

I6500 Multiprocessing System Datasheet March 31, 2017

The I6500 Multiprocessing System (MPS) is a high performance multi-core microproces-
sor system that provides a best in class power efficiency for use in system-on-chip
(SoC) applications. Each I6500 CPU core combines multithreading and an efficient dual-
issue pipeline to deliver outstanding computational throughput. The I6500 Coherence
Manager maintains Level 2 (L2) cache and system level coherency between all cores,
main memory, and I/O devices. The I6500 MPS is a configurable and a synthesizable
solution. The collection of clusters of cores can be configured with a variable number of
cores, I/O coherent interfaces, and L2 cache size. Each of the cores can be configured
with Level 1 (L1) cache sizes, number of threads, and single instruction multiple data
(SIMD) functionality.

Each I6500 core implements the Release 6 of the MIPS64 Instruction Set Architecture
(ISA) with full hardware multithreading and hardware virtualization support. In addi-
tion, the core can be configured with a SIMD engine supporting integer, single and dou-
ble precision, and floating and fixed point operations.

Highlights of the I6500 MPS include:

• Multi-Cluster support

• Up to 6 CPU cores per cluster

• PDtrace support

• Coherence Manager (CM3.5) with integrated L2-cache:

• Up to 8 I/O Coherence Units (total of cores + IOCUs must be no greater than 8)

• Cluster Power Controller (CPC)

• Global Interrupt Controller (GIC)

• Global Configuration Registers (GCR)

• Multiprocessor debug via in-system Debug Unit (DBU)

• Trace Funnel (TRF)

• Cluster Inter-thread communication unit (ITU)

2

I6500 Multiprocessing System Datasheet — Revision 01.00

Figure 1.1 shows a block diagram of a single cluster I6500 Multiprocessing System
(MPS).

Figure 1.1 Block Diagram of Single Cluster I6500 Multiprocessing System

3

I6500 Multiprocessing System Datasheet — Revision 01.00

I6500 Features at a Glance

The I6500 MPS is feature rich with the current MIPS64 architecture, new CPU and sys-
tem level features designed for compelling performance, power, and area form factors.
The MPS flexibility and features are well suited for a broad range of markets and appli-
cations, from deeply embedded to automotive to consumer/mobile and on up to enter-
prise class storage, server, and dataplane solutions.

MIPS Architecture

The I6500 Multiprocessing System has four key architecture features that set the core’s
foundation.

MIPS64® Release 6 Architecture

MIPS64® architecture, an industry standard, is the groundwork of the
I6500 product offering. The MIPS64 architecture provides a solid, high-performance
base by incorporating powerful features, standardizing privileged mode instructions,
and supporting past ISAs. It also provides a seamless upgrade path from the MIPS32
architecture. MIPS64 is based on a fixed-length, regularly encoded instruction set, and
it uses a load/store data model. It is streamlined to support optimized execution of
high-level languages. MIPS64 also has both compact and delayed branches. This helps
the compiler generate dense code while still maintaining backward compatibility. Avail-
ability of 31 general-purpose registers enables compilers to further optimize code gen-
eration by keeping frequently accessed data in registers.

MIPS64 provides memory management and its information through the configuration
registers. The MIPS64 architecture enables real-time operating systems and application
code to be implemented once and reused.

MIPS® SIMD Architecture

SIMD (Single Instruction Multiple Data) is an important technology for modern CPU
designs because it improves performance by allowing efficient parallel processing of
vector operations. The MIPS® SIMD Architecture (MSA) technology incorporates a soft-
ware-programmable solution into the CPU to handle emerging codecs or potentially
eliminate dedicated hardware functions in some cases. This programmable solution
allows for increased system flexibility. In addition, the MSA is designed to accelerate
many compute-intensive applications by enabling generic compiler support, which can
automatically vectorize code to enhance performance.

4

I6500 Multiprocessing System Datasheet — Revision 01.00

MIPS® Virtualization

To address security, privacy and reliability concerns in a wide range of devices, MIPS
has added hardware supported virtualization technology into the I6500 core. The
hardware virtualization support enables processors to be OmniShield-ready.
OmniShield is security technology which ensures that applications
that need to be secure are effectively and reliably isolated from each other, as well as
protected from non-secure applications.

