

Breaking the Gigahertz Speed Barrier with an Automated

Flow Using Commercial Standard Cell Libraries and
Memories

Soumya Banerjee
Avishek Panigrahi

MIPS Technologies, Inc.

sban@mips.com

avishek@mips.com

Dan Lefrancois
Sharrone Smith

Synopsys, Inc.

daniel.lefrancois@synopsys.com
sharrone.smith@synopsys.com

ABSTRACT

Traditionally, developing a high performance embedded processor required a custom design
methodology, hand-crafted libraries and memories, and a team of specialized layout and circuit
designers dedicated to the design and implementation of the processor. MIPS Technologies and
Synopsys have worked together to develop an automated design methodology based on IC
Compiler for the next-generation MIPS32® 74K™ core family – enabling SoC designers to
achieve near-custom results exceeding 1GHz, using off-the-shelf 65nm process, libraries and
memories. This paper highlights how the collaborative efforts of both companies resulted in an
automated RTL-to-GDSII flow.

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 2

Table of Contents

1.0 Introduction... 4
2.0 Key ingredients for achieving 1+ GHz ... 4
2.1 Overview of the MIPS32® 74K™ core architecture... 4
2.2 Design considerations for high-speed processor IP.. 6
2.2.1 Design constraints... 6
2.2.2 Clock gating.. 6
2.2.3 Setup and access paths to and from the memories.. 7
2.2.4 Optimized implementation scripts .. 7
2.3 High-performance off-the-shelf physical IP and process ... 7
3.0 High-performance tools and methodology ... 8
3.1 Timing challenges in the MIPS32® 74K™ core... 8
3.1.1 Challenge #1: Clock enable timing... 8
3.1.2 Challenge #2: Memory interface timing paths ... 9
3.2 Generating an optimal netlist using DC Topographical (DC-T) technology.................... 10
3.2.1 Overview of the DC-T flow.. 10
3.2.2 DC-T to ICC flow description .. 11
3.2.3 XG mode and testability ... 11
3.2.4 Review of DC-T results .. 11
3.3 Generating an optimal floorplan using ICC design planning ... 12
3.3.1 Overview of the ICC design planning - floorplan exploration flow............................. 12
3.3.2 ICC design planning floorplan results .. 16
3.3.3 Description of custom power grid .. 18
3.3.4 Power network analysis (PNA)... 21
3.4 Overview of ICC flow .. 22
3.4.1 Overview of the ICC Recommended Methodology (ICC RM) flow 22
3.4.2 place_opt optimization strategies ... 24
3.4.3 clock_opt and useful skew optimization strategies... 24
3.4.4 route_opt / signal integrity optimization techniques .. 28
3.4.5 Correlation between ICC, Star-RCXT and PrimeTime SI.. 28
3.5 Review of ICC results... 32
4.0 Conclusions and recommendations... 32
4.1 Benefits of the methodology... 32
4.2 Areas for future investigation and improvement .. 32
4.3 Reference flow for the 74K™ core and other MIPS® cores ... 33
5.0 Acknowledgements... 33
6.0 References... 33
7.0 Appendix... 33

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 3

Table of Figures

Figure 1 – Pipeline architecture of the MIPS32® 74KTM processor core 5
Figure 2 - Clock gating enable timing paths... 9
Figure 3 - Memory interface timing paths .. 10
Figure 4 - Design Compiler results summary ... 11
Figure 5 - Explore mode flow in ICC ... 13
Figure 6 - Explore mode results in ICC.. 14
Figure 7 - explore_mode.tcl script .. 15
Figure 8 - Floorplan strategy - initial (left) and revised (right) .. 16
Figure 9 - gen_tdf.tcl... 17
Figure 10 - Generated TDF file .. 17
Figure 11 – Custom power grid for the 74K™ core. .. 18
Figure 12 - PG pin connections .. 19
Figure 13 - Only M6 to M1 stacked vias allowed via set_preroute_drc_strategy 19
Figure 14 – Layer-to-layer power connections set via set_preroute_drc_strategy 20
Figure 15 - ICC PNA IR drop map... 21
Figure 16 - The 74K™ core ICC flow.. 23
Figure 17 - write_port_latencies.tcl script.. 26
Figure 18 - adjust_latency.tcl script ... 27
Figure 19 - Total capacitance correlation (values in fF)... 29
Figure 20 – Coupling capacitance correlation (cap values in fF) ... 30
Figure 21- Example of PT SI script for accuracy (pessimism is removed) 31
Figure 22 - ICC final results ... 32

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 4

1.0 Introduction
This paper highlights the key “ingredients”, investigations and results from a joint MIPS

Technologies/Synopsys project to deliver a high-performance design methodology to end users.
The goal of the project was simple – develop a methodology for the MIPS32® 74K™
synthesizable core that would enable it to achieve processing speeds of 1 GHz or greater, using
off-the-shelf 65nm process, standard cells and memories. In this process, the companies
identified a number of tradeoffs in the design methodology and refined it to produce reliable,
high-quality results.

2.0 Key ingredients for achieving 1+ GHz

• An automation-friendly processor core, the MIPS32 74K core, with clean constraints
• Commercially available 65nm standard cells and memories
• An optimized implementation methodology using Galaxy™ Design Platform, which

includes Design Compiler® Ultra (DC Ultra™) and IC Compiler (ICC) from Synopsys

The first two elements were fixed per our project goals and general industry requirements. The
objective was to deliver the third key element, a straightforward methodology combining high
performance with efficient power consumption. The remainder of this section provides
additional background on the first two elements, and the following sections outline the
investigations and decisions used to create and tune the methodology.

2.1 Overview of the MIPS32® 74K™ core architecture

The MIPS32 74K core family features a superscalar, out-of-order pipeline architecture, designed
to maximize the performance achievable by synthesizable methodology. The 74K core family
implements the MIPS32 Release 2 instruction set as well as the MIPS16e™ Application Specific
Extension (ASE) for code compression and the MIPS® DSP ASE for signal processing
performance. The CorExtend® capability of the 74K core also provides support for the addition
of user-defined instructions. The core supports standard interfaces including the OCP2.1 system
interface and EJTAG3.2 interface.

