0 Internal system clock is running
1 Internal system clock is stopped

Encoding Meaning

0 Read transaction
1 Write transaction

 EJTAG Debug Support in the microAptiv™ UC Core

256 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

PrAcc 18 Processor Access (PA)
Read value of this bit indicates if a Processor Access (PA)
to the EJTAG memory is pending:

The probe’s software must clear this bit to 0 to indicate
the end of the PA. Write of 1 is ignored.
A pending Processor Access is cleared when Rocc is set,
but another PA may occur just after the reset if a debug
exception occurs.
Finishing a Processor Access is not accepted while the
Rocc bit is set. This is to avoid that a Processor Access
occurring after the reset is finished due to indication of a
Processor Access that occurred before the reset.
The FASTDATA access can clear this bit.

R/W0 0

Res 17 Reserved R 0

PrRst 16 Processor Reset (implementation-dependent behavior)
When the bit is set to 1, then it is only guaranteed that this
setting has taken effect in the system when the read value
of this bit is also 1. This is to ensure that the setting from
the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.
When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared in
the CPU clock domain also.
This bit controls the EJ_PrRst signal. If the signal is
used in the system, then it must be ensured that both the
processor and all devices required for a reset are properly
reset. Otherwise the system may fail or hang. The bit
resets itself, since the EJTAG Control register is reset by
hard or soft reset.

R/W 0

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

Encoding Meaning

0 No pending processor access
1 Pending processor access

10.5 EJTAG TAP Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 257

ProbEn 15 Probe Enable
This bit indicates to the CPU if the EJTAG memory is
handled by the probe so processor accesses are answered:

It is an error by the software controlling the probe if it sets
the ProbTrap bit to 1, but resets the ProbEn to 0. The
operation of the processor is UNDEFINED in this case.
The ProbEn bit is reflected as a read-only bit in the
ProbEn bit, bit 0, in the Debug Control Register
(DCR).
The read value indicates the effective value in the DCR,
due to synchronization issues between TCK and CPU
clock domains; however, it is ensured that change of the
ProbEn prior to setting the EjtagBrk bit will have effect
for the debug handler executed due to the debug excep-
tion.
The reset value of the bit depends on whether the EJTAG-
BOOT indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

Encoding Meaning

0 The probe does not handle EJTAG
memory transactions

1 The probe does handle EJTAG mem-
ory transactions

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

 EJTAG Debug Support in the microAptiv™ UC Core

258 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

ProbTrap 14 Probe Trap
This bit controls the location of the debug exception vec-
tor:

Valid setting of the ProbTrap bit depends on the setting
of the ProbEn bit, as described for the ProbEn bit.
The ProbTrap should not be set to 1, for debug exception
vector in EJTAG memory, unless the ProbEn bit is also
set to 1 to indicate that the EJTAG memory may be
accessed.
The read value indicates the effective value to the CPU,
due to synchronization issues between TCK and CPU
clock domains; however, it is ensured that change of the
ProbTrap bit prior to setting the EjtagBrk bit will have
effect for the EjtagBrk.
The reset value of the bit depends on whether the EJTAG-
BOOT indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

Res 13 Reserved R 0

EjtagBrk 12 EJTAG Break
Setting this bit to 1 causes a debug exception to the pro-
cessor, unless the CPU was in debug mode or another
debug exception occurred.
When the debug exception occurs, the processor core
clock is restarted if the CPU was in low-power mode. This
bit is cleared by hardware when the debug exception is
taken.
The reset value of the bit depends on whether the EJTAG-
BOOT indication is given or not:

R/W1 0 or 1
from

EJTAGBOOT

Res 11:4 Reserved R 0

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

Encoding Meaning

0 In normal memory 0xBFC0.0480
1 In EJTAG memory at 0xFF20.0200 in

dmseg

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

Encoding Meaning

0 Processor is in non-debug mode (No
EJTAGBOOT indication given)

1 Processor is in debug mode (EJTAG-
BOOT indication given)

10.5 EJTAG TAP Registers

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 259

10.5.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

10.5.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of
the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from
this register is only valid when a processor access write is pending. The register is used to provide the data value fora
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bits wide. Data alignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read then 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in the PAD register depends on the endianess of the core, as shown in Figure 10.28. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

DM 3 Debug Mode
This bit indicates the debug or non-debug mode:

The bit is sampled in the Capture-DR state of the TAP
controller.

R 0

Res 2:0 Reserved R 0

Table 10.31 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

Encoding Meaning

0 Processor is in non-debug mode
1 Processor is in debug mode

 EJTAG Debug Support in the microAptiv™ UC Core

260 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Figure 10.28 Endian Formats for the PAD Register

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

10.5.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata Register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a
bit is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies
whether the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the
Fastdata access was successful or not (if completion was requested).

Figure 10.29 Fastdata Register Format

0

SPrAcc

Table 10.32 Fastdata Register Field Description

Fields

Description
Read/
Write

Power-up
StateName Bits

SPrAcc 0 Shifting in a zero value requests completion of the Fast-
data access. The PrAcc bit in the EJTAG Control regis-
ter is overwritten with zero when the access succeeds.
(The access succeeds if PrAcc is one and the operation
address is in the legal dmseg Fastdata area.) When suc-
cessful, a one is shifted out. Shifting out a zero indicates a
Fastdata access failure.
Shifting in a one does not complete the Fastdata access
and the PrAcc bit is unchanged. Shifting out a one indi-
cates that the access would have been successful if
allowed to complete and a zero indicates the access would
not have successfully completed.

R/W Undefined

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

10.6 TAP Processor Accesses

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 261

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies
the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The
Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata
area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download
accesses are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to
see if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used).
Downloads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will
shift out the data being stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

Table 10.33 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

10.6 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like a slave unit connected to the on-chip bus. The core can then execute code taken
from the EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs

Table 10.33 Operation of the FASTDATA access

Probe
Operation

Address
Match
Check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
Shifted In

Action in the
Data Register

PrAcc
Changes

To

LSB
Shifted

Out
Data Shifted

Out

Download using
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data

0 x none unchanged 0 invalid

Upload using
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

 EJTAG Debug Support in the microAptiv™ UC Core

262 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

in a serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without
occupying the memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a soft or hard reset.

10.6.1 Fetch/Load and Store from/to EJTAG Probe Through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug excep-
tion: 0xFF20.0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For
this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit must be set and the processor has to
be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register

2. The internal hardware latches the data to be written into the PA Data register.

10.7 SecureDebug

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 263

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

Note: Probe accesses and external bus accesses are serialized by the core. A probe access will not begin until all
external bus requests have completed. Similarly, a new probe or external bus access will not begin until a pending
probe access has completed.

10.7 SecureDebug

For security reasons, users can optionally disable certain EJTAG capabilities via the SecureDebug feature in order to
prevent untrusted access to the core through debug mode.

10.7.1 Disabling EJTAG Debugging

10.7.1.1 EJ_DisableProbeDebug Signal

An input signal to the core is defined, EJ_DisableProbeDebug, which when asserted, forces ProbEn=0 and
ProbTrap=0. EJ_DisableProbeDebug overrides any other ProbEn or ProbTrap settings.

 EJTAG Debug Support in the microAptiv™ UC Core

264 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Suggested implementation of the EJ_DisableProbeDebug signal is for a microcontroller to provide a bit within
non-volatile memory (outside the core) that is pre-programmed to set or clear this control signal.

10.7.1.2 Override for EjtagBrk and DINT Disable

An override for the EjtagBrk and DINT disable caused by the EJ_DisableProbeDebug signal is provided by the Mem-
ory Protection Unit (MPU) Config register field EjtagBrk_Override. This override feature is only available if the Mem-
ory Protection Unit is implemented.

The override can be asserted by the CPU during the trusted boot process. Its purpose is to allow a probe to assert
EjtagBrk or the assertion of the DINT signal, which requests a Debug Interrupt exception, thus providing a means of
recovering the CPU from a crash or hang. This feature allows a Debug Executive, if one is provided in target firm-
ware, to communicate with the probe over the Fast Debug Channel (FDC) in order to get the attention of the target by
causing a debug exception. It also allows a host-based debugger to query the target via Debug Executive commands
to determine the cause of the hang.

10.7.2 EJTAG Features Unmodified by SecureDebug

SecureDebug will not modify the following EJTAG features:

• FDC (Fast Debug Channel) over EJTAG. This is required to provide a path for an EJTAG probe to send and
receive messages via the Debug Executive when one is included in the target code. The physical EJTAG serial
connection, pins, and protocol must function correctly as well as a cJTAG (2-wire) connection for FDC.

• RST* signal. This is the hardware signal on the EJTAG connector that connects to the target system reset circuit.
It can be asserted by an EJTAG probe.

10.8 iFlowtrace™ Mechanism

There is only one optional trace mechanism that is available to extract additional information about program execu-
tion. iFlowtrace is a light-weight instruction-only tracing scheme that is sufficient to reconstruct the execution flow in
the core and it can only be controlled by debug software. This tracing scheme has been kept very simple to minimize
the impact on die size.

The iFlowtrace tracing scheme is not a strict subset of the PDtrace tracing methodology, and its trace format outputs
differ from those of PDtrace. Trace formats, using simplified instruction state descriptors, were designed for the
iFlowtrace trace to simplify the trace mechanism and to obtain better compression.

Table 10.34 EJ_DisableProbeDebug Signal Overview

Signal Description Direction Compliance

EJ_DisableProbeDebug When asserted:
• ProbEn = 0
• ProbTrap = 0
• EjtagBrk is disabled1.
• EJTAGBOOT is disabled.
• PC Sampling is disabled.
• DINT signal is ignored1.

1. An override is provided.

Input Required for
SecureDebug

10.8 iFlowtrace™ Mechanism

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 265

Tracing is disabled if the processor enters Debug Mode (refer to the EJTAG specification for description of Debug
Mode). This is true for both Normal Trace Mode as well as Special Trace Mode.

The presence of the iFlowtrace mechanism is indicated by the CP0 Config3ITL register bit.

10.8.1 A Simple Instruction-Only Tracing Scheme

A trace methodology can often be mostly defined by its inputs and outputs. Hence this basic scheme is described by
the inputs to the core tracing logic and by the trace output format from the core. We assume here that the execution
flow of the program is traced at the end of the execution path in the core similar to PDtrace.

10.8.1.1 Trace Inputs

1. In_TraceOn: when on, legal trace words are coming from the core and at the point when it is turned on, that is for
the first traced instruction, a full PC value is output. When off, it cannot be assumed that legal trace words are
available at the core interface.

2. In_Stall: This says, stall the processor to avoid buffer overflow that can lose trace information. When off, a buffer
overflow will simply throw away trace data and start over again. When on, the processor is signalled from the
tracing logic to stall until the buffer is sufficiently drained and then the pipeline is restarted.

10.8.1.2 Normal Trace Mode Outputs

1. Stall cycles in the pipe are ignored by the tracing logic and are not traced. This is indicated by the signal
Out_Valid that is turned off when no valid instruction is being traced. When Out_Valid is asserted, instructions
are traced out as described in the rest of this section. The traced instruction PC is a virtual address.

2. In the output format, every sequentially executed instruction is traced as 1’b0.

3. Every instruction that is not sequential to the previous one is traced as either a 10 or an 11 (read this as a serial
bitstream from left to right). This implies that the target instruction of a branch or jump is traced this way, not the
actual branch or jump instruction (this is similar to PDtrace):

4. A 10 instruction implies a taken branch for a conditional branch instruction whose condition is unpredictable
statically, but whose branch target can be computed statically and hence the new PC does not need to be traced
out. Note that if this branch was not taken, it would have been indicated by a 0 bit, that is sequential flow.

5. A 11 instruction implies a taken branch for an indirect jump-like instruction whose branch target could not be
computed statically and hence the taken branch address is now given in the trace. This includes, for example,
instructions like jr, jalr, and interrupts:

• 11 00 - followed by 8 bits of 1-bit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:

[3:0] = 4’b0011
[11:4] = PCdelta[8:1]

• 11 01 - followed by 16 bits of 1-bit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:

 EJTAG Debug Support in the microAptiv™ UC Core

266 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

[3:0] = 4’b1011
[19:4] = PCdelta[16:1]

• 11 10 - followed by 31 of the most significant bits of the PC value, followed by a bit (NCC) that indicates no
code compression. Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for microMIPS instruction
NCC=0. This trace record will appear at all transition points between MIPS32/MIPS64 and microMIPS
instruction execution.
This form is also a special case of the 11 format and it is used when the instruction is not a branch or jump,
but nevertheless the full PC value needs to be reconstructed. This is used for synchronization purposes, sim-
ilar to the Sync in PDtrace. In iFlowtrace rev 2.0 onwards, the sync period is user-defined, and is counted
down and when an internal counter runs through all the values, this format is used. The bit assignments of
this format on the bus between the core tracing logic and the ITCB is:

[3:0] = 4’b0111
[34:4] = PC[31:1]
[35] = NCC

• 11 11 - Used to indicate trace resumption after a discontinuity occurred. The next format is a 1110 that sends
a full PC value. A discontinuity might happen due to various reasons, for example, an internal buffer over-
flow, and at trace-on/trace-off trigger action.

10.8.2 Special Trace Modes

iFlowtrace 2.0 adds special trace modes which can only be active when the normal tracing mode is disabled. Software
can determine which modes are supported by attempting to write the enable bits in the IFCTL register. Software can
check the Illegal bit in the IFCTL register—if an unsupported combination of modes is requested, the bit will be set
and the trace contents will be unpredictable. The special trace modes are described below.

10.8.2.1 Mode Descriptions

Delta Cycle Mode

This mode is specified in combination with the other special trace modes. It is enabled via the CYC bit in the Con-
trol/Status Register. When delta cycle reporting is enabled, each trace message will include a 10b delta cycle value
which reports the number of cycles that have elapsed since the last message was generated. A value of 0 indicates that
the two messages were generated in the same cycle. A value of 1 indicates that they were generated in consecutive
cycles. If 1023 cycles elapse without an event being traced, a counter rollover message is generated.

Note: If the processor clocks stop due to execution of the WAIT instruction, the delta cycle counter will also stop and
will report ‘active’ cycles between events rather than ‘total’ cycles.