System Control Coprocessor (CP0) Architecture

In the MIPS architecture, CP0 implements the Privileged Resource Architecture (PRA),
which includes:

• System configuration registers

• Virtual to physical address translation (MMU)

• Exception control system (including interrupt control)

• Processor’s diagnostic capability

• Operating modes (kernel, user, supervisor, and debug)

Configuration information, such as cache size and associativity, and the presence of
optional features like a floating point unit, are also available by accessing the CP0 regis-
ters. CP0 also contains the state used for identifying and managing exceptions. Excep-
tions can be caused by a variety of sources, including boundary cases in data, external
events, or program errors. Refer to MIPS64 Release 6 specifications for further details.

System-level Features

• Up to six coherent MIPS64 Release 6 CPU cores

• Multi-Cluster support: Cluster composed of up to 0 - 6 CPUs and 0 - 2 IOCUs (sum
being no more than 8 agents) and a Level 2 cache connection to a coherent inter-
connect. Support for up to 4 clusters.

• Integrated L2 cache controller supporting a 8-way and 16-way set-associativity

• Inclusive of the L1 data caches

• 256 KB to 8 MB cache sizes

• Single bit correction and double bit detection

• CPC to shut down idle cores for power efficiency

• Up to 8 I/O Coherence Units (total of cores + IOCUs must be no greater than 8)

5

I6500 Multiprocessing System Datasheet — Revision 01.00

• Virtualization Module Support

• Cache-to-cache data transfers

• Out-of-order data return

• Hardware L2 cache prefetch controller significantly improves performance of work-
loads such as memory to memory data transfer/copy (memcpy)

• Independent clock ratios on core, memory, and IOCU ports

• SoC system interface supports AXI-4 (Advanced eXtensible Interface rev. 4, also
known as AMBA 4 AXI) or ACE (AXI Coherency Extensions) protocol with 48-bit
address and 256-bit data paths. This interface can be configured to support up to 96
outstanding requests.

• High bandwidth 128-bit data paths between each core and the Coherence Manager

• Software controlled core level and cluster level power management

• Debug port supporting multi-core debug (JTAG/APB)

• Program and Data trace (PDtrace) mechanism to debug software

6

I6500 Multiprocessing System Datasheet — Revision 01.00

CPU Core-Level Features

• Full 64-bit Instruction Set Architecture via MIPS64 Release 6

• 48-bit virtual and physical addresses

• Power efficient design

• Dual issue instruction fetch, decode, issue, and graduate

• Hardware multithreading

• Virtualization support

• L1 caches with Error Correction Code (ECC) protection

• L2 cache support — Implemented as shared L2 in the Coherence Manager

• Programmable Memory Management Unit with large first-level ITLB/DTLB backed by
fast on-core second-level variable page size TLB (VTLB) and fixed page size TLB
(FTLB)

• Shared FTLB across all virtual processors (VPs) in a CPU

• MIPS DVM support through Global Instruction cache and TLB invalidation

• Load and store bonding support

• Unaligned load / store support in hardware

• Program and Data Trace (PDtrace) support for Instructions and Data (Virtual
Addresses and Data Values)

• Optional Data Scratch Pad (DSPRAM)

• Optional InterThread Communication Unit (ITU)

7

I6500 Multiprocessing System Datasheet — Revision 01.00

I6500 CPU Core Features

Figure 1.2 shows a block diagram of a single I6500 core. The logic blocks in this dia-
gram are described in the following sections.

Figure 1.2 I6500 Core Block Diagram

For more information on the I6500 core in a multiprocessing environment, refer to
“Multiprocessing System Features” on page 16.

Instruction Fetch Unit (IFU)

The Instruction Fetch Unit (IFU) fetches instructions from the L1 instruction cache and
supplies them to the Execution Unit (EXU). The IFU can fetch up to two instructions at a
time from the L1 cache and fill the instruction buffers, which decouple the instruction
fetch unit from the issue and execution of the instructions.

Branch Prediction

The IFU employs sophisticated branch prediction that anticipates the branch direction to
improve performance and efficiency. The prediction is based on both local and global
history of the branch captured in the Branch History Table (BHT) with majority voting.
The predictor adapts to the program by self learning. The prediction stops on certain
types of instructions, giving software control of the code execution.

