
 Public Imagination Technologies

MIPS Debug 1 Revision 1.3.266

MIPS Debug

Low-Level Bring-Up Guide

Copyright © Imagination Technologies Limited. All Rights Reserved.

This publication contains proprietary information which is subject to change without notice and is
supplied 'as is' without warranty of any kind. Imagination Technologies, the Imagination logo,
PowerVR, MIPS, Meta, Ensigma and Codescape are trademarks or registered trademarks of

Imagination Technologies Limited. All other logos, products, trademarks and registered trademarks
are the property of their respective owners.

Filename : MIPS_Debug_Low-Level_Bring-Up_Guide.docx

Version : 1.3.266 External Issue Added JTAG characteristics..

Issue Date : 30 Mar 2016

Author : Imagination Technologies Limited

Document No : MD01043

Imagination Technologies Public

Revision 1.3.266 2 Low-Level Bring-Up Guide

Contents

1. Introduction ... 7

1.1. Licensing ... 7
1.2. Terminology .. 7

2. Target connection details .. 8

2.1. SP55E ... 8
2.1.1. Establishing host-debug adapter connection ... 8
2.1.2. SP55E connection to target JTAG ... 9
2.1.3. RJ45/Ethernet connection to host .. 9
2.1.4. USB connection to host .. 9

2.2. Connecting to MIPS development boards .. 10
2.2.1. Malta + coreFPGA6 .. 10
2.2.2. SEAD3 .. 12

2.3. Getting diagnostics information from the debug adapter and Codescape 12
2.3.1. Diagnostics in Codescape .. 12
2.3.2. Listing debug adapter transaction logs .. 12

2.4. Target Connection Schematic .. 14
2.4.1. SP55E .. 14

2.5. Notes for making your own JTAG cable ... 15
2.5.1. Board and cable impedance matching ... 15

3. Using and configuring an SP55E debug adapter .. 16

3.1. SP55E Overview... 16
3.2. Power Requirements .. 16
3.3. Connectors ... 16

3.3.1. USB .. 16
3.3.2. RJ45/Ethernet .. 16
3.3.3. JTAG .. 16

3.4. External LEDs ... 16
3.5. SP55E interface specifications ... 17
3.6. SysProbe JTAG characteristics .. 17

3.6.1. Non-standard JTAG output configuration ... 17
3.6.2. Non-standard JTAG input configuration ... 18
3.6.3. JTAG signal timing ... 18

3.7. DC Characteristics .. 19
3.8. Opening a connection to an SP55E ... 20

3.8.1. Opening a connection to an SP55E with Codescape Console 20
3.9. Checking and reflashing SP55E firmware .. 20

3.9.1. Checking current firmware version ... 20
3.9.2. Reflashing the SP55E from Codescape Console .. 20

4. Board and Core Definition files ... 22

4.1. Overview ... 22
4.2. Working with Hardware Definition and Board files ... 22

4.2.1. Creating Hardware Definition files .. 22
4.2.2. Copying existing Hardware Definition files ... 23
4.2.3. Creating Board files .. 23
4.2.4. Selecting Hardware Definition and Board files ... 24
4.2.5. Modifying Hardware Definition and Board files .. 24

4.3. Modifying existing Board and Hardware files ... 24
4.3.1. Editing HSPs with a text editor ... 24
4.3.2. Using the Hardware Definition Editor ... 24

4.4. HSP file format .. 26
4.4.1. Format overview ... 26

4.5. Worked example of an XML file .. 28

5. New Target Bring-up... 31

5.1. Introduction ... 31

 Public Imagination Technologies

MIPS Debug 3 Revision 1.3.266

5.2. Stage 1 - Bypass Test .. 31
5.3. Stage 2 - TAP Identification .. 32
5.4. Stage 3 - basic debug operation... 34

5.4.1. MIPS ... 34
5.4.2. Meta/UCC ... 37

5.5. Stage 4 – Auto-detect with Codescape Console .. 38
5.5.1. MIPS ... 38
5.5.2. Meta/UCC ... 43

5.6. Stage 5 – Auto-detect with Codescape .. 46

6. Low-level EJTAG Debug .. 48

6.1. Introduction ... 48
6.1.1. Terminology .. 48
6.1.2. Tools ... 49

6.2. MIPS Processor Basics .. 49
6.2.1. Execution Mode .. 49
6.2.2. ISA Mode .. 50
6.2.3. Execution Location ... 50
6.2.4. Exception Cause .. 50

6.3. Using NMI (Non Maskable Interrupt) .. 51
6.4. EJTAG Debug Features ... 51

6.4.1. EJTAG TAP Basics .. 52
6.4.2. Boot Mode: EJTAGBOOT vs NORMALBOOT ... 52
6.4.3. Basic Codescape Console Commands .. 52
6.4.4. Advanced Codescape Console Commands .. 55
6.4.5. Low level "scan" commands... 55
6.4.6. Diagnosing Cache Problems .. 59

6.5. Debugging a Soft Hang .. 60
6.5.1. Using PC Sample ... 60
6.5.2. Using DINT (Debug Interrupt) .. 61

6.6. Debugging a Hard Hang ... 61
6.6.1. “Halt” Fails .. 61
6.6.2. Halt Fails: CPU not taking DINT ... 62
6.6.3. Halt Fails: CPU never accesses dmseg ... 62
6.6.4. Halt Fails: CPU stops accessing dmseg .. 65
6.6.5. Debug Through Reset .. 67

6.7. Multi-Core Coherent Processing Systems (CPS) ... 67
6.7.1. Cluster Power Controller (CPC) ... 67
6.7.2. CPC Reset ... 67
6.7.3. Probe-Mode .. 68
6.7.4. CPC DINT monitoring ... 68

7. OCI debugging with a DBU Debug Monitor.. 69

7.1. Introduction ... 69
7.2. Debug Unit (DBU) ... 69
7.3. Debug Monitor .. 69

7.3.1. Global Throttle .. 69
7.3.2. Debug Monitor States ... 69
7.3.3. Key Components .. 69

7.4. Connecting .. 71
7.5. Using the Debug Monitor via high level commands ... 72

7.5.1. Debugging .. 72
7.5.2. Exceptions .. 72
7.5.3. Incorrect states ... 73
7.5.4. Timeouts ... 73

7.6. Low Level Usage .. 73
7.6.1. Debug Mode ... 73
7.6.2. Multiple VPs ... 74
7.6.3. Monitor Commands .. 75

8. Advanced Debug Adapter settings ... 77

Imagination Technologies Public

Revision 1.3.266 4 Low-Level Bring-Up Guide

8.1. Global settings .. 77
8.2. MIPS ... 80
8.3. Meta .. 81
A.1. Hardware Definition XML Elements.. 83

A.1.1. Document ... 83
A.1.2. Board .. 83
A.1.3. SoC ... 84
A.1.4. CoreInfo .. 85
A.1.5. DAConfiguration ... 86
A.1.6. Processor ... 86
A.1.7. MemoryType .. 87
A.1.8. MemoryBlock .. 88
A.1.9. SharedMemory ... 89
A.1.10. Module .. 90
A.1.11. Register .. 90
A.1.12. BitField.. 92
A.1.13. BitFieldValue .. 93
A.1.14. Settings... 93
A.1.15. Setting .. 94
A.1.16. ProcessorLink ... 94
A.1.17. SoCLink .. 94
A.1.18. CoreID .. 95

A.2. The Document Type Definition ... 95

 Public Imagination Technologies

MIPS Debug 5 Revision 1.3.266

List of Figures
Figure 1 SP55E connection to target .. 8

Figure 2 Location of UART0 on Malta ... 11

Figure 3 Connecting up a Malta + coreFPGA6 development board ... 11

Figure 4 Connecting up a SEAD3 development board ... 12

Figure 5 SP55E target connection schematic ... 14

Figure 6 JTAG signal timing .. 18

Figure 7 CPS Resources (simplified) .. 49

Imagination Technologies Public

Revision 1.3.266 6 Low-Level Bring-Up Guide

Document History

Issue Date Changes/Comments

1.0.24 09 Apr 2014 First version.

1.0.61 11 Apr 2014 External Issue (Preliminary)

1.1.93 17 Jul 2015 Updated with new SP55E features and corrections

1.2.129 21 Aug 2015 New probe configuration options added.

1.3.253 08 Mar 2016 Updated for SysProbe SP55E. Removed DA-net.
Added section OCI debug with debug monitor.
Changed category to Public. Removed part number
from document title.

1.3.257 09 Mar 2016 External Issue Added SP55E DC Characteristics.

1.3.266 30 Mar 2016 External Issue Added JTAG characteristics..

 Public Imagination Technologies

MIPS Debug 7 Revision 1.3.266

1. Introduction
This document provides connection information and detailed low-level, debugging assistance and
techniques to help you diagnose common problems encountered when bringing up MIPS and
Meta/UCC processor cores using Imagination’s debugging hardware and software solutions.

It has the following sections:

Target connection details

Connection details for popular development systems.

Using and configuring an SP55E debug adapter

How to set up the SP55E debug adapter.

Board and Core Definition files

How to write and customise Hardware Support Packages (HSPs) to provide target-specific
information such as the layout of core memory and register definitions.

New Target Bring-up

How to bring-up new designs either in silicon, FPGA, or emulation using Codescape Console and
scripts for MIPS, Meta and UCC targets.

Low-level EJTAG Debug

Information on EJTAG debug basics and a “How To” guide for Codescape Console commands and
debugging system stalls.

OCI debugging with a DBU Debug Monitor

How to debug an OCI compliant, 64-bit, multicore system containing a Debug Unit (DBU) using a
debug monitor and Codescape Console.

Advanced Debug Adapter settings

Advanced settings to control the debug adapter's behaviour.

Hardware Definition Reference Documentation

Appendix describing the syntax of elements in XML hardware definition files.

1.1. Licensing

Licenses for open source components can be found on the probe’s in-built webserver at: http://img-
sp00xxx/license where xxx is the serial number of the probe as printed on side and base, eg:
http://img-sp00155/license.

1.2. Terminology

SysProbe SP55 - SysProbe and SP55 is the name of the master module that accommodates a sub-
assembly PCB, such as SP55E, that provides a specific set of debug features. The name of the sub-
assembly can be read on the end panel of the SysProbe.

SP55E - SP55E is a network-capable probe from Imagination Technologies. It can be connected
directly to a host PC via USB or Ethernet and connection to a MIPS targets via a JTAG.

'probe' vs 'debug adapter'

Throughout this document the terms 'probe' and 'debug adapter are used interchangeably.

Imagination Technologies Public

Revision 1.3.266 8 Low-Level Bring-Up Guide

2. Target connection details

2.1. SP55E

Figure 1 SP55E connection to target

The SP55E can connect to the debugger host PC either by USB (connected directly to the host PC)
or via Ethernet.

2.1.1. Establishing host-debug adapter connection

Host to SP55E communication is via TCP/IP either using USB cable to the host PC or RJ45 socket to
Ethernet. Both USB and RJ45 can be connected at the same time, but only one will be used by the

 Public Imagination Technologies

MIPS Debug 9 Revision 1.3.266

SP55E. The first one to obtain an IP address will be used by the SP55E; it is therefore advisable to
only connect one.

2.1.2. SP55E connection to target JTAG

The connection between the SP55E and the target is via ribbon cable. No other adapters are
required. Both the target and the SP55E should be powered off when connecting the cable.

2.1.3. RJ45/Ethernet connection to host

When an Ethernet cable is connected to the SP55E, the probe tries to connect to DHCP and request
an IP address. Default DNS name of the SP55E is img-sp***** where ***** is the last five digits of the
SP55E’s serial number.

2.1.4. USB connection to host

USB IP address

The USB connection will present itself as a network adapter when connected to a Host PC running
Windows, Apple OS or Linux. On connection, the Host PC will request an address from the SP55E.
The SP55E will serve an IP address from the range 169.254.100.0 to 169.254.254.254. This will be
the IP address of the USB port as seen from the host.

The address will be static, derived from the serial number of the SP55E.

The number is derived by the divisor and modulus of the last 4 digits of the serial number when
divided by 100. For example an SP55E with a serial number of 02DALS32000378 would obtain an IP
address of 169.254.3.78.

Troubleshooting USB-host connections

Ping the address

If Codescape cannot detect the SP55E, try pinging the IP derived from the probe's serial
number.

Connection on Linux

Using older versions of some Linux distributions connectivity to the SP55E through USB isn’t
automatically setup and visible as an active network interface. In this case, the ping test will fail.

Check that the probe has been discovered using lsusb or checking dmesg. For example:

Host$ lsusb

Bus 002 Device 011: ID 0525:a4a2 Netchip Technology, Inc. Linux-USB Ethernet/RNDIS

Gadget

Look for the interface in ifconfig –a. For example:

Host$ ifconfig -a

usb0 Link encap:Ethernet HWaddr 76:1A:33:9D:CF:C9

 inet6 addr: fe80::741a:33ff:fe9d:cfc9/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1494 Metric:1

 RX packets:12 errors:0 dropped:0 overruns:0 frame:0

 TX packets:4 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:3269 (3.1 KiB) TX bytes:332 (332.0 b)

If no IP address is assigned, the DHCP daemon may not be setup for this interface
automatically. This can be configured using the network manager/network config that is

Imagination Technologies Public

Revision 1.3.266 10 Low-Level Bring-Up Guide

provided by your Linux distribution. Either you can set the IP address statically or start avahi-

autoipd daemon on the interface. For example:

Host$ sudo avahi-autoipd -D usb0

With the avahi autoipd daemon running on the network interface, ifconfig should

show the interface with an IP address. For example:

Host$ ifconfig

usb0 Link encap:Ethernet HWaddr 76:1A:33:9D:CF:C9

 inet6 addr: fe80::741a:33ff:fe9d:cfc9/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1494 Metric:1

 RX packets:12 errors:0 dropped:0 overruns:0 frame:0

 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:3269 (3.1 KiB) TX bytes:696 (696.0 b)

usb0:avahi Link encap:Ethernet HWaddr 76:1A:33:9D:CF:C9

 inet addr:169.254.10.129 Bcast:169.254.255.255 Mask:255.255.0.0

 UP BROADCAST RUNNING MULTICAST MTU:1494 Metric:1

Note: If setting the IP address manually, it is important to ensure the scope is set to link-local.

Connection on Windows

On Windows the probe will usually be identified as a RNDIS device. If connection has not
worked, try updating your RNDIS driver. You can also try adding a new 'Remote RNDIS
Compatible Device' from your Devices window.

2.2. Connecting to MIPS development boards

2.2.1. Malta + coreFPGA6

Yamon

The Malta board is supplied pre-flashed with YAMON. Please refer the YAMON documentation
supplied (also available at http://wiki.prplfoundation.org/wiki/MIPS_documentation). YAMON stdout
and terminal interface by default uses UART0 as shown on the picture below. YAMON outputs at a
UART speed of 38400 baud 8N1. When Linux is running this may be different depending on kernel
config, if you connect a terminal to UART0 be aware that the terminal baud speed must match
whatever baud rate is set by Linux.

 Public Imagination Technologies

MIPS Debug 11 Revision 1.3.266

Figure 2 Location of UART0 on Malta

Make sure everything is powered off before connecting up.

The ribbon cable has a red line indicating the position of pin 1 and should be oriented as shown.

Figure 3 Connecting up a Malta + coreFPGA6 development board

Imagination Technologies Public

Revision 1.3.266 12 Low-Level Bring-Up Guide

2.2.2. SEAD3

Figure 4 Connecting up a SEAD3 development board

2.3. Getting diagnostics information from the debug adapter and
Codescape

2.3.1. Diagnostics in Codescape

In Codescape there is a diagnostics report available from the Target Diagnostics window (Help menu
> Diagnostics). Select 'Codescape Debugger > Comms Log' from the expandable tree on the left side.

In this report information is given about the debug adapter you are connected to and communications
between the host PC, the debug adapter and the target.

If you are having difficulties connecting to the debug adapter or target you can use this information to
diagnose the problem or you can copy and send the report using the 'Feature Request/Defect
Reporting' option from the Help menu.

2.3.2. Listing debug adapter transaction logs

A log of debug adapter transactions can be generated from Codescape Console using the logfile

command. This can display error and transaction logs for the connected debug adapter.

Using the command without parameters prints a list of the available logs. For example:

>>> logfile()

DA Info Log

DA Error Log

DA Verbose Log

DA JTAG Log

Note: The logs available will depend upon the target and the type of probe (debug adapter) used.

Using a log name as a parameter prints the contents of that log.

 Public Imagination Technologies

MIPS Debug 13 Revision 1.3.266

>>> logfile("DA Info Log")

 0.000:SoC X:Generic : <info> : main : Initialising...

 0.000:SoC X:Generic : <info> : setup : Xilinx Configuration

OK, VHDL version = 1.C

 0.000:SoC X:Generic : <info> : board_init : Board Revision 3

 0.103:SoC X:Generic : <info> : main : Dash ID - 01EGNT33000401

 0.104:SoC X:Generic : <info> : target_handler : Dash Initialised, waiting for

first host command to set operating mode......

 0.105:SoC X:Generic : <info> : add_event : add_event, add: id: 0, period:

1,

 30.823:SoC X:Generic : <info> : jtag_scan : first command is JTAG Scan,

entering Passive Mode !!

Imagination Technologies Public

Revision 1.3.266 14 Low-Level Bring-Up Guide

2.4. Target Connection Schematic

2.4.1. SP55E

The diagram and table in this section show the pinouts for a target’s JTAG connector used with an
SP55E debug adapter.

Figure 5 SP55E target connection schematic

The table below displays the pinouts that need to be implemented on the target’s EJTAG connector,
to support the EJTAG protocol when used with an EJTAG adapter board.

Pin Signal Direction Pin Signal Direction

1 TRST# - Test Reset Input Input 2 GND - Ground GND

3 TDI – Test Data Input Input 4 GND – Ground GND

5 TDO – Test Data Output Output 6 GND – Ground GND

7 TMS – Test Mode Select
Input

Input 8 GND – Ground GND

9 TCK – Test Clock Input Input 10 GND – Ground GND

11 RESET# - System Reset Input 12 RTCK – not implemented

13 DINT default low. 14 VI/O – Target reference
voltage.

Output

 Public Imagination Technologies

MIPS Debug 15 Revision 1.3.266

Pin 13 DINT

This pin can be driven low or high from Codescape Console using the command

config(“assert dint”,1) where 1 is to drive DINT high. A ‘0’ will drive DINT low. It

defaults to low.

Pin 14 VI/O

This pin is an input circuit to the SP55E from the target. The normal requirement is 1.2mA at
1V2, rising to 3.3mA at 3V3.

2.5. Notes for making your own JTAG cable

EMC Compliance

To fully comply with EC directive 2004/108/EC concerning emissions and immunity you must connect
the flying ground lead (if fitted) on the supplied cable to a suitable secure earth point on your target
system.

The JTAG debug output connector on the debug adapter is a 14-way IDC.

If you are making your own cable to connect to a custom installation, note that the JTAG interface has
a theoretical maximum length of 300mm based on a 20MHz clock speed. As a guideline we
recommend that the cable does not exceed 250mm in length and the on-board track length to the
processor does not exceed 50mm where possible. You may be able to achieve longer cable lengths
at slower clock speeds but performance is not guaranteed. All cables must be screened and earthed.

2.5.1. Board and cable impedance matching

Even though the JTAG signals are relatively slow some thought is needed when routing these signals
for the target system PCB design.

The 14-way cable has a characteristic impedance of 65R, ideally the PCB traces for the JTAG signals
should match this. If the impedances cannot be matched then the traces should be kept short, sub
5cm. All the traces need to kept to similar lengths (within 1cm difference) to avoid skew.

Special care is needed on the TDO line (data out of the target SoC), the pad drive strength needs to
be strong enough to deal with the relatively high capacitance of the cable + traces, but not too high so
that it will generate very fast slew-rate edges. We recommend a value between 4mA and 12mA. Most
output drivers will have a relatively low impedance, this needs matching to the PCB traces and cable
with a source termination resistor (RTERM on schematic), typical values will be in the range 15R - 33R.

Imagination Technologies Public

Revision 1.3.266 16 Low-Level Bring-Up Guide

3. Using and configuring an SP55E debug adapter

3.1. SP55E Overview

The SP55E is a high-speed debug adapter that uses JTAG and TCP/IP protocol to connect a host
debugging PC to a target. Connection between debugging PC and an SP55E can be via Ethernet or a
direct USB cable. Both connections use TCP/IP protocol. Although USB and Ethernet can be
connected at the same time, only one of them will be used. When an SP55E is connected to a PC via
USB, it presents as a client-mode network adapter.

3.2. Power Requirements

The SP55E is supplied with a 12V, 15W DC power supply (centre pin positive). The board can be run
on a supply voltage from 5v to 12V. Wattage requirements will depend on the board activity.

3.3. Connectors

3.3.1. USB

Connector type: microUSB

Protocol: Client-mode, utilizing a network adapter for TCP/IP.

3.3.2. RJ45/Ethernet

Connector type: RJ45

Protocol: Ethernet TCP/IP

3.3.3. JTAG

Connector type: 14-way IDC

Protocol: JTAG compatible with targets complying with MIPS EJTAG
architecture and the MIPS OCI architecture . See ‘Figure 5 SP55E
target connection schematic’ on page 14 for more details Note that an
adapter is required to use the SP55E with Meta targets.

3.4. External LEDs

PWR LED

Shows a steady green light when the SP55E is powered up.

TGT LED

Shows a steady green light when the target is powered up and connected to the SP55E by the ribbon
cable.

RJ45 Ethernet socket

The RJ45 socket has two built-in LEDs. If your SP55E is powered up and connected to a target, the
LEDs give the following indications:

LED Meaning

Steady green LNK Ethernet link OK.

Flashing green ACT Ethernet activity.

 Public Imagination Technologies

MIPS Debug 17 Revision 1.3.266

3.5. SP55E interface specifications

Feature SP55E

JTAG Interface

Supported JTAG IR width 1-2048

Supported JTAG DR width 1-2048

Target must support BYPASS scan Yes

Additional register delays in scan-chain between TAP and
core

0-2047 before TAP

0-2047 after TAP

TCK maximum frequency 31.25MHz currently

TCK edge on which JTAG outputs transition (TDO, TMS) Configurable to be either

TCK edge on which JTAG input is registered (TDI) Configurable to be either

Multiple TAPs on scan-chain Yes

Multiple cores on single TAP Yes

TRST required No

Target TCK system Must be simple clock buffer only; no
PLL/DLL is permitted

Driver strength for target SoC TDO (for 31.25MHz TCK down
30cm shielded ribbon cable)

12mA. This output should be source-
terminated for a 50R transmission-
line

Host interface

Protocol 1Gb Ethernet

3.6. SysProbe JTAG characteristics

The SysProbe JTAG outputs are driven by DDR output registers, (before going through voltage
translation), yielding very low skew between TCK edges and TMS/TDO edges.

The TCK period must be long enough, after considering all skews, for all setup and hold time
requirements to be met. For systems with high signal skew, the TCK period should be made longer.

The standard JTAG configuration is:

 SysProbe TMS/TDO to change on the falling-edge of TCK, ready for the target to register these
signals on the following TCK rising-edge.

 SysProbe TDI to be registered on the rising-edge of TCK, after the target has produced edges
on the falling-edge of TCK.

This configuration provides a half TCK-period for setup-times, and a half TCK-period for hold-times,
and potentially providing margin for signal-skew between the probe and the target.

In many cases, more setup-time is required than hold-time, and so if a greater proportion of the TCK
period is used for setup-time, a shorter TCK period may be used.

3.6.1. Non-standard JTAG output configuration

The TCK edge on which the TMS/TDO outputs transition is programmable.

SysProbe can be configured to output TMS/TDO 8ns after the rising-edge of TCK, still providing some
hold-time and margin for skew, but potentially meeting the target setup-time requirement with a
shorter TCK period.

This feature is disabled by default.

Imagination Technologies Public

Revision 1.3.266 18 Low-Level Bring-Up Guide

3.6.2. Non-standard JTAG input configuration

The TCK edge on which the TDI input is registered is programmable.

As the target produces TDI edges on TCK in response to SysProbe generating edges, a delay is
guaranteed between the SysProbe producing TCK and receiving TDI events as follows:

1. SysProbe generates TCK falling-edge

2. TCK edge propagates through voltage-translation buffer and cable

3. Target produces edge on TDI

4. TDI edge propagates through cable and voltage-translation buffer

This delay guarantees significant TDI hold-time, and so it’s acceptable for SysProbe also to register
TDI on the falling-edge. This configuration can potentially meet the SysProbe setup-time requirement
with a shorter TCK period.

This feature is enabled by default.

3.6.3. JTAG signal timing

Timing diagrams are given for two cases:

1. JTAG outputs change on falling-edge of TCK (the JTAG standard)

2. JTAG outputs change on rising-edge of TCK

In each case, TCK is running at 31.25MHz.

Figure 6 JTAG signal timing

 Public Imagination Technologies

MIPS Debug 19 Revision 1.3.266

3.7. DC Characteristics

Description Condition Symbol Min Max Units

Input low voltage Vio = 0.8V VIL - 0.24 V

Vio=1.1V to 1.95V - 0.35xVio V

Vio=2.3V to 2.7V - 0.7 V

Vio=3.0V to 3.3V - 0.8 V

Input high voltage Vio = 0.8V VIH 0.56 0.8 V

Vio=1.1V to 1.95V 0.65xVio Vio V

Vio=2.3V to 2.7V 1.6 Vio V

Vio=3.0V to 3.3V 2 Vio V

Target i/o voltage Vio 0.8 3.3 V

Input current II - +/-5 uA

Input current, Vio Vio=0.8V-3.3V IVio - 3.4 uA

Output low voltage Io=100uA VOL - 0.1 V

Vio=0.8V-3.3V

Io=3mA - 0.25 V

Vio=1.1V

Io=6mA - 0.35 V

Vio=1.4V

Io=8mA - 0.45 V

Vio=1.65V

Io=9mA - 0.55 V

Vio=2.3V

Io=12mA - 0.7 V

Vio=3.0V

Output high voltage Io= -100uA VOH Vio-0.1 - V

Vio=0.8V-3.3V

Io= -3mA 0.85 - V

Vio=1.1V

Io= -6mA 1.05 - V

Vio=1.4V

Io= -8mA 1.2 - V

Vio=1.65V

Io= -9mA 1.75 - V

Vio=2.3V

Io= -12mA 2.3 - V

Vio=3.0V

Imagination Technologies Public

Revision 1.3.266 20 Low-Level Bring-Up Guide

3.8. Opening a connection to an SP55E

3.8.1. Opening a connection to an SP55E with Codescape Console

Codescape Console is an interactive Python shell with built-in extensions for debugging (via a debug
adapter) and control of a debug adapter. It can be used for reflashing, testing and for target bring-up
scripts.

