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ABSTRACT 
 
Traditionally, developing a high performance embedded processor required a custom design 
methodology, hand-crafted libraries and memories, and a team of specialized layout and circuit 
designers dedicated to the design and implementation of the processor. MIPS Technologies and 
Synopsys have worked together to develop an automated design methodology based on IC 
Compiler for the next-generation MIPS32® 74K™ core family – enabling SoC designers to 
achieve near-custom results exceeding 1GHz, using off-the-shelf 65nm process, libraries and 
memories.  This paper highlights how the collaborative efforts of both companies resulted in an 
automated RTL-to-GDSII flow.
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1.0 Introduction 
This paper highlights the key “ingredients”, investigations and results from a joint MIPS 

Technologies/Synopsys project to deliver a high-performance design methodology to end users.  
The goal of the project was simple – develop a methodology for the MIPS32® 74K™ 
synthesizable core that would enable it to achieve processing speeds of 1 GHz or greater, using 
off-the-shelf 65nm process, standard cells and memories. In this process, the companies 
identified a number of tradeoffs in the design methodology and refined it to produce reliable, 
high-quality results. 
 
2.0 Key ingredients for achieving 1+ GHz 

• An automation-friendly processor core, the  MIPS32 74K core, with clean constraints 
• Commercially available 65nm standard cells and memories  
• An optimized implementation methodology using Galaxy™ Design Platform, which 

includes  Design Compiler® Ultra (DC Ultra™) and IC Compiler (ICC) from Synopsys 
 
The first two elements were fixed per our project goals and general industry requirements. The 
objective was to deliver the third key element, a straightforward methodology combining high 
performance with efficient power consumption. The remainder of this section provides 
additional background on the first two elements, and the following sections outline the 
investigations and decisions used to create and tune the methodology. 
 
2.1 Overview of the MIPS32® 74K™ core architecture 

The MIPS32 74K core family features a superscalar, out-of-order pipeline architecture, designed 
to maximize the performance achievable by synthesizable methodology. The 74K core family 
implements the MIPS32 Release 2 instruction set as well as the MIPS16e™ Application Specific 
Extension (ASE) for code compression and the MIPS® DSP ASE for signal processing 
performance. The CorExtend® capability of the 74K core also provides support for the addition 
of user-defined instructions. The core supports standard interfaces including the OCP2.1 system 
interface and EJTAG3.2 interface.  
 
The 74K core family was designed to achieve a significant performance boost over MIPS 
Technologies’ existing line of single-threaded processors. The performance boost is achieved 
through a combination of frequency and micro-architectural enhancements, including the ability 
to dispatch two instructions per cycle as well as the ability to issue instructions out of order. 
 
The dual issue capability is achieved through two pipelines referred to as the AGEN and ALU 
pipelines. The AGEN pipeline is 17 stages long and implements all Memory Transfer 
(Load/Store) and Control Transfer (Branch/Jump) instructions. The ALU pipeline is 16 stages 
long and implements all the other instructions from the MIPS32 Release 2 instruction set. 
Instructions can be dispatched and completed in these pipelines out-of-order.  
 
The deeply pipelined 17-stage pipe was instrumental in achieving the frequency boost while 
maintaining a fully synthesizable approach. Extra pipeline stages were added to some of the key 
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frequency bottleneck areas. For example, the data cache and instruction cache accesses span 3 
stages each in order to enable the use of generator-based SRAMs and synthesizable technology. 
Similarly the Arithmetic Logic Unit (ALU) is pipelined and spans two pipeline stages as 
compared to one stage in previous generations of synthesizable cores from MIPS Technologies.  
 
Figure 1 shows the 74K core pipeline in further detail. The pipeline itself operates as several 
mini-pipelines that communicate via buffers. The ALU and AGEN execution pipelines are fed 
by a common 8-stage front end which is responsible for Instruction Fetch, Decode and Dispatch. 
The ALU and AGEN execution pipelines are also supported by a common 2-stage backend 
pipeline which is responsible for instruction graduation. As instructions complete out-of-order in 
the execution pipelines, their results are maintained in temporary storage referred to as 
completion buffers. The 2-stage graduation pipe is responsible for committing these results in 
order to the architectural state. In addition there is a separate Multiply Divide Pipeline which is 
an offshoot of the ALU pipeline as well as a separate Floating Point Pipeline which is totally 
decoupled from the integer execution pipelines. The Floating Point Pipeline is also capable of 
executing 2 instructions per cycle.  
 
Control signals such as stalls are critical signals on any processor. Splitting the pipelines into 
multiple mini-pipelines helps alleviate the problem associated with the propagation of global 
stall signals. Additionally, the AGEN and ALU execution pipelines are stall free in order to 
reduce the need for stall signal propagation.  
 

 

Figure 1 – Pipeline architecture of the MIPS32® 74KTM processor core 
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2.2 Design considerations for high-speed processor IP 

A synthesizable IP core dramatically shortens the design cycle, reduces system costs and 
accelerates time-to-market for SoC designers. Additionally, synthesizable IP can be targeted to 
the process/fab combination of the customer’s choice without having to deal with the long 
physical implementation process associated with custom or semi-custom processor cores. 
Synthesizable IP cores also provide the additional advantage of supporting various configuration 
and build options easily. For example, these options could include different sizes of caches, 
inclusion or exclusion of memory BIST, and implementation choices like use of clock gating and 
use of memories for register files. These options are essential to optimize the processor for the 
distinct requirements of different embedded markets and SoC methodologies.  
 