8

I6500 Multiprocessing System Datasheet — Revision 01.00

Jump Prediction

The IFU has a hardware-based Jump Register Cache (JRC) and Return Prediction Stack
(RPS) to predict jump target addresses. This results in faster throughput during subrou-
tine calls and returns.

Level 1 Instruction Cache

The I6500 L1 instruction cache is configurable as 32 KB or 64 KB in size and is orga-
nized as 4-way set-associative. The instruction cache is virtually indexed and physically
tagged to parallelize the data access and the virtual-to-physical address translation.

This cache is used to fetch two instructions per cycle. To conserve power, a way-predic-
tion mechanism enables only the expected way. The cache is protected by single- and
double-bit error detection logic.

Each cache line holds 64 bytes of instructions and the coherency of the cache is main-
tained by software with hardware assistance.

Execution Unit (EXU)

In the I6500 core, the Execution Unit (EXU) implements the logic for:

• Instruction Buffer Management

• Instruction Selection and Issue

• Source Operand Read and Bypass

• Integer Execution Units

• FPU / MIPS® SIMD Architecture (MSA) Execution Units

• Result Collection & Instruction Graduation

Instruction Buffer Management & Issue

The fetch unit delivers up to two instructions per cycle to the EXU. The EXU keeps these
instructions in a deep instruction buffer. The EXU maintains a separate instruction buffer
for each thread (VP).

Up to two instructions may be issued for execution during a clock cycle. The instructions
can be issued from the same thread or from different threads. A round-robin priority
scheme is used to arbitrate among threads.

Instructions can be concurrently issued to any two of the following EXU functional units:

• 2 Integer Units

• 1 Multiply / Divide Unit

9

I6500 Multiprocessing System Datasheet — Revision 01.00

• 1 Branch Unit

• 1 Load Store Unit

• 1 Short Floating Point Pipe

• 1 Long Floating Point Pipe

Source Operand Read and Bypass

The EXU can simultaneously read source operands from the Architectural Register File
(ARF) or Working Register File (WRF) for each of the instructions (regardless of thread
context). In addition, the EXU implements a fully symmetric operand bypass network to
bypass a result from a preceding execution stage.

Integer Execution Units

The EXU has two complete ALUs that perform single-cycle operations including add,
subtract, shifts, rotates, bit-wise logical, and several other operations. One of the ALUs
assists in resolving conditional branches.

The EXU also contains a dedicated 64x64 integer multiplier and radix 4 SRT divider to
speed up compute intensive applications and implements cyclic redundancy code (CRC
and its variants) in hardware.

Floating Point / MSA Pipelines

The I6500 core features an optional 128-bit SIMD engine that implements the MIPS
SIMD Architecture (MSA). The engine handles scalar floating point as well as SIMD inte-
ger and floating point datatypes. Floating point operations are IEEE 754-2008 compli-
ant.

The EXU implements two separate pipelines (1 short, 1 long) to execute both floating
point and MSA instructions. These two pipelines allow the execution of simple floating
point instructions to bypass and execute in parallel with less frequently used complex
and iterative instructions. One pipeline executes SIMD logical ops, SIMD integer adds,
and FP compares and FP/SIMD stores. The other pipeline executes SIMD integer multi-
plies, SIMD vector shuffles, FP adds, FP multiplies, and FP divides.

The SIMD unit contains thirty-two 128-bit vector registers shared between SIMD and
FPU instructions. Single-precision floating-point instructions use the lower 32 bits of the
128-bit register. Double-precision floating point instructions use the lower 64 bits of the
128-bit register. SIMD instructions use the entire 128-bit register interpreted as multi-
ple vector elements: 16 x 8-bit, 8 x 16-bit, 4 x 32-bit, or 2 x 64 bit vector elements.

SIMD instructions enable:

• Efficient vector parallel arithmetic operations on integer, fixed-point, and floating-
point data

10

I6500 Multiprocessing System Datasheet — Revision 01.00

• Operations on absolute value operands

• Rounding and saturation options

• Full precision multiply and multiply-add

• Conversions between integer, floating-point, and fixed-point data

• Complete set of vector-level compare and branch instructions with no condition flag

• Vector (1D) and array (2D) shuffle operations

• Typed load and store instructions for endian-independent operation

The SIMD unit is fully synthesizable and operates at the same clock speed as the core.

The exception model is ‘precise’ at all times.