Connect your SP55E to the target and Ethernet.

1. See ‘SP55E’ on page 8.

Start Codescape Console and connect to the target:

1. Change directory to the Scripts directory below your Python location.

2. Start Codescape Console and connect to the probe:

C:\Python27\Scripts>CodescapeConsole sp####

Welcome to Codescape Console 8.3.0.30. Enter help()<enter> for help

<tab> completion has been enabled.

Identifier SysProbe 00078

Firmware 0.5.2.0

Location

Mode uncommitted

TCK Rate 31250kHz

where #### are the last 4 digits from the serial number on the SP55E

3.9. Checking and reflashing SP55E firmware

The firmware loaded on an SP55E can be reflashed via Codescape Console or Codescape
Debugger.

From Codescape Debugger you can right-click on the target pain and select 'Reflash Firmware'.

Imagination Technologies technical support will notify customers when updated firmware is available.

The updates are sent as a single .fsh file.

Note: More information on Codescape Console can be found in the Codescape Online Help.

Before reflashing:

 You must be connected to the debug adapter via Codescape Console. See ‘Opening a
connection to an SP55E with Codescape Console’ on page 20.

3.9.1. Checking current firmware version

The current firmware version can be shown with the probe() command:

>>> probe()

Identifier SysProbe 00078

Firmware 0.5.2.0

Location

Mode uncommitted

TCK Rate 31250kHz

3.9.2. Reflashing the SP55E from Codescape Console

Checking available firmware

Codescape Console has a command, firmwarelist(), that checks for compatible firmware

available online. For example:

>>> firmwarelist()

 Public Imagination Technologies

MIPS Debug 21 Revision 1.3.266

0: 1.2.3 - SP55e - http://codescape-mips-

sdk.imgtec.com/components/probes/firmware/sp01020300.fsh

1: 1.2.1 - SP55e - http://codescape-mips-

sdk.imgtec.com/components/probes/firmware/sp01020100.fsh

2: 1.1.0 - SP55e - http://codescape-mips-

sdk.imgtec.com/components/probes/firmware/sp01010000.fsh

3: 1.0.0 - SP55e - http://codescape-mips-

sdk.imgtec.com/components/probes/firmware/sp01000000.fsh

To reflash the SP55E

To reflash with the latest available flash image use the firmwareupgrade() command with no

parameter:

>>> firmwareupgrade()

100% - Waiting for probe to restart

Identifier SysProbe 00155

Firmware 1.2.3.0

Location 192.168.154.55

Mode uncommitted

TCK Rate 31250kHz

Or, for a specific flash image:

>>> firmwareupgrade("http://codescape-mips-

sdk.imgtec.com/components/probes/firmware/sp01020100.fsh")

Note: Reflashing is complete when the prompt is displayed again. Do not disconnect or power down
the SP55E until the prompt appears.

Imagination Technologies Public

Revision 1.3.266 22 Low-Level Bring-Up Guide

4. Board and Core Definition files

4.1. Overview

This section describes how to use Board and Hardware Definition files with Codescape Debugger.
These files describe the physical architecture of a board and SoC.

Hardware Definition files provide information about an SoC. They contain lists of registers with the
addresses, access rights to registers, and definitions of the ranges of memory areas. A number of
Hardware Definition files are provided with the Codescape SDK and are located in the main

Codescape SDK install area, in the HardwareDefinition directory.

Note: Hardware Definition files can be created for a target from Codescape Console. See 'Using
Codescape Console to create Hardware Definition files'.

Board files specify memory area addresses, reset and connection scripts, and Hardware Definition
files. The memory information in a Board file overrides memory information in Hardware Definition
files. Board files can be created from within Codescape Debugger.

4.2. Working with Hardware Definition and Board files

4.2.1. Creating Hardware Definition files

Hardware definition files can be created in the following ways:

 Copy an existing file and edit the copy

 Use Codescape Console's makecorehd command.

Board files are created from within Codescape Debugger.

Using Codescape Console to create Hardware Definition files

Codescape Console can be used to create a Hardware Definition file for a hardware target. This file
will be created in a user area so it is editable.

Connect to the target

1. Connect your target board and probe to your PC.

2. Change directory to your Python Scripts directory.

3. Start Codescape Console and connect to the target using a command like:

4.

:\Python27\Scripts>CodescapeConsole ####

Welcome to Codescape Console 8.3.0.30. Enter help()<enter> for help

<tab> completion has been enabled.

Identifier SysProbe 00078

Firmware 0.5.2.0

Location

Mode uncommitted

TCK Rate 31250kHz

Where #### is SP****, danet**** depending on whether you are using an SP55E or DA-net
probe, and **** is the last 4 digits of the probe's serial number.

Create the Hardware Definition files

1. Use the makecorehd command. For example:

makecorehd(output_name="testcore")

This command will create a file in the {userhome}/imgtec/hwdefs directory,

testcore.xml. This file describes the registers in the core and memory information.

Note:

 Public Imagination Technologies

MIPS Debug 23 Revision 1.3.266

 The file extension, .xml, is always added.

 You can specify an output directory using output_dir="<directory>".

4.2.2. Copying existing Hardware Definition files

Each HSP consists of a pair of files, one core_id file and one XML file. However if you are creating

a custom Hardware Definition file it may be advisable to just duplicate a supplied XML file, giving it a
unique name. This ensures that the edited XML file is only used when explicitly selected.

The core_id file has a simple link to the corresponding XML file. This can be edited with a text editor

to force loading of a different XML file.

The options for working with a customised HSP are:

 Edit the original XML file using the Hardware Definition Editor. It is advisable to take a backup
of the original before starting editing.

 Create a new file, with a new filename, from the original XML file. You can then manually select
this XML file from Codescape.

 Create a new file, with a new filename, from the original XML file, then edit the core_id file to
select the new file when the core is detected.

Example: duplicating an XML file and reusing core_id

For example, the following two files are provided for 24k cores:

24Kc.core_id

24Kc.xml

The core_id file identifies which XML file should be used by this core.

<CoreID N="24Kc">

 <CoreIDValue>0x00019300</CoreIDValue>

 <src>24Kc.xml</src>

So we make a copy of 24kc.xml, calling it ‘24kc-new.xml’ and alter the core_id file:

<CoreID N="24Kc">

 <CoreIDValue>0x00019300</CoreIDValue>

 <src>24Kc-new.xml</src>

Now, when Codescape Debugger detects a core with an ID value of 0x00019300 it will load the

24kc-new.xml file. The 24kc-new.xml can be edited in any text editor, or using the Hardware

Definition Editor from Codescape Debugger.

4.2.3. Creating Board files

1. Start CS debug and connect to target

2. Right-click on target in Target Pane and select Target Debug Options.

3. Select 'Specify a specific Hardware Definition file', browse to and select the file you created
earlier.

4. Click Edit. This opens the Edit Board File dialog where you can specify scripts and edit
memory area information. The memory area information will be populated with information from
the Hardware Definition file.

Note: The SUM (Software User Manual) for your core or the SoC manufacturer's specifications
will give the memory ranges and addresses.

5. Click OK to save the changes and select 'Yes' when prompted to create a new board file.

Imagination Technologies Public

Revision 1.3.266 24 Low-Level Bring-Up Guide

4.2.4. Selecting Hardware Definition and Board files

There are two mechanisms for selecting hardware definition files.

 Automatic detection

 Manual selection

The method used is controlled on a per-target basis from the 'Target Debug Options' dialog (right-click
on the Target pane and select Target Debug Options).

Note: Codescape Debugger remembers the Target Debug Options for each target. If you specify a
Hardware Definition or Board file, that file will be used the next time you connect to that target.

Automatic detection

When the debugger connects to a target through a debug adapter, the core ID is read by the debug

adapter and reported to the debugger. Codescape uses this to search for a matching .core_id file.

This file then indicates which XML file to load. The XML file contains the actual configuration data.

Manual selection

Manual selection is done from the Target Debug Options dialog and can be by explicitly selecting
either a Hardware Definition or a Board file.

To manually select an HSP

1. Select ‘Target Debug Options’ from the Target menu. This opens the Target Debug Options
Dialog. Check that the correct target is listed in the topmost drop-down list.

2. Select the ‘Specify a specific Hardware Definition File’ radio button, then click the browse
button next to the field below the checkbox.

3. Browse to the Hardware Definition directory and select the XML file you want to use.

4. Click OK to save the selection.

4.2.5. Modifying Hardware Definition and Board files

Two methods, edit XML, work from within Codescape

Hardware Definition Editor will open the board file (if using them). Need to manually open Hardware
Definition file. If you have a board file specified then when you open the HD editor the board file is
opened – need to explicitly open HD file.

4.3. Modifying existing Board and Hardware files

Editing and creating new Board and Hardware Definition files can be done in three ways:

 Directly working with the XML files with a text editor.

 Using the Hardware Definition Editor

 Via the Edit Board File dialog. This is accessed from the Target Debug Options dialog (right-
click on Target pane > Target Debug Options > Create button). A Board File is created from this
operation, containing a CoreID and general memory layout.

4.3.1. Editing HSPs with a text editor

The HSPs installed with Codescape Debugger are installed in a non-editable location. If you want to
edit the files, it is sensible to create a copy of the files in an editable location. See 'Copying existing
Hardware Definition files' on page 23.

Check your edits result in valid XML. See ‘HSP file format’ on page 26 for information on the XML
structure for HSPs.

4.3.2. Using the Hardware Definition Editor

The Hardware Definition Editor can be opened from the Imagination Technologies Program Group or
from Codescape Debugger (Tools menu > Open Hardware Definition Editor). If you open it from

 Public Imagination Technologies

MIPS Debug 25 Revision 1.3.266

Codescape, the editor will automatically load the HSP for the currently-selected target in the Target
Pane.

Note: If you have configured Codescape Debugger to use a Board file for your target, the Board file
will be opened automatically by the Hardware Definition Editor. To edit the HSP file, you need
to manually open the HSP file (File menu > Open).

Editing definitions

1. Start the Hardware Definition Editor (either from the Debugger Tools menu or via your Start
menu).

Note: If you start the editor from the debugger, it will automatically load the HSP that is in use.
It would be good practise to make a backup of this file before editing it, and be aware
that editing the file will affect your current debug session.

 If you edit an HSP that is in use, when you close the editor, the debugger will ask if you
want to load the edited definition.

2. Load the HSP you want to edit (File menu > Open).

You will see something like this:

3. Click on the + next to the icon to expand the tree.

Imagination Technologies Public

Revision 1.3.266 26 Low-Level Bring-Up Guide

Note the tree entry titled ‘Ram’. This contains the specification of the main memory segments.

4. Expand the ‘Ram’ entry, and we see the kseg regions listed. Click on an entry and we can see
the definition details for that segment.

All of the values in the highlighted area can be edited by clicking in the table.

Note: Care must be taken when editing the addresses. Make sure you do not enter conflicting
addresses (e.g. overlapping with another memory area).

 Register details can be found under the ‘COP_REGISTERS’ section of the tree. Editing
should be done with extreme care.

5. Edit the values as required and save the file.

4.4. HSP file format

The purpose of the XML config file is to describe a processor’s memory mapped registers. How they
are laid out, grouped, and how the individual bits should be interpreted and displayed in Codescape.

The XML config file also describes whether a register and the bits within the register are read/write,
and how they should be written.

4.4.1. Format overview

This section gives a general overview of the structure of an HSP definition file.

Naming

All objects in the config file have a name. That name is used by Codescape to fill in a Symbol table so
that all of the entries may be:

 Viewed in a Peripheral Region.

 Viewed in a Watch Region.

 Accessed from a Script using ‘EvaluateExpression’.

The symbols are exactly the same as any symbols extracted from the debug information of a program
file. As such they must follow the C naming convention. In particular this means:

 Only alphanumeric characters, and _ can be used.

 The symbols are case sensitive.

 They cannot contain spaces.

 They must not be empty.

 They cannot begin with a number.

http://k3/imgwiki/cgi-bin/imgwiki.pl?CodeScape

 Public Imagination Technologies

MIPS Debug 27 Revision 1.3.266

 They must be unique within their own scope

‘Unique within their own scope’ means that the names of all direct children of a parent must be
different. For example a Module may not contain two Registers with the same name, and a
Group may not contain a Module and a Register of the same name. However a Register named
MyReg may contain a Format object (see below) named MyReg.

Descriptions

Because of the restriction on names, all objects can also have a Description. This description has
none of the restrictions associated with names.

The descriptions are used as tool-tips in Codescape, or can be permanently displayed using the
‘Show Header->Description’ menu option in the Peripheral region.

Registers

A memory mapped register is represented using a Register object. It contains the following
information:

 The address of the register

 The size of the register. (8, 16, 32 bits, 64 bit support is coming soon)

 It may contain one or more of three masks used to determine how the register should be read
and written :

 Read AND Mask - used to set any bits to zero after the register has been read, before it
is displayed.

 Write AND Mask - used to set any bits to zero before they are written. (For bits that must
be written as zero)

 Write OR Mask - used to set any bits to one before they are written. (For bits that must
be written as one)

 It may contain the read/write property of the register, this can be any one of the following :

 ReadWrite - the register can be read and written.

 ReadOnly - the register can only be read, Codescape will not allow writes to this register.

 WriteOnly - the register can only be written, Codescape will not allow reads from this
register.

 ReadOnce - the register cannot be written. Codescape will only allow reads when
explicitly requested by the user.

 WriteOnce - the register cannot be read. Codescape will only allow writes when explicitly
requested by the user.

 It may contain either :

 A Radix field, that determines in what radix the register should be displayed. (Binary,
Octal, Decimal, or Hexadecimal)

Or

 A set of formatting objects that describes the bits and bitfields in the register. See below.

ReadOnce and WriteOnce can be used to describe registers that have side-effects, such as pipe read
port, when the register is read it will take the next value in the pipe.

Formatting Registers

Registers can either be displayed:

 In the whole form, in which case a radix property describes the radix in which the value of the
register should be displayed. (Bin, Oct, Dec, Hex)

 Or they can be broken into bits and bitfields using any number of Format objects and Bit
objects.

A Format object represents a bitfield of one or more bits, it contains the following information:

Imagination Technologies Public

Revision 1.3.266 28 Low-Level Bring-Up Guide

 A mask used to indicate the bits of interest to the bitfield.

 A shift value, used to shift the bits of interest before displaying. (Shift lefts are supported, but
usually a shift right is used)

 Either:

 A radix property, in the same sense as the Register radix property.

 Or a set of Value objects that define a set of enumerated values.

A Bit object represents a bitfield of only one bit. It contains the following information:

 The zero indexed bit number to test.

 The value to display if the bit is True (1)

 The value to display if the bit is False (0)

Grouping of Registers

Registers can be grouped in Modules. A Module is a collection of Registers and possibly other
Modules.

Modules are contained in a Processor.

4.5. Worked example of an XML file

In this section we will take a small, contrived example. We want to describe a Processor called
‘MyChip’.

The XML file starts with the opening tag, and a Processor tag:

 <ioconfig>

 <p N="MyChip">

 </f>

 </ioconfig>

Now, let us suppose this chip has a set of DMA channels, we can group the registers for those
channels together with a Module tag inside the Processor tag:

 <m N="DMA">

 <d>DMA Channel Registers</d>

 </m>

For the first channel, we group all the registers for just the first channel inside another Module (this
goes inside the first Module tag before the Description):

 <m N="DMA_Channel_0">

 <d>DMA Channel 0 registers</d>

 </m>

The Module DMA_Channel_0 has a 16 bit read only register called DMAC0 (this goes inside the
Module tag before the Description):

 <r N="DMAC0">

 <s>0x04800000</s>

 <sw />

 <ro />

 <d>Control Register For DMA Channel 0</d>

 </r>

 Public Imagination Technologies

MIPS Debug 29 Revision 1.3.266

That register is made up of three parts:

Bits Meaning

0 Power state

1-13 Bytes available in the channel

14-15 Mode

We break the register up into those parts using Formats. A Format is basically a bitfield within a
register.

The Bytes Available bitfield is a numerical bitfield; that is, the bitfield should be displayed as a
number. It looks like this:

 <f N="BytesAvailable">

 <fm>0x3FFE</fm>

 <rs>1</rs>

 <D/>

 <d>bytes available in the channel</d>

 </f>

The <f> tag determine what bits are relevant to the bitfield (1 thru 13 inclusive), and the <ShiftR> tag
indicates that the value should be shifted to the right once before being displayed. The <Dec/> tag
indicates that the bitfield should be displayed in Decimal.

The Mode bitfield is a two bit bitfield, where each possible value for the bitfield can have a different
meaning. In this case 0x00 means forwards, 0x11 means backwards, and 0x02 means sideways. The
bitfield looks like this:

 <f N="Mode">

 <fm>0xC000</fm>

 <rs>14</ rs >

 <dv>Reserved</dv>

 <v N="Forwards">

 <x>0x00</x>

 <d>The mode of the DMA is forwards</d>

 </v>

 <v N="Backwards">

 <x>0x01</x>

 <d>The mode of the DMA is backwards</d>

 </v>

 <v N="Sideways">

 <x>0x02</x>

 <d>The mode of the DMA is sideways</d>

 </v>

 <d>Determines the mode of the channel</d>

 </f>

Again, the <f> tag is used to mask out irrelevant bits, and then the <rs> tag indicates that the value of
should be shifted to the right 14 places before being compared against any value. The <v> tag
determines what should be displayed when none of the values match. Each <v> tag then states what
should be displayed if the value in the register matches the <x> tag.

What all this means to Codescape

Codescape will use the above information to display the value of the register DMAC0 in a human
readable format. It will follow the following process (pseudocode):

Imagination Technologies Public

Revision 1.3.266 30 Low-Level Bring-Up Guide

 value = Read16(0x048000000)

 print "PowerState = " + (value & 1) ? "On" : "Off";

 bytesAvailable = (value & 0x3FFE) >> 1;

 print "Bytes Available = " + decimal(bytesAvailable)

 mode = (value & 0xC000) >> 14;

 if mode == 0 :

 print "Mode = Forwards"

 else if mode == 1 :

 print "Mode = Backwards"

 else if mode == 2 :

 print "Mode = Sideways"

 else :

 print "Mode = Reserved"

 Public Imagination Technologies

MIPS Debug 31 Revision 1.3.266

5. New Target Bring-up

5.1. Introduction

This section is intended to help user bring-up of new designs either in silicon, FPGA, or emulation.
Simply plugging in a debug adapter into your new design, opening Codescape and expecting it to
work is somewhat overoptimistic although it often does work. Following the steps detailed in this guide
will help eliminate problems methodically.

Codescape Console is an interactive Python shell with built-in extensions for debugging via a debug
adapter. It is a very good tool for low-level debug because only the commands that are submitted by
the user are performed, whereas Codescape debugger has more intrusive target interaction. Previous
users familiar with MIPS System Navigator Console (NavCon) will find that Codescape Console is
very similar except it uses Python syntax. Command reference documentation is provided online with
your installation of Codescape Console in the Documentation directory.

This guide covers MIPS, Meta and UCC targets; note that Meta and UCC debug is very similar and is
treated as one in this document.

Target bring-up must be performed in the sequence as listed below, as each stage leaves the target
in a particular state. Not following the sequence will result in different responses than the ones
documented here.

Note:

The instructions and examples in this chapter were made using a DA-Net probe from
Imagination Technologies. If an SP55E probe is used, the procedure is the same but responses
to Codescape Console commands may differ from the examples shown.

 The responses to the commands will vary depending on the target you are using. In some
cases the details of the responses have been abbreviated. More information may be shown,
depending on your target.

1. Bypass test

This basic test stage confirms JTAG connectivity and determines scan chain layout for
verification against the design.

2. TAP identification

Attempt to identify all the TAPs on the JTAG chain.

3. Perform basic debug operation

Perform a single debug operation using the probes JTAG scan mode, so all JTAG activity can
be easily recorded and re-created in a simulator if required.

4. Auto-detect with Codescape Console

Use the debug adapter to auto-detect the target and perform debug functions using Codescape
Console.

5. Auto-detect with Codescape Debugger

Use the debug adapter to auto-detect the target and perform debug using Codescape.

5.2. Stage 1 - Bypass Test

The bypass test will be done using the Codescape Console command ‘jtagchain()’ This command

the JTAG chain topology by performing a TAP reset and IR Scan. It will detect the number of taps and
the length of each tap on the chain.

1. Connect the debug adapter to the target.

Imagination Technologies Public

Revision 1.3.266 32 Low-Level Bring-Up Guide

2. Power the target and debug adapter.

3. Start Codescape Console and connect to the target as follows:

 Change directory to the Scripts directory below your Python location.

 Enter CodescapeConsole danet<da serial number>

where <da serial number> is the last 4 digits from the serial number on the DA-net.

The prompt should change to [s0v0] or similar (this corresponds to core0 vpe0). Depending on
the state of the target, it may also be [uncommitted].

4. Reset the probe state using the reset(probe) command.

[s0c0v0] >>> reset(probe)

Identifier DA-net 00238

Firmware 5.4.4.0

Mode uncommitted

TCK Rate 20000kHz

[uncommitted] >>>

5. Perform a bypass scan using jtagchain command.

We will use the verbose=2 parameter so that we can see all information from the scan.

[uncommitted] >>> jtagchain(perform_bypass_test=True, verbose=2)

DR Scanned in : 00010010001101000101011001111001(0x12345679)

 out : 00100100011010001010110011110010(0x2468acf2)

0x2468acf2 0x12345679 0xffffffffL

1 tap : test_pattern:0x12345679 == got:0x12345679

Bypass test found 1 tap

Determine IR lengths on scan chain and validating number of taps...

IR Scanned in: 111

111

 out: 111

1100001

IR Lengths : [5]

[0x5]

[tap 0 of 1] >>>

Usually problems are to do with the connection of JTAG signals, quite often TDI and TDO are
swapped, use an oscilloscope to observe the JTAG signals are correct.

5.3. Stage 2 - TAP Identification

For the second stage we will attempt to identify the TAPs that make up the current scan chain.

First, we want to get the probe into 'scanonly' mode (only JTAG scans allowed) .Do this by issuing the
following commands:

First, the reset command:

>>> reset(probe)

Identifier DA-net 00272

Firmware 5.3.0.0

 Public Imagination Technologies

MIPS Debug 33 Revision 1.3.266

Mode uncommitted

TCK Rate 156kHz [tap 0 of 1] >>> reset(probe)

Identifier DA-net 00238

Firmware 5.4.4.0

Mode uncommitted

TCK Rate 20000kHz

Then the scanonly command:

[uncommitted] >>> scanonly()

Determine IR lengths on scan chain and validating number of taps...

[tap 0 of 1] >>>

If we check, the mode should now report ‘scanonly’.

[tap 0 of 1] >>> probe()

Identifier DA-net 00238

Firmware 5.4.4.0

Mode scanonly

TCK Rate 20000kHz

Now issue the tapinfo() command and check the results match with your design.

MIPS target:

[tap 0 of 1] >>> tapinfo()

TAP 0 is a MIPS32 TAP with JTAG ID of 0x00000001

Meta target with 1 TAP:

1 Taps discovered, topology [5]

TAP 0 is a IMG META/UCC TAP with JTAG ID of 0x1fa1166d

Turning on JTAG logging

If no MIPS or Meta TAPs are discovered or the topology looks wrong then a log of all issued JTAG
scans can be created by turning on JTAG logging, this can then be turned into an RTL simulation to
check against the design.

>>> logging(jtag,on)

jtag on

>>> tapinfo()

352.381:SoC X:Generic :<verbos>: jtag_scan : JTAG Scan

352.425:SoC X:Generic :<verbos>: jtag_scan : JTAG Scan

352.425:SoC X:Generic : <jtag> : fill_fifo : TX Data: 0xffffffff

352.425:SoC X:Generic : <jtag> : fill_fifo : TX Data: 0xffffffff

352.426:SoC X:Generic : <jtag> : fill_fifo : TX Data: 0xffffffff

352.426:SoC X:Generic : <jtag> : fill_fifo : TX Data: 0xffffffff

352.427:SoC 0:Generic : <jtag> : scan_command : TAP 0: ir_scan Scan 128 bits, Quantity 1

352.427:SoC X:Generic : <jtag> : empty_fifo : RX Data Buffer words 0-3 0xffffffe1

0xffffffff 0xffffffff 0xffffffff

1 Taps discovered, topology [5]

352.513:SoC X:Generic :<verbos>: jtag_scan : JTAG Scan

352.516:SoC X:Generic :<verbos>: jtag_scan : JTAG Scan

352.513:SoC X:Generic : <jtag> : fill_fifo : TX Data: 0x00000001

352.514:SoC 0:Generic : <jtag> : scan_command : TAP 0: ir_scan Scan 5 bits, Quantity 1

352.514:SoC X:Generic : <jtag> : empty_fifo : RX Data Buffer words 0-3 0x08000000

0x20c62aa0 0xffffffff 0xffffffff

352.516:SoC X:Generic : <jtag> : fill_fifo : TX Data: 0x00000000

352.517:SoC 0:Generic : <jtag> : scan_command : TAP 0: dr_scan Scan 32 bits, Quantity 1

Imagination Technologies Public

Revision 1.3.266 34 Low-Level Bring-Up Guide

352.517:SoC X:Generic : <jtag> : empty_fifo : RX Data Buffer words 0-3 0x1fa1166d

0x20c626b8 0xffffffff 0xffffffff

352.561:SoC X:Generic :<verbos>: jtag_scan : JTAG Scan

352.564:SoC X:Generic :<verbos>: jtag_scan : JTAG Scan

352.562:SoC X:Generic : <jtag> : fill_fifo : TX Data: 0x0000001c

352.562:SoC 0:Generic : <jtag> : scan_command : TAP 0: ir_scan Scan 5 bits, Quantity 1

352.563:SoC X:Generic : <jtag> : empty_fifo : RX Data Buffer words 0-3 0x08000000

0x21124988 0xffffffff 0xffffffff

352.565:SoC X:Generic : <jtag> : fill_fifo : TX Data: 0x00000000

352.565:SoC 0:Generic : <jtag> : scan_command : TAP 0: dr_scan Scan 32 bits, Quantity 1

352.566:SoC X:Generic : <jtag> : empty_fifo : RX Data Buffer words 0-3 0x000529e7

0x21124940 0xffffffff 0xffffffff

TAP 0 is a IMG META/UCC TAP with JTAG ID of 0x1fa1166d

5.4. Stage 3 - basic debug operation

At this point we have to split the tests into Meta/UCC and MIPS specific sections as we are now going
to attempt to communicate with the core(s) behind the TAP(s).