Breakpoint Match Mode

This modes uses EJTAG data and instruction breakpoint hardware to enable a trace of PC values. Instead of starting
or stopping trace, a triggerpoint will cause a single breakpoint match trace record. This record indicates that there was
a triggerpoint match, the breakpoint ID of the matching breakpoint, and the PC value of an instruction that matched
the instruction of data breakpoint.This mode can only be used when normal tracing mode is turned off. This mode can
not be used in conjunction with other special trace modes. This mode is enabled or disabled via the BM field in the
Control/Status register (see Section 10.8.6 “ITCB Register Interface for Software Configurability”).

The breakpoints used in this mode must have the TE bet set to enable the match condition.

10.8 iFlowtrace™ Mechanism

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 267

Software should avoid setting up overlapping breakpoints. The behavior when multiple matches occur on the same
instruction is to report a BreakpointID of 7.

Filtered Data Tracing Mode

This mode uses EJTAG data breakpoint hardware to enable a trace of data values. Rather than starting or stopping
trace as in normal trace mode, a data triggerpoint will cause a filtered data trace record. This record indicates that
there was a data triggerpoint match, the breakpoint ID of the matching breakpoint, whether it was a load or store, the
size of the request, low order address bits, and the data value. This mode can only be used when normal tracing mode
is turned off. This mode can not be used in conjunction with other special trace modes. This mode can be enabled or
disabled via the FDT bit in the Control/Status register (see Section 10.8.6 “ITCB Register Interface for Software
Configurability”).

The corresponding data breakpoint must have the TE bit set to enable the match condition.

Software should avoid setting up overlapping data breakpoints. The behavior when multiple matches on one load or
store are detected is to report a BreakpointID of 7.

Extended Filtered Data Tracing Mode

Extends Filtered Data Tracing Mode by adding the virtual address of the load/store instruction to the generated trace
information. (see Section “Filtered Data Tracing Mode” above).

This behavior is enabled/disabled by the FDT_CAUSE field in the IFCTL Control/Status register (see Section
10.8.6 “ITCB Register Interface for Software Configurability”). FDT_CAUSE only has effect if the FDT field is
also set.

The extended trace sequence is a FDT trace message followed by the Breakpoint Match (BM) trace message. If the
IFCTLCYC field is set, the FDTtrace message will have a DeltaCycle Message value of ‘0’ directly followed by the
Breakpoint Match message. This message sequence (FDT, delta cycle of 0, and BM) indicates to the trace disassem-
bler that Extended Filtered Data Tracing mode is enabled (IFCTLFDT_CAUSE=1).

Function Call/Return and Exception Tracing Mode

In this mode, the PC value of function calls and returns and/or exceptions and returns are traced out. This mode can
only be used when normal tracing mode is turned off. This mode cannot be used in conjunction with other special
trace modes. The function call/return and exception/return are independently enabled or disabled via the FCR and ER
bits in the Control//Status register (see Section 10.8.6 “ITCB Register Interface for Software Configurability”).

These events are reported for the following instructions:

• MIPS32 function calls: JAL, JALR, JALR.HB, JALX

• microMIPS function calls: JAL, JALR, JALR.HB, JALX, JALR16, JALRS16, JALRS, JALRS.HB, JALS

• MIPS32 function returns: JR, JR.HB

• microMIPS function returns: JR, JR.HB, JRC, JRADDIUSP, JR16

• Exceptions: Reported on the first instruction of the exception handler

• Exception returns: ERET

 EJTAG Debug Support in the microAptiv™ UC Core

268 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• MCU ASE Interrupt returns: IRET

Other Trace Messages

In any of the special trace modes, it is possible to embed messages into the trace stream directly from a program. This
is done by writing to the UserTraceData1 or UseTraceData2 Cop0 registers. When UserTraceData1 register is writ-
ten, a trace message of type “User Triggered Message 1” (UTM1) is generated. When UserTraceData2 register is
written, a trace message of type “User Triggered Message 2” (UTM2) is generated. Please refer to7.2.32 “User Trace
Data1 Register (CP0 Register 23, Select 3)/User Trace Data2 Register (CP0 Register 24, Select 3)” on page 194.

Overflow messages can also be generated when tracing off-chip if the IO control bit is 0 and trace data is generated
faster than it is consumed. No overflow will be generated when using on-chip trace.

10.8.2.2 Special Trace Mode Outputs

The normal and special trace modes cannot be enabled at the same time because the trace message encoding is not
unique between the two modes. The software reading the trace stream must be aware of which mode is selected to
know how to interpret the bits in the trace stream. The message types for each type of special trace message are
unique.

• 00 (as above, read a bitstream from left to right) - Delta Cycle Rollover message. The output format is:
[1:0] = 2’b00

• 010 - User Trace Message. The format of this type of message is:
[2:0] = 3’b010
[34:3] = Data[31:0]
[35] = UTM2/UTM1 (1=UTM2, 0=UTM1)
[44:36] = DeltaCycle (if enabled)

• 011 - Reserved

• 10 - Breakpoint Match Message. The output format during this trace mode is:
[1:0] = 2’b01
[5:2] = BreakpointID
[6] = Instruction Breakpoint
[37:7] = MatchingPC[31:1]
[38] = NCC
[48:39] = DeltaCycle (if enabled)
Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for microMIPS instruction NCC=0.

• 110 - Filtered Data Message. The output format during this trace mode is:
[2:0] = 3’b011
[6:3] = BreakpointID
[7] = Load/Store (1=Load, 0=Store)
[8] = FullWord (1=32b data, 0= <32b)
[14:5] = Addr[7:2]
[46:15] = {32b data value} OR
[46:15] = {BE[3:0], 4’b0, 24b data value} OR
[46:15] = {BE[3:0], 12’b0, 16b data value} OR
[46:15] = {BE[3:0],20’b0, 8b data value}
[56:47] = DeltaCycle (if enabled)

 EJTAG Debug Support in the microAptiv™ UC Core

270 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

therefore the 57 data signals carry valid execution information. The iFlowtrace data bus is encoded as shown in Table
10.35. Note that all the non-defined upper bits of the bus are zeroes.

Table 10.35 Data Bus Encoding

10.8.5 TCB Storage Representation

Records from iFlowtrace are inserted into a memory stream exactly as they appear in the iFlowtrace data output.
Records are concatenated into a continuous stream starting at the LSB. When a trace word is filled, it is written to
memory along with some tag bits. Each record consists of a 64-bit word, which comprises 58 message bits and 6 tag
bits or header bits that clarify information about the message in that word.

The ITCB includes a 58-bit shift register to accumulate trace messages. When 58 or more bits are accumulated, the 58
bits and 6 tag bits are sent to the memory write interface. Messages may span a trace word boundary; in this case, the
6 tag bits indicate the bit number of the first full trace message in the 58-bit data field.

The tag bits are slightly encoded so they can serve a secondary purpose of indicating to off-chip trace hardware when
a valid trace word transmission begins. The encoding ensures that at least one of the 4 LSBs of the tag is always a 1
for a valid trace message. The tag values are shown in Table 10.36. The longest trace message is 57 bits (filtered data
trace in special trace mode with delta cycle), so the starting position indicated by the tag bits is always between 0 and
56.

Valid Data (LSBs) Description

0 X No instructions executed in this cycle

1 0 Normal Mode: Sequential instruction executed

1 01 Normal Mode: Branch executed, destination predictable from code

1 <8>0011 Normal Mode: Discontinuous instruction executed, PC offset is 8 bit signed offset

1 <16>1011 Normal Mode: Discontinuous instruction executed, PC offset is 16 bit signed off-
set

1 <NCC><31>0111 Normal Mode: Discontinuous instruction or synchronization record, No Code
Compression (NCC) bit included as well as 31 MSBs of the PC value

1 00 Special Mode: Delta Cycle Rollover message

1 <10><32>010 Special Mode: User add-in Trace Message. 32 bit user data as well as 10 bit delta
cycle if enabled.

1 <10><NCC><31><1><4>01 Special Mode: Breakpoint Match Message. 4-bit breakpoint ID, 1 bit indicates
breakpoint type, 31 MSBs of the PC value, NCC bit included as well as 10-bit
delta cycle if enable.

1 <10><32><6><1><1><4>011 Special Mode: Filtered Data Message. 4 bit breakpoint ID, 1 bit load or store indi-
cation, 1 bit full word indication, 6 bit of addr[7:2], 32 bit of the data information
included as well as 10 bit delta cycle if enabled.

1 <10><NCC><31><R><Ex><FC>011 Special Mode: Function Call/Return/Exception Tracing. 1 bit function call indica-
tion, 1 bit exception indication, 1 bit function or exception return indication, 31
MSBs of the PC value, NCC bit included as well as 10 bit delta cycle if enabled.

1 1111 Internal overflow

Table 10.36 Tag Bit Encoding

Starting Bit of First Full
Trace Message

Encoding
(decimal)

0 58

10.8 iFlowtrace™ Mechanism

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 271

When trace stops (ON set to zero), any partially filled trace words are written to memory. Any unused space above
the final message is filled with 1’s. The decoder distinguishes 1111 patterns used for fill in this position from an 1111
overflow message by recognizing that it is the last trace word.

These trace formats are written to a trace memory that is either on-chip or off-chip. No particular size of SRAM is
specified; the size is user selectable based on the application needs and area trade-offs. Each trace word can typically
store about 20 to 30 instructions in normal trace mode, so a 1 KWord trace memory could store the history of 20K to
30K executed instructions.

The on-chip SRAM or trace memory is written continuously as a circular buffer. It is accessible via drseg address
mapped registers. There are registers for the read pointer, write pointer, and trace word. The write pointer register
includes a wrap bit that indicates that the pointer has wrapped since the last time the register was written. Before start-
ing trace, the write pointer would typically be set to 0. To read the trace memory, the read pointer should be set to 0 if
there has not been a wrap, or to the value of the write pointer if there has been. Reading the trace word register will
read the entry pointed to by the read pointer and will automatically increment the read pointer. Software can continue
reading until all valid entries have been read out.

10.8.6 ITCB Register Interface for Software Configurability

The ITCB includes a drseg memory interface to allow software to set up tracing and read the current status. If an
on-chip trace buffer is also implemented, there are additional registers included for accessing it.

10.8.6.1 iFlowtrace Control/Status (IFCTL) Register (offset 0x3fc0)

The Control/Status register provides the mechanism for turning on the different trace modes. Figure 10.31 has the for-
mat of the register and Table 10.37 describes the register fields.

Figure 10.31 Control/Status Register

16 59

32 60

48 61

Unused 0,16,32,48

Reserved 62,63

Others StartingBit

31 30 16 15 14 13 12 11 10 9 8 5 4 3 2 1 0

Illegal 0

FD
T_C

A
U

SE

CYC FDT BM ER FCR EST SyP OfClk OfC IO En On

Table 10.36 Tag Bit Encoding

Starting Bit of First Full
Trace Message

Encoding
(decimal)

 EJTAG Debug Support in the microAptiv™ UC Core

272 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 10.37 Control/Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 30:16 Reserved for future use. Read as zeros, must be written as
zeros

R 0 Required

Illegal 31 This bit is set by hardware and indicates if the currently
enabled trace output modes are an illegal combination. A
value of 1 indicates an unsupported setting. A value of 0
indicates that the currently selected settings are legal.

R 0 Required

FDT_CAUSE 15 Extended Filtered Data Trace mode (FDT). Adds causing
load/store virtual address to Filtered Data Trace.
FDT_CAUSE only has effect if FDT is set.
The extended trace sequence is a FDT trace message fol-
lowed by the Breakpoint Match (BM) trace message. If
CYC is set, the FDT trace message will have a DeltaCycle
Message value of ‘0’ directly followed by the Breakpoint
match (BM) message. This message sequence (FDT, delta
cycle of 0, and BM) indicates to the trace disassembler
that Extended Filtered Data Tracing mode is enabled.

R/W 0 Optional for
iFlowtrace rev

2.0+

CYC 14 Delta Cycle Mode: This mode can be set in combination
with the EST special trace modes. When set, a delta cycle
value is included in each of the trace messages and indi-
cates the number of cycles since the last message was gen-
erated. If this tracing mode is not implemented, the field is
read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

FDT 13 Filtered Data Trace mode. If set, on a data breakpoint
match, the data value of the matching breakpoint is traced.
Normal tracing is inhibited when this mode is active. If
this tracing mode is not implemented, the field is
read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

BM 12 Breakpoint Match. If set, only instructions that match
instruction or data breakpoints are traced. Normal tracing
is inhibited when this mode is active. If this tracing mode
is not implemented, the field is read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

ER 11 Trace exceptions and exception returns. If set, trace
includes markers for exceptions and exception returns.
Can be used in conjunction with the FCR bit. Inhibits nor-
mal tracing. If this tracing mode is not implemented, the
field is read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

FCR 10 Trace Function Calls and Returns. If set, trace includes
markers for function calls and returns. Can be used in con-
junction with the ER bit. If this tracing mode is not imple-
mented, the field is read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

EST 9 Enable Special Tracing Modes. If set, normal tracing is
inhibited, allowing the user to choose one of several spe-
cial tracing modes. Setting this bit inhibits normal trace
mode. If no special tracing modes are implemented, this
field is read-only, and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

SyP 8:5 Synchronization Period. The synchronization period is set
to 2(SyP+8) instructions. Thus a value of 0x0 implies 256
instructions, and a value of 0xF implies 8M instructions.

R/W 0 Required for
iFlowtrace rev

2.0+

10.8 iFlowtrace™ Mechanism

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 273

10.8.6.2 ITCBTW Register (offset 0x3F80)

The ITCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the TW pointed to
by the ITCBRDP register. A side effect of reading the ITCBTW register is that the ITCBRDP register increments to the
next TW in the on-chip trace memory. If ITCBRDP is at the max size of the on-chip trace memory, the increment
wraps back to address zero.

Note that this is a 64b register.On a 32b processor, software must read the upper word (offset 0x3F84) first as the
address increment takes place on a read of the lower word (0x3F80).

The format of the ITCBTW register is shown below, and the field is described in Table 10.38.

Figure 10.32 ITCBTW Register Format

OfClk 4 Controls the Off-chip clock ratio. When the bit is set, this
implies 1:2, that is, the trace clock is running at 1/2 the
core clock, and when the bit is clear, implies 1:4 ratio, that
is, the trace clock is at 1/4 the core clock. Ignored unless
OfC is also set.