The SIMD unit supports fused floating point multiply-adds as defined by the IEEE Stan-
dard for Floating-Point Arithmetic 754-2008. Most FPU and SIMD instructions have one
cycle throughput. All floating point denormalized input operands and results are fully
supported in hardware.

Result Collection & Graduation

The EXU collects all results from single-cycle, fixed-latency, and variable-latency
instructions and pairs them up with associated completion status (such as exceptions
and interrupts), and commits the results into the Architectural Register File (ARF). This
committing of final results is called the graduation of the instruction.

Load Store Unit (LSU)

The Load Store Unit (LSU) moves data between the core and the system memory. It
also maintains an L1 data cache to accelerate access to commonly used data by the
core. The LSU accepts a single operation per cycle and maintains several buffers to keep
the data moving between the EXU and L1 cache and between the L1 cache and the Bus
Interface Unit (BIU) at optimal rate.

Level 1 Data Cache

The I6500 L1 data cache is configurable as 32 KB or 64 KB in size and is organized as 4-
way set-associative. The data cache is physically indexed and physically tagged to avoid
virtual aliasing.

The L1 data cache is capable of fetching data on both aligned and unaligned memory
accesses. In addition, it can combine multiple loads and stores into a single operation
using a feature called “instruction bonding” to maximize memory bandwidth.

To conserve power, a way-prediction mechanism enables only the expected way. The
cache is protected by single-bit error correction and double-bit error detection logic.

11

I6500 Multiprocessing System Datasheet — Revision 01.00

Each cache line holds 64 bytes of data as well as the associated tag and replacement
information.

DSPRAM Interface

The I6500 data scratchpad RAM (DSPRAM) interface provides a connection to on-chip
memory or memory mapped registers, which are accessed in parallel to the L1 data
cache to minimize access latency. The DSPRAM interface connects the CPU to an exter-
nal user designed DSPRAM module (a reference design is provided with the I6500 CPU).

Figure 1.3 shows a block diagram of the I6500 DSPRAM and interface.

Figure 1.3 I6500 DSPRAM Block Diagram

Features:

• 16-Byte wide datapath for both read and write.

• Data can be protected (parity/ECC/none on 32 bit granularity), in DSPRAM.

• Multi-threaded design, if one thread is blocked the other threads may continue to
access the DSPRAM.

Store and Write Buffer

The LSU contains store buffers that decouple the main pipeline from the memory sub-
system, allowing the LSU to efficiently schedule cache writes and coherence operations
while the main pipeline continues to execute subsequent instructions. After a store
instruction graduates in the main pipeline, the LSU takes control and forwards the store
data from the store buffer to subsequent load instructions until the data is committed to
the cache or main memory.

The store buffers can merge multiple cacheable stores into a single larger write opera-
tion, which can take advantage of the 512-bit cache write datapath. This store buffer
improves performance by avoiding contention at the cache RAM ports and saves power

12

I6500 Multiprocessing System Datasheet — Revision 01.00

by reducing the number of RAM accesses. When data from the cache is written back to
main memory, an entire cache line is transferred from the cache RAM to the evict buffer
in the BIU in a single clock cycle. This frees up the LSU cache pipeline to proceed with
subsequent operations, while the BIU streams the write-back data to the CM3.5 as a
burst write transaction.

The store buffer also merges multiple uncached-accelerated stores into a single burst-
write transaction, to increase the efficiency of the bus and avoid stalling the main pipe-
line. Gathering of uncached accelerated stores can start on any arbitrary address and
can be combined in any order within a 64-byte aligned block of memory.

Memory Management Unit (MMU)

The Memory Management Unit (MMU) translates virtual addresses to physical addresses
and provides attribute information for different segments of memory. The I6500 MMU
contains the following Translation Lookaside Buffer (TLB) structures:

• Instruction TLB (ITLB)

• Data TLB (DTLB)

• Variable Page Size Translation Lookaside Buffer (VTLB) per VP

• Fixed Page Size Translation Lookaside Buffer (FTLB) per core

Instruction and Data TLB (ITLB and DTLB)

The ITLB and DTLB (micro TLBs) are fully associative. The micro TLBs are used by the
IFU and LSU to perform high speed virtual to physical memory address translation for
instruction fetch and data movements respectively.

The ITLB is implemented in the IFU with support for 4 KB, 16 KB, or 64 KB page sizes
per entry. The DTLB is implemented in the LSU with support for 4 KB, 16 KB, or 64 KB
page sizes per entry. The micro TLB arrays are shared between VPs.

The number of entries varies with the number of VPs present, as listed in Table 1.1.

Table 1.1 Entries per VP

VPs Entries

ITLB

1 6

2 12

4 18

DTLB

1 8

2 14

4 20

13

I6500 Multiprocessing System Datasheet — Revision 01.00

The micro TLBs are managed completely by hardware and are transparent to the soft-
ware. The micro TLBs are backed up by larger VTLB and FTLB structures. If a virtual
address cannot be translated by the micro TLB, the VTLB / FTLB attempts to translate
the address in the following clock cycle or when available. If successful, the translation
information is copied into the appropriate micro TLB for future use. When Virtualization
is in use, the micro TLBs store the full two-level translation from the Guest Virtual
Address to Root Physical Address to maintain high performance.

Variable Page Size TLB (VTLB)

The VTLB is a fully associative translation lookaside buffer with 16 dual entries per
thread that can map variable page sizes from 4 KB to 1 GB.

Fixed Page Size TLB (FTLB)

The FTLB contains 512 dual entries organized as 128 sets and 4-way set-associative.
The FTLB page size is configurable at run-time to either 4 KB, 16 KB, or 64 KB.

FTLB translations are shared for all VPs with the same GID (Guest ID) + MMID (Memory
Map ID) when the MMID is enabled. Using the 16-bit MMID creates a global address
space, allowing the MMU translations to be shared across VPs on a core and global
invalidates to be performed across cores. Optionally, the legacy 10-bit ASID can still be
used, in which case FTLB translations are not shared across the VPs.

Virtualization Support

The Virtualization Module is a set of extensions to the MIPS64 Architecture for efficient
implementation of virtualized systems. This feature provides privileged (root) and
unprivileged (guest) operating modes. It supports up to 31 guests.

The guest mode can be enabled by software. The key element is a control program
known as a Virtual Machine Monitor (VMM) or hypervisor. The hypervisor is in full con-
trol of machine resources at all times.

When an operating system (OS) kernel runs within a virtual machine (VM), it becomes a
“guest” of the hypervisor. All operations performed by a guest must be explicitly permit-
ted by the hypervisor. To ensure that it remains in control, the hypervisor always runs at
a higher level of privilege than a guest operating system kernel.

The hypervisor manages access to sensitive resources, maintains the expected behavior
for each VM, and shares resources between multiple VMs.

In a traditional operating system, the kernel (or supervisor) runs at a higher level of
privilege than user applications. The kernel provides a protected virtual-memory envi-
ronment for each user application, inter-process communications, I/O device sharing,
and transparent context switching. The hypervisor performs these same basic functions
in a virtualized system, except that the hypervisor’s clients are full operating systems
rather than user applications.

The virtual machine execution environment created and managed by the hypervisor
consists of the full Instruction Set Architecture (ISA), including all Privileged Resource

14

I6500 Multiprocessing System Datasheet — Revision 01.00

Architecture (PRA) facilities, and any device-specific or board-specific peripherals and
associated registers. It appears to each guest operating system as if it is running on a
real machine with full and exclusive control.

Bus Interface (BIU)

The BIU interfaces the instruction and data caches with the CM3.5. This interface imple-
ments MIPS Coherence Protocol (MCP) and has three channels that support 128-bit
data transfers. The transaction size can vary from 1 byte to 16 bytes for single
uncached access or the full 64 bytes for a cache line. BIU supports full memory coher-
ency including interventions.

Interrupt Handling

Each I6500 core supports six hardware interrupts including a timer interrupt and a per-
formance counter interrupt. In addition, it support two software interrupts. These inter-
rupts can be used in any of three interrupt modes, as defined by the MIPS64
Architecture:

• Interrupt compatibility mode.

• Vectored Interrupt (VI) mode adds the ability to prioritize and vector interrupts to a
handler dedicated to that interrupt.

• External Interrupt Controller (EIC) mode provides support for an external interrupt
controller that handles prioritization and vectoring of interrupts.

Operating Modes

The I6500 core supports seven modes of operation:

• Two user modes (guest and root) are used for application programs.