5.4.1. MIPS

Configure the TAP index of the core/VPE we want to get into debug mode using

configuretap(<tap_index>) then issue the enterdebug() command:

>>> configuretap(0)

>>> enterdebug()

Pending Reset or Reset Occurred clearing Rocc

read of 0xff200200 00000000 nop

read of 0xff200204 0000000F sync

read of 0xff200208 1000FFFD b 0xff200200

read of 0xff20020c 00000000 nop

Second access seen to debug exception vector <done>

Possible reasons for failure:

Only one VPE can be in debug mode at any one time on a multi-VPE target. For example on a two
VPE target if we do the following:

>>> enterdebug()

Pending Reset or Reset Occurred clearing Rocc

read of 0xff200200 00000000 nop

read of 0xff200204 0000000F sync

read of 0xff200208 1000FFFD b 0xff200200

read of 0xff20020c 00000000 nop

Second access seen to debug exception vector <done>

>>> configuretap(1)

>>>enterdebug()

RuntimeError: Timeout waiting to Enter Debug mode, ECR: 0x0000d000

Or we cannot get TAP1 into debug mode as VPE0 (TAP0) is in debug mode, this can be seen if we
issue:

Note: The commands in the ‘for’ loop must be indented by at least one space. The indentations must
be the same for each line in the loop.

>>> for tap in enumerate(jtagchain()):

... configuretap(tap[0])

... tapecr()

...

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

 Public Imagination Technologies

MIPS Debug 35 Revision 1.3.266

0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0

As shown above, Dm = 1 indicates that VPE0 is in debug mode so we cannot get VPE1 into debug
mode. If we issue the following commands this will take TAP0 out of debug mode:

Note: The commands in the ‘for’ loop must be indented

>>> configuretap(0,jtagchain())

>>> dmseg(ExitDebug)

read of 0xff200200 4200001F deret

No processor access to dmseg seen in last 10 reads of the EJTAG Control register <done>.

>>> for tap in enumerate(jtagchain()):

... configuretap(tap[0])

... tapecr()

...

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0

Notice now that VPE1 has now gone into debug mode because EjtagBrk was pending from the

previous enterdebug() call.

Another common problem with multi-VPE targets is if the VPE has no TCs bound to it then it cannot
enter debug mode, this is indicated by the VPED bit in the ECR.

>>> enterdebug()

RuntimeError: VPE Disabled (No TC's Bound to it) when trying to Enter Debug Mode

>>> tapecr()

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0

0 0

Note that the DA-net does not actively drive the DINT signal. If the DINT signal in the system is
floating or pulled high, the core may enter debug mode before the probe has had a chance to take
control. This can be seen by checking the ECR; Dm will be active but ProbTrap and ProbEn are not

set. Also, if we check the pc with pcsamp(), we may see it in the (non eJTAG) debug exception

location of 0xBFC00480 (although this is dependent on what code is placed at this vector).

>>> tapecr()

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

>>> pcsamp()

PC New

0xbfc00480 1

Imagination Technologies Public

Revision 1.3.266 36 Low-Level Bring-Up Guide

For a more detailed discussion of issues relating to entering debug mode on a MIPS core please refer
to ‘Low-level EJTAG Debug, on page 48’.

Also note JTAG logging can be enabled to log all JTAG transactions when issuing these commands
(to help create an RTL simulation for example) via the same mechanism as before:

>>> logging(jtag,on)

jtag on

 Public Imagination Technologies

MIPS Debug 37 Revision 1.3.266

5.4.2. Meta/UCC

Meta and UCC debug is considerably simpler than MIPS, there is no debug mode and no need to
execute instructions on the processor to do anything, instead the debugger has direct access to
memory and memory mapped registers and there are memory mapped 'ports' to allow access to non-
mapped resources (registers, core memories, caches). So simply reading a memory mapped ID
register is enough to prove basic debug into the core is working. For Meta the relevant ID register is at
0x04800000 and UCC at 0x04801FE0.

For this test use a normal python interpreter or run this as a script:

>>> from CSUtils import DAtiny

>>> DAtiny.UseTarget("DA-net XXX")

>>> DAtiny.DAReset()

>>> settings = [

... wiggle.JtagSettings(J_IMG = 0x3,

... J_IMG_F = 0x4,

... J_IMG_M = 0x5,

... IR_Length = 5,

... J_Atten = 0x12,

... J_Ctrl = 0),

... wiggle.JtagSettings(J_IMG = 0x9,

... J_IMG_F = 0xa

... J_IMG_M = 0xb,

... IR_Length = 5,

... J_Atten = 0x12,

... J_Ctrl = 0),

...]

>>> tiny = wiggle_tiny.MetaDebugTiny(DAtiny, settings)

>>> tiny.SetTarget(0)

>>> print hex(tiny.ReadMemory(0x04800000))

'0x2010032'

>>> tiny.SetTarget(1)

>>> print hex(tiny.ReadMemory(0x04801fe0)

'0xf010003'

Note: The JTAG settings come from the file img2_jtag_pack.vhd in your SoC design. For this test we
only need the J_IMG encoding and IR length to be correct, in the example below we have a
Meta and a UCC on the same TAP (which is standard for a UCCP system).

If this fails the most common failure is a timeout on the debug port ready bit. This is often caused by
the core not being powered or its clocks being gated off. A log of the JTAG transactions can be
generated by issuing the following commands:

before issuing tiny.ReadMemory():

>>> DAtiny.WriteDASetting("JTAG Logging",1)

after issuing tiny.ReadMemory():

>>> DAtiny.WriteDASetting("JTAG Logging",0)

>>> print DAtiny.GetDiagnosticFile("DA JTAG Log")

Imagination Technologies Public

Revision 1.3.266 38 Low-Level Bring-Up Guide

5.5. Stage 4 – Auto-detect with Codescape Console

We first need to reset the debug adapter mode and turn on probe logging:

>>> reset(probe)

Identifier DA-net 00272

Firmware 5.2.2.3

Mode uncommitted

TCK Rate 5000kHz

[uncommitted] >>> logging(probe,1)

probe on

5.5.1. MIPS

Issue the auto-detect:

>>> autodetect()

6008.900:SoC X:Generic : <warn> : da_reset : DA Reset Issued - removing all core information and reverting

to uncommitted mode

6008.903:SoC X:Core 0 : <info> : da_read_config : first command is DA Read Config, Entering Classic Mode!!

6008.905:SoC X:Generic : <info> : determine_target_and_create : Discovering JTAG Chain

6008.911:SoC X:Generic : <info> : determine_target_and_create : JTAG Chain has 2 TAP(s)

6009.019:SoC 0:Generic : <info> : build_tables_from_pnp : JTAG PNP: 0x00000000

6009.020:SoC 0:Generic : <info> : build_tables_from_pnp : Target does not support IMG JTAG PnP

6009.021:SoC 0:Generic : <info> : is_mips32_target : Target looks like mips32!

6009.545:SoC 0:Core 0 : <info> : on_connect_target : Attempting to connect to the target...

6009.546:SoC 0:Core 0 : <info> : set_startup_options : Startup options (0x00423029):

6009.547:SoC 0:Core 0 : <info> : set_startup_options : Firmware: 5.2.2.3 : Mar 17 2014, 12:39:11

6009.548:SoC 0:Core 0 : <info> : set_startup_options : DIAGNOSTIC BUILD

6009.549:SoC 0:Core 0 : <info> : set_startup_options : Debug support enabled.

6009.550:SoC 0:Core 0 : <info> : set_startup_options : Halt after target reset.

6009.551:SoC 0:Core 0 : <info> : set_startup_options : Duplicate IP check enabled.

6009.552:SoC 0:Core 0 : <info> : set_startup_options : DHCP support enabled.

6009.554:SoC 0:Core 0 : <info> : set_startup_options : Process 'SWITCH' instructions in background polling.

6009.555:SoC 0:Core 0 : <info> : set_startup_options : JTAG clock frequency = 5MHz

6009.556:SoC 0:Core 0 : <info> : reset_dash_state : Reseting any stored state information.

6009.558:SoC 0:Core 0 : <info> : set_boot : Setting Normal Boot (on all TAPs) TAP 0

6009.559:SoC 0:Core 0 : <info> : set_boot : Setting Normal Boot (on all TAPs) TAP 1

6009.562:SoC 0:Core 0 : <info> : reset_target : Issuing Reset

6010.420:SoC 0:Core 0 : <info> : reset_target : CPC Probe Mode TAP reset

6010.421:SoC 0:Core 0 : <info> : reset_target : Pre Reset Delay

6010.923:SoC 0:Core 0 : <info> : reset_target : Post Reset Delay

6010.925:SoC 0:Core 0 : <info> : reset_target : Target Reset OK, doing bypass test to check if target

powered

6010.926:SoC 0:Core 0 : <warn> : target_reset_and_startup : Target Reset

6010.927:SoC 0:Core 0 : <info> : enable_debug_support : Enabling debug support...

6010.928:SoC 0:Core 0 : <info> : enable_debug_support : IMPCODE: 0xa1414800 , EJTAG Version 5, ASID Size 2, MIPS16e

Support, No DMA Support, MIPS32

6010.929:SoC 0:Core 0 : <info> : enable_debug_support : ECR: 0xc004c008, ISA:Mips32/64, Debug Mode Active

6010.931:SoC 0:Core 0 : <warn> : enterdebug : Pending Reset or reset occurred clearing Rocc

6010.945:SoC 0:Core 0 : <info> : cache_mips_info : DCR: 0x000703db, Endian Little Endian

6010.946:SoC 0:Core 0 : <info> : cache_mips_info : Enabling PC Sampling

6010.955:SoC 0:Core 0 : <info> : cache_mips_info : PRId: 0x0001a020, Company: Imagination Technologies MIPS, Cpu:

InterAptiv UP, Revision 32

6010.961:SoC 0:Core 0 : <info> : cache_config : config0: 0x81840482

6010.967:SoC 0:Core 0 : <info> : cache_config : config1: 0xfea351df

6010.973:SoC 0:Core 0 : <info> : cache_config : config2: 0x80000447

6010.979:SoC 0:Core 0 : <info> : cache_config : config3: 0x82003e2d

6010.985:SoC 0:Core 0 : <info> : cache_config : config4: 0xc01c0000

6010.991:SoC 0:Core 0 : <info> : cache_config : config5: 0x10000000

6010.997:SoC 0:Core 0 : <warn> : cache_mips_info : MT-ASE detected, Core has 2 VPEs and 5 TCs

6011.026:SoC 0:Core 0 : <info> : dump_tc_status : TC 0 Running [on HW Thread (VPE) 0 which is Active]

6011.052:SoC 0:Core 0 : <info> : dump_tc_status : TC 1 Running and Halted [on HW Thread (VPE) 1 which is

InActive (VPA in CP0 1.2 not set)]

6011.079:SoC 0:Core 0 : <info> : dump_tc_status : TC 2 Running and Halted [on HW Thread (VPE) 1 which is

InActive (VPA in CP0 1.2 not set)]

6011.106:SoC 0:Core 0 : <info> : dump_tc_status : TC 3 Running and Halted [on HW Thread (VPE) 1 which is

InActive (VPA in CP0 1.2 not set)]

6011.133:SoC 0:Core 0 : <info> : dump_tc_status : TC 4 Running and Halted [on HW Thread (VPE) 1 which is

InActive (VPA in CP0 1.2 not set)]

6011.136:SoC 0:Core 0 : <info> : dump_tc_status : Note ALL VPEs except 0 disable via EVP bit in MVPConf (CP0

0.1)

6011.187:SoC 0:Core 0 : <info> : cache_mips_info : VPE1 ECR = 0xc004c008

6011.188:SoC 0:Core 0 : <warn> : enterdebug : Pending Reset or reset occurred clearing Rocc

6011.279:SoC 0:Core 0 : <info> : target_reset_and_startup : Debug support enabled.

Identifier DA-net 00272

Firmware 5.2.2.3

Mode autodetected

TCK Rate 5000kHz

>>>

 Public Imagination Technologies

MIPS Debug 39 Revision 1.3.266

This example is from a single-core Dual VPE target (interAptiv-UP).

Check everything in the log is as expected for your design, the main failure at this point would be a
failure to enter debug mode. If this occurs repeat stage 3 to see if you can re-create the failure using
the simple scan method.

In this example we can see that we have set 'Normal Boot' and reset the target, this causes Core0
VPE0 to run from the boot exception vector and not enter debug mode immediately (ETJAG Boot). If
you do not want the debug adapter to reset the target on detection, the setting 'Reset on Connect' can
be set to 0 before issuing the auto-detect:

>>> config(“Reset on Connect”,0)

>>> autodetect()

The reset type EJTAG boot vs Normal Boot is set via DAConfig by the option 'Halt After Target
Reset'. This can also be set when issuing a reset command in Codescape Console, see help(reset)
for details.

Examine the target registers:

>>> regs()

zero 00000000 at 00000000 v0 00000000 v1 80070000

a0 00000000 a1 00000000 a2 00000000 a3 800be248

t0 00000001 t1 800af7ec t2 800af80c t3 00000020

t4 00000001 t5 800af7c0 t6 00000000 t7 800af770

s0 800be288 s1 00000000 s2 00000001 s3 00000042

s4 0000001b s5 0000005b s6 ffffff9b s7 800be818

t8 800af7fc t9 80033f30 k0 00000000 k1 80075ae8

gp 9fc10478 sp 800be230 s8 800be288 ra 8002b064

hi 00000000 lo 00000000 depc 8002b064 pc 8002b064

status 24002c01 cause 50808000 epc 80047288 badvaddr 00000000

index 00000000 random 0000000c entrylo0 00000000 entrylo1 00000000

context 00000000 pagemask 00000000 wired 00000000 count cb535e07

entryhi 00000000 compare 00000000 prid 0001a020 errorepc ff200210

config 81840483 config1 fea351df config2 80000447 config3 82003e2d

lladdr 00000000 watchlo 00000000 watchhi 80000000 debug 40128020

taglo 00000000 datalo 00000000 pagegrain 00000000 tracecontrol 00000000

Check they look sensible.

Stop all cores/VPEs:

>>> cmdall(halt)

c0v0: status=halted_by_probe pc=0x8002b064

0x8002b064 8fa4001c lw a0, 28(sp)

c0v1: status=stopped pc=0x80000e30

0x80000e30 000d7242 srl t6, t5, 0x9

At this point we will attempt to read memory for the first time as we try to disassemble the op-code at
the PC.

If the PC is pointing at invalid memory you could potentially get an error. If your SoC is well designed
hopefully you will get a bus error exception, but on many SoCs an access to an invalid address
usually locks up the core and it can often only be recovered by a hard reset.

The example below is from a coreFPGA 5 system which has been reset with EJTAG Boot set. The
memory controller on this FPGA locks up the bus if the DDR is accessed before it is set up. By
enabling logging of debug mode ops we can see the failure point.

Imagination Technologies Public

Revision 1.3.266 40 Low-Level Bring-Up Guide

>>> reset(ejtagboot)

>>> config("Verbose Logging",1)

1

>>> config("Log Debug Instructions",1)

1

>>> logging(probe,1)

probe on

>>>

>>> word(0xA0000000)

 331.607:SoC X:Core 0 :<verbos>: read_memory : read_mem: Count: 1 Mem unit: 0, address: 0x80000000

 331.608:SoC 0:Core 0 :<verbos>: halt : [thread 0]

 331.609:SoC 0:Core 0 :<verbos>: push_default_regs :

 331.609:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200204 4081f800 mtc0 at,

c0_desave

 331.610:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200208 3c01ff28 lui at, 0xff28

 331.610:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff20020c ac284000 sw t0,

16384(at)

 331.610:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200210 ac294004 sw t1,

16388(at)

 331.611:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200214 4008c000 mfc0 t0, c0_depc

 331.611:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200218 ac287ffc sw t0,

32764(at)

 331.612:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff20021c 0000000f sync

 331.612:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200220 1000fff8 b 0xff200204

 331.613:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200224 00000000 nop

 331.613:SoC 0:Core 0 :<verbos>: read_cp0_register :

 331.614:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200204 4008b800 mfc0 t0,

c0_debug

 331.614:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200208 ac280000 sw t0, 0(at)

 331.614:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff20020c 0000000f sync

 331.615:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200210 1000fffc b 0xff200204

 331.615:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200214 00000000 nop

 331.616:SoC 0:Core 0 :<verbos>: write_cp0_register :

 331.616:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200204 3c084c12 lui t0, 0x4c12

 331.617:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200208 350880a0 ori t0, t0,

0x80a0

 331.617:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff20020c 4088b800 mtc0 t0,

c0_debug

 331.617:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200210 1000fffc b 0xff200204

 331.618:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200214 00000000 nop

 331.618:SoC 0:Core 0 :<verbos>: read_eva_kernel :

 331.618:SoC 0:Core 0 :<verbos>: read_cp0_register :

 331.619:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200204 40082803 mfc0 t0, $5, 3

 331.619:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200208 ac280000 sw t0, 0(at)

 331.620:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff20020c 0000000f sync

 331.620:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200210 1000fffc b 0xff200204

 331.621:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200214 00000000 nop

 331.621:SoC 0:Core 0 :<verbos>: check_eva_kernel_segments : Access is uncached, Access is unmapped

 331.621:SoC 0:Core 0 :<verbos>: block_read32 :

 331.622:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200204 3c088000 lui t0, 0xA000

 331.622:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200208 35080000 ori t0, t0, 0x0

 331.623:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff20020c 8d090000 lw t1, 0(t0)

 331.623:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200210 ac290000 sw t1, 0(at)

 331.623:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200214 0000000f sync

 331.624:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200218 1000fffa b 0xff200204

 331.624:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff20021c 00000000 nop

 331.625:SoC 0:Core 0 :<verbos>: freeze : [thread 0]

 331.625:SoC 0:Core 0 :<verbos>: pop_default_regs :

 331.625:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200204 8c284000 lw t0,

16384(at)

 331.626:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200208 8c294004 lw t1,

16388(at)

 331.626:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff20020c 4001f800 mfc0 at,

c0_desave

 331.626:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200210 1000fffc b 0xff200204

 331.627:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200214 0000000f sync

 331.627:SoC 0:Core 0 :<verbos>: execute : eJTAG-DMSEG: exec 0xff200204 0000000f sync

 332.628:SoC 0:Core 0 :<error> : execute : [thread 0] Timeout waiting for PrACC

 332.628:SoC 0:Core 0 : <info> : print_all_ecrs : TAP 0, ECR = 0x0000c008

 332.628:SoC 0:Core 0 : <info> : print_all_ecrs : TAP 1, ECR = 0x0000c000

 332.629:SoC X:Generic :<except>: dispatch_cmd : dbg::exception Timeout waiting for PrACC

 status = 1

Error: Unable to read memory at 0x00:0xA0000000[1]. read_memory : CON: Command fatal error : Timeout waiting for PrACC

The example above shows that the target locks up at the two back-to-back sync instructions. This is
because the core does not lock up until the next access (or sync) to the external bus after the access
that caused the bus to hang.

Assuming your core/VPEs stopped normally (i.e. did not lock-up), try stepping a few instructions:

>>> step()

status=single_stepped pc=0x80033f30

0x80033f30 03e00008 jr ra

>>> step()

status=single_stepped pc=0x8000ab38

0x8000ab38 8fbf0024 lw ra, 36(sp)

 Public Imagination Technologies

MIPS Debug 41 Revision 1.3.266

>>> step()

status=single_stepped pc=0x8000ab3c

0x8000ab3c 03e00008 jr ra

>>> step()

status=single_stepped pc=0x80009d30

0x80009d30 1600fffd bnez s0, 0x80009d28

>>>

>>> step()

status=single_stepped pc=0x80009d28

0x80009d28 0c002ac5 jal 0x8000ab14

Now try a block read:

>>> word(0x80000000,count=256)

0x80000000 08011319 241a0000 a0000008 a000000c

$........

0x800003f0 a00003f0 a00003f4 a00003f8 a00003fc

>>>

Try a block write, start off in uncached space (kseg1):

>>> temp = word(0xA0000000,count=256)

>>> word(0xA0000000,temp,count=256)

0xa0000000 08011319 241a0000 a0000008 a000000c

0xa00003f0 a00003f0 a00003f4 a00003f8 a00003fc

There is a chance this could fail, the most obvious reason being the memory is not writable at this
address (if so pick an address that is writable).

Other failure reasons could include:

By default, block writes use fast transfers (Fast Write), this requires loading a fast stub into memory
(by default at 0x80000000), locking this into the first two cache lines and then restoring memory.
There are various reasons why this could fail.

The first thing to try is to try the write again with fast transfers disabled (a reset may be needed to
recover from the earlier failed write).

>>> config(“Fast Writes”,0)

0

>>> word(0xA0000000,temp,count=256)

If the write still fails then there is probably something wrong with the SoC design (at least something
on the bus external to the MIPS core where the write transaction is issued). Enable 'Verbose
Transactions' and 'Log Debug Instructions' configuration options and turn on probe logging, this may
help pinpoint where the write failed.

If the write worked with fast transfers disabled, we need to check if the fast transfer stub load address
is writeable. We need to be able to write the first 64-bytes at address 0x80000000. If this is not
possible, the stub load address can be configured to a different address using the configuration option
'Fast Monitor Address' e.g.:

>>> config("Fast Monitor Address",0x90000000)

0x90000000

Imagination Technologies Public

Revision 1.3.266 42 Low-Level Bring-Up Guide

If 0x80000000 is writable, or you have moved the stub to a writeable address and Fast Writes are still
failing, then try with the fast monitor not locked into the cache (we leave it in RAM, note that this is not
safe on multi-core SoCs when the other cores are running).

We need to run and halt the core/VPE first to flush out the current fast monitor, then set the
configuration option to do the write:

>>> go()

Running from 0x80009d28

status=running

>>> halt()

status=stopped pc=0x8000ab18

0x8000ab18 27bdffd8 addiu sp, sp, -40

>>> config("Lock Monitor in Cache",0)

0

>>> word(0xA0000000,temp,count=256)

If this still fails, the problem is most likely an issue with the bus fabric of the SoC.

If it now works then there could be an issue with the caches in the system (note that for systems with
no I-cache the debug adapter will automatically switch to placing the debug stub in RAM).

So we will re-load the stub into cache and then dump the cache to see if we can see the monitor in
the cache:

>>> go()

Running from 0x8000ab18

status=running

>>> halt()

status=stopped pc=0x8000cc90

0x8000cc90 27a40018 addiu a0, sp, 24

>>> config("Lock Monitor in Cache",1)

1

>>> word(0xA0000000,temp,count=256)

 <snip>

>>> cachedump(instr,0,0x20)

Offset Set Way TagLo Word 0 Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word

7

0000 000 0 0002a080 02028021 8e39d354 02602021 0320f809 02e02821 8ec3d350 3c048008

8c99d354 !...T.9.! `... .!(..P......<T...

0000 000 1 100000a0 8d4b0000 ad0b0000 051f0000 25080004 1509fffb 00000000 03e00408

00000000 ..K............%................

0000 000 2 000000a0 8d4b0000 ad0b0000 051f0000 25080004 1509fffb 00000000 03e00408

00000000 ..K............%................

0000 000 3 0002c080 afb10024 0c00b75e afb00020 8fa30018 24020002 30630007 10620015

3c148007 $...^...$..c0..b....<

0020 001 0 000000a0 8d0b0000 ad4b0000 055f0000 25080004 1509fffb 00000000 03e00408

0000000f K..._....%................

0020 001 1 0000c080 27bdffc8 afb00020 3c108007 96023b70 afb20028 24120001 afbf0034

afb40030 ...'<p;..(......$4...0...

0020 001 2 100000a0 8d0b0000 ad4b0000 055f0000 25080004 1509fffb 00000000 03e00408

0000000f K..._....%................

0020 001 3 0002c080 9282d7a8 1440001a 3c028007 3c128007 8e42d7e4 1040000b 3c118000

00008021 @....<...<..B...@....<!...

>>>

 Public Imagination Technologies

MIPS Debug 43 Revision 1.3.266

You should see the following line in one of the ways (which one is implementation specific) at offset 0:

000000a0 8d4b0000 ad0b0000 051f0000 25080004 1509fffb 00000000 03e00408 00000000 ..K............%................

You should see this line in one of the ways at offset 0x20:

000000a0 8d0b0000 ad4b0000 055f0000 25080004 1509fffb 00000000 03e00408 0000000f K..._....%................