The IP core must, however, be designed to ensure high-quality, while at the same time providing 
a consistent and easy implementation by the customer. The following sections describe some of 
the steps taken in designing the 74K processor core for this purpose. 
 
 
2.2.1 Design constraints 

Since the licensee of an IP core is not intimately familiar with the design, the core must be easily 
constrainable, using only a small number of constraints. 

• In the 74K core, all IOs are fully registered, except for a minimal number of IOs that 
cannot necessarily be registered due to requirements of the OCP bus protocol. Fully 
registered IOs make it much easier to write constraints that are portable from one 
technology to another. Additionally, registered IOs make it easy for the core to be 
hardened independent of the context in which it is being deployed on the SoC and thus 
easier to reuse. 

• The 74K core design uses only 2 mutually asynchronous clock domains: the core clock 
and the EJTAG clock.  

• There are no false paths or multi-cycle paths in the design other than paths that cross over 
from one clock domain to the other. These domain-crossing paths are false by design, as 
the two clock domains are meant to be asynchronous to one another. 

 
2.2.2 Clock gating 

The MIPS32 74K core uses extensive clock gating for minimizing power consumption. Multiple 
granularities or levels of clock gating exist in the design as described below:  
 

• Core-level clock gating – The purpose of clock gating at this level is to shut down the 
clocks to most of the core. This mode is invoked by an architectural sleep state for the 
processor. This clock gater resides close to the root of the clock tree, and the flop 
generating the enable condition for this gater is usually at the leaf-level. The topological 
location of this clock gater within the overall clock tree creates an inherently challenging 
family of timing paths in the cone of logic building up to the enable pin of this gater. To 
ease implementation of this path, the 74K core design ensures that there is no 
combinational logic on this path – the entire cone of logic consists of one flop. 
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• Block-level gating – The purpose of clock gating at this level is to shut down various 
blocks within the core depending on activity in the core. For example, if the instruction 
flowing down the pipe does not use the floating point unit, that unit is shut down. The 
design issues surrounding block-level clock gating are similar to core-level clock gating 
and handled similarly within the design. 

• Leaf-level gating – More than 90% of the flops in the design are locally gated. Because 
paths ending at these gaters’ enables can have critical timing, and because the ideal clock 
assumption systematically under-represents the constraint on such paths (by the amount 
of delay through the gater), the flow scripts include compensatory over-constraint for 
gater-enable paths. The compensatory over-constraint is only in place for those parts of 
the flow which assume ideal clocks. 

 
2.2.3 Setup and access paths to and from the memories 

Most microprocessor designs have the setup and access paths to and from the memory at critical 
or near-critical timing. The 74K core design alleviated these paths as much as possible through 
these means: 

• The micro-architecture eliminates short timing path recurrences in the immediate 
neighborhood of large memories. In other words, there is no logic path that goes directly 
from the output back to the input of such memory, nor a pair of paths that do the same 
thing indirectly through one flop, nor a trio that do so through two flops. This style of the 
design buys the freedom to provide the memory, and the flops in the following cycle, 
with early or late clocks without impacting the design or implementation constraints of 
the rest of the core. 

• The logic paths in the flop-flop cycle immediately following RAM accesses are designed 
to be shorter than other flop-flop paths. This is the source of slack that can be transferred 
to the memory access paths via clock skewing by the flow scripts. 

 
2.2.4 Optimized implementation scripts 

Ease of implementation is one of the prime challenges in using third-party IP. The 74K core is 
packaged together with all synthesis, place-and-route, static timing analysis and verification 
scripts necessary to take the core from RTL all the way to GDSII. These scripts are set up so that 
an end-user has to make minimal changes such that the design can be easily ported to any 
process node with the user’s choice of libraries and memories to obtain the best results.  
 
 
2.3 High-performance off-the-shelf physical IP and process 

When designing the high-performance 74K processor core, MIPS chose a process and library 
combination that would be attractive to customers and reflective of current design trends. The 
process node choice was 65nm, and the TSMC 65GP process was selected for this evaluation. In 
addition, the decision was made upfront to use standard off-the-shelf libraries from TSMC and 
memories from Dolphin Technologies. Other premium high-speed libraries and memories could 
be used to improve the performance of the 74K core but would increase the cost of development 
for licensees and limit the use of the core. 
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3.0 High-performance tools and methodology 
The third key element in achieving frequencies beyond one gigahertz is an optimized 
implementation methodology. Earlier MIPS reference flows were based on Synopsys Design 
Compiler (DC), Physical Compiler (PC) and Astro tools. The objective of this evaluation was to 
transition to a Design Compiler topographical technology (DC-T) and IC Compiler (ICC) based 
methodology for maximum performance. 
 

3.1 Timing challenges in the MIPS32® 74K™ core 

The MIPS/Synopsys methodology for the 74K core was developed with knowledge of and 
strategies for managing the most pressing timing challenges of the core. 
 
3.1.1 Challenge #1: Clock enable timing 

The 74K core has several levels of clock gating.  The first level of clock gating is at the root of 
the clock tree which can shutdown the whole core and is referred to as core-level clock gating.  
The next level of clock gating is at the block-level which can selectively disable various blocks 
within the 74K core and is referred to as block-level clock gating. The final level of clock gating 
is at the level of individual registers and is referred to as the leaf-level clock gating. Figure 2, on 
the next page, describes the various levels of clock gating in the 74K core. 
 
During early stages of synthesis (pre-clock tree), the tools assume that the clocks arrive at the 
gaters at the same time as the flops. However, the clock tree synthesis tool traces through these 
gaters and tries to match the insertion delay across all flops to achieve minimum skew. This by 
definition makes the clock to the gaters earlier than the flops. As a result, the paths that end at 
the enable pins of the Integrated Clock Gating cells (ICGs) have an inherent adverse skew after 
Clock Tree Synthesis (CTS).  
 
However, during synthesis with ideal clocks, these paths do not see the effects of this adverse 
skew and maybe left suboptimal by the synthesis tool. To avoid this problem, the 
set_clock_latency command in DC was used to model an earlier clock to the gaters. This 
problem is particularly worse with respect to the core-and block-level gaters where the adverse 
skew is higher in magnitude. To alleviate this problem, the condition signal driving the enable 
pin of the core and block level gaters is registered to minimize logic on the paths ending at these 
enable pins. 
 
Special techniques were used in ICC to optimize paths that end at the enable pins of these 
various levels of clock gating cells used in the 74K core and are discussed later in section 3.4.3. 
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Figure 2 - Clock gating enable timing paths 
 
3.1.2 Challenge #2: Memory interface timing paths 

Another timing challenge for the 74K core are paths that setup to the SRAMs used for caches 
(FF_A to RAM in Figure 3, on the next page) and paths that start with accessing the SRAMs 
(RAM to FF_B). However, the micro-architectural implementation of the 74K processor core 
has kept the paths that start from FF_B and end in FF_C (the next stage of the pipeline) 
intentionally shorter than the rest of the pipeline. While the setup paths can be eased by delaying 
the clocks to the SRAMs, it is important to be able to skew the capture flops (FF_B) so that the 
SRAM access paths do not limit the frequency of the design.  
  
In Figure 3, for example, the clocks to the SRAMs as well as the capture flops (FF_B) have been 
delayed by an additional 300ps as compared to the average insertion delay to other flops in the 
design. 
 
Traditionally in Astro, this was done using ataDefineSyncPin which was a manual 
approach to useful skew. This was usually accomplished in Astro by first running Astro CTS and 
determining how much delay was needed and then rerunning CTS with ataDefineSyncPin 
to define the required latency to the clock pin of each of the SRAMs and the capture flops 
(FF_B). 
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In ICC, this flow is automated by skew optimization (skew_opt) which is discussed in section 
3.4.3 of this paper. Automated useful skew allows the tool to have better estimation of latencies 
for each of the SRAMs and flops depending on their placement and clock insertion delay and 
thus usually ends up with a more optimal design as compared to the manual latency 
specification. 
 
 
 

 

Figure 3 - Memory interface timing paths 
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3.2.2 DC-T to ICC flow description 

The DC-T setup requires the addition of Synopsys-compatible MilkywayTM physical libraries 
including TLUplus extraction RC data used for pre-route designs. Current versions of DC-T 
technology have the ability to use actual floorplan inputs when doing the refined placement, and 
this was necessary in the 74K core design to achieve reasonable results given the number of 
fixed macro cells and the significant area of floorplan they require. In this flow a DEF floorplan 
was generated using ICC and DC-T extracted the floorplan information from the DEF using the 
extract_physical_constraints  command and saved this in Tcl format for later use with the –
output option. Rather than allow the pins to be randomly placed, a generic pin constraint was 
applied using “set_port_side [get_ports *] -side top” to force the pins to the top side of the 
floorplan as desired.  report_physical_constraint can be used to see that the floorplan constraints 
are accepted and available. 
 
3.2.3 XG mode and testability 

Switching to XG mode for DC was relatively easy. Generally, wherever db design binary 
commands were used, the ddc commands were used to replace them, while continuing to use the 
same db timing libraries. However, some hierarchy manipulation procedures that used the 
current_design command had to be upgraded to operate in a top-down manner similar to 
PrimeTime® (PT) so that constraints related to latencies associated with the clocks to memories 
and clock gaters were not lost.   
 
Additionally, since DC-XG mode DFT commanding has been upgraded, the command syntax 
itself had changed and required some updating. The latest ATPG-based test design rule checking 
flow using dft_drc was also used inside DC.  Finally, ICC uses a SCANDEF file for scan 
optimization and expects a stitched netlist from DC, so in addition to compiling a scan-ready 
design, the scan chain was stitched inside DC using insert_dft. A follow-up DC-T incremental 
compile_ultra is explicitly done since the insert_dft quick incremental compile is not physically 
aware and turned off in DC-T. The write_scandef command (xg only) was used to output the 
scan information for ICC. Final outputs included physically optimized Verilog netlist, 
SCANDEF, ddc binary design, Milkyway design library and reports. 
 
3.2.4 Review of DC-T results 

DC-T results correlate better than DC to the post-placement results. This can be useful in 
providing a shorter feedback loop on timing paths during RTL or floorplan iterations. The table 
below compares area and timing for the 74K core including results from DC/DC-T and the 
corresponding results post-placement from ICC.   
 

Clk = 0.84ns DC clk 
WNS ns

Place_opt clk
WNS ns

WNS
Corr

DC Area 
K

Place_opt 
Area K

Area
Corr

DCxg->ICC 0 -0.16ns 19% 1,699 2,016 16%

DC-T-> ICC -0.1 -0.15ns 6% 1,796 2,043 12%
 

Figure 4 - Design Compiler results summary 
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As expected, from the initial observation of DC reports, timing appears significantly slower with 
much larger area, but inspection of results after placement indicates that DC-T shows more 
predictable results with improved correlation in both area and timing. 
 
3.3 Generating an optimal floorplan using ICC design planning  

3.3.1 Overview of the ICC design planning - floorplan exploration flow 

Determining the optimal floorplan for a design is a time-consuming manual effort involving 
several iterations through the backend tools and then analyzing the design for timing and 
congestion issues. Macro and pin placement along with choosing an appropriate aspect ratio for 
the design can be quite challenging. Synopsys ICC has built-in design capabilities that help 
automate this process and make it easier to come up with a good baseline floorplan.  
 
The 74K core as implemented in this evaluation has 18 hard macros and the biggest challenge in 
floorplanning the 74K core is in finding an optimal location for these hard macros. The design 
exploration capabilities inside ICC design planning were used in this evaluation to generate 
several floorplans for the 74K core. Parameters that affect the quality of macro placement were 
the main variables involved in generating these floorplans. ICC automatically places the macros 
as well as the standard cells and allows the direct measurement of QoR dependency on the hard 
macro placement. 
 
The “ICC design planning recommended methodology” was used for the work described above. 
This make-based flow consists of two major steps. The first step creates the initial starting design 
and floorplan based on user settings. The next step could be doing timing and routing feasibility 
analysis for a given netlist and floorplan or running a design exploration flow to generate several 
different floorplans to find an optimal solution. In this evaluation, the design exploration flow 
was used to come up with an optimal floorplan for the 74K core. 
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Figure 5, below, shows the details of the exploration flow utilizing the IC design planning 
capabilities within ICC.  
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Figure 5 - Explore mode flow in ICC 
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Figure 6 - Explore mode results in ICC 

Figure 6, above, shows the QoR results for various floorplans by changing various parameters in 
explore mode. A fixed aspect ratio was chosen for all the floorplans and only the following 
parameters were varied in the course of the experiments in this evaluation: 

• congestion-driven placement 
• timing-driven placement 
• macro_on_edge 
• auto grouping 

 
The first two in the list above affect placement of the standard cells and the last two affect 
placement of the hard macros. The macro_on_edge parameter forces all the macro cells to be 
placed on the boundary of the block and the auto grouping parameter clusters macros of the same 
type together. The tool offers other choices of parameters that can be tweaked in the design 
exploration flow but were not evaluated in this trial. The best results on the 74K core were 
obtained by turning on timing-driven and congestion-driven placement knobs in the tool, as well 
as using the macro_on_edge parameter along with auto grouping for the hard macros as can be 
seen in Figure 8. 
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Figure 7, below, shows the design exploration Tcl script used for generating the various 
floorplans along with settings used to generate these floorplans and directly reflect the 
experiments carried out in the course of this evaluation. 
 
 

 
Figure 7 - explore_mode.tcl script 

 

#######################################################################################
### 
## ICC Design Planning RM 
## Version 2007.03 
#######################################################################################
### 
## Variable defaults and legal values based on ICC 2007.03 
## N/A means not a create_fp_placement option or parameter 
## "Brief_Description" column below intends to give you quick reference of what the 
option does.  
## Please refer to man page of create_fp_placement or set_fp_placement_strategy for 
more details. 
 
# Legend   Default <Range>   (Correspondent command) 
Brief_Description   
# A run number   N/A <integer>  for tracking purpose     
# B objective    N/A <string>   for tracking purpose 
# C macros on edge   off   <on,off>  (set_fp_placement_strategy -
macros_on_edge) place macros on the edges of chip or plan group  
# D auto grouping  low   <none,user_only,low,high> (set_fp_placement_strategy -
auto_grouping) controls amount of macro array packing 
#                none: no grping | user_only: only user defined 
ones created | low: array for small macros | high: array for all macros            
# E hierarchy gravity  on   <on,off>  (create_fp_placement -
no_hierarchy_gravity) on : with hier gravity on        
# F congestion driven  off   <on,off>  (create_fp_placement -congestion_driven) 
# G timing driven  off   <on,off>  (create_fp_placement -timing_driven) ... 
#       A   B     C   D    E   F   G  ... 
dp_explore run0 default    off low  on  off     ...  
dp_explore run1 default+cong    off low  on  on      ... 
dp_explore run2 default+cong+timing   off low  on  on      ...  
dp_explore run3 default+macros_on_edge   on  low  on  off     ... 
dp_explore run4 default+macros_on_edge+timing   on  low  on  off     ... 
dp_explore run5 default+macros_on_edge+cong+timing on  low  on  on   ... 
dp_explore run6 default+hier_off   off low  off off     ... 
dp_explore run7 default+hier_off+congestion     off low  off on      ... 
dp_explore run8 default+hier_off+grouping+macros_on_edge on  high off off  ... 
dp_explore run9 default+hier_off+grouping+macros_on_edge+timing on  high off off  ... 
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3.3.2 ICC design planning floorplan results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 - Floorplan strategy - initial (left) and revised (right) 

 
During this evaluation, it has been observed that placing the pins on one side of the core 
generates best timing results. Additionally this allows the core to be placed in a corner of the 
SoC, out of the way of all other logic. 
 
A Tcl script was used to automatically create the TDF (Top Design Format) file on-the-fly in 
ICC that specifies the pin locations for all the pins and is shown in Figure 9, on the next page. 
The PIN_LAYER and PIN_SIDE variables allow the user to customize the flow with respect to 
their choice of layer and side for the pins. The width of the pin was chosen to be the minimum 
width of the specified PIN_LAYER. The gen_tdf.tcl script will get all of the ports in the design, 
and write a TDF file in the appropriate format. Figure 10 on the next page, shows a sample of the 
final TDF output file. 

I/O pins constrained to top 
Added Soft placement blockages  

Moved 
Macros 
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                                                                          Figure 9 - gen_tdf.tcl 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 - Generated TDF file 

 

 
#=========================================================================== 
# Filename: gen_tdf.tcl 
# Description:  File to generate TDF constraints for ports 
#  
#============================================================================ 
 
sh touch io_new.tdf 
set layer_num [get_layer_attribute -layer $PIN_LAYER  layer_number] 
set layer_width [get_layer_attribute -layer $PIN_LAYER  minWidth] 
 
if [ file exists $ICC_IN_TDF_FILE] { 
  file remove $ICC_IN_TDF_FILE 
} 
 
foreach_in_collection pname [get_ports *] { 
                        echo "pin [get_attribute $pname full_name] $layer_num 
\ 
                         $layer_width $layer_width \"$PIN_SIDE\"" >> 
$ICC_IN_TDF_FILE 
                } 
 

pin OC_MData[61]         33           0.100000 0.100000 "top" 
pin OC_DMA_SData[50]     33           0.100000 0.100000 "top" 
pin L2_cerr_indx[0]      33           0.100000 0.100000 "top" 
pin OC_DMA_SData[40]     33           0.100000 0.100000 "top" 
pin OC_DMA_MData[1]      33           0.100000 0.100000 "top" 
pin OC_SData[26]         33           0.100000 0.100000 "top" 
pin OC_DMA_SData[56]     33           0.100000 0.100000 "top" 
pin OC_SData[54]         33           0.100000 0.100000 "top" 
pin SI_ClkOut            33           0.100000 0.100000 "top" 
pin SI_ExceptionBase[17] 33           0.100000 0.100000 "top" 
. 
. 
. 
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3.3.3 Description of custom power grid   

ICC provides the capability to automatically synthesize a power grid. However, for this 
evaluation a custom power grid was used based on previous Astro flow experiences with IR drop 
analysis and routability. Metal layers 6, 7, 8 and 9 were used for the power grid with very wide 
straps in METAL9. A side effect of the heavy METAL9 power grid was that automatic Power 
Network Synthesis (PNS) would add stacked vias all the way from METAL9 to standard cell 
power in METAL1 resulting in serious congestion problems as a lot of routing tracks were cutoff 
in lower layers. 
 
To avoid this problem with stacked vias, stacked vias were only allowed from the lowest layer of 
the power grid, METAL6 in this case. This was accomplished by setting the MIN and MAX 
layer setting using the set_preroute_drc_strategy available in ICC. METAL9 connects down 
only to METAL8, METAL8 connects down only to METAL7, METAL7 connects down to 
METAL6, and finally METAL6 connects with a stacked via down to METAL1.  This avoids 
having a stacked via from METAL9 all the way down to METAL1. 
 
Figures 11 to 14 that follow, describe the power grid used for this implementation of the 74K™ 
core. Figure 12 on the next page shows the Tcl script used to generate the custom power grid. 
 

 
 

Figure 11 – Custom power grid for the 74K™ core.    

METAL6: 1um 

METAL7: 2um METAL8: 4um 

METAL9: 12um 
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Figure 12 - PG pin connections 
                                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 - Only M6 to M1 stacked vias allowed via set_preroute_drc_strategy 

Stacked VIAs from 
M6 to M1 

VIA6 (VIA from 
M7 to M6) 

 
#---------------------------------------------------------------------------------------- 
# Vertical straps 
#---------------------------------------------------------------------------------------- 
 
set die_area_urx [ get_attribute [current_design] die_area_urx] 
set die_area_urx [expr $die_area_urx/1000] 
set die_area_ury [ get_attribute [current_design] die_area_ury] 
set die_area_ury [expr $die_area_ury/1000] 
 
# Top(Horizontal) 
 
set_preroute_drc_strategy -min_layer M8 -max_layer M9 
 
create_power_straps  -direction $PG_TOP_DIRECTION -nets $MW_GROUND_NET  -layer 
$PG_TOP_METAL -width $PG_WIDTH_TOP \ 
-configure step_and_stop  -step $PG_PITCH_TOP -stop  $die_area_ury  -start_at 0 \ 
-keep_floating_wire_pieces \ 
-do_not_merge_targets  -ignore_parallel_targets 
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Figure 14 – Layer-to-layer power connections set via set_preroute_drc_strategy  

 

VIA8 (METAL9 to 
METAL8) 
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3.3.4 Power network analysis (PNA) 

Some preliminary PNA was done in ICC as a sanity check to verify that the power grid was 
adequate. The maximum drop was observed to be 12 mV and Figure 15, below, shows the IR 
drop map. To do preliminary PNA, we used virtual PG rails and virtual PG sources arranged 
uniformly around the core. 
 
The IR drop analysis map, below, shows a typical hotspot pattern and gives us a good sense that 
the core will not have IR drop issues when used with this methodology for a SoC. 
 
 

 
Figure 15 - ICC PNA IR drop map  

 



SNUG Boston 2007  Breaking the Gigahertz Speed Barrier 22

3.4 Overview of ICC flow  
         
3.4.1 Overview of the ICC Recommended Methodology (ICC RM) flow 

The ICC RM flow was used as a starting point for implementing the RTL-to-GDSII flow for the 
74K core. The ICC RM flow is offered by Synopsys as a set of scripts that provide good “out-of-
the-box” (OOTB) results for ICC. Users can customize these set of scripts for their specific 
design environment. Best practices from Synopsys application consultants as wells as Synopsys 
R&D have been incorporated into the ICC RM methodology. 
 
The ICC RM flow includes three steps for placement and optimization, clock tree synthesis and 
optimization, and routing and post-route optimization.  These simple steps have been 
implemented in ICC using the place_opt, clock_opt and route_opt core commands 
 
Figure 16 on the following page, shows the flow from DC/DC-T through all these steps: 
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Figure 16 - The 74K™ core ICC flow 

 

ICC Design Planning RM / ICC RM Flow 

DC 

ICC design planning RM 
Floorplan Exploration 

Floorplanned 
Cell 

init_design_icc 
• Create MW 

library 
• Import Design 
• Read TDF 
• Read 

Floorplan 

place_opt_icc 
• create_placement 
• Post-placement 

optimization 
• Scan reordering 

 

clock_opt_icc 
• CTS + 

optimization- 
• Useful_skew 

optimization  

route_opt_icc 
• Routing 
• SI Prevention 
• Post-Route 

optimization 
• SI fixing 
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3.4.2 place_opt optimization strategies 

The following strategies were used during placement and optimization for the 74K core: 
 

1. set_case_analysis_with_logic_constants  “true” 
2. Path groups were defined with group weights  
3. Setting a critical range of about 20% of the cycle time. 
4. Special treatment of ICG enable paths 
5. place_opt commands used: 

o ungroup –all -flatten 
o place_opt -area_recovery -effort high -congestion -optimize_dft  
o place_fp_pins -block_level -verbose (optimize block-level pins based on 

placement) 
o set physopt_enable_adjust_placement true  
o psynopt -effort high 

  
The Dolphin memories used in this evaluation have conditional timing based on the settings of 
the read_write_margin bus (RWM[2:0] in our specific example). The access time of the memory 
is dependent on the static value chosen for these pins. By default, the timing engine in DC and 
ICC will pick the worst timing arc. However, the intent of the design is to pick the timing 
corresponding to the static setting of the RWM pins. Setting the 
set_case_analysis_with_logic_constants variable to “true” ensures that the timing engine in DC 
and ICC picks up the appropriate timing. 
 
To improve the timing QoR, path groups were created for all paths in the high-speed clock 
domain (Clk) as well paths that end in the enable pin of the clock gating elements. The following 
code snippet shows the creation of the path groups and the usage of a higher weight in these path 
groups. 
 

set icg_enable_pins [get_pins -hier "*clk_gate/E"] 
group_path -name Clk -weight 10 -critical_range 100 -to Clk 
group_path -name icg_enable -weight 10 -critical_range 100 -to 
$icg_enable_pins  

 
 
               
3.4.3 clock_opt and useful skew optimization strategies 

Useful skew optimization was used in ICC to obtain the best timing QoR for the 74K core. The 
skew_opt command was used before CTS to write out a clock tree exceptions file which can be 
used by compile_clock_tree or the clock_opt command. The skew_opt command analyzes the 
slacks in the design and tries to optimize the slack with useful skew and these useful skew values 
are written out as clock tree exceptions. In contrast, when using Astro, such useful skew has to 
be manually calculated and applied as clock delay targets using the ataDefineSyncPin command. 
 
The following section describes the strategy used for CTS in the implementation of the 74K core 
in ICC in this evaluation: 

1. Define triple space Non-Default Rules (NDR) for clocks (SI prevention) 
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(Other NDR rules defined, double space and Double-width NDR for use during 
route_opt) 

2. Enable Clock Reconvergence Pessimism Removal (CRPR) on recovery and removal 
arcs 

3. set_max_transition on high-speed clock (10% of clock period - SI prevention) 
4. check_clock_tree (checks for potential problems that could affect clock tree 

synthesis-CTS QoR). 
5. Run first-pass clock_opt to get estimate of clock latencies 

a. Run Tcl script to write out IO port latencies 
b. Run Tcl script to adjust setup time of clock gaters to account for early clock 

latencies 
6. Read IO port latencies,  adjust setup time of clock gaters  
7. Run skew_opt (useful skew optimization) prior to CTS 
8. Specific commands used: 

• check_clock_tree 
• clock_opt -inter_clock_balance -no_clock_route  -only_cts 
• set_propagated_clock [all_fanout -clock_tree -flat] 
• source -e adjust_latency.tcl (has Tcl procedure called adjust_latency) 
• adjust_latency 
• set_latency_adjustment_options -from_clock Clk -to_clock  vc_Clk                               
• set_latency_adjustment_options -from_clock  EJClk  -to_clock vc_EJClk 
• update_clock_latency 
• source -e write_port_latencies.tcl (has Tcl procedure called 

write_port_latencies) 
• write_port_latencies "port_latencies" 
• source clock_adj.tcl (this file is generated by the adjust_latency procedure) 
• skew_opt  
• clock_opt -inter_clock_balance -no_clock_route  -only_cts  
• psynopt -area_recovery  
• set physopt_enable_adjust_placement true 
• psynopt -effort high -area_recovery     
 

Because the IO requirement times (set_input_delay/set_output_delay) in the SDC file do not 
account for clock latencies, IO requirement times need to be adjusted post-CTS 
(update_clock_latency).  
 
However, the recommendation is to adjust latencies before running skew_opt since addition of 
useful skew will bias the average insertion delay in the design. The first-pass of clock_opt is to 
get an estimate of this latency adjustment for the IOs. Additionally, this data is also used to get a 
better estimate of the insertion delays to the clock gaters which in general have earlier clocks 
arriving to them as compared to the registers. This difference in insertion delay of clocks to the 
registers and clock gaters is added as an additional setup margin for each clock gater 
independently. This enables skew_opt to better predict the real QoR of the design including the 
QoR of paths from register to the enable pins of the clock gaters. The second pass of clock_opt 
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uses the clock_tree_exceptions generated by skew_opt and is the useful skew scheme used in this 
evaluation.  
 
Figures 17 and 18, below, show the Tcl procedures used in the CTS methodology used for 
implementing the 74K core in ICC. 

 

 
Figure 17 - write_port_latencies.tcl script 

proc write_port_latencies { file_name } { 
 
  if { "${file_name}" == "" } { 
 
    puts "usage:  write_port_latencies <file_name>" 
 
    return 0 
 
  } 
 
  write_sdc "${file_name}.sdc" 
 
  sh grep set_clock_latency "${file_name}.sdc" > "${file_name}.scl" 
 
  sh grep get_clock         "${file_name}.scl" > "${file_name}" 
 
  sh rm -f "${file_name}.sdc" 
 
  sh rm -f "${file_name}.scl" 
 
  return 1 
 
}
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Figure 18 - adjust_latency.tcl script 

# adjust_latency.tcl Script 
remove_clock_gating_check [current_design] 
remove_clock_gating_check  [get_pins -hier "*clk_gate/E" ] 
 
#startpoint_clock_latency 
#endpoint_clock_latency 
 
proc adjust_latency {} { 
           set design_tns 0 
           set design_wns 100000 
           set design_tps 0 
 
           set adj_setup_time 0 
           foreach_in_collection clk_enable [get_pins -hier "*clk_gate/E" ] { 
 
           foreach_in_collection path [get_timing_paths  -nworst 1 -to $clk_enable] { 
               set setup_time [get_attribute $path endpoint_setup_time_value] 
               set endpoint [get_attribute $path endpoint] 
               set endpoint_name [get_attribute $endpoint full_name] 
              if { $endpoint_name == "cpu/clock_gate/gate_clockgate/clk_gate/E" } { 
                  set adj_setup_time [expr $setup_time + 0.0] 
                  set endpoint_setup($endpoint_name) $adj_setup_time 
                  set setup_time [get_attribute $path endpoint_setup_time_value] 
                  set endpoint_latency($endpoint_name)  [get_attribute $path endpoint_clock_latency] 
                  set startpoint_latency($endpoint_name)  [get_attribute $path startpoint_clock_latency] 
              } else { 
                  set adj_setup_time [expr $setup_time + 0.0] 
                  set endpoint_setup($endpoint_name) $adj_setup_time 
                  set endpoint_latency($endpoint_name)  [get_attribute $path endpoint_clock_latency] 
                  set startpoint_latency($endpoint_name)  [get_attribute $path startpoint_clock_latency] 
              } 
           } 
           } 
 
   set fileId [open "clock_adj.tcl" w] 
 
   puts $fileId "set timing_scgc_override_library_setup_hold true" 
   puts $fileId "remove_clock_gating_check \[current_design\]" 
   puts $fileId "remove_clock_gating_check  \[get_pins -hier \"*clk_gate/E\" \]" 
 
   foreach {key value} [array get endpoint_setup] { 
 
      set adj_setup_time  [expr $startpoint_latency($key) - $endpoint_latency($key) ] 
      set adj_setup_time [expr $adj_setup_time + ${value}] 
      if { $adj_setup_time > 0 } { 
         puts $fileId "set_clock_gating_check -setup  $adj_setup_time [get_attribute $key full_name ]" 
      } 
   } 
 
   close $fileId 
 
}                                                                                                                
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3.4.4 route_opt / signal integrity optimization techniques 

The following list describes some of the steps taken to obtain the best timing QoR with and 
without accounting for signal integrity (SI) effects. In particular, using a tight transition time on 
the main clock (SI_ClkIn) as well as using triple spacing to route the clock nets helped improve 
the SI timing on the 74K core implementation in ICC.  

1. Used CWORST extraction corner TLUPlus models for implementation since that 
extraction corner has the worst SI impact 

2. Cross-talk prevention during track assignment 
3. Timing-driven global route  
4. Turned off crosstalk delta delay during initial fixing 
5. Turned on crosstalk delta delay for timing closure with crosstalk 
6. Wire spreading to minimize crosstalk effects 
7. Used non-default routing rules defined during clock_opt to do automatic wire sizing on 

critical nets 
8. Additional route_opt runs were added to attack the signal integrity challenges 

 
Specific route_opt commands: 

• set_route_options  -groute_clock_routing normal 
• route_group -all_clock_nets -search_repair_loop 20  
• set_si_options –delta_delay false 
• route_opt -initial_route_only  
• route_opt -skip_initial_route -effort high  
• route_opt –effort high –incremental  -only_design_rule 
• set_si_options –delta_delay true 
• route_opt –xtalk_reduction 
• route_opt –optimize_wire_via 
• route_opt –incr –only_size_wire 
• route_spreadwires –widen 
• route_opt –incr -only_hold_time 
 

               
 
3.4.5 Correlation between ICC, Star-RCXT and PrimeTime SI  

As stated before, the C-worst extraction corner was chosen for ICC as well as Star-RCXT™ in 
order to use the most pessimistic corner for implementation and sign-off analysis. Star-RCXT 
has different modes referred to as MODE 100, MODE 200 and MODE 400 which imply varying 
levels of accuracy. For purposes of this evaluation, MODE 400 was chosen to obtain the most 
accurate extraction result which is recommended for technology nodes of 65nm or below. 
 
As shown in Figures 19 and 20, the correlation between ICC and Star-RCXT is excellent for 
total as well as coupling capacitances. Good correlation is important to ensure that the 
optimization tool actually works on paths that are seen by the sign-off tool. For this evaluation, 
since the correlation was quite good, no multiplier for capacitances was used in ICC.  
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Figure 19 - Total capacitance correlation (values in fF) 
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Figure 20 – Coupling capacitance correlation (cap values in fF) 

 
To achieve good timing correlation between ICC and PT SI, the following settings in ICC and 
PT SI were used: 
 
ICC: 

set timing_remove_clock_reconvergence_pessimism true 
set_delay_calculatiion -arnoldi 

 
PT SI: 

set si_exit_on_max_iteration_count 3 
set si_xtalk_delay_analysis_mode  "all_violating_paths" 
set timing_remove_clock_reconvergence_pessimism “true” 
 

 
It is important to note that if both the min and max versions of the libraries are loaded in PT SI 
using the set_min_library –min_version command, on-chip-variation (OCV) mode is 
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automatically activated inside of PT SI regardless of the condition set using the 
set_operating_conditions command. In OCV mode with both min and max libraries loaded, the 
results are unrealistic and pessimistic since two extremes of process corners are used for picking 
up the fast and slow paths for OCV analysis. 
 
To avoid this problem, setup and hold analysis were carried out in PT SI by loading libraries for 
a single corner at a time. The code snippet in Figure 21 shows the basic script used for 
completing the PT SI analysis. 
 
 

 
 

Figure 21- Example of PT SI script for accuracy (pessimism is removed) 

 
 
 

 
# 
#set_min_library 
${LIB_PATH}/dti_sp_tsmc65gplus_1024x64_8bw3xoe_m_worst.db  \ 
#                 -min_version  
${LIB_PATH}dti_sp_tsmc65gplus_1024x64_8bw3xoe_m_best.db 
# 
 
 
set timing_input_port_default_clock "true" 
set timing_enable_preset_clear_arcs "false" 
set timing_enable_multiple_clocks_per_reg "false" 
 
 
 
 
 
 
 
set timing_remove_clock_reconvergence_pessimism “true” 
 
set si_enable_analysis true 
set si_xtalk_exit_on_max_iteration_count 3 
set si_xtalk_delay_analysis_mode  "all_violating_paths" 
set timing_update_status_level high 
 
read_parasitics -keep_capacitive_coupling -format SBPF  
route_opt.sbpf 
 
update_timing -full 
report_timing –recalculate -sig 4 -net -trans -cap -nosplit -
nets -input pins -path full clock >

Be sure that the MIN libraries are 
NOT loaded in PT-SI when doing 
SI analysis 
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3.5 Review of ICC results 

Figure 22, below, summarizes the results achieved for the 74K core as implemented with the 
above describe DC/DC-T and ICC methodology described above. The PT SI report shows that 
the 74K core achieved a frequency of 1.12GHz, better than the original target (1GHz) with no 
significant manual intervention or custom scripts.  
 
Flow Step WNS (ns) TNS (ns) # Violating paths 
ICC  -0.071 -2.985 322 
Star-RCXT/PT SI -0.047 -0.966 83 

 

Figure 22 - ICC final results 

 
4.0 Conclusions and recommendations 
This paper has introduced an automated flow that can achieve frequencies above 1GHz with the 
74K core using commercial standard cell libraries, memories and Synopsys tools. The paper has 
also demonstrated the value of using DC/DC-T in conjunction with ICC design planning and 
exploration capabilities to provide the best starting point for implementation.    
 

 
4.1 Benefits of the methodology 

The methodology described in this paper enables the use of an automated synthesizable approach 
to achieve very high frequencies with embedded processor cores from MIPS Technologies, Inc. 
using Synopsys tools. 
 
4.2 Areas for future investigation and improvement 

The authors will continue working on the methodology as the tools continue to improve. The 
particular areas of interest are: 

- Investigate sign-off driven design closure. 
- Investigate better and/or automated ways of handling inherent skews on paths ending in 

clock gating enable pins pre-CTS. 
- Enhance ICC CTS, so that in a single pass, the useful skew optimization to an ICG (for 

the sake of its enable path) is considered simultaneously with the potential useful skews 
to that ICG’s flops. This would require defining non-stop sync pins on the clock pins of 
the ICG. 

- Enhance the DC-T/ICC flow for low power implementations. 
- Add a hierarchical reference flow for integrating the MIPS 74K core in the context of 

SoC designs. 
- Investigate benefits of adding Multi-Corner Multi-Mode (MCMM) optimization to MIPS 

ICC flow. 
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4.3 Reference flow for the 74K™ core and other MIPS® cores 

The reference flow described in this paper based on DC/DC-T and ICC will be available for all 
embedded processor cores from MIPS Technologies, Inc. including the 74K family of cores with 
the next maintenance release of the cores. 
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7.0 Appendix 
The following version of Synopsys tools were used in the course of the evaluation: 

- DC Ultra – 2007.03-SP3 
- ICC – 2007.03-SP3 
- Star-RCXT - 2007.06-1 
- PT SI - 2007.06 
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