The 74K core family was designed to achieve a significant performance boost over MIPS
Technologies’ existing line of single-threaded processors. The performance boost is achieved
through a combination of frequency and micro-architectural enhancements, including the ability
to dispatch two instructions per cycle as well as the ability to issue instructions out of order.

The dual issue capability is achieved through two pipelines referred to as the AGEN and ALU
pipelines. The AGEN pipeline is 17 stages long and implements all Memory Transfer
(Load/Store) and Control Transfer (Branch/Jump) instructions. The ALU pipeline is 16 stages
long and implements all the other instructions from the MIPS32 Release 2 instruction set.
Instructions can be dispatched and completed in these pipelines out-of-order.

The deeply pipelined 17-stage pipe was instrumental in achieving the frequency boost while
maintaining a fully synthesizable approach. Extra pipeline stages were added to some of the key

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 5

frequency bottleneck areas. For example, the data cache and instruction cache accesses span 3
stages each in order to enable the use of generator-based SRAMs and synthesizable technology.
Similarly the Arithmetic Logic Unit (ALU) is pipelined and spans two pipeline stages as
compared to one stage in previous generations of synthesizable cores from MIPS Technologies.

Figure 1 shows the 74K core pipeline in further detail. The pipeline itself operates as several
mini-pipelines that communicate via buffers. The ALU and AGEN execution pipelines are fed
by a common 8-stage front end which is responsible for Instruction Fetch, Decode and Dispatch.
The ALU and AGEN execution pipelines are also supported by a common 2-stage backend
pipeline which is responsible for instruction graduation. As instructions complete out-of-order in
the execution pipelines, their results are maintained in temporary storage referred to as
completion buffers. The 2-stage graduation pipe is responsible for committing these results in
order to the architectural state. In addition there is a separate Multiply Divide Pipeline which is
an offshoot of the ALU pipeline as well as a separate Floating Point Pipeline which is totally
decoupled from the integer execution pipelines. The Floating Point Pipeline is also capable of
executing 2 instructions per cycle.

Control signals such as stalls are critical signals on any processor. Splitting the pipelines into
multiple mini-pipelines helps alleviate the problem associated with the propagation of global
stall signals. Additionally, the AGEN and ALU execution pipelines are stall free in order to
reduce the need for stall signal propagation.

Figure 1 – Pipeline architecture of the MIPS32® 74KTM processor core

GR GC

Graduation
Pipeline

18-entry

AGEN Pipeline

14-entry

MB M1 M2 M3 M4

Multiply/Divide Pipeline

Floating Point Pipeline (Optional)

Instruction Decode and
Dispatch Pipeline

8-entry

8-entry

10-entry

Instruction Fetch
Pipeline

128 DD DR IT ID IS
IB

. C2 CI
64

C1

AP AF AM AC AB DS
DM WB

ALU Pipeline

8-entry

EF EM EA EC ES EBDM
DS

WB

Completion buffers
hold intermediate

results

Dual issue floating point

64

Stall-free execution pipelines

2 instructions
per cycle

4 instructions
per cycle

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 6

2.2 Design considerations for high-speed processor IP

A synthesizable IP core dramatically shortens the design cycle, reduces system costs and
accelerates time-to-market for SoC designers. Additionally, synthesizable IP can be targeted to
the process/fab combination of the customer’s choice without having to deal with the long
physical implementation process associated with custom or semi-custom processor cores.
Synthesizable IP cores also provide the additional advantage of supporting various configuration
and build options easily. For example, these options could include different sizes of caches,
inclusion or exclusion of memory BIST, and implementation choices like use of clock gating and
use of memories for register files. These options are essential to optimize the processor for the
distinct requirements of different embedded markets and SoC methodologies.

The IP core must, however, be designed to ensure high-quality, while at the same time providing
a consistent and easy implementation by the customer. The following sections describe some of
the steps taken in designing the 74K processor core for this purpose.

2.2.1 Design constraints

Since the licensee of an IP core is not intimately familiar with the design, the core must be easily
constrainable, using only a small number of constraints.

• In the 74K core, all IOs are fully registered, except for a minimal number of IOs that
cannot necessarily be registered due to requirements of the OCP bus protocol. Fully
registered IOs make it much easier to write constraints that are portable from one
technology to another. Additionally, registered IOs make it easy for the core to be
hardened independent of the context in which it is being deployed on the SoC and thus
easier to reuse.

• The 74K core design uses only 2 mutually asynchronous clock domains: the core clock
and the EJTAG clock.

• There are no false paths or multi-cycle paths in the design other than paths that cross over
from one clock domain to the other. These domain-crossing paths are false by design, as
the two clock domains are meant to be asynchronous to one another.

2.2.2 Clock gating

The MIPS32 74K core uses extensive clock gating for minimizing power consumption. Multiple
granularities or levels of clock gating exist in the design as described below:

• Core-level clock gating – The purpose of clock gating at this level is to shut down the
clocks to most of the core. This mode is invoked by an architectural sleep state for the
processor. This clock gater resides close to the root of the clock tree, and the flop
generating the enable condition for this gater is usually at the leaf-level. The topological
location of this clock gater within the overall clock tree creates an inherently challenging
family of timing paths in the cone of logic building up to the enable pin of this gater. To
ease implementation of this path, the 74K core design ensures that there is no
combinational logic on this path – the entire cone of logic consists of one flop.

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 7

• Block-level gating – The purpose of clock gating at this level is to shut down various
blocks within the core depending on activity in the core. For example, if the instruction
flowing down the pipe does not use the floating point unit, that unit is shut down. The
design issues surrounding block-level clock gating are similar to core-level clock gating
and handled similarly within the design.

• Leaf-level gating – More than 90% of the flops in the design are locally gated. Because
paths ending at these gaters’ enables can have critical timing, and because the ideal clock
assumption systematically under-represents the constraint on such paths (by the amount
of delay through the gater), the flow scripts include compensatory over-constraint for
gater-enable paths. The compensatory over-constraint is only in place for those parts of
the flow which assume ideal clocks.