Note: This assumes your monitor load address is 0x80000000. If it is different you would need to
calculate the offset into the cache based on the address you used. If you look at the example
dump data, you can see the monitor actual appears twice in this instance, but with a different
tag value of 0x100000A0. This is because earlier the monitor was moved to address
0x90000000, which maps to the same line, but the physical address in the tag is different.

The 0xA0 in the lower byte of the TAG shows the line is valid and locked, If you cannot see this data
there may be a fault with your cache rams.

If you have got this far, it looks like basic target communications are OK and you can spend some
time using Codescape Console to do some real debugging. You can load elf files, set breakpoints,
and single step etc.

Codescape Console only performs the commands submitted by the user and is less intrusive than
Codescape Debugger which performs additional memory reads to make debugging faster. This
additional activity can cause failures when bringing-up new devices. Once you are happy, move on to
‘Stage 5 – Auto-detect with Codescape’ on page 46.

5.5.2. Meta/UCC

Issue the auto-detect:

>>> autodetect()

9701.621:SoC X:Core 0 :<verbos>: da_read_config : read_config

9701.622:SoC X:Core 0 : <info> : da_read_config : first command is DA Read Config, Entering Classic Mode!!

9701.622:SoC X:Generic : <info> : determine_target_and_create : Discovering JTAG Chain

9701.627:SoC X:Generic : <info> : determine_target_and_create : JTAG Chain has 1 TAP(s)

9701.728:SoC 0:Generic : <info> : build_tables_from_pnp : JTAG PNP: 0x000529e7

9701.728:SoC 0:Generic : <info> : build_tables_from_pnp : Target Supports IMG JTAG PnP ! , version 2 collecting SoC

information....

9701.728:SoC 0:Generic : <info> : build_tables_from_pnp : Number of Cores: 5

9701.729:SoC 0:Generic : <info> : build_tables_from_pnp : Additional latency in Debug Chains: 0 registers

9701.729:SoC 0:Generic : <info> : build_tables_from_pnp : Attention Instruction Encoding: 00000012

9701.729:SoC 0:Generic : <info> : build_tables_from_pnp : Core 1 --- Core ID(4): META2, Debug Rev: 2

9701.729:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG Instruction Encoding: 00000003

9701.730:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_F Instruction Encoding: 00000004

9701.730:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_M Instruction Encoding: 00000005

9701.730:SoC 0:Generic : <info> : build_tables_from_pnp : Core 2 --- Core ID(2): MTX, Debug Rev: 2

9701.731:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG Instruction Encoding: 00000006

9701.731:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_F Instruction Encoding: 00000007

9701.731:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_M Instruction Encoding: 00000008

9701.731:SoC 0:Generic : <info> : build_tables_from_pnp : Core 3 --- Core ID(3): UCC, Debug Rev: 2

9701.732:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG Instruction Encoding: 00000009

9701.732:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_F Instruction Encoding: 0000000a

9701.732:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_M Instruction Encoding: 0000000b

9701.733:SoC 0:Generic : <info> : build_tables_from_pnp : Core 4 --- Core ID(2): MTX, Debug Rev: 2

9701.733:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG Instruction Encoding: 0000000c

9701.733:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_F Instruction Encoding: 0000000d

9701.733:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_M Instruction Encoding: 0000000e

9701.734:SoC 0:Generic : <info> : build_tables_from_pnp : Core 5 --- Core ID(3): UCC, Debug Rev: 2

9701.734:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG Instruction Encoding: 0000000f

9701.734:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_F Instruction Encoding: 00000010

9701.734:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_M Instruction Encoding: 00000011

9701.735:SoC 0:Generic : <info> : build_tables_from_pnp : Target supports JTAG Status Instruction

9701.735:SoC 0:Generic : <info> : build_tables_from_pnp : J_IMG_S Instruction Encoding: 0000001e

9701.835:SoC 0:Core 0 : <info> : create_core_object : Creating Meta 2.1 Processor Object

9701.836:SoC 0:Core 0 : <info> : get_slave_setting : Master Debug System Detected !

9701.836:SoC 0:Core 0 : <info> : get_slave_setting : Master Debug System Detected !

9701.841:SoC 0:Core 0 : <info> : discover : Core Memory Information supplied by table data

9701.864:SoC 0:Core 0 : <info> : discover_size : Icache size = 16K

9701.864:SoC 0:Core 0 : <info> : discover_size : Dcache size = 16K

9702.365:SoC 0:Core 0 : <info> : on_connect_target : Attempting to reset the target...

9702.365:SoC 0:Core 0 : <info> : set_startup_options : Startup options (0x00423028):

9702.365:SoC 0:Core 0 : <info> : set_startup_options : Firmware: 5.3.0.0 : Mar 19 2014, 00:33:18

9702.365:SoC 0:Core 0 : <info> : set_startup_options : Debug support enabled.

9702.366:SoC 0:Core 0 : <info> : set_startup_options : Do not halt after target reset.

Imagination Technologies Public

Revision 1.3.266 44 Low-Level Bring-Up Guide

9702.366:SoC 0:Core 0 : <info> : set_startup_options : DA is a master able to reset its target.

9702.366:SoC 0:Core 0 : <info> : set_startup_options : Duplicate IP check enabled.

9702.366:SoC 0:Core 0 : <info> : set_startup_options : DHCP support enabled.

9702.367:SoC 0:Core 0 : <info> : set_startup_options : Process 'SWITCH' instructions in background polling.

9702.367:SoC 0:Core 0 : <info> : set_startup_options : JTAG clock frequency = 5MHz

9702.367:SoC 0:Core 0 : <info> : target_reset_and_startup : Target is a Reset Master

9702.367:SoC 0:Core 0 : <info> : target_reset_and_startup : Target is a Debug Master

9702.368:SoC 0:Core 0 : <info> : reset_dash_state : Reseting any stored m_state information.

9702.370:SoC 0:Core 0 : <info> : reset_target : Issuing Reset

9703.722:SoC 0:Core 0 : <info> : reset_target : Target Reset OK, doing bypass test to check if target

powered

9703.722:SoC 0:Core 0 : <warn> : target_reset_and_startup : Target Reset

9703.722:SoC 0:Core 0 : <info> : enable_debug_support : Enabling debug support...

9703.723:SoC 0:Core 0 : <info> : get_JTAG_privilege : We have JTAG port privilege.

9703.726:SoC 0:Core 0 : <info> : enable_debug_support : Core version: major 2, minor 1, revision 3

9703.726:SoC 0:Core 0 : <info> : enable_debug_support : Core ID: 2t2d16 (harrier)

9703.728:SoC 0:Core 0 : <info> : set_vector_halt_triggers : Setting T0VECTINT_BHALT to MDBG port

9703.730:SoC 0:Core 0 : <info> : set_vector_halt_triggers : Setting T0VECTINT_IHALT to MDBG port

9703.732:SoC 0:Core 0 : <info> : set_vector_halt_triggers : Setting T0VECTINT_RHALT to MDBG port

9703.733:SoC 0:Core 0 : <info> : set_vector_halt_triggers : Setting T1VECTINT_BHALT to MDBG port

9703.735:SoC 0:Core 0 : <info> : set_vector_halt_triggers : Setting T1VECTINT_IHALT to MDBG port

9703.736:SoC 0:Core 0 : <info> : set_vector_halt_triggers : Setting T1VECTINT_RHALT to MDBG port

9703.737:SoC 0:Core 0 : <info> : read_thread_info : Thread 0 is DSP, PC=0x00000000, m_state is Stopped

9703.739:SoC 0:Core 0 : <info> : read_thread_info : Thread 1 is DSP, PC=0x00000000, m_state is Stopped

9703.767:SoC 0:Core 0 : <info> : target_reset_and_startup : Debug support enabled.

9703.767:SoC 0:Core 1 : <info> : create_core_object : Creating Mtx 1.2 Processor Object

9703.768:SoC 0:Core 1 : <info> : get_slave_setting : Master Debug System Detected !

9704.269:SoC 0:Core 1 : <info> : on_connect_target : Attempting to reset the target...

9704.269:SoC 0:Core 1 : <info> : set_startup_options : Startup options (0x00423028):

9704.270:SoC 0:Core 1 : <info> : set_startup_options : Firmware: 5.3.0.0 : Mar 19 2014, 00:33:18

9704.270:SoC 0:Core 1 : <info> : set_startup_options : Debug support enabled.

9704.270:SoC 0:Core 1 : <info> : set_startup_options : Do not halt after target reset.

9704.271:SoC 0:Core 1 : <info> : set_startup_options : DA is a master able to reset its target.

9704.271:SoC 0:Core 1 : <info> : set_startup_options : Duplicate IP check enabled.

9704.271:SoC 0:Core 1 : <info> : set_startup_options : DHCP support enabled.

9704.271:SoC 0:Core 1 : <info> : set_startup_options : Process 'SWITCH' instructions in background polling.

9704.272:SoC 0:Core 1 : <info> : set_startup_options : JTAG clock frequency = 5MHz

9704.272:SoC 0:Core 1 : <info> : target_reset_and_startup : Target is a Reset Slave

9704.272:SoC 0:Core 1 : <info> : target_reset_and_startup : Target is a Debug Master

9704.272:SoC 0:Core 1 : <info> : reset_dash_state : Reseting m_state

9704.273:SoC 0:Core 1 : <warn> : reset_target : Reseting Single MTX only

9704.283:SoC 0:Core 1 : <info> : reset_target : Target Reset OK, doing bypass test to check if target

powered

9704.283:SoC 0:Core 1 : <warn> : target_reset_and_startup : Target Reset

9704.283:SoC 0:Core 1 : <info> : enable_debug_support : enabling debug support...

9704.284:SoC 0:Core 1 : <info> : enable_debug_support : Core version: major 1, minor 2, revision 0, sub-identifier

0

9704.285:SoC 0:Core 1 : <info> : read_thread_info : Thread 0 is MTX, PC=0x00000000, m_state is Stopped

9704.285:SoC 0:Core 1 : <info> : discover : Identify dynamically Core Memory Region Units

9704.294:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x10

9704.294:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x11

9704.295:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x12

9704.296:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x13

9704.297:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x14

9704.315:SoC 0:Core 1 :<verbos>: discover_coremem_range : no memory at specifier 0x15 (0 != b0b1e06)

9704.333:SoC 0:Core 1 :<verbos>: discover_coremem_range : no memory at specifier 0x16 (0 != b0b1e07)

9704.352:SoC 0:Core 1 :<verbos>: discover_coremem_range : no memory at specifier 0x17 (0 != b0b1e08)

9704.364:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x18

9704.365:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x19

9704.365:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x1a

9704.366:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x1b

9704.367:SoC 0:Core 1 :<verbos>: discover_coremem_range : valid memory at specifier 0x1c

9704.385:SoC 0:Core 1 :<verbos>: discover_coremem_range : no memory at specifier 0x1d (0 != b0b1e06)

9704.404:SoC 0:Core 1 :<verbos>: discover_coremem_range : no memory at specifier 0x1e (0 != b0b1e07)

9704.422:SoC 0:Core 1 :<verbos>: discover_coremem_range : no memory at specifier 0x1f (0 != b0b1e08)

9704.655:SoC 0:Core 1 : <info> : print_layout : 5 Core Code Memories

9704.655:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x80000000, size 64 Kbytes.

9704.655:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x80010000, size 64 Kbytes.

9704.656:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x80020000, size 64 Kbytes.

9704.656:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x80030000, size 64 Kbytes.

9704.656:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x80040000, size 64 Kbytes.

9704.657:SoC 0:Core 1 : <info> : print_layout : 5 Core Data Memories

9704.657:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x82000000, size 64 Kbytes.

9704.657:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x82010000, size 64 Kbytes.

9704.657:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x82020000, size 64 Kbytes.

9704.658:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x82030000, size 64 Kbytes.

9704.658:SoC 0:Core 1 : <info> : print_mem : RAM @ address 0x82040000, size 64 Kbytes.

9704.666:SoC 0:Core 1 : <info> : target_reset_and_startup : Debug support enabled.

9704.667:SoC 0:Core 2 : <info> : create_core_object : Creating UCC-MCP Processor Object

9704.667:SoC 0:Core 2 : <info> : on_connect_target : Attempting to reset the target...

9704.668:SoC 0:Core 2 : <info> : set_startup_options : Startup options (0x00423028):

9704.668:SoC 0:Core 2 : <info> : set_startup_options : Firmware: 5.3.0.0 : Mar 19 2014, 00:33:18

9704.668:SoC 0:Core 2 : <info> : set_startup_options : Debug support enabled.

9704.668:SoC 0:Core 2 : <info> : set_startup_options : Do not halt after target reset.

9704.669:SoC 0:Core 2 : <info> : set_startup_options : Duplicate IP check enabled.

9704.669:SoC 0:Core 2 : <info> : set_startup_options : DHCP support enabled.

9704.669:SoC 0:Core 2 : <info> : set_startup_options : JTAG clock frequency = 5MHz

9704.670:SoC 0:Core 2 : <info> : reset_dash_state : Reseting state

9704.670:SoC 0:Core 2 : <warn> : reset_target : Reseting Single MCP only

9704.680:SoC 0:Core 2 : <info> : reset_target : Target Reset OK, doing bypass test to check if target

powered

9704.680:SoC 0:Core 2 : <warn> : target_reset_and_startup : Target Reset

9704.680:SoC 0:Core 2 : <info> : enable_debug_support : enabling debug support...

9704.681:SoC 0:Core 2 :<verbos>: read_id_reg : tcontext_ucc::read_id_reg - 0f010003

9704.681:SoC 0:Core 2 : <info> : enable_debug_support : MCP Core version: Group f, Id 1, Configuration 3

9704.681:SoC 0:Core 2 : <info> : enable_debug_support : UCC system version (assumption made on MCP id) : 310

9704.682:SoC 0:Core 2 : <info> : read_thread_info : UCC Thread PC=0x00000000, state is Stopped

9704.682:SoC 0:Core 2 : <warn> : target_reset_and_startup : Debug support enabled.

9704.682:SoC 0:Core 3 : <info> : create_core_object : Creating Mtx 1.2 Processor Object

9704.683:SoC 0:Core 3 : <info> : get_slave_setting : Master Debug System Detected !

9705.184:SoC 0:Core 3 : <info> : on_connect_target : Attempting to reset the target...

9705.185:SoC 0:Core 3 : <info> : set_startup_options : Startup options (0x00423028):

 Public Imagination Technologies

MIPS Debug 45 Revision 1.3.266

9705.185:SoC 0:Core 3 : <info> : set_startup_options : Firmware: 5.3.0.0 : Mar 19 2014, 00:33:18

9705.185:SoC 0:Core 3 : <info> : set_startup_options : Debug support enabled.

9705.185:SoC 0:Core 3 : <info> : set_startup_options : Do not halt after target reset.

9705.186:SoC 0:Core 3 : <info> : set_startup_options : DA is a master able to reset its target.

9705.186:SoC 0:Core 3 : <info> : set_startup_options : Duplicate IP check enabled.

9705.186:SoC 0:Core 3 : <info> : set_startup_options : DHCP support enabled.

9705.186:SoC 0:Core 3 : <info> : set_startup_options : Process 'SWITCH' instructions in background polling.

9705.187:SoC 0:Core 3 : <info> : set_startup_options : JTAG clock frequency = 5MHz

9705.187:SoC 0:Core 3 : <info> : target_reset_and_startup : Target is a Reset Slave

9705.187:SoC 0:Core 3 : <info> : target_reset_and_startup : Target is a Debug Master

9705.187:SoC 0:Core 3 : <info> : reset_dash_state : Reseting m_state

9705.188:SoC 0:Core 3 : <warn> : reset_target : Reseting Single MTX only

9705.199:SoC 0:Core 3 : <info> : reset_target : Target Reset OK, doing bypass test to check if target

powered

9705.199:SoC 0:Core 3 : <warn> : target_reset_and_startup : Target Reset

9705.199:SoC 0:Core 3 : <info> : enable_debug_support : enabling debug support...

9705.200:SoC 0:Core 3 : <info> : enable_debug_support : Core version: major 1, minor 2, revision 0, sub-identifier

0

9705.200:SoC 0:Core 3 : <info> : set_up_HWSTATMETA : HWSTATMETA - 0x80010000

9705.201:SoC 0:Core 3 : <info> : set_up_HWSTATMETA : now 0x00000000

9705.202:SoC 0:Core 3 : <info> : read_thread_info : Thread 0 is MTX, PC=0x00000000, m_state is Stopped

9705.202:SoC 0:Core 3 : <info> : discover : Identify dynamically Core Memory Region Units

9705.210:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x10

9705.211:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x11

9705.212:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x12

9705.212:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x13

9705.213:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x14

9705.232:SoC 0:Core 3 :<verbos>: discover_coremem_range : no memory at specifier 0x15 (0 != b0b1e06)

9705.250:SoC 0:Core 3 :<verbos>: discover_coremem_range : no memory at specifier 0x16 (0 != b0b1e07)

9705.269:SoC 0:Core 3 :<verbos>: discover_coremem_range : no memory at specifier 0x17 (0 != b0b1e08)

9705.281:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x18

9705.281:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x19

9705.282:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x1a

9705.283:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x1b

9705.283:SoC 0:Core 3 :<verbos>: discover_coremem_range : valid memory at specifier 0x1c

9705.302:SoC 0:Core 3 :<verbos>: discover_coremem_range : no memory at specifier 0x1d (0 != b0b1e06)

9705.320:SoC 0:Core 3 :<verbos>: discover_coremem_range : no memory at specifier 0x1e (0 != b0b1e07)

9705.339:SoC 0:Core 3 :<verbos>: discover_coremem_range : no memory at specifier 0x1f (0 != b0b1e08)

9705.570:SoC 0:Core 3 : <info> : print_layout : 5 Core Code Memories

9705.570:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x80000000, size 64 Kbytes.

9705.571:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x80010000, size 64 Kbytes.

9705.571:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x80020000, size 64 Kbytes.

9705.571:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x80030000, size 64 Kbytes.

9705.571:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x80040000, size 64 Kbytes.

9705.572:SoC 0:Core 3 : <info> : print_layout : 5 Core Data Memories

9705.572:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x82000000, size 64 Kbytes.

9705.572:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x82010000, size 64 Kbytes.

9705.573:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x82020000, size 64 Kbytes.

9705.573:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x82030000, size 64 Kbytes.

9705.573:SoC 0:Core 3 : <info> : print_mem : RAM @ address 0x82040000, size 64 Kbytes.

9705.582:SoC 0:Core 3 : <info> : target_reset_and_startup : Debug support enabled.

9705.582:SoC 0:Core 4 : <info> : create_core_object : Creating UCC-MCP Processor Object

9705.582:SoC 0:Core 4 : <info> : on_connect_target : Attempting to reset the target...

9705.583:SoC 0:Core 4 : <info> : set_startup_options : Startup options (0x00423028):

9705.583:SoC 0:Core 4 : <info> : set_startup_options : Firmware: 5.3.0.0 : Mar 19 2014, 00:33:18

9705.583:SoC 0:Core 4 : <info> : set_startup_options : Debug support enabled.

9705.584:SoC 0:Core 4 : <info> : set_startup_options : Do not halt after target reset.

9705.584:SoC 0:Core 4 : <info> : set_startup_options : Duplicate IP check enabled.

9705.584:SoC 0:Core 4 : <info> : set_startup_options : DHCP support enabled.

9705.584:SoC 0:Core 4 : <info> : set_startup_options : JTAG clock frequency = 5MHz

9705.585:SoC 0:Core 4 : <info> : reset_dash_state : Reseting state

9705.585:SoC 0:Core 4 : <warn> : reset_target : Reseting Single MCP only

9705.595:SoC 0:Core 4 : <info> : reset_target : Target Reset OK, doing bypass test to check if target

powered

9705.595:SoC 0:Core 4 : <warn> : target_reset_and_startup : Target Reset

9705.595:SoC 0:Core 4 : <info> : enable_debug_support : enabling debug support...

9705.596:SoC 0:Core 4 :<verbos>: read_id_reg : tcontext_ucc::read_id_reg - 0f010003

9705.596:SoC 0:Core 4 : <info> : enable_debug_support : MCP Core version: Group f, Id 1, Configuration 3

9705.596:SoC 0:Core 4 : <info> : enable_debug_support : UCC system version (assumption made on MCP id) : 310

9705.597:SoC 0:Core 4 : <info> : read_thread_info : UCC Thread PC=0x00000000, state is Stopped

9705.597:SoC 0:Core 4 : <warn> : target_reset_and_startup : Debug support enabled.

9705.699:SoC X:Core 0 :<verbos>: da_read_config : read_config

9705.800:SoC X:Core 1 :<verbos>: da_read_config : read_config

9706.095:SoC X:Core 2 :<verbos>: da_read_config : read_config

9706.097:SoC X:Core 3 :<verbos>: da_read_config : read_config

9706.098:SoC X:Core 4 :<verbos>: da_read_config : read_config

Identifier DA-net 00272

Firmware 5.3.0.0

Mode autodetected

TCK Rate 5000kHz

There is a wealth of information provide in this initial connection log, first start by checking the IMG
JTAG PnP data to see that it matches your expectations and what has been specified in the
img2_jtag_pack.vhd file for your design. Then for each core in the system look for the line:

9703.767:SoC 0:Core 0 : <info> : target_reset_and_startup : Debug support enabled.

Imagination Technologies Public

Revision 1.3.266 46 Low-Level Bring-Up Guide

If ‘debug support enable’ failed for any cores, the debug adapter will mark those cores as 'off-line' and
no debug can be performed. This usually occurs because the core is powered off or it has its clock
gated off.

For systems which have the IMG JTAG Control register, the debug adapter will set the 'force
availability' bits. These signals should be wired to the SoC's clock/power controller and should be
used to power-up and clock the core when asserted. Check your design in this area to ensure this
functionality works.

If all your cores appeared OK, let’s look at some registers (turn off probe logging for now):

>>> logging(probe,0)

probe off

>>> device(core0)

core0

>>> regs()

D0Re0 = b1f13933 D1Re0 = 01075e49 A0StP = 0c36fc7b A1GbP = 350066E9

D0Ar6 = a8388110 D1Ar5 = 26195e49 A0FrP = a0b3b146 A1LbP = 74181406

D0Ar4 = f86bd111 D1Ar3 = 81b2e7eb A0.2 = 85158cd9 A1.2 = 11623C52

D0Ar2 = c402e947 D1Ar1 = 95641aa3 A0.3 = 0b07b55c A1.3 = 5000BA31

D0FrT = 94481805 D1RtP = 5ab39050

D0.5 = 6a4e4175 D1.5 = e74e6143 TXRPT = 00000000 TXBPOBITS = 00000000

D0.6 = 2981d833 D1.6 = 493c866f TXTIMER = 4d011de8 TXTIMERI = 4D011FDD

D0.7 = e66a5b01 D1.7 = 1de09c64

 TXENABLE = 02010032

PC = 00000000 PCX = 00000000 TXSTATUS = 00000000 znoc

>>>

Now try and read some memory, we will use address 0x80000000 as this is core memory which most
Meta cores have.

If your core does not have that address, then use an address with some RAM. If your core only has
DDR and this requires setting up then skip the memory tests.

>>> word(0x80000000,count=256)

0x80000000 f6c6a88e 7a986886 4c068374 42de9471h.zt..Lq..B

 <snip>

0x800003f0 3e6fc499 86bffb01 0414116b 29f4f8e1 ..o>....k......)

Try a write:

>>> word(0x80000000,temp,count=256)

Common failures are caused by 'time out on debug port ready bit'. This means the debug port is no
longer responding to memory requests, usually this is because the external bus has locked up for
some reason preventing accesses from the debugger (and/or the core) completing.

If these basic tests are working move on to stage 5.

5.6. Stage 5 – Auto-detect with Codescape

Before connecting to your target with Codescape, you need an HSP (Hardware Support Package) for
your board. This is an XML file describing the memory and register layout of your SoC/cores.
Codescape provides default HSPs for all MIPS and META cores, but be aware that the default
memory layout in these files allows accesses to the full address space of the cores.

Codescape can be intrusive in its caching of memory to optimize debug performance for the user. For
example, if you stop or reset your target and the stack pointer is pointing at memory that is not
configured, Codescape is likely to read a few KB before the stack pointer (i.e. from 0xFFFFxxxx) and

 Public Imagination Technologies

MIPS Debug 47 Revision 1.3.266

a few KB afterwards. On badly designed SoCs, memory reads to invalid addresses can often lock the
external bus and lock up the core preventing debug requests from working. So the simple act of
opening Codescape without the correct HSP can cause it to lock up, yet the core may exhibit correct
behaviour in Codescape Console. This will only access memory locations that are explicitly
requested.

For more information about working with HSPs see ‘Board and Core Definition files on page 22’.

Once you have a good HSP, start Codescape and connect to your debug adapter. The first thing to
do is check the correct HSP has loaded.

Go to Help > Diagnostics... then select 'Target > Scan Target Log'. Check that the filename and path
to the XML file is as expected.

Note: You can also check the tooltip for the target shown on the Target Pane.

If everything is well you should be able to view memory and registers, load programs and do all the
usual debug operations such as stepping/breakpoints/watchpoints etc.

Something to be aware of is that by default Codescape uses software breakpoints for single-stepping.
This requires re-writing the program’s instruction space, and so will not work on read-only memory like
ROM or flash. To step code in read-only memory you need to switch to using 'Hardware Single Step'.
This can be set in Debug > Target Debug Options.

If Codescape and the debug adapter are having problems communicating with your core, your core
may be marked as offline. You may get a 'Disconnected – attempting to reconnect in Xs' message.
This usually means that the debug adapter cannot talk to the target (not that Codescape cannot talk
to the debug adapter).

To try and diagnose the problem, first look at the Communcation Log between Codescape and the
debug adapter. This can be found in Help > Diagnostics > Codescape Debugger > Comms Log.

Any errors in the Comms Log will be highlighted in red. Try to find the first failure and see what the
command was (or the previous command).

If it was a memory access check that the address range is valid for your target. Try using Codescape
Console to test accesses in that range in isolation and turn on debug features described in Stage 4 to
help diagnose why the access is failing.

Also, while in the ‘Target Diagnostics’ dialog look at the 'DA Info Log' under 'Target' for clues to the
problem. Generally you want to try to isolate the command or access that failed and then try to re-
create it in Codescape Console.

Imagination Technologies Public

Revision 1.3.266 48 Low-Level Bring-Up Guide

6. Low-level EJTAG Debug

6.1. Introduction

This section is intended to help you take advantage of EJTAG debug capabilities while investigating
problems encountered developing systems based on MIPS Technologies’ cores. Much of the section
will deal with low level EJTAG debug capabilities and the complexity of debugging multi-threaded,
multi-core coherent processing system. Most of the EJTAG debug features covered also apply to
more basic systems.

For Warrior cores, such as the I6400 that use the OCI debug system and a dedicated Debug Unit
(DBU) refer to Section 7 OCI debugging with a DBU Debug Monitor.

6.1.1. Terminology

An effort has been made to use terminology consistent with other MIPS documentation. Below is a
brief list of terms that will be used throughout this application note.

MT-ASE (Multithreading Application Specific Extension)

MIPS ISA (Instruction set Architecture) specification for multi-threading.

TC (Thread Context)

Hardware resource to support non-privileged thread of execution. A simplified view of a TC is
that it is a set of GPRs (General Purpose Registers) and a PC (Program Counter).

VPE (Virtual Processing Element)

State beyond a TC required for privileged execution. A simplified view of a VPE is that it is all of
the state beyond a TC which an operating system expects of a MIPS processor.

CPU (Central Processing Unit)

What appears to software as an independent processor. This is a VPE with one or more TCs
bound to it on a core implementing the MT-ASE.

I$, D$, and L2$

Primary instruction and data caches and the unified level 2 cache

CPS (Coherent Processing System)

A cluster of cores and global logic capable of cache coherent operation.

CM (Coherence Manager)

Logic for maintaining cache coherence between cores in a coherent domain.

CPC (Cluster Power Controller)

Logic responsible for power-up, power-down, reset, and clock-off sequencing of individual
cores in a CPS.

GIC (Global Interrupt Controller)

Interrupt routing block for global interrupts, core local interrupts, and yield qualifiers in a CPS
implementing the MT-ASE.

Core

Processing element associated with a main execution pipeline.

 Public Imagination Technologies

MIPS Debug 49 Revision 1.3.266

Core0

GCR, GIC, CM, IOCU (optional), CPC

EJTAG Probe

I$, D$, TLB Entries (sharable)

TC0

VPE0

(“cpu” 0)

EJTAG

TAP

TC1

VPE1

(“cpu” 1)

EJTAG

TAP

Core1

I$, D$, TLB Entries (sharable)

TC0

VPE2

(“cpu” 2)

EJTAG

TAP

TC1

VPE3

(“cpu” 3)

EJTAG

TAP

CM TAP

Memory

L2$

Figure 7 CPS Resources (simplified)

The following terms will also be used as they relate to a debugger view of a target system.

 Device: Synonymous with “CPU” as described above.

 Halted: A device which, under debugger control, is not executing non-debug mode instructions.

 Running: A device which the debugger is not preventing from executing non-debug mode
instructions.

Note: The term “device” is not used to refer to a CM with a TAP in this note

6.1.2. Tools

These notes were developed using the following hardware and software tools:

 DA-net with firmware 5.2.3.0

 Codescape Console 1.0

Information in this section and the accompanying files may require modification when used with other
processors, boards, or tools. Device and tool behaviour may also change as new versions add or
enhance features.

These instructions assume you are familiar with the basic operation of the listed tools, and that you
have a functional development environment where you are able to build executables and use
Codescape Console to control your target system. For additional information, refer to the
documentation for each tool.

6.2. MIPS Processor Basics

Before describing EJTAG debug features it may be useful to review some MIPS ISA basics. (If you
are familiar with MIPS execution modes, ISA modes, and exception program counters then you may
want to skip this section.)

6.2.1. Execution Mode

There are four basic execution modes each with its own level of privilege. Highest privilege to lowest
they are: debug-mode, kernel-mode, supervisor-mode, and user-mode. Kernel mode execution has a
few “levels” which share the same privilege but cause significant changes to basic processor

Imagination Technologies Public

Revision 1.3.266 50 Low-Level Bring-Up Guide

operation. The following can be used to help you determine in which mode you are executing. (It can
also help you understand what other modes you may have been in recently.)

Debug mode

CP0 Debug.DM == 1. This is the only mode able to access dseg (drseg and dmseg).

Kernel mode Error level

CP0 Status ERL == 1 AND not in any mode above.

Kernel mode Exception level

CP0 Status EXL == 1 AND not in any mode above.

Kernel mode

CP0 Status.KSU == 0 AND not any mode above.

Supervisor mode (optional)

CP0 Status.KSU == 1 AND not in any mode above.

User mode

Not any mode above.

6.2.2. ISA Mode

If a processor implements the microMIPS or MIPS16e ISA modes then an ISA mode bit indicates that
the alternate ISA (microMIPS or MIPS16e) is in effect.

6.2.3. Execution Location

The MIPS32 and MIPS64 ISAs do not have an explicit “PC” (program counter) register
2

3
. Instead,

there are several CP0 (coprocessor 0) registers which act as exception/restart location pointers. The
ISA mode bit, on processors which implement the microMIPS or MIPS16e ISA modes, is accessible
via the LSB of these location counters.

CP0 DEPC is set, on taking debug exception, to the address of the instruction killed by the debug
exception. Executing “deret” (debug exception return) will lead to resumed non-debug-mode
execution at the address contained in DEPC. When you halt a device using EJTAG debug tools the
reported “PC” is CP0 DEPC (with the ISA mode bit stripped.)

4

CP0 ErrorEPC is set on taking an error level exception (reset or NMI) to the virtual address of the
instruction killed by the error level exception. ErrorEPC holds the address at which to resume non-
error- level execution upon executing “eret” (exception return.) ErrorEPC is mainly used for error
reporting. Boot code usually sets ErrorEPC to the location it wants to start non-error-level execution at
and then executes “eret”.

CP0 EPC is set on taking a non-error level exception to the virtual address of the instruction killed by
the non-errorlevel exception. EPC holds the address at which non-exception-level execution will be
resumed upon executing “eret”.

CP0 TCRestart is set on halting a TC
5

6
 to where execution will resume when the TC is issuable.

6.2.4. Exception Cause

On taking a non-debug mode exception, a code indicating the cause of exception is stored in cp0
Cause.ExcCode.

On taking an exception while executing in debug mode, a code indicating the cause of exception is
stored in cp0 Debug.DExcCode.

2
The microMIPS ISA includes a software visible “PC” accessed via the ADDIUPC instruction.

3
branch-and-link based instructions sequences can allow you to extract execution location if desired.

4
Codescape Console writes of “PC” do affect the ISA mode.

5
In this context “halted” is defined as cp0 TCHalt.Halt = 1 (not the “halted” debugger state.)

6
TCRestart of non-halted TC is specified as UNSTABLE but likely contains a fetch location.

 Public Imagination Technologies

MIPS Debug 51 Revision 1.3.266

6.3. Using NMI (Non Maskable Interrupt)

Although not an EJTAG debug capability, it is worth mentioning that an NMI (Non-Maskable Interrupt)
may provide a quick and simple way to investigate some problems. Assertion of a core’s NMI input
(SI_NMI) will cause an error level exception. The ErrorEPC register will be loaded with a the
exception address. It points to the instruction which was killed due to taking the NMI exception.

Very little core or system state (cache contents, memory controller setup, etc) is inherently disrupted
on taking an NMI exception. However, it should be noted that a few bits of the cp0 Status register are
modified (BEV=1/TS=0/SR=0/NMI=1/ERL=1), the last of which causes kuseg to become direct
mapped. If your target provides a way to assert an NMI and your boot code can recognize an NMI
and dump useful target state then this may be sufficient to debug some types of problems.

At present the DA-net does not provide a mechanism to assert an NMI exception.

6.4. EJTAG Debug Features

An EJTAG debug block is present in all MIPS cores. It contains support for things like hardware and
software breakpoints, hardware single-step, and a JTAG based debug TAP for debug probe
connection. Although EJTAG debug resources are often controlled via high level debugger
commands, a quick overview of some underlying features is in order.

PCSAMPLE

A feature allowing for non-intrusive reading of recently completed instruction addresses. The
PCSAMPLE TAP instruction selects the TAP data register “PCSAMPLE” which contains an
execution address and a flag indicating whether or not a new instruction has completed since
the last read of the PCSAMPLE TAP data register

7

8
.

EJTAG TAP

The optional JTAG TAP associated with an EJTAG debug block used for communications with
an EJTAG probe and debugger.

ECR (EJTAG Control Register)

Shorthand for the EJTAG TAP data register CONTROL.

DINT (Debug Interrupt)

An interrupt which causes a debug exception and entry into debug mode
9
.

DRSEG (Debug Register Segment)

A memory overlay, present only while executing in debug mode, that allows access to registers
controlling various EJTAG debug features.

DMSEG (Debug Memory Segment)

A memory overlay, present only while in debug mode and ECR.ProbEn is set, that an EJTAG
probe emulates by satisfying processor accesses (fetches, loads, and stores.) The emulation is
carried out via TAP data registers CONTROL, ADDRESS, and DATA.

Single-Step

A debug setting which will result in a debug exception after execution of a single
10

 non-debug
mode instruction has completed.

Hardware Breakpoint

A hardware resource capable of detecting execution or data access at virtual addresses.

7
Other fields may be present if certain features are present and enabled. (MT-ASE adds TC field, and EVA adds K field.)

8
The PCSAMPLE feature has been enhanced to allow sampling of the load/store addresses as well.

9
There are 2 sources of DINT: the core interface signal SI_DINT, and the ECR.EjtagBrk bit.

10
Branches and their delay slots, if executed, execute atomically and result in 2 instructions completing in a single-step.

Imagination Technologies Public

Revision 1.3.266 52 Low-Level Bring-Up Guide

Software Breakpoint

The instruction “sdbbp” which causes a debug exception on execution
11

. Debuggers will
temporarily replace an instruction of your program with this instruction on setting a breakpoint in
writeable memory.

6.4.1. EJTAG TAP Basics

Every TAP register access (also referred to as a “scan”) is a read-before-write operation. A TAP
register access captures (reads) a register value from the target and then that value is serially shifted
out to the tool as a new value is simultaneously shifted in. After all of the bits of the register have been
shifted the input value is updated (written.)

There are two main paths through an EJTAG TAP state machine. One provides access to the single,
5-bit instruction register and the other provides access to the currently selected data register(s)

12

13

.

Every TAP instruction access should result in the 5 bit binary value “00001” being read. Most EJTAG
TAP instructions’ sole purpose is to select which data register is accessed during a data scan. EJTAG
TAP instructions not intended to select specific TAP data registers will select the BYPASS data
register.

In a multi-device target system, the term “scan chain” is used to describe the serial (daisy-chained)
set of TAPS which are read/written in a single scan.

ECR (EJTAG Control Register)

The ECR
14

 is the primary control and status register for EJTAG TAP interaction. At a minimum, you
should be familiar with the following fields:

ECR.Rocc(bit 31) Indicates that a reset has occured. (Only write as “0” when acknowledging a
reset.)

ECR.PrAcc(bit 18) Indicates that a processor access to dmseg is pending. (Only write as “0”
when completing a dmseg access.)

ECR.ProbEn(bit 15) Set to enable dmseg overlay while in debug mode.

ECR.ProbTrap(bit 14) Set to relocate the debug exception vector into dmseg at 0xff200200

ECR.DebugM(bit 3) Indicates that a device is executing in debug mode.

6.4.2. Boot Mode: EJTAGBOOT vs NORMALBOOT

The EJTAGBOOT TAP instruction modifies the reset value of the ECR.ProbTrap, ECR.ProbEn, and
ECR.EjtagBrk thereby changing device reset behavior. Subsequent soft resets will result in a debug
exception after release from reset

15
. Any EJTAG TAP reset will clear the EJTAGBOOT indication as

will sending a NORMALBOOT TAP instruction
16

17

.

A temporary EJTAG specification “hole” allowed taking a debug exception on an EJTAGBOOT
indicated reset in place of a reset exception. (Cores designed to that specification may suffer the side
effect of ErrorEPC not getting set on an EJTAGBOOT indicated reset.)

6.4.3. Basic Codescape Console Commands

This is a very quick tour of some basic Codescape Console debugger commands. They represent the
minimum set of commands you should be familiar with to start making effective use of the debugger.

11

An “sdbbp” instruction never completes as it always takes a debug exception.
12

There are several data registers of varying sizes.
13

The TAP instructions ALL and FASTDATA select multiple TAP data registers.
14

ECR (EJTAG Control Register) is a shorthand for the EJTAG TAP data register named “CONTROL”.
15

EJTAGBOOT and NORMALBOOT TAP instructions do not cause a reset, they modify/restore device reset behavior.
16

Often the TAP reset signal is not brought out of a device and is driven internally by power-on-reset circuitry.
17

A warm target reset should not cause a TAP reset but a power-on-reset may.

 Public Imagination Technologies

MIPS Debug 53 Revision 1.3.266

Full API documentation can be found in your Codescape Console installation under
\\doumentation\index.html.

>>> probe("DA-net 401")

Identifier DA-net 00401

Firmware 5.2.2.0

Mode autodetected

TCK Rate 20000kHz

>>> reset(normalboot) # reset target with boot mode set to NORMALBOOT.

>>> runstate()

status=running

>>> reset(ejtagboot) # reset target with boot mode set to EJTAGBOOT.

>>> runstate()

status=stopped pc=0xbfc00000

>>> dasm()

0xbfc00000 00431023 subu v0, v0, v1

0xbfc00004 0050102B sltu v0, v0, s0

0xbfc00008 1440FFFC bnez v0, 0x87fe7e58

0xbfc0000c 8FBF001C DS lw ra, 28(sp)

Get help on any function using the help() command, or get a brief help by entering the name of the
command:

>>> probe

probe(identifier=None, ip_address='', force_disconnect=False, advanced_options={})

 Connect to a probe, or displays information about the current probe.

>>> help(probe)

probe(identifier=None, ip_address='', force_disconnect=False, advanced_options={})

 Connect to a probe, or displays information about the current probe.

 The identifier should be of the following form

 ================ ====================================

 DA Type Identifier Format

 ================ ====================================

 DA-net "DA-net 1"

 Local Simulator "Simulator HTP221"

 Remote Imperas "RemoteImperas hostname:port"

 Remote Simulator "RemoteSimulator hostname:port"

 ================ ====================================

 If force_disconnect is True, and the probe is currently in use, then the

 other user will be forcibly disconnected. This should be used with

 consideration for others.

 If the probe cannot be located using DNS, or UDP broadcast, then it may

 be necessary to specify an IP address using `ip_address`.

 `advanced_options` is a dictionary of options that are passed to the

 comms layer. It is not normally necessary to use these.

Imagination Technologies Public

Revision 1.3.266 54 Low-Level Bring-Up Guide

Read and write registers with the regs() command.

>>> regs()

zero 00000000 at 00000002 v0 8010c3e8 v1 00000000

a0 8010c418 a1 00000000 a2 00000000 a3 8011cbc8

t0 0000000a t1 676e6c62 t2 00000000 t3 ffffffff

t4 80080000 t5 00000004 t6 80008000 t7 00000001

s0 8002f3dc s1 80030000 s2 8002b7d0 s3 80030000

s4 00000000 s5 00000000 s6 fffffffc s7 00000000

t8 00000000 t9 00000000 k0 80021d58 k1 deadbeef

gp 801141c8 sp 8011dbc8 s8 87fffe48 ra 8010c288

hi 00002000 lo 00000000 depc 80100e1c pc 80100e1c

status 11000000 cause 00000000 epc a0001000 badvaddr a001fd09

index 80000000 random 00000012 entrylo0 00000000 entrylo1 00000000

context 007ffff0 pagemask 00000000 wired 00000000 count 00083bed

entryhi 8007c000 compare 00000000 prid 0001974c errorepc ff20020c

config 80208483 config1 bee3519e config2 80001000 config3 00002c20

lladdr ffffffff watchlo 00000000 watchhi 80000000 debug 40118008

taglo 00000000 datalo afb60070 pagegrain ffffffff tracecontrol ffffffff

>>> regs('pc')

0x80100e1c

>>> regs('pc', 0x80100e20) # Modify the "pc" (DEPC for this debugger.)

0x80100e20

Disassemble target memory or arbitrary byte sequences with dasm() and dasm_bytes():

>>> dasm('pc')

0x80100e1c AC850008 sw a1, 8(a0)

0x80100e20 24840010 addiu a0, a0, 16

0x80100e24 1487FFFB bne a0, a3, 0x80100e14

0x80100e28 AC85FFFC DS sw a1, -4(a0)

>>> dasmbytes(0x80100e1c, '\xac\x85\x00\x08')

0x80100e1c AC850008 sw a1, 8(a0)

Read and write a word of memory with the word() command (see also byte, halfword, dump):

>>> word('pc')

0x41606020

>>> word(0x80000000, count=4)

0x80000000 3c1b8033 401a4000 8f7b0000 001ad582 <..3@.@..{......

>>> sum(word(0x80000000, count=4))

0x10BCB95B5

>>> word(0x80000000, count=4)[2]

0x8f7b0000

Control target execution state with go(), halt(), and step(), determine current execution status with

runstate():

>>> step()

status=single_stepped pc=0x87fe7e64

0x87fe7e64 1440FFFC bnez v0, 0x1014222355120

>>> go()

Running from 0x80062c14

>>> halt()

status=stopped pc=0x87fe7e5c

0x87fe7e5c 00431023 subu v0, v0, v1

>>> runstate()

status=stopped pc=0x87fe7e5c

0x87fe7e5c 00431023 subu v0, v0, v1

 Public Imagination Technologies

MIPS Debug 55 Revision 1.3.266

Software and hardware code breakpoints can be created, removed, enabled, and disabled with the

bkpt() command:

>>> bkpt(sethw, regs('pc') + 8)

========== ======= ==== ========== ========

Address Enabled Type Data HW Index

========== ======= ==== ========== ========

0x87fe7e64 Enabled hw 0x00000000 0

========== ======= ==== ========== ========

>>> go()

Running from 0x87fe7e5c

>>> runstate()

status=hw_break pc=0x87fe7e64

0x87fe7e64 1487FFFB bne a0, a3, 0x80100e14

6.4.4. Advanced Codescape Console Commands

After becoming familiar with the basic Codescape Console debugger commands it is a good idea to
become familiar with the flexibility of the Python scripting language, and using some of the more
advanced commands. These commands are included in Codescape Console, as with all commands
help can be obtained with:

>>> help(tapaddress)

tapaddress(value, device=None)

 Write and read the eJTAG address register.

6.4.5. Low level "scan" commands

There are many functions that perform JTAG scans to improve low level control and visibility. They
perform many of the same functions that the debug adapter would normally perform automatically, but
by implementing them in Python, steps can be performed slowly and more logging added to each
intermediate stage.

Note: To use these commands it is important to stop any asynchronous polling of target state and put
the probe in scanonly mode. This allows undisturbed low level scan chain interaction with the
target.

These commands are built on top of Codescape Console’s low level TAP instruction and data scan

commands tapi() and tapd().

The debug adapter can operate in one of three modes, scanonly, autodetect, and table.

Mode Description

uncommitted The debug adapter has just been reset and has not yet been assigned an operating
mode.

autodetected The debug adapter has auto detected the targets.

table The debug adapter had a table loaded and did not auto detect its targets.

scanonly The debug adapter is operating in scanonly mode, only JTAG commands are
allowed.

Imagination Technologies Public

Revision 1.3.266 56 Low-Level Bring-Up Guide

The debug adapter initially goes into an uncommitted state when reset:

>>> reset(probe)

Identifier DA-net 00401

Firmware 5.3.0.0

Mode uncommitted

TCK Rate 20000kHz

The mode is then determined by the first command called after a reset(probe) call.

First Command Mode

tap*/tapi/tapd/devtapi/devtapd,jtagchain,tcktest scanonly

targetdata (when given a suitable table) table

autodetect/regs/dump/word/dasm/asm or anything else requiring knowledge of the

target layout

classic

Note: Once initialised, the autodetect and table modes are the same, the only difference is the
method used to discover the connected target. If not specified the rest of this document will
refer to autodetect mode to mean either autodetect or table.

Certain commands do not affect the operating mode, for example:

 logging

 config

A subsequent tapi or tapd command (or a command that uses these) will then put the probe into
scanonly mode. Once in scanonly mode, certain commands will fail, for example:

>>> reset(probe)

Identifier DA-net 00401

Firmware 5.3.0.0

Mode uncommitted

TCK Rate 20000kHz

>>> jtagchain() # select scanonly, by performing a jtagchain immediately after reset(probe)

Bypass test found 1 tap

Determine IR lengths on scan chain and validating number of taps...

[5]

>>> probe()

Identifier DA-net 00401

Firmware 5.3.0.0

Mode scanonly

TCK Rate 20000kHz

>>> regs()

RuntimeError: read_console_config : CON: Command not available : command not allowed yet

The scan based commands, such as jtagchain(), pcsamp() can be run in autodetect or

scanonly modes. When in autodetect or table mode the debug adapter will automatically stop any
polling of the target whenever it receives a scan command. Polling can be restored by using the

autodetect() followed by runstate(), and will only restore polling when runstate() is called.

The debug adapter never performs polling when in scanonly mode.

 Public Imagination Technologies

MIPS Debug 57 Revision 1.3.266

In either mode, the scan commands all require knowledge of the TAP layout, this can either be set
explicitly:

>>> reset(probe)

Identifier DA-net 00401

Firmware 5.3.0.0

Mode uncommitted

TCK Rate 20000kHz

>>> autodetect()

Identifier DA-net 00401

Firmware 5.3.0.0

Mode autodetected

TCK Rate 20000kHz

>>> pcsamp()

RuntimeError: Please use switch_target, configure_tap, or jtagchain before pcsamp.

>>> configuretap(0, [5])

>>> pcsamp()

0x33fe400420

PC New

ff200210 0

Or it can be determined automatically (this is the recommended approach):

>>> reset(probe)

Identifier DA-net 00401

Firmware 5.3.0.0

Mode uncommitted

TCK Rate 20000kHz

>>> autodetect()

Identifier DA-net 00401

Firmware 5.3.0.0

Mode autodetected

TCK Rate 20000kHz

>>> pcsamp()

RuntimeError: Please use switch_target, configure_tap, or jtagchain before pcsamp.

>>> jtagchain()

>>> pcsamp()

0x33fe400420

PC New

ff200210 0

In either case this changes only Codescape Console's TAP layout it does not change the debug
adapter's view of the TAP layout.

Imagination Technologies Public

Revision 1.3.266 58 Low-Level Bring-Up Guide

The scan commands do not understand the c0v0 or core0 naming of devices, they require the TAP
index to be specified

Note: In future versions of Codescape Console the TAP layout will be able to automatically determine
the TAP layout when the debug adapter is in autodetect mode, and the c0v0 names will be able
to be used to specify the device but this has not yet been implemented.

>>> reset(probe)

Identifier DA-net 00278

Firmware 5.3.0.0

Mode uncommitted

TCK Rate 20000kHz

>>> autodetect()

Identifier DA-net 00278

Firmware 5.3.0.0

Mode autodetected

TCK Rate 20000kHz

>>> listdevices()

[core0, core1]

>>> pcsamp(core1)

RuntimeError: Tap selection by core0 or c0v0 name is not yet supported.

Please use switch_target, configure_tap, or jtagchain before pcsamp.

>>> jtagchain()

>>> configuretap(1)

>>> pcsamp()

PC New

ff200210 0

The scan commands can be used to perform very low-level JTAG interaction, for example, sending
the TAP instruction “CONTROL” (0x0a) to this TAP. In the return data line we see the correct 5-bit
constant (00001) from the instruction register.

>>> tapi("5 0x0a")

[0x01]

We can now scan the selected TAP data register: a 32-bit ECR, the result shows the value which was
read out BEFORE the value supplied is written.

>>> tapd("32 0x8004c000")

[0x4004c008]

The commands configuretap(), devtapi(), and devtapd() simplify interaction with a single

device.

>>> configuretap(0) # OR switch_target('1000000')

>>> devtapi(5, 0x0a)

0x01

>>> devtapd(32, 0x8004c000)

0x0000c000

>>> devtap(0x0a, 32, 0x8004c000) # perform an ir scan and a dr scan in one command

0x0000c000

 Public Imagination Technologies

MIPS Debug 59 Revision 1.3.266

dmseg is a complex command that services dmseg requests. It uses devtapi and devtapd to

supply/accept memory accesses using a supplied set of address and corresponding instruction/data
values. This allows you to provide a simple custom exception handler code from the probe.

>>> configuretap(0)

>>> tapecr(0x8004d000) # Set ECR.EjtagBrk to signal a dint

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0

>>> hex(tapecr())

'0x4004c008L'

>>> dmseg(EnterDebug)

read of 0xff200200 00000000 nop

read of 0xff200204 0000000F sync

read of 0xff200208 1000FFFD b 0xff200200

read of 0xff20020c 00000000 nop

Second access seen to debug exception vector <done>.

The above functionality is also availabe in the imgtec.console.enterdebug command. For more

information see dmseg() in the Codescape Console online help.

6.4.6. Diagnosing Cache Problems

First we need to get the debug adapter into auto-detect mode:

>>> autodetect()

Identifier DA-net 00401

Firmware 5.3.0.0

Mode autodetected

TCK Rate 20000kHz

The cachedump() command takes parameters for the cache type, and starting and ending byte

index into the data array
19

. It will display all tag and line data for all ways in the specified range
20

.