• Two supervisor modes (guest and root)

• Two kernel modes (guest and root) are used to handle exceptions and operate sys-
tem kernel functions, including CP0 management and I/O device accesses.

• Debug mode is used during system bring-up and software development. Refer to
Section ““Core Debug Support” on page 15” for more information on debug mode.

I6500 Core Power Management

The I6500 core offers several power-management features. It supports low-power
design, such as active power management and power-down modes of operation. The
I6500 core is a static design that supports slowing or halting the clocks to reduce sys-
tem power consumption during idle periods.

15

I6500 Multiprocessing System Datasheet — Revision 01.00

Instruction-Controlled Power Management

The Instruction Controlled power-down mode is invoked through execution of the WAIT
instruction.

The WAIT instruction puts the processor in a quiescent mode where no instructions are
running. When the WAIT instruction is seen by the Instruction Fetch Unit (IFU), subse-
quent instruction fetches are stopped. However, the internal timer and some of the
input pins continue to run. Any interrupt, NMI, or reset condition causes the CPU to exit
this mode and resume normal operation.

Core Debug Support

The I6500 core includes a debug block available for use in software debugging of appli-
cation and kernel code. For this purpose, in addition to standard user, supervisor, and
kernel modes of operation, the I6500 core provides a Debug mode.

Debug mode is entered when a debug exception occurs and continues until a debug
exception return instruction is executed or the CPU is reset. The Debug features
include:

• Up to 8 instruction breakpoints

• Up to 4 data breakpoints

• Single-step execution

• Memory and register access

• Program and data trace (PDtrace).

16

I6500 Multiprocessing System Datasheet — Revision 01.00

Multiprocessing System Features

The I6500 Multiprocessing System (MPS) provides multi-cluster support where each
cluster consists of up to six I6500 cores, a Coherence Manager (CM3.5) with integrated
L2 cache, up to eight IOCUs, a cluster power controller (CPC), global interrupt controller
(GIC), debug unit (DBU), and global configuration registers (GCR). The CM3.5 main-
tains coherence with the cores’ L1 caches by implementing a directory-based coherence
protocol that enables both low power and high performance.

The I6500 extends capability from a single coherent six-core cluster with support I/O
coherency to a new set of capabilities that enable more complex systems, such as:

• Multiple coherent clusters of CPUs

• Heterogeneous Multi-processing (CPU + GPU or other coherently designed process-
ing elements)

• Groups of coherent I/O or co-processing functions or clusters

A cluster is composed of up to 0 - 6 CPUs and 0 - 8 IOCUs (sum being no more than 8
agents) and a Level 2 cache connection to a coherent interconnect. An agent is either a
CPU, which is included in the cluster, or an external I/O device. The initial I6500 imple-
mentation support is 2 - 4 clusters.

The I6500 cluster can be configured in one of two modes:

1. It can be configured as a single non-coherent cluster, similar to the I6400. In this
case the main memory bus interface from the cluster is AXI-4 (same as the I6400).

2. It can be configured to support multiple coherent clusters. In this case, the main
memory bus interface is ACE.

17

I6500 Multiprocessing System Datasheet — Revision 01.00

Figure 1.4 shows a reference design of a cluster integrated with a network.

Figure 1.4 I6500 Integrated Cluster with Network

Directory Based Level 1 Cache Coherence

The Coherence Manager (CM3.5) keeps all the L1 data caches coherent with each other
by maintaining a directory that tracks the state of each L1 data cache line for each core.
The directory uses the same address tags as the Level 2 cache, reducing the power and
area required to maintain coherence. All Level 1 data and instruction cache misses are
looked up in the directory to determine the state of the line in the L1 data caches as
well as the L2 cache. Depending on the request attributes and directory state, the
CM3.5 sends intervention requests to cores that have the line in their L1 data cache,
reads the data from the L2 Data RAMs, or issues a request to the memory subsystem.
The CM3.5 immediately updates the directory state and routes the corresponding data
to the requesting core.

With a directory-based coherence architecture, each of the cores do not need to main-
tain a second copy of the L1 cache tags to “watch” the memory transactions and com-
pare them against its internal cache contents. Instead, that information is maintained
by the directory, which shares the L2 address tags.