2.2.3 Setup and access paths to and from the memories

Most microprocessor designs have the setup and access paths to and from the memory at critical
or near-critical timing. The 74K core design alleviated these paths as much as possible through
these means:

• The micro-architecture eliminates short timing path recurrences in the immediate
neighborhood of large memories. In other words, there is no logic path that goes directly
from the output back to the input of such memory, nor a pair of paths that do the same
thing indirectly through one flop, nor a trio that do so through two flops. This style of the
design buys the freedom to provide the memory, and the flops in the following cycle,
with early or late clocks without impacting the design or implementation constraints of
the rest of the core.

• The logic paths in the flop-flop cycle immediately following RAM accesses are designed
to be shorter than other flop-flop paths. This is the source of slack that can be transferred
to the memory access paths via clock skewing by the flow scripts.

2.2.4 Optimized implementation scripts

Ease of implementation is one of the prime challenges in using third-party IP. The 74K core is
packaged together with all synthesis, place-and-route, static timing analysis and verification
scripts necessary to take the core from RTL all the way to GDSII. These scripts are set up so that
an end-user has to make minimal changes such that the design can be easily ported to any
process node with the user’s choice of libraries and memories to obtain the best results.

2.3 High-performance off-the-shelf physical IP and process

When designing the high-performance 74K processor core, MIPS chose a process and library
combination that would be attractive to customers and reflective of current design trends. The
process node choice was 65nm, and the TSMC 65GP process was selected for this evaluation. In
addition, the decision was made upfront to use standard off-the-shelf libraries from TSMC and
memories from Dolphin Technologies. Other premium high-speed libraries and memories could
be used to improve the performance of the 74K core but would increase the cost of development
for licensees and limit the use of the core.

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 8

3.0 High-performance tools and methodology
The third key element in achieving frequencies beyond one gigahertz is an optimized
implementation methodology. Earlier MIPS reference flows were based on Synopsys Design
Compiler (DC), Physical Compiler (PC) and Astro tools. The objective of this evaluation was to
transition to a Design Compiler topographical technology (DC-T) and IC Compiler (ICC) based
methodology for maximum performance.

3.1 Timing challenges in the MIPS32® 74K™ core

The MIPS/Synopsys methodology for the 74K core was developed with knowledge of and
strategies for managing the most pressing timing challenges of the core.

3.1.1 Challenge #1: Clock enable timing

The 74K core has several levels of clock gating. The first level of clock gating is at the root of
the clock tree which can shutdown the whole core and is referred to as core-level clock gating.
The next level of clock gating is at the block-level which can selectively disable various blocks
within the 74K core and is referred to as block-level clock gating. The final level of clock gating
is at the level of individual registers and is referred to as the leaf-level clock gating. Figure 2, on
the next page, describes the various levels of clock gating in the 74K core.

During early stages of synthesis (pre-clock tree), the tools assume that the clocks arrive at the
gaters at the same time as the flops. However, the clock tree synthesis tool traces through these
gaters and tries to match the insertion delay across all flops to achieve minimum skew. This by
definition makes the clock to the gaters earlier than the flops. As a result, the paths that end at
the enable pins of the Integrated Clock Gating cells (ICGs) have an inherent adverse skew after
Clock Tree Synthesis (CTS).

However, during synthesis with ideal clocks, these paths do not see the effects of this adverse
skew and maybe left suboptimal by the synthesis tool. To avoid this problem, the
set_clock_latency command in DC was used to model an earlier clock to the gaters. This
problem is particularly worse with respect to the core-and block-level gaters where the adverse
skew is higher in magnitude. To alleviate this problem, the condition signal driving the enable
pin of the core and block level gaters is registered to minimize logic on the paths ending at these
enable pins.

Special techniques were used in ICC to optimize paths that end at the enable pins of these
various levels of clock gating cells used in the 74K core and are discussed later in section 3.4.3.

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 9

Figure 2 - Clock gating enable timing paths

3.1.2 Challenge #2: Memory interface timing paths

Another timing challenge for the 74K core are paths that setup to the SRAMs used for caches
(FF_A to RAM in Figure 3, on the next page) and paths that start with accessing the SRAMs
(RAM to FF_B). However, the micro-architectural implementation of the 74K processor core
has kept the paths that start from FF_B and end in FF_C (the next stage of the pipeline)
intentionally shorter than the rest of the pipeline. While the setup paths can be eased by delaying
the clocks to the SRAMs, it is important to be able to skew the capture flops (FF_B) so that the
SRAM access paths do not limit the frequency of the design.

In Figure 3, for example, the clocks to the SRAMs as well as the capture flops (FF_B) have been
delayed by an additional 300ps as compared to the average insertion delay to other flops in the
design.

Traditionally in Astro, this was done using ataDefineSyncPin which was a manual
approach to useful skew. This was usually accomplished in Astro by first running Astro CTS and
determining how much delay was needed and then rerunning CTS with ataDefineSyncPin
to define the required latency to the clock pin of each of the SRAMs and the capture flops
(FF_B).

E

E

E

E

SI_ClkIn

CORE_GATER

nFFs

nFFs

nFFs

nFFs

BLK_GATER LEAF_GATER

LEAF_GATER

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 10

In ICC, this flow is automated by skew optimization (skew_opt) which is discussed in section
3.4.3 of this paper. Automated useful skew allows the tool to have better estimation of latencies
for each of the SRAMs and flops depending on their placement and clock insertion delay and
thus usually ends up with a more optimal design as compared to the manual latency
specification.

Figure 3 - Memory interface timing paths

3.2 Generating an optimal netlist using DC Topographical (DC-T) technology

3.2.1 Overview of the DC-T flow

Earlier MIPS reference flows used optimistic wireload models from library vendors for synthesis
in a top-down compile_ultra flow. Additionally, the designs were over-constrained and were
using predicted clock latencies to RAM and clock gater logic. DC-T technology provides the
ability to eliminate usage of wireload model from synthesis and target better timing and area
correlation enabling better prediction of place-and-route results for designs at 65nm nodes or
below. This is achieved through multiple stages of refined net modeling throughout the synthesis
flow during compile_ultra using ICC based placement technology along with physical libraries
and constraints. DC-T technology within DC Ultra requires use of the latest XG mode Tcl shell
and has its own mode entered using the –topographic option to dc_shell-xg-t.

SRAM

FF_C

1.3ns

1.3ns

1.0ns

FF_B FF_A

1.0ns

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 11

3.2.2 DC-T to ICC flow description

The DC-T setup requires the addition of Synopsys-compatible MilkywayTM physical libraries
including TLUplus extraction RC data used for pre-route designs. Current versions of DC-T
technology have the ability to use actual floorplan inputs when doing the refined placement, and
this was necessary in the 74K core design to achieve reasonable results given the number of
fixed macro cells and the significant area of floorplan they require. In this flow a DEF floorplan
was generated using ICC and DC-T extracted the floorplan information from the DEF using the
extract_physical_constraints command and saved this in Tcl format for later use with the –
output option. Rather than allow the pins to be randomly placed, a generic pin constraint was
applied using “set_port_side [get_ports *] -side top” to force the pins to the top side of the
floorplan as desired. report_physical_constraint can be used to see that the floorplan constraints
are accepted and available.

3.2.3 XG mode and testability

Switching to XG mode for DC was relatively easy. Generally, wherever db design binary
commands were used, the ddc commands were used to replace them, while continuing to use the
same db timing libraries. However, some hierarchy manipulation procedures that used the
current_design command had to be upgraded to operate in a top-down manner similar to
PrimeTime® (PT) so that constraints related to latencies associated with the clocks to memories
and clock gaters were not lost.

Additionally, since DC-XG mode DFT commanding has been upgraded, the command syntax
itself had changed and required some updating. The latest ATPG-based test design rule checking
flow using dft_drc was also used inside DC. Finally, ICC uses a SCANDEF file for scan
optimization and expects a stitched netlist from DC, so in addition to compiling a scan-ready
design, the scan chain was stitched inside DC using insert_dft. A follow-up DC-T incremental
compile_ultra is explicitly done since the insert_dft quick incremental compile is not physically
aware and turned off in DC-T. The write_scandef command (xg only) was used to output the
scan information for ICC. Final outputs included physically optimized Verilog netlist,
SCANDEF, ddc binary design, Milkyway design library and reports.

3.2.4 Review of DC-T results

DC-T results correlate better than DC to the post-placement results. This can be useful in
providing a shorter feedback loop on timing paths during RTL or floorplan iterations. The table
below compares area and timing for the 74K core including results from DC/DC-T and the
corresponding results post-placement from ICC.

Clk = 0.84ns DC clk
WNS ns

Place_opt clk
WNS ns

WNS
Corr

DC Area
K

Place_opt
Area K

Area
Corr

DCxg->ICC 0 -0.16ns 19% 1,699 2,016 16%

DC-T-> ICC -0.1 -0.15ns 6% 1,796 2,043 12%

Figure 4 - Design Compiler results summary

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 12

As expected, from the initial observation of DC reports, timing appears significantly slower with
much larger area, but inspection of results after placement indicates that DC-T shows more
predictable results with improved correlation in both area and timing.

3.3 Generating an optimal floorplan using ICC design planning

3.3.1 Overview of the ICC design planning - floorplan exploration flow

Determining the optimal floorplan for a design is a time-consuming manual effort involving
several iterations through the backend tools and then analyzing the design for timing and
congestion issues. Macro and pin placement along with choosing an appropriate aspect ratio for
the design can be quite challenging. Synopsys ICC has built-in design capabilities that help
automate this process and make it easier to come up with a good baseline floorplan.

The 74K core as implemented in this evaluation has 18 hard macros and the biggest challenge in
floorplanning the 74K core is in finding an optimal location for these hard macros. The design
exploration capabilities inside ICC design planning were used in this evaluation to generate
several floorplans for the 74K core. Parameters that affect the quality of macro placement were
the main variables involved in generating these floorplans. ICC automatically places the macros
as well as the standard cells and allows the direct measurement of QoR dependency on the hard
macro placement.

The “ICC design planning recommended methodology” was used for the work described above.
This make-based flow consists of two major steps. The first step creates the initial starting design
and floorplan based on user settings. The next step could be doing timing and routing feasibility
analysis for a given netlist and floorplan or running a design exploration flow to generate several
different floorplans to find an optimal solution. In this evaluation, the design exploration flow
was used to come up with an optimal floorplan for the 74K core.

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 13

Figure 5, below, shows the details of the exploration flow utilizing the IC design planning
capabilities within ICC.

Report Zero Intercconnect
Timing

Connect PG Ports

Create Floorplan
(DEF / floorplan file /
 TDF+initialize_floorplan)

Import design
(MW / Verilog+SDC / DDC)

Additional Placement & PNS
Constraints

Fix Macros
(Skip / Selected / All)

Additional Reporting
init_design_icc.tcl

R epo rt Q oR & Tim ing

S ave & O utput F loo rp lan

P ow er Netw o rk S ynth esis
/ An alysis

P roto / G lobal Route

P roto / G lobal Route

In P lace O ptim izatio n

V irtu al Flat P lacem ent

R epo rt Q oR & Tim ing

S ave & O utput F loo rp lan

P ow er Netw o rk S ynth esis
/ An alysis

P roto / G lobal Route

P roto / G lobal Route

In P lace O ptim izatio n

V irtu al Flat P lacem entSource
explore.tcl
proc_explore.
tcl

gen_explore_table.pl
(Parse results &
 create HTML table)

Save current CEL
(Starting point for all runs)

Figure 5 - Explore mode flow in ICC

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 14

Figure 6 - Explore mode results in ICC

Figure 6, above, shows the QoR results for various floorplans by changing various parameters in
explore mode. A fixed aspect ratio was chosen for all the floorplans and only the following
parameters were varied in the course of the experiments in this evaluation:

• congestion-driven placement
• timing-driven placement
• macro_on_edge
• auto grouping

The first two in the list above affect placement of the standard cells and the last two affect
placement of the hard macros. The macro_on_edge parameter forces all the macro cells to be
placed on the boundary of the block and the auto grouping parameter clusters macros of the same
type together. The tool offers other choices of parameters that can be tweaked in the design
exploration flow but were not evaluated in this trial. The best results on the 74K core were
obtained by turning on timing-driven and congestion-driven placement knobs in the tool, as well
as using the macro_on_edge parameter along with auto grouping for the hard macros as can be
seen in Figure 8.

Name of Run and CEL
(Customizable)

Best Results in Each
Column are highlighted

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 15

Figure 7, below, shows the design exploration Tcl script used for generating the various
floorplans along with settings used to generate these floorplans and directly reflect the
experiments carried out in the course of this evaluation.