>>> cachedump(instr, 0, 0)

Offset Set Way TagHi TagLo Word 0 Word 1 Word 2 Word 3 Word 4 Word 5 Word

6 Word 7

0000 000 0 000006a0 00010080 04110002 00000000 8002b900 03e0e021 8fe90000 0120e021

3c08bd00 35087000 !..... .!<...5.p.

0000 000 1 00000000 07fec080 afb3004c afb20048 afb10044 afb00040 afbc0010 8f92000c

8f93000c 8f990084 ...L...H...D...@................

0000 000 2 00000000 00000000 02402021 2442000c 0040f809 34059884 8e030000 8e02001c

8e050054 3c06000f .@ !$B...@..4..............T<...

0000 000 3 00000000 00000000 02002021 02a0f809 241e0001 24020001 1642ff64 8fbf003c

3c038720 2463000c .. !....$...$....B.d...<<.. $c..

The invalidate() command allows you to invalidate cache entries:

>>> invalidate(instr)

19

The cachedump procedure will also accept kseg0 or kseg1 virtual addresses and strip them to data array byte offsets.
20

The tags are partially decoded and used to highlight cacheline data based on line state invalid, valid, dirty, and locked.

Imagination Technologies Public

Revision 1.3.266 60 Low-Level Bring-Up Guide

6.5. Debugging a Soft Hang

The term “soft hang” is used to denote situations where a processor is executing instructions correctly
but for some reason the target system is not making forward progress as intended. Infinite loops,
waiting on events that never happen, and sleeping without a wake condition are examples of software
hangs.

6.5.1. Using PC Sample

The (optional) PCSAMPLE feature was added to the EJTAG specification starting with version 3.00. If
present and enabled it allows non-intrusive reading of a recently completed instruction address and
notes whether this instruction had completed after the last PCSAMPLE read. Although the
PCSAMPLE feature is not enabled in hardware out of reset

21
; the DA-net probe will enable

PCSAMPLE on connection. Once enabled, it will remain enabled until manually disabled or the core is
reset

22

23

24

.

>>> go()

Running from 0x87fe7e5c

status=running

>>> pcsamp()

PC New

87fee4e0 1

>>> pcsamp()

PC New

87fee4e4 1

>>> pcsamp()

PC New

87fee4e4 0

pcsamp() can be very helpful in detecting long stalls without disrupting target state
25

. If the

PCSAMPLE New bit is seen cleared it will indicate that no instructions have completed since the last
read of the PCSAMPLE TAP data register.

This is different than reading the same pc twice in a row which can be seen in the two instruction loop
below.

>>> asm('pc', "b 0x%08x" % regs('pc')) # code a branch-self-nop loop into memory.

0x87fe7e58 1000ffff b 0x87fe7e58

>>> asm(None, 'nop')

0x87fe7e5c 00000000 nop

>>> go()

Running from 0x87fe7e58

status=running

>>> jtagchain()

Bypass test found 1 tap

Determine IR lengths on scan chain and validating number of taps...

[5]

>>> pcsamp()

PC New

87fe7e58 1

>>> pcsamp()

PC New

87fe7e58 1

PCSAMPLE, once enabled, remains enabled even while while in debug mode. For a halted device,
recently completed instructions will likely have been executed from dmseg.

21

Reading the PCSAMPLE register before the feature is enabled will return unpredictable results.
22

The PCSAMPLE feature is not enabled after a NORMALBOOT indicated reset.
23

Some implementations of PCSAMPLE include the possible capture of load/store addresses.
24

Check core errata if you see unexpected behavior relating to PCSAMPLE.
25

The PCSAMPLE feature does not rely on debug mode execution of instructions on the core.

 Public Imagination Technologies

MIPS Debug 61 Revision 1.3.266

>>> halt()

status=stopped pc=0x87fe7e58

0x87fe7e58 1000ffff b 0x87fe7e58

>>> pcsamp()

PC New

ff200218 1

Note that early implementations of the PC Sample feature captured the address of the instruction to
complete AFTER the sample rate counter expired. This, combined with the maximum PC sample rate
of once every 32 cycles hindered use of this feature for debugging hangs where instruction were not
completing in the core pipeline. (In this case you are only able to read out the address of an
instruction that completed within 32 cycles of the the last instruction completed.) This behavior has
been enhanced but still may not return the last instruction to complete if the core clock has been
stopped, preventing availability of the “most current” PCSample.

6.5.2. Using DINT (Debug Interrupt)

Debug of software hangs with an EJTAG probe and compatible debugger is less intrusive than NMI
(not supported in Codescape Console). CP0 Status information is not clobbered and you have free
reign to view/modify system state and control execution including resuming execution at the point it
was interrupted or any other location. Use the Codescape Console’s “halt” command to cause a DINT
and suspend execution of your target software. (The cpu will take a debug exception and continue
executing debug mode instructions supplied by the probe to accomplish any subsequent debugger
commands.) At this point you can inspect the system state. If the problem is simple you may be able
to use the debugger to modify system state to get past the hang condition without rebuilding and
reloading your code.

A MIPS device has two sources of DINT. One is the ECR.EjtagBrk bit. Debuggers which support
multi- core debug will likely use the ECR.EjtagBrk to manually halt individual devices.

>>> halt()

status=stopped pc=0x87fe7e5c

0x87fe7e5c 00431023 subu v0, v0, v1

The other is the core interface signal SI_DINT which is often driven by a cross-trigger matrix or debug
group logic which monitors the EJTAG probe interface signal DINT as well as whether the device is in
debug mode allowing automatic halting of a group of devices at the same time.

DA-net does not support asserting SI_DINT.

6.6. Debugging a Hard Hang

Some system failures may result in the core no longer executing instructions. This is often the result
of an infinite pipeline stall due to a required handshake not completing

26
. One fairly common cause of

infinite stalls seen in support cases is an incomplete bus transaction in the system bus logic.
Incomplete bus transactions often lead to a stall on execution of a sync instruction, exhaustion of a
buffering resource, waiting for load data which is needed but has not been returned by the system, or
some other load/store completion barrier.

6.6.1. “Halt” Fails

Hard hangs are often accompanied by an inability of EJTAG debug tools to “halt” the processor and
inspect target state. This is because most EJTAG debug capabilities rely on the target system being
able to take a debug exception and correctly fetch and execute debug mode instructions supplied by

26

Use the Codescape Console command pcsamp() to detect long stall conditions.

Imagination Technologies Public

Revision 1.3.266 62 Low-Level Bring-Up Guide

an EJTAG probe or a target debug monitor. If this basic level of functionality is unstable then debug
operations will likely also be unstable. Often the easiest way to recover from this type of situation, if
the system is unable to detect and recover on its own, is via a system reset.

Before resetting the target, however, see if you can determine the point at which the EJTAG tools
stop making forward progress while attempting to halt the core as this can provide valuable clues as
to the nature of the hang.

Note: You may need to turn on logging using logging() or use the the low level scan commands to

get this very low level target and tool state.

6.6.2. Halt Fails: CPU not taking DINT

A good indication that a device is not taking the debug interrupt asserted by “halt” is shown in the
ECR. If you see ECR.EjtagBrk set but ECR.DM cleared then there appears to be a DINT source
active but the device is not in debug mode.

>>> halt()

status=running

>>> tapecr()

0x0000d000

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0

There are a limited set of conditions which can prevent a core from taking a debug exception.

Core does not have power and clock

There is synchronization logic between the EJTAG TAP TCK clock domain and a core’s clock domain.
If the core is not being clocked then information will not propagate between the clock domains
including setting ECR.EjtagBrk.

In a CPS which implements a CPC, the powering and clocking of individual cores is controlled by a
combination of static inputs, CPC state, coherent state, CPC commands, and whether or not an
EJTAG probe has been detected since the last cold reset (CPC probe-mode.)

Most Malta/CoreFPGA5/6 programming files (bitfiles) are configured such that core0 is powered &
clocked out of reset and all other cores are not powered

27
 . To simplify debug, the CPC detects the

presence of an EJTAG probe and enters “CPC probe-mode” which limits the lowest power state on a
warm reset to “ClockOff” thereby maintaining a functional scan chain through all of the EJTAG TAPs.

Another VPE on this core is in debug mode

A core implementing the MT-ASE executes single-threaded while in debug mode. If one VPE on a
core is in debug mode then another VPE on that same core will be unable to take a debug exception
until the first VPE leaves debug mode. The DA-net implements independent VPE run control by not
leaving a “halted” VPE in debug mode but instead, offlining all tc bound to that VPE and exiting debug
mode to allow continued debug activity on either VPE.

6.6.3. Halt Fails: CPU never accesses dmseg

There are a few possible explanations for never seeing an access to dmseg even though a device’s
ECR.DM indicates that the device has entered debug mode.

Debug Exception Vector was not in dmseg

An EJTAG debug probe usually redirects the debug exception into dmseg by maintaining
ECR.ProbEn and ECR.ProbTrap set.

27

Power gating is not actually implemented in the FPGA but isolation logic gives the same net effect and results in a broken
scan chain.

 Public Imagination Technologies

MIPS Debug 63 Revision 1.3.266

>>> tapecr()

0x0000c000

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0

If a debug exception occurs while ECR.ProbEn or ECR.ProbTrap are cleared then the debug
exception vector is in target memory and will be handled by target memory and no access to the
dmseg will be seen

28

29

.

Debug interrupts are blocked while in debug mode and do not cause debug mode reentry. If debug
mode execution is not resulting in accesses to dmseg then there is little which an EJTAG probe can
do to gain control of the target short of a reset.

Example: Use low level scan operations to write the value 0x80049000 to the ECR of the running
device. This will request a debug interrupt (ECR.EjtagBrk=1) but not redirect the debug exception
vector into dmseg (ECR.ProbTrap=0.)

>>> jtagchain()

Bypass test found 1 tap

Determine IR lengths on scan chain and validating number of taps...

[5]

>>> tapecr(0x80049000) # Signal a dint via ECR.EjtagBrk but clear ECR.ProbTrap.

0x0060c000

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

0 0

Remember that EJTAG TAP register accesses are read-before-write. The ECR value 0x0060c000
above was read BEFORE the 0x80049000 was written. Perform the read again:

>>> tapecr()

0x40048008

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0

1 0

At this point we can see that we are in debug mode but that no access to dmseg is pending
(ECR.PrAcc != 1.) Attempts to “halt” with an EJTAG probe time out waiting for the target to fetch code
from dmseg and a reset may be necessary for the EJTAG tools to regain control of the target system
30

.

>>> halt()

status=running

>>> runstate()

status=running

>>> tapecr()

0x0000c008

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

1 0

28

If ECR.ProbEn is set then a target resident debug exception handler could access dmseg.
29

The debug exception vector could be redirected back into dmseg via DCR.RDVec and DebugVectorAddr registers in drseg.
30

If you can get the target resident debug exception handler code to leave debug mode then a reset will not be required.

Imagination Technologies Public

Revision 1.3.266 64 Low-Level Bring-Up Guide

Because the debugger had previously enabled the PCSAMPLE feature we can use pcsamp() to

determine whether the target is still completing new instructions.

>>> pcsamp()

PC New

0x80045D08 1

>>> pcsamp()

PC New

0x80045C8C 1

In this case the target debug exception handler appears to have never left debug mode.

Similar behaviour can be observed on attaching an EJTAG probe to a target which is already in
debug mode.

Debug exception acting as a completion barrier

Some cores may take a debug exception and enter debug mode but not start fetching from the debug
exception vector in dmseg until outstanding bus transactions are completed. If the target is unable to
complete outstanding transactions the core may enter an infinite stall condition in debug mode without
having ever accessed dmseg.

 Public Imagination Technologies

MIPS Debug 65 Revision 1.3.266

6.6.4. Halt Fails: CPU stops accessing dmseg

At other times a core may take a debug exception and start fetching and executing debug mode
instructions provided by the probe via dmseg but hang during the execution of those instructions. If
you are able to replicate the conditions just prior to the halt command failing then you can use
debugger logging to record debugger/target interaction associated with the “halt” command” to help
isolate the cause of the failure.

EJTAG Instruction Logging

The debug adapter can be configured to log all dmseg instructions executed. This can be helpful to
diagnose difficult bus stalls.

>>> reset(ejtagboot)

>>> runstate()

status=stopped pc=0x87fe7e5c

>>> bkpt(sethw, 0x87fe7e60)

========== ======= ==== ========== ========

Address Enabled Type Data HW Index

========== ======= ==== ========== ========

0x87fe7e60 Enabled hw 0x00000000 0

========== ======= ==== ========== ========

>>> go()

Running from 0x87fe7e5c

status=stopped pc=0x87fe7e60

0x87fe7e60 0050102b sltu v0, v0, s0

>>> asm('pc', 'lb $k0, 0($k0)')

0x87fe7e60 835a0000 lb k0, 0(k0)

>>> bkpt(clear, all)

======= ======= ==== ==== ========

Address Enabled Type Data HW Index

======= ======= ==== ==== ========

======= ======= ==== ==== ========

>>> regs('k0')

0x87fabfb0

>>> regs('k0', 0xa0100000)

0xa0100000

>>> config("Log Debug Instructions", 1)

1

>>> config("Verbose Logging", 1)

1

>>> logging(probe, on)

probe on

>>> go()

Running from 0x87fe7e60

68518.828:SoC X:Core 0 :<verbos>: resume : resume - threads: 0x1

68518.828:SoC 0:Core 0 : <info> : run : Run [thread 0]

68518.829:SoC 0:Core 0 :<verbos>: set_single_step : [thread 0]

68518.829:SoC 0:Core 0 :<verbos>: read_cp0_register :

68519.329:SoC 0:Core 0 :<error> : execute : [thread 0] Timeout waiting for

PrACC

68519.329:SoC 0:Core 0 : <info> : print_all_ecrs : TAP 0, ECR = 0x0000c000

68519.330:SoC X:Generic :<except>: dispatch_cmd : dbg::exception Timeout waiting

for PrACC

>>> pcsamp()

PC New

ff200214 1

>>> pcsamp()

PC New

ff200214 0

>>> tapecr()

0x0000c000

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0

Imagination Technologies Public

Revision 1.3.266 66 Low-Level Bring-Up Guide

To verify that the target was stalled we used the pcsamp() command to verify that the core was not

making forward progress, in fact in this case the target has stalled in dmseg, but the ECR register
shows that the core is not in debug mode (Dm == 0).

Custom Debug Exception Handler

Sometimes the ability to supply a simple custom debug exception handler can be of great help in
isolating debugger command failures.

>>> configuretap(0) # select c0v0 for devtapi and devtapd commands.

>>> tapecr() # Read ECR

0x4004c008

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0

>>> tapecr(0x8004d000) # Set ECR.EjtagBrk to cause dint

0x4004c008

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0

>>> tapecr() # Read ECR

0x4004c008

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0

>>> dmseg(ReadDEPC)

read of 0xff200204 00000000 nop

read of 0xff200208 4001c000 mfc0 at, c0_depc

read of 0xff20020c 40027801 mfc0 v0, c0_ebase

read of 0xff200210 3c03ff20 lui v1, 0xff20

read of 0xff200214 ac610000 sw at, 0(v1)

write to 0xff200000: data accepted 0x87fe7e5c CP0 DEPC

read of 0xff200218 ac620004 sw v0, 4(v1)

write to 0xff200004: data accepted 0x80000000 CP0 EBase

read of 0xff20021c 34630200 ori v1, v1, 0x200

read of 0xff200220 00600008 jr v1

read of 0xff200224 00000000 nop

Second access seen to debug exception vector <done>.

CP0 DEPC 0x87fe7e5c

CP0 EBase 0x80000000

In this case it looks like the simple debug exception handler specified in the ReadDEPC dmseg() list

runs to completion and shows that the instruction at 0x87fe7e5c took the debug exception. Also note
that this exception handler does not include any sync instructions. Try executing some of the other

example debug exception handlers listed in the command dmseg().

 Public Imagination Technologies

MIPS Debug 67 Revision 1.3.266

Manually satisfying accesses to dmseg

If even the most simple of custom debug exception handlers do not complete, you can use

tapi/tapd (or devtapi/devtapd) to manually interact with a core on a scan by scan basis.

>>> tapecr(0x8004d000)

0x4004c008

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0

>>> tapecr()

0x4004c008

Rocc Psz Resv VPED Doze Halt PerRst PRnW PrAcc Resv PrRst ProbEn ProbTrap IsaOn EjtagBrk Resv

Dm Resv

0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0

>>> devtapi(5, 0x8)

0x00000001

>>> devtapd(32, 0xdeadbeef)

0xff200200

Note that these last two commands (the selection of the ADDRESS register and the devtapd to

read/write the address register) could be more simply written using:

>>> tapaddress(0xdeadbeef)

0xff200200

6.6.5. Debug Through Reset

If your device does not implement PDtrace and if it is unable to take a debug exception and execute a
debug handler then there is limited state which can be observed in the system. Recovery from this
state often requires a reset. On taking a reset exception some processor state is updated but most
remains unaffected and may be inspected after a reset to gain insight into the failure which required a
reset to recover.

CP0 ErrorEPC will be loaded with the address of the instruction killed by the reset exception.

6.7. Multi-Core Coherent Processing Systems (CPS)

Some CPS components have a significant impact on system debug operations and deserve special
attention.

6.7.1. Cluster Power Controller (CPC)

The CPC manages power-up, clocking, reset, and power-down for individual core power domains.
The EJTAG probe interface signal RST* is routed to the SI_CPCReset.

6.7.2. CPC Reset

There are two types of CPC reset. A CPC cold-reset is caused by assertion of SI_CPCReset with
CM_PwrOn_n also asserted. CPC cold reset should only be generated during initial power-up of the
CPS or as the result of a system power brown-out. If any core in a CPS is powered-down then power
domain isolation will break the scan chain and nearly all EJTAG probe debug capabilities.

Imagination Technologies Public

Revision 1.3.266 68 Low-Level Bring-Up Guide

6.7.3. Probe-Mode

Before any communication with a CPS, an EJTAG probe should indicate its presence to the CPC.
This is done by entering CPC probe-mode via five rising edge TCK with TMS=1

31
. CPC probe-mode

will cause the CPC to power-up cores which were powered-down and prevent powering down any
cores while in effect

32
. This is necessary to maintain a valid scan-chain through all power domains.

Probe-mode triggers power-up of all domains and causes any power-down requests to be treated as
clock-off requests ensuring a functional scan chain is maintained.

CPC probe-mode is cleared on a CPC cold-reset but survives a CPC warm-reset. For this reason,
assertion of the EJTAG probe interface signal RST* should always generate a CPC warm-reset.

33

34

6.7.4. CPC DINT monitoring

The CPC monitors sources of DINT and will transition unclocked cores with an asserted DINT to a
clocked state thereby allowing debug mode execution. After leaving debug mode a core will return to
its previously programmed domain state. If debug tools are configured to halt devices out of reset,
which would be in power-down or clock-off in the absence of debug tools, then it may be necessary to
program the domain power state you would like them to return to on leaving debug mode.

35

36

.

31

The Navigator Console command “jtaginit force” preforms a soft TAP reset which also triggers probe mode.
32

Cores that were already powered will see this as a TAP reset.
33

If EJTAG probe RST* assertion resulted in a CPC cold-reset then power domain isolation will break the scan chain.
34

It is possible for software to disable CPC probe-mode allowing devices to be powered down breaking the scan chain.
35

Some devices do not have a “previously programmed” power state out of CPC reset.
36

Many early CoreFPGA5 bitfiles did not correctly propagate DINT from ECR.EjtagBrk into the CPC.

 Public Imagination Technologies

MIPS Debug 69 Revision 1.3.266

7. OCI debugging with a DBU Debug Monitor

7.1. Introduction

This chapter describes how to use the debug monitor and Codescape Console to debug a 64-bit
multicore system with a Debug Unit (DBU). Warrior cores, such as the I6400, use the OCI debug
system and make use of a dedicated Debug Unit (DBU) and debug monitor to pass debug commands
and data to and from the core. Refer to the MIPS OCI Cluster Debug Technical Reference Manual
MD01077 for more information about the operation of the DBU and debug monitor.

7.2. Debug Unit (DBU)

Unlike previous MIPS multicore systems, OCI compliant devices have one tap per cluster of cores.
Each tap connects to a DBU which then uses a register bus (RB) to communicate to the cores and for
the cores to read from the DBU. The DBU has its own memory which is mapped to the debug address
range dseg, starting at 0xFFFFFFFFFF200000. This memory is referred to as dmxseg.

7.3. Debug Monitor

The debug monitor is loaded into dmxseg prior to entering debug mode. This makes debugging more
efficient as we can send commands to the monitor in fewer operations than the traditional method of
hand feeding instructions using PrAcc.

Hand feeding instructions is still possible with global throttle turned on. See below.

7.3.1. Global Throttle

The global throttle enable bit is found in the CONTROL JTAG register. When this is enabled,
accesses to dmxseg are suspended until acknowledged by the probe clearing PrAcc. Unlike previous
MIPS EJTAG systems, instructions are written to a location in dmxseg instead of a JTAG register.

The monitor runs with global throttle disabled which means that code executes normally on entry to
debug mode. In certain situations global throttle is used in combination with the monitor to confirm a
successful entry to debug mode or to step through monitor code. During normal use you should not
need to modify global throttle.

7.3.2. Debug Monitor States

The debug monitor implements a state machine to allow it to run continuously, which is controlled by
the flags in the first word of the command buffer. These flags are called ‘ready’ and ‘busy’, they
indicate the current monitor state:

Ready Busy State

0 0 Monitor is idle and waiting for a command.

1 0 Command set up, waiting for the monitor to begin executing it.

1 1 Monitor is executing the command.

0 1 Command has finished, monitor is waiting for the probe to acknowledge it.

7.3.3. Key Components

Although Codescape Console hides most of the implementation details of the monitor, an overview of
the key areas is helpful.

Debug Data

This structure is filled on entry to debug mode and written back to the real registers when the VP
resumes. It contains:

 A 64-bit value ‘scratch’ used to temporarily store registers whilst saving others.

Imagination Technologies Public

Revision 1.3.266 70 Low-Level Bring-Up Guide

 The PC as it was when the VP entered debug. If exceptions take place in debug mode, DEPC
itself may be modified but this is the value which will be restored.

 The debug entry level which shows how many times debug mode has been entered since the
last resume. This will generally be one and will increment after a debug mode re-entry.

 Saved values of r1 to r31, r0 omitted. When monitor commands operate on GP registers they
are actually using these values.

 Code scratch space where generated instructions are stored.

Note: r1 is also saved in DESAVE and one or both of these values are valid depending on the
situation. Commands will automatically return the valid copy.

The debug data can be read directly at any point by using the read_monitor_debug_data command
(code scratch is included but not shown in the print output).

[scan_c0v0] >>> read_monitor_debug_data()

 Scratch: 0x0

Debug Entry Level: 0x2

 PC: 0xffffffffbfc00004

 -Registers-

 r01 : 0x0

 <...>

 r31 : 0x0

Note: A debug re-entry happens when an exception is taken whilst in debug mode. For example,
hitting a breakpoint inside of dmxseg would cause a re-entry, as would trying to access invalid
memory. Some exceptions trigger when the VP attempts to leave debug mode. These also
cause a re-entry but the monitor makes this process transparent to Codescape Console.

Command Buffer

The command buffer is where the current command and the monitor’s state can be found. To read the
whole buffer use the read_monitor_command_buffer command, or to read just the details (contained
in the first word) the command read_monitor_command.

[scan_c0v0] >>> read_monitor_command_buffer()

[0x43000a01, 0x2e0, 0x0, 0x1, 0xbfc00004, 0xffffffff, 0x0, 0x0]

[scan_c0v0] >>> read_monitor_command()

ready busy size type command

0 1 3 000a 01

Data Buffer

The data buffer is used for inputs or results that exceed the 128 bits of free space in the command
buffer. This can be read with the read_monitor_data_buffer command.

[scan_c0v0] >>> read_monitor_data_buffer()

0xffffffffff201000 06400000 01000302 00000000 00000200 00000001 00000000

..@.....................

0xffffffffff201018 1000fffe 00000000 00000000 00000000 00000000 00000000

........................

<...>

Command Numbers

Each command type is assigned a number which is sent to the monitor and this number is shown in
the error message if a command fails.

 Public Imagination Technologies

MIPS Debug 71 Revision 1.3.266

Number Command type

1 Read

2 Write

3 Read immediate

4 Write immediate

5 Resume

6 Cache op

7 TLB probe

8 Freeze

Note: An immediate read or write uses the command buffer for data storage and so is limited to 128
bits of input or output.

Response Codes

If a command is successfully sent to the monitor but fails because it is malformed or causes a re-
entry, a non-zero response code is set. This code replaces the command number before the monitor
enters the state in which it waits for the probe to acknowledge the command. The number and its
meaning will be shown in the error message along with the value of the Debug register ‘DExcCode’
field.

Number Meaning

0 Success

1 Command caused a debug re-entry

2 Unknown command

3 Unknown type

Note: The type in ‘Unknown type’ refers to a combination of the memory type and size of the access,
not the command type.

7.4. Connecting

You can connect to the system in one of two ways. The first method is for use with a socket simulator,
the second is for use with a probe in scan only mode connected to a real device.

Note: The examples are for a DA-net probe but this can be substituted for SP55E.

CodescapeConsole DBU

CodescapeConsole "DBU DA-net 438"

Note: When connecting to a socket simulator the default location is localhost:44444. To change this
use “DBU hostname:port”.

For either method the first step is to discover the cores and VPs present.

[tap 0 of 1] >>> dbuscandevices()

scan_c0v0 - mips

scan_c1v0 - mips

[scan_c0v0] >>>

dbuscandevices() builds a structure of high level objects to represent the VPs in the system. They
provide the higher level methods for things such as reading memory blocks, reading registers and
stopping the VP.

Imagination Technologies Public

Revision 1.3.266 72 Low-Level Bring-Up Guide

7.5. Using the Debug Monitor via high level commands

Codescape Console allows users to use high level commands such as regs(), word() and bkpt()
without setting up the monitor themselves.