R/W 0 Required

OfC 3 Off-chip. 1 enables the PIB (if present) to unload the trace
memory. 0 disables the PIB and would be used when
on-chip storage is desired or if a PIB is not present. This
bit is settable only if the design supports both on-chip and
off-chip modes. Otherwise is a read-only bit indicating
which mode is supported.

R/W
or
R

Preset Required

IO 2 Inhibit overflow. If set, the CPU is stalled whenever the
trace memory is full. Ignored unless OfC is also set.

R/W 0 Required

En 1 Trace enable. This bit may be set by software or by
Trace-on/Trace-off action bits from the Complex Trigger
block. Software writes EN with the desired initial state of
tracing when the ITCB is first turned on and EN is con-
trolled by hardware thereafter. EN turning on and off does
not flush partly filled trace words.

R/W 0 Required

On 0 Software control of trace collection. 0 disables all collec-
tion and flushes out any partially filled trace words.

R/W 0 Required

63 0

Data

Table 10.38 ITCBTW Register Field Descriptions

Fields Description Read/
Write

Reset
State

Compliance

Names Bits

Data 63:0 Trace Word R Undefined Required

Table 10.37 Control/Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

 EJTAG Debug Support in the microAptiv™ UC Core

274 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.8.6.3 ITCBRDP Register (Offset 0x3f88)

The ITCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the ITCBTW
register. This value will be automatically incremented after a read of the ITCBTW register.

The format of the ITCBRDP register is shown below, and the field is described in Table 10.39. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 10.33 ITCBRDP Register Format

10.8.6.4 ITCBWRP Register (Offset 0x3f90)

The ITCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new
TW for on-chip trace will be written. The top bit in the register indicates whether the pointer has wrapped. If it has,
then the write pointer will also point to the oldest trace word. and the read pointer can be set to that to read the entire
array in order. If it is cleared, then the read pointer can be set to 0 to read up to the write pointer position.

The format of the ITCBWRP register is shown below, and the field is described in Table 10.40. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always
zero.

Figure 10.34 ITCBWRP Register Format

31 n+1 n 0

Address

Table 10.39 ITCBRDP Register Field Descriptions

Fields Description Read/
Write

Reset
State

Compliance

Names Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0 Required

Address n:0 Byte address of on-chip trace memory word. R/W Undefined Required

31 30 n+1 n 0

Wrap 0 Address

Table 10.40 ITCBWRP Register Field Descriptions

Fields Description Read/
Write

Reset
State

Compliance

Names Bits

Wrap 31 Indicates that the entire array has been written at least
once R/W Undefined Required

0 30:(n+1) Reserved. Must be written zero, reads back zero. 0 0 Required

Address n:0 Byte address of the next on-chip trace memory word to
be written R/W Undefined Required

10.8 iFlowtrace™ Mechanism

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 275

10.8.7 ITCB iFlowtrace Off-Chip Interface

The off-chip interface consists of a 4-bit data port (TR_DATA) and a trace clock (TR_CLK). TR_CLK can be a DDR
clock; that is, both edges are significant. TR_DATA and TR_CLK follow the same timing and have the same output
structure as the PDtrace TCB described in MIPS specifications. The trace clock is synchronous to the system clock
but running at a divided frequency. The OfClk bit in the Control/Status register indicates the ratio between the trace
clock and the core clock. The Trace clock is always 1/2 of the trace port data rate, hence the “full speed” ITCB out-
puts data at the CPU core clock rate but the trace clock is half that, hence the 1:2 OfClk value is the full speed, and the
1:4 OfClk ratio is half-speed.

When a 64-bit trace word is ready to transmit, the PIB reads it from the FIFO and begins sending it out on TR_DATA.
It is sent in 4-bit increments starting at the LSBs. In a valid trace word, the 4 LSBs are never all zero, so a probe lis-
tening on the TR_DATA port can easily determine when the transmission begins and then count 15 additional cycles
to collect the whole 64-bit word. Between valid transmissions, TR_DATA Is held at zero and TR_CLK continues to
run.

TR_CLK runs continuously whenever a probe is connected. An optional signal TR_PROBE_N may be pulled high
when a probe is not connected and could be used to disable the off-chip trace port. If not present, this signal must be
tied low at the Probe Interface Block (PIB) input.

The following encoding is used for the 6 tag bits to tell the PIB receiver that a valid transmission is starting:

// if (srcount == 0), EncodedSrCount = 111010 = 58
// else if (srcount == 16) EncodedSrCount = 111011 = 59
// else if (srcount == 32) EncodedSrCount = 111100 = 60
// else if (srcount == 48) EncodedSrCount = 111101 = 61
// else EncodedSrCount = srcount

10.8.8 Breakpoint-Based Enabling of Tracing

Each hardware breakpoint in the EJTAG block (see the MIPS EJTAG Specification, MD00047, revision 4.14) has a
control bit associated with it that enables a trigger signal to be generated on a break match condition. In special trace
mode, this trigger can be used to insert an event record into the trace stream. In normal trace mode, this trigger signal
can be used to turn trace on or off, thus allowing a user to control the trace on/off functionality using breakpoints.
Similar to the TraceIBPC and TraceDBPC registers in PDtrace, registers are defined to control the start and stop of
iFlowtrace. The details on the actual register names and drseg addresses are shown in Table 10.41.

The bits in each register are defined as follows:

• Bit 28 (IE/DE): Used to specify whether the trigger signal from EJTAG simple or complex instruction (data or
tuple) break should trigger iFlowtrace tracing functions or not. A value of 0 disables trigger signals from EJTAG
instruction breaks, and 1 enables triggers for the same.

Table 10.41 drseg Registers that Enable/Disable Trace from Breakpoint-Based Triggers

Register Name drseg Address Reset Value Description

ITrigiFlowTrcEn 0x3FD0 0 Register that controls whether or not hard-
ware instruction breakpoints can trigger
iFlowtrace tracing functionality

DTrigiFlowTrcEn 0x3FD8 0 Register that controls whether or not hard-
ware data and tuple breakpoints can trig-
ger iFlowtrace tracing functionality

 EJTAG Debug Support in the microAptiv™ UC Core

276 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• Bits 14:0 (IBrk/DBrk): Used to explicitly specify which instruction (data or tuple) breaks enable or disable
iFlowtrace. A value of 0 implies that trace is turned off (unconditional trace stop) and a value of 1 specifies that
the trigger enables trace (unconditional trace start).

10.9 PC/Data Address Sampling

It is often useful for program profiling and analysis to periodically sample the value of the PC. This information can
be used for statistical profiling akin to gprof, and is also very useful for detecting hot-spots in the code. In a
multi-threaded environment, this information can be used to understand thread behavior, and to verify thread schedul-
ing mechanisms in the absence of a full-fledged tracing facility like PDtrace.

The PC sampling feature is optional within EJTAG, but EJTAG and the TAP controller must be implemented if PC
Sampling is required. When implemented, PC sampling can be turned on or off using an enable bit; when the feature
is enabled, the PC value is continually sampled.

The presence or absence of the PC Sampling feature is indicated by the PCS (PC Sample) bit in the Debug Control
Register. If PC sampling is implemented, and the PCSe (PC Sample Enable) bit in the Debug Control Register is also
set to one, then the PC values are constantly sampled at the defined rate (DCRPCR) and written to a TAP register. The
old value in the TAP register is overwritten by the new value, even if this register has not been read out by the debug
probe.

The presence or absence of Data Address Sampling is indicated by the DAS (Data Address Sample) bit in the Debug
Control Register and enabled by the DASe (Data Address Sampling Enable) bit in the Debug Control Register.

The sample rate is specified by the 3-bit PCR (PC Sample Rate) field (bits 8:6) in the Debug Control Register (DCR).
These three bits encode a value 25 to 212 in a manner similar to the specification of SyncPeriod. When the implemen-
tation allows these bits to be written, the internal PC sample counter will be reset by each write, so that counting for
the requested sample rate is immediately restarted.

The sample format includes a New data bit, the sampled value, the ASID of the sampled value (if not disabled by
PCnoASID, bit 25 in DCR). Figure 10.35shows the format of the sampled values in the PCSAMPLE TAP register for
MIPS32. The New data bit is used by the probe to determine if the sampled data just read out is new or has already
been read and must be discarded.

Figure 10.35 PCSAMPLE TAP Register Format (MIPS32)

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

Note that some of the smaller sample periods can be shorter than the time needed to read out the sampled value. That
is, it might take 41 (TCK) clock ticks to read a MIPS32 sample, while the smallest sample period is 32 (processor)
clocks. While the sample is being read out, multiple samples may be taken and discarded, needlessly wasting power.
To reduce unnecessary overhead, the TAP register includes only those fields that are enabled. If both PC Sampling
and Data Sampling are enabled, then both samples are included in the PCSample scan register. PC Sample is in the
least significant bits followed by a Data Address Sample. If either PC Sampling or Data Address Sampling is dis-
abled, then the TAP register does not include that sample. The total scan length is 49 * 2 = 82 bits if all fields are
present and enabled.

40 33 32 1 0

ASID (if enabled) PC or Data Address New

10.10 Fast Debug Channel

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 277

10.9.1 PC Sampling in Wait State

Note that the processor samples PC even when it is asleep, that is, in a WAIT state. This permits an analysis of the
amount of time spent by a processor in WAIT state which may be used for example to revert to a low power mode
during the non-execution phase of a real-time application. But counting cycles to update the PC sample value is a
waste of power. Hence, when in a WAIT state, the processor must simply switch the New bit to 1 each time it is set to
0 by the probe hardware. Hence, the external agent or probe reading the PC value will detect a WAIT instruction for
as long as the processor remains in the WAIT state. When the processor leaves the WAIT state, then counting is
resumed as before.

10.9.2 Data Address Sampling

EJTAG revision 5.0 extends the PC sampling mechanism to allow sampling of data (load and store) addresses. This
feature is enabled with DASe, bit 23 in the Debug Control Register. When enabled, the PCSAMPLE scan register
includes a data address sample. All load and store addresses can be captured, or they can be qualified using a data
breakpoint trigger. DASQ=1 configures data sampling to record a data address only when it triggers data breakpoint
0. To be used for Data Address Sampling qualification, data breakpoint 0 must be enabled using its TE (trigger
enable) bit.

PCSR controls how often data addresses are sampled. When the PCSR counter triggers, the most recent load/store
address generated is accepted and made available to shift out through PCSAMPLE.

10.10 Fast Debug Channel

The Fast Debug Channel (FDC) mechanism provides an efficient means to transfer data between the core and an
external device using the EJTAG TAP pins. The external device would typically be an EJTAG probe and that is the
term used here, but it could be something else. FDC utilizes two First In First Out (FIFO) structures to buffer data
between the core and probe. The probe uses the FDC TAP instruction to access these FIFOs, while the core itself
accesses them using memory accesses. To transfer data out of the core, the core writes one or more pieces of data to
the transmit FIFO. At this time, the core can resume doing other work. An external probe would examine the status of
the transmit FIFO periodically. If there is data to be read, the probe starts to receive data from the FIFO, one entry at
a time. When all data from the FIFO has been drained, the probe goes back to waiting for more data. The core can
either choose to be informed of the empty transmit FIFO via an interrupt, or it can choose to periodically check the
status. Receiving data works in a similar manner - the probe writes to the receive FIFO. At that time, the core is either
interrupted, or finds out via polling a status bit. The core can then do load accesses to the receive FIFO and receive
data being sent to it by the probe. The TAP transfer is bidirectional - a single shift can be pulling transmit data and
putting receive data at the same time.

The primary advantage of FDC over normal processor accesses or fastdata accesses is that it does not require the core
to be blocked when the probe is reading or writing to the data transfer FIFOs. This significantly reduces the core
overhead and makes the data transfer far less intrusive to the code executing on the core.

Refer to the EJTAG Specification [12] for the general details on FDC. The remainder of this section describes imple-
mentation specific behavior and register values.

The FDC memory mapped registers are located in the common device memory map (CDMM) region. FDC has a
device ID of 0xFD.

 EJTAG Debug Support in the microAptiv™ UC Core

278 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.10.1 Common Device Memory Map

Software on the core accesses FDC through memory-mapped registers, located within the Common Device Memory
Map (CDMM). The CDMM is a region of physical address space that is reserved for mapping IO device configura-
tion registers within a MIPS processor. The base address and enabling of this region is controlled by the CDMMBase
CP0 register, as described in 7.2.21 “CDMMBase Register (CP0 Register 15, Select 2)” on page 176.

Refer to MIPS® Architecture For Programmers Volume III [9] for full details on the CDMM.

10.10.2 Fast Debug Channel Interrupt

The FDC block can generate an interrupt to inform software of incoming data being available or space being avail-
able in the outgoing FIFO. This interrupt is handled similarly to the timer or performance counter interrupts. The
CauseFDCI bit indicates that the interrupt is pending. Traditionally, this interrupt is also sent to the core output
SI_FDCI where it is combined with one of the SI_Int pins. However, this is no longer needed as the core will inter-
nally route the interrupt to the IP number set by the IntCtl.IPFDCI field. Note that this interrupt is a regular interrupt
and not a debug interrupt.

The FDC Configuration Register (see Section 10.10.6.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”)
includes fields for enabling and setting the threshold for generating each interrupt. Receive and transmit interrupt
thresholds are specified independently, but they are ORed together to form a single interrupt.

The following interrupt thresholds are supported:

• Interrupts Disabled: No interrupt will be generated and software must poll the status registers to determine if
incoming data is available or if there is space for outgoing data.

• Minimum Core Overhead: This setting minimizes the core overhead by not generating an interrupt until the
receive FIFO (RxFIFO) is completely full or the transmit FIFO (TxFIFO) is completely empty.

• Minimum latency: To have the core take data as soon as it is available, the receive interrupt can be fired when-
ever the RxFIFO is not empty. There is a complimentary TxFIFO not full setting although that may not be quite
as useful.

• Maximum bandwidth: When configured for minimum core overhead, bandwidth between the probe and core can
be wasted if the core does not service the interrupt before the next transfer occurs. To reduce the chances of this
happening, the interrupt threshold can be set to almost full or almost empty to generate an interrupt earlier. This
setting causes receive interrupts to be generated when there are 0 or 1 unused RxFIFO entries. Transmit inter-
rupts are generated when there are 0 or 1 used TxFIFO entries (see note in following section about this condition)

10.10.3 microAptiv™ UC Core FDC Buffers

Figure 10.36 shows the general organization of the transmit and receive buffers on the microAptiv UC core.

