

MIPS Debug OpenOCD with Bus Blaster 1 Revision 1.1.23

MIPS Debug OpenOCD with Bus Blaster Probe

and WiFIRE Probe-On-Board

Getting Started Guide

Filename : MIPS Debug OpenOCD with Bus Blaster.Getting Started Guide.docx

Version : 1.1.23 External Issue

Issue Date : 31 May 2017

Author : MIPS

Revision 1.1.23 2 Getting Started Guide

Contents

1. Introduction to OpenOCD, Bus Blaster, Codescape MIPS SDK Essentials, and the Digilent
WiFIRE Board .. 3

1.1. OpenOCD ... 3
1.2. Bus Blaster v3c ... 3
1.3. Codescape MIPS SDK Essentials .. 3
1.4. Digilent WiFIRE Board .. 4

Technical Support ... 5

2. Installing OpenOCD .. 6

2.1. Installing the Windows USB Driver ... 6
2.2. Getting OpenOCD Up and Running on Linux .. 7

3. Installing Codescape MIPS SDK Essentials .. 8

4. Using OpenOCD .. 9

4.1. Running OpenOCD .. 9
4.2. Interfacing with OpenOCD .. 9

4.2.1. Telnet connection to OpenOCD ... 10
4.2.2. Common OpenOCD Commands ... 10
4.2.3. MIPS-specific OpenOCD Commands .. 11

5. Using GDB with OpenOCD .. 13

5.1. GDB useful commands ... 13
5.2. Additional GDB commands .. 14
5.3. MIPS-specific OpenOCD commands run from gdb ‘mon’ prefix 16

6. Connecting OpenOCD to the Probe-On-Board (POB) of the WiFIRE rev D for Windows . 17

6.1. Installing WinUSB Windows Driver for the POB ... 17
6.2. Running OpenOCD Debug with the WiFIRE board and POB .. 18

7. Connecting a Bus Blaster probe to a chipKIT Wi-FIRE rev C development board 22

List of Figures
Figure 1 - Digilent Wi-FIRE Rev D board with 2 x 10 x .05” EJTAG/Trace Connector 17

Figure 2 - EJTAG Adapter Board .. 22

Figure 3 - Flying lead connections on the Wi-FIRE board .. 23

Figure 4 - Bus Blaster to Wi-FIRE adapter schematic .. 24

MIPS Debug OpenOCD with Bus Blaster 3 Revision 1.1.23

1. Introduction to OpenOCD, Bus Blaster, Codescape MIPS

SDK Essentials, and the Digilent WiFIRE Board

This document provides assistance to set up and configure OpenOCD to work with a Bus Blaster (v3c)
debug adapter (also called a JTAG probe) to debug MIPS targets.

1.1. OpenOCD

The Open On-Chip Debugger (OpenOCD) provides debugging, in-system programming, and boundary-
scan testing for embedded target devices.
It does so with the assistance of a hardware debug adapter which provides an interface to the target
being debugged.
Further details can be found at http://openocd.org.

1.2. Bus Blaster v3c

Bus Blaster v3c for MIPS is a high-speed debug adapter designed for supporting JTAG debug with
various MIPS processors. It is controlled from a high-speed USB port of a PC and has a 14-pin target
connector and interface cable with buffering logic suitable for MIPS EJTAG targets.
Bus Blaster v3c is available from Seeed Studio:
http://www.seeedstudio.com/depot/Bus-Blaster-v3c-for-MIPS-Kit-p-2258.html

1.3. Codescape MIPS SDK Essentials

The Codescape MIPS SDK Essentials provides tools for software development, compiling, building programs,
and source debugging with GDB and is a free download available from:

https://www.mips.com/develop/tools/codescape-mips-sdk/

http://openocd.org/
http://www.seeedstudio.com/depot/Bus-Blaster-v3c-for-MIPS-Kit-p-2258.html
https://community.imgtec.com/developers/mips/tools/codescape-mips-sdk

Revision 1.1.23 4 Getting Started Guide

1.4. Digilent WiFIRE Board

This board is based on the Microchip PIC32MZ microcontroller. It includes a WiFi module, MicroSD card
connector, USB 2.0 Hi-speed controller, 2 push buttons, potentiometer, and 4 LEDs.

The Resource Center for this board is available at:

https://reference.digilentinc.com/chipkit_wifire/chipkit_wifire

https://reference.digilentinc.com/chipkit_wifire/chipkit_wifire

MIPS Debug OpenOCD with Bus Blaster 5 Revision 1.1.23

Technical Support
Technical Support and a community support forum is provided at
 https://www.mips.com/forums/cat/mips-insider/

https://community.imgtec.com/forums/cat/mips-insider/

Revision 1.1.23 6 Getting Started Guide

2. Installing OpenOCD
The general IMG webpage for Bus Blaster, OpenOCD, and other low-cost debug tools is located at:
https://www.mips.com/develop/tools/mips-debug-and-trace-probes/bus-blaster/

Scroll down to the OpenOCD section. There is a section “Getting started guide:” which provides a
download of this document.

Next is the IMG OpenOCD installer which provides an installer for the latest Windows executable. It is
based on the OpenOCD 0.10.0 build. The latest version of the IMG-specific version of OpenOCD is
OpenOCD-0.10.0.2-img-installer.exe. There may be a more current release on this web page. This
installer provides the option of installing Codescape Essentials, the compiler toolchain, which is
prompted.

The Linux version of OpenOCD is provided as source code in a .tgz file format and provided in the
“Source code:” section.

Detailed instructions needed to build OpenOCD from source files are available on the OpenOCD website:
http://openocd.org.

2.1. Installing the Windows USB Driver

OpenOCD uses an installer program Zadig to install WinUSB, the probe’s Windows USB driver. The
screenshots in this section were taken from running the program “zadig_2.2.exe” from the web site
http://zadig.akeo.ie/ .
Older versions of the zadig program can be downloaded as a 7z compressed file from:
https://codescape.mips.com/components/probes/openocd/tools/zadig/

To install WinUSB follow the steps below:

1. Connect the Bus Blaster to your PC using the USB cable. Windows will attempt to locate driver

software, cancel this.
2. Open the Zadic.exe installer program.
3. In the top field of the Zadig installer select ‘BUSBLASTERv3c (Interface 0)’.

WinUSB is shown in the Driver field. If the field is blank and there are no selections when clicking
on the down-arrow, click on Options > List All Devices.

https://community.imgtec.com/developers/mips/tools/mips-debug-and-trace-probes/bus-blaster
http://openocd.org/
http://zadig.akeo.ie/
http://codescape-mips-sdk.imgtec.com/components/probes/openocd/tools/zadig/

MIPS Debug OpenOCD with Bus Blaster 7 Revision 1.1.23

4. Click ‘Install Driver’.
A progress bar is shown while the driver installs and confirmation of successful installation is given.

5. Repeat the above steps for ‘(Interface 1)’.
6. To confirm installation, in Windows ‘Device Manager’ which can be found in Control Panel >

System and Security > System, you should see the entry below for ‘Universal Serial Bus devices’.

Note: If you encounter problems with using a USB device with libusb on Windows, you may need to

install a libusb device filter. To do so follow these instructions from Tin Can Tools:
http://www.tincantools.com/wiki/Libusb_Device_Filter

2.2. Getting OpenOCD Up and Running on Linux

 When invoking OpenOCD, include this command line option:

-f interface/mips_busblaster.cfg

mips_busblaster.cfg is the interface script that is matched to the particular VID/PID combination, and uses
the open source FTDI driver linked into OpenOCD. That script is not part of upstream OpenOCD yet, but
it can be found in the source code release found on

https://www.mips.com/develop/tools/mips-debug-and-trace-probes/bus-blaster/

Also, manually edit /etc/udev/rules.d/99-openocd.rules to include the following line; this is required for
device permissions to be set correctly after the device is connected to USB:

ATTRS{idVendor}=="0403", ATTRS{idProduct}=="7780", MODE="664", GROUP="plugdev"

In the future the mips_busblaster.cfg and the rules patch will be included in the OpenOCD release.

http://www.tincantools.com/wiki/Libusb_Device_Filter
https://community.imgtec.com/developers/mips/tools/mips-debug-and-trace-probes/bus-blaster

Revision 1.1.23 8 Getting Started Guide

3. Installing Codescape MIPS SDK Essentials
Codescape MIPS SDK Essentials provides you with the tools for developing software for MIPS targets
including toolchain, QEMU (for Linux), and libraries.
Information about Codescape MIPS SDK Essentials is located at:

 https://www.mips.com/develop/tools/codescape-mips-sdk/

You can make selections to install just those components you need for your target MIPS processor and
for the type of applications you will be developing. This will speed up installation. During installation follow
any instructions given on screen.

http://community.imgtec.com/developers/mips/tools/codescape-mips-sdk
https://community.imgtec.com/developers/mips/tools/codescape-mips-sdk/download-codescape-mips-sdk-essentials/
https://community.imgtec.com/developers/mips/tools/codescape-mips-sdk/download-codescape-mips-sdk-essentials/

MIPS Debug OpenOCD with Bus Blaster 9 Revision 1.1.23

4. Using OpenOCD

4.1. Running OpenOCD

The generic command for opening OpenOCD is:

<install_path>/openocd.exe –s <path_to_scripts> -f <scriptpath>/<cfg_file1>

 -f <scriptpath>/<cfg_file2> –c “init”

When using OpenOCD, open a Windows command window (cmd.exe), enter the path and name of the
OpenOCD executable, -s and the path to the scripts, enter one or more -f followed by the path to the
specific configuration class and .cfg configuration file names, and -c “init”. The –c “init” executes the
configuration command ‘init’, which terminates the configuration stage and enters the run stage; it helps
when the startup scripts manage tasks such as resetting the target or programming flash etc.
A batch file can be made for starting up OpenOCD. An example for the WiFIRE rev D board follows (see
section 9 for more details):

set OpenOCD_Path=<install_dir>/OpenOCD-0.10.0-img/scripts
start "OpenOCD" cmd.exe /K openocd.exe –s “%OpenOCD_Path%” -f interface/wifire-pob.cfg –f

target/wifire.cfg -c "init"

Note that the latest version of OpenOCD may have a different version number.
The order of the configuration files is important. One configuration file inclusion can be dependent on the
previous configuration file. This is true for the two configuration files in the example above.

Here is an example running OpenOCD for the MIPS Bus Blaster probe connected to the WiFIRE rev C
development board (see section 10 for more details). This example also starts a telnet session which
provides a command window to issue OpenOCD commands (see section 5).

start "OpenOCD" cmd.exe /K openocd.exe -s "<install_dir>/openocd-
0.10.0-img/scripts" -f interface/mips_busblaster.cfg -f target/wifire.cfg -c "init"

start "telnet" cmd.exe /K telnet localhost 4444

A third method is to create an icon on your desktop and edit the target string to include the parameters as
shown above. You can then assign a shortcut keystroke to that icon.

An html-based OpenOCD on-line manual can be found at:
http://openocd.sourceforge.net/doc/html/index.html

4.2. Interfacing with OpenOCD

OpenOCD runs as a daemon. It accepts connections from other programs, but does not provide any
means for you to pass commands to it directly. Once OpenOCD is running on your computer you will
need to connect to it through another program, such as Telnet. (GDB can also connect to the OpenOCD
daemon).

http://openocd.sourceforge.net/doc/html/index.html

Revision 1.1.23 10 Getting Started Guide

4.2.1. Telnet connection to OpenOCD

Before you can run a Telnet client, it must be enabled in Windows. To do this, navigate to the Windows
Features dialog (Control Panel > Programs > Programs and Features > Turn Window features on or off)
and enable ‘Telnet Client’.
To run Telnet and connect to OpenOCD, open a new command prompt (cmd.exe). From any directory,
type:

telnet localhost 4444

You should see a simple prompt (>). From this prompt you will be able to send commands to OpenOCD.
To exit the Telnet prompt, type ‘exit’ or press Ctrl+c.
At the > prompt enter:

> reset halt

The mips_busblaster.cfg ‘adapter_khz 15000” sets the Bus Blaster adapter speed to a 15MHz TCK rate.
The wifire.cfg ‘mips32 scan_delay 1500’ line sets the minimum delay for the MIPS EJTAG fast data
feature to operate. In some targets the value may need to be higher, for example, 3000.

4.2.2. Common OpenOCD Commands

Command Description

reset [run | halt | init] run (default) - reset and start the target running.
halt - immediately halt and reset the target.
init - immediately halt the target and execute reset-
init script.

halt Halt target and enter debug mode

load_image filename address

[[bin|ihex|elf|s19] min_address

max_length]

Load image into memory using fast load. address is
target memory offset from its load address.
min_addr - ignore data below
max_length - max number of bytes to load

resume [address] Resume target execution at current PC or optionally
set the PC.

step Single step target by one instruction.

mdw addr [count]

mdh addr [count]

mdb addr [count]

Display memory contents, w=word, h=half, b=byte
Optional ‘count’ parameter for how many to display.

mww addr value [count]

mwh addr value [count]

mwb addr value [count]

Write word, half, or byte into memory at specified
address.
Optional ‘count’ parameter for how many to write.

reg [num|name [val]] Show register value by number or name, or change
value of register.
ex: reg, reg pc, reg r1, reg status, reg cause

MIPS Debug OpenOCD with Bus Blaster 11 Revision 1.1.23

Command Description

bp [address len [hw]]

rbp address

Show bp list or set a bp at address of len bytes.
ex: bp 0x80100000 4 hw
rbp – remove bp

wp [address len [(r|w|a)]]

rwp address

Show data watchpoint list (also called data
breakpoint) or set a wp at address of len bytes (4
bytes is supported). r=read, w=write, a=access
ex: wp 0xbf800000 4 w

version Display version of OpenOCD server

exit Exits the current Telnet session.

shutdown Close the OpenOCD daemon, disconnecting all
clients.

4.2.3. MIPS-specific OpenOCD Commands

Command Description

mips32 cpuinfo Displays information for the current CPU core.

mips32 cp0 [[reg_name |

 regnum select] [value]]

Default is to display all cp0 registers
reg_name – Name of cp0 register to be read or
modified. Ex. mips32 cp0 status
regnum - register number
select - register select number
 ex: mips32 cp0 25 0
value - optional value to write into the register

mips32 dsp [regname] [value] Default is to display all dsp registers.
regname - name of register (ex: config) read or
modified
value - optional value to write into the register

mips32 dump_tlb [entry] Default is to display all tlbs
Command valid at any time
entry - dump only the specified entry or index

Revision 1.1.23 12 Getting Started Guide

Command Description

mips32 invalidate [all | inst | data

| allnowb | datanowb]

Invalidate either or both of the instruction and
data caches. The MIPS core does not update the
instruction cache if new code is written to
memory. Typically, invalidate should be issued
after writing to an instruction region of memory.
The allnowb and datanowb options will step
through the data cache clearing the cache tags.
This is useful for initializing the cache before the
memory controller is set up.
all - writeback data and invalidate both inst and
data caches. This is the default.
inst - invalidate only the inst cache
data - writeback and invalidate only the data
cache
allnowb - invalidate both inst and data cache
without writeback
datanowb - invalidate only the data cache
without writeback

mips32 scan_delay [value] value - delay in nsec between fast data writes;
3000 is typical. When enabled, downloading is
faster. If the GDB ‘load’ command fails, try
increasing this number.
value >= 2000000 - turns off fast data and puts
the probe download into legacy mode (which is
slower but reliable).

mips32 semihosting

['enable'|'disable']

Activate support for semi-hosting operations.
Command valid at any time.

MIPS Debug OpenOCD with Bus Blaster 13 Revision 1.1.23

5. Using GDB with OpenOCD
The OpenOCD command window is used primarily to get the probe connection working with the target.
Once that is established, GDB is a more user-friendly debug environment, supporting symbolic debugging
which includes viewing source lines, setting breakpoints on line numbers, stepping a line at a time,
referencing function and variable names, and having the ability to view code in disassembled instruction
format. Once GDB can be started up and run, there is little need to start up the OpenOCD telnet window
because OpenOCD commands can be issued in the GDB command window by prefixing them with ‘mon’,
short for ‘monitor’.

Before starting GDB, here are several tips on GDB initialization. Please refer to GDB documentation for
further details:

 GDB will read and execute the ‘.gdbinit’ file during start-up if it is in the current working directory or

in your home directory. The home directory on Windows is pointed to by the HOME environment
variable.

 An alternative to creating ‘.gdbinit’ is to specify an initialization file when starting GDB and use the -
x option, for example: ‘mips-mti-elf-gdb -x startup.txt’

 the -ix option executes the commands in the file before loading the inferior (an inferior is an object
in GDB that represents the state of each program execution).

 the -nx option prevents init files from being executed
 the -q (quiet) option will suppress intro messages
 To display the list of init files loaded by GDB at start-up (shown at the end of the output) use the –

help switch

To connect GDB to OpenOCD use the following commands:

mips-mti-elf-gdb <elf file>

target remote localhost:3333

set endian little

These commands assume your path environment variable includes the path <install_dir>\
\Toolchains\mips-mti-elf\<version>\bin\.

A handy gdb command reference card is available in <install_dir>\Documentation directory.

5.1. GDB useful commands

Command Description

Ctrl-c gdb command to halt the target processor.
monitor reset halt Reset and stop the processor. Notice the program stop running.

Note: the gdb ‘monitor’ command passes the ‘reset halt’ text through
to the OpenOCD command parser which executes the reset
command.
Shortcut: mo reset halt

Revision 1.1.23 14 Getting Started Guide

Command Description

b main Set a breakpoint at the main function. (Short for: "break main".)
b *0x80000330 Set a breakpoint at instruction address 0x80000330.
i b List the breakpoints. (Short for: "info breakpoint").
c Continue the processor execution. (Short for: "continue".) It will stop

at the first breakpoint, in this case, when it gets to main.
c Continue to the next break point. (You can also simply press enter to

repeat the last command.)
p count Print the value of the variable count. (Short for: "print count".) For

example, count is now 15.
p/x count Prints the value of the count variable in hexadecimal (0xf).
p/x &count Prints the address of count (for example, 0x8003ffd4).
i r Print the value of all registers. (Short for: info registers.)
i r v0 Print the value of register v0 only.
i r s0 Print the value of register s0.
stepi Executes a single instruction. (Type p/x $pc to print the value of the

program counter or i r pc)
Shortcut: si

d 1 Delete breakpoint 1 (type i b to list the breakpoints with their
numbers)

monitor reset run Reset and run the processor. This will run the processor without
breakpoints, even if breakpoints have been set.
Shortcut: mo reset run

Note that gdb and OpenOCD may get out of sync with the target
processor state. You may need to issue the continue command (c) to
put gdb in the run state.

5.2. Additional GDB commands

Command Example / Description

load <elf_file_name> Example 1: load program.elf

Description: Load an executable file (in ELF format) into the
MIPS target.

Note: the processor must be halted (Ctrl-c) before loading a
new ELF file. After loading the executable, then run it by typing
c.
If Ctrl-c does not halt the target, it may be because gdb
and OpenOCD are out of sync. Try ‘c’ before Ctrl-c.

MIPS Debug OpenOCD with Bus Blaster 15 Revision 1.1.23

Command Example / Description

disas

Disassemble instructions.
Examples:

disas or
disas (*$pc) (disassemble from program counter)
disas 0xbfc00000,+100 (+100 is length in bytes)
disas /m main (disassemble mixed source/assembly of
the main function)
disas /r main (show raw bytes as well as instructions)
Note: If the above commands don't work (for example return
nops), first halt the processor (Ctrl-c) and then enter the
program: type mo reset halt, set a breakpoint at main (b
main), and continue to that point (c). Then use the above
commands.

x/i 0xbfc00000

x/<n>i $pc

x/16w $sp-0x10

Examine instruction – similar to disas
Examine n instructions from current pc
 Example: x/10i $pc

Examine 16 words down from top of stack
set disassemble-next-line

on|off

If on, gdb will display disassembly of next source line when
program halts (Ctrl-c)

p/x <var>=<value>

set var <varname>=<value>

Modifying memory
p/x count=0x1000FFFF set the value of variable ‘count’
set var count=59

set <reg>=<value> Modifying a register
set $pc=0xbfc00000

Description: set the pc to the reset vector; required after
doing a mon reset halt, to synchronize OpenOCD and gdb

monitor mdw addr <#words>

Similar OpenOCD commands
mon mdw 0x80000100 16

Description: Display 16 words of memory starting at memory
address 0x80000100. The default number of words is 1.
Processor must be halted (Ctrl-c).

monitor mww addr word

[<#words>]

Memory write word
mon mww 0x80000100 0xaaaaaaaa

Description: Write value 0xaaaaaaaa to memory address
0x80000100.
Memory fill
mon mww 0x80010000 0xffffffff 0x100

Description: fill 0x100 words of memory with all ones

Processor must be halted (Ctrl-c).
<return> Description: Pressing the return/enter key in gdb with no

command typed at the prompt will repeat the last command.

Revision 1.1.23 16 Getting Started Guide

Command Example / Description

hbreak <address> Hardware instruction breakpoint

hb 23 Set hardware breakpoint on line 23 of current module.
Description: Useful when debugging firmware or code that is
installed/copied into memory after boot up.
Use i b command to view breakpoints and watchpoints.
To tell how many breakpoints are available, use the
 mon mips32 cpuinfo command. Example output is:
Max Number of Instr Breakpoints: 8

watch <address>

rwatch <address>

awatch <address>

Watchpoints which are hardware–based; program runs at full
speed.
Cause a breakpoint when the load or store address matches
the address of a variable, accessed with the type selected.
watch *0xbf800000 break when this memory-mapped
register is written to.
Description: Useful to halt execution when a memory location
is written (watch), read (rwatch), or accessed (read or written -
awatch).
Use i b command to view breakpoints and watchpoints
Important Note: to continue execution, you must disable the
watchpoint, step over the lw or sw instruction, then re-enable
the watchpoint because the MIPS processor halts before the
load or store instruction completes. For example:

watch *0xbf800000 #set watch on write to mem-mapped
register
<assume assigned to watchpoint 1>
c
<processor halts>
dis 1 #disable watchpoint 1
si #single step over lw or sw instruction
en 1 #enable watchpoint 1
c #processor continues execution

To tell how many watchpoints are available, use the
 mon mips32 cpuinfo command. Example output is:
Max Number of Data Breakpoints: 4

5.3. MIPS-specific OpenOCD commands run from gdb ‘mon’ prefix

All the OpenOCD commands specific to MIPS can be issued in the GDB console by prefixing the
command with ‘mon’ which stands for monitor. Refer to section 5.2.3.for the list of commands that start
with mips32. Example: mon mips32 cp0 displays the values of all the coprocessor 0 registers.

MIPS Debug OpenOCD with Bus Blaster 17 Revision 1.1.23

6. Connecting OpenOCD to the Probe-On-Board (POB) of the
WiFIRE rev D for Windows

Figure 1 - Digilent Wi-FIRE Rev D board with 2 x 10 x .05” EJTAG/Trace Connector

OpenOCD uses an installer program Zadig to install WinUSB, the probe’s Windows USB driver. The
screenshots in this section were taken from running the program “zadig_2.2.exe” from the web site
http://zadig.akeo.ie/ .
Older versions of the zadig program can be downloaded as a 7z compressed file from:
https://codescape.mips.com/components/probes/openocd/tools/zadig/

6.1. Installing WinUSB Windows Driver for the POB

To install WinUSB follow the steps below:

1. Connect a USB cable from your Windows PC to the micro USB connector on the left side of the

board. This will power the board. Windows will attempt to locate driver software, cancel this.
2. Open the Zadic.exe installer program.
3. In the top field of the Zadig installer, if the field is blank and there are no selections when clicking on

the down-arrow, click on Options > List All Devices.
4. Select ‘Digilent WiFIRE (Interface 0)’ then click on ‘Replace Driver’. It should look similar to the

following:

http://zadig.akeo.ie/
http://codescape-mips-sdk.imgtec.com/components/probes/openocd/tools/zadig/

Revision 1.1.23 18 Getting Started Guide

After the install the Zadig installer will look something like the following, with the bottom line of “Driver
Installation: SUCCESS”:

5. The Device Manager should show the USB device as

6. Close the installer.

6.2. Running OpenOCD Debug with the WiFIRE board and POB

The OpenOCD connection uses two configuration files – WiFIRE-POB.cfg located in the interface
directory and wifire.cfg located in the target directory. The following two commands can be put in a batch
file and executed to 1) start up openocd and initialize the POB connection and 2) start a telnet window
which allows openocd commands to be issued to the target, such as ‘halt’.

start "OpenOCD" cmd.exe /K openocd.exe -s "<install_dir>/openocd-
0.10.0-img/scripts" -f interface/wifire-pob.cfg -f target/wifire.cfg -c "init"

start "telnet" cmd.exe /K telnet localhost 4444

MIPS Debug OpenOCD with Bus Blaster 19 Revision 1.1.23

Note: the –s and path sets up the path for OpenOCD to search for configuration files. This may not be
required in your setup.

Plug in the USB cable to the PC and the other end to the left-facing micro-USB WiFIRE board connector.
Run the above batch file. The initial output should resemble the following:

Following are examples of several OpenOCD commands that can be issued from the telnet console, and
the resulting output. The target is a PIC32MZ-EF which includes a MIPS M5150 processor core.

Open On-Chip Debugger
> halt

target halted in MIPS32 mode due to debug-request, pc: 0x9d001c80

> mips32 cpuinfo

vzase: 1

cpuCore: MIPS_M5150

cputype: 4194480

 vendor: MIPS

 cpuid: 0

instr Set: MIPS32 (at reset) and microMIPS

prid: 1a720

rtl: 20.0.0

Instr Cache: 16384

 Data Cache: 4096

Max Number of Instr Breakpoints: 8

Max Number of Data Breakpoints: 4

mta: false

MMU Type: TLB

TLB Entries: 16

dsp: true

Smart Mips ASE: false

msa: false

mvh: false

cdmm: true

> step

target halted in MIPS32 mode due to single-step, pc: 0x9d001c88

> reg

Revision 1.1.23 20 Getting Started Guide

===== mips32 registers

(0) r0 (/32): 0x00000000

(1) r1 (/32): 0xFFBFFFFF

(2) r2 (/32): 0x00000000

(3) r3 (/32): 0x000000BF

(4) r4 (/32): 0x000000FA

(5) r5 (/32): 0x00000000

(6) r6 (/32): 0x00000000

(7) r7 (/32): 0x00000000

(8) r8 (/32): 0x9D003764

(9) r9 (/32): 0x00000000

(10) r10 (/32): 0x01000000

(11) r11 (/32): 0x00000001

(12) r12 (/32): 0x00000000

(13) r13 (/32): 0x00001000

(14) r14 (/32): 0x00000010

(15) r15 (/32): 0x00000004

(16) r16 (/32): 0xBF820000

(17) r17 (/32): 0x0BEBC200

(18) r18 (/32): 0x00000040

(19) r19 (/32): 0xBF860000

(20) r20 (/32): 0xBF860000

(21) r21 (/32): 0xBF820000

(22) r22 (/32): 0x80000000

(23) r23 (/32): 0xA0001000

(24) r24 (/32): 0x042075A3

(25) r25 (/32): 0x027909E9

(26) r26 (/32): 0x00000000

(27) r27 (/32): 0xB5DC76CA

(28) r28 (/32): 0x80008380

(29) r29 (/32): 0x8007FF60

(30) r30 (/32): 0x8007FF60

(31) r31 (/32): 0x9D003494

(32) status (/32): 0x25000001

(33) lo (/32): 0x05F5E100

(34) hi (/32): 0x00000000

(35) badvaddr (/32): 0xDF894225

(36) cause (/32): 0x00801C00

(37) pc (/32): 0x9D001C88

<floating point registers removed>

> resume

> halt

target halted in MIPS32 mode due to debug-request, pc: 0x9d001c80

> version

Open On-Chip Debugger 0.10.0-IMG-00055-g3aee415 (2017-01-27-15:19)

> mips32 cp0

 userlocal: 0xd5c35ffb

 hwrena: 0x00000000

 badvaddr: 0xdf894225

 count: 0x85ec9f2d

 compare: 0x85ecea60

 status: 0x25000001

 intctl: 0x00000020

 srsctl: 0x1c000000

 view_ipl: 0x00000000

 cause: 0x00801c00

 nestedexc: 0x00000000

MIPS Debug OpenOCD with Bus Blaster 21 Revision 1.1.23

 epc: 0x9d001c80

 nestedepc: 0x9d001c80

 prid: 0x0001a720

 ebase: 0x9d000000

 cdmmbase: 0x00000002

 config: 0x80240483

 config1: 0x9e9b0d9b

 config2: 0x80000000

 config3: 0x8ca2bd68

 config4: 0xa00c0000

 config5: 0x00000001

 config7: 0x80000000

 lladdr: 0x009b7542

 debug: 0x40128020

 tracecontrol: 0x00000000

 tracecontrol2: 0x00000000

usertracedata1: 0x00000000

 tracebpc: 0x00000000

 depc: 0x9d001c80

usertracedata2: 0x00000000

 perfctl0: 0x80000000

 perfcnt0: 0x5f5febfa

 perfctl1: 0x00000000

 perfcnt1: 0xeffee630

 errctl: 0x00000000

 errorepc: 0x9fc004c4

 desave: 0x00000004

Revision 1.1.23 22 Getting Started Guide

7. Connecting a Bus Blaster probe to a chipKIT Wi-FIRE rev
C development board

To use Bus Blaster probe with the older Digilent chipKIT Wi-FIRE rev C board use the Digilent/EJTAG
Adapter Board as shown below. The adapter connection details are given at the end of this section in
Table 1.

1. Connect the adapter board to the 6-pin JTAG connector JP3 on the Wi-FIRE board as shown in

Figure 2.

Figure 2 - EJTAG Adapter Board

2. Make sure that pins 1 to 6 on the adapter board connect to the JTAG connector on the Wi-FIRE

board.
3. Using the flying leads supplied make the following connections as shown in Figure 3:

 Pins 2 and 3 on the adapter board pin header to GND J2 and J3 on the Wi-FIRE board.
 Pin 4 on the adapter board pin header to pin 1 of JP1 on the Wi-FIRE board (pink lead

shown in figure).

MIPS Debug OpenOCD with Bus Blaster 23 Revision 1.1.23

Figure 3 - Flying lead connections on the Wi-FIRE board

Revision 1.1.23 24 Getting Started Guide

4. Connect the Bus Blaster to the 14 way IDC connector on the adapter board using the ribbon cable
supplied.

Signal Name Bus Blaster v3c EJTAG Wi-FIRE JP3 JTAG Wi-FIRE JP1

TRST* 1 NC

TDI 3 2

TDO 5 3

TMS 7 1

TCK 9 4

RST* 11 1 (MCLR)

DINT 13 NC

GND 2 5

Table 1 - Bus Blaster to Wi-FIRE adapter connection details

Figure 4 - Bus Blaster to Wi-FIRE adapter schematic

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