Figure 7 - explore_mode.tcl script

###

ICC Design Planning RM
Version 2007.03
###

Variable defaults and legal values based on ICC 2007.03
N/A means not a create_fp_placement option or parameter
"Brief_Description" column below intends to give you quick reference of what the
option does.
Please refer to man page of create_fp_placement or set_fp_placement_strategy for
more details.

Legend Default <Range> (Correspondent command)
Brief_Description
A run number N/A <integer> for tracking purpose
B objective N/A <string> for tracking purpose
C macros on edge off <on,off> (set_fp_placement_strategy -
macros_on_edge) place macros on the edges of chip or plan group
D auto grouping low <none,user_only,low,high> (set_fp_placement_strategy -
auto_grouping) controls amount of macro array packing
none: no grping | user_only: only user defined
ones created | low: array for small macros | high: array for all macros
E hierarchy gravity on <on,off> (create_fp_placement -
no_hierarchy_gravity) on : with hier gravity on
F congestion driven off <on,off> (create_fp_placement -congestion_driven)
G timing driven off <on,off> (create_fp_placement -timing_driven) ...
A B C D E F G ...
dp_explore run0 default off low on off ...
dp_explore run1 default+cong off low on on ...
dp_explore run2 default+cong+timing off low on on ...
dp_explore run3 default+macros_on_edge on low on off ...
dp_explore run4 default+macros_on_edge+timing on low on off ...
dp_explore run5 default+macros_on_edge+cong+timing on low on on ...
dp_explore run6 default+hier_off off low off off ...
dp_explore run7 default+hier_off+congestion off low off on ...
dp_explore run8 default+hier_off+grouping+macros_on_edge on high off off ...
dp_explore run9 default+hier_off+grouping+macros_on_edge+timing on high off off ...

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 16

3.3.2 ICC design planning floorplan results

Figure 8 - Floorplan strategy - initial (left) and revised (right)

During this evaluation, it has been observed that placing the pins on one side of the core
generates best timing results. Additionally this allows the core to be placed in a corner of the
SoC, out of the way of all other logic.

A Tcl script was used to automatically create the TDF (Top Design Format) file on-the-fly in
ICC that specifies the pin locations for all the pins and is shown in Figure 9, on the next page.
The PIN_LAYER and PIN_SIDE variables allow the user to customize the flow with respect to
their choice of layer and side for the pins. The width of the pin was chosen to be the minimum
width of the specified PIN_LAYER. The gen_tdf.tcl script will get all of the ports in the design,
and write a TDF file in the appropriate format. Figure 10 on the next page, shows a sample of the
final TDF output file.

I/O pins constrained to top
Added Soft placement blockages

Moved
Macros

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 17

 Figure 9 - gen_tdf.tcl

Figure 10 - Generated TDF file

#===
Filename: gen_tdf.tcl
Description: File to generate TDF constraints for ports

#==

sh touch io_new.tdf
set layer_num [get_layer_attribute -layer $PIN_LAYER layer_number]
set layer_width [get_layer_attribute -layer $PIN_LAYER minWidth]

if [file exists $ICC_IN_TDF_FILE] {
 file remove $ICC_IN_TDF_FILE
}

foreach_in_collection pname [get_ports *] {
 echo "pin [get_attribute $pname full_name] $layer_num
\
 $layer_width $layer_width \"$PIN_SIDE\"" >>
$ICC_IN_TDF_FILE
 }

pin OC_MData[61] 33 0.100000 0.100000 "top"
pin OC_DMA_SData[50] 33 0.100000 0.100000 "top"
pin L2_cerr_indx[0] 33 0.100000 0.100000 "top"
pin OC_DMA_SData[40] 33 0.100000 0.100000 "top"
pin OC_DMA_MData[1] 33 0.100000 0.100000 "top"
pin OC_SData[26] 33 0.100000 0.100000 "top"
pin OC_DMA_SData[56] 33 0.100000 0.100000 "top"
pin OC_SData[54] 33 0.100000 0.100000 "top"
pin SI_ClkOut 33 0.100000 0.100000 "top"
pin SI_ExceptionBase[17] 33 0.100000 0.100000 "top"
.
.
.

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 18

3.3.3 Description of custom power grid

ICC provides the capability to automatically synthesize a power grid. However, for this
evaluation a custom power grid was used based on previous Astro flow experiences with IR drop
analysis and routability. Metal layers 6, 7, 8 and 9 were used for the power grid with very wide
straps in METAL9. A side effect of the heavy METAL9 power grid was that automatic Power
Network Synthesis (PNS) would add stacked vias all the way from METAL9 to standard cell
power in METAL1 resulting in serious congestion problems as a lot of routing tracks were cutoff
in lower layers.

To avoid this problem with stacked vias, stacked vias were only allowed from the lowest layer of
the power grid, METAL6 in this case. This was accomplished by setting the MIN and MAX
layer setting using the set_preroute_drc_strategy available in ICC. METAL9 connects down
only to METAL8, METAL8 connects down only to METAL7, METAL7 connects down to
METAL6, and finally METAL6 connects with a stacked via down to METAL1. This avoids
having a stacked via from METAL9 all the way down to METAL1.

Figures 11 to 14 that follow, describe the power grid used for this implementation of the 74K™
core. Figure 12 on the next page shows the Tcl script used to generate the custom power grid.

Figure 11 – Custom power grid for the 74K™ core.

METAL6: 1um

METAL7: 2um METAL8: 4um

METAL9: 12um

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 19

Figure 12 - PG pin connections

Figure 13 - Only M6 to M1 stacked vias allowed via set_preroute_drc_strategy

Stacked VIAs from
M6 to M1

VIA6 (VIA from
M7 to M6)

#--
Vertical straps
#--

set die_area_urx [get_attribute [current_design] die_area_urx]
set die_area_urx [expr $die_area_urx/1000]
set die_area_ury [get_attribute [current_design] die_area_ury]
set die_area_ury [expr $die_area_ury/1000]

Top(Horizontal)

set_preroute_drc_strategy -min_layer M8 -max_layer M9

create_power_straps -direction $PG_TOP_DIRECTION -nets $MW_GROUND_NET -layer
$PG_TOP_METAL -width $PG_WIDTH_TOP \
-configure step_and_stop -step $PG_PITCH_TOP -stop $die_area_ury -start_at 0 \
-keep_floating_wire_pieces \
-do_not_merge_targets -ignore_parallel_targets

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 20

Figure 14 – Layer-to-layer power connections set via set_preroute_drc_strategy

VIA8 (METAL9 to
METAL8)

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 21

3.3.4 Power network analysis (PNA)

Some preliminary PNA was done in ICC as a sanity check to verify that the power grid was
adequate. The maximum drop was observed to be 12 mV and Figure 15, below, shows the IR
drop map. To do preliminary PNA, we used virtual PG rails and virtual PG sources arranged
uniformly around the core.

The IR drop analysis map, below, shows a typical hotspot pattern and gives us a good sense that
the core will not have IR drop issues when used with this methodology for a SoC.

Figure 15 - ICC PNA IR drop map

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 22

3.4 Overview of ICC flow

3.4.1 Overview of the ICC Recommended Methodology (ICC RM) flow

The ICC RM flow was used as a starting point for implementing the RTL-to-GDSII flow for the
74K core. The ICC RM flow is offered by Synopsys as a set of scripts that provide good “out-of-
the-box” (OOTB) results for ICC. Users can customize these set of scripts for their specific
design environment. Best practices from Synopsys application consultants as wells as Synopsys
R&D have been incorporated into the ICC RM methodology.

The ICC RM flow includes three steps for placement and optimization, clock tree synthesis and
optimization, and routing and post-route optimization. These simple steps have been
implemented in ICC using the place_opt, clock_opt and route_opt core commands

Figure 16 on the following page, shows the flow from DC/DC-T through all these steps:

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 23

Figure 16 - The 74K™ core ICC flow

ICC Design Planning RM / ICC RM Flow

DC

ICC design planning RM
Floorplan Exploration

Floorplanned
Cell

init_design_icc
• Create MW

library
• Import Design
• Read TDF
• Read

Floorplan

place_opt_icc
• create_placement
• Post-placement

optimization
• Scan reordering

clock_opt_icc
• CTS +

optimization-
• Useful_skew

optimization

route_opt_icc
• Routing
• SI Prevention
• Post-Route

optimization
• SI fixing

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 24

3.4.2 place_opt optimization strategies

The following strategies were used during placement and optimization for the 74K core:

1. set_case_analysis_with_logic_constants “true”
2. Path groups were defined with group weights
3. Setting a critical range of about 20% of the cycle time.
4. Special treatment of ICG enable paths
5. place_opt commands used:

o ungroup –all -flatten
o place_opt -area_recovery -effort high -congestion -optimize_dft
o place_fp_pins -block_level -verbose (optimize block-level pins based on

placement)
o set physopt_enable_adjust_placement true
o psynopt -effort high

The Dolphin memories used in this evaluation have conditional timing based on the settings of
the read_write_margin bus (RWM[2:0] in our specific example). The access time of the memory
is dependent on the static value chosen for these pins. By default, the timing engine in DC and
ICC will pick the worst timing arc. However, the intent of the design is to pick the timing
corresponding to the static setting of the RWM pins. Setting the
set_case_analysis_with_logic_constants variable to “true” ensures that the timing engine in DC
and ICC picks up the appropriate timing.

To improve the timing QoR, path groups were created for all paths in the high-speed clock
domain (Clk) as well paths that end in the enable pin of the clock gating elements. The following
code snippet shows the creation of the path groups and the usage of a higher weight in these path
groups.

set icg_enable_pins [get_pins -hier "*clk_gate/E"]
group_path -name Clk -weight 10 -critical_range 100 -to Clk
group_path -name icg_enable -weight 10 -critical_range 100 -to
$icg_enable_pins

3.4.3 clock_opt and useful skew optimization strategies

Useful skew optimization was used in ICC to obtain the best timing QoR for the 74K core. The
skew_opt command was used before CTS to write out a clock tree exceptions file which can be
used by compile_clock_tree or the clock_opt command. The skew_opt command analyzes the
slacks in the design and tries to optimize the slack with useful skew and these useful skew values
are written out as clock tree exceptions. In contrast, when using Astro, such useful skew has to
be manually calculated and applied as clock delay targets using the ataDefineSyncPin command.

The following section describes the strategy used for CTS in the implementation of the 74K core
in ICC in this evaluation:

1. Define triple space Non-Default Rules (NDR) for clocks (SI prevention)

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 25

(Other NDR rules defined, double space and Double-width NDR for use during
route_opt)

2. Enable Clock Reconvergence Pessimism Removal (CRPR) on recovery and removal
arcs

3. set_max_transition on high-speed clock (10% of clock period - SI prevention)
4. check_clock_tree (checks for potential problems that could affect clock tree

synthesis-CTS QoR).
5. Run first-pass clock_opt to get estimate of clock latencies

a. Run Tcl script to write out IO port latencies
b. Run Tcl script to adjust setup time of clock gaters to account for early clock

latencies
6. Read IO port latencies, adjust setup time of clock gaters
7. Run skew_opt (useful skew optimization) prior to CTS
8. Specific commands used:

• check_clock_tree
• clock_opt -inter_clock_balance -no_clock_route -only_cts
• set_propagated_clock [all_fanout -clock_tree -flat]
• source -e adjust_latency.tcl (has Tcl procedure called adjust_latency)
• adjust_latency
• set_latency_adjustment_options -from_clock Clk -to_clock vc_Clk
• set_latency_adjustment_options -from_clock EJClk -to_clock vc_EJClk
• update_clock_latency
• source -e write_port_latencies.tcl (has Tcl procedure called

write_port_latencies)
• write_port_latencies "port_latencies"
• source clock_adj.tcl (this file is generated by the adjust_latency procedure)
• skew_opt
• clock_opt -inter_clock_balance -no_clock_route -only_cts
• psynopt -area_recovery
• set physopt_enable_adjust_placement true
• psynopt -effort high -area_recovery

Because the IO requirement times (set_input_delay/set_output_delay) in the SDC file do not
account for clock latencies, IO requirement times need to be adjusted post-CTS
(update_clock_latency).

However, the recommendation is to adjust latencies before running skew_opt since addition of
useful skew will bias the average insertion delay in the design. The first-pass of clock_opt is to
get an estimate of this latency adjustment for the IOs. Additionally, this data is also used to get a
better estimate of the insertion delays to the clock gaters which in general have earlier clocks
arriving to them as compared to the registers. This difference in insertion delay of clocks to the
registers and clock gaters is added as an additional setup margin for each clock gater
independently. This enables skew_opt to better predict the real QoR of the design including the
QoR of paths from register to the enable pins of the clock gaters. The second pass of clock_opt

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 26

uses the clock_tree_exceptions generated by skew_opt and is the useful skew scheme used in this
evaluation.

Figures 17 and 18, below, show the Tcl procedures used in the CTS methodology used for
implementing the 74K core in ICC.

Figure 17 - write_port_latencies.tcl script

proc write_port_latencies { file_name } {

 if { "${file_name}" == "" } {

 puts "usage: write_port_latencies <file_name>"

 return 0

 }

 write_sdc "${file_name}.sdc"

 sh grep set_clock_latency "${file_name}.sdc" > "${file_name}.scl"

 sh grep get_clock "${file_name}.scl" > "${file_name}"

 sh rm -f "${file_name}.sdc"

 sh rm -f "${file_name}.scl"

 return 1

}

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 27

Figure 18 - adjust_latency.tcl script

adjust_latency.tcl Script
remove_clock_gating_check [current_design]
remove_clock_gating_check [get_pins -hier "*clk_gate/E"]

#startpoint_clock_latency
#endpoint_clock_latency

proc adjust_latency {} {
 set design_tns 0
 set design_wns 100000
 set design_tps 0

 set adj_setup_time 0
 foreach_in_collection clk_enable [get_pins -hier "*clk_gate/E"] {

 foreach_in_collection path [get_timing_paths -nworst 1 -to $clk_enable] {
 set setup_time [get_attribute $path endpoint_setup_time_value]
 set endpoint [get_attribute $path endpoint]
 set endpoint_name [get_attribute $endpoint full_name]
 if { $endpoint_name == "cpu/clock_gate/gate_clockgate/clk_gate/E" } {
 set adj_setup_time [expr $setup_time + 0.0]
 set endpoint_setup($endpoint_name) $adj_setup_time
 set setup_time [get_attribute $path endpoint_setup_time_value]
 set endpoint_latency($endpoint_name) [get_attribute $path endpoint_clock_latency]
 set startpoint_latency($endpoint_name) [get_attribute $path startpoint_clock_latency]
 } else {
 set adj_setup_time [expr $setup_time + 0.0]
 set endpoint_setup($endpoint_name) $adj_setup_time
 set endpoint_latency($endpoint_name) [get_attribute $path endpoint_clock_latency]
 set startpoint_latency($endpoint_name) [get_attribute $path startpoint_clock_latency]
 }
 }
 }

 set fileId [open "clock_adj.tcl" w]

 puts $fileId "set timing_scgc_override_library_setup_hold true"
 puts $fileId "remove_clock_gating_check \[current_design\]"
 puts $fileId "remove_clock_gating_check \[get_pins -hier \"*clk_gate/E\" \]"

 foreach {key value} [array get endpoint_setup] {

 set adj_setup_time [expr $startpoint_latency($key) - $endpoint_latency($key)]
 set adj_setup_time [expr $adj_setup_time + ${value}]
 if { $adj_setup_time > 0 } {
 puts $fileId "set_clock_gating_check -setup $adj_setup_time [get_attribute $key full_name]"
 }
 }

 close $fileId

}

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 28

3.4.4 route_opt / signal integrity optimization techniques

The following list describes some of the steps taken to obtain the best timing QoR with and
without accounting for signal integrity (SI) effects. In particular, using a tight transition time on
the main clock (SI_ClkIn) as well as using triple spacing to route the clock nets helped improve
the SI timing on the 74K core implementation in ICC.

1. Used CWORST extraction corner TLUPlus models for implementation since that
extraction corner has the worst SI impact

2. Cross-talk prevention during track assignment
3. Timing-driven global route
4. Turned off crosstalk delta delay during initial fixing
5. Turned on crosstalk delta delay for timing closure with crosstalk
6. Wire spreading to minimize crosstalk effects
7. Used non-default routing rules defined during clock_opt to do automatic wire sizing on

critical nets
8. Additional route_opt runs were added to attack the signal integrity challenges

Specific route_opt commands:

• set_route_options -groute_clock_routing normal
• route_group -all_clock_nets -search_repair_loop 20
• set_si_options –delta_delay false
• route_opt -initial_route_only
• route_opt -skip_initial_route -effort high
• route_opt –effort high –incremental -only_design_rule
• set_si_options –delta_delay true
• route_opt –xtalk_reduction
• route_opt –optimize_wire_via
• route_opt –incr –only_size_wire
• route_spreadwires –widen
• route_opt –incr -only_hold_time

3.4.5 Correlation between ICC, Star-RCXT and PrimeTime SI

As stated before, the C-worst extraction corner was chosen for ICC as well as Star-RCXT™ in
order to use the most pessimistic corner for implementation and sign-off analysis. Star-RCXT
has different modes referred to as MODE 100, MODE 200 and MODE 400 which imply varying
levels of accuracy. For purposes of this evaluation, MODE 400 was chosen to obtain the most
accurate extraction result which is recommended for technology nodes of 65nm or below.

As shown in Figures 19 and 20, the correlation between ICC and Star-RCXT is excellent for
total as well as coupling capacitances. Good correlation is important to ensure that the
optimization tool actually works on paths that are seen by the sign-off tool. For this evaluation,
since the correlation was quite good, no multiplier for capacitances was used in ICC.

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 29

Figure 19 - Total capacitance correlation (values in fF)

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 30

Figure 20 – Coupling capacitance correlation (cap values in fF)

To achieve good timing correlation between ICC and PT SI, the following settings in ICC and
PT SI were used:

ICC:

set timing_remove_clock_reconvergence_pessimism true
set_delay_calculatiion -arnoldi

PT SI:

set si_exit_on_max_iteration_count 3
set si_xtalk_delay_analysis_mode "all_violating_paths"
set timing_remove_clock_reconvergence_pessimism “true”

It is important to note that if both the min and max versions of the libraries are loaded in PT SI
using the set_min_library –min_version command, on-chip-variation (OCV) mode is

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 31

automatically activated inside of PT SI regardless of the condition set using the
set_operating_conditions command. In OCV mode with both min and max libraries loaded, the
results are unrealistic and pessimistic since two extremes of process corners are used for picking
up the fast and slow paths for OCV analysis.

To avoid this problem, setup and hold analysis were carried out in PT SI by loading libraries for
a single corner at a time. The code snippet in Figure 21 shows the basic script used for
completing the PT SI analysis.

Figure 21- Example of PT SI script for accuracy (pessimism is removed)

#set_min_library
${LIB_PATH}/dti_sp_tsmc65gplus_1024x64_8bw3xoe_m_worst.db \
-min_version
${LIB_PATH}dti_sp_tsmc65gplus_1024x64_8bw3xoe_m_best.db

set timing_input_port_default_clock "true"
set timing_enable_preset_clear_arcs "false"
set timing_enable_multiple_clocks_per_reg "false"

set timing_remove_clock_reconvergence_pessimism “true”

set si_enable_analysis true
set si_xtalk_exit_on_max_iteration_count 3
set si_xtalk_delay_analysis_mode "all_violating_paths"
set timing_update_status_level high

read_parasitics -keep_capacitive_coupling -format SBPF
route_opt.sbpf

update_timing -full
report_timing –recalculate -sig 4 -net -trans -cap -nosplit -
nets -input pins -path full clock >

Be sure that the MIN libraries are
NOT loaded in PT-SI when doing
SI analysis

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 32

3.5 Review of ICC results

Figure 22, below, summarizes the results achieved for the 74K core as implemented with the
above describe DC/DC-T and ICC methodology described above. The PT SI report shows that
the 74K core achieved a frequency of 1.12GHz, better than the original target (1GHz) with no
significant manual intervention or custom scripts.

Flow Step WNS (ns) TNS (ns) # Violating paths
ICC -0.071 -2.985 322
Star-RCXT/PT SI -0.047 -0.966 83

Figure 22 - ICC final results

4.0 Conclusions and recommendations
This paper has introduced an automated flow that can achieve frequencies above 1GHz with the
74K core using commercial standard cell libraries, memories and Synopsys tools. The paper has
also demonstrated the value of using DC/DC-T in conjunction with ICC design planning and
exploration capabilities to provide the best starting point for implementation.

4.1 Benefits of the methodology

The methodology described in this paper enables the use of an automated synthesizable approach
to achieve very high frequencies with embedded processor cores from MIPS Technologies, Inc.
using Synopsys tools.

4.2 Areas for future investigation and improvement

The authors will continue working on the methodology as the tools continue to improve. The
particular areas of interest are:

- Investigate sign-off driven design closure.
- Investigate better and/or automated ways of handling inherent skews on paths ending in

clock gating enable pins pre-CTS.
- Enhance ICC CTS, so that in a single pass, the useful skew optimization to an ICG (for

the sake of its enable path) is considered simultaneously with the potential useful skews
to that ICG’s flops. This would require defining non-stop sync pins on the clock pins of
the ICG.

- Enhance the DC-T/ICC flow for low power implementations.
- Add a hierarchical reference flow for integrating the MIPS 74K core in the context of

SoC designs.
- Investigate benefits of adding Multi-Corner Multi-Mode (MCMM) optimization to MIPS

ICC flow.

SNUG Boston 2007 Breaking the Gigahertz Speed Barrier 33

4.3 Reference flow for the 74K™ core and other MIPS® cores

The reference flow described in this paper based on DC/DC-T and ICC will be available for all
embedded processor cores from MIPS Technologies, Inc. including the 74K family of cores with
the next maintenance release of the cores.

5.0 Acknowledgements
The authors would like to acknowledge Harold Levy and Kevin Kranen from Synopsys, Inc. and
Vidya Rajagopalan, Tom Chanak and Sunil Mudunuri from MIPS Technologies, Inc. for their
contribution and feedback.

6.0 References

- MIPS32® 74K™ core – White paper
(http://www.mips.com/content/74K_home.html)

- MIPS32® 74K™ core – Data sheet
(http://www.mips.com/products/cores/32-bit_cores/MIPS32_74K_Family.php#resources)

- Solvnet Article #020097: Useful Skew in IC Compiler
- Solvnet Article #021023: Design Compiler Reference Methodology (DC-RM)
- Solvnet Article #021179: IC Compiler Block-level Floorplanning and Pin Assignment
- Solvnet Article #021197: Design Planning- related functionality inside the IC Compiler

GUI

7.0 Appendix
The following version of Synopsys tools were used in the course of the evaluation:

- DC Ultra – 2007.03-SP3
- ICC – 2007.03-SP3
- Star-RCXT - 2007.06-1
- PT SI - 2007.06

© 2007 MIPS Technologies, Inc. All rights reserved.
Specifications and information subject to change without notice.
The products described in this document are subject to continuous development and
improvement. MIPS, MIPS TECHNOLOGIES Logo, MIPS32, MIPS64, MIPS-BASED, and
FS2 First Silicon Solutions Logo are trademarks of MIPS Technologies, Inc. and Registered in
the United States Patent and Trademark Office. MIPS, MIPS-3D, MIPS16, MIPS16e, MIPS32,
MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Logo, MIPS Technologies Logo, 4K, 4Kc,
4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5KC, 5KF, 14KE, 20Kc,
24K, 24Kc, 24Kf, 24KE, 24KEc, 24Kef, 25Kf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, CNMIPS,
“at the core of the user experience.”, Bus Navigator, Clam, cnMIPS, CorExtend, FPGA View,
FS2, FS2 First Silicon Solutions Logo, FS2 Navigator, HyperDebug, HyperJTAG, Logic
Navigator, MIPS Everywhere Logo, MED, OCI, the Pipeline, Pro Series, Safe-SOC,
SmartMIPS, SOC-it, and System Navigator are trademarks or registered trademarks of MIPS
technologies, Inc. in the United States and other countries. All other trademarks referred to
herein are the property of their respective owners.

