

2 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

• Supports configurable DSP Module Revision 2 for digital
signal processing capabilities.

• Multiply/Divide Unit (MDU) - If the DSP is not
included, the MDU can be configured for either
performance or area optimizations. The high-
performance optimization supports a single-cycle 32x16-
bit MAC instruction or two-cycle 32x32-bit instructions.
If the DSP is included, the MDU is enhanced with a
hardware multiplier array supporting single-cycle 32x32
MAC and DSP instructions.

• Instruction and data caches are fully configurable from 0
to 64 Kbytes in size. In addition, each cache can be
organized as direct-mapped or 2-way, 3-way, or 4-way
set associative. Load and fetch cache misses only block
until the critical word becomes available. The pipeline
resumes execution while the remaining words are being
written to the cache. Both caches are virtually indexed
and physically tagged to allow them to be accessed in the
same clock in which the address is translated.

• Support for the MCU ASE to enhance common functions
used in microcontroller applications such as interrupts
and semaphore manipulation.

• Security feature such as the SecureDebug to restrict
untrusted EJTAG debug access.

• AMBA-3 AHB-Lite bus interface.

• Parity support.

• An optional Enhanced JTAG (EJTAG version 4.52)
block allows for single-stepping of the processor as well
as instruction and data virtual address/value breakpoints.
iFlowtrace™ version 2.0 is also supported to add real-
time instruction program counter and special events trace
capability for debug. Additionally, Fast Debug Channel,
Performance Counters, and PC/Data sampling functions
are added to enrich debug and profiling features on the
microAptiv UP core.

• External block to convert 4-wire EJTAG (IEEE 1149.1)
interface to 2-wire cJTAG (IEEE 1149.7) interface.

• Configurable hardware breakpoints triggered by address
match or address range.

Features
• 5-stage pipeline

• 32-bit Address and Data Paths

• MIPS32 Instruction Set Architecture

• MIPS32 Enhanced Architecture Features

• Vectored interrupts and support for external inter-
rupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow registers (one, three, seven, or fifteen
additional shadows can be optionally added to min-
imize latency for interrupt handlers)

• Bit field manipulation instructions

• Virtual memory support (smaller page sizes and
hooks for more extensive page table manipulation)

• microMIPS Instruction Set Architecture

• microMIPS ISA is a build-time configurable option
that reduces code size over MIPS32, while main-
taining MIPS32 performance.

• Combining both 16-bit and 32-bit opcodes, micro-
MIPS supports all MIPS32 instructions (except
branch-likely instructions) with new optimized
encoding. Frequently used MIPS32 instructions are
available as 16-bit instructions.

• Added fifteen new 32-bit instructions and thirty-
nine 16-bit instructions.

• Stack pointer implicit in instruction.

• MIPS32 assembly and ABI-compatible.

• Supports MIPS architecture Modules and User-
defined Instructions (UDIs).

• MCU™ ASE

• Increases the number of interrupt hardware inputs
from 6 to 8 for Vectored Interrupt (VI) mode, and
from 63 to 255 for External Interrupt Controller
(EIC) mode.

• Separate priority and vector generation. 16-bit vec-
tor address is provided.

• Hardware assist combined with the use of Shadow
Register Sets to reduce interrupt latency during the
prologue and epilogue of an interrupt.

• An interrupt return with automated interrupt epi-
logue handling instruction (IRET) improves inter-
rupt latency.

• Supports optional interrupt chaining.

• Two memory-to-memory atomic read-modify-write
instructions (ASET and ACLR) eases commonly
used semaphore manipulation in microcontroller
applications. Interrupts are automatically disabled
during the operation to maintain coherency.

• Programmable Cache Sizes

• Individually configurable instruction and data
caches

• Sizes from 0 - 64KB

• Direct Mapped, 2-, 3-, or 4-Way Set Associative

• Loads block only until critical word is available

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 3

• Write-back and write-through support

• 128-bit (16-byte) cache line size, word sectored -
suitable for standard 32-bit wide single-port SRAM

• Virtually indexed, physically tagged

• Cache line locking support

• Non-blocking prefetches

• Scratchpad RAM (SPRAM) Support

• Can optionally replace 1 way of the I- and/or D-
cache with a fast scratchpad RAM

• Independent external pin interfaces for I- and D-
scratchpads

• 20 index address bits allow access of arrays up to
1MB

• Interface allows back-stalling the core

• MIPS32 Privileged Resource Architecture (PRA)

• Count/Compare registers for real-time timer
interrupts

• I and D watch registers for SW breakpoints

• Memory Management Unit

• Simple Fixed Mapping Translation (FMT) mecha-
nism, or

• 4-entry instruction and data Translation Lookaside
Buffers (ITLB/DTLB) and a 16 or 32 dual-entry
joint TLB (JTLB) with variable page sizes. Read,
write, and execute page-protection attributes indi-
vidually programmable.

• Bus Interface Unit (BIU)

• Supports AMBA-3 AHB-Lite protocol

• All I/O’s fully registered

• Separate unidirectional 32-bit address and data
buses

• Two 16-byte collapsing write buffers

• Support for variable CPU and bus clock ratios to
allow the bus to run at a lower speed than the CPU.

• Parity Support

• The I-cache, D-cache, ISPRAM, and DSPRAM
support optional parity detection.

• MIPS DSP Module (Revision 2.0)

• Support for MAC operations with 3 additional pairs
of Hi/Lo accumulator registers (Ac0 - Ac3)

• Fractional data types (Q15, Q31) with rounding
support

• Saturating arithmetic with overflow handling

• SIMD instructions operate on 2x16-bit or 4x8-bit
operands simultaneously

• Separate MDU pipeline with full-sized hardware
multiplier to support back-to-back operations

• The DSP Module is build-time configurable.

• Multiply/Divide Unit (high-performance configuration
without DSP)

• Maximum issue rate of one 32x16 multiply per
clock via on-chip 32x16 hardware multiplier array.

• Maximum issue rate of one 32x32 multiply every
other clock

• Early-in iterative divide. Minimum 11 and maxi-
mum 34 clock latency (dividend (rs) sign exten-
sion-dependent)

• Multiply/Divide Unit (with DSP configuration)

• Maximum issue rate of one 32x32 multiply per
clock via on-chip 32x32 hardware multiplier array

• Maximum issue rate of one 32x32 multiply every
clock

• Early-in iterative divide. Minimum 12 and maxi-
mum 38clock latency (dividend (rs) sign extension-
dependent)

• Multiply/Divide Unit (area-efficient configuration
without DSP)

• 32 clock latency on multiply

• 34 clock latency on multiply-accumulate

• 33-35 clock latency on divide (sign-dependent)

• CorExtend® User-Defined Instruction Set Extensions

• Allows user to define and add instructions to the
core at build time

• Maintains full MIPS32 compatibility

• Supported by industry-standard development tools

• Single or multi-cycle instructions

• Coprocessor 2 interface

• 32-bit interface to an external coprocessor

• Power Control

• Minimum frequency: 0 MHz

• Power-down mode (triggered by WAIT instruction)

• Support for software-controlled clock divider

• Support for extensive use of local gated clocks

• Optional power-saving mode in organizing individ-
ual cache memory array per way

• EJTAG Debug/Profiling and iFlowtrace™ Mechanism

• CPU control with start, stop, and single stepping

• Virtual instruction and data address/value break-
points

4 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

• Hardware breakpoint supports both address match
and address range triggering

• Optional simple hardware breakpoints on virtual
addresses; 8I/4D, 6I/2D, 4I/2D, 2I/1D breakpoints,
or no breakpoints

• Optional complex hardware breakpoints with 8I/
4D, 6I/2D simple breakpoints

• TAP controller is chainable for multi-CPU debug

• Supports EJTAG (IEEE 1149.1) and compatible
with cJTAG 2-wire (IEEE 1149.7) extension proto-
col

• Cross-CPU breakpoint support

• iFlowtrace support for real-time instruction PC and
special events

• PC and/or load/store address sampling for profiling

• Performance Counters

• Support for Fast Debug Channel (FDC)

• SecureDebug

• An optional feature that disables access via EJTAG
in an untrusted environment

• Testability

• Full scan design achieves test coverage in excess of
99% (dependent on library and configuration
options)

• Optional memory BIST for internal SRAM arrays.
Two memory BIST algorithms are provided and
selectable by input pin.

Architecture Overview

The microAptiv UP core contains both required and optional
blocks, as shown in Figure 1. Required blocks must be
implemented to remain MIPS-compliant. Optional blocks
can be added to the microAptiv UP core based on the needs
of the implementation.

The required blocks are as follows:

• Instruction Decode

• Execution Unit

• General Purposed Registers (GPR)

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• I/D Cache Controllers

• Bus Interface Unit (BIU)

• Power Management

Optional or configurable blocks include:

• Instruction Cache

• Data Cache

• Scratchpad RAM interface

• Configurable instruction decoder supporting three ISA
modes: MIPS32-only, MIPS32 and microMIPS, or
microMIPS-only

• DSP (integrated with MDU)

• Coprocessor 2 interface

• CorExtend® User-Defined Instruction (UDI) interface

• Debug/Profiling with Enhanced JTAG (EJTAG)
Controller, Break points, Sampling, Performance
counters, Fast Debug Channel, and iFlowtrace logic

The section "MIPS32® microAptiv™ UP Core Required
Logic Blocks" on page 5 discusses the required blocks. The
section "MIPS32® microAptiv™ UP Core Optional or
Configurable Logic Blocks" on page 12 discusses the
optional blocks.

Pipeline Flow

The microAptiv UP core implements a 5-stage pipeline with
a performance similar to the M14Kc™ pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and power
consumption.

The microAptiv UP core pipeline consists of five stages:

• Instruction (I Stage)

• Execution (E Stage)

• Memory (M Stage)

• Align (A Stage)

• Writeback (W stage)

The microAptiv UP core implements a bypass mechanism
that allows the result of an operation to be forwarded directly
to the instruction that needs it without having to write the
result to the register and then read it back.

Figure 2 shows a timing diagram of the microAptiv UP core
pipeline (shown with the-high performance MDUand TLB
used in the MMU).

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 5

Figure 2 MIPS32® microAptiv™ UP Core Pipeline

I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from the instruction cache.

• The I-TLB performs a virtual-to-physical address
translation.

• If both MIPS32 and microMIPS ISAs are supported,
microMIPS instructions are converted to MIPS32-like
instructions. If the MIPS32 ISA is not supported, 16-bit
microMIPS instructions will be first recoded into 32-bit
microMIPS equivalent instructions, and then decoded in
native microMIPS ISA format.

E Stage: Execution

During the Execution stage:

• Operands are fetched from the register file.

• Operands from the M and A stage are bypassed to this
stage.

• The Arithmetic Logic Unit (ALU) begins the arithmetic
or logical operation for register-to-register instructions.

• The ALU calculates the virtual data address for load and
store instructions.

• The ALU determines whether the branch condition is
true and calculates the virtual branch target address for
branch instructions.

• Instruction logic selects an instruction address.

• All multiply and divide operations begin in this stage.

M Stage: Memory Fetch

During the Memory fetch stage:

• The arithmetic ALU operation completes.

• The data cache access and the data virtual-to-physical
address translation are performed for load and store
instructions.

• Data cache look-up is performed and a hit/miss
determination is made.

• A 32x32 multiply calculation completes (with DSP
configuration).

• A 32x32 multiply operation stalls the MDU pipeline for
one clock in the M stage (high-performance MDU option
without DSP configuration).

• A multiply operation stalls the MDU pipeline for 31
clocks in the M stage (area-efficient MDU option without
DSP configuration).

• A multiply-accumulate operation stalls the MDU pipeline
for 33 clocks in the M stage (area-efficient MDU option
without DSP configuration).

• A divide operation stalls the MDU pipeline for a
maximum of 38 clocks in the M stage. Early-in sign
extension detection on the dividend will skip 7, 15, or 23
stall clocks (only the divider in the fast MDU option
supports early-in detection).

A Stage: Align

During the Align stage:

• Load data is aligned to its word boundary.

• A multiply/divide operation updates the HI/LO registers
(area-efficient MDU option).

• Multiply operation performs the carry-propagate-add.
The actual register writeback is performed in the W stage
(high-performance MDU option).

• A MUL operation makes the result available for
writeback. The actual register writeback is performed in
the W stage.

• EJTAG complex break conditions are evaluated.

W Stage: Writeback

During the Writeback stage:

• For register-to-register or load instructions, the
instruction result is written back to the register file.

MIPS32® microAptiv™ UP Core
Required Logic Blocks

The required logic blocks of the microAptiv UP core (Figure
1) are defined in the following subsections.

I E M A W

I-TLB

I-A1

I-Cache RegRd

I Dec

ALU Op

D-TLB

D-Cache Align RegWD-AC

Bypass
Bypass

Mult RegW

Bypass

Acc

I-A2

Div RegWAcc

6 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

Execution Unit

The microAptiv UP core execution unit implements a load/
store architecture with single-cycle ALU operations (logical,
shift, add, subtract) and an autonomous multiply/divide unit.

 The execution unit includes:

• Arithmetic Logic Unit (ALU) for performing arithmetic
and bitwise logical operations. Shared adder for
arithmetic operations, load/store address calculation, and
branch target calculation.

• Address unit for calculating the next PC and next fetch
address selection muxes.

• Load Aligner.

• Shifter and Store Aligner.

• Branch condition comparator.

• Trap condition comparator.

• Bypass muxes to advance result between two adjacent
instructions with data dependency.

• Leading Zero/One detect unit for implementing the CLZ
and CLO instructions.

• Actual execution of the Atomic Instructions defined in
the MCU ASE.

• A separate DSP ALU and Logic block for performing
part of DSP Module instructions, such as arithmetic/shift/
compare operations if the DSP function is configured.

General Purpose Registers

The microAptiv UP core contains thirty-two 32-bit general-
purpose registers used for integer operations and address
calculation. Optionally, one, three, seven or fifteen additional
register file shadow sets (each containing thirty-two registers)
can be added to minimize context switching overhead during
interrupt/exception processing. The register file consists of
two read ports and one write port and is fully bypassed to
minimize operation latency in the pipeline.

Multiply/Divide Unit (MDU)

The microAptiv UP core includes a multiply/divide unit
(MDU) that contains a separate, dedicated pipeline for integer
multiply/divide operations, and DSP Module multiply
instructions. This pipeline operates in parallel with the integer
unit (IU) pipeline and does not stall when the IU pipeline
stalls. This allows the long-running MDU operations to be
partially masked by system stalls and/or other integer unit
instructions.

The MIPS architecture defines that the result of a multiply or
divide operation be placed in a pair (without DSP enabled) or
one of 4 pairs (with DSP enabled) of HI and LO registers.
Using the Move-From-HI (MFHI) and Move-From-LO
(MFLO) instructions, these values can be transferred to the
general-purpose register file.

There are three configuration options for the MDU: 1) a full
32x32 multiplier block; 2) a higher performance 32x16
multiplier block; 3) an area-efficient iterative multiplier
block. Option 2 and 3 are available if the DSP configuration
option is disabled. If the DSP configuration option is enabled,
option 1 is the default. The selection of the MDU style allows
the implementor to determine the appropriate performance
and area trade-off for the application.

MDU with 32x32 DSP Multiplier

With the DSP configuration option enabled, the MDU
supports execution of one 16x16, 32x16, or 32x32 multiply or
multiply-accumulate operation every clock cycle with the
built in 32x32 multiplier array. The multiplier is shared with
DSP Module operations.

The MDU also implements various shift instructions
operating on the HI/LO register and multiply instructions as
defined in the DSP Module. It supports all the data types
required for this purpose and includes three extra HI/LO
registers as defined by the Module.

Table 1 lists the latencies (throughput with data dependency)
and repeat rates (throughput without data dependency) for the
DSP multiply and dot-product operations. The approximate
latencies and repeat rates are listed in terms of pipeline
clocks. For a more detailed discussion of latencies and repeat
rates, refer to the MIPS32 microAptiv™ UP Processor Core
Software User’s Manual.

Table 1 DSP-related Latencies and Repeat Rates

Opcode Latency
Repeat

Rate

Multiply and dot-
product without satu-
ration after accumula-
tion

5 1

Multiply and dot-
product with satura-
tion after accumula-
tion

5 1

Multiply without
accumulation

5 1

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 7

MDU with 32x16 High-Performance Multiplier

The high-performance MDU consists of a 32x16 Booth-
recoded multiplier, a pair of result/accumulation registers (HI
and LO), a divide state machine, and the necessary
multiplexers and control logic. The first number shown (‘32’
of 32x16) represents the rs operand. The second number (‘16’
of 32x16) represents the rt operand. The microAptiv UP core
only checks the value of the rt operand to determine how
many times the operation must pass through the multiplier.
The 16x16 and 32x16 operations pass through the multiplier
once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply or multiply-accumulate operation every clock cycle;
32x32 multiply operations can be issued every other clock
cycle. Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. The
multiply operand size is automatically determined by logic
built into the MDU.

Table 2, Table 3 and Table 4 list the repeat rate (how often the
operation can be reissued when there is no data dependency)
and latency (number of cycles until a result is available) for
the multiply and divide instructions. The approximate latency
and repeat rates are listed in terms of pipeline clocks. For a
more detailed discussion of latencies and repeat rates, refer to
Chapter 2 of the MIPS32 microAptiv™ UP Processor Core
Family Software User’s Manual.

MDU with Area-Efficient Option

With the area-efficient option, multiply and divide operations
are implemented with a simple 1-bit-per-clock iterative
algorithm. Any attempt to issue a subsequent MDU
instruction while a multiply/divide is still active causes an
MDU pipeline stall until the operation is completed.

Table 4 lists the latency (number of cycles until a result is
available) for the microAptiv UP core multiply and divide
instructions. The latencies are listed in terms of pipeline
clocks.

Table 2 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates with DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL
(GPR destination)

16 bits 5 1

32 bits 5 1

MULT, MULTU,
MADD, MADDU,
MSUB, MSUBU
(Hi/Lo destination)

16 bits 5 1

32 bits 5 1

DIV / DIVU
(Hi/Lo destination)

8 bits 12-14 / 12 12-14 / 12

16 bits 20-22 / 20 20-22 / 20

24 bits 28-30 / 30 28-30 / 30

32 bits 35-37 / 35 35-37 / 35

Table 3 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates without DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL
(GPR destination)

16 bits 5 2

32 bits 6 3

MULT, MULTU,
MADD, MADDU,
MSUB, MSUBU
(Hi/Lo destination)

16 bits 2 1

32 bits 3 2

DIV / DIVU
(Hi/Lo destination)

8 bits 11-12 / 11 11-12 / 11

16 bits 19-20 / 19 19-20 / 19

24 bits 27-28 / 27 27-28 / 27

32 bits 34-35 / 34 34-35 / 34

Table 4 Area-Efficient Integer Multiply/Divide Unit
Operation Latencies without DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL
(GPR destination)

any 35 32

MULT, MULTU,
(Hi/Lo destination)

any 32 32

MADD, MADDU,
MSUB, MSUBU
(Hi/Lo destination)

any 34 34

8 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

Regardless of the multiplier array implementation, divide
operations are implemented with a simple 1-bit-per-clock
iterative algorithm. An early-in detection checks the sign
extension of the dividend (rs) operand. If rs is 8 bits wide, 23
iterations are skipped. For a 16-bit-wide rs, 15 iterations are
skipped, and for a 24-bit-wide rs, 7 iterations are skipped.
Any attempt to issue a subsequent MDU instruction while a
divide is still active causes an IU pipeline stall until the divide
operation has completed.

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation and cache protocols, the
exception control system, the processor’s diagnostics
capability, the operating modes (kernel, user, and debug), and
whether interrupts are enabled or disabled. Configuration
information, such as cache size and set associativity, presence
of build-time options like microMIPS, CorExtend Module or
Coprocessor 2 interface, is also available by accessing the
CP0 registers.

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events,
or program errors.

Interrupt Handling

The microAptiv UP core includes support for eight hardware
interrupt pins, two software interrupts, and a timer interrupt.
These interrupts can be used in any of three interrupt modes,
as defined by Release 2 of the MIPS32 Architecture:

• Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use
during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This

mode is architecturally optional; but it is always present
on the microAptiv UP core, so the VInt bit will always
read as a 1 for the microAptiv UP core.

• External Interrupt Controller (EIC) mode, which
redefines the way in which interrupts are handled to
provide full support for an external interrupt controller
handling prioritization and vectoring of interrupts. The
presence of this mode denoted by the VEIC bit in the
Config3 register. Again, this mode is architecturally
optional. On the microAptiv UP core, the VEIC bit is set
externally by the static input, SI_EICPresent, to allow
system logic to indicate the presence of an external
interrupt controller.

The reset state of the processor is interrupt compatibility
mode, such that a processor supporting Release 2 of the
Architecture, the microAptiv UP core for example, is fully
compatible with implementations of Release 1 of the
Architecture.

VI or EIC interrupt modes can be combined with the optional
shadow registers to specify which shadow set should be used
on entry to a particular vector. The shadow registers further
improve interrupt latency by avoiding the need to save
context when invoking an interrupt handler.

In the microAptiv UP core, interrupt latency is reduced by:

• Speculative interrupt vector prefetching during the
pipeline flush.

• Interrupt Automated Prologue (IAP) in hardware:
Shadow Register Sets remove the need to save GPRs,
and IAP removes the need to save specific Control
Registers when handling an interrupt.

• Interrupt Automated Epilogue (IAE) in hardware:
Shadow Register Sets remove the need to restore GPRs,
and IAE removes the need to restore specific Control
Registers when returning from an interrupt.

• Allow interrupt chaining. When servicing an interrupt
and interrupt chaining is enabled, there is no need to
return from the current Interrupt Service Routine (ISR) if
there is another valid interrupt pending to be serviced.
The control of the processor can jump directly from the
current ISR to the next ISR without IAE and IAP.

GPR Shadow Registers

The MIPS32 Architecture optionally removes the need to
save and restore GPRs on entry to high-priority interrupts or
exceptions, and to provide specified processor modes with
the same capability. This is done by introducing multiple
copies of the GPRs, called shadow sets, and allowing
privileged software to associate a shadow set with entry to

DIV / DIVU
(Hi/Lo destination)

any 33-34 / 33 33-34 / 33

Table 4 Area-Efficient Integer Multiply/Divide Unit
Operation Latencies without DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 9

kernel mode via an interrupt vector or exception. The normal
GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option. The
microAptiv UP core allows 1 (the normal GPRs), 2, 4, 8, or
16 shadow sets. The highest number actually implemented is
indicated by the SRSCtlHSS field. If this field is zero, only the
normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be
substituted for the normal GPRs on entry to kernel mode via
an interrupt or exception. Once a shadow set is bound to a
kernel-mode entry condition, references to GPRs operate
exactly as one would expect, but they are redirected to
registers that are dedicated to that condition. Privileged
software may need to reference all GPRs in the register file,
even specific shadow registers that are not visible in the
current mode, and the RDPGPR and WRPGPR instructions
are used for this purpose. The CSS field of the SRSCtl register
provides the number of the current shadow register set, and
the PSS field of the SRSCtl register provides the number of the
previous shadow register set that was current before the last
exception or interrupt occurred.

If the processor is operating in VI interrupt mode, binding of
a vectored interrupt to a shadow set is done by writing to the
SRSMap register. If the processor is operating in EIC interrupt
mode, the binding of the interrupt to a specific shadow set is
provided by the external interrupt controller and is configured
in an implementation-dependent way. Binding of an
exception or non-vectored interrupt to a shadow set is done
by writing to the ESS field of the SRSCtl register. When an
exception or interrupt occurs, the value of SRSCtlCSS is copied
to SRSCtlPSS, and SRSCtlCSS is set to the value taken from the
appropriate source. On an ERET, the value of SRSCtlPSS is
copied back into SRSCtlCSS to restore the shadow set of the
mode to which control returns.

Modes of Operation

The microAptiv UP core implements three modes of
operation:

• User mode is most often used for applications pro-
grams.

• Kernel mode is typically used for handling excep-
tions and operating-system kernel functions, includ-
ing CP0 management and I/O device accesses.

• Debug mode is used during system bring-up and
software development. Refer to the EJTAG section
for more information on debug mode.

Figure 3 shows the virtual address map of the MIPS
Architecture.

Figure 3 microAptiv™ UP Core Virtual Address
Map

Memory Management Unit (MMU)

The microAptiv UP core offers one of the two choices of
MMU that interfaces between the execution unit and the
cache controller, namely Translation Lookaside Buffer (TLB)
and Fixed Mapping Translation (FMT).

Fixed Mapping Translation (FMT)

A FMT is smaller and simpler than a TLB. Like a TLB, the
FMT performs virtual-to-physical address translation and
provides attributes for the different segments. Those
segments that are unmapped in a TLB implementation (kseg0
and kseg1) are translated identically by the FMT.

Translation Lookaside Buffer (TLB)

A TLB-based MMU consists of three translation buffers: a 16
or 32 dual-entry fully associative Joint TLB (JTLB), a 4-entry
fully associative Instruction TLB (ITLB), and a 4-entry fully
associative data TLB (DTLB).

kuseg

kseg0

kseg1

kseg2

kseg3

0x00000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF
0xA0000000

0xBFFFFFFF
0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Kernel Virtual Address Space

Unmapped, 512 MB
Kernel Virtual Address Space

Uncached

Unmapped, 512 MB
Kernel Virtual Address Space

User Virtual Address Space

1. This space is mapped to memory in user or kernel mode,
and by the EJTAG module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/EJTAG1

Mapped, 2048 MB

Mapped, 512 MB

Memory Mapped

Memory Mapped

10 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

When an instruction address is calculated, the virtual address
is compared to the contents of the 4-entry ITLB. If the address
is not found in the ITLB, the JTLB is accessed. If the entry is
found in the JTLB, that entry is then written into the ITLB. If
the address is not found in the JTLB, a TLB refill exception
is taken.

When a data address is calculated, the virtual address is
compared to both the 4-entry DTLB and the JTLB. If the
address is not found in the DTLB, but is found in the JTLB,
that address is immediately written to the DTLB. If the
address is not found in the JTLB, a TLB refill exception is
taken.

The microAptiv UP core TLB allows pages to be protected by
a read-inhibit and an execute-inhibit attribute in addition to
the write-protection attribute defined by the MIPS32 PRA.

Figure 4 shows how the FMT is implemented in the
microAptiv UP core.

Figure 4 Address Translation During Cache Access
with FMT Implementation

Figure 5 shows how the ITLB, DTLB, and JTLB are
implemented in the microAptiv UP core.

Figure 5 Address Translation During a Cache
Access with TLB Implementation

The TLB consists of three address translation buffers:

• 16 dual-entry fully associative Joint TLB (JTLB)

• 4-entry fully associative Instruction TLB (ITLB)

• 4-entry fully associative Data TLB (DTLB)

Joint TLB (JTLB)

The microAptiv UP core implements a 16 or 32 dual-entry,
fully associative JTLB that maps 32 virtual pages to their
corresponding physical addresses. The purpose of the TLB is
to translate virtual addresses and their corresponding ASIDs
into a physical memory address. The translation is performed
by comparing the upper bits of the virtual address (along with
the ASID) against each of the entries in the tag portion of the
joint TLB structure.

The JTLB is organized as pairs of even and odd entries
containing pages that range in size from 4-Kbytes (or 1-
Kbyte) to 256-Mbytes into the 4-Gbyte physical address
space. By default, the minimum page size is normally 4-
Kbytes on the microAptiv UP core; as a build time option, it
is possible to specify a minimum page size of 1-Kbyte.

The JTLB is organized in page pairs to minimize the overall
size. Each tag entry corresponds to 2 data entries: an even
page entry and an odd page entry. The highest order virtual
address bit not participating in the tag comparison is used to
determine which of the data entries is used. Since page size
can vary on a page-pair basis, the determination of which
address bits participate in the comparison and which bit is
used to make the even-odd determination is decided
dynamically during the TLB look-up.

Instruction
Address
Calculator

FMT

Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
Tag RAM

Data
Cache
RAM

Virtual Address

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss

Instruction
Address
Calculator

ITLB

DTLB
Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
Tag RAM

Data
Cache
RAM

Virtual Address

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss

JTLB

IVA Entry

Entry

DVA

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 11

Instruction TLB (ITLB)

The ITLB is a small 4-entry, fully associative TLB dedicated
to performing translations for the instruction stream. The
ITLB only maps minimum sized pages/subpages. The
minimum page size is either 1-Kbyte or 4-Kbyte, depending
on the PageGrain and Config3 registers.

The ITLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for the
ITLB. If a fetch address cannot be translated by the ITLB, the
JTLB is used to attempt to translate it in the following clock
cycle. If successful, the translation information is copied into
the ITLB for future use. There is a two-cycle ITLB miss
penalty.

Data TLB (DTLB)

The DTLB is a small 4-entry, fully associative TLB dedicated
to performing translations for loads and stores. Similar to the
ITLB, the DTLB only maps either 1-Kbyte or 4-Kbyte pages/
subpages depending on the PageGrain and Config3 registers.

The DTLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for the
DTLB. The JTLB is looked-up in parallel with the DTLB to
minimize the DTLB miss penalty. If the JTLB translation is
successful, the translation information is copied into the
DTLB for future use. There is a one cycle DTLB miss
penalty.

Cache Controllers

The microAptiv UP core instruction and data cache
controllers support caches of various sizes, organizations, and
set-associativity. For example, the data cache can be 2 Kbytes
in size and 2-way set associative, while the instruction cache
can be 8 Kbytes in size and 4-way set associative. Each cache
can each be accessed in a single processor cycle. In addition,
each cache has its own 32-bit data path, and both caches can
be accessed in the same pipeline clock cycle. Refer to the
section entitled "MIPS32® microAptiv™ UP Core Optional
or Configurable Logic Blocks" on page 12 for more
information on instruction and data cache organization.

The cache controllers also have built-in support for replacing
one way of the cache with a scratchpad RAM. See the section
entitled "Scratchpad RAM" on page 13 for more information
on scratchpad RAMs.

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) serves as the interface between
the microAptiv UP core and the outside world. Primarily, the

BIU receives read/write requests from the cache controller.
These requests will be arbitrated and turned into bus
transactions via the AMBA-3 AHB-lite protocol. The
characteristics of the BIU are:

• AHB-Lite is a subset of the AHB bus protocol that
supports a single bus master. It does not support complex
Split/Retry operations.

• Shared 32-bit read/write address bus

• Two unidirectional 32-bit data buses for read and write
operations

• Single read/write and burst (WRAP mode) read/write are
supported.

Hardware Reset

The microAptiv UP core has two types of reset input signals:
SI_Reset and SI_ColdReset. Functionally, these two signals
are ORed together within the core and then used to initialize
critical hardware state.

Both reset signals can be asserted either synchronously or
asynchronously to the core clock, SI_ClkIn, and will trigger a
Reset exception. The reset signals are active high and must be
asserted for a minimum of 5 SI_ClkIn cycles. The falling edge
triggers the Reset exception.

The primary difference between the two reset signals is that
SI_Reset sets a bit in the Status register; this bit could be used
by software to distinguish between the two reset signals, if
desired. The reset behavior is summarized in Table 5.

One (or both) of the reset signals must be asserted at power-
on or whenever hardware initialization of the core is desired.
A power-on reset typically occurs when the machine is first
turned on. A hard reset usually occurs when the machine is
already on and the system is rebooted.

In debug mode, EJTAG can request that a soft reset (via the
SI_Reset pin) be masked. It is system-dependent whether this
functionality is supported. In normal mode, the SI_Reset pin
cannot be masked. The SI_ColdReset pin is never masked.

Table 5 Reset Types

SI_Reset SI_ColdReset Action

0 0 Normal operation, no reset.

1 0 Reset exception; sets
StatusSR bit.

X 1 Reset exception.

12 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

Power Management

The microAptiv UP core offers a number of power
management features, including low-power design, active
power management, and power-down modes of operation.
The core is a static design that supports slowing or halting the
clocks, which reduces system power consumption during idle
periods.

The microAptiv UP core provides two mechanisms for
system-level low-power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CP0 Status register provides a software
mechanism for placing the system into a low-power state.
The state of the RP bit is available externally via the SI_RP
signal. The external agent then decides whether to place the
device in a low-power mode, such as reducing the system
clock frequency.

Three additional bits,StatusEXL, StatusERL, and DebugDM
support the power management function by allowing the user
to change the power state if an exception or error occurs while
the microAptiv UP core is in a low-power state. Depending
on what type of exception is taken, one of these three bits will
be asserted and reflected on the SI_EXL, SI_ERL, or
EJ_DebugM outputs. The external agent can look at these
signals and determine whether to leave the low-power state to
service the exception.

The following four power-down signals are part of the system
interface and change state as the corresponding bits in the
CP0 registers are set or cleared:

• The SI_RP signal represents the state of the RP bit (27) in
the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1)
in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2)
in the CP0 Status register.

• The EJ_DebugM signal represents the state of the DM bit
(30) in the CP0 Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is by
executing the WAIT instruction. When the WAIT instruction
is executed, the internal clock is suspended; however, the
internal timer and some of the input pins (SI_Int[5:0], SI_NMI,
SI_Reset, and SI_ColdReset) continue to run. Once the CPU
is in instruction-controlled power management mode, any

interrupt, NMI, or reset condition causes the CPU to exit this
mode and resume normal operation.

The microAptiv UP core asserts the SI_Sleep signal, which is
part of the system interface bus, whenever the WAIT
instruction is executed. The assertion of SI_Sleep indicates
that the clock has stopped and the microAptiv UP core is
waiting for an interrupt.

Local clock gating

The majority of the power consumed by the microAptiv UP
core is in the clock tree and clocking registers. The core has
support for extensive use of local gated-clocks. Power-
conscious implementors can use these gated clocks to
significantly reduce power consumption within the core.

MIPS32® microAptiv™ UP Core
Optional or Configurable Logic
Blocks

The microAptiv UP core contains several optional or
configurable logic blocks, shown as shaded in the block
diagram in Figure 1.

Instruction Cache

The instruction cache is an optional on-chip memory block of
up to 64 Kbytes. Because the instruction cache is virtually
indexed, the virtual-to-physical address translation occurs in
parallel with the cache access rather than having to wait for
the physical address translation. The tag holds 22 bits of
physical address, a valid bit, and a lock bit. The LRU
replacement bits (0-6b per set depending on associativity) are
stored in a separate array.

The instruction cache block also contains and manages the
instruction line fill buffer. Besides accumulating data to be
written to the cache, instruction fetches that reference data in
the line fill buffer are serviced either by a bypass of that data,
or data coming from the external interface. The instruction
cache control logic controls the bypass function.

The microAptiv UP core supports instruction-cache locking.
Cache locking allows critical code or data segments to be
locked into the cache on a “per-line” basis, enabling the
system programmer to maximize the efficiency of the system
cache.

The cache-locking function is always available on all
instruction-cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE
instruction.

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 13

Data Cache

The data cache is an optional on-chip memory block of up to
64 Kbytes. This virtually indexed, physically tagged cache is
protected. Because the data cache is virtually indexed, the
virtual-to-physical address translation occurs in parallel with
the cache access. The tag holds 22 bits of physical address, a
valid bit, and a lock bit. There is an additional array holding
dirty bits and LRU replacement algorithm bits (0-6b
depending on associativity) for each set of the cache.

In addition to instruction-cache locking, the microAptiv UP
core also supports a data-cache locking mechanism identical
to the instruction cache. Critical data segments are locked into
the cache on a “per-line” basis. The locked contents can be
updated on a store hit, but cannot be selected for replacement
on a cache miss.

The cache-locking function is always available on all data
cache entries. Entries can then be marked as locked or
unlocked on a per-entry basis using the CACHE instruction.

Cache Memory Configuration

The microAptiv UP core incorporates on-chip instruction and
data caches that can each be accessed in a single processor
cycle. Each cache has its own 32-bit data path and can be
accessed in the same pipeline clock cycle. Table 6 lists the
microAptiv UP core instruction and data cache attributes.

Cache Protocols

The microAptiv UP core supports the following cache
protocols:

• Uncached: Addresses in a memory area indicated as
uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without
changing cache contents.

• Write-through, no write allocate: Loads and instruction
fetches first search the cache, reading main memory only
if the desired data does not reside in the cache. On data
store operations, the cache is first searched to see if the
target address is cache resident. If it is resident, the cache
contents are updated, and main memory is also written. If
the cache look-up misses, only main memory is written.

• Write-through, write allocate: Similar to above, but
stores missing in the cache will cause a cache refill. The
store data is then written to both the cache and main
memory.

• Write-back, write allocate: Stores that miss in the cache
will cause a cache refill. Store data, however, is only
written to the cache. Caches lines that are written by
stores will be marked as dirty. If a dirty line is selected
for replacement, the cache line will be written back to
main memory.

Scratchpad RAM

The microAptiv UP core also supports replacing up to one
way of each cache with a scratchpad RAM. Scratchpad RAM
is accessed via independent external pin interfaces for
instruction and data scratchpads. The external block which
connects to a scratchpad interface is user-defined and can
consist of a variety of devices. The main requirement is that
it must be accessible with timing similar to an internal cache
RAM. Normally, this means that an index will be driven one
cycle, a tag will be driven the following clock, and the
scratchpad must return a hit signal and the data in the second
clock. The scratchpad can easily contain a large RAM/ROM
or memory-mapped registers. Unlike the fixed single-cycle
cache timing, however, the scratchpad interface can also
accommodate back-stalling the core pipeline if data is not
available in a single clock. This back-stalling capability can
be useful for operations which require multi-cycle latency. It
can also be used to enable arbitration of external accesses to
a shared scratchpad memory.

The core’s functional interface to a scratchpad RAM is
slightly different from the interface to a regular cache RAM.
Additional index bits allow access to a larger array, with 1MB
of scratchpad RAM versus 4KB for a cache way. These bits
come from the virtual address, so on a microAptiv UP core

Table 6 Instruction and Data Cache Attributes

Parameter Instruction Data

Size 0 - 64 Kbytes 0 - 64 Kbytes

Organization 1 - 4 way set asso-
ciative

1 - 4 way set asso-
ciative

Line Size 16 bytes 16 bytes

Read Unit 32 bits 32 bits

Write Policies NA write-through with
write allocate,
write-through
without write allo-
cate,
write-back with
write allocate

Miss restart after
transfer of

miss word miss word

Cache Locking per line per line

14 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

care must be taken to avoid virtual aliasing. The core does not
automatically refill the scratchpad way and will not select it
for replacement on cache misses.

microMIPS™ ISA

The microAptiv UP core supports the microMIPS ISA, which
contains all MIPS32 ISA instructions (except for branch-
likely instructions) in a new 32-bit encoding scheme, with
some of the commonly used instructions also available in 16-
bit encoded format. This ISA improves code density through
the additional 16-bit instructions while maintaining a
performance similar to MIPS32 mode. In microMIPS mode,
16-bit or 32-bit instructions will be fetched and recoded to
legacy MIPS32 instruction opcodes in the pipeline’s I stage,
so that the microAptiv UP core can have the same M14Kc™
microarchitecture. Because the microMIPS instruction
stream can be intermixed with 16-bit halfword or 32-bit word
size instructions on halfword or word boundaries, additional
logic is in place to address the word misalignment issues, thus
minimizing performance loss.

Depending on the optimization preference when both
MIPS32 and microMIPS ISAs are configured, the
microMIPS can be configured in performance mode, with
multiple recoding blocks being executed in parallel with Tag
compare for each Way Associativity, or with a single
recoding block after the Tag compare logic to improve area
usage.

DSP Module

The microAptiv UP core implements an optional DSP
Module to benefit a wide range of DSP, Media, and DSP-like
algorithms. The DSP module is highly integrated with the
Execution Unit and the MDU in order to share common logic
and to include support for operations on fractional data types,
saturating arithmetic, and register SIMD operations.
Fractional data types Q15 and Q31 are supported. Register
SIMD operations can perform up to four simultaneous add,
subtract, or shift operations and two simultaneous multiply
operations.

In addition, the DSP Module includes some key features that
efficiently address specific problems often encountered in
DSP applications. These include, for example, support for
complex multiply, variable-bit insert and extract, and
implementation and use of virtual circular buffers. The
extension also makes available three additional sets of HI-LO
accumulators to better facilitate common accumulate
functions such as filter operation and convolutions.

Coprocessor 2 Interface

The microAptiv UP core can be configured to have an
interface for an on-chip coprocessor. This coprocessor can be
tightly coupled to the processor core, allowing high-
performance solutions integrating a graphics accelerator or
DSP, for example.

The coprocessor interface is extensible and standardized on
MIPS cores, allowing for design reuse. The microAptiv UP
core supports a subset of the full coprocessor interface
standard: 32b data transfer, no Coprocessor 1 support, single
issue in-order data transfer to coprocessor, one out-of-order
data transfer from coprocessor.

The coprocessor interface is designed to ease integration with
customer IP. The interface allows high-performance
communication between the core and coprocessor. There are
no late or critical signals on the interface.

CorExtend® User-defined Instruction
Extensions

An optional CorExtend User-defined Instruction (UDI) block
enables the implementation of a small number of application-
specific instructions that are tightly coupled to the core’s
execution unit. The interface to the UDI block is external to
the microAptiv UP core.

Such instructions may operate on a general-purpose register,
immediate data specified by the instruction word, or local
state stored within the UDI block. The destination may be a
general-purpose register or local UDI state. The operation
may complete in one cycle or multiple cycles, if desired.

EJTAG Debug Support

The microAptiv UP core provides for an Enhanced JTAG
(EJTAG) interface for use in the software debug of
application and kernel code. In addition to standard user
mode and kernel modes of operation, the microAptiv UP core
provides a Debug mode that is entered after a debug exception
(derived from a hardware breakpoint, single-step exception,
etc.) is taken and continues until a debug exception return
(DERET) instruction is executed. During this time, the
processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port
(TAP), a serial communication port used for transferring test
data in and out of the microAptiv UP core. In addition to the
standard JTAG instructions, special instructions defined in
the EJTAG specification specify which registers are selected
and how they are used.

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 15

Debug Registers

Four debug registers (DEBUG, DEBUG2, DEPC, and DESAVE)
have been added to the MIPS Coprocessor 0 (CP0) register
set. The DEBUG and DEBUG2 registers show the cause of the
debug exception and are used for setting up single-step
operations. The DEPC (Debug Exception Program Counter)
register holds the address on which the debug exception was
taken, which is used to resume program execution after the
debug operation finishes. Finally, the DESAVE (Debug
Exception Save) register enables the saving of general-
purpose registers used during execution of the debug
exception handler.

To exit debug mode, a Debug Exception Return (DERET)
instruction is executed. When this instruction is executed, the
system exits debug mode, allowing normal execution of
application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug mode.
There are two types of simple hardware breakpoints
implemented in the microAptiv UP core: Instruction
breakpoints and Data breakpoints. Additionally, complex
hardware breakpoints can be included, which allow detection
of more intricate sequences of events.

The microAptiv UP core can be configured with the
following breakpoint options:

• No data or instruction, or complex breakpoints

• One data and two instruction breakpoints, without
complex breakpoints

• Two data and four instruction breakpoints, without
complex breakpoints

• Two data and six instruction breakpoints, with or without
complex breakpoints

• Four data and eight instruction breakpoints, with or
without complex breakpoints

Instruction breakpoints occur on instruction execution
operations, and the breakpoint is set on the virtual
address.Instruction breakpoints can also be made on the
ASID value used by the MMU. A mask can be applied to the
virtual address to set breakpoints on a binary range of
instructions.

Data breakpoints occur on load/store transactions, and the
breakpoint is set on a set of virtual address and ASID values,
with the same single address or binary address range as the
Instruction breakpoint. Data breakpoints can be set on a load,

a store, or both. Data breakpoints can also be set to match on
the operand value of the load/store operation, with byte-
granularity masking. Finally, masks can be applied to both
the virtual address and the load/store value.

In addition, the microAptiv UP core has a configurable
feature to support data and instruction address-range
triggered breakpoints, where a breakpoint can occur when a
virtual address is either within or outside a pair of 32-bit
addresses. Unlike the traditional address-mask control,
address-range triggering is not restricted to a power-of-two
binary boundary.

Complex breakpoints utilize the simple instruction and data
breakpoints and break when combinations of events are seen.
Complex break features include:

• Pass Counters - Each time a matching condition is seen, a
counter is decremented. The break or trigger will only be
enabled when the counter has counted down to 0.

• Tuples - A tuple is the pairing of an instruction and a
data breakpoint. The tuple will match if both the virtual
address of the load or store instruction matches the
instruction breakpoint, and the data breakpoint of the
resulting load or store address and optional data value
matches.

• Priming - This allows a breakpoint to be enabled only
after other break conditions have been met. Also called
sequential or armed triggering.

• Qualified - This feature uses a data breakpoint to qualify
when an instruction breakpoint can be taken. Once a load
matches the data address and the data value, the
instruction break will be enabled. If a load matches the
address, but has mis-matching data, the instruction break
will be disabled.

Performance Counters

Performance counters are used to accumulate occurrences of
internal predefined events/cycles/conditions for program
analysis, debug, or profiling. A few examples of event types
are clock cycles, instructions executed, specific instruction
types executed, loads, stores, exceptions, and cycles while the
CPU is stalled. There are two, 32-bit counters. Each can count
one of the 64 internal predefined events selected by a
corresponding control register. A counter overflow can be
programmed to generate an interrupt, where the interrupt
handler software can maintain larger total counts.

PC/Address Sampling

This sampling function is used for program profiling and hot-
spots analysis. Instruction PC and/or Load/Store addresses
can be sampled periodically. The result is scanned out

16 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

through the EJTAG port. The Debug Control Register (DCR)
is used to specify the sample period and the sample trigger.

Fast Debug Channel (FDC)

The microAptiv UP core includes optional FDC as a
mechanism for high bandwidth data transfer between a debug
host/probe and a target. FDC provides a FIFO buffering
scheme to transfer data serially, with low CPU overhead and
minimized waiting time. The data transfer occurs in the
background, and the target CPU can either choose to check
the status of the transfer periodically, or it can choose to be
interrupted at the end of the transfer.

Figure 6 FDC Overview

iFlowtrace™

The microAptiv UP core has an option for a simple trace
mechanism called iFlowtrace. This mechanism only traces
the instruction PC, not data addresses or values. This
simplification allows the trace block to be smaller and the
trace compression to be more efficient. iFlowtrace memory
can be configured as off-chip, on-chip, or both.

iFlowtrace also offers special-event trace modes when
normal tracing is disabled, namely:

• Function Call/Return and Exception Tracing mode to
trace the PC value of function calls and returns and/or
exceptions and returns.

• Breakpoint Match mode traces the breakpoint ID of a
matching breakpoint and, for data breakpoints, the PC
value of the instruction that caused it.

• Filtered Data Tracing mode traces the ID of a matching
data breakpoint, the load or store data value, access type
and memory access size, and the low-order address bits
of the memory access, which is useful when the data
breakpoint is set up to match a binary range of addresses.

• User Trace Messages. The user can instrument their code
to add their own 32-bit value messages into the trace by
writing to the Cop0 UTM register.

• Delta Cycle mode works in combination with the above
trace modes to provide a timestamp between stored
events. It reports the number of cycles that have elapsed
since the last message was generated and put into the
trace.

cJTAG Support

The microAptiv UP core provides an external conversion
block which converts the existing EJTAG (IEEE 1149.1) 4-
wire interface at the microAptiv UP core to a cJTAG (IEEE
1149.7) 2-wire interface. cJTAG reduces the number of wires
from 4 to 2 and enables the support of Star-2 scan topology in
the system debug environment.

Figure 7 cJTAG Support

SecureDebug

SecureDebug improves security by disabling untrusted
EJTAG debug access. An input signal is used to disable
debug features, such as Probe Trap, Debug Interrupt
Exception (EjtagBrk and DINT), EJTAGBOOT instruction,
and PC Sampling.

Testability

Testability for production testing of the core is supported
through the use of internal scan.

Internal Scan

Full mux-based scan for maximum test coverage is
supported, with a configurable number of scan chains. ATPG
test coverage can exceed 99%, depending on standard cell
libraries and configuration options.

Memory BIST

Memory BIST for the cache arrays and on-chip trace memory
is optional, but can be implemented either through the use of

microAptiv
ProbeEJTAG

TAP

FDC

Tap Controller

TDI

TDO

TMS

 FIFOReceive from
Probe to Core

Transmit from
Core to Probe FIFO

32

32

Tap
Controller

microAptiv

EJTAG
EJTAG
4-wire

interface

TDI
TDO
TCK
TMS

TMSC
TCK

cJTAG
Conversion

Block

cJTAG
2-wire

interface

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 17

integrated BIST features provided with the core, or inserted
with an industry-standard memory BIST CAD tool.

Integrated Memory BIST

The core provides an integrated memory BIST solution for
testing the internal cache SRAMs, using BIST controllers and
logic that are tightly coupled to the cache subsystem. Several
parameters associated with the integrated BIST controllers
are configurable, including the algorithm (March C+ or IFA-
13).

User-specified Memory BIST

Memory BIST can also be inserted with a CAD tool or other
user-specified method. Wrapper modules and special side-
band signal buses of configurable width are provided within
the core to facilitate this approach.

Build-Time Configuration Options

The microAptiv UP core allows a number of features to be
customized based on the intended application. Table 7
summarizes the key configuration options that can be selected
when the core is synthesized and implemented.

For a core that has already been built, software can determine
the value of many of these options by checking an appropriate
register field. Refer to the MIPS32® microAptiv™ UP
Processor Core Family Software User’s Manual for a more
complete description of these fields. The value of some
options that do not have a functional effect on the core are not
visible to software.

Table 7 Build-time Configuration Options

Option Choices Software Visibility

Integer register file sets 1, 2, 4, 8 or 16 SRSCtlHSS

Integer register file implementation style Flops or generator N/A

MMU type FMT or TLB Config0MT

TLB size 16 or 32 dual entries Config1MMUSize

TLB small page support 1 KB support Config3SP, PageGrain

ISA support MIPS32 only, or
microMIPS only, or
MIPS32 and microMIPS present

Config3ISA

microMIPS implementation style
(both MIPS32 & microMIPS are configured)

High performance or min area
(default is High performance style)

N/A

DSP Module Present or not Config3DSPP, Config3DSP2P

Multiply/divide implementation style High performance or min area (if DSP is not present) ConfigMDU

Adder implementation style Structured or Simple N/A

EJTAG TAP controller Present or not N/A

EJTAG TAP Fast Debug Channel (FDC) Present or not (even when TAP is present) DCRFDCI

EJTAG TAP FDC FIFO size Two TX/two RX, or eight TX/four RX 32-bit registers FDCFG

Instruction/data hardware breakpoints 0/0, 2/1, 4/2, 6/2, or 8/4 DCRInstBrk, IBSBCN

DCRDataBrk, DBSBCN

Hardware breakpoint trigger by Address match, or
Address match and address range

IBCnhwart, DBCnhwart

Complex breakpoints 0/0, 6/2, or 8/4 DCRCBT

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

18 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

Performance Counters Present or not Config1PC

iFlowtrace hardware Present or not Config3ITL

iFlowtrace memory location On-core or off-chip IFCTLofc

iFlowtrace on-chip memory size 256B - 8MB N/A

Watch registers 0 - 8 WatchHiM

CorExtend interface Present or not ConfigUDI*

Coprocessor2 interface Present or not Config1C2*

Instruction ScratchPad RAM interface Present or not ConfigISP*

Data ScratchPad RAM interface Present or not ConfigDSP*

Early Chip-Enable Present or not N/A

I-cache size 0 - 64 KB Config1IL, Config1IS

I-cache associativity 1, 2, 3, or 4 Config1IA

D-cache size 0 - 64 KB Config1DL, Config1DS

D-cache associativity 1, 2, 3, or 4 Config1DA

Hardware Cache Initialization Present or not
(Note: A sample HCI module is provided but SoC design-
ers will need to be responsible for an HCI module suit-
able for the design, and placed in the Ram-wrappers.)

Config7HCI

Memory BIST Integrated (March C+ or IFA-13), custom, or none N/A

Scan options for improved coverage around
cache arrays

Present or not N/A

Cache & ScratchPad RAM Parity Present or not ErrCtlPE

Interrupt synchronizers Present or not N/A

Interrupt Vector Offset Compute from Vector Input or Immediate Offset N/A

Clock gating Top-level, integer register file array, TLB array, fine-
grain, or none

N/A

PC Sampling Present or not Debug Control Register

Data Address Sampling Present or not Debug Control Register

PRID User defined Processor Identification PRIDCompanyOpt

Table 7 Build-time Configuration Options (Continued)

Option Choices Software Visibility

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00 19

Revision History

Revision Date Description

01.00 July 31, 2013 • Initial 3_0_0 General Availability release

20 MIPS32® microAptiv™ UP Processor Core Family Datasheet, Revision 01.00

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

aLt{онϯ ƳƛŎǊƻ!ǇǘƛǾȎ ¦t tǊƻŎŜǎǎƻǊ /ƻǊŜ CŀƳƛƭȅ 5ŀǘŀǎƘŜŜǘΣ wŜǾƛǎƛƻƴ лмΦлл a5ллфоф

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

