
MIPS32® M5150 Processor Core Family Datasheet February 25, 2015

1 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

The M5150 core is a member of the MIPS32 M5150 processor core family.
It is fully configurable/synthesizable, ideally positioned to support new products for emerging segments of the digital consumer, network,
systems, and information-management markets, enabling new tailored solutions for embedded applications.

The M5150 core implements the MIPS® Architecture Release-5 (“R5” incorporating enhanced functionality for next
generation MIPS-Based™ products) in a 5-stage pipeline. It includes support for the microMIPS™ ISA, an Instruction Set
Architecture with optimized MIPS32 16-bit and 32-bit instructions that provides a significant reduction in code size with a
performance equivalent to MIPS32. The M5150 core is an enhancement of the microAptiv™ UP, designed from the same
microarchitecture, including the Microcontroller Application-Specific Extension (MCU™ ASE), enhanced interrupt handling,
lower interrupt latency, native AMBA®-3 AHB-Lite Bus Interface Unit (BIU), with additional power saving, security, debug,
and profiling features. In addition, the M5150 core includes the MIPS Architecture Virtualization Module that enables
virtualization of operating systems, which provides a scalable, trusted, and secure execution environment.

The M5150 core has an option to include the MIPS Architecture DSP Module Revision 2 that executes digital signal processing
capabilities, with support for a number of powerful data processing operations. An optional IEEE 754 compliant Floating-Point
Unit (FPU) provides both single and double precision instructions. Figure 1 shows a block diagram of the M5150 core. The core
is divided into required and optional (shown as shaded) blocks.

Figure 1 MIPS 32® M5150 Core Block Diagram

The M5150 core retains the functionality from the microAptiv™ UP processor core and adds some new features and functions.
A summary of key features are:

• Support for MIPS32 Architecture Release-5.

• Support for microMIPS ISA to provide better code size compression with same MIPS32 performance.

• Support for multiple shadow register sets.

Fixed/Required

Optional

DSPRAM
Blk

AHB-Lite
I/F

CP2
I/F

Sys. Control
Coprocessor

UDI
I/F

GPR
(1,2,4,8,16 sets)

Debug/Profiling
(w. VZ support)
Break Points
iFlowtrace

Fast Debug Channel
Performance Counters

Sampling
SecureDebug

microMIPS I-Cache
controller

D-Cache
controller

User-defined
Cop2 blk

User-defined
CorExtend blk

System
Interface

Interrupt
Interface

BIU

ISPRAM
Blk

Instruction Decode
(MIPS32/microMIPS)

cJTAG
2-wire
debug

D-Cache

M5150 core

I-Cache

SPRAM
I/F

SPRAM
I/F

Power
Manager

Anti-Tamper
Security

MMU
Virtualization
Support for

Root & Guest

Execution Unit
MDU

FPU
Single & Double

DSP Module

2 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

• The Memory Management Unit (MMU), selectable
between a Translation Lookaside Buffer (TLB) or a
simple Fixed Mapping Translation (FMT) mechanism.

• Supports configurable DSP Module Revision 2 for digital
signal processing capabilities.

• Multiply/Divide Unit (MDU) - If the DSP is not
included, the MDU can be configured for either
performance or area optimizations. The high-
performance optimization supports a single-cycle 32x16-
bit MAC instruction or two-cycle 32x32-bit instructions.
If the DSP is included, the MDU is enhanced with a
hardware multiplier array supporting single-cycle 32x32
MAC and DSP instructions.

• Floating-Point Unit (FPU), an IEEE-754 compliant
Floating-Point Unit with single and double precision
datatypes.

• Instruction and data caches are fully configurable from 0
to 64 Kbytes in size. In addition, each cache can be
organized as direct-mapped or 2-way, 3-way, or 4-way
set associative. Load and fetch cache misses only block
until the critical word becomes available. The pipeline
resumes execution while the remaining words are being
written to the cache. Both caches are virtually indexed
and physically tagged to allow them to be accessed in the
same clock in which the address is translated.

• Support for the MCU ASE to enhance common functions
used in microcontroller applications such as interrupts
and semaphore manipulation.

• Security feature such as the SecureDebug to restrict
untrusted EJTAG debug access.

• Support for the Virtualization Module via privileged
(root) and unprivileged (guest) operating modes. Legacy
software will run in guest mode where all operations are
monitored and trapped by hypervisor software if the
guest does not behave as expected. The hypervisor
operates invisibly to the guest, and enforces data
protection between guests.

• AMBA-3 AHB-Lite bus interface.

• Parity support.

• An optional Enhanced JTAG (EJTAG version 4.52) block
allows for single-stepping of the processor as well as
instruction and data virtual address/value breakpoints.
iFlowtrace™ version 2.0 is also supported to add real-
time instruction program counter and special events trace
capability for debug. Additionally, Fast Debug Channel,
Performance Counters, and PC/Data sampling functions
are added to enrich debug and profiling features on the
M5150 core.

• External block to convert 4-wire EJTAG (IEEE 1149.1)
interface to 2-wire cJTAG (IEEE 1149.7) interface.

• Configurable hardware breakpoints triggered by address
match or address range.

Features
• 5-stage pipeline

• 32-bit Address and Data Paths

• MIPS32 Instruction Set Architecture

• MIPS32 Enhanced Architecture Features

• Vectored interrupts and support for external inter-
rupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow registers (one, three, seven, or fifteen
additional shadows can be optionally added to min-
imize latency for interrupt handlers)

• Bit field manipulation instructions

• Virtual memory support (smaller page sizes and
hooks for more extensive page table manipulation)

• microMIPS Instruction Set Architecture

• microMIPS ISA is a build-time configurable option
that reduces code size over MIPS32, while main-
taining MIPS32 performance.

• Combining both 16-bit and 32-bit opcodes, micro-
MIPS supports all MIPS32 instructions (except
branch-likely instructions) with new optimized
encoding. Frequently used MIPS32 instructions are
available as 16-bit instructions.

• Added fifteen new 32-bit instructions and thirty-
nine 16-bit instructions.

• Stack pointer implicit in instruction.

• MIPS32 assembly and ABI-compatible.

• Supports MIPS architecture Modules and User-
defined Instructions (UDIs).

• MCU™ ASE

• Increases the number of interrupt hardware inputs
from 6 to 8 for Vectored Interrupt (VI) mode, and
from 63 to 255 for External Interrupt Controller
(EIC) mode.

• Separate priority and vector generation. 16-bit vec-
tor address is provided.

• Hardware assist combined with the use of Shadow
Register Sets to reduce interrupt latency during the
prologue and epilogue of an interrupt.

MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01 3

• An interrupt return with automated interrupt epi-
logue handling instruction (IRET) improves inter-
rupt latency.

• Supports optional interrupt chaining.

• Two memory-to-memory atomic read-modify-write
instructions (ASET and ACLR) eases commonly
used semaphore manipulation in microcontroller
applications. Interrupts are automatically disabled
during the operation to maintain coherency.

• Programmable Cache Sizes

• Individually configurable instruction and data
caches

• Sizes from 0 - 64KB

• Direct Mapped, 2-, 3-, or 4-Way Set Associative

• Loads block only until critical word is available

• Write-back and write-through support

• 128-bit (16-byte) cache line size, word sectored -
suitable for standard 32-bit wide single-port SRAM

• Virtually indexed, physically tagged

• Cache line locking support

• Non-blocking prefetches

• Scratchpad RAM (SPRAM) Support

• Can optionally replace 1 way of the I- and/or D-
cache with a fast scratchpad RAM

• Independent external pin interfaces for I- and D-
scratchpads

• 20 index address bits allow access of arrays up to
1MB

• Interface allows back-stalling the core

• MIPS32 Privileged Resource Architecture (PRA)

• Count/Compare registers for real-time timer
interrupts

• I and D watch registers for SW breakpoints

• Memory Management Unit

• Simple Fixed Mapping Translation (FMT) mecha-
nism, or

• 4-entry instruction and data Translation Lookaside
Buffers (ITLB/DTLB) and a 16 or 32 dual-entry
joint TLB (JTLB) with variable page sizes. Read,
write, and execute page-protection attributes indi-
vidually programmable.

• Bus Interface Unit (BIU)

• Supports AMBA-3 AHB-Lite protocol

• All I/O’s fully registered

• Separate unidirectional 32-bit address and data
buses

• Two 16-byte collapsing write buffers

• Support for variable CPU and bus clock ratios to
allow the bus to run at a lower speed than the CPU.

• Virtualization Module Support

• Support for the Virtualization Module using “trap
and emulate” techniques.

• Two new operating modes: privileged (root) and
unprivileged (guest)

• System resources controlled through privileged
instructions while executing in privileged mode

• Execution of a privileged instruction in unprivi-
leged mode will cause an exception (trap), returning
control to privileged-mode software

• Address translation is performed on the entire
address space when in unprivileged mode

• Configurable from 1 to 7 guests

• Supports both RTLB (Root TLB) and RPU (Root
Protection Unit) memory management units

• Parity Support

• The I-cache, D-cache, ISPRAM, and DSPRAM
support optional parity detection.

• MIPS DSP Module (Revision 2.0)

• Support for MAC operations with 3 additional pairs
of Hi/Lo accumulator registers (Ac0 - Ac3)

• Fractional data types (Q15, Q31) with rounding
support

• Saturating arithmetic with overflow handling

• SIMD instructions operate on 2x16-bit or 4x8-bit
operands simultaneously

• Separate MDU pipeline with full-sized hardware
multiplier to support back-to-back operations

• The DSP Module is build-time configurable.

• Multiply/Divide Unit (high-performance configuration
without DSP)

• Maximum issue rate of one 32x16 multiply per
clock via on-chip 32x16 hardware multiplier array.

• Maximum issue rate of one 32x32 multiply every
other clock

• Early-in iterative divide. Minimum 11 and maxi-
mum 34 clock latency (dividend (rs) sign exten-
sion-dependent)

• Multiply/Divide Unit (with DSP configuration)

• Maximum issue rate of one 32x32 multiply per
clock via on-chip 32x32 hardware multiplier array

• Maximum issue rate of one 32x32 multiply every
clock

4 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

• Early-in iterative divide. Minimum 12 and maxi-
mum 38clock latency (dividend (rs) sign extension-
dependent)

• Multiply/Divide Unit (area-efficient configuration
without DSP)

• 32 clock latency on multiply

• 34 clock latency on multiply-accumulate

• 33-35 clock latency on divide (sign-dependent)

• Floating Point Unit (FPU)

• 1985 IEEE-754 compliant Floating Point Unit.

• Supports single and double precision datatypes

• 2008 IEEE-754 compatibility control for NaN han-
dling and Abs/Neg instructions

• Runs at 1:1 core/FPU clock ratio.

• The FPU is build-time configurable.

• CorExtend® User-Defined Instruction Set Extensions

• Allows user to define and add instructions to the
core at build time

• Maintains full MIPS32 compatibility

• Supported by industry-standard development tools

• Single or multi-cycle instructions

• Coprocessor 2 interface

• 32-bit interface to an external coprocessor

• Anti-Tamper Security Features

• Injection of random pipeline slips controlled via
CP0 register

• Fast general-purpose 32-bit pseudo random genera-
tor accessible via CP0 register

• User defined cache/SPRAM scrambling (config-
ured via CP0 register)

• Complex pseudo random generator for hardware
use controlled via user-defined seed

• Power Control

• Minimum frequency: 0 MHz

• Power-down mode (triggered by WAIT instruction)

• Support for software-controlled clock divider

• Support for extensive use of local gated clocks

• Optional power-saving mode in organizing individ-
ual cache memory array per way

• EJTAG Debug/Profiling and iFlowtrace™ Mechanism

• CPU control with start, stop, and single stepping

• Virtual instruction and data address/value break-
points

• Hardware breakpoint supports both address match
and address range triggering

• Optional simple hardware breakpoints on virtual
addresses; 8I/4D, 6I/2D, 4I/2D, 2I/1D breakpoints,
or no breakpoints

• Optional complex hardware breakpoints with 8I/
4D, 6I/2D simple breakpoints

• TAP controller is chainable for multi-CPU debug

• Supports EJTAG (IEEE 1149.1) and compatible
with cJTAG 2-wire (IEEE 1149.7) extension proto-
col

• Cross-CPU breakpoint support

• iFlowtrace support for real-time instruction PC and
special events

• PC and/or load/store address sampling for profiling

• Performance Counters

• Support for Fast Debug Channel (FDC)

• SecureDebug

• An optional feature that disables access via EJTAG
in an untrusted environment

• Testability

• Full scan design achieves test coverage in excess of
99% (dependent on library and configuration
options)

• Optional memory BIST for internal SRAM arrays.
Two memory BIST algorithms are provided and
selectable by input pin.

Architecture Overview

The M5150 core contains both required and optional blocks,
as shown in Figure 1. Required blocks must be implemented
to remain MIPS-compliant. Optional blocks can be added to
the M5150 core based on the needs of the implementation.

The required blocks are as follows:

• Instruction Decode

• Execution Unit

• General Purposed Registers (GPR)

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• I/D Cache Controllers

• Bus Interface Unit (BIU)

• Power Management

Optional or configurable blocks include:

• Instruction Cache

6 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

• The data cache access and the data virtual-to-physical
address translation are performed for load and store
instructions.

• Data cache look-up is performed and a hit/miss
determination is made.

• A 32x32 multiply calculation completes (with DSP
configuration).

• A 32x32 multiply operation stalls the MDU pipeline for
one clock in the M stage (high-performance MDU option
without DSP configuration).

• A multiply operation stalls the MDU pipeline for 31
clocks in the M stage (area-efficient MDU option without
DSP configuration).

• A multiply-accumulate operation stalls the MDU pipeline
for 33 clocks in the M stage (area-efficient MDU option
without DSP configuration).

• A divide operation stalls the MDU pipeline for a
maximum of 38 clocks in the M stage. Early-in sign
extension detection on the dividend will skip 7, 15, or 23
stall clocks (only the divider in the fast MDU option
supports early-in detection).

A Stage: Align

During the Align stage:

• Load data is aligned to its word boundary.

• A multiply/divide operation updates the HI/LO registers
(area-efficient MDU option).

• Multiply operation performs the carry-propagate-add.
The actual register writeback is performed in the W stage
(high-performance MDU option).

• A MUL operation makes the result available for
writeback. The actual register writeback is performed in
the W stage.

• EJTAG complex break conditions are evaluated.

W Stage: Writeback

During the Writeback stage:

• For register-to-register or load instructions, the
instruction result is written back to the register file.

Virtualization Module

The Virtualization Module is supported in the M5150 core.
Virtualization defines a set of extensions to the MIPS32
Architecture for efficient implementation of virtualized
systems.

Virtualization is enabled by software—the key element is a
control program known as a Virtual Machine Monitor
(VMM) or hypervisor. The hypervisor is in full control of
machine resources at all times.

When an operating system (OS) kernel runs within a virtual
machine (VM), it becomes a guest of the hypervisor. All
operations performed by a guest must be explicitly permitted
by the hypervisor. To ensure that it remains in control, the
hypervisor always runs at a higher level of privilege than a
guest operating system kernel.

The hypervisor is responsible for managing access to
sensitive resources, maintaining the expected behavior for
each VM, and sharing resources between multiple VMs.

In a traditional operating system, the kernel (or supervisor)
typically runs at a higher level of privilege than user
applications. The kernel provides a protected virtual-memory
environment for each user application, inter-process
communications, IO device sharing and transparent context
switching. The hypervisor performs the same basic functions
in a virtualized system, except that the hypervisor’s clients are
full operating systems rather than user applications.

The virtual machine execution environment created and
managed by the hypervisor consists of the full Instruction Set
Architecture, including all Privileged Resource Architecture
facilities, plus any device-specific or board-specific
peripherals and associated registers. It appears to each guest
operating system as if it is running on a real machine with full
and exclusive control.

The Virtualization Module enables full virtualization, and is
intended to allow VM scheduling to take place while meeting
real-time requirements, and to minimize costs of context
switching between VMs.

MIPS32® M5150 Core Required
Logic Blocks

The required logic blocks of the M5150 core (Figure 1) are
defined in the following subsections.

Execution Unit

The M5150 core execution unit implements a load/store
architecture with single-cycle ALU operations (logical, shift,
add, subtract) and an autonomous multiply/divide unit.

 The execution unit includes:

MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01 7

• Arithmetic Logic Unit (ALU) for performing arithmetic
and bitwise logical operations. Shared adder for
arithmetic operations, load/store address calculation, and
branch target calculation.

• Address unit for calculating the next PC and next fetch
address selection muxes.

• Load Aligner.

• Shifter and Store Aligner.

• Branch condition comparator.

• Trap condition comparator.

• Bypass muxes to advance result between two adjacent
instructions with data dependency.

• Leading Zero/One detect unit for implementing the CLZ
and CLO instructions.

• Actual execution of the Atomic Instructions defined in
the MCU ASE.

• A separate DSP ALU and Logic block for performing
part of DSP Module instructions, such as arithmetic/shift/
compare operations if the DSP function is configured.

General Purpose Registers

The M5150 core contains thirty-two 32-bit general-purpose
registers used for integer operations and address calculation.
Optionally, one, three, seven or fifteen additional register file
shadow sets (each containing thirty-two registers) can be
added to minimize context switching overhead during
interrupt/exception processing. The register file consists of
two read ports and one write port and is fully bypassed to
minimize operation latency in the pipeline.

Multiply/Divide Unit (MDU)

The M5150 core includes a multiply/divide unit (MDU) that
contains a separate, dedicated pipeline for integer multiply/
divide operations, and DSP Module multiply instructions.
This pipeline operates in parallel with the integer unit (IU)
pipeline and does not stall when the IU pipeline stalls. This
allows the long-running MDU operations to be partially
masked by system stalls and/or other integer unit instructions.

The MIPS architecture defines that the result of a multiply or
divide operation be placed in a pair (without DSP enabled) or
one of 4 pairs (with DSP enabled) of HI and LO registers.
Using the Move-From-HI (MFHI) and Move-From-LO
(MFLO) instructions, these values can be transferred to the
general-purpose register file.

There are three configuration options for the MDU: 1) a full
32x32 multiplier block; 2) a higher performance 32x16
multiplier block; 3) an area-efficient iterative multiplier

block. Option 2 and 3 are available if the DSP configuration
option is disabled. If the DSP configuration option is enabled,
option 1 is the default. The selection of the MDU style allows
the implementor to determine the appropriate performance
and area trade-off for the application.

MDU with 32x32 DSP Multiplier

With the DSP configuration option enabled, the MDU
supports execution of one 16x16, 32x16, or 32x32 multiply or
multiply-accumulate operation every clock cycle with the
built in 32x32 multiplier array. The multiplier is shared with
DSP Module operations.

The MDU also implements various shift instructions
operating on the HI/LO register and multiply instructions as
defined in the DSP Module. It supports all the data types
required for this purpose and includes three extra HI/LO
registers as defined by the Module.

Table 1 lists the latencies (throughput with data dependency)
and repeat rates (throughput without data dependency) for the
DSP multiply and dot-product operations. The approximate
latencies and repeat rates are listed in terms of pipeline
clocks. For a more detailed discussion of latencies and repeat
rates, refer to the MIPS32 M5150 Processor Core Software
User’s Manual.

MDU with 32x16 High-Performance Multiplier

The high-performance MDU consists of a 32x16 Booth-
recoded multiplier, a pair of result/accumulation registers (HI
and LO), a divide state machine, and the necessary
multiplexers and control logic. The first number shown (‘32’
of 32x16) represents the rs operand. The second number (‘16’
of 32x16) represents the rt operand. The M5150 core only
checks the value of the rt operand to determine how many
times the operation must pass through the multiplier. The

Table 1 DSP-related Latencies and Repeat Rates

Opcode Latency
Repeat

Rate

Multiply and dot-
product without satu-
ration after accumula-
tion

5 1

Multiply and dot-
product with satura-
tion after accumula-
tion

5 1

Multiply without
accumulation

5 1

8 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

16x16 and 32x16 operations pass through the multiplier once.
A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply or multiply-accumulate operation every clock cycle;
32x32 multiply operations can be issued every other clock
cycle. Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. The
multiply operand size is automatically determined by logic
built into the MDU.

Table 2, Table 3 and Table 4 list the repeat rate (how often the
operation can be reissued when there is no data dependency)
and latency (number of cycles until a result is available) for
the multiply and divide instructions. The approximate latency
and repeat rates are listed in terms of pipeline clocks. For a
more detailed discussion of latencies and repeat rates, refer to
Chapter 2 of the MIPS32 M5150 Processor Core Family
Software User’s Manual.

MDU with Area-Efficient Option

With the area-efficient option, multiply and divide operations
are implemented with a simple 1-bit-per-clock iterative
algorithm. Any attempt to issue a subsequent MDU
instruction while a multiply/divide is still active causes an
MDU pipeline stall until the operation is completed.

Table 4 lists the latency (number of cycles until a result is
available) for the M5150 core multiply and divide
instructions. The latencies are listed in terms of pipeline
clocks.

Regardless of the multiplier array implementation, divide
operations are implemented with a simple 1-bit-per-clock

Table 2 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates with DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL
(GPR destination)

16 bits 5 1

32 bits 5 1

MULT, MULTU,
MADD, MADDU,
MSUB, MSUBU
(Hi/Lo destination)

16 bits 5 1

32 bits 5 1

DIV / DIVU
(Hi/Lo destination)

8 bits 12-14 / 12 12-14 / 12

16 bits 20-22 / 20 20-22 / 20

24 bits 28-30 / 30 28-30 / 30

32 bits 35-37 / 35 35-37 / 35

Table 3 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates without DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL
(GPR destination)

16 bits 5 2

32 bits 6 3

MULT, MULTU,
MADD, MADDU,
MSUB, MSUBU
(Hi/Lo destination)

16 bits 2 1

32 bits 3 2

DIV / DIVU
(Hi/Lo destination)

8 bits 11-12 / 11 11-12 / 11

16 bits 19-20 / 19 19-20 / 19

24 bits 27-28 / 27 27-28 / 27

32 bits 34-35 / 34 34-35 / 34

Table 4 Area-Efficient Integer Multiply/Divide Unit
Operation Latencies without DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL
(GPR destination)

any 35 32

MULT, MULTU,
(Hi/Lo destination)

any 32 32

MADD, MADDU,
MSUB, MSUBU
(Hi/Lo destination)

any 34 34

DIV / DIVU
(Hi/Lo destination)

any 33-34 / 33 33-34 / 33

Table 3 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates without DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01 9

iterative algorithm. An early-in detection checks the sign
extension of the dividend (rs) operand. If rs is 8 bits wide, 23
iterations are skipped. For a 16-bit-wide rs, 15 iterations are
skipped, and for a 24-bit-wide rs, 7 iterations are skipped.
Any attempt to issue a subsequent MDU instruction while a
divide is still active causes an IU pipeline stall until the divide
operation has completed.

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation and cache protocols, the
exception control system, the processor’s diagnostics
capability, the operating modes (kernel, user, and debug), and
whether interrupts are enabled or disabled. Configuration
information, such as cache size and set associativity, presence
of build-time options like microMIPS, CorExtend Module or
Coprocessor 2 interface, is also available by accessing the
CP0 registers.

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events,
or program errors.

Interrupt Handling

The M5150 core includes support for eight hardware
interrupt pins, two software interrupts, and a timer interrupt.
These interrupts can be used in any of three interrupt modes,
as defined by Release 2 of the MIPS32 Architecture:

• Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use
during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This mode
is architecturally optional; but it is always present on the
M5150 core, so the VInt bit will always read as a 1 for
the M5150 core.

• External Interrupt Controller (EIC) mode, which
redefines the way in which interrupts are handled to
provide full support for an external interrupt controller
handling prioritization and vectoring of interrupts. The
presence of this mode denoted by the VEIC bit in the
Config3 register. Again, this mode is architecturally
optional. On the M5150 core, the VEIC bit is set
externally by the static input, SI_EICPresent, to allow
system logic to indicate the presence of an external
interrupt controller.

The reset state of the processor is interrupt compatibility
mode, such that a processor supporting Release 2 of the
Architecture, the M5150 core for example, is fully
compatible with implementations of Release 1 of the
Architecture.

VI or EIC interrupt modes can be combined with the optional
shadow registers to specify which shadow set should be used
on entry to a particular vector. The shadow registers further
improve interrupt latency by avoiding the need to save context
when invoking an interrupt handler.

In the M5150 core, interrupt latency is reduced by:

• Speculative interrupt vector prefetching during the
pipeline flush.

• Interrupt Automated Prologue (IAP) in hardware:
Shadow Register Sets remove the need to save GPRs, and
IAP removes the need to save specific Control Registers
when handling an interrupt.

• Interrupt Automated Epilogue (IAE) in hardware:
Shadow Register Sets remove the need to restore GPRs,
and IAE removes the need to restore specific Control
Registers when returning from an interrupt.

• Allow interrupt chaining. When servicing an interrupt
and interrupt chaining is enabled, there is no need to
return from the current Interrupt Service Routine (ISR) if
there is another valid interrupt pending to be serviced.
The control of the processor can jump directly from the
current ISR to the next ISR without IAE and IAP.

GPR Shadow Registers

The MIPS32 Architecture optionally removes the need to
save and restore GPRs on entry to high-priority interrupts or
exceptions, and to provide specified processor modes with the
same capability. This is done by introducing multiple copies
of the GPRs, called shadow sets, and allowing privileged
software to associate a shadow set with entry to kernel mode
via an interrupt vector or exception. The normal GPRs are
logically considered shadow set zero.

The number of GPR shadow sets is a build-time option. The
M5150 core allows 1 (the normal GPRs), 2, 4, 8, or 16
shadow sets. The highest number actually implemented is
indicated by the SRSCtlHSS field. If this field is zero, only the
normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be
substituted for the normal GPRs on entry to kernel mode via
an interrupt or exception. Once a shadow set is bound to a
kernel-mode entry condition, references to GPRs operate
exactly as one would expect, but they are redirected to
registers that are dedicated to that condition. Privileged

10 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

software may need to reference all GPRs in the register file,
even specific shadow registers that are not visible in the
current mode, and the RDPGPR and WRPGPR instructions
are used for this purpose. The CSS field of the SRSCtl register
provides the number of the current shadow register set, and
the PSS field of the SRSCtl register provides the number of the
previous shadow register set that was current before the last
exception or interrupt occurred.

If the processor is operating in VI interrupt mode, binding of
a vectored interrupt to a shadow set is done by writing to the
SRSMap register. If the processor is operating in EIC interrupt
mode, the binding of the interrupt to a specific shadow set is
provided by the external interrupt controller and is configured
in an implementation-dependent way. Binding of an
exception or non-vectored interrupt to a shadow set is done by
writing to the ESS field of the SRSCtl register. When an
exception or interrupt occurs, the value of SRSCtlCSS is copied
to SRSCtlPSS, and SRSCtlCSS is set to the value taken from the
appropriate source. On an ERET, the value of SRSCtlPSS is
copied back into SRSCtlCSS to restore the shadow set of the
mode to which control returns.

Modes of Operation

The M5150 core implements the Virtualization Module by
supporting five modes of operation:

• Guest-user mode is most often used for applications
programs.

• Guest-kernel mode is typically used for handling
exceptions and operating-system kernel functions,
including CP0 management and I/O device
accesses.

• Root-user mode is used to run hypervisor (Virtual
Machine Monitor (VMM)) user software.

• Root-kernel mode is used to run hypervisor (Virtual
Machine Monitor (VMM)) kernel software.

• Debug mode is used during system bring-up and
software development. Refer to the EJTAG section
for more information on debug mode.

Figure 3 shows the virtual address map of the MIPS
Architecture.

Figure 3 M5150 Core Virtual Address Map

Memory Management Unit (MMU) in Guest
Modes

The M5150 core offers one of the two choices of MMU that
interfaces between the execution unit and the cache
controller, namely Guest Translation Lookaside Buffer
(GTLB) and Fixed Mapping Translation (FMT).

Fixed Mapping Translation (FMT)

A FMT is smaller and simpler than a TLB. Like a TLB, the
FMT performs virtual-to-physical address translation and
provides attributes for the different segments. Those
segments that are unmapped in a TLB implementation (kseg0
and kseg1) are translated identically by the FMT.

Guest Translation Lookaside Buffer (GTLB)

A GTLB-based MMU consists of three translation buffers: a
16 or 32 dual-entry fully associative Joint TLB (JTLB), a 4-
entry fully associative Instruction TLB (ITLB), and a 4-entry

kuseg

kseg0

kseg1

kseg2

kseg3

0x00000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF

0xA0000000

0xBFFFFFFF
0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Kernel Virtual Address Space

Unmapped, 512 MB
Kernel Virtual Address Space

Uncached

Unmapped, 512 MB
Kernel Virtual Address Space

User Virtual Address Space

1. This space is mapped to memory in user or kernel mode,
 and by the EJTAG module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/EJTAG1

Mapped, 2048 MB

Mapped, 512 MB

Memory Mapped

Memory Mapped

12 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

Joint TLB (JTLB)

The M5150 core implements a 16 or 32 dual-entry, fully
associative JTLB that maps 32 virtual pages to their
corresponding physical addresses. The purpose of the TLB is
to translate virtual addresses and their corresponding ASIDs
into a physical memory address. The translation is performed
by comparing the upper bits of the virtual address (along with
the ASID) against each of the entries in the tag portion of the
joint TLB structure.

The JTLB is organized as pairs of even and odd entries
containing pages that range in size from 4-Kbytes (or 1-
Kbyte) to 256-Mbytes into the 4-Gbyte physical address
space. By default, the minimum page size is normally 4-
Kbytes on the M5150 core; as a build time option, it is
possible to specify a minimum page size of 1-Kbyte.

The JTLB is organized in page pairs to minimize the overall
size. Each tag entry corresponds to 2 data entries: an even
page entry and an odd page entry. The highest order virtual
address bit not participating in the tag comparison is used to
determine which of the data entries is used. Since page size
can vary on a page-pair basis, the determination of which
address bits participate in the comparison and which bit is
used to make the even-odd determination is decided
dynamically during the TLB look-up.

Instruction TLB (ITLB)

The ITLB is a small 4-entry, fully associative TLB dedicated
to performing translations for the instruction stream. The
ITLB only maps minimum sized pages/subpages. The
minimum page size is either 1-Kbyte or 4-Kbyte, depending
on the PageGrain and Config3 registers.

The ITLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for the
ITLB. If a fetch address cannot be translated by the ITLB, the
JTLB is used to attempt to translate it in the following clock
cycle. If successful, the translation information is copied into
the ITLB for future use. There is a two-cycle ITLB miss
penalty.

Data TLB (DTLB)

The DTLB is a small 4-entry, fully associative TLB dedicated
to performing translations for loads and stores. Similar to the
ITLB, the DTLB only maps either 1-Kbyte or 4-Kbyte pages/
subpages depending on the PageGrain and Config3 registers.

The DTLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for the
DTLB. The JTLB is looked-up in parallel with the DTLB to
minimize the DTLB miss penalty. If the JTLB translation is

successful, the translation information is copied into the
DTLB for future use. There is a one cycle DTLB miss
penalty.

Cache Controllers

The M5150 core instruction and data cache controllers
support caches of various sizes, organizations, and set-
associativity. For example, the data cache can be 2 Kbytes in
size and 2-way set associative, while the instruction cache can
be 8 Kbytes in size and 4-way set associative. Each cache can
each be accessed in a single processor cycle. In addition, each
cache has its own 32-bit data path, and both caches can be
accessed in the same pipeline clock cycle. Refer to the section
entitled "MIPS32® M5150 Core Optional or Configurable
Logic Blocks" on page 13 for more information on
instruction and data cache organization.

The cache controllers also have built-in support for replacing
one way of the cache with a scratchpad RAM. See the section
entitled "Scratchpad RAM" on page 15 for more information
on scratchpad RAMs.

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) serves as the interface between
the M5150 core and the outside world. Primarily, the BIU
receives read/write requests from the cache controller. These
requests will be arbitrated and turned into bus transactions via
the AMBA-3 AHB-lite protocol. The characteristics of the
BIU are:

• AHB-Lite is a subset of the AHB bus protocol that
supports a single bus master. It does not support complex
Split/Retry operations.

• Shared 32-bit read/write address bus

• Two unidirectional 32-bit data buses for read and write
operations

• Single read/write and burst (WRAP mode) read/write are
supported.

Hardware Reset

The M5150 core has two types of reset input signals:
SI_Reset and SI_ColdReset. Functionally, these two signals
are ORed together within the core and then used to initialize
critical hardware state.

Both reset signals can be asserted either synchronously or
asynchronously to the core clock, SI_ClkIn, and will trigger a
Reset exception. The reset signals are active high and must be
asserted for a minimum of 5 SI_ClkIn cycles. The falling edge
triggers the Reset exception.

MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01 13

The primary difference between the two reset signals is that
SI_Reset sets a bit in the Status register; this bit could be used
by software to distinguish between the two reset signals, if
desired. The reset behavior is summarized in Table 5.

One (or both) of the reset signals must be asserted at power-
on or whenever hardware initialization of the core is desired.
A power-on reset typically occurs when the machine is first
turned on. A hard reset usually occurs when the machine is
already on and the system is rebooted.

In debug mode, EJTAG can request that a soft reset (via the
SI_Reset pin) be masked. It is system-dependent whether this
functionality is supported. In normal mode, the SI_Reset pin
cannot be masked. The SI_ColdReset pin is never masked.

Power Management

The M5150 core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The core
is a static design that supports slowing or halting the clocks,
which reduces system power consumption during idle
periods.

The M5150 core provides two mechanisms for system-level
low-power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CP0 Status register provides a software
mechanism for placing the system into a low-power state. The
state of the RP bit is available externally via the SI_RP signal.
The external agent then decides whether to place the device
in a low-power mode, such as reducing the system clock
frequency.

Three additional bits,StatusEXL, StatusERL, and DebugDM
support the power management function by allowing the user

to change the power state if an exception or error occurs while
the M5150 core is in a low-power state. Depending on what
type of exception is taken, one of these three bits will be
asserted and reflected on the SI_EXL, SI_ERL, or EJ_DebugM
outputs. The external agent can look at these signals and
determine whether to leave the low-power state to service the
exception.

The following four power-down signals are part of the system
interface and change state as the corresponding bits in the
CP0 registers are set or cleared:

• The SI_RP signal represents the state of the RP bit (27) in
the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1)
in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2)
in the CP0 Status register.

• The EJ_DebugM signal represents the state of the DM bit
(30) in the CP0 Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is by
executing the WAIT instruction. When the WAIT instruction
is executed, the internal clock is suspended; however, the
internal timer and some of the input pins (SI_Int[5:0], SI_NMI,
SI_Reset, and SI_ColdReset) continue to run. Once the CPU
is in instruction-controlled power management mode, any
interrupt, NMI, or reset condition causes the CPU to exit this
mode and resume normal operation.

The M5150 core asserts the SI_Sleep signal, which is part of
the system interface bus, whenever the WAIT instruction is
executed. The assertion of SI_Sleep indicates that the clock
has stopped and the M5150 core is waiting for an interrupt.

Local clock gating

The majority of the power consumed by the M5150 core is in
the clock tree and clocking registers. The core has support for
extensive use of local gated-clocks. Power-conscious
implementors can use these gated clocks to significantly
reduce power consumption within the core.

MIPS32® M5150 Core Optional or
Configurable Logic Blocks

The M5150 core contains several optional or configurable
logic blocks, shown as shaded in the block diagram in Figure
1.

Table 5 Reset Types

SI_Reset SI_ColdReset Action

0 0 Normal operation, no reset.

1 0 Reset exception; sets
StatusSR bit.

X 1 Reset exception.

14 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

Instruction Cache

The instruction cache is an optional on-chip memory block of
up to 64 Kbytes. Because the instruction cache is virtually
indexed, the virtual-to-physical address translation occurs in
parallel with the cache access rather than having to wait for
the physical address translation. The tag holds 22 bits of
physical address, a valid bit, and a lock bit. The LRU
replacement bits (0-6b per set depending on associativity) are
stored in a separate array.

The instruction cache block also contains and manages the
instruction line fill buffer. Besides accumulating data to be
written to the cache, instruction fetches that reference data in
the line fill buffer are serviced either by a bypass of that data,
or data coming from the external interface. The instruction
cache control logic controls the bypass function.

The M5150 core supports instruction-cache locking. Cache
locking allows critical code or data segments to be locked into
the cache on a “per-line” basis, enabling the system
programmer to maximize the efficiency of the system cache.

The cache-locking function is always available on all
instruction-cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE
instruction.

Data Cache

The data cache is an optional on-chip memory block of up to
64 Kbytes. This virtually indexed, physically tagged cache is
protected. Because the data cache is virtually indexed, the
virtual-to-physical address translation occurs in parallel with
the cache access. The tag holds 22 bits of physical address, a
valid bit, and a lock bit. There is an additional array holding
dirty bits and LRU replacement algorithm bits (0-6b
depending on associativity) for each set of the cache.

In addition to instruction-cache locking, the M5150 core also
supports a data-cache locking mechanism identical to the
instruction cache. Critical data segments are locked into the
cache on a “per-line” basis. The locked contents can be
updated on a store hit, but cannot be selected for replacement
on a cache miss.

The cache-locking function is always available on all data
cache entries. Entries can then be marked as locked or
unlocked on a per-entry basis using the CACHE instruction.

Cache Memory Configuration

The M5150 core incorporates on-chip instruction and data
caches that can each be accessed in a single processor cycle.

Each cache has its own 32-bit data path and can be accessed
in the same pipeline clock cycle. Table 6 lists the M5150 core
instruction and data cache attributes.

Cache Protocols

The M5150 core supports the following cache protocols:

• Uncached: Addresses in a memory area indicated as
uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without
changing cache contents.

• Write-through, no write allocate: Loads and instruction
fetches first search the cache, reading main memory only
if the desired data does not reside in the cache. On data
store operations, the cache is first searched to see if the
target address is cache resident. If it is resident, the cache
contents are updated, and main memory is also written. If
the cache look-up misses, only main memory is written.

• Write-through, write allocate: Similar to above, but
stores missing in the cache will cause a cache refill. The
store data is then written to both the cache and main
memory.

• Write-back, write allocate: Stores that miss in the cache
will cause a cache refill. Store data, however, is only
written to the cache. Caches lines that are written by
stores will be marked as dirty. If a dirty line is selected
for replacement, the cache line will be written back to
main memory.

Table 6 Instruction and Data Cache Attributes

Parameter Instruction Data

Size 0 - 64 Kbytes 0 - 64 Kbytes

Organization 1 - 4 way set asso-
ciative

1 - 4 way set asso-
ciative

Line Size 16 bytes 16 bytes

Read Unit 32 bits 32 bits

Write Policies NA write-through with
write allocate,
write-through
without write allo-
cate,
write-back with
write allocate

Miss restart after
transfer of

miss word miss word

Cache Locking per line per line

MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01 15

Scratchpad RAM

The M5150 core also supports replacing up to one way of
each cache with a scratchpad RAM. Scratchpad RAM is
accessed via independent external pin interfaces for
instruction and data scratchpads. The external block which
connects to a scratchpad interface is user-defined and can
consist of a variety of devices. The main requirement is that
it must be accessible with timing similar to an internal cache
RAM. Normally, this means that an index will be driven one
cycle, a tag will be driven the following clock, and the
scratchpad must return a hit signal and the data in the second
clock. The scratchpad can easily contain a large RAM/ROM
or memory-mapped registers. Unlike the fixed single-cycle
cache timing, however, the scratchpad interface can also
accommodate back-stalling the core pipeline if data is not
available in a single clock. This back-stalling capability can
be useful for operations which require multi-cycle latency. It
can also be used to enable arbitration of external accesses to
a shared scratchpad memory.

The core’s functional interface to a scratchpad RAM is
slightly different from the interface to a regular cache RAM.
Additional index bits allow access to a larger array, with 1MB
of scratchpad RAM versus 4KB for a cache way. These bits
come from the virtual address, so on a M5150 core care must
be taken to avoid virtual aliasing. The core does not
automatically refill the scratchpad way and will not select it
for replacement on cache misses.

microMIPS™ ISA

The M5150 core supports the microMIPS ISA, which
contains all MIPS32 ISA instructions (except for branch-
likely instructions) in a new 32-bit encoding scheme, with
some of the commonly used instructions also available in 16-
bit encoded format. This ISA improves code density through
the additional 16-bit instructions while maintaining a
performance similar to MIPS32 mode. In microMIPS mode,
16-bit or 32-bit instructions will be fetched and recoded to
legacy MIPS32 instruction opcodes in the pipeline’s I stage,
so that the M5150 core can have the same microAptiv™ UP
microarchitecture. Because the microMIPS instruction
stream can be intermixed with 16-bit halfword or 32-bit word
size instructions on halfword or word boundaries, additional
logic is in place to address the word misalignment issues, thus
minimizing performance loss.

Depending on the optimization preference when both
MIPS32 and microMIPS ISAs are configured, the
microMIPS can be configured in performance mode, with
multiple recoding blocks being executed in parallel with Tag
compare for each Way Associativity, or with a single
recoding block after the Tag compare logic to improve area
usage.

DSP Module

The M5150 core implements an optional DSP Module to
benefit a wide range of DSP, Media, and DSP-like algorithms.
The DSP module is highly integrated with the Execution Unit
and the MDU in order to share common logic and to include
support for operations on fractional data types, saturating
arithmetic, and register SIMD operations. Fractional data
types Q15 and Q31 are supported. Register SIMD operations
can perform up to four simultaneous add, subtract, or shift
operations and two simultaneous multiply operations.

In addition, the DSP Module includes some key features that
efficiently address specific problems often encountered in
DSP applications. These include, for example, support for
complex multiply, variable-bit insert and extract, and
implementation and use of virtual circular buffers. The
extension also makes available three additional sets of HI-LO
accumulators to better facilitate common accumulate
functions such as filter operation and convolutions.

Floating Point Unit (FPU)

The M5150 core Floating Point Unit (FPU) implements the
MIPS Instruction Set Architecture for floating-point
computation. The implementation supports the ANSI/IEEE
Standard 754 (IEEE Standard for Binary Floating-Point
Arithmetic) for single and double precision data formats. The
FPU can be programmed to have thirty-two 32-bit or 64-bit
floating-point registers used for floating point operations.

The performance is optimized for single precision formats.
Most instructions have one FPU cycle throughput and four
FPU cycle latency. The FPU implements the multiply-add
(MADD) and multiply-sub (MSUB) instructions with
intermediate rounding after the multiply function. The result
is guaranteed to be the same as executing a MUL and an ADD
instruction separately, but the instruction latency, instruction
fetch, dispatch bandwidth, and the total number of register
accesses are improved.

IEEE denormalized input operands and results are supported
by hardware for some instructions. IEEE denormalized
results are not supported by hardware in general, but a fast
flush-to-zero mode is provided to optimize performance. The
fast flush-to-zero mode is enabled through the FCCR
register, and use of this mode is recommended for best
performance when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction
execution. This pipeline operates in parallel with the integer
core pipeline and does not stall when the integer pipeline
stalls. This allows long-running FPU operations, such as
divide or square root, to be partially masked by system stalls
and/or other integer unit instructions. Arithmetic instructions

MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01 17

32b data transfer, no Coprocessor 1 support, single issue in-
order data transfer to coprocessor, one out-of-order data
transfer from coprocessor.

The coprocessor interface is designed to ease integration with
customer IP. The interface allows high-performance
communication between the core and coprocessor. There are
no late or critical signals on the interface.

CorExtend® User-defined Instruction
Extensions

An optional CorExtend User-defined Instruction (UDI) block
enables the implementation of a small number of application-
specific instructions that are tightly coupled to the core’s
execution unit. The interface to the UDI block is external to
the M5150 core.

Such instructions may operate on a general-purpose register,
immediate data specified by the instruction word, or local
state stored within the UDI block. The destination may be a
general-purpose register or local UDI state. The operation
may complete in one cycle or multiple cycles, if desired.

Anti-Tamper Security Features

The core provides security features that counter side-channel
attacks attempting to reveal the code or data running on the
processor.

Random slips can be generated in order to disguise the timing
and power profile of an algorithm executing on the processor.
This reduces the core’s vulnerability to side channel attacks.
Power management techniques are used to ensure that the
power profile of a random slip is indistinguishable from the
power profile of the executing instructions.

The core contains two pseudo random number generators.
One is a general- purpose generator for use by software. The
other is used by the random slip and random cache-line refill
order logic. The generators may optionally be designed by the
implementor of the core, thus allowing the quality of the
pseudo random number sequences to be suited for any needs.

The optional scrambling module allows scrambling of the
data in SPRAM modules and in all RAM arrays associated
with the cache. Scrambling can be done on both the data and
address bus on the RAM arrays. For the cache module, WS
and Tag RAM arrays as well as the data RAM array can be
scrambled. The scrambling module has a configuration
interface that allows the scrambling engine to be configured
from software. The implementation of the scrambling module
is defined by the implementor of the core. This assures the
widest possible flexibility in the choice of scrambling

schemes and allows the implementor to decide on the trade-
off between area and speed versus security.

EJTAG Debug Support

The M5150 core provides for an Enhanced JTAG (EJTAG)
interface for use in the software debug of application and
kernel code. In addition to standard user mode and kernel
modes of operation, the M5150 core provides a Debug mode
that is entered after a debug exception (derived from a
hardware breakpoint, single-step exception, etc.) is taken and
continues until a debug exception return (DERET) instruction
is executed. During this time, the processor executes the
debug exception handler routine.

The EJTAG interface operates through the Test Access Port
(TAP), a serial communication port used for transferring test
data in and out of the M5150 core. In addition to the standard
JTAG instructions, special instructions defined in the EJTAG
specification specify which registers are selected and how
they are used.

Debug Registers

Four debug registers (DEBUG, DEBUG2, DEPC, and DESAVE)
have been added to the MIPS Coprocessor 0 (CP0) register
set. The DEBUG and DEBUG2 registers show the cause of the
debug exception and are used for setting up single-step
operations. The DEPC (Debug Exception Program Counter)
register holds the address on which the debug exception was
taken, which is used to resume program execution after the
debug operation finishes. Finally, the DESAVE (Debug
Exception Save) register enables the saving of general-
purpose registers used during execution of the debug
exception handler.

To exit debug mode, a Debug Exception Return (DERET)
instruction is executed. When this instruction is executed, the
system exits debug mode, allowing normal execution of
application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug mode.
There are two types of simple hardware breakpoints
implemented in the M5150 core: Instruction breakpoints and
Data breakpoints. Additionally, complex hardware
breakpoints can be included, which allow detection of more
intricate sequences of events.

The M5150 core can be configured with the following
breakpoint options:

20 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

description of these fields. The value of some options that do
not have a functional effect on the core are not visible to
software.

Table 8 Build-time Configuration Options

Option Choices Software Visibility 5150 5151

Integer register file sets 1, 2, 4, 8 or 16 SRSCtlHSS 1, 2, 4, 8 or 16 1, 2, 4, 8 or 16

Integer register file imple-
mentation style

Flops or generator N/A Flops or generator Flops or generator

Virtualization number of
guests

1, 2, 3, 4, 5, 6, 7 N/A 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7

Virtualization address trans-
lation control

RTLB or RPU GuestCtl0AT RTLB or RPU RTLB or RPU

MMU type FMT or TLB Config0MT FMT or TLB FMT or TLB

TLB size 16 or 32 dual entries Config1MMUSize 16 or 32 dual entries 16 or 32 dual entries

TLB small page support 1 KB support Config3SP, PageGrain 1 KB support 1 KB support

ISA support MIPS32 only, or
microMIPS only, or
MIPS32 and microMIPS
present

Config3ISA MIPS32 only, or
microMIPS only, or
MIPS32 and microMIPS
present

MIPS32 only, or
microMIPS only, or
MIPS32 and microMIPS
present

microMIPS implementation
style
(both MIPS32 & micro-
MIPS are configured)

High performance or min area
(default is High performance
style)

N/A High performance or min area
(default is High performance
style)

High performance or min area
(default is High performance
style)

DSP Module Present or not Config3DSPP, Config3DSP2P Present or not Present or not

Multiply/divide implementa-
tion style

High performance or min area
(if DSP is not present)

ConfigMDU High performance or min area
(if DSP is not present)

High performance or min area
(if DSP is not present)

Floating-point Unit Present or not Config1FP Present or not Not present

Adder implementation style Structured or Simple N/A Structured or Simple Structured or Simple

EJTAG TAP controller Present or not N/A Present or not Present or not

EJTAG TAP Fast Debug
Channel (FDC)

Present or not (even when TAP
is present)

DCRFDCI Present or not (even when TAP
is present)

Present or not (even when TAP
is present)

EJTAG TAP FDC FIFO size Two TX/two RX, or eight TX/
four RX 32-bit registers

FDCFG Two TX/two RX, or eight TX/
four RX 32-bit registers

Two TX/two RX, or eight TX/
four RX 32-bit registers

Instruction/data hardware
breakpoints

0/0, 2/1, 4/2, 6/2, or 8/4 DCRInstBrk, IBSBCN

DCRDataBrk, DBSBCN

0/0, 2/1, 4/2, 6/2, or 8/4 0/0, 2/1, 4/2, 6/2, or 8/4

Hardware breakpoint trig-
ger by

Address match, or
Address match and address
range

IBCnhwart, DBCnhwart Address match, or
Address match and address
range

Address match, or
Address match and address
range

Complex breakpoints 0/0, 6/2, or 8/4 DCRCBT 0/0, 6/2, or 8/4 0/0, 6/2, or 8/4

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01 21

Performance Counters Present or not Config1PC Present or not Present or not

iFlowtrace hardware Present or not Config3ITL Present or not Present or not

iFlowtrace memory location On-core or off-chip IFCTLofc On-core or off-chip On-core or off-chip

iFlowtrace on-chip memory
size

256B - 8MB N/A 256B - 8MB 256B - 8MB

Watch registers 0 - 8 WatchHiM 0 - 8 0 - 8

CorExtend interface Present or not ConfigUDI* Present or not Present or not

Coprocessor2 interface Present or not Config1C2* Present or not Present or not

Instruction ScratchPad
RAM interface

Present or not ConfigISP* Present or not Present or not

Data ScratchPad RAM inter-
face

Present or not ConfigDSP* Present or not Present or not

Early Chip-Enable Present or not N/A Present or not Present or not

I-cache size 0 - 64 KB Config1IL, Config1IS 0 - 64 KB 0 - 64 KB

I-cache associativity 1, 2, 3, or 4 Config1IA 1, 2, 3, or 4 1, 2, 3, or 4

D-cache size 0 - 64 KB Config1DL, Config1DS 0 - 64 KB 0 - 64 KB

D-cache associativity 1, 2, 3, or 4 Config1DA 1, 2, 3, or 4 1, 2, 3, or 4

Hardware Cache Initializa-
tion

Present or not
(Note: A sample HCI module is
provided but SoC designers
will need to be responsible for
an HCI module suitable for the
design, and placed in the Ram-
wrappers.)

Config7HCI Present or not
(Note: A sample HCI module is
provided but SoC designers
will need to be responsible for
an HCI module suitable for the
design, and placed in the Ram-
wrappers.)

Present or not
(Note: A sample HCI module is
provided but SoC designers
will need to be responsible for
an HCI module suitable for the
design, and placed in the Ram-
wrappers.)

Memory BIST Integrated (March C+ or IFA-
13), custom, or none

N/A Integrated (March C+ or IFA-
13), custom, or none

Integrated (March C+ or IFA-
13), custom, or none

Scan options for improved
coverage around cache
arrays

Present or not N/A Present or not Present or not

Cache & ScratchPad RAM
Parity

Present or not ErrCtlPE Present or not Present or not

Interrupt synchronizers Present or not N/A Present or not Present or not

Interrupt Vector Offset Compute from Vector Input or
Immediate Offset

N/A Compute from Vector Input or
Immediate Offset

Compute from Vector Input or
Immediate Offset

Clock gating Top-level, integer register file
array, TLB array, fine-grain, or
none

N/A Top-level, integer register file
array, TLB array, fine-grain, or
none

Top-level, integer register file
array, TLB array, fine-grain, or
none

Table 8 Build-time Configuration Options (Continued)

Option Choices Software Visibility 5150 5151

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

22 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

Revision History

PC Sampling Present or not Debug Control Register Present or not Present or not

Data Address Sampling Present or not Debug Control Register Present or not Present or not

PRID User defined Processor Identi-
fication

PRIDCompanyOpt User defined Processor Identi-
fication

User defined Processor Identi-
fication

Table 8 Build-time Configuration Options (Continued)

Option Choices Software Visibility 5150 5151

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

Revision Date Description

01.00 December 31, 2013 • Initial 1_0_0 release.

01.01 February 25, 2015 • Add configuration options for M5151..

23 MIPS32® M5150 Processor Core Family Datasheet, Revision 01.01

Public. This publication contains proprietary information which is subject to change without notice and is
supplied ‘as is’, without any warranty of any kind.

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