L1 Instruction Cache Coherence

The Level 1 instruction caches are not coherent, in that the CM3.5 directory does not
track their contents. However, L1 instruction cache misses will be looked-up in the
CM3.5 directory, and depending on the state, may receive its data from a core’s L1 data

18

I6500 Multiprocessing System Datasheet — Revision 01.00

cache. This feature reduces the overhead of the software required to maintain L1
instruction cache coherence.

CM3.5 Main Pipeline

The CM3.5 Main Pipeline manages all the data and control flows throughout the CM3.5
and the I6500 Multiprocessing System.

The main pipeline implements the directory-based coherence architecture and manages
a unified and shared L2 cache. Some key features of the L2 cache are:

• 64-byte cache line size

• 8- or 16-way set-associative

• 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, and 8 MB cache-size options

• 1 or 2 cycle tag RAM access

• 2 or 4 cycle data RAM access

• 1 or 2 L2 cache pipelines, each with two memory banks

• Pseudo LRU line-replacement algorithm

• Writeback architecture

• L2 is inclusive of the L1 data caches, that is, it is always a superset of all L1 Data
Caches

• Physically Indexed and Physically Tagged

• Non-Blocking architecture (Fully Pipelined)

• 48-Bit Physical Address

• L2 Hardware Prefetcher automatically recognizes workloads, such as memcopy, and
efficiently prefetches data into the L2 cache

• Hardware can automatically initialize L2 cache upon reset. Hardware can also be
programmed to initialize/flush all or part of the L2 cache.

• Cache line locking support

• ECC support (single-bit error correction and double-bit error detection) for Tag and
Data arrays

• Parity support on data buses

19

I6500 Multiprocessing System Datasheet — Revision 01.00

The CM3.5 main pipeline arbitrates among the requests received from the cores, IOCUs,
and L2 hardware prefetcher. It accesses and updates the directory and L2 cache tags,
performs reads or writes to the L2 data RAMs as necessary, and issues interventions to
manage each core’s L1 data caches.

Uncached requests are also handled by the CM3.5 main pipeline, but neither the direc-
tory nor L2 cache is accessed. Uncached accesses are decoded based on a programma-
ble address map and routed to the CM’s Bus Interface Unit (CMBIU). The programmable
address map determines the final target of the request, such as uncached memory or a
configuration register in the interrupt controller, power controller, etc.

The CM3.5 main pipeline identifies and resolves conflicting accesses as required.

The CM3.5 includes high performance features for data movement:

• 512-bit wide internal data paths throughout the CM3.5

• Three channel (two of 128-bit wide) system MCP interface to each of the CPU cores
and IOCUs

• When configured as multi-cluster, ACE interface to inter-cluster network;
AXI4 interface when configured as single cluster

• Support for up to 4 non-coherent Auxiliary AXI4 ports.

Cluster Power Controller (CPC)

Individual CPUs within the cluster can have their clock, power, or both gated off when
they are not in use. This gating is managed by the Cluster Power Controller (CPC). The
CPC handles the power shutdown and ramp-up of all cores in the cluster. The CPC can
be controlled via software by accessing and changing values in the registers and by
hardware through a signal interface.

The CPC also organizes power-cycling of the CM3.5, dependent on the individual core
status and shutdown policy. Reset and root-level clock gating of individual CPUs are
considered part of this sequencing.

The CPC also controls the clock ratios of the cores, CM3.5, I/O buses, and main memory
bus. The CPC allows for the clock ratio of each component to be controlled indepen-
dently, programmed by means of software commands or hardware signals. The clock
ratio can be changed dynamically while the system is fully operating.

Reset Control

The reset input of the system resets the Cluster Power Controller (CPC). Reset sideband
signals are required to qualify a reset as system cold, or warm start. Signal settings
determine the course of action at deassertion of reset:

• Remain powered down

• Go into clock-off mode

20

I6500 Multiprocessing System Datasheet — Revision 01.00

• Power-up and start execution

In case of a system cold start and after reset is released, the CPC powers up the I6500
CPUs as directed in the CPC cold start configuration. If at least one CPU has been cho-
sen to be powered up on system cold start, the CM3.5 is also powered up.

At a warm start reset, the CPC brings all power domains into their cold start configura-
tion. To ensure power integrity for all domains, the CPC ensures that domain isolation is
raised before power is gated off. