MI—/PS

MIPS32® M5100 Processor Core Family Datasheet December 31, 2013

The M5100 core isamember of the MIPS32® processor core family.
Itisfully configurable/synthesizable, especially well-suited for microcontrollers and embedded applications that have real-time
requirements with a high level of performance efficiency and security requirements.

The M5100 core implements the MIPS® Architecture Release-5 (“R5" incorporating enhanced functionality for next
generation MIPS-Based™ products) in a 5-stage pipeline. It includes support for the microMIPS™ |SA, an Instruction Set
Architecture with optimized MIPS32 16-bit and 32-bit instructions that provides a significant reduction in code size with a
performance equivalent to MIPS32. The M5100 core is an enhancement of the microAptiv™ UC, designed from the same
microarchitecture, including the Microcontroller Application-Specific Extension (MCU™ ASE), enhanced interrupt handling,
lower interrupt latency, areference design of an optimized interface for flash memory and built-in native AMBA®-3 AHB-Lite
Bus Interface Unit (BIU), with additional power saving, security, debug, and profiling features. In addition, the M5100 core
includes the MIPS Architecture Virtualization Module that enables virtualization of operating systems, which provides a
scalable, trusted, and secure execution environment.

The M5100 core has an option to include the MIPS Architecture DSP Module Revision 2 that executes digital signal processing
capabilities, with support for anumber of powerful data processing operations. An optional | EEE 754 compliant Floating-Point
Unit (FPU) provides both single and doubl e precision instructions. Figure 1 shows ablock diagram of the M5100 core. The core
isdivided into required and optional (shown as shaded) blocks.

Figure 1 MIPS 32® M5100 Core Block Diagram

e M5100core Reference Design
/ : \‘ ~ ~~“
f Instruction Decode ~ [<—e=| MicroMIPS 41 L | ISRAM;’ ISRAM | !
: (MIPS32/microMIPS) | ® I/F : F : 7\ Memory :
User-defined ' [GPR | | :
g '
serC ezlnsk CP2 .. (1,2,4,8,16 sets) . : SlowMem| s Flash
op / IF Execution Unit MMU ' P B /0 :' VE
-—- '
, MDU I SRAM Iy
User-defined ' [Tupi Virtualization |<e-e]] 1 /
CorExtend blk *7 [| [DSP Module Rt Guesi Sailieler |Y [AHB-Lie | AHB-Lite
| ' ! BIU i IF
, !) FPU t ; | |
: Svs. Conral Single & Double] f ;4 [
s. Contro '
system | ¥ .| DsrRaM | jDsraM’ ¢ DSRAM |
Interface ¥ Capreseeser I/F [: Memory [
| Debug/Profiling , E '
Interrupt =+ (w. VZ support) i f .)
Interface : e o Anél-TarTlper : e __ —
/ Fast Debug Channel ecurity f
f Per Count
/ el orrg:rrf;ingun ers Power :
‘\ SecureDebug Manager /
D s 1 }- ---------- Optional Fixed/Required

The M5100 core retains the functionality from the microAptiv™ UC processor core and adds some new features and functions.
A summary of key features are:

» Support for MIPS32 Architecture Release-5.
» Support for microMIPS ISA to provide better code size compression with same MIPS32 performance.

1 MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

Support for multiple shadow register sets.

The Memory Management Unit (MMU), consisting of a
simple, Fixed Mapping Trandlation (FMT) mechanism.

Supports configurable DSP Module Revision 2 for digital
signal processing capabilities.

Multiply/Divide Unit (MDU) - If the DSP is not
included, the MDU can be configured for either
performance or area optimizations. The high-
performance optimization supports a single-cycle 32x16-
bit MAC instruction or two-cycle 32x32-bit instructions.
If the DSP is included, the MDU is enhanced with a
hardware multiplier array supporting single-cycle 32x32
MAC and DSP instructions.

Floating-Point Unit (FPU), an |EEE-754 compliant
Floating-Point Unit with single and double precision
datatypes.

A simple SRAM-style interface that is configurable for
independent instruction and data or as a unified interface.
The SRAM interface enables deterministic response,
while maintaining high-performance operation

Support for the MCU A SE to enhance common functions
used in microcontroller applications such as interrupts
and semaphore manipulation.

Security features such as the SecureDebug to restrict
untrusted EJTAG debug access.

Support for the Virtualization Module via privileged
(root) and unprivileged (guest) operating modes. Legacy
software will run in guest mode where all operations are
monitored and trapped by hypervisor software if the
guest does not behave as expected. The hypervisor
operates invisibly to the guest, and enforces data
protection between guests.

Reference design for SRAM interface to AMBA-3 AHB-
Lite bus and flash memory.

Parity support.

An optional Enhanced JTAG (EJTAG version 4.52)
block alows for single-stepping of the processor as well
as instruction and data virtual address/value breakpoints.
iFlowtrace™ version 2.0 is also supported to add real-
time instruction program counter and special events trace
capability for debug. Additionally, Fast Debug Channel,
Performance Counters, and PC/Data sampling functions
are added to enrich debug and profiling features on the
M5100 core.

External block to convert 4-wire EJTAG (IEEE 1149.1)
interface to 2-wire cJTAG (IEEE 1149.7) interface.

Configurable hardware breakpoints triggered by address
match or address range.

Features

» 5-stage pipeline

o 32-bit Address and Data Paths

e MIPS32 Instruction Set Architecture

e MIPS32 Enhanced Architecture Features

Vectored interrupts and support for external inter-
rupt controller

Programmabl e exception vector base
Atomic interrupt enable/disable

GPR shadow registers (one, three, seven, or fifteen
additional shadows can be optionally added to min-
imize latency for interrupt handlers)

Bit field manipulation instructions

* microMIPS Instruction Set Architecture

microMIPS ISA is abuild-time configurable option
that reduces code size over MIPS32, while main-
taining M1PS32 performance.

Combining both 16-bit and 32-bit opcodes, micro-
MIPS supports all MIPS32 instructions (except
branch-likely instructions) with new optimized
encoding. Frequently used MIPS32 instructions are
available as 16-bit instructions.

Added fifteen new 32-bit instructions and thirty-
nine 16-hit instructions.

Stack pointer implicit in instruction.
MIPS32 assembly and ABI-compatible.

Supports MIPS architecture Modules and User-
defined Instructions (UDIs).

« MCU™ ASE

Increases the number of interrupt hardware inputs
from 6 to 8 for Vectored Interrupt (V1) mode, and
from 63 to 255 for External Interrupt Controller
(EIC) mode.

Separate priority and vector generation. 16-bit vec-
tor addressis provided.

Hardware assist combined with the use of Shadow
Register Sets to reduce interrupt latency during the
prologue and epilogue of an interrupt.

An interrupt return with automated interrupt epi-
logue handling instruction (IRET) improves inter-
rupt latency.

Supports optional interrupt chaining.

Two memory-to-memory atomic read-modify-write
instructions (ASET and ACLR) eases commonly
used semaphore manipulation in microcontroller
applications. Interrupts are automatically disabled
during the operation to maintain coherency.

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

* Memory Management Unit

* Simple Fixed Mapping Translation (FMT) mecha-
nism

* Virtualization Module Support

* Support for the Virtualization Module using “trap
and emulate” techniques.

e Two new operating modes: privileged (root) and
unprivileged (guest)

» System resources controlled through privileged
instructions while executing in privileged mode

e Execution of aprivileged instruction in unprivi-
leged mode will cause an exception (trap), returning
control to privileged-mode software

» Addresstrandation is performed on the entire
address space when in unprivileged mode

e Configurable from 1 to 7 guests

e Supports RPU (Root Protection Unit) memory
management unit

» Simple SRAM-Style Interface

e 32-bit address and data; input byte-enables enable
simple connection to narrower devices

e Single or multi-cycle latencies

» Configuration option for dual or unified instruction/
datainterfaces

e Redirection mechanism on dual 1/D interfaces per-
mits D-side references to be handled by I-side

» Transactions can be aborted

» Reference Design

* A typica SRAM reference design is provided.

e« AnAHB-Lite BIU reference design is provided
between the SRAM interface and AHB-Lite Bus.

* Anoptimized interface for sow memory (Flash)
access using prefetch buffer scheme is provided.

* Parity Support

e ThelSRAM and DSRAM support optional parity
detection.

e MIPS DSP Module (Revision 2.0)

» Support for MAC operationswith 3 additiona pairs
of Hi/Lo accumulator registers (AcO - Ac3)

e Fractiona datatypes (Q15, Q31) with rounding
support

» Saturating arithmetic with overflow handling

e SIMD instructions operate on 2x16-hbit or 4x8-bit
operands simultaneously

* Separate MDU pipeline with full-sized hardware
multiplier to support back-to-back operations

e TheDSP Moduleis build-time configurable.

< Multiply/Divide Unit (high-performance configuration
without DSP)

e Maximum issue rate of one 32x16 multiply per
clock via on-chip 32x16 hardware multiplier array.

e Maximum issue rate of one 32x32 multiply every
other clock

e Early-initerative divide. Minimum 11 and maxi-
mum 34 clock latency (dividend (rs) sign exten-
sion-dependent)

* Multiply/Divide Unit (with DSP configuration)

e Maximum issue rate of one 32x32 multiply per
clock via on-chip 32x32 hardware multiplier array

e Maximum issue rate of one 32x32 multiply every
clock

e Early-initerative divide. Minimum 12 and maxi-
mum 38clock latency (dividend (rs) sign extension-
dependent)

* Multiply/Divide Unit (area-efficient configuration
without DSP)

e 32clock latency on multiply

e 34 clock latency on multiply-accumulate

e 33-35clock latency on divide (sign-dependent)
« Floating Point Unit (FPU)

e 1985 |EEE-754 compliant Floating Point Unit.

e Supports single and double precision datatypes

e 2008 |EEE-754 compatibility control for NaN han-
dling and Abs/Neg instructions

* Runsat 1:1 core/FPU clock ratio.
e TheFPU isbuild-time configurable.
¢ CorExtend® User-Defined Instruction Set Extensions

* Allows user to define and add instructions to the
core at build time

e Maintains full MIPS32 compatibility
e Supported by industry-standard development tools
e Single or multi-cycle instructions

e Multi-Core Support

e Externa lock indication enables multi-processor
semaphores based on LL/SC instructions

e Externa sync indication allows memory ordering
« Debug support includes cross-core triggers

» Coprocessor 2 interface
e 32-bit interface to an external coprocessor

* Anti-Tamper Security Features

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00 3

* Injection of random pipeline dlips controlled via
CPO register

» Fast general-purpose 32-bit pseudo random genera-
tor accessible via CPO register

» Complex pseudo random generator for hardware
use controlled via user-defined seed

* Power Control
e Minimum frequency: 0 MHz
» Power-down mode (triggered by WAIT instruction)
» Support for software-controlled clock divider
e Support for extensive use of loca gated clocks
» EJTAG Debug/Profiling and iFlowtrace™ Mechanism
* CPU control with start, stop, and single stepping

e Virtua instruction and data address/value break-
points

» Hardware breakpoint supports both address match
and address range triggering

* Optiona simple hardware breakpoints on virtual
addresses; 81/4D, 61/2D, 41/2D, 21/1D breakpoints,
or no breakpoints

e Optiona complex hardware breakpoints with 81/
4D, 61/2D simple breakpoints

e TAPcontroller is chainable for multi-CPU debug

e Supports EJTAG (IEEE 1149.1) and compatible
with cJTAG 2-wire (IEEE 1149.7) extension proto-
col

* Cross-CPU breakpoint support

* iFlowtrace support for real-time instruction PC and
specia events

» PC and/or load/store address sampling for profiling
* Performance Counters
» Support for Fast Debug Channel (FDC)

» SecureDebug

* Anoptional feature that disables access via EJTAG
in an untrusted environment

. Testahility

» Full scan design achieves test coverage in excess of
99% (dependent on library and configuration
options)

Architecture Overview

The M5100 core contains both required and optional blocks,
as shown in Figure 1. Required blocks must be implemented
to remain MIPS-compliant. Optional blocks can be added to
the M5100 core based on the needs of the implementation.

The required blocks are as follows:

* Instruction Decode

» Execution Unit

» Genera Purposed Registers (GPR)
e Multiply/Divide Unit (MDU)

» System Control Coprocessor (CPO)
* Memory Management Unit (MMU)
e |/D SRAM Interfaces

e Power Management

Optional or configurable blocks include:

» Configurable instruction decoder supporting three |SA
modes: MIPS32-only, MIPS32 and microMIPS, or
microMIPS-only

* DSP (integrated with MDU)
* Floating-point Unit (FPU)
« Virtualization support (integrated with MMU)

» Reference Design of I/D-SRAM, BIU, Slow Memory
Interface

* Anti-Tamper Security Block
» Coprocessor 2 interface
e CorExtend® User-Defined Instruction (UDI) interface

» Debug/Profiling with Enhanced JTAG (EJTAG)
Controller, Break points, Sampling, Performance
counters, Fast Debug Channel, and iFlowtrace logic

Thesection"MIPS32® M5100 Core Required L ogic Blocks"
on page 6 discusses the required blocks. The section
"MIPS32® M5100 Core Optional or Configurable Logic
Blocks' on page 12 discusses the optional blocks.

Pipeline Flow

The M5100 core implements a 5-stage pipeline with a
performance similar to the microAptiv™ UC pipeline. The
pipeline allowsthe processor to achieve high frequency while
minimizing device complexity, reducing both cost and power
consumption.

The M5100 core pipeline consists of five stages:
 Instruction (I Stage)

« Execution (E Stage)

e Memory (M Stage)

e Align (A Stage)

e Writeback (W stage)

4 MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

TheM5100 core implements abypass mechanism that allows
the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result to
the register and then read it back.

Figure 2 shows atiming diagram of the M5100 core pipeline
(shown with the-high performance MDU).

Figure 2 MIPS32® M5100 Core Pipeline
[I I I I [I I

| | \ |
| [E | M [A W
}
| | Bypass \ \
| | s] Bypass Y : :
[1-sRaM |RegRd ALUOp | | \
: I Dec|D-AC] D-SRAM [Align [Regw |
\ ! \ \ \
' : | |
I
| : ~ | Bypass - N | :
: ! |MU|t ; // ! Acc | IRegW \
| \ | \
: !) TR |
\ | [Div :][T ace] Regw] !
| \) | X

|
| Stage: Instruction Fetch

During the Instruction fetch stage:
* An instruction is fetched from the instructionSRAM.

 If both MIPS32 and microMIPS ISAs are supported,
microMIPS instructions are converted to MIPS32-like
instructions. If the MIPS32 ISA is not supported, 16-bit
microMIPS instructions will be first recoded into 32-bit
microMIPS equivalent instructions, and then decoded in
native microMIPS |SA format.

E Stage: Execution

During the Execution stage:
» Operands are fetched from the register file.

e Operands from the M and A stage are bypassed to this
stage.

e The Arithmetic Logic Unit (ALU) begins the arithmetic
or logical operation for register-to-register instructions.

» The ALU calculates the virtual data address for load and
store instructions, and the MMU performs the fixed
virtual-to-physical address trandlation.

* The ALU determines whether the branch condition is
true and calculates the virtual branch target address for
branch instructions.

* Instruction logic selects an instruction address and the
MMU performs the fixed virtual-to-physical address
trandlation.

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

« All multiply and divide operations begin in this stage.
M Stage: Memory Fetch

During the Memory fetch stage:
e The arithmetic ALU operation completes.

e The data SRAM access is performed for load and store
instructions.

o A 32x32 multiply calculation completes (with DSP
configuration).

e A 32x32 multiply operation stalls the MDU pipeline for
one clock in the M stage (high-performance MDU option
without DSP configuration).

* A multiply operation stalls the MDU pipeline for 31
clocksin the M stage (area-€fficient MDU option without
DSP configuration).

< A multiply-accumulate operation stallsthe MDU pipeline
for 33 clocks in the M stage (area-efficient MDU option
without DSP configuration).

« A divide operation stalls the MDU pipeline for a
maximum of 38 clocks in the M stage. Early-in sign
extension detection on the dividend will skip 7, 15, or 23
stall clocks (only the divider in the fast MDU option
supports early-in detection).

A Stage: Align

During the Align stage:
« Load datais aligned to its word boundary.

* A multiply/divide operation updates the HI/LO registers
(area-efficient MDU option).

e Multiply operation performs the carry-propagate-add.
The actual register writeback is performed in the W stage
(high-performance MDU option).

¢ A MUL operation makes the result available for
writeback. The actual register writeback is performed in
the W stage.

e EJTAG complex break conditions are evaluated.

W Stage: Writeback

During the Writeback stage:

 For register-to-register or load instructions, the
instruction result is written back to the register file.

Virtualization Module

The Virtualization Module is supported in the M5100 core.
Virtualization defines a set of extensions to the M1PS32

Architecture for efficient implementation of virtualized
systems.

Virtualization is enabled by software—the key elementisa
control program known as a Virtual Machine Monitor
(VMM) or hypervisor. The hypervisor isin full control of
machine resources at all times.

When an operating system (OS) kernel runs within a virtual
machine (VM), it becomes a guest of the hypervisor. All
operations performed by a guest must be explicitly permitted
by the hypervisor. To ensure that it remainsin control, the
hypervisor always runs at a higher level of privilege than a
guest operating system kernel.

The hypervisor is responsible for managing access to
sensitive resources, maintaining the expected behavior for
each VM, and sharing resources between multiple VMs.

In atraditional operating system, the kernel (or supervisor)
typically runs at a higher level of privilege than user
applications. Thekernel providesaprotected virtual-memory
environment for each user application, inter-process
communications, 10 device sharing and transparent context
switching. The hypervisor performs the same basic functions
in avirtualized system, except that the hypervisor’s clients
are full operating systems rather than user applications.

The virtual machine execution environment created and
managed by the hypervisor consists of the full Instruction Set
Architecture, including al Privileged Resource Architecture
facilities, plus any device-specific or board-specific
peripherals and associated registers. It appears to each guest
operating system asif it isrunning on areal machinewith full
and exclusive control.

The Virtualization Module enables full virtualization, and is
intended to allow VM scheduling to take place while meeting
real-time requirements, and to minimize costs of context
switching between VMs.

MIPS32® M5100 Core Required
Logic Blocks

The required logic blocks of the M5100 core (Figure 1) are
defined in the following subsections.

Execution Unit

The M5100 core execution unit implements a load/store
architecture with single-cycle ALU operations (logical, shift,
add, subtract) and an autonomous multiply/divide unit.

The execution unit includes:

» Arithmetic Logic Unit (ALU) for performing arithmetic
and bitwise logical operations. Shared adder for
arithmetic operations, load/store address calculation, and
branch target calculation.

« Address unit for calculating the next PC and next fetch
address selection muxes.

» Load Aligner.

 Shifter and Store Aligner.

« Branch condition comparator.
 Trap condition comparator.

« Bypass muxes to advance result between two adjacent
instructions with data dependency.

« Leading Zero/One detect unit for implementing the CLZ
and CLO instructions.

« Actual execution of the Atomic Instructions defined in
the MCU ASE.

e A separate DSP ALU and Logic block for performing
part of DSP Module instructions, such as arithmetic/shift/
compare operations if the DSP function is configured.

General Purpose Registers

The M5100 core contains thirty-two 32-bit general-purpose
registers used for integer operations and address cal cul ation.
Optionally, one, three, seven or fifteen additional register file
shadow sets (each containing thirty-two registers) can be
added to minimize context switching overhead during
interrupt/exception processing. The register file consists of
two read ports and one write port and is fully bypassed to
minimize operation latency in the pipeline.

Multiply/Divide Unit (MDU)

The M5100 core includes a multiply/divide unit (MDU) that
contains a separate, dedicated pipeline for integer multiply/
divide operations, and DSP Module multiply instructions.
This pipeline operates in parallel with the integer unit (1U)
pipeline and does not stall when the |U pipeline stalls. This
alows the long-running MDU operations to be partially
masked by system stallsand/or other integer unit instructions.

The MIPS architecture defines that the result of amultiply or
divide operation be placed in apair (without DSP enabled) or
one of 4 pairs (with DSP enabled) of HI and LO registers.
Using the Move-From-HI (MFHI) and Move-From-LO
(MFLO) instructions, these values can be transferred to the
general-purpose register file.

There are three configuration options for the MDU: 1) afull
32x32 multiplier block; 2) a higher performance 32x16
multiplier block; 3) an area-efficient iterative multiplier

6 MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

block. Option 2 and 3 are available if the DSP configuration
optionisdisabled. If the DSP configuration option isenabled,
option 1 isthe default. The selection of the MDU style allows
the implementor to determine the appropriate performance
and area trade-off for the application.

MDU with 32x32 DSP Multiplier

With the DSP configuration option enabled, the MDU
supportsexecution of one 16x16, 32x16, or 32x32 multiply or
multiply-accumulate operation every clock cycle with the
built in 32x32 multiplier array. The multiplier is shared with
DSP Module operations.

The MDU also implements various shift instructions
operating on the HI/LO register and multiply instructions as
defined in the DSP Module. It supports all the data types
required for this purpose and includes three extra HI/LO
registers as defined by the Module.

Table 1 lists the latencies (throughput with data dependency)
and repeat rates (throughput without data dependency) for the
DSP multiply and dot-product operations. The approximate
latencies and repeat rates are listed in terms of pipeline
clocks. For amore detailed discussion of latencies and repeat
rates, refer to the MIPS32 M5100 Processor Core Software
User’'s Manual.

Table 1 DSP-related Latencies and Repeat Rates
Repeat
Opcode Latency Rate
Multiply and dot- 5 1
product without satu-
ration after accumula-
tion
Multiply and dot- 5 1
product with satura-
tion after accumula-
tion
Multiply without 5 1
accumulation

MDU with 32x16 High-Performance Multiplier

The high-performance MDU consists of a 32x16 Booth-
recoded multiplier, apair of result/accumulation registers (HI
and LO), adivide state machine, and the necessary
multiplexers and control logic. The first number shown (* 32’
of 32x16) representsthersoperand. The second number (* 16’
of 32x16) represents the rt operand. The M5100 core only
checks the value of the rt operand to determine how many
times the operation must pass through the multiplier. The

16x16 and 32x16 operations pass through the multiplier once.
A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply or multiply-accumul ate operation every clock cycle;
32x32 multiply operations can be issued every other clock
cycle. Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. The
multiply operand size is automatically determined by logic
built into the MDU.

Table 2, Table 3and Table 4 list the repeat rate (how often the
operation can be reissued when there is no data dependency)
and latency (number of cycles until aresult isavailable) for
the multiply and divideinstructions. The approximate |atency
and repeat rates are listed in terms of pipeline clocks. For a
more detail ed discussion of latenciesand repesat rates, refer to
Chapter 2 of the MIPS32 M5100 Processor Core Family
Software User’s Manual.

Table2 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates with DSP

Operand
Size
(mul rt) Repeat
Opcode (div rs) Latency Rate
MUL 16 hits 5 1
(GPR destination)
32 bits 5 1
MULT, MULTU, 16 bits 5 1
MADD, MADDU,
MSUB, MSUBU .
(Hi/Lo destination) | 32 PItS 5 1
8 hits 12-14/12 12-14/12
DIV / DIVU 16 bits 20-22/20 | 20-22/20
(Hi/Lodestination) | 54 1ys | 28-30/30 | 28-30/30
32 bits 35-37/35 35-37/35

Table 3 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates without DSP

Operand
Size
(mul rt) Repeat
Opcode (div rs) Latency Rate
MUL 16 hits 5 2
(GPR destination)
32 bits 6 3

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

Table3 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates without DSP

Operand
Size
(mul rt) Repeat
Opcode (div rs) Latency Rate
MULT, MULTU, 16 bits 2 1
MADD, MADDU,
MSUB, MSUBU ;
(Hi/Lo destination) | 32 PItS 3 2
8bits | 11-12/11 | 11-12/11
BIV / DIVU 16bits | 19-20/19 | 19-20/19
(Hi/Lodestination) | o4 s | 27.08/27 | 2728127
2bits | 3435/34 | 34-35/34

MDU with Area-Efficient Option

With the area-efficient option, multiply and divide operations
are implemented with a simple 1-bit-per-clock iterative
algorithm. Any attempt to issue a subsequent MDU
instruction while amultiply/divideis till active causes an
MDU pipeline stall until the operation is completed.

Table 4 lists the latency (number of cycles until aresult is
available) for the M5100 core multiply and divide
instructions. The latencies are listed in terms of pipeline

clocks.

Table 4 Area-Efficient Integer Multiply/Divide Unit
Operation Latencies without DSP

Operand
Size
(mul rt) Repeat
Opcode (div rs) Latency Rate

MUL any 35 32
(GPR destination)
MULT, MULTU, any 32 32
(Hi/Lo destination)
MADD, MADDU, any 34 34
MSUB, MSUBU
(Hi/Lo destination)
DIV /DIVU any 33-34/33 | 33-34/33
(Hi/Lo destination)

Regardless of the multiplier array implementation, divide
operations are implemented with a simple 1-bit-per-clock

iterative algorithm. An early-in detection checks the sign
extension of the dividend (rs) operand. If rsis8 bitswide, 23
iterations are skipped. For a 16-bit-widers, 15 iterations are
skipped, and for a 24-bit-widers, 7 iterations are skipped.
Any attempt to issue a subsequent MDU instruction while a
divideisstill active causesan IU pipelinestall until thedivide
operation has compl eted.

System Control Coprocessor (CPO0)

In the MIPS architecture, CPO is responsible for the virtual-
to-physical address translation, the exception control system,
the processor’s diagnostics capability, the operating modes
(kernel, user, and debug), and whether interrupts are enabled
or disabled. Configuration information, such as presence of
build-time options like microMIPS, CorExtend Module or
Coprocessor 2 interface, is also available by accessing the
CPO registers.

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a variety
of sources, including boundary casesin data, external events,
Or program errors.

Interrupt Handling

The M5100 core includes support for eight hardware
interrupt pins, two software interrupts, and a timer interrupt.
These interrupts can be used in any of three interrupt modes,
as defined by Release 2 of the MIPS32 Architecture;

* Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

» Vectored Interrupt (V1) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use
during interrupt processing. The presence of thismode is
denoted by the VInt bit in the Config3 register. This
mode is architecturally optional; but it is always present
on the M5100 core, so the Vint bit will always read as a
1 for the M5100 core.

« External Interrupt Controller (EIC) mode, which
redefines the way in which interrupts are handled to
provide full support for an external interrupt controller
handling prioritization and vectoring of interrupts. The
presence of this mode denoted by the VEIC hit in the
Config3 register. Again, this mode is architecturally
optional. On the M5100 core, the VEIC bit is set
externally by the static input, SI_EICPresent, to alow
system logic to indicate the presence of an external
interrupt controller.

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

The reset state of the processor isinterrupt compatibility
mode, such that a processor supporting Release 2 of the
Architecture, the M5100 core for example, isfully
compatible with implementations of Release 1 of the
Architecture.

V1 or EIC interrupt modes can be combined with the optional
shadow registers to specify which shadow set should be used
on entry to a particular vector. The shadow registers further
improve interrupt latency by avoiding the need to save
context when invoking an interrupt handler.

In the M5100 core, interrupt latency is reduced by:

» Speculative interrupt vector prefetching during the
pipeline flush.

* Interrupt Automated Prologue (IAP) in hardware:
Shadow Register Sets remove the need to save GPRS,
and AP removes the need to save specific Control
Registers when handling an interrupt.

* Interrupt Automated Epilogue (IAE) in hardware:
Shadow Register Sets remove the need to restore GPRS,
and | AE removes the need to restore specific Control
Registers when returning from an interrupt.

* Allow interrupt chaining. When servicing an interrupt
and interrupt chaining is enabled, there is no need to
return from the current Interrupt Service Routine (ISR) if
there is another valid interrupt pending to be serviced.
The control of the processor can jump directly from the
current ISR to the next ISR without IAE and 1AP.

GPR Shadow Registers

The MIPS32 Architecture optionally removes the need to
save and restore GPRs on entry to high-priority interrupts or
exceptions, and to provide specified processor modes with
the same capability. Thisis done by introducing multiple
copies of the GPRs, called shadow sets, and allowing
privileged software to associate a shadow set with entry to
kernel mode viaan interrupt vector or exception. The normal
GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option. The
M5100 core allows 1 (the normal GPRs), 2, 4, 8, or 16
shadow sets. The highest number actually implemented is
indicated by the SRCtl s field. If thisfield is zero, only the
normal GPRs are implemented.

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

Shadow sets are new copies of the GPRs that can be
substituted for the normal GPRs on entry to kernel mode via
an interrupt or exception. Once a shadow set is bound to a
kernel-mode entry condition, references to GPRs operate
exactly as one would expect, but they are redirected to
registers that are dedicated to that condition. Privileged
software may need to reference all GPRs in the register file,
even specific shadow registers that are not visiblein the
current mode, and the RDPGPR and WRPGPR instructions
are used for this purpose. The CSSfield of the SRSCtl register
provides the number of the current shadow register set, and
the PSSfield of the SRSCtI register providesthe number of the
previous shadow register set that was current before the last
exception or interrupt occurred.

If the processor is operating in VI interrupt mode, binding of
avectored interrupt to a shadow set is done by writing to the
SRSViap register. If the processor isoperating in EIC interrupt
mode, the binding of the interrupt to a specific shadow set is
provided by the external interrupt controller and is configured
in an implementation-dependent way. Binding of an
exception or non-vectored interrupt to a shadow set is done
by writing to the ESSfield of the SRSCtI register. When an
exception or interrupt occurs, the value of SRSCtl <5 iS copied
t0 SRCtlpsg, aNd SRCtl -5 iS Set to the value taken from the
appropriate source. On an ERET, the value of SRCtlpgiS
copied back into SRCtl g to restore the shadow set of the
mode to which control returns.

Modes of Operation

The M5100 core implements the Virtualization Module by
supporting five modes of operation:

* Guest-user modeismost often used for applications
programs.

e Guest-kernel modeistypically used for handling
exceptions and operating-system kernel functions,
including CPO management and 1/0O device
acCesses.

e Root-user mode is used to run hypervisor (Virtua
Machine Monitor (VMM)) user software.

* Root-kernel modeis used to run hypervisor (Virtual
Machine Monitor (VMM)) kernel software.

e Debug modeis used during system bring-up and
software development. Refer to the EJTAG section
for more information on debug mode.

Figure 3 shows the virtual address map of the MIPS
Architecture.

Figure 3 M5100 Core Virtual Address Map

OxFFFFFFFF
Fixed Mapped
0xFF400000
O 00000 Memory/EJTAG' kseg3
OxF1FFFFFF
Fixed Mapped
0xE0000000
OXDFFFFFFF i ernel Virtual Address Space kseg2
Fixed Mapped, 512 MB
0xC0000000
OxBFFFFFFF [Kernel Virtual Address Space
Unmapped, 512 MB ksegl
0xA0000000 Uncached
OX9FFFFFFF |Kernel Virtual Address Space
Unmapped, 512 MB ksegO
0x80000000
Ox7FFFFFFF
User Virtual Address Space | kuseg
Mapped, 2048 MB
0x00000000

1. This space is mapped to memory in user or kernel mode,
and by the EJTAG module in debug mode.

Memory Management Unit (MMU) in Guest
Modes

The M5100 core contains a simple Fixed Mapping
Trandlation (FMT) MMU that interfaces between the
execution unit and the SRAM controller.

Fixed Mapping Translation (FMT)

A FMT issmaller and simpler than the full Translation

L ookaside Buffer (TLB) style MMU found in other MIPS
cores. LikeaTLB, the FMT performs virtual-to-physical
address translation and provides attributes for the different
segments. Those segments that are unmapped inaTLB
implementation (kseg0 and ksegl) are translated identically
by the FMT.

Memory Management Unit (MMU) in Root
Modes

The M5100 core provides a Root Protection Unit (RPU)
MMU for guest virtual-address protection.

Root Protection Unit (RPU)

A RPU-based MMU issimilar to an RTLB in that it consists
of 8, 16, or 32 dual-entry fully associative look-aside buffer,
but the segmentsthat are unmapped inaTL B implementation
(ksegO and ksegl) are trandated identically by the RPU.

The RPU allows guest pagesto be protected by aread-inhibit,
execute-inhibit, and write-protection attribute.

When an instruction addressiis calcul ated, the virtual address
isfirst compared to the contents of the 4-entry IFMT . If the
addressis not found, the virtual addressis fixed mapped and
validated by the RPU. If the addressis not found in the RPU,
arefill exception istaken.

When adata address is calculated, the virtual addressis
compared to the 4-entry DFMT . If the address is not found,
thevirtual addressisfixed mapped and validated by the RPU.
If the addressis not found in the RPU, arefill exceptionis
taken.

Figure 4 shows how the FMT is implemented in the M5100
core.

Figure 4 Address Translation During SRAM Access
with FMT Implementation

Root IPA
guest IVA IFMT
Entry
Inst
guest IVAl > SRAM
SRAM
FMT MMU RPU Interface
Data
—1
Entry SRAM
vy DFMT
gues Root DPA

SRAM Interface Controller

Instead of caches, the M5100 core contains an interface to
SRAM-stylememoriesthat can betightly coupled tothecore.
This permits deterministic response time with less area than
istypically requiredfor caches. The SRAM interfaceincludes
separate uni-directional 32-bit buses for address, read data,
and write data.

Dual or Unified Interfaces

The SRAM interface includes a build-time option to select
either dua or unified instruction and data interfaces.

The dua interface enables independent connection to
instruction and data devices. It generally yields the highest

10 MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

performance, because the pipeline can generate simultaneous
| and D requests, which are then serviced in parallel.

For simpler or cost-sensitive systems, it is aso possible to
combine the | and D interfaces into acommon interface that
services both types of requests. If | and D requests occur
simultaneously, priority is giventothe D side.

Back-stalling

Typicaly, read and write transactions will completein a
single cycle. However, if multi-cycle latency is desired, the

interface can be stalled to allow connection to slower devices.

Redirection

When the dual I/D interfaceis present, amechanism existsto
divert D-side referencesto the |-side, if desired. The
mechanism can be explicitly invoked for any other D-side
references, aswell. When the DS_Redir signal is asserted, a
D-side request is diverted to the I-side interface in the
following cycle, and the D-side will be stalled until the
transaction is completed.

Transaction Abort

The core may request atransaction (fetch/load/store/sync) to
be aborted. Thisis particularly useful in case of interrupts.
Because the core does not know whether transactions are re-
startable, it cannot arbitrarily interrupt a request which has
been initiated on the SRAM interface. However, cycles spent
waiting for amulti-cycle transaction to complete can directly
impact interrupt latency. In order to minimize this effect, the
interface supports an abort mechanism. The core requests an
abort whenever an interrupt is detected and atransaction is
pending (abort of an instruction fetch may also be requested
in other cases). The external system logic can choose to
acknowledge or to ignore the abort request.

Connecting to Narrower Devices

Theinstruction and data read buses are always 32 bitsin
width. To facilitate connection to narrower memories, the
SRAM interfaceprotocol includesinput byte-enablesthat can
be used by system logic to signal validity as partial read data
becomes available. The input byte-enables conditionally
register theincoming read databyteswithin the core, and thus
eliminatethe need for external registersto gather theentire 32
bits of data. External muxes are required to redirect the
narrower data to the appropriate byte lanes.

Lock Mechanism

The SRAM interface includes a protocol to identify alocked
sequence, and is used in conjunction with the LL/SC atomic
read-modify-write semaphore instructions.

Sync Mechanism

Theinterface includes a protocol that externalizes the
execution of the SYNC instruction. External logic might
choose to use this information to enforce memory ordering
between various elements in the system.

External Call Indication

Theinstruction fetch interface contains signals that indicate
that the core is fetching the target of a subroutine cal-type
instruction such as JAL or BAL. At some point after acall,
therewill typically be areturn to the original code sequence.
If asystem prefetches instructions, it can make use of this
information to save instructions that were prefetched and are
likely to be executed after the return.

Hardware Reset

The M5100 core has two types of reset input signals:
SI_Reset and SI_ColdReset. Functionally, these two signals
are ORed together within the core and then used to initialize
critical hardware state.

Both reset signals can be asserted either synchronously or
asynchronously to the core clock, SI_Clkin, and will trigger a
Reset exception. Thereset signalsare active high and must be
asserted for aminimum of 5 SI_Clkin cycles. Thefalling edge
triggers the Reset exception.

The primary difference between the two reset signalsis that
SI_Reset setsabit inthe Status register; thisbit could be used
by software to distinguish between the two reset signals, if
desired. The reset behavior is summarized in Table 5.

Table 5 Reset Types

S| _Reset | SI_ColdReset Action
0 0 Normal operation, no reset.
1 0 Reset exception; sets
Statuseg, bit.
X 1 Reset exception.

One (or both) of the reset signals must be asserted at power-
on or whenever hardwareinitialization of the coreis desired.
A power-on reset typically occurs when the machine isfirst

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00 11

turned on. A hard reset usually occurs when the machineis
aready on and the system is rebooted.

In debug mode, EJTAG can request that a soft reset (viathe
SI_Reset pin) be masked. It issystem-dependent whether this
functionality is supported. In normal mode, the SI_Reset pin
cannot be masked. The SI_ColdReset pin is hever masked.

Power Management

The M5100 core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The core
isastatic design that supports slowing or halting the clocks,
which reduces system power consumption during idle
periods.

The M5100 core provides two mechanisms for system-level
low-power support:

» Register-controlled power management
* Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CPO Status register provides a software
mechanism for placing the system into alow-power state.
The state of the RP bit is available externally viathe SI_RP
signal. The external agent then decides whether to place the
device in alow-power mode, such as reducing the system
clock frequency.

Three additional bits,Statusgy, , Statusgg , and Debugpy
support the power management function by allowing the user
to changethe power stateif an exception or error occurswhile
the M5100 coreisin alow-power state. Depending on what
type of exception is taken, one of these three bitswill be
asserted and reflected on the SI_EXL, SI_ERL, or
EJ_DebugM outputs. The external agent can look at these
signalsand determine whether to |eave the low-power stateto
service the exception.

Thefollowing four power-down signalsare part of the system
interface and change state as the corresponding bitsin the
CPO registers are set or cleared:

» TheSI_RP signa represents the state of the RP bit (27) in
the CPO Status register.

* The SI_EXL signal represents the state of the EXL bit (1)
in the CPO Status register.

* The SI_ERL signal represents the state of the ERL bit (2)
in the CPO Status register.

» TheEJ_DebugM signal represents the state of the DM bit
(30) in the CPO Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down modeis by
executing the WAIT instruction. When the WAIT instruction
is executed, the internal clock is suspended; however, the
internal timer and some of theinput pins (SI_Int[5:0], SI_NMI,
SI_Reset, and SI_ColdReset) continueto run. Once the CPU
isininstruction-controlled power management mode, any
interrupt, NMI, or reset condition causes the CPU to exit this
mode and resume normal operation.

The M5100 core assertsthe SI_Sleep signal, which is part of
the system interface bus, whenever the WAIT instruction is
executed. The assertion of SI_Sleep indicates that the clock
has stopped and the M5100 core is waiting for an interrupt.

Local clock gating

The mgjority of the power consumed by the M5100 coreisin
the clock tree and clocking registers. The core has support for
extensive use of local gated-clocks. Power-conscious
implementors can use these gated clocks to significantly
reduce power consumption within the core.

MIPS32® M5100 Core Optional or
Configurable Logic Blocks

The M5100 core contains several optional or configurable
logic blocks, shown as shaded in the block diagram in Figure
1

Reference Design

The M5100 core contains a reference design that shows a
typical usage of the core with:

e Dua I-SRAM and D-SRAM interface with fast
memories (i.e., SRAM) for instruction and data storage.

* Optimized interface for slow memory (i.e., Flash
memory) access by having a prefetch buffer and a wider
Data Read bus (i.e., IS RDatg][127:0]) to speed up I-
Fetch performance.

« AHB-lite bus interface to the system bus if the memory
accesses are outside the memory map for the SRAM and
Flash regions. AHB-Lite is a subset of the AHB bus
protocol that supports a single bus master. The interface
shares the same 32-bit Read and Write address bus and
has two unidirectional 32-bit buses for Read and Write
data.

The reference design is optional and can be modified by the
user to better fit the SOC design requirement.

12 MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

Figure 5 Reference Design Block Diagram.

pd Prefetch Buffel 128-vit| Intenal
SIF <@ Flash
‘32-;)“ |
M5100
N AHB Lite AHB-Lite Bus
-1 | T Bridge
DSIF
: Internal
32-bit
ISRAM & Extenal
N DSRAM Memory IF

microMIPS™ |SA

The M5100 core supports the microMIPS ISA, which
contains all MIPS32 ISA instructions (except for branch-
likely instructions) in a new 32-bit encoding scheme, with
some of the commonly used instructions also available in 16-
bit encoded format. This ISA improves code density through
the additional 16-bit instructions while maintaining a
performance similar to MIPS32 mode. In microMIPS mode,
16-bit or 32-bit instructions will be fetched and recoded to
legacy MIPS32 instruction opcodes in the pipeline’s I stage,
so that the M5100 core can have the same microAptiviM UC
microarchitecture. Because the microMIPS instruction
stream can be intermixed with 16-bit halfword or 32-bit word
size instructions on halfword or word boundaries, additional
logic is in place to address the word misalignment issues, thus
minimizing performance loss.

DSP Module

The M5100 core implements an optional DSP Module to
benefit a wide range of DSP, Media, and DSP-like algorithms.
The DSP module is highly integrated with the Execution Unit
and the MDU in order to share common logic and to include
support for operations on fractional data types, saturating
arithmetic, and register SIMD operations. Fractional data
types Q15 and Q31 are supported. Register SIMD operations
can perform up to four simultaneous add, subtract, or shift
operations and two simultaneous multiply operations.

In addition, the DSP Module includes some key features that
efficiently address specific problems often encountered in
DSP applications. These include, for example, support for
complex multiply, variable-bit insert and extract, and
implementation and use of virtual circular buffers. The
extension also makes available three additional sets of HI-LO
accumulators to better facilitate common accumulate
functions such as filter operation and convolutions.

Floating Point Unit (FPU)

The M5100 core Floating Point Unit (FPU) implements the
MIPS Instruction Set Architecture for floating-point
computation. The implementation supports the ANSI/IEEE
Standard 754 (IEEE Standard for Binary Floating-Point
Arithmetic) for single and double precision data formats. The
FPU can be programmed to have thirty-two 32-bit or 64-bit
floating-point registers used for floating point operations.

The performance is optimized for single precision formats.
Most instructions have one FPU cycle throughput and four
FPU cycle latency. The FPU implements the multiply-add
(MADD) and multiply-sub (MSUB) instructions with
intermediate rounding after the multiply function. The result
is guaranteed to be the same as executing a MUL and an ADD
instruction separately, but the instruction latency, instruction
fetch, dispatch bandwidth, and the total number of register
accesses are improved.

IEEE denormalized input operands and results are supported
by hardware for some instructions. IEEE denormalized
results are not supported by hardware in general, but a fast
flush-to-zero mode is provided to optimize performance. The
fast flush-to-zero mode is enabled through the FCCR
register, and use of this mode is recommended for best
performance when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction
execution. This pipeline operates in parallel with the integer
core pipeline and does not stall when the integer pipeline
stalls. This allows long-running FPU operations, such as
divide or square root, to be partially masked by system stalls
and/or other integer unit instructions. Arithmetic instructions
are always dispatched and completed in order, but loads and
stores can complete out of order. The exception model is
‘precise’ at all times.

FPU Pipeline

The FPU implements a high-performance 7-stage pipeline:
* Decode, register read and unpack (FR stage)

* Multiply tree - double pumped for double (M1 stage)

* Multiply complete (M2 stage)

» Addition first step (Al stage)

» Addition second and final step (A2 stage)

» Packing to IEEE format (FP stage)

» Register writeback (FW stage)

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00 13

The FPU implements a bypass mechanism that allows the
result of an operation to be forwarded directly to the
instruction that needs it without having to write the result to
the FPU register and then read it back.

Figure 6 shows the FPU pipeline.
Figure 6 FPU Pipeline.

'|—||—||—||—||—|I—||—|i

FPU Clock

FPU Pipeline |FR|M1|M2|A1|A2|FP|FW|
*Bypas

Bypass
B

FPU Instruction Latencies and Repeat Rates

Table 6 contains the floating point instruction latencies and
repeat ratesfor the M 5100 core. Inthistable, ‘ Latency’ refers
to the number of FPU cyclesnecessary for thefirst instruction
to produce the result needed by the second instruction. The
‘Repeat Rate' refers to the maximum rate at which an
instruction can be executed per FPU cycle.

Table 6 M5100 Core FPU Latency and Repeat

Rate
Repeat
Latency Rate
(FPU (FPU
Opcode* cycles) cycles)
ABS[SD], NEG.[S,D], 4 1
ADD.[S,D], SUB.[S,D],
C.cond.[S,D], MUL.S
MADD.S, MSUB.S, NMADD.S, 4 1
NMSUB.S, CABS.cond.[SD]
CVT.D.S, CVT.PSPW, 4 1
CVT.[SD].[wiL]
CVT.SD, CVT.[W,L].[SD], 4 1
CEIL.[W,L].[S,D],
FLOOR.[W,L].[S,D],
ROUND.[W,L].[S,D],
TRUNC.[W,L].[SD]
MOV.[S,D], MOVE[SD], 4 1
MOVN.[S,D], MOVT.[S,D],
MOVZ.[SD]
MUL.D 5 2
* Format: S = Single, D = Double, W = Word, L = Long-
word

Table 6 M5100 Core FPU Latency and Repeat
Rate (Continued)

Repeat
Latency Rate
(FPU (FPU
Opcode* cycles) cycles)
MADD.D, MSUB.D, NMADD.D, 5 2
NMSUB.D
RECIPS 13 10
RECIPD 26 21
RSQRT.S 17 14
RSQRT.D 36 31
DIV.S, SORT.S 17 14
DIV.D, SQRT.D 32 29
MTC1, DMTC1, LWC1, LDC1, 4 1
LDXC1, LUXCL, LWXC1
MFC1, DMFC1, SWC1, SDC1, 1 1
SDXC1, SUXC1, SWXC1
* Format: S = Single, D = Double, W = Word, L = Long-
word

Coprocessor 2 Interface

TheM5100 core can be configured to have an interface for an
on-chip coprocessor. This coprocessor can betightly coupled
to the processor core, allowing high-performance solutions
integrating a graphics accelerator or DSP, for example.

The coprocessor interface is extensible and standardized on
MIPS cores, allowing for design reuse. The M5100 core
supports a subset of the full coprocessor interface standard:
32b data transfer, no Coprocessor 1 support, single issue in-
order datatransfer to coprocessor, one out-of-order data
transfer from coprocessor.

The coprocessor interfaceisdesigned to easeintegration with
customer IP. The interface allows high-performance
communication between the core and coprocessor. There are
no late or critical signals on the interface.

CorExtend® User-defined Instruction
Extensions

An optiona CorExtend User-defined Instruction (UDI) block
enables theimplementation of asmall number of application-
specific instructions that are tightly coupled to the core’s

14 MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

execution unit. The interface to the UDI block is externa to
the M5100 core.

Such instructions may operate on a general-purpose register,
immediate data specified by the instruction word, or local
state stored within the UDI block. The destination may be a
genera -purpose register or local UDI state. The operation
may complete in one cycle or multiple cycles, if desired.

Anti-Tamper Security Features

The core provides security featuresthat counter side-channel
attacks attempting to reveal the code or data running on the
processor.

Random dlips can be generated in order to disguise thetiming
and power profile of an algorithm executing on the processor.
This reduces the core’'s vulnerahility to side channel attacks.
Power management techniques are used to ensure that the
power profile of arandom dlip is indistinguishable from the
power profile of the executing instructions.

The core contains ageneral -purpose pseudo generator for use
by software. The generator may optionally be designed by the
implementor of the core, thus allowing the quality of the

pseudo random number sequencesto be suited for any needs.

EJTAG Debug Support

The M5100 core provides for an optional Enhanced JTAG
(EJTAG) interface for use in the software debug of
application and kernel code. In addition to standard user
mode and kernel modes of operation, the M5100 core
providesaDebug modethat isentered after adebug exception
(derived from a hardware breakpoint, single-step exception,
etc.) istaken and continues until a debug exception return
(DERET) instruction is executed. During thistime, the
processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port
(TAP), aseria communication port used for transferring test
datain and out of the M5100 core. In addition to the standard
JTAG instructions, special instructions defined in the EITAG
specification specify which registers are selected and how
they are used.

Debug Registers

Four debug registers (DEBUG, DEBUG2, DEPC, and DESAVE)
have been added to the M1PS Coprocessor 0 (CPO) register
set. The DEBUG and DEBUG2 regiisters show the cause of the
debug exception and are used for setting up single-step
operations. The DEPC (Debug Exception Program Counter)
register holds the address on which the debug exception was
taken, which is used to resume program execution after the

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

debug operation finishes. Finally, the DESAVE (Debug
Exception Save) register enables the saving of general-
purpose registers used during execution of the debug
exception handler.

To exit debug mode, a Debug Exception Return (DERET)
instruction is executed. When thisinstruction is executed, the
system exits debug mode, allowing normal execution of
application and system code to resume.

EJTAG Hardware Breakpoints

There are severa types of simple hardware breakpoints
defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug mode.
There are two types of simple hardware breakpoints
implemented in the M5100 core: Instruction breakpoints and
Data breakpoints. Additionally, complex hardware
breakpoints can be included, which allow detection of more
intricate sequences of events.

The M5100 core can be configured with the following
breakpoint options:

* No data or instruction, or complex breakpoints

¢ One data and two instruction breakpoints, without
complex breakpoints

« Two data and four instruction breakpoints, without
complex breakpoints

« Two data and six instruction breakpoints, with or without
complex breakpoints

 Four data and eight instruction breakpoints, with or
without complex breakpoints

Instruction breakpoints occur on instruction execution
operations, and the breakpoint is set on thevirtual address. A
mask can be applied to the virtual address to set breakpoints
on abinary range of instructions.

Data breakpoints occur on load/store transactions, and the
breakpoint is set on avirtual address value, with the same
single address or binary address range as the Instruction
breakpoint. Data breakpoints can be set on aload, a store, or
both. Data breakpoints can also be set to match on the
operand value of the load/store operation, with byte-
granularity masking. Finally, masks can be applied to both
the virtual address and the load/store value.

In addition, the M5100 core has a configurable feature to
support data and instruction address-range triggered
breakpoints, where a breakpoint can occur when avirtua
addressis either within or outside a pair of 32-bit addresses.
Unlike the traditional address-mask control, address-range

15

triggering is not restricted to a power-of-two binary
boundary.

Complex breakpoints utilize the simple instruction and data
breakpoints and break when combinations of events are seen.
Complex break features include:

 Pass Counters - Each time a matching conditionis seen, a
counter is decremented. The break or trigger will only be
enabled when the counter has counted down to O.

» Tuples- A tupleisthe pairing of an instruction and a
data breakpoint. The tuple will match if both the virtua
address of the load or store instruction matches the
instruction breakpoint, and the data breakpoint of the
resulting load or store address and optional data value
matches.

» Priming - This allows a breakpoint to be enabled only
after other break conditions have been met. Also called
sequential or armed triggering.

» Qualified - This feature uses a data breakpoint to qualify
when an instruction breakpoint can be taken. Once aload
matches the data address and the data value, the
instruction break will be enabled. If aload matches the
address, but has mis-matching data, the instruction break
will be disabled.

Performance Counters

Performance counters are used to accumul ate occurrences of
internal predefined events/cycles/conditions for program
analysis, debug, or profiling. A few examples of event types
are clock cycles, instructions executed, specific instruction
typesexecuted, loads, stores, exceptions, and cycleswhilethe
CPU isstalled. Therearetwo, 32-bit counters. Each can count
one of the 64 internal predefined events selected by a
corresponding control register. A counter overflow can be
programmed to generate an interrupt, where the interrupt
handler software can maintain larger total counts.

PC/Address Sampling

This sampling function is used for program profiling and hot-
spots analysis. Instruction PC and/or L oad/Store addresses
can be sampled periodically. The result is scanned out
through the EJTAG port. The Debug Control Register (DCR)
is used to specify the sample period and the sample trigger.

Fast Debug Channel (FDC)

The M5100 core includes optional FDC as a mechanism for
high bandwidth datatransfer between adebug host/probe and
atarget. FDC provides a FIFO buffering scheme to transfer

dataserially, with low CPU overhead and minimized waiting
time. The data transfer occurs in the background, and the
target CPU can either choose to check the status of the
transfer periodically, or it can choose to be interrupted at the
end of the transfer.

Figure 7 FDC Overview

M5100

Probe

Receivefrom 32
Probeto Core™

@ TDI

Tap Controller ™S

Transmitfrom 32
Coreto Probe

iFlowtrace™

The M5100 core has an option for a simple trace mechanism
called iFlowtrace. Thismechanism only tracestheinstruction
PC, not data addresses or values. This simplification allows
the trace block to be smaller and the trace compression to be
more efficient. iFlowtrace memory can be configured as off-
chip, on-chip, or both.

iFlowtrace also offers special -event trace modes when
normal tracing is disabled, namely:

« Function Call/Return and Exception Tracing mode to
trace the PC value of function calls and returns and/or
exceptions and returns.

* Breakpoint Match mode traces the breakpoint 1D of a
matching breakpoint and, for data breakpoints, the PC
vaue of the instruction that caused it.

* Filtered Data Tracing mode traces the ID of a matching
data breakpoint, the load or store data value, access type
and memory access size, and the low-order address bits
of the memory access, which is useful when the data
breakpoint is set up to match a binary range of addresses.

» User Trace Messages. The user can instrument their code
to add their own 32-bit value messages into the trace by
writing to the Cop0 UTM register.

« Delta Cycle mode works in combination with the above
trace modes to provide a timestamp between stored
events. It reports the number of cycles that have el apsed
since the last message was generated and put into the
trace.

16 MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

cJTAG Support

TheM5100 core providesan external conversion block which
converts the existing EJTAG (IEEE 1149.1) 4-wire interface
at the M5100 core to a cJTAG (IEEE 1149.7) 2-wire
interface. cJTAG reduces the number of wiresfrom4to 2 and
enables the support of Star-2 scan topology in the system
debug environment.

Figure 8 cJTAG Support

M5100
EJTAG cJTAG
EJTAG 4-wire 2-wire
interface interface
TDI
Tap TDO cJT, AQ TMSC
Controller TCK |Conversion| TCK
™S Block
SecureDebug

SecureDebug improves security by disabling untrusted
EJTAG debug access. Aninput signal is used to disable
debug features, such as Probe Trap, Debug Interrupt
Exception (EjtagBrk and DINT), EJTAGBOQT instruction,
and PC Sampling.

Testability

Testability for production testing of the coreis supported
through the use of internal scan and memory BIST.

Internal Scan

Full mux-based scan for maximum test coverage is
supported, with a configurable number of scan chains. ATPG
test coverage can exceed 99%, depending on standard cell
libraries and configuration options.

Memory BIST

Memory BIST for the on-chip trace memory is optional.

Memory BIST can beinserted with aCAD tool or other user-
specified method. Wrapper modules and specia side-band
signal buses of configurable width are provided within the
core to facilitate this approach.

Build-Time Configuration Options

The M5100 core alows a number of featuresto be
customized based on the intended application. Table 7
summarizesthe key configuration optionsthat can be sel ected
when the core is synthesized and implemented.

For acorethat has already been built, software can determine
the value of many of these options by checking an appropriate
register field. Refer to the MIPS32® M5100 Processor Core
Family Software User’s Manual for amore complete
description of thesefields. The value of some optionsthat do
not have afunctional effect on the core are not visible to
software.

Table 7 Build-time Configuration Options

Option Choices Software Visibility
Integer register file sets 1,2,4,80r 16 SRSCilyss
Integer register file implementation style Flops or generator N/A
Virtualization number of guests 1,2,3,4,5,6,7 N/A
ISA support MIPS32 only, or Config3,sa
microMIPS only, or
MIPS32 and microMIPS present
DSP Module Present or not Config3pgpp Config3pspop
Multiply/divide implementation style High performance or min area (if DSP is not present) Configmpu
Floating-point Unit Present or not Configlgp

* These bitsindicate the presence of an external block. Bitswill not be set if interface is present, but block is not.

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00 17

Table 7 Build-time Configuration Options (Continued)

Option Choices Software Visibility
Adder implementation style Structured or Simple N/A
EJTAG TAP controller Present or not N/A
EJTAG TAP Fast Debug Channel (FDC) Present or not (even when TAP is present) DCRgpcy
EJTAG TAPFDC FIFO size Two TX/two RX, or eight TX/four RX 32-hit registers FDCFG

Instruction/data hardware breakpoints

0/0, 2/1, 412, 6/2, or 8/4

DCRingBrks 1BSgen
DCRpgaprk PBSen

Hardware breakpoint trigger by Address match, or IBCnpyarts DBCNpyart
Address match and address range

Complex breakpoints 0/0, 6/2, or 8/4 DCRcgT

Performance Counters Present or not Configlpc

iFlowtrace hardware Present or not Config3,tL

iFlowtrace memory location On-core or off-chip IFCTLgfc

iFlowtrace on-chip memory size 256B - 8MB N/A

CorExtend interface Present or not Configyp|*

Coprocessor2 interface Present or not Configley*

SRAM interface style Separate instruction/data or unified Configpg

SRAM Parity Present or not ErrCtlpg

Interrupt synchronizers Present or not N/A

Interrupt Vector Offset Compute from Vector Input or Immediate Offset N/A

Clock gating Top-level, integer register file array, fine-grain, or none | N/A

PC Sampling Present or not Debug Control Register

Data Address Sampling Present or not Debug Control Register

PRID

User defined Processor Identification

PRI DCompanyOpt

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

Revision History

Revision

Date Description

01.00

18

December 31, 2013

¢ Initial 1_0_0 release.

MIPS32® M5100 Processor Core Family Datasheet, Revision 01.00

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

M alt{ont apmnn 208321 /25 CI-Yi@ 51-i1-4KSSi wS@ai2y nmonn

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

Saraj.Mudigonda
Typewritten Text