 EJTAG Debug Support in the microAptiv™ UC Core

280 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

condition is met, there will be 0 or 1 valid entries. However, the interrupt will not be asserted when there is only
one valid entry if it is an SI_ClkIn entry

• The RxFIFO has similar characteristics, but these are even less visible to software since SI_ClkIn must be run-
ning to access the FDC registers.

10.10.4 Sleep mode

FDC data transfers do not prevent the core from entering sleep mode and will proceed normally in sleep mode. The
FDC block monitors the TAP interface signals with a free-running clock. When new receive data is available or trans-
mit data can be sent, the gated clock will be enabled for a few cycles to transfer the data and then allowed to stop
again. If FDC interrupts are enabled, transferring data may cause an interrupt to be generated which can wake the
core up.

10.10.5 FDC TAP Register

The FDC TAP instruction performs a 38-bit bidirectional transfer of the FDC TAP register. The register format is
shown in Figure 10.37 and the fields are described in Figure 10.42

Figure 10.37 FDC TAP Register Format

37 36 35 32 31 0

In Probe Data
Accept

Data In
Valid

ChannelID Data
Out Receive

Buffer Full
Data Out

Valid

Table 10.42 FDC TAP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Probe Data
Accept

37 Indicates to core that the probe is accepting the data that
was scanned out.

W Undefined

Data In
Valid

36 Indicates to core that the probe is sending new data to the
receive FIFO.

W Undefined

Receive
Buffer Full

37 Indicates to probe that the receive buffer is full and the
core will not accept the data being scanned in. Analogous
to ProbeDataAccept, but opposite polarity

R 0x0

Data Out
Valid

36 Indicates to probe that the core is sending new data from
the transmit FIFO

R 0

ChannelID 35:32 Channel number associated with the data being scanned in
or out. This field can be used to indicate the type of data
that is being sent and allow independent communication
channels

Scanning in a value with ChannelID=0xd and Data In
Valid = 0 will generate a receive interrupt. This can be
used when the probe has completed sending data to the
core.

R/W Undefined

10.10 Fast Debug Channel

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 281

10.10.6 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU access to FDC is via loads and stores to the FDC
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration
and status information, as well as access to the transmit and receive FIFOs. The registers and their respective offsets
are shown in Table 10.43

10.10.6.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

This is the general CDMM Access Control and Status register which defines the device type and size and controls
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself is only acces-
sible in kernel mode. Figure 10.38 has the format of an Access Control and Status register (shown as a 64-bit regis-
ter), and Table 10.44 describes the register fields.

Figure 10.38 FDC Access Control and Status Register

Data 31:0 Data value being scanned in or out R/W Undefined

Table 10.43 FDC Register Mapping

Offset in CDMM
device block

Register
Mnemonic Register Name and Description

0x0 FDACSR FDC Access Control and Status Register

0x8 FDCFG FDC Configuration Register

0x10 FDSTAT FDC Status Register

0x18 FDRX FDC Receive Register

0x20 + 0x8* n FDTXn FDC Transmit Register n (0 ≤ n ≤ 15)

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0

0 DevID 0 DevSize DevRev 0 Uw Ur Sw Sr

Table 10.44 FDC Access Control and Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

DevType 31:24 This field specifies the type of device. R 0xfd

DevSize 21:16 This field specifies the number of extra 64-byte blocks
allocated to this device. The value 0x2 indicates that this
device uses 2 extra, or 3 total blocks.

R 0x2

DevRev 15:12 This field specifies the revision number of the device. The
value 0x0 indicates that this is the initial version of FDC

R 0x0

Table 10.42 FDC TAP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

 EJTAG Debug Support in the microAptiv™ UC Core

282 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.10.6.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 10.39 has the format of the FDC Configuration register, and Table 10.45 describes the register fields.

Figure 10.39 FDC Configuration Register

Uw 3 This bit indicates if user-mode write access to this device
is enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
write to the device while in user mode with access dis-
abled is ignored.

R/W 0

Ur 2 This bit indicates if user-mode read access to this device is
enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
read from the device while in user mode with access dis-
abled will return 0 and not change any state.

R/W 0

Sw 1 This bit indicates if supervisor-mode write access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to write to the device while in supervisor mode
with access disabled is ignored.

R/W 0

Sr 0 This bit indicates if supervisor-mode read access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to read from the device while in supervisor mode
with access disabled will return 0 and not change any
state.

R/W 0

0 11:4 Reserved for future use. Ignored on write; returns zero on
read.

R 0

31 20 19 18 17 16 15 8 7 0

0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize

Table 10.45 FDC Configuration Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

0 31:20 Reserved for future use. Read as zeros, must be written as
zeros.

R 0

Table 10.44 FDC Access Control and Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

10.10 Fast Debug Channel

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 283

10.10.6.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 10.40 shows the format of
the FDC Status register, and Table 10.46 describes the register fields.

Figure 10.40 FDC Status Register

TxIntThresh 19:18 Controls whether transmit interrupts are enabled and the
state of the TxFIFO needed to generate an interrupt.

R/W 0

RxIntThresh 17:16 Controls whether receive interrupts are enabled and the
state of the RxFIFO needed to generate an interrupt.

R/W 0

TxFIFOSize 15:8 This field holds the total number of entries in the transmit
FIFO.

R Preset

RxFIFOSize 7:0 This field holds the total number of entries in the receive
FIFO.

R Preset

31 24 23 16 15 8 7 4 3 2 1 0

Tx_Count Rx_Count 0 RxChan RxE RxF TxE TxF

Table 10.46 FDC Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Tx_Count 31:24 This optional field is not implemented and will read as 0 R 0

Rx_Count 23:16 This optional field is not implemented and will read as 0 R 0

0 15:8 Reserved for future use. Must be written as zeros and read
as zeros.

R 0

RxChan 7:4 This field indicates the channel number used by the top
item in the receive FIFO. This field is only valid if RxE=0.

R Undefined

Table 10.45 FDC Configuration Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 Transmit Interrupt Disabled
1 Empty
2 Not Full
3 Almost Empty - zero or one entry in

use (see 10.10.2 for specifics)

Encoding Meaning

0 Receive Interrupt Disabled
1 Full
2 Not empty
3 Almost Full - zero or one entry free

 EJTAG Debug Support in the microAptiv™ UC Core

284 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

10.10.6.4 FDC Receive (FDRX) Register (Offset 0x18)

This register exposes the top entry in the receive FIFO. A read from this register returns the top item in the FIFO and
removes it from the FIFO itself. The result of a write to this register is UNDEFINED. The result of a read when the
FIFO is empty is also UNDEFINED so software must check the RxE flag in FDSTAT prior to reading. Figure 10.41
shows the format of the FDC Receive register, and Table 10.47 describes the register fields.

Figure 10.41 FDC Receive Register

10.10.6.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers access the bottom entry in the transmit FIFO. The different addresses are used to generate a 4b
channel identifier that is attached to the data value. This allows software to track different event types without need-
ing to reserve a portion of the 32b data as a tag. A write to one of these registers results in a write to the transmit FIFO
of the data value and channel ID corresponding to the register being written. Reads from these registers are UNDE-
FINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software running
on the core must check the TxF flag in FDSTAT to ensure that there is space for the write. Figure 10.42 shows the for-
mat of the FDC Transmit register, and Table 10.48 describes the register fields.

Figure 10.42 FDC Transmit Register

RxE 3 If RxE is set, the receive FIFO is empty. If RxE is not set,
the FIFO is not empty.

R 1

RxF 2 If RxF is set, the receive FIFO is full. If RxF is not set, the
FIFO is not full.

R 0

TxE 1 If TxE is set, the transmit FIFO is empty. If TxE is not set,
the FIFO is not empty.

R 1

TxF 0 If TxF is set, the transmit FIFO is full. If TxF is not set, the
FIFO is not full.

R 0

31 0

RxData

Table 10.47 FDC Receive Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

RxData 31:0 This register holds the top entry in the receive FIFO R Undefined

31 0

TxData

Table 10.46 FDC Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Chapter 11

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 286

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immedi-
ate, Jump, and Register. Refer to Chapter 12, “microAptiv™ UC Processor Core Instructions” on page 292 for a com-
plete listing and description of instructions.

This chapter discusses the following topics

• Section 11.1 “CPU Instruction Formats”

• Section 11.2 “Load and Store Instructions”

• Section 11.3 “Computational Instructions”

• Section 11.4 “Jump and Branch Instructions”

• Section 11.5 “Control Instructions”

• Section 11.6 “Coprocessor Instructions”

• Section 11.7 “Enhancements to the MIPS Architecture”

• Section 11.8 “MCU ASE Instructions”

11.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction for-
mats: immediate (I-type), jump (J-type), and register (R-type) (shown in Figure 11.1). The use of a small number of
instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less
frequently used) operations and addressing modes from these three formats as needed.

 Instruction Set Overview

288 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown in Table 11.1. Only the combinations shown in Table 11.1 are permissible; other combinations cause
address error exceptions.

11.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in imme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

• Arithmetic

• Logical

• Shift

• Multiply

• Divide

These operations fit in the following four categories of computational instructions:

• ALU Immediate instructions

• Three-operand Register-type Instructions

• Shift Instructions

• Multiply And Divide Instructions

Table 11.1 Byte Access Within a Word

Bytes Accessed

Low Order
Address Bits

Big Endian
(31---------------------0)

Little Endian
(31---------------------0)

Access Type 2 1 0 Byte Byte

Word 0 0 0 0 1 2 3 3 2 1 0

Triplebyte 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

Halfword 0 0 0 0 1 1 0

0 1 0 2 3 3 2

Byte 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

11.4 Jump and Branch Instructions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 289

11.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the microAptiv™ UC Core” on page 38 for more information
on instruction latency and repeat rates.

11.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch (this is known as the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

11.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructions in Chapter 12, “microAptiv™ UC
Processor Core Instructions” on page 292.

11.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

11.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

11.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 12, “microAptiv™ UC Processor Core
Instructions” on page 292 for a listing of CP0 instructions.

11.7 Enhancements to the MIPS Architecture

The core execution unit implements the MIPS32 architecture, which includes the following instructions.

 Instruction Set Overview

290 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• CLOCount Leading Ones

• CLZCount Leading Zeros

• MADDMultiply and Add Word

• MADDUMultiply and Add Unsigned Word

• MSUBMultiply and Subtract Word

• MSUBUMultiply and Subtract Unsigned Word

• MULMultiply Word to Register

• SSNOPSuperscalar Inhibit NOP

11.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in the GPR rs is scanned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written to the GPR rd.
If all 32 bits are set in the GPR rs, the result written to the GPR rd is 32.

11.7.2 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in the GPR rs is scanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to the GPR
rd. If all 32 bits are cleared in the GPR rs, the result written to the GPR rd is 32.

11.7.3 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word value in
the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as signed values, to produce a 64-bit
result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The resulting value is
then written back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

11.7.4 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 32-bit
word value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as unsigned values, to
produce a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The
resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any conditions.

11.7.5 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit word
value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as signed values, to produce
a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO register pair. The
resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under any circum-
stances.

11.8 MCU ASE Instructions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 291

11.7.6 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair. The
32-bit word value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI and LO reg-
ister pair. The resulting value is then written back to the HI and LO registers. No arithmetic exception occurs under
any circumstances.

11.7.7 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in the GPR rs is
multiplied by the 32-bit value in the GPR rt, treating both operands as signed values, to produce a 64-bit result. The
least-significant 32-bits of the product are written to the GPR rd. The contents of the HI and LO register pair are not
defined after the operation. No arithmetic exception occurs under any circumstances.

11.7.8 SSNOP- Superscalar Inhibit NOP

The MIPS32 microAptiv UC processor cores treat this instruction as a regular NOP.

11.8 MCU ASE Instructions

The MCU ASE includes some new instructions which are particularly useful in microcontroller applications.

11.8.1 ACLR

This instruction allows a bit within an uncached I/O control register to be atomically cleared; that is, the read-modify
byte write sequence performed by this instruction cannot be interrupted.

11.8.2 ASET

This instruction allows a bit within an uncached I/O control register to be atomically set; that is, the read-modify byte
write sequence performed by this instruction cannot be interrupted.

11.8.3 IRET

This instruction can be used as a replacement for the ERET instruction when returning from an interrupt. This
instruction implements the Automated Interrupt Epilogue feature, which automates restoring some of the COP0 reg-
isters from the stack and updating the C0_Status register in preparation for returning to non-exception mode. This
instruction also implements the optional Interrupt Chaining feature, which allows a subsequent interrupt to be han-
dled without returning to non-exception mode.

Chapter 12

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 292

microAptiv™ UC Processor Core Instructions

This chapter supplements the MIPS32® Architecture Reference Manual, Volume II by describing instruction behav-
ior that is specific to a MIPS32 microAptiv UC processor core. For complete descriptions of all MIPS32 and
mciroMIPS32 instructions, refer to MIPS® Architecture For Programmers, Volume II: The MIPS32® Instruction Set
[7] and MIPS® Architecture For Programmers, Volume II: The microMIPS32® Instruction Set [8].

This chapter is divided into the following sections:

• Section 12.1 “Understanding the Instruction Descriptions”

• Section 12.2 “microAptiv™ UC Core Opcode Map”

• Section 12.3 “MIPS32® Instruction Set for the microAptiv™ UC Core”

The microAptiv UC processor core also supports theMIPS32 microMIPS architecture. The microMIPS instruction
set is described in Chapter 13, “microMIPS™ Instruction Set Architecture” on page 320.

The microAptiv UC processor core also supports the instructions in the MIPS DSP Module Revision 2. The MIPS
DSP Module Revision 2 instruction set is described in Chapter 4, “The MIPS® DSP Module” on page 99.

12.1 Understanding the Instruction Descriptions

Refer to Volume II of the MIPS32 Architecture Reference Manual for detailed information about the instruction
descriptions, namely, the instruction fields, definition of terms, and functional notation. This section provides basic
information

12.2 microAptiv™ UC Core Opcode Map

Key

• CAPITALIZED text indicates an opcode mnemonic

• Italicized text refers the reader to indicates to the specified opcode submap for further instruction bit decode.

• Entries containing the α symbol indicate that a reserved instruction fault occurs if the core executes this instruc-
tion.

• Entries containing the β symbol indicate that a coprocessor unusable exception occurs if the core executes this
instruction

12.2 microAptiv™ UC Core Opcode Map

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 293

Table 12.1 Encoding of the Opcode Field
opcode bits 28..26

0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111

0 000 Special RegImm J JAL BEQ BNE BLEZ BGTZ
1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 010 COP0 β COP2 β BEQL BNEL BLEZL BGTZL
3 011 α α α α Special2 ϑΑΛΞ α Σπεχιαλ3
4 100 LB LH LWL LW LBU LHU LWR α
5 101 SB SH SWL SW α α SWR CACHE
6 110 LL β LWC2 PREF α β α α
7 111 SC β SWC2 α α β α α

Table 12.2 Special Opcode Encoding of Function Field
function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 SLL β SRL/

ROTR
SRA SLLV α SRLV/

ROTRV
SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK α SYNC
2 010 MFHI MTHI MFLO MTLO α α α α
3 011 MULT MULTU DIV DIVU α α α α
4 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 101 α α SLT SLTU α α α α
6 110 TGE TGEU TLT TLTU TEQ α TNE α
7 111 α α α α α α α α

Table 12.3 Special2 Opcode Encoding of Function Field
function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 MADD MADDU MUL α MSUB MSUBU α α
1 001 α α α α α α α
2 010 UDI1 or α

1. CorExtend instructions are a build-time option of the microAptiv UC Pro core, if not implemented this instructions
space will cause a reserved instruction exception. If assembler support exists, the mnemonics for CorExtend
instructions are most likely UDI0, UDI1, .., UDI15.

3 011
4 100 CLZ CLO α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α α α α α SDBBP

 microAptiv™ UC Processor Core Instructions

294 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 12.4 Special3 Opcode Encoding of Function Field
function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 EXT α α α INS α α α
1 001 α α α α α α α α
2 010 α α α α α α α α
3 011 α α α α α α α α
4 100 BSHFL α α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α ΡΔΗΩΡ α α α α

Table 12.5 RegImm Encoding of rt Field
rt bits 18..16

0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL BGEZL α α α α
1 01 TGEI TGEIU TLTI TLTIU TEQI α TNEI α
2 10 BLTZAL BGEZAL BLTZALL BGEZALL α α α α
3 11 α α α α α α α ΣΨΝΧΙ

Table 12.6 COP2 Encoding of rs Field
rs bits 23..21

0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2 α CFC2 ΜΦΗΧ2 MTC2 α CTC2 ΜΤΗΧ2
1 01 BC2 BC21

1. The core will treat the entire row as a BC2 instruction. However compiler and assembler support only exists for the
first one. Some compiler and assembler products may allow the user to add new instructions.

2 10 CO
3 11

Table 12.7 COP2 Encoding of rt Field When rs=BC2
rt bits 16

bits 17 0 1
0 BC2F BC2T
1 BC2FL BC2TL

12.2 microAptiv™ UC Core Opcode Map

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 295

Table 12.8 COP0 Encoding of rs Field
rs bits 23..21

0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 α α α MTC0 α α α
1 01 α α ΡΔΠΓΠΡ ΜΦΜΧ0 α α ΩΡΠΓΠΡ α
2 10 CO
3 11

Table 12.9 COP0 Encoding of Function Field When rs=CO
function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 α α α α α α α α
1 001 α α α α α α α α
2 010 α α α α α α α α
3 011 ERET ΙΑΧΚ α α α α α DERET
4 100 WAIT α α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α α α α α α

Table 12.10 MIPS32 COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 ∗ CFC1 MFHC1 MTC1 ∗ CTC1 MTHC1

1 01 BC1 δ ∗ ∗ * * * * *

2 10 S δ D δ * * W δ L δ * *

3 11 * * * * * * * *

 microAptiv™ UC Processor Core Instructions

296 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Table 12.11 MIPS32 COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * ∗ ∗ ∗ ∗
4 100 * CVT.D * * CVT.W CVT.L ∇ ∗ *

5 101 * * * * * * * *

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 12.12 MIPS32 COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCF δ MOVZ MOVN * RECIP ∇ RSQRT ∇ *

3 011 * * * * ∗ ∗ ∗ ∗
4 100 CVT.S * * * CVT.W CVT.L ∇ * *

5 101 * * * * * * * *

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 12.13 MIPS32 COP1 Encoding of Function Field When rs=W or L1

1. Format type L is legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * ∗ *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

12.3 MIPS32® Instruction Set for the microAptiv™ UC Core

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 297

12.3 MIPS32® Instruction Set for the microAptiv™ UC Core

This section provides a summary of the MIPS32 instructions for the microAptiv UC cores (microMIPS32 instructions
are described in Chapter 13, “microMIPS™ Instruction Set Architecture” on page 320).

Table 12.15 lists the instructions in alphabetical order. Instructions that have implementation-dependent behavior are
described in subsequent sections; all other MIPS32 instructions are described in detail in the MIPS® Architecture For
Programmers, Volume II: The MIPS32® Instruction Set [7] and are not duplicated here.

Table 12.14 MIPS32 COP1 Encoding of tf Bit When rs=S or D, Function=MOVCF

tf bit 16

0 1

MOVF.fmt MOVT.fmt

Table 12.15 Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

ACLR Atomic Bit Clear See MCU ASE Instructions

ASET Atomic Bit Set See MCU ASE Instructions

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BC2F Branch On COP2 Condition False if COP2Condition(cc) == 0
PC += (int)offset

BC2FL Branch On COP2 Condition False Likely if COP2Condition(cc) == 0
PC += (int)offset

else
Ignore Next Instruction

BC2T Branch On COP2 Condition True if COP2Condition(cc) == 1
PC += (int)offset

BC2TL Branch On COP2 Condition True Likely if COP2Condition(cc) == 1
PC += (int)offset

else
Ignore Next Instruction

BEQ Branch On Equal if Rs == Rt
PC += (int)offset

 microAptiv™ UC Processor Core Instructions

298 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset

else
 Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

Table 12.15 Instruction Set (Continued)

Instruction Description Function

12.3 MIPS32® Instruction Set for the microAptiv™ UC Core

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 299

BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation NOP

CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP0 Coprocessor 0 Operation See Coprocessor Description

COP2 Coprocessor 2 Operation See Coprocessor 2 Description

CTC2 Move Control Word To Coprocessor 2 CCR[2, n] = Rt

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Disable Interrupts Rt=Status
StatusIE=0

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier Stall until execution hazards are
cleared

EI Enable Interrupts Rt=Status
StatusIE=1

ERET Return from Exception if SR[2]
PC = ErrorEPC

else
PC = EPC

SR[1] = 0
SR[2] = 0
LL = 0

EXT Extract Bit Field Rt=ExtractField(Rs,msbd,lsb)

INS Insert Bit Field Rt=InsertField(Rt,Rs,msb,lsb)

IRET Return from Exception See MCU ASE Instructions

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier Rd = PC + 8
PC = Rs
Stall until all execution and instruc-
tion hazards are cleared

Table 12.15 Instruction Set (Continued)

Instruction Description Function

 microAptiv™ UC Processor Core Instructions

300 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier PC = Rs
Stall until all execution and instruc-
tion hazards are cleared

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWC2 Load Word To Coprocessor 2 CPR[2, n, 0] = Mem[Rs+offset]

LWL Load Word Left See LWL instruction.

LWR Load Word Right See LWR instruction.

MADD Multiply-Add HI, LO += (int)Rs * (int)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel]

MFC2 Move From Coprocessor 2 Rt = CPR[2, n, sel31 0]

MFHC2 Move From High Word Coprocessor2 Rt= CPR[2,n,sel]63 32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero if GPR[rt] ≠ 0 then
GPR[rd] = GPR[rs]

MOVZ Move Conditional on Zero if GPR[rt] = 0 then
GPR[rd] = GPR[rs]

MSUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, sel] = Rt

MTC2 Move To Coprocessor 2 CPR[2, n, sel]31 0 = Rt

MTHC2 Move To High Word Coprocessor 2 CPR[2, n, sel]63 32 = Rt

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable
Rd = LO

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

Table 12.15 Instruction Set (Continued)

Instruction Description Function

12.3 MIPS32® Instruction Set for the microAptiv™ UC Core

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 301

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch NOP

RDHWR Read HardWare Register Rt=HWR[Rd]

RDPGPR Read GPR from Previous Shadow Set Rd=SGPR[SRSCtlPSS, Rt]

ROTR Rotate Word Right Rd = Rtsa-1 0 || Rt31 sa

ROTRV Rotate Word Right Variable Rd = RtRs-1 0 || Rt31 Rs

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word if LL =1
mem[Rxoffs] = Rt

Rt = LL

SDBBP Software Debug Breakpoint Trap to SW Debug Handler

SEB Sign Extend Byte Rd=SignExtend(Rt7 0)

SEH Sign Extend Half Rd=SignExtend(Rt15 0)

SH Store Halfword (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation Nop

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

Table 12.15 Instruction Set (Continued)

Instruction Description Function

 microAptiv™ UC Processor Core Instructions

302 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2, n, 0]

SWL Store Word Left See SWL instruction description.

SWR Store Word Right See SWR instruction description.

SYNC Synchronize See SYNC instruction below.

SYNCI Synchronize Caches to Make Instruction Writes
Effective

NOP

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
TrapException

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed
TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException

TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException

TNE Trap if Not Equal if Rs != Rt
TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS,Rd]=Rt

WSBH Word Swap Bytes within Halfwords Rd=SwapBytesWithinHalfs(Rt)

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table 12.15 Instruction Set (Continued)

Instruction Description Function

I

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 303

Format: ACLR bit, offset(base) MIPS and MCU ASE

Purpose: Atomically Clear Bit within Byte

Description: Disable interrupts; temp ← memory[GPR[base] + offset]; temp ← (temp and ~(1
<< bit)) ; memory[GPR[base] + offset] ← temp; Enable Interrupts

The contents of the 8-bit byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is cleared to zero. The modified byte is stored in memory at the location specified by the effective
address. The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-
write sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNDEFINED if an ACLR instruction is executed in the delay slot of a branch or
jump instruction.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1.. || (pAddr..0 xor ReverseEndian)
TempIE ← StatusIE
StatusIE ← 0
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr..0 xor BigEndianCPU
temp ← memword7+8*byte..8*byte
temp ← temp and ((1 || 0bit) xor 0xFF))
dataword ← temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE ← TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error , a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions
such as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

31 26 25 21 20 16 15 14 12 11 4 3 0

REGIMM
000001

base ATOMIC
00111

0 Bit offset

6 5 5 1 3 12

304 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Format: ACLR bit, offset(base) microMIPS and MCU ASE

Purpose: Atomically Clear Bit within Byte

Description: Disable interrupts; temp ← memory[GPR[base] + offset]; temp ← (temp and ~(1
<< bit)) ; memory[GPR[base] + offset] ← temp; Enable Interrupts

The contents of the byte at the memo ry location specified by the effective address are fetched. The specified bit
within the byte is cleared to zero. The modified byte is stored in memory at the location specified by the effective
address. The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-
write sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNDEFINED if an ACLR instruction is executed in the delay slot of a branch or
jump instruction.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1.. || (pAddr..0 xor ReverseEndian)
TempIE ← StatusIE
StatusIE ← 0
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr..0 xor BigEndianCPU
temp ← memword7+8*byte..8*byte
temp ← temp and ((1 || 0bit) xor 0xFF))
dataword ← temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE ← TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error , a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions
such as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

31 26 25 24 23 21 20 16 15 12 11 0

POOL32B
001000

A0
0

bit base
ACLR
1011 offset

6 2 3 5 4 12

I

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 305

Format: ASET bit, offset(base) MIPS and MCU ASE

Purpose: Atomically Set Bit within Byte

Description: Disable interrupts;temp ← memory[GPR[base] + offset]; temp ← (temp or (1 <<
bit)) ; memory[GPR[base] + offset] ← temp; Enable Interrupts

The contents of the 8-bit byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is set to one. The modified byte is stored in memory at the location specified by the effective address.
The 12-bit signed offset is added to the contents of GPR base to form the ef fective address. The read-modify-write
sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNDEFINED if an ASET instruction is executed in the delay slot of a branch or
jump instruction.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1.. || (pAddr..0 xor ReverseEndian)
TempIE ← StatusIE
StatusIE ← 0
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr..0 xor BigEndianCPU
temp ← memword7+8*byte..8*byte
temp ← temp or (1 || 0bit)
dataword ← temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE ← TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error , a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions
such as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

31 26 25 21 20 16 15 14 12 11 4 3 0

REGIMM
000001

base ATOMIC
00111

1 Bit offset

6 5 5 1 3 12

306 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Format: ASET bit, offset(base) microMIPS AND MCU ASE

Purpose: Atomically Set Bit within Byte

Description: Disable interrupts;temp ← memory[GPR[base] + offset]; temp ← (temp or (1 <<
bit)) ; memory[GPR[base] + offset] ← temp; Enable Interrupts

The contents of the byte at the memo ry location specified by the effective address are fetched. The specified bit
within the byte is set to one. The modified byte is stored in memory at the location specified by the effective address.
The 12-bit signed offset is added to the contents of GPR base to form the ef fective address. The read-modify-write
sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNDEFINED if an ASET instruction is executed in the delay slot of a branch or
jump instruction.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1.. || (pAddr..0 xor ReverseEndian)
TempIE ← StatusIE
StatusIE ← 0
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr..0 xor BigEndianCPU
temp ← memword7+8*byte..8*byte
temp ← temp or (1 || 0bit)
dataword ← temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE ← TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error , a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions
such as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

31 26 25 24 23 21 20 16 15 12 11 0

POOL32B
001000

A0
0

bit base
ASET
0011 offset

6 2 3 5 4 12

I

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 307

Format: IRET MIPS and MCU ASE

Purpose: Interrupt Return with Automated Interrupt Epilogue

Optionally jump directly to another interrupt vector without returning to original return address.

Description:

IRET is used to automate some of the operations that are required when returning from an interrupt handler. It can be
used in place of the ERET instruction at the end of interrupt handlers. The IRET instruction is only appropriate when
using Shadow Register Sets and EIC Interrupt mode. The au tomated operations of this instruction can be used to
reverse the effects of the automated operations of the Auto-Prologue feature.

If the EIC mode of interrupts and the Interrupt Chaining feature are used, the IRET instruction can be used to shorten
the time between returning from the current interrupt handler and handling the next requested interrupt.

If Automated Prologue feature is disabled, then IRET behaves exactly as ERET.

If either StatusERL or StatusBEV bits are set, then IRET behaves exactly as ERET.

If Interrupt Chaining is disabled:

• Interrupts are disabled. COP0 Status, SRSCtl, and EPC registers are restored from the stack. GPR 29 is
incremented for the stack frame size. IRET then clears execution and instruction hazards, conditionally
restores SRSCtlCSS from SRSCtlPSS, and returns to the interrupted instruction pointed by the EPC register at
the completion of interrupt processing.

If Interrupt Chaining is enabled:

• Interrupts are disabled. COP0 Status register is restored from the stack. The priority output of the External
Interrupt Controller is compared with the IPL field of the Status register.

• If StatusIPL has a higher priority than that of the External Interrupt Controller value:

COP0 SRSCtl and EPC registers are restored from the stack. GPR 29 is incremented for the stack frame size.
IRET then clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS, and
returns to the interrupted instruction pointed by the EPC register at the completion of interrupt processing.

• If StatusIPL field has a lower priority than that of the External Interrupt Controller value:

The value of GPR 29 is first saved to a temporary register then GPR 29 is incremented for the stack frame
size. The EIC is signalled that the next pending interrupt has been accepted. This signalling will update the
CauseRIPL and SRSCtlEICSS fields from the EIC output values. The SRSCtlEICSS field is copied to the
SRSCtlCSS field while the CauseRIPL field is copied to the StatusIPL field. The saved temporary register is
copied to the GPR 29 of the current SRS. The KSU, ERL and EXL fields of the Status register are optionally
set to zero. No barrier for execution hazards nor instruction hazards is created. IRET finishes by jumping to
the interrupt vector driven by the EIC.

IRET does not execute the next instruction (i.e., it has no delay slot).

31 26 25 6 5 0

COP0
010000

C0
1

0
00 0000 0000 0000 0000

IRET
111000

6 1 20 6

308 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Restrictions:

The operation of the processor is UNDEFINED if an IRET is executed in the delay slot of a branch or jump instruc-
tion.

The operation of the p rocessor is UNDEFINED if an IRET is executed when eith er Shadow Register Sets are not
enabled or when EIC interrupt mode is not enabled.

An IRET placed between an LL and SC instruction will always cause the SC to fail.

The effective addresses used for the stack memory transactions must be naturally-aligned. If either of the two leas t-
significant bits of the address is non-zero, an Address Error exception occurs.

IRET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0 state
changes (for Relea se 2 implementations, refer to the SY NCI instruction for ad ditional information on resolving
instruction hazards created by writing the instruction stream). The ef fects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the IRET returns.

In a Release 2 implementation, IRET does not restore SRSCtlCSS from SRSCtlPSS if StatusBEV = 1, or if StatusERL =
1 because any exception that sets StatusERL to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlCSS in
SRSCtlPSS. If software sets StatusERL to 1, it must be aware of the operation of an IRET that may be subsequently
executed.

The stack memory transactions behave as individual L W operations with respect to exception reporting. BadVAddr
would report the faulting addr ess for unaligned access and the faulting word address for un privileged access, TLB
Refill and TLB Invalid exceptions. For TLB exceptions, the faulting word address would be reflected in the Context,
and EntryHi registers. The CacheError register would reflect the faulting word address for Cache Errors.

Operation:
if ((IntCtlAPE == 0) | (StatusERL == 1) | (StatusBEV== 1))

Act as ERET // read Operation section of ERET description
else

if (ISAMode)
EPC ← PC..1 || 1 // in case of memory exception

else
EPC ← PC // in case of memory exception

endif
temp ← 0x4 + GPR[29]
tempStatus ← LoadStackWord(temp)
ClearHazards()
if ((IntCtlICE == 0) | ((IntCtlICE == 1) &
(tempStatusIPL > EICRIPL)))

temp ← 0x8 + GPR[29]
tempSRSCtl ← LoadStackWord(temp)
temp ← 0x0 + GPR[29]
tempEPC ← LoadStackWord(temp)

endif
Status ← tempStatus
if ((IntCtlICE == 0) | ((IntCtlICE == 1) &

(tempStatusIPL > EICRIPL)))
GPR[29] ← GPR[29] + DecodedValue(IntCtlStkDec)
SRSCtl ← tempSRSCtl
EPC ← tempEPC
temp ← EPC
StatusEXL ← 0
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0)
and (StatusBEV = 0) then

SRSCtlCSS ← SRSCtlPSS

I

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 309

endif
if IsMicroMIPSImplemented() then

PC ← temp..1 || 0
ISAMode ← temp0

else
PC ← temp

endif
LLbit ← 0
CauseIC ← 0
ClearHazards()

else
Signal_EIC_for_Next_Interrupt()
(wait for EIC outputs to update)
CauseRIPL ← EICRIPL
SRSCtlEICSS ← EICSS
temp29 ← GPR[29]
GPR[29] ← GPR[29] + DecodedValue(IntCtlStkDec)
StatusIPL ← CauseRIPL
SRSCtlCSS ← SRSCtlEICSS
NewShadowSet ← SRSCtlEICSS
GPR[29] ← temp29
if (IntCtlClrEXL == 1)

StatusEXL ← 0
StatusKSU ← 0

endif
CauseIC ← 1
ClearHazards()
PC ← CalcIntrptAddress()

endif
endif

function LoadStackWord(vaddr)
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord ← memword

endfunction LoadStackWord

function CalcIntrptAddress()
if StatusBEV = 1

vectorBase ← 0xBFC0.0200
else

if (ArchitectureRevision ≥ 2)
vectorBase ← EBase..12 || 011)

else
vectorBase ← 0x8000.0000

endif
endif
if (CauseIV = 0)

vectorOffset = 0x180
else

if (StatusBEV = 1) or (IntCtlVS = 0)
vectorOffset = 0x200

310 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

else
if (Config3VEIC = 1 and EIC_Option=1)

VectorNum = CauseRIPL
elseif (Config3VEIC = 1 and EIC_Option=2)

VectorNum = EIC_VectorNum
elseif (Config3VEIC = 0)

VectorNum = VIntPriorityEncoder()
endif
if (Config3VEIC = 1 and EIC_Option=3)

vectorOffset = EIC_VectorOffset
else

vectorOffset = 0x200 + (VectorNum x (IntCtlVS || 05))
endif

endif

endif
CalcIntrptAddress = vectorBase | vectorOffset

endfunction CalcIntrptAddress

Exceptions:
Coprocessor Unusable Exception, TLB Refill, TLB Invalid, Address Error, Watch, Cache Error, Bus Error
Exceptions

I

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 311

Format: IRET microMIPS and MCU ASE

Purpose: Interrupt Return with Automated Interrupt Epilogue

Optionally jump directly to another interrupt vector without returning to original return address.

Description:

IRET automates some of the operations that are required when returning from an interrupt handler and can be used in
place of the ERET instruction at the end of interrupt handlers. IRET is only appropriate when using Shadow Register
Sets and the EIC Interrupt mode. The automated operations of this instruction can be used to reverse the effects of the
automated operations of the Auto-Prologue feature.

If the EIC interrupt mode and the Interrupt Chaining feature are used, the IRET instruction can be used to shorten the
time between returning from the current interrupt handler and handling the next requested interrupt.

If the Automated Prologue feature is disabled, then IRET behaves exactly like ERET.

If either the StatusERL or StatusBEV bits are set, then IRET behaves exactly like ERET.

If Interrupt Chaining is disabled:

Interrupts are disabled. COP0 Status, SRSCtl, and EPC registers are restored from the stack. GPR 29 is incre-
mented for the stack frame size. IRET then clears execution and instruction hazards, conditionally restores
SRSCtlCSS from SRSCtlPSS, and returns at the completion of interrupt processing to the interrupted instruction
pointed to by the EPC register. If Interrupt Chaining is enabled:

Interrupts are disabled. COP0 Status register is restored from the stack. The priority output of the External Inter-
rupt Controller is compared with the IPL field of the Status register.

If StatusIPL has a higher priority than the External Interrupt Controller value:

COP0 SRSCtl and EPC registers are restored from the stack. GPR 29 is incremented for the stack frame size.
IRET then clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS, and
returns to the interrupted instruction pointed to by the EPC register at the completion of interrupt processing.

If StatusIPL has a lower priority than the External Interrupt Controller value:

The value of GPR 29 is first saved to a temporary register and then GPR 29 is incremented for the stack
frame size. The EIC is signalled that the next pending interrupt has been accepted. This signalling will
update the CauseRIPL and SRSCtlEICSS fields from the EIC output values. The SRSCtlEICSS field is copied to
the SRSCtlCSS field, while the CauseRIPL field is copied to the StatusIPL field. The saved temporary register
is copied to the GPR 29 of the current SRS. The KSU and EXL fields of the Status register are optionally set
to zero. No barrier for execution hazards or instruction hazards is created. IRET finishes by jumping to the
interrupt vector driven by the EIC.

IRET does not execute the next instruction (i.e., it has no delay slot).

31 26 25 6 5 0

POOL32A
000000 000 0000 0011 0100 1101 POOL32AXf

111100
6 20 6

312 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Restrictions:

The operation of the processor is UNDEFINED if IRET is executed in the delay slot of a branch or jump instruction.

The operation of the processor is UNDEFINED if IRET is executed when either Shadow Register Sets are not
enabled, or the EIC interrupt mode is not enabled.

An IRET placed between an LL and SC instruction will always cause the SC to fail.

The effective addresses used for stack transactions must be naturally-aligned. If either of the two least-significant bits
of the address is non-zero, an Address Error exception occurs.

IRET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0 state
changes (for Relea se 2 implementations, refer to the SY NCI instruction for ad ditional information on resolving
instruction hazards created by writing th e instruction stream). The effects of this barrier begin with the instruction
fetch and decode of the instruction at the PC to which the IRET returns.

In a Release 2 implementation, IRET does not restore SRSCtlCSS from SRSCtlPSS if StatusBEV = 1 or StatusERL = 1,
because any exception that sets StatusERL to 1 (Reset, Soft Rese t, NMI, or cache error) does not save SRSCtlCSS in
SRSCtlPSS. If software sets StatusERL to 1, it must be aware of the operation of an IRET that may be subsequently
executed.

The stack transactions behave as individual L W operations with respect to exception reporting. BadVAddr would
report the faulting address for an unaligned access, and the faulting word address for unprivileged access, TLB Refill,
and TLB Invalid exceptions. For TLB exceptions, the faulting word address would be reflected in the Context and
EntryHi registers. The CacheError register would reflect the faulting word address for Cache Errors.

Operation:
if ((IntCtlAPE == 0) | (StatusERL == 1) | (StatusBEV== 1))

Act as ERET // read Operation section of ERET description
else

if (ISAMode)
EPC ← PC..1 || 1 // in case of memory exception

else
EPC ← PC // in case of memory exception

endif
temp ← 0x4 + GPR[29]
tempStatus ← LoadStackWord(temp)
ClearHazards()
if ((IntCtlICE == 0) | ((IntCtlICE == 1) &
(tempStatusIPL > EICRIPL)))

temp ← 0x8 + GPR[29]
tempSRSCtl ← LoadStackWord(temp)
temp ← 0x0 + GPR[29]
tempEPC ← LoadStackWord(temp)

endif
Status ← tempStatus
if ((IntCtlICE == 0) | ((IntCtlICE == 1) &

(tempStatusIPL > EICRIPL)))
GPR[29] ← GPR[29] + DecodedValue(IntCtlStkDec)
SRSCtl ← tempSRSCtl
EPC ← tempEPC
temp ← EPC
StatusEXL ← 0
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) then

SRSCtlCSS ← SRSCtlPSS
endif
if IsMicroMIPSImplemented() then

I

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 313

PC ← temp..1 || 0
ISAMode ← temp0

else
PC ← temp

endif
LLbit ← 0
CauseIC ← 0
ClearHazards()

else
Signal_EIC_for_Next_Interrupt()
(wait for EIC outputs to update)
CauseRIPL ← EICRIPL
SRSCtlEICSS ← EICSS
temp29 ← GPR[29]
GPR[29] ← GPR[29] + DecodedValue(IntCtlStkDec)
StatusIPL ← CauseRIPL
SRSCtlCSS ← SRSCtlEICSS
NewShadowSet ← SRSCtlEICSS
GPR[29] ← temp29
if (IntCtlClrEXL == 1)

StatusEXL ← 0
StatusKSU ← 0

endif
CauseIC ← 1
ClearHazards()
PC ← CalcIntrptAddress()

endif
endif

function LoadStackWord(vaddr)
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord ← memword

endfunction LoadStackWord

function CalcIntrptAddress()
if StatusBEV = 1

vectorBase ← 0xBFC0.0200
else

if (ArchitectureRevision ≥ 2)
vectorBase ← EBase..12 || 011)

else
vectorBase ← 0x8000.0000

endif
endif
if (CauseIV = 0)

vectorOffset = 0x180
else

if (StatusBEV = 1) or (IntCtlVS = 0)
vectorOffset = 0x200

else
if (Config3VEIC = 1 and EIC_Option=1)

314 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

VectorNum = CauseRIPL
elseif (Config3VEIC = 1 and EIC_Option=2)

VectorNum = EIC_VectorNum
elseif (Config3VEIC = 0)

VectorNum = VIntPriorityEncoder()
endif
if (Config3VEIC = 1 and EIC_Option=3)

vectorOffset = EIC_VectorOffset
else

vectorOffset = 0x200 + (VectorNum x (IntCtlVS || 05))
endif

endif
endif
CalcIntrptAddress = vectorBase | vectorOffset

endfunction CalcIntrptAddress

Exceptions:
Coprocessor Unusable Exception, TLB Refill, TLB Invalid, Address Error, Watch, Cache Error, Bus Error
Exceptions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 315

Format: LL rt, offset(base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on o ne processor does not cause an action tha t, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL d oes not have to be followed by execution of SC; a p rogram is free t o abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition. The addressed location may be uncached
for the microAptiv UC core.

The effective address must be naturally-aligned. If either of the 2 least-s ignificant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

31 26 25 21 20 16 15 0

LL
110000 base rt offset

6 5 5 16

316 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Format: SC rt, offset(base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt. On the microAptiv UC core, the
SRAM interface supports a lock protocol and the success or failure can be indicated by external hardware.

If the following event occurs between the execution of LL and SC, the SC fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

31 26 25 21 20 16 15 0

SC
111000 base rt offset

6 5 5 16

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 317

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 0 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC caus e SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

318 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Format: SYNC (stype = 0 implied) MIPS32

Purpose: Synchronize Shared Memory

To order loads and stores.

Description:

Simple Description:

• SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the
SYNC must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is visi-
ble to every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture) or EHB (in Release
2 of the Architecture), to guarantee that memory reference results are visible across operating mode changes. For
example, a SYNC is required on entry to and exit from Debug Mode to guarantee that memory affects are han-
dled correctly.

Detailed Description:

• SYNC does not guarantee the order in which instruction fetches are performed. The stype values 1-31 are
reserved for future extensions to the architecture. A value of zero will always be defined such that it performs all
defined synchronization operations. Non-zero values may be defined to remove some synchronization opera-
tions. As such, software should never use a non-zero value of the stype field, as this may inadvertently cause
future failures if non-zero values remove synchronization operations.

• The SYNC instruction is externalized on the SRAM interface of the microAptiv UC core. External logic can use
this information in a system-dependent manner to enforce memory ordering between various memory elements
in the system.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:
SyncOperation(stype)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000 0000 0 stype SYNC

001111
6 15 5 6

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 319

Format: WAIT MIPS32

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or SI_ColdReset)
is signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that themicroAptiv UC core does
not use the code field in this instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
I: Enter lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0
010000

CO
1 Implementation-Dependent Code WAIT

100000
6 1 19 6

Chapter 13

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 320

microMIPS™ Instruction Set Architecture

The microMIPS™ architecture minimizes the code footprint of applications, thus reducing the cost of memory,
which is particularly high for embedded memory. At the same time, the high performance of MIPS cores is main-
tained. Using this technology, the customer can generate best results without spending time to profile its application.
The smaller code footprint typically leads to reduced power consumption per executed task because of the smaller
number of memory accesses.

microMIPS is a replacement for the existing MIPS16e ASE. It is also an alternative to the MIPS instruction encoding
and can be implemented in parallel or stand-alone.

Overview of changes from the existing MIPS ISA:

• 16-bit and 32-bit opcodes; for MIPS64, also includes 48-bit opcodes

• Optimized opcode/operand field definitions based on statistics

• Branch and jump delay slots are retained for maximum compatibility and lowest risk

• Removal of branch likely instructions, emulation by assembler

• Fine-tuned register allocation algorithm in compilers for smallest code size

13.1 Overview

13.1.1 MIPSr3™ Architecture

MIPSr3 is a family of architectures which includes Release 3.0 of the MIPS Architecture and the first release of the
microMIPS architecture. Enhancements included in the MIPSr3 Architecture are:

• MIPS Release 3 ISA and microMIPS ISA.

• The MIPS16e ASE is phased out and is replaced by microMIPS. Therefore these two ASEs never co-exist within
the same processor core.

• Branch likely instructions are phased out in microMIPS and are emulated by the assembler. They remain avail-
able in the MIPS encoding.

Unless otherwise described in this document, all other aspects of the MIPSr3 architecture are identical to MIPS
Release 2.

13.1 Overview

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 321

13.1.2 Default ISA Mode

The instruction sets available in an implementation are reported in the Config3ISA register field (bits 15:14).
Config1CA (bit 2) is not used for microMIPS.

For implementations that support both microMIPS and MIPS, the selected ISA mode following reset is determined
by the setting of the Config3ISA register field, which is a read-only field set by a hardware signal external to the pro-
cessor core.

For implementations that support both microMIPS and MIPS, the selected ISA mode of an exception handler is deter-
mined by the setting of the Config3ISAOnExc register field (bit 16). The Config3ISAOnExc register field is writeable by
software and has a reset value that is set by a hardware signal external to the processor core. This register field allows
privileged software to change the ISA mode to be used for subsequent exceptions. All exception types whose vectors
are offsets of the EBASE register have this capability.

For implementations that support both microMIPS and MIPS, the selected ISA mode of a debug exception is deter-
mined by the setting of the ISAonDebug register field in the EJTAG TAP Control register. This register field is write-
able by EJTAG probe software and has a reset value that is set by a hardware signal external to the processor core.

13.1.3 Software Detection

Software can determine if microMIPS is implemented by checking the state of the ISA (Instruction Set Architecture)
field in the Config3 CP0 register. Config1CA (bit 2) is not used for microMIPS.

Software can determine if the MIPS ISA is implemented by checking the state of the ISA (Instruction Set Architec-
ture) register field in the Config3 CP0 register.

Software can determine which ISA is used when handling an exception by checking the state of the ISAOnExc (ISA
on Exception) field in the Config3 CP0 register.

Debug Probe Software can determine which ISA is used when handling a debug exception by checking the state of
the ISAOnDebug field in the EJTAG TAP Control register.

13.1.4 Compliance and Subsetting

This document does not change the instruction subsets as defined by the other MIPS architecture reference manuals,
including the subsets defined by the various ASEs.

13.1.5 Mode Switch

The MIPS architecture defines an ISA mode for each processor. An ISA mode value of 0 indicates MIPS instruction
decoding. In processors implementing microMIPS, an ISA mode value of 1 selects microMIPS instruction decoding.

In microMIPS implementations, the ISA mode is not directly visible to normal software. When EJTAG is imple-
mented, the ISA mode is reflected in the EJTAG TAP Control register.

Mode switching between MIPS and microMIPS uses the same mechanism used by MIPS16e, namely, the JALX, JR,
JR.HB, JALR, and JALR.HB instructions, as described below.

• The JALX instruction executes a JAL and switches to the other mode.

 microMIPS™ Instruction Set Architecture

322 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

• The JR and JALR instructions interpret bit 0 of the source registers as the target ISA mode (0=MIPS, 1=micro-
MIPS) and therefore set the ISA Mode bit according to the contents of bit 0 of the source register. For the actual
jump operation, the PC is loaded with the value of the source register with bit 0 set to 0. The same applies to
JR.HB and JALR.HB. The instructions JALR and JALR.HB save the ISA mode into bit 0 of the destination reg-
ister.

• When exceptions or interrupts occur and the processor writes to EPC, DEPC, or ErrorEPC, the ISA Mode bit is
saved into bit 0 of these registers. Then the ISA Mode bit is set according to the Config3ISA register field. On
return from an exception, the processor loads the ISA Mode bit based on the value from either EPC, DEPC, or
ErrorEPC.

If only one ISA mode exists (either MIPS or microMIPS), then this mode switch mechanism does not exist, and the
ISA mode has a fixed value (0=MIPS, 1=microMIPS). Executing the JALX instruction will cause a Reserved Instruc-
tion exception. JR and JALR instructions cause an Address exception on the target instruction fetch when bit 0 of the
source register is different from the ISA mode. The same applies to JR.HB and JALR.HB. Exception handlers must
be encoded in the instruction format supported by the processor.

13.1.6 Branch and Jump Offsets

In the MIPS architecture, because instructions are always 32 bits in size, the jump and branch target addresses are
word (32-bit) aligned. Jump/branch offset fields are shifted left by two bits to create a word-aligned effective address.

In the microMIPS architecture, because instructions can be either bits in size, the jump and branch target addresses
are halfword (16-bit) aligned. Branch/jump offset fields are shifted left by only one bit to create halfword-aligned
effective addresses.

To maintain the existing MIPS ABIs, link unit/object file entry points are restricted to 32-bit word alignments. In the
future, a microMIPS-only ABI can be created to remove this restriction.

13.1.7 Coprocessor Unusable Behavior

If an instruction associated with a non-implemented coprocessor is executed, it is implementation-specific whether a
processor executing in microMIPS mode raises an RI exception or a coprocessor unusable exception. While in micro-
MIPS mode, the microAptiv UC has the same behavior as in MIPS32 mode; coprocessor unusable exceptions will be
raised.

13.2 Instruction Formats

This section defines the formats of microMIPS instructions.

The 6-bit major opcode is left-aligned within the instruction encoding. Instructions can have 0 to 4 register fields. For
32-bit instructions, the register field width is 5 bits, while for most 16-bit instructions, the register field width is 3
bits, utilizing instruction-specific register encoding. All 5-bit register fields are located at a constant position within
the instruction encoding.

The immediate field is right-aligned in the following instructions:

• some 16-bit instructions with 3-bit register fields

• 32-bit instructions with 16-bit or 26-bit immediate field

13.2 Instruction Formats

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 323

The name ‘immediate field’ as used here includes the address offset field for branches and load/store instructions as
well as the jump target field.

Other instruction-specific fields are typically located between the immediate and minor opcode fields. Instructions
that have multiple “other” fields are listed in alphabetical order according to the name of the field, with the first name
of the order located at the lower bit position. An empty bit field that is not explicitly shown in the instruction format
is located next to the minor opcode field.

Figure 13.1 and Figure 13.2 show the 16-bit and 32-bit instruction formats.

Figure 13.1 16-Bit Instruction Formats

15 10 9 0

S3R0 Major Opcode Minor Opc/Imm

15 10 9 7 6 0

S3R1I7 Major Opcode rs1/d Minor Opc/Imm

15 10 9 6 5 3 2 0

S3R2I0 Major Opcode Minor Opc rs2/d rs1

15 10 9 7 6 4 3 1 0

S3R2I3 Major Opcode rs2/d rs1 Imm M

15 10 9 7 6 4 3 0

S3R2I4 Major Opcode rs2/d rs1 MInor Opc/Imm

15 10 9 7 6 4 3 1 0

S3R3I0 Major Opcode rd rs2 rs1 M

15 10 9 5 4 0

S5R1I0 Major Opcode Minor opc rs1/d

15 10 9 5 4 0

S5R1I5 Major Opcode rd Minor Opc/Imm

15 10 9 5 4 0

S5R2I0 Major Opcode rd rs1

 microMIPS™ Instruction Set Architecture

324 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

Figure 13.2 32-Bit Instruction Formats

Figure 13.3 Immediate Fields within 32-Bit Instructions

31 26 25 0

R0 Major Opcode Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 0

R1 Major Opcode Imm/Other rs/fs/base Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 0

R2 Major Opcode rt/ft/index rs/fs/base Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 11 10 0

R3 Major Opcode rt/ft/index rs/fs/base rd/fd Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 11 10 6 5 0

R4 Major Opcode rt/ft rs/fs rd/fd rr/fr Minor Opcode/Other

32-bit instruction formats with 26-bit immediate fields:

31 26 25 0

R0I26 Major Opcode Immediate

31 26 25 16 15 0

R0I16 Major Opcode Minor Opcode/Other Immediate

32-bit instruction formats with 16-bit immediate fields:

31 26 25 21 20 16 15 0

R1I16 Major Opcode Minor Opcode/Other rs/fs Immediate

31 26 25 21 20 16 15 0

R2I16 Major Opcode rt/ft rs/fs Immediate

32-bit instruction formats with 12-bit immediate fields:

31 26 25 21 20 16 15 12 11 0

R1I12 Major Opcode Other rs/fs Minor Opcode Immediate

31 26 25 21 20 16 15 12 11 0

R2I12 Major Opcode rt/ft rs/fs Minor Opcode Immediate

13.3 microMIPS Re-encoded Instructions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 325

The instruction size can be completely derived from the major opcode. For 32-bit instructions, the major opcode also
defines the position of the minor opcode field and whether or not the immediate field is right-aligned.

Instructions formats are named according to the number of the register fields and the size of the immediate field. The
names have the structure R<x>I<y>. For example, an instruction based on the format R2I16 has 2 register fields and
a 16-bit immediate field.

13.2.1 Instruction Stream Organization and Endianness

16-bit instructions are placed within the 32-bit (or 64-bit) memory element according to system endianness.

• On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16, and the second instruction
is read from bits 15..0.

• On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0, and the second instruction
is read from bits 31..16.

The above rule also applies to the halfwords of 32-bit instructions. This means that a 32-bit instruction is not treated
as a word data type; instead, the halfwords are treated in the same way as individual 16-bit instructions. The halfword
containing the major opcode is always the first in the sequence.

Example:
SRL r1, r1, 7 binary opcode fields: 000000 00001 00001 00111 00001 000000

hex representation: 0021 3840

Address: 3 2 1 0
Little Endian: Data: 38 40 00 21

Address: 0 1 2 3
Big Endian: Data: 00 21 38 40

Instructions are placed in memory such that they are in-order with respect to the address.

13.3 microMIPS Re-encoded Instructions

In the 16-bit category:

• Frequent MIPS instructions and macros, re-encoded as 16-bit. Register and immediate fields are reduced in size
by using encodings of frequently occurring values.

In the 32-bit category:

• Opcode space for user-defined instructions (UDIs).

• New instructions designed primarily to reduce code size.

ADD16, ADD32, ADD32.PS

If these suffixes are omitted, the assembler automatically chooses the smallest instruction size.

 microMIPS™ Instruction Set Architecture

326 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

For each instruction, the tables in this chapter provide all necessary information about the bit fields. The formats of
the instructions are defined in Section 11.1 “CPU Instruction Formats”. Together with the major and minor opcode
encodings, which can be derived from the tables in Section 12.2 “microAptiv™ UC Core Opcode Map”, the complete
instruction encoding is provided.

Most register fields have a width of 5 bits. 5-bit register fields use linear encoding (r0=’00000’, r1=’00001’, etc.). For
16-bit instructions, whose register field size is variable, the register field width is explicitly stated in the instruction
table (Table 13.1 and Table 13.2), and the individual register and immediate encodings are shown in Table 13.3. The
‘other fields’ are defined by the respective column, with the order of these fields in the instruction encoding defined
by the order in the tables.

13.3.1 16-Bit Category

13.3.1.1 Frequent MIPS Instructions

These are frequent MIPS instructions with reduced register and immediate fields containing frequently used registers
and immediate values.

MOVE is a very frequent instruction. It therefore supports full 5-bit unrestricted register fields for maximum effi-
ciency. In fact, MOVE used to be a simplified macro of an existing MIPS instruction.

There are 2 variants of the LW and SW instructions. One variant implicitly uses the SP register to allow for a larger
offset field. The value in the offset field is shifted left by 2 before it is added to the base address.

There are four variants of the ADDIU instruction:

1. A variant with one 5-bit register specifier that allows any GPR to be the source and destination register

2. A variant that uses the stack pointer as the implicit source and destination register

3. A variant that has separate 3-bit source and destination register specifiers

4. A variant that has the stack pointer as the implicit source register and one 3-bit destination register specifier

A 16-bit NOP instruction is needed because of the new 16-bit instruction alignment and the need in specific cases to
align instructions on a 32-bit boundary. It can save code size as well. NOP is not shown in the table because it is real-
ized as a macro (as is NEGU).

NOP16 = MOVE16 r0, r0

NEGU16 rt, rs = SUBU16 rt, r0, rs

Because microMIPS instructions are 16-bit aligned, the 16-bit branch instructions support 16-bit aligned branch tar-
get addresses. The offset field is left shifted by 1 before it is added to the PC.

The compact instruction JRC is to be used instead of JR, when the jump delay slot after JR cannot be filled. This
saves code size. Because JRC may execute as fast as JR with a NOP in the delay slot, JR is preferred if the delay slot
can be filled.

The breakpoint instructions, BREAK and SDBBP, include a 16-bit variant that allows a breakpoint to be inserted at
any instruction address without overwriting more than a single instruction.

13.3 microMIPS Re-encoded Instructions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 327

Table 13.1 16-Bit Re-encoding of Frequent MIPS Instructions

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

ADDIUS5 POOL16D 5bit:1 4 5 0 1 Add Immediate
Unsigned Word Same
Register

ADDIUSP POOL16D 0 9 0 0 1 Add Immediate
Unsigned Word to
Stack Pointer

ADDIUR2 POOL16E 2 3 3 0 1 Add Immediate
Unsigned Word
Two Registers

ADDIUR1SP POOL16E 1 6 3 0 1 Add Immediate
Unsigned Word
One Registers and
Stack Pointer

ADDU16 POOL16A 3 0 3 0 1 Add Unsigned Word

AND16 POOL16C 2 0 3 0 4 AND

ANDI16 ANDI16 2 4 3 0 0 AND Immediate

B16 B16 0 10 0 0 Branch

BREAK16 POOL16C 0 0 4 0 6 Cause Breakpoint
Exception

JALR16 POOL16C 1 0 5 0 5 Jump and Link
Register, 32-bit
delay-slot

JALRS16 POOL16C 1 0 5 0 5 Jump and Link
Register, 16-bit
delay-slot

JR16 POOL16C 1 0 5 0 5 Jump Register

LBU16 LBU16 2 4 3 0 0 Load Byte Unsigned

LHU16 LHU16 2 4 3 0 0 Load Halfword

LI16 LI16 1 7 3 0 0 Load Immediate

LW16 LW16 2 4 3 0 0 Load Word

LWGP LWGP16 1 7 3 0 0 Load Word GP

LWSP LWSP16 5bit:1 5 5 0 0 Load Word SP

MFHI16 POOL16C 1 0 5 0 5 Move from
HI Register

MFLO16 POOL16C 1 0 5 0 5 Move from
LO Register

MOVE16 MOVE16 2 0 5 0 0 Move

NOT16 POOL16C 2 0 3 0 4 NOT

OR16 POOL16C 2 0 3 0 4 OR

 microMIPS™ Instruction Set Architecture

328 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

13.3.1.2 Frequent MIPS Instruction Sequences

These 16-bit instructions are equivalent to frequently-used short sequences of MIPS instructions. The instruction-spe-
cific register and immediate value selection are shown in Table 13.3.

SB16 SB16 2 4 3 0 0 Store Byte

SDBBP16 POOL16C 0 0 4 0 6 Cause Debug
Breakpoint Exception

SH16 SH16 2 4 3 0 0 Store Halfword

SLL16 POOL16B 2 3 3 0 1 Shift Word Left
Logical

SRL16 POOL16B 2 3 3 0 1 Shift Word Right
Logical

SUBU16 POOL16A 3 0 3 0 1 Sub Unsigned

SW16 SW16 2 4 3 0 0 Store Word

SWSP SWSP16 5bit:1 5 5 0 0 Store Word SP

XOR16 POOL16C 2 0 3 0 4 XOR

Table 13.2 16-Bit Re-encoding of Frequent MIPS Instruction Sequences

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

BEQZ16 BEQZ16 1 7 3 0 0 Branch on Equal Zero

BNEZ16 BNEZ16 1 7 3 0 0 Branch on
Not Equal Zero

JRADDIUSP POOL16C 0 5 5 Jump Register;
ADDIU SP

JRC POOL16C 1 0 5 0 5 Jump Register Com-
pact

LWM16 POOL16C 0 4 2 0 4 Load Word Multiple

SWM16 POOL16C 0 4 2 0 4 Store Word Multiple

Table 13.1 16-Bit Re-encoding of Frequent MIPS Instructions (Continued)

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

13.3 microMIPS Re-encoded Instructions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 329

13.3.1.3 Instruction-Specific Register Specifiers and Immediate Field Encodings

Table 13.3 Instruction-Specific Register Specifiers and Immediate Field Values

Instruction

Number
of

Register
Fields

Immediate
Field Size

(bit)

Register 1
Decoded

Value

Register 2
Decoded

Value

Register 3
Decoded

Value
Immediate Field Decoded

Value

ADDIUS5 5bit:1 4 rd: 5-bit field -8..0..7

ADDIUSP 0 9 (-258..-3, 2..257) << 2

ADDIUR2 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 -1, 1, 4, 8, 12, 16, 20, 24

ADDIUR1SP 1 6 rd:2-7,16, 17 (0..63) << 2

ADDU16 3 0 rs1:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17

AND16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

ANDI16 2 4 rs1:2-7,16, 17 rd:2-7,16, 17 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63,
64, 128, 255, 32768, 65535

B16 0 10 (-512..511) << 1

BEQZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1

BNEZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1

BREAK16 0 4 0..15

JALR16 5bit:1 0 rs1:5-bit field

JALRS16 5bit:1 0 rs1:5-bit field

JRADDIUSP 0 5 (0..31) << 2

JR16 5bit:1 0 rs1:5 bit field

JRC 5bit:1 0 rs1:5 bit field

LBU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 -1,0..14

LHU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 1

LI16 1 7 rd:2-7,16, 17 -1,0..126

LW16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 2

LWM16 2bit list:1 4 (0..15)<<2

LWGP 1 7 rd:2-7,16,17 (-64..63)<<2

LWSP 5bit:1 5 rd:5-bit field (0..31)<<2

MFHI16 5bit:1 0 rd:5-bit field

MFLO16 5bit:1 0 rd:5-bit field

MOVE16 5bit:2 0 rd:5-bit field rs1:5-bit field

NOT16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

OR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

SB16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 0..15

SDBBP16 0 0 0..15

SH16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 (0..15) << 1

SLL16 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)

 microMIPS™ Instruction Set Architecture

330 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

13.3.2 16-bit Instruction Register Set

Many of the 16-bit instructions use 3-bit register specifiers in their binary encodings. The register set used for most of
these 3-bit register specifiers is listed in Table 13.4. The register set used for SB16, SH16, SW16 source register is
listed in Table 13.5. These register sets are a true subset of the register set available in 32-bit mode; the 3-bit register
specifiers can directly access 8 of the 32 registers available in 32-bit mode (which uses 5-bit register specifiers).

In addition, specific instructions in the 16-bit instruction set implicitly reference the stack pointer register (sp), global
pointer register (gp), the return address register (ra), the integer multiplier/divider output registers (HI/LO) and the
program counter (PC). Of these, Table 13.6 lists sp, gp and ra. Table 13.7 lists the microMIPS special-purpose regis-
ters, including PC, HI and LO.

The microMIPS also contains some 16-bit instructions that use 5-bit register specifiers. Such 16-bit instructions pro-
vide access to all 32 general-purpose registers.

SRL16 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)

SUBU16 3 0 rs1:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17

SW16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 (0..15) << 2

SWSP 5bit:1 5 rs1: 5 bit field (0..31) << 2

SWM16 2- bit list:1 4 (0..15)<<2

XOR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

Table 13.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17

16-Bit
Register

Encoding1

32-Bit MIPS
Register

Encoding2

Symbolic Name
(From

ArchDefs.h) Description

0 16 s0 General-purpose register

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register

6 6 a2 General-purpose register

7 7 a3 General-purpose register

Table 13.3 Instruction-Specific Register Specifiers and Immediate Field Values (Continued)

Instruction

Number
of

Register
Fields

Immediate
Field Size

(bit)

Register 1
Decoded

Value

Register 2
Decoded

Value

Register 3
Decoded

Value
Immediate Field Decoded

Value

13.3 microMIPS Re-encoded Instructions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 331

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tion using 3-bit register specifiers. The Move instruction can access all 32 general-purpose
registers.

Table 13.5 SB16, SH16, SW16 Source Registers - $0, $2-$7, $17

16-Bit
Register

Encoding1

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

32-Bit MIPS
Register

Encoding2

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tions using 3-bit register specifier. The Move instruction can access all 32 general-purpose
registers.

Symbolic Name
(From

ArchDefs.h) Description

0 0 zero Hard-wired Zero

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register

6 6 a2 General-purpose register

7 7 a3 General-purpose register

Table 13.6 16-Bit Instruction Implicit General-Purpose Registers

16-Bit
Register

Encoding

32-Bit MIPS
Register

Encoding

Symbolic Name
(From

ArchDefs.h) Description

Implicit 28 gp Global pointer register

Implicit 29 sp Stack pointer register

Implicit 31 ra Return address register

 microMIPS™ Instruction Set Architecture

332 MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03

13.3.3 32-Bit Category

13.3.3.1 New 32-bit instructions

The following table lists the 32-bit instructions introduced in the microMIPS ISA.

Table 13.7 16-Bit Instruction Special-Purpose Registers

Symbolic Name Purpose

PC Program counter. The PC-relative ADDIU can access this
register as an operand.

HI Contains high-order word of multiply or divide result.

LO Contains low-order word of multiply or divide result.

Table 13.8 32-bit Instructions introduced within microMIPS

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

ADDIUPC ADDIUPC 1 23 3 0 0 ADDIU PC-Relative

BEQZC POOL32I 2:5 bit 16 5 0 Branch on
Equal to Zero, No
Delay Slot

BNEZC POOL32I 2:5 bit 16 5 0 Branch on
Not Equal to Zero, No
Delay Slot

JALRS POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter, Short Delay Slot

JALRS.HB POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter with Hazard Bar-
rier, Short Delay Slot

JALS JALS32 0 26 0 Jump and Link, Short
Delay Slot

JALX JALX 26 5 0 5 Jump and Link
Exchange

LWP POOL32B 2:5 bit 12 5 0 4 Load Word Pair

LWXS POOL32A 3:5 bit 0 5 0 1 10 Load Word Indexed,
Scale

LWM32 POOL32B 1:5bit 12 5 0 4 Load Word Multiple

SWP POOL32B 2:5 bit 12 0 4 Load Word Pair

SWM32 POOL32B 1:5bits 12 5 0 4 Store Word Multiple

13.3 microMIPS Re-encoded Instructions

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 333

Appendix A

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 334

References

This appendix lists other publications available from MIPS Technologies, Inc. that are referenced in this document.
These documents may be included in the $MIPS_PROJECT/doc area of a typical microAptiv UC soft or hard core
release, or in some cases may be available on the MIPS web site https://www.mips.com.

1. MIPS32® microAptiv™ UC Processor Core Family Data Sheet
MIPS Document: MD00931

2. MIPS32® microAptiv™ UC Processor Core Family Integrator’s Guide
MIPS Document: MD00933

3. MIPS32® microAptiv™ UC Processor Core Family Implementor’s Guide
MIPS Document: MD00932

4. MIPS32® microAptiv™ UC Processor Core Family System Package & Simulation Flow User’s Manual
MIPS Document: MD00935

5. MIPS® Architecture For Programmers, Volume I: Introduction to the MIPS32® Architecture
MIPS Document: MD0082

6. MIPS® Architecture For Programmers, Volume I: Introduction to the microMIPS32™ Architecture
MIPS Document: MD0741

7. MIPS® Architecture For Programmers, Volume II: The MIPS32® Instruction Set
MIPS Document: MD0086

8. MIPS® Architecture For Programmers, Volume II: The microMIPS32™ Instruction Set
MIPS Document: MD0582

9. MIPS® Architecture For Programmers Volume III: The MIPS32® and microMIPS32™ Privileged Resource
Architecture
MIPS Document: MD00090

10. MIPS® Architecture for Programmers Volume IV-h: The MCU Application-Specific Extension to the MIPS32®
Architectures
MIPS Document: MD00834

11. MIPS® Architecture for Programmers Volume IV-h: The MCU Application-Specific Extension to the
microMIPS32™ Architectures
MIPS Document: MD00838

12. MIPS® EJTAG Specification
MIPS Document: MD00047

Prelim
inary

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 335

13. MIPS® cJTAG Adapter User's Manual
MIPS Document: MD00862

14. MIPS® Architecture Reference Manual Volume IV-e: The MIPS® DSP Module of the MIPS32® Architecture
MIPS Document: MD00372

15. MIPS® Architecture Reference Manual Volume IV-e: The MIPS® DSP Module of the microMIPS32® Archi-
tecture
MIPS Document: MD00762

16. Five Methods of Utilizing the MIPS® DSP Module
MIPS Document: MD00783

17. Efficient DSP Module Programming in C: Tips and Tricks
MIPS Document: MD00485

18. Accelerating DSP Filter Loops with MIPS® CorExtend® Instructions
MIPS Document: MD00303

Appendix B

MIPS32® microAptiv™ UC Processor Core Family Software User’s Manual, Revision 01.03 336

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document.

Revision Date Description

01.00 June 14, 2013 • Initial 3_0_0 release

01.01 July 31, 2013 • No technical changes
• Update legal text to reflect new

company ownership

01.02 November 12, 2013 • Updates to CACHE instruction

01.03 July 30, 2014 • Changes to timer interrupt input.

Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