7.5.1. Debugging

You can use commands normally except that the first command will load the monitor and enter debug
mode.

[scan_c0v0] >>> regs('pc')

Debug monitor identifier is incorrect (0xffffffff), monitor may invalid or not loaded.

0xffffffffbfc00004

The monitor is included with Codescape Console. After this initial delay the command will run
normally.

Note: Detecting whether the monitor is already loaded is done by using fixed identifier and version
number placed at the start of dmxseg. This is simply a check that some form of monitor is
present, it is not a validation of the data present. So in the case that the identifier was
overwritten the monitor would be reloaded, despite the other contents being the same.

Going to back to normal execution is done manually with the command go().

[scan_c0v0] >>> go()

Running from 0xffffffffbfc00004

status=running

Similarly, the halt() command can be used to enter debug mode.

[scan_c0v0] >>> halt()

status=halted_by_probe pc=0xffffffffbfc00004

0xffffffffbfc00004 1000fffe b 0xffffffffbfc00000

Future commands will not need to load the monitor, only enter debug mode if required.

7.5.2. Exceptions

If a monitor command causes an exception the monitor’s state will change normally but it will set a
non-zero response code.

In the example below a breakpoint has been set on a function within the monitor, this triggers a re-
entry to debug mode and hence the command fails. The monitor’s state will be moved to idle as
usual, but the last parameters are left in memory until the next command.

[scan_c0v0] >>> bkpt(set, symbol('_Z17MakeCPInstructionjjjj'))

================== ======= ==== ========== ========

Address Enabled Type Data HW Index

================== ======= ==== ========== ========

0xffffffffff200538 Enabled sw 0x3c020008 -1

================== ======= ==== ========== ========

[scan_c0v0] >>> regs('debug')

DebugMonitorError: Command failed with response code 1 - Command triggered a re-entry to debug

mode (DExcCode 9)

[scan_c0v0] >>> from imgtec.console.dbu_monitor import *

[scan_c0v0] >>> read_monitor_command()

ready busy size type command

0 0 3 000a 01

 Public Imagination Technologies

MIPS Debug 73 Revision 1.3.266

[scan_c0v0] >>> regs('pc')

0xffffffffbfc00004

7.5.3. Incorrect states

In the case that the monitor is interrupted, by a reset for example, the flags may be left in a non-idle
state. This will result in a warning when doing anything that triggers a monitor command. These flags
will be reset automatically and the command will proceed as normal.

[scan_c0v0] >>> regs('pc')

Warning: DBU monitor was not in the Idle state (ready=1 busy=1)

7.5.4. Timeouts

A command may time out waiting for a response due to the absence of a monitor or the monitor being
in an incorrect state.

[scan_c0v0] >>> regs('pc')

DebugMonitorError: Timed out waiting for command (0x3, read immediate) to complete.

Note: If the command fails for a reason related to the register bus or dmxseg (as opposed to a non-
responsive monitor), a DbuDriverException will be raised with details of the specific failure.

To change these timeouts use the command dbutimeouts().

[scan_s0c0v0] >>> dbutimeouts()

timeouts(dmxseg_read=5, dmxseg_write=5, rb_valid=2)

[scan_s0c0v0] >>> dbutimeouts(rb_valid=6)

timeouts(dmxseg_read=5, dmxseg_write=5, rb_valid=6)

7.6. Low Level Usage

Certain features of the monitor may not have corresponding high level console commands at time of
writing, or you may wish to avoid the automatic handling of debug mode for some reason. For these
purposes you can use the underlying monitor functions.

Follow the same steps as in the ‘Connecting’ section for high level usage, then import the monitor
functions and finally load the monitor.

[scan_c0v0] >>> from imgtec.console.dbu_monitor import *

[scan_c0v0] >>> load_monitor()

7.6.1. Debug Mode

Next start debug mode by using enterdebug. This will detect the DBU style JTAG automatically and
defaults to global throttle being off. If you need to make sure you entered debug mode correctly you
can do the procedure shown below.

[scan_c0v0] >>> enterdebug(global_throttle=True)

Numcores: 1

Setting Probeen and Probtrap

Reading vc control core 0 vc 0

Sending VC into debug mode

Core 0 VC 0 sent into debug mode

[scan_c0v0] >>> tapreg('control')

gt pracc rrb_reset dxerr rberr rb_buserr_occured dx_Size dx_fdcsize

1 1 0 2 0 0 7 0

[scan_c0v0] >>>

Imagination Technologies Public

Revision 1.3.266 74 Low-Level Bring-Up Guide

If debug mode was triggered correctly you should see global throttle in the CONTROL register set to 1
and PrAcc (pracc) set to 1. This means that the VP is waiting for the JTAG interface to acknowledge
its request for (what should be) address 0xFFFFFFFFFF200200. This is the debug entry point into
dmxseg. For verification you can step the initial part of the monitor to see what it is executing.

[scan_c0v0] >>> dbustep()

Target reset detected (roccmask: 0x00000001) continuing...

0xffffffffff200200 4081f800 mtc0 at, DESAVE

After doing that you can manually disable global throttle and begin to run commands.

[scan_c0v0] >>> dbuglobalthrottle(False)

False

[scan_c0v0] >>> monitor_read_pc()

0xffffffffbfc00004

In this mode you are responsible for managing whether you are in debug mode or not, however you
can still use the high level commands. For example runstate() will tell you whether you are in debug
mode. Also any command such as regs(), which does an automatic stop, will know whether you are
already in debug mode. From there you can use monitor_resume to exit debug mode.

[scan_c0v0] >>> enterdebug(global_throttle=True)

<...>

[scan_c0v0] >>> runstate()

Debug monitor identifier is incorrect (0xffffffff), monitor may invalid or not loaded.

status=halted_by_probe pc=0x9c9c9c9c

[scan_c0v0] >>> regs('pc')

Debug monitor identifier is incorrect (0xffffffff), monitor may invalid or not loaded.

0xffffffffbfc00004

[scan_c0v0] >>> runstate()

status=halted_by_probe pc=0xffffffffbfc000044

[scan_c0v0] >>> monitor_resume()

[scan_c0v0] >>> runstate()

status=running

Note: In certain situations runstate won’t be able to read the current PC. In the example above, the
device has no monitor loaded so the PC shown is simply a place holder as we know from the
debug status register that we are not in debug mode but cannot read the PC at this time. It will
not load the monitor automatically unlike other commands.

7.6.2. Multiple VPs

By using the monitor_freeze and monitor_unfreeze you can have many VPs in debug mode at once.
The monitor only has one context to save registers so ‘freezing’ a thread causes it to restore those
values to its registers and then local throttle itself. This allows another VP to go into debug mode and
not overwrite the previous VP’s register state.

[tap 0 of 1] >>> dbuscandevices()

scan_s0c0 - mips [scan_core0]

 scan_s0c0v0 - I6400-VPE0 [scan_c0v0]

 scan_s0c0v1 - I6400-VPE1 [scan_c0v1]

[scan_s0c0v0] >>> from imgtec.console.dbu_monitor import *

[scan_s0c0v0] >>> regs('at', 0x1111)

Debug monitor identifier is incorrect (0xffffffff), monitor may invalid or not loaded.

0x00001111

[scan_s0c0v0] >>> monitor_freeze(0, 0)

[scan_s0c0v0] >>> device(listdevices()[1])

scan_s0c0v1 - I6400-VPE1 [scan_c0v1]

[scan_s0c0v1] >>> regs('at', 0x2222)

0x00002222

[scan_s0c0v1] >>> monitor_freeze(0, 1)

[scan_s0c0v1] >>> device(listdevices()[0])

scan_s0c0v0 - I6400-VPE0 [scan_c0v0]

[scan_s0c0v0] >>> monitor_unfreeze(0, 0)

 Public Imagination Technologies

MIPS Debug 75 Revision 1.3.266

[scan_s0c0v0] >>> regs('at')

0x00001111

[scan_s0c0v0] >>> monitor_freeze(0, 0)

[scan_s0c0v0] >>> device(listdevices()[1])

scan_s0c0v1 - I6400-VPE1 [scan_c0v1]

[scan_s0c0v1] >>> monitor_unfreeze(0, 1)

[scan_s0c0v1] >>> regs('at')

0x00002222

The example above shows the use of the commands. Freezing the first VP and changing the value of
‘at’ on VP 2 without effecting the first VP.

7.6.3. Monitor Commands

Each monitor command has a corresponding console function (these must be imported specifically).

monitor_read_memory monitor_write_memory

monitor_read_cp0_register monitor_write_cp0_register

monitor_read_cp1_register monitor_write_cp1_register

monitor_read_cp1c_register monitor_write_cp1c_register

monitor_read_fpu_double_register monitor_write_fpu_double_register

monitor_read_fpu_single_register monitor_write_fpu_single_register

monitor_read_guest_cp0_register monitor_write_guest_cp0_register

monitor_read_msa_control_register monitor_write_msa_control_register

monitor_read_msa_register monitor_write_msa_register

monitor_read_pc monitor_write_pc

monitor_read_gp_register monitor_write_gp_register

monitor_read_tlb monitor_write_tlb

monitor_tlb_probe monitor_cache_op

monitor_resume monitor_freeze

monitor_unfreeze

There are also functions to help set and reset the various flags and buffers.

write_monitor_command read_monitor_command

acknowledge_monitor_command reset_monitor_command

reset_monitor_changes check_monitor_version

read_monitor_debug_data read_monitor_data_buffer

read_monitor_context_register write_monitor_context_register

read_monitor_command_buffer

To get help on any of these functions use the built in help command with the function’s name.

[tap 0 of 1] >>> from imgtec.console.dbu_monitor import *

[tap 0 of 1] >>> help(monitor_read_pc)

Help on function monitor_read_pc in module imgtec.console.dbu_monitor:

monitor_read_pc(device=None)

 Read the current PC.

 Note that all DEPC operations are redirected to the PC in the saved context.

 As DEPC may be modified further by exceptions in debug mode.

For a command such as read, the type parameter is an MDI resource number. This defaults to 25
which means virtual memory so monitor_read is the basic read memory command but could be used
with a different memory type. However each other type has a command that will do that for you, for
example monitor_read_msa_register for MSA registers.

At this level no register name translation is done. So trying to read ‘config1’ will not work. You need to
give the index or bank and select for that register. Again, you can always mix in the high level
commands if needed.

[scan_c0v0] >>> monitor_read_gp_register(1)

[0x0]

[scan_c0v0] >>> regs('config')

0x80002802

Imagination Technologies Public

Revision 1.3.266 76 Low-Level Bring-Up Guide

[scan_c0v0] >>> monitor_read_cp0_register(16, 0, 1)

[0x80002802]

 Public Imagination Technologies

MIPS Debug 77 Revision 1.3.266

8. Advanced Debug Adapter settings
There are various settings to control the debug adapter's behavior. They are mainly used to increase
logging of the debug adapter's actions to help diagnose target problems (usually at the expense of
performance) or to help deal with unusual targets. These settings can be configured in Codescape on
the Tools > Configure Probe… menu.

They can also be configured in a Python script, standard Python interpreter or Codescape Console
using the following commands:

Python Script or Interpreter:

>>> probe.GetDASettingList() # lists all available settings

>>> probe.GetDASettingValue("Fast Writes") # read a setting

>>> probe.SetDASettingValue("Fast Writes", 1) # enable a setting

Codescape Console:

>>> config() # lists all available settings

>>> config("Fast Writes") # read a setting

>>> config("Fast Writes",1) # enable a setting (and read it again)

8.1. Global settings

These setting affect all cores and can be set before the target has been auto-detected or setup.

Some commands apply only to a specific probe type as indicated.

Name Type Description Default

DA-net only
JTAG Clock

DANetJtagClocks Selects JTAG clock frequency, this must be
one of:

0 = 20MHz

1 = 10MHz

2 = 5MHz

3 = 2.5MHz

4 = 1.25MHz

5 = 625KHz

6 = 312KHz

7 = 156KHz.

20MHz

SysProbe only
JTAG Clock

int Selects JTAG clock frequency in Hertz. 31250000

Halt After Reset bool When True on a HardReset an EJTAG boot
is performed. This stops the core from
running from the Boot Exception Vector and
goes straight into debug mode. Codescape
Debugger also controls this option through
the Halt After Reset option in Target Debug
Options.

false

SysProbe only
Log Level

int Controls the level at which debug messages
get sent to the main log file (info log) and live
logging.

0

Imagination Technologies Public

Revision 1.3.266 78 Low-Level Bring-Up Guide

Name Type Description Default

DA-net only
Verbose Logging

bool Enables verbose logging, enabling this gives
a small reduction in performance

false

SysProbe only
Reset Duration

int The time in ms that the nRESETOUT signal
is assert on hard reset

500

SysProbe only
Post Reset Delay

int Time in ms to wait after a hard reset to allow
bootrom to run before attempting any access
from the probe

0

Reset on
Connect

bool Issue Hard Reset on probe connection. false

SysProbe only
Reset Tap Too

bool After a hard reset CPC systems need a TAP
reset to get the CPC into probe mode, so it’ll
power up all cores.

true

SysProbe only
Sampling
Duration

int The number of ms between statistical
profiling samples. If zero no statistical
profiling is performed.

0

SysProbe only
Sampling SoC
Num

int The soc index on which statistical profiling
samples should be collected.

0

SysProbe only
Sampling Core
Num

int The core index on which statistical profiling
samples should be collected.

0

SysProbe only
Sampling
Threads

int A mask of the threads on which statistical
profiling samples should be collected. For
example 0b11 indicates threads 0 and 1.

0

SysProbe only
APB Timeout

int Timeout applied to debug transactions on
devices which implement an APB (parallel)
debug bus.

100

SysProbe only
Assert DINT

bool Override for the DINT Signal false

Assert
nHardReset

bool Override for the nRESETOUT signal true

Assert nTRST bool Override for the nTRST Signal true

DA-net only
Assert nTRST
during tap reset

bool When set on a tap reset nTRST in assert
then the JTAG state machine is walked to the
reset state then nTRST is released, when
cleared only a synchronous tap reset is
performed (walking state machine to reset
state).

true

JTAG Logging bool Enables logging of all JTAG scans, causes
significant performance degradation and
Codescape Debugger will probably time out.
This option should only be used for
debugging low level JTAG scan issues in
Codescape Console.

false

Polling bool Disable / Enable ALL background polling of
All targets

true

 Public Imagination Technologies

MIPS Debug 79 Revision 1.3.266

Name Type Description Default

Timeout Scale int Controls the scaling factor for timeouts,
increasing this value increased the probes
timeout (at the risk of lack of responsiveness
on broken systems) usually only needed by
very slow targets running on emulation
platforms.

50

Imagination Technologies Public

Revision 1.3.266 80 Low-Level Bring-Up Guide

8.2. MIPS

These settings apply to all MIPS cores in a target system.

Name Type Description Default

PC Sample bool Enable PC Sampling on connection true

Allow FixedMap
Accesses

bool With a Fixed Map MMU all mapped accesses
proceed with a simple address translation, thus
when enabled its easy to lock up targets using
this MMU if HSPs have not been set correctly

false

Allow KUSEG
Accesses

bool When Status ERL+EXL =1, USEG gets a 1:1
mapping between virt and phys space
(ignoring MMU) if set probe accesses are
allowed to proceed in USEG in this state.

false

Allow Mapped
Accesses

bool Allows access to mapped regions (eg useg,
kseg2/3) note access may still fail if address
not mapped in MMU

true

Disable MMU
Checking

bool Prevent any checking of the MMU to see if
mapped accesses will work, risky to set will
cause exceptions in debug mode if access not
mapped

false

Fast Monitor
Address

int Address to which fast transfer monitor is
loaded to before it gets locked into the cache,
this must be a KSEG0 address

0x80000000

Use Current ASID bool Uses the current ASID in entryhi as this is
most likely the current running process, for the
ASID of the access, ignoring the value from
Codescape

true

Use ISPRAM bool Enables debugger handling of ISPRAM, note
ISPRAM setup is cached on setting Use
ISPRAM = 1, if ISPRAM setup is changed this
setting must be disabled and re-enabled

false

DA-net only Post
Reset Delay

int Time in ms to wait after a hard reset to allow
bootrom to run before attempting any access
from the probe

0

Reset ACK Timeout int The time in ms to wait for while acknowledging
Reset (waiting for Rocc)

500

DA-net only Reset
Duration

int The time in ms that the nRESETOUT signal is
assert on hard reset

500

DA-net only CPC
Probe Mode

bool After a hard reset CPC systems need a TAP
reset to get the CPC into probe mode, so it’ll
power up all cores

true

Disable Ints on HW
Single Step

bool Disables interrupts on HardwareSingle Step
(So you don’t end up stepping into interrupt
handling code eg a timer interrupt).

false

Disable trace on halt bool When set the probe disable trace data
collection on an unexpected halt
(Breakpoint/SingleStep etc).

true

 Public Imagination Technologies

MIPS Debug 81 Revision 1.3.266

Name Type Description Default

DA-net only EJTAG
Boot All

bool When False, a reset with ‘Halt after Reset’
selected only applies the EJTAG boot
indication/instruction to the first tap (ie c0v0).
When True, all taps receive an EJTAG boot
instruction.

true

Enter Debug
Timeout

int The time in ms to wait while trying to get the
core into debug mode

100

DA-net only Guest
TLB

bool Make TLB commands operate on the guest
TLB.

false

Max FDC Channels int Controls the number of channels (from 0)
which get mapped to DA virtual channels

0

Print ECR on
Timeout

bool Prints the ECR of all TAPs in the system
including potentially none MIPS taps, hence
this could be disturbing for non MIPS taps.

true

Stop Count in DM bool Stops the count register from being
incremented when the CPU is in debug mode.

true

Using BEV overlay bool When this option transitions from 0->1 the
probe will re-cache the BEV overlay settings, If
user code reconfigures the BEV overlay at
runtime then this option needs toggling so the
probe can re-cache the new settings.

false

Trace Fast bool Experimental option not for users. false

8.3. Meta

These settings apply per core.

Name Type Description Default

Allow Intrusive
Debug

bool When set the DA will perform an intrusive
poll of the target whilst running, this will
have a slight impact on any performance
measurements which need to be cycle
accurate, But gives better detection of a
thread stopping or starting outside of the
DAs control.

false

Core Reg
Interlock

bool Take Lock2 when accessing TXXUXRXQ
as part of sharing protocol (enable above)
set both of these if sharing

false

Core Reg
Negotiate

bool Use the soft locking / negotiation protocol
when sharing the register port with another
user (eg another thread or a host via Slave
port).

false

DCL High
Precision Mode

bool Takes LOCK2 while DCL script is running,
can help reduce jitter in performance
measurements

false

Debug Route MetaDebugRoute auto

Force Availability bool When set the DA will always set the force
availability bit in the JTAG control register

true

Imagination Technologies Public

Revision 1.3.266 82 Low-Level Bring-Up Guide

Name Type Description Default

MCM Port
Locking

bool Use the Soft locking protocol to share the
MCM port with another user (eg another
thread or host via slave port)

true

MDBG
Diagnostics Mode

bool Puts the Meta Debug Port in to diagnostics
mode, to allow postmortem debug of a
locked up system.

false

Minim
Translations

bool Disables the DA from performing minim
translations on minim code addresses on
memory type 0.

true

Per Thread
Channels

bool Each Meta thread gets it own set of DA
channels

true

Polling in
Diagnostics Mode

bool When in debug port diagnostic mode this
disables polling of the ready bit during
debug transactions, clear it if the core is
very badly locked up, you may get some
state out if you are lucky

true

TBI Stack
Unwinding

bool When Halt interrupts are enabled and a
target stops at a breakpoint (or due to
single-step) the state shown to the user by
the DA isn’t the actual state of the target.
When the target stops at the breakpoint a
halt interrupt fires and we jump to TBIs halt
interrupt handler which see the halt as a
breakpoint, so turns off halt interrupts and
executes another switch instruction
(breakpoint), this happens in a function
called TBIUnexpectXXX(). The DA then
unwinds the stack to show the user the
original halt state. When this setting is
cleared you get to see the true state (ie
stopped at a switch in TBIUexpectXXX).

 Public Imagination Technologies

MIPS Debug 83 Revision 1.3.266

Appendix A. Hardware Definition Reference
Documentation
This appendix describes the syntax of elements in XML hardware definition files.

A.1. Hardware Definition XML Elements

A.1.1. Document

The root element of the Hardware Definition XML data. All objects must have this element as the
outermost enclosing object.

<ioconfig>

 <Board N="Board1"/>

 <p N="Processor1"/>

 <pl N="ProcessorLink1">

 <src></src>

 </pl>

 <SoC N="SoC1"/>

 <SoCLink N="SoCLink1">

 <src></src>

 </SoCLink>

 <CoreID N="CoreID1">

 <CoreIDValue>0x0000</CoreIDValue>

 <src></src>

 </CoreID>

</ioconfig>

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

Board

<Board N="name">...</Board> Zero or more of this type

Processor

<p N="name">...</p> Zero or more of this type

ProcessorLink

<pl N="name">...</pl> Zero or more of this type

SoC

<SoC N="name">...</SoC> Zero or more of this type

SoCLink

<SoCLink N="name">...</SoCLink> Zero or more of this type

CoreID

<CoreID N="name">...</CoreID> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.2. Board

Defines a Board.

<Board N="Board">

 <Taps>0x00000000</Taps>

 <SoC N="SoC1"/>

 <settings N="Settings1"/>

 <setting N="Setting1"/>

</Board>

The following attributes are defined for this object:

Imagination Technologies Public

Revision 1.3.266 84 Low-Level Bring-Up Guide

Attributes XML Tag(s) and Syntax Description

Name <Board N="object name"> ...properties and child

objects... </Board>

The name of the
item.

The following properties are defined for this object:

Property XML Tag(s) and Syntax Description

Number of Taps <Taps> ... </Taps> Number of test access ports. A positive integer.

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

SoC

<SoC N="name">...</SoC> Zero or more of this type

SoCLink

<SoCLink N="name">...</SoCLink> Zero or more of this type

Settings

<settings N="name">...</settings> Zero or more of this type

Setting

<setting N="name">...</setting> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.3. SoC

Defines a System on Chip. All the properties except Name are relevant to META processors only.

<SoC N="SoC">

 <JTagPosition>0x00000000</JTagPosition>

 <IRLength>0x00000000</IRLength>

 <JtagID>0x00000000</JtagID>

 <J_IMG_ATTEN>0x00000000</J_IMG_ATTEN>

 <TapType>0x00000000</TapType>

 <J_IMG_STATUS>0x00000000</J_IMG_STATUS>

 <J_IMG_CONTROL>0x00000000</J_IMG_CONTROL>

 <CoreInfo N="CoreInfo1"/>

 <settings N="Settings1"/>

 <setting N="Setting1"/>

</SoC>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <SoC N="object name"> ...properties and child

objects... </SoC>

The name of the
item.

The following properties are defined for this object which must, if present, be in the order shown:

 Public Imagination Technologies

MIPS Debug 85 Revision 1.3.266

Property XML Tag(s) and Syntax Description

Position of this item on the
JTAG scan chain.

<JTagPosition> ...

</JTagPosition>

Position of this item on the
JTAG scan chain.

The length of the TAP
Instruction Register in bits.

<IRLength> ...

</IRLength>

The length of the TAP
Instruction Register in bits.

JTAG ID in hexadecimal. <JtagID> ... </JtagID> JTAG ID in hexadecimal.

JTAG Attention Instruction in
hexadecimal.

<J_IMG_ATTEN> ...

</J_IMG_ATTEN>

JTAG Attention Instruction in
hexadecimal.

Tap Type in hexadecimal. <TapType> ... </TapType> Tap Type in hexadecimal.

JTAG Status Instruction in
hexadecimal.

<J_IMG_STATUS> ...

</J_IMG_STATUS>

JTAG Status Instruction in
hexadecimal.

JTAG Control Instruction in
hexadecimal.

<J_IMG_CONTROL> ...

</J_IMG_CONTROL>

JTAG Control Instruction in
hexadecimal.

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

CoreInfo

<CoreInfo N="name">...</CoreInfo> Zero or more of this type

Settings

<settings N="name">...</settings> Zero or more of this type

Setting

<setting N="name">...</setting> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.4. CoreInfo

Defines a Core.

<CoreInfo N="CoreInfo">

 <DAConfiguration N="DAConfiguration1">

 <src></src>

 </DAConfiguration>

 <p N="Processor1"/>

 <mt N="MemoryType1">

 <mtv>0x00</mtv>

 </mt>

 <settings N="Settings1"/>

 <setting N="Setting1"/>

</CoreInfo>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <CoreInfo N="object name"> ...properties and child

objects... </CoreInfo>

The name of the
item.

It may contain child objects as follows:

Imagination Technologies Public

Revision 1.3.266 86 Low-Level Bring-Up Guide

Child Name XML Tag(s) and Syntax Quantity Allowed

DAConfiguration

<DAConfiguration

N="name">...</DAConfiguration>

Zero or more of this
type

Processor

<p N="name">...</p> Zero or more of this
type

ProcessorLink

<pl N="name">...</pl> Zero or more of this
type

MemoryType

<mt N="name">...</mt> Zero or more of this
type

Settings

<settings N="name">...</settings> Zero or more of this
type

Setting

<setting N="name">...</setting> Zero or more of this
type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.5. DAConfiguration

Defines a DA Configuration.

<DAConfiguration N="DAConfiguration">

 <src></src>

</DAConfiguration>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <DAConfiguration N="object name"> ...properties and

child objects... </DAConfiguration>

The name of the
item.

The following properties are defined for this object:

Property XML Tag(s)
and Syntax

Description

Source <src> ...

</src>

The path to a file for the xml configuration file for this object. This can
be an absolute path, or a path relative to the main prconfig.xml file.

A.1.6. Processor

Defines a Processor.

<p N="Processor">

 <mt N="MemoryType1">

 <mtv>0x00</mtv>

 </mt>

 <m N="Module1"/>

 <settings N="Settings1"/>

 <d>This is a description of Processor</d>

</p>

The following attributes are defined for this object:

 Public Imagination Technologies

MIPS Debug 87 Revision 1.3.266

Attributes XML Tag(s) and Syntax Description

Name <p N="object name"> ...properties and child

objects... </p>

The name of the
item.

The following properties are defined for this object:

Property XML Tag(s)
and Syntax

Description

Description <d> ...

</d>

A description of the item which will appear as a tool tip when the
mouse passes over the name of the item in the Peripheral Region in
Codescape.

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

MemoryType

<mt N="name">...</mt> Zero or more of this type

Module

<m N="name">...</m> Zero or more of this type

Settings

<settings N="name">...</settings> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.7. MemoryType

Defines a class of memory storage.

The Memory Types are used to identify the Codescape memory types that should be used for
memory spaces in a processor. There may be a single memory space for code, data, and memory
mapped registers, or on some platforms separate memory spaces.

For example, the Ensigma RPU has separate memory spaces for code, data and memory mapped
registers, whilst MIPS cores use a single address space. The value of a Memory Type is an internal
constant used between the debugger and the probe, to identify the memory space, so users do not
normally need to change these settings. The Memory Type value of 0, usually with the Memory Type
name of "Ram" is appropriate for normally addressable memory. A Memory Type may be implicitly
dynamic, meaning that Codescape knows the size and accessibility of address ranges within the
address space; or it may be explicitly static using the <static/> tag, which means that the memory type
element should contain Memory Block elements describing those address ranges that are readable,
writable and cacheable by the debugger.

A Memory Block may also configure the access size using the <sb/>, <sw/>, <sd/>, or <sq/> tags (for
8-, 16-, 32-, and 64-bit access sizes respectively), but in practice the probe ignores these accesses
and performs the best access size for the comms and target type. In general the <sd/> should be
used.

<mt N="MemoryType">

 <mtv>0x00</mtv>

 <dynamic/>

 <mb N="MemoryBlock1">

 <s>0x00000000</s>

 <en>0xffffffff</en>

 </mb>

 <d>This is a description of MemoryType</d>

</mt>

Imagination Technologies Public

Revision 1.3.266 88 Low-Level Bring-Up Guide

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <mt N="object name">

...properties and child

objects... </mt>

The name of the Memory Type. This is used
in Registers to identify the Memory Type for
the Register.

The following properties are defined for this object which must, if present, be in the order shown:

Property XML Tag(s) and
Syntax

Description

Memory Type
Value

<mtv> ...

</mtv>

A hex number read by Codescape to identify the Memory Type.
This value should not be altered without consultation with
Codescape Technical Support

Memory
Settings

<dynamic/>

<static/>

Specifies whether the memory is static or dynamic. Only one of
the XML items may be present.

Description <d> ... </d> A description of the item which will appear as a tool tip when
the mouse passes over the name of the item in the Peripheral
Region in Codescape.

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

MemoryBlock

<mb N="name">...</mb> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.8. MemoryBlock

Defines a block of memory.

<mb N="MemoryBlock">

 <s>0x00000000</s>

 <en>0xffffffff</en>

 <sl/>

 <rw/>

 <timings>-1,-1,-1,-1,-1,-1,-1,-1,-1,-1</timings>

 <shared N="SharedMemory1">

 <s>0x00000000</s>

 </shared>

 <d>This is a description of MemoryBlock</d>

</mb>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <mb N="object name"> ...properties and child

objects... </mb>

The name of the
item.

The following properties are defined for this object which must, if present, be in the order shown:

 Public Imagination Technologies

MIPS Debug 89 Revision 1.3.266

Property XML Tag(s) and
Syntax

Description

Start
Address

<s> ... </s> The start address in the memory area of this block in hex
which must align on a boundary according to the size of an
addressable element in this memory block.

End
Address

<en> ... </en> The end address within the memory area of this block in hex
such that the end address + 1 aligns on a boundary according
to the size of an addressable element in this memory block.

Element
Size

<sb/> <sq/>

<sd/> <sw/>

<sl/>

The size in bytes of a individual memory element. Only one of
the XML items may be present.

Access <wo/> <ro/>

<rw/>

Describes how the memory item can be accessed. Only one
of the XML items may be present.

Cacheable <cacheable/> Indicates if the debugger (Codescape or DAScript) can cache
this memory block. All memory should be regarded as
cacheable unless it describes registers or ports, in which case
the XML item is present.

Access
Timings

<timings> ...

</timings>

Timings for defined accessibility of this memory block: a list of
10 integers separated by commas.

Description <d> ... </d> A description of the item which will appear as a tool tip when
the mouse passes over the name of the item in the Peripheral
Region in Codescape.

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

SharedMemory

<shared N="name">...</shared> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.9. SharedMemory

Defines an area of shared memory.

<shared N="SharedMemory">

 <s>0x00000000</s>

 <d>This is a description of SharedMemory</d>

</shared>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <shared N="object name"> ...properties and child

objects... </shared>

The name of the
item.

The following properties are defined for this object which must, if present, be in the order shown:

Imagination Technologies Public

Revision 1.3.266 90 Low-Level Bring-Up Guide

Property XML Tag(s)
and Syntax

Description

Start
Address

<s> ...

</s>

The start address in the memory area of this block in hex which must
align on a boundary according to the size of an addressable element
in this memory block.

Description <d> ...

</d>

A description of the item which will appear as a tool tip when the
mouse passes over the name of the item in the Peripheral Region in
Codescape.

A.1.10. Module

Defines a Module.

A Module is used for associating information about one or more devices, for example, a Bus State
Controller (BSC). Modules can contain:

<m N="Module">

 <m N="Module1"/>

 <r N="Register1"/>

 <d>This is a description of Module</d>

</m>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <m N="object name"> ...properties and child

objects... </m>

The name of the
item.

The following properties are defined for this object:

Property XML Tag(s)
and Syntax

Description

Description <d> ...

</d>

A description of the item which will appear as a tool tip when the
mouse passes over the name of the item in the Peripheral Region in
Codescape.

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

Module

<m N="name">...</m> Zero or more of this type

Register

<r N="name">...</r> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.11. Register

Defines a processor, co-processor or memory mapped register.

 Public Imagination Technologies

MIPS Debug 91 Revision 1.3.266

<r N="Register">

 <mtn></mtn>

 <s>0x0</s>

 <sl/>

 <rw/>

 <rm>0xffffffffffffffff</rm>

 <wam>0xffffffffffffffff</wam>

 <wom>0x00000000</wom>

 <H/>

 <timings>-1,-1,-1,-1,-1,-1,-1,-1,-1,-1</timings>

 <f N="BitField1"/>

 <d>This is a description of Register</d>

</r>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <r N="object name">

...properties and child

objects... </r>

The name of the register that is displayed
in the Peripheral Region in Codescape.

The following properties are defined for this object which must, if present, be in the order shown:

Property XML Tag(s) and
Syntax

Description

Memory
Type

<mtn> ... </mtn> The memory type (class) to which this register belongs.

Start
Address

<s> ... </s> The start address within the memory type of this register.

Size <sb/> <sq/> <sd/>

<sw/> <sl/>

The size of the register. Only one of the XML items may be
present.

Access <wo/> <ro/> <rw/>

<woc/> <roc/>

Describes how the register can be accessed. Only one of
the XML items may be present.

Read AND
Mask

<rm> ... </rm> Specifies a mask in hex to bitwise AND against the register
value before the value is displayed. (Default: 0xFFFFFFFF)

Write AND
Mask

<wam> ... </wam> Specifies a mask in hex to bitwise AND against the register
value before the value is written. (Default: 0xFFFFFFFF)

Write OR
Mask

<wom> ... </wom> Specifies a mask in hex to bitwise OR against the register
value before the value is written. (Default: 0)

Radix <H/> <D/>

<O/>

Specifies the format of the item. Only one of the XML items
may be present.

Access
Timings

<timings> ...

</timings>

Timings for defined accessibility of this memory mapped
register: a list of 10 integers separated by commas.

Description <d> ... </d> A description of the item which will appear as a tool tip
when the mouse passes over the name of the item in the
Peripheral Region in Codescape.

It may contain child objects as follows:

Imagination Technologies Public

Revision 1.3.266 92 Low-Level Bring-Up Guide

Child Name XML Tag(s) and Syntax Quantity Allowed

BitField

<f N="name">...</f> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.12. BitField

Defines a Bit Field.

A Bitfield is a specific number of bits in the register that can represent several different values
depending on how the bits are set. A Bitfield can be one specific bit from a register. This bit can be
combined with Bitfield Values to represent a boolean value.

An AND mask and shift is applied to extract the relevant bits.

<f N="BitField">

 <dv>0x00000000</dv>

 <fm>0x00000000</fm>

 <H/>

 <v N="BitFieldValue1"/>

 <d>This is a description of BitField</d>

</f>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <f N="object name"> ...properties
and child objects... </f>

The name of the Bitfield that is displayed in the
Peripheral Region in Codescape.

The following properties are defined for this object which must, if present, be in the order shown:

Property XML Tag(s)
and Syntax

Description

Default <dv> ...

</dv>

Default bit field value in hex.

AND Mask <fm> ...

</fm>

Mask used to extract the required bits of the field.

Shift <sh> ...

</sh>

The shift to be applied to the bits after masking. Positive for a left shift,
negative for a right shift.

Radix <H/>

<D/> <O/>

Specifies the format of the item. Only one of the XML items may be
present.

Description <d> ...

</d>

A description of the item which will appear as a tool tip when the
mouse passes over the name of the item in the Peripheral Region in
Codescape.

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

BitFieldValue

<v N="name">...</v> Zero or more of this type

 Public Imagination Technologies

MIPS Debug 93 Revision 1.3.266

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

A.1.13. BitFieldValue

Defines a Bit Field Value.

<v N="BitFieldValue">

 <x>0x0000000000000000</x>

 <d>This is a description of BitFieldValue</d>

</v>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <v N="object name"> ...properties and child

objects... </v>

The name of the
item.

The following properties are defined for this object which must, if present, be in the order shown:

Property XML Tag(s)
and Syntax

Description

Value <x> ...

</x>

A hex value whose width in bits is not greater than the number of bits
in the BitField mask to which this value belongs.

Description <d> ...

</d>

A description of the item which will appear as a tool tip when the
mouse passes over the name of the item in the Peripheral Region in
Codescape.

A.1.14. Settings

Defines a collection of Setting or Settings objects.

<settings N="Settings">

 <setting N="Setting1"/>

 <settings N="Settings1"/>

</settings>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <settings N="object name"> ...properties and child

objects... </settings>

The name of the
item.

It may contain child objects as follows:

Child Name XML Tag(s) and Syntax Quantity Allowed

Setting

<setting N="name">...</setting> Zero or more of this type

Settings

<settings N="name">...</settings> Zero or more of this type

Children, if any, should be grouped according to type and appear in the order shown in the above list
and the XML fragment above.

Imagination Technologies Public

Revision 1.3.266 94 Low-Level Bring-Up Guide

A.1.15. Setting

Defines a single Setting.

These are single-value string items not directly related to the physical configuration of targets.

<setting N="Setting"/>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <setting N="object name"> ...properties and child

objects... </setting>

The name of the
item.

The following properties are defined for this object:

Property XML Tag(s) and Syntax Description

Value <setting> ... </setting> The value of this setting.

A.1.16. ProcessorLink

Defines a Processor Link.

<pl N="ProcessorLink">

 <src></src>

</pl>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <pl N="object name"> ...properties and child

objects... </pl>

The name of the
item.

The following properties are defined for this object:

Property XML Tag(s)
and Syntax

Description

Source <src> ...

</src>

The path to a file for the xml configuration file for this object. This can
be an absolute path, or a path relative to the main prconfig.xml file.

A.1.17. SoCLink

Defines a SoC Link.

<SoCLink N="SoCLink">

 <src></src>

</SoCLink>

The following attributes are defined for this object:

 Public Imagination Technologies

MIPS Debug 95 Revision 1.3.266

Attributes XML Tag(s) and Syntax Description

Name <SoCLink N="object name"> ...properties and child

objects... </SoCLink>

The name of the
item.

The following properties are defined for this object:

Property XML Tag(s)
and Syntax

Description

Source <src> ...

</src>

The path to a file for the xml configuration file for this object. This can
be an absolute path, or a path relative to the main prconfig.xml file.

A.1.18. CoreID

Defines a Core ID.

<CoreID N="CoreID">

 <CoreIDValue>0x0000</CoreIDValue>

 <src></src>

</CoreID>

The following attributes are defined for this object:

Attributes XML Tag(s) and Syntax Description

Name <CoreID N="object name"> ...properties and child

objects... </CoreID>

The name of the
item.

The following properties are defined for this object which must, if present, be in the order shown:

Property XML Tag(s) and Syntax Description

Core ID
Value

<CoreIDValue> ...

</CoreIDValue>

The cores' id as an up to 4 digit hex integer.

Source <src> ... </src> The path to a file for the xml configuration file for this
object. This can be an absolute path, or a path relative to
the main prconfig.xml file.

A.2. The Document Type Definition

The DTD for the xml format is not validated at load time, this is so that the file format can be extended
without breaking backwards compatibility. However for reference this is the DTD that would be used:

Imagination Technologies Public

Revision 1.3.266 96 Low-Level Bring-Up Guide

<!ELEMENT ioconfig (Board, p, pl, SoC, SoCLink, CoreID)*>

<!ELEMENT Board ((Taps?), (SoC | SoCLink)+, (settings, setting)*)>

 <!ATTLIST Board N CDATA #REQUIRED>

 <!ELEMENT Taps (#PCDATA)>

<!ELEMENT SoC ((JTagPosition?, IRLength?, JtagID?, J_IMG_ATTEN?, TapType?, J_IMG_STATUS?,

J_IMG_CONTROL?), (CoreInfo)+, (settings, setting)*)>

 <!ATTLIST SoC N CDATA #REQUIRED>

 <!ELEMENT JTagPosition (#PCDATA)>

 <!ELEMENT IRLength (#PCDATA)>

 <!ELEMENT JtagID (#PCDATA)>

 <!ELEMENT J_IMG_ATTEN (#PCDATA)>

 <!ELEMENT TapType (#PCDATA)>

 <!ELEMENT J_IMG_STATUS (#PCDATA)>

 <!ELEMENT J_IMG_CONTROL (#PCDATA)>

<!ELEMENT CoreInfo (p | pl)?, (DAConfiguration)?, (mt, settings, setting)*>

 <!ATTLIST CoreInfo N CDATA #REQUIRED>

<!ELEMENT DAConfiguration ((src))>

 <!ATTLIST DAConfiguration N CDATA #REQUIRED>

 <!ELEMENT src (#PCDATA)>

<!ELEMENT p ((d?), (mt, m, settings)*)>

 <!ATTLIST p N CDATA #REQUIRED>

 <!ELEMENT d (#PCDATA)>

<!ELEMENT mt ((mtv, (dynamic|static)?, d?), (mb)*)>

 <!ATTLIST mt N CDATA #REQUIRED>

 <!ELEMENT mtv (#PCDATA)>

 <!ELEMENT dynamic EMPTY>

 <!ELEMENT static EMPTY>

<!ELEMENT mb ((s, en, (sb|sq|sd|sw|sl)?, (wo|ro|rw)?, cacheable?, timings?, d?), (shared)*)>

 <!ATTLIST mb N CDATA #REQUIRED>

 <!ELEMENT s (#PCDATA)>

 <!ELEMENT en (#PCDATA)>

 <!ELEMENT sb EMPTY>

 <!ELEMENT sq EMPTY>

 <!ELEMENT sd EMPTY>

 <!ELEMENT sw EMPTY>

 <!ELEMENT sl EMPTY>

 <!ELEMENT wo EMPTY>

 <!ELEMENT ro EMPTY>

 <!ELEMENT rw EMPTY>

 <!ELEMENT cacheable (#PCDATA)>

 <!ELEMENT timings (#PCDATA)>

<!ELEMENT shared ((s, d?))>

 <!ATTLIST shared N CDATA #REQUIRED>

<!ELEMENT m ((d?), (m, r)*)>

 <!ATTLIST m N CDATA #REQUIRED>

<!ELEMENT r ((mtn?, s?, (sb|sq|sd|sw|sl)?, (wo|ro|rw|woc|roc)?, rm?, wam?, wom?, (H|B|D|O)?,

timings?, d?), (f)*)>

 <!ATTLIST r N CDATA #REQUIRED>

 <!ELEMENT mtn (#PCDATA)>

 <!ELEMENT woc EMPTY>

 <!ELEMENT roc EMPTY>

 <!ELEMENT rm (#PCDATA)>

 <!ELEMENT wam (#PCDATA)>

 <!ELEMENT wom (#PCDATA)>

 <!ELEMENT H EMPTY>

 <!ELEMENT B EMPTY>

 <!ELEMENT D EMPTY>

 <!ELEMENT O EMPTY>

<!ELEMENT f ((dv?, fm?, sh?, (H|B|D|O)?, d?), (v)*)>

 <!ATTLIST f N CDATA #REQUIRED>

 <!ELEMENT dv (#PCDATA)>

 <!ELEMENT fm (#PCDATA)>

 <!ELEMENT sh (#PCDATA)>

<!ELEMENT v ((x?, d?))>

 Public Imagination Technologies

MIPS Debug 97 Revision 1.3.266

 <!ATTLIST v N CDATA #REQUIRED>

 <!ELEMENT x (#PCDATA)>

<!ELEMENT settings (setting, settings)*>

 <!ATTLIST settings N CDATA #REQUIRED>

<!ELEMENT setting ((setting?))>

 <!ATTLIST setting N CDATA #REQUIRED>

 <!ELEMENT setting (#PCDATA)>

<!ELEMENT pl ((src))>

 <!ATTLIST pl N CDATA #REQUIRED>

<!ELEMENT SoCLink ((src))>

 <!ATTLIST SoCLink N CDATA #REQUIRED>

<!ELEMENT CoreID ((CoreIDValue, src))>

 <!ATTLIST CoreID N CDATA #REQUIRED>

 <!ELEMENT CoreIDValue (#PCDATA)>

	1. Introduction
	Target connection details
	Using and configuring an SP55E debug adapter
	Board and Core Definition files
	New Target Bring-up
	Low-level EJTAG Debug
	OCI debugging with a DBU Debug Monitor
	Advanced Debug Adapter settings
	Hardware Definition Reference Documentation
	1.1. Licensing
	1.2. Terminology
	'probe' vs 'debug adapter'

	2. Target connection details
	2.1. SP55E
	2.1.1. Establishing host-debug adapter connection
	2.1.2. SP55E connection to target JTAG
	2.1.3. RJ45/Ethernet connection to host
	2.1.4. USB connection to host
	USB IP address
	Troubleshooting USB-host connections
	Ping the address
	Connection on Linux
	Connection on Windows

	2.2. Connecting to MIPS development boards
	2.2.1. Malta + coreFPGA6
	Yamon

	2.2.2. SEAD3

	2.3. Getting diagnostics information from the debug adapter and Codescape
	2.3.1. Diagnostics in Codescape
	2.3.2. Listing debug adapter transaction logs

	2.4. Target Connection Schematic
	2.4.1. SP55E
	Pin 13 DINT
	Pin 14 VI/O

	2.5. Notes for making your own JTAG cable
	EMC Compliance
	2.5.1. Board and cable impedance matching

	3. Using and configuring an SP55E debug adapter
	3.1. SP55E Overview
	3.2. Power Requirements
	3.3. Connectors
	3.3.1. USB
	3.3.2. RJ45/Ethernet
	3.3.3. JTAG

	3.4. External LEDs
	PWR LED
	TGT LED
	RJ45 Ethernet socket

	3.5. SP55E interface specifications
	3.6. SysProbe JTAG characteristics
	3.6.1. Non-standard JTAG output configuration
	3.6.2. Non-standard JTAG input configuration
	3.6.3. JTAG signal timing

	3.7. DC Characteristics
	3.8. Opening a connection to an SP55E
	3.8.1. Opening a connection to an SP55E with Codescape Console
	Connect your SP55E to the target and Ethernet.
	Start Codescape Console and connect to the target:

	3.9. Checking and reflashing SP55E firmware
	Before reflashing:
	3.9.1. Checking current firmware version
	3.9.2. Reflashing the SP55E from Codescape Console
	Checking available firmware
	To reflash the SP55E

	4. Board and Core Definition files
	4.1. Overview
	4.2. Working with Hardware Definition and Board files
	4.2.1. Creating Hardware Definition files
	Using Codescape Console to create Hardware Definition files
	Connect to the target
	Create the Hardware Definition files

	4.2.2. Copying existing Hardware Definition files
	Example: duplicating an XML file and reusing core_id
	24Kc.core_id
	24Kc.xml

	4.2.3. Creating Board files
	4.2.4. Selecting Hardware Definition and Board files
	Automatic detection
	Manual selection
	To manually select an HSP

	4.2.5. Modifying Hardware Definition and Board files

	4.3. Modifying existing Board and Hardware files
	4.3.1. Editing HSPs with a text editor
	4.3.2. Using the Hardware Definition Editor
	Editing definitions

	4.4. HSP file format
	4.4.1. Format overview
	Naming
	Descriptions
	Registers
	Formatting Registers
	Grouping of Registers

	4.5. Worked example of an XML file
	What all this means to Codescape

	5. New Target Bring-up
	5.1. Introduction
	1. Bypass test
	2. TAP identification
	3. Perform basic debug operation
	4. Auto-detect with Codescape Console
	5. Auto-detect with Codescape Debugger

	5.2. Stage 1 - Bypass Test
	5.3. Stage 2 - TAP Identification
	MIPS target:
	Meta target with 1 TAP:
	Turning on JTAG logging

	5.4. Stage 3 - basic debug operation
	5.4.1. MIPS
	Possible reasons for failure:

	5.4.2. Meta/UCC

	5.5. Stage 4 – Auto-detect with Codescape Console
	5.5.1. MIPS
	5.5.2. Meta/UCC

	5.6. Stage 5 – Auto-detect with Codescape

	6. Low-level EJTAG Debug
	6.1. Introduction
	6.1.1. Terminology
	MT-ASE (Multithreading Application Specific Extension)
	TC (Thread Context)
	VPE (Virtual Processing Element)
	CPU (Central Processing Unit)
	I$, D$, and L2$
	CPS (Coherent Processing System)
	CM (Coherence Manager)
	CPC (Cluster Power Controller)
	GIC (Global Interrupt Controller)
	Core

	6.1.2. Tools

	6.2. MIPS Processor Basics
	6.2.1. Execution Mode
	Debug mode
	Kernel mode Error level
	Kernel mode Exception level
	Kernel mode
	Supervisor mode (optional)
	User mode

	6.2.2. ISA Mode
	6.2.3. Execution Location
	6.2.4. Exception Cause

	6.3. Using NMI (Non Maskable Interrupt)
	6.4. EJTAG Debug Features
	PCSAMPLE
	EJTAG TAP
	ECR (EJTAG Control Register)
	DINT (Debug Interrupt)
	DRSEG (Debug Register Segment)
	DMSEG (Debug Memory Segment)
	Single-Step
	Hardware Breakpoint
	Software Breakpoint
	6.4.1. EJTAG TAP Basics
	ECR (EJTAG Control Register)

	6.4.2. Boot Mode: EJTAGBOOT vs NORMALBOOT
	6.4.3. Basic Codescape Console Commands
	6.4.4. Advanced Codescape Console Commands
	6.4.5. Low level "scan" commands
	6.4.6. Diagnosing Cache Problems

	6.5. Debugging a Soft Hang
	6.5.1. Using PC Sample
	6.5.2. Using DINT (Debug Interrupt)

	6.6. Debugging a Hard Hang
	6.6.1. “Halt” Fails
	6.6.2. Halt Fails: CPU not taking DINT
	Core does not have power and clock
	Another VPE on this core is in debug mode

	6.6.3. Halt Fails: CPU never accesses dmseg
	Debug Exception Vector was not in dmseg
	Debug exception acting as a completion barrier

	6.6.4. Halt Fails: CPU stops accessing dmseg
	EJTAG Instruction Logging
	Custom Debug Exception Handler
	Manually satisfying accesses to dmseg

	6.6.5. Debug Through Reset

	6.7. Multi-Core Coherent Processing Systems (CPS)
	6.7.1. Cluster Power Controller (CPC)
	6.7.2. CPC Reset
	6.7.3. Probe-Mode
	6.7.4. CPC DINT monitoring

	7. OCI debugging with a DBU Debug Monitor
	7.1. Introduction
	7.2. Debug Unit (DBU)
	7.3. Debug Monitor
	7.3.1. Global Throttle
	7.3.2. Debug Monitor States
	7.3.3. Key Components
	Debug Data
	Command Buffer
	Data Buffer
	Command Numbers
	Response Codes

	7.4. Connecting
	7.5. Using the Debug Monitor via high level commands
	7.5.1. Debugging
	7.5.2. Exceptions
	7.5.3. Incorrect states
	7.5.4. Timeouts

	7.6. Low Level Usage
	7.6.1. Debug Mode
	7.6.2. Multiple VPs
	7.6.3. Monitor Commands

	8. Advanced Debug Adapter settings
	Python Script or Interpreter:
	Codescape Console:
	8.1. Global settings
	8.2. MIPS
	8.3. Meta

	Appendix A. Hardware Definition Reference Documentation
	A.1. Hardware Definition XML Elements
	A.1.1. Document
	A.1.2. Board
	A.1.3. SoC
	A.1.4. CoreInfo
	A.1.5. DAConfiguration
	A.1.6. Processor
	A.1.7. MemoryType
	A.1.8. MemoryBlock
	A.1.9. SharedMemory
	A.1.10. Module
	A.1.11. Register
	A.1.12. BitField
	A.1.13. BitFieldValue
	A.1.14. Settings
	A.1.15. Setting
	A.1.16. ProcessorLink
	A.1.17. SoCLink
	A.1.18. CoreID

	A.2. The Document Type Definition

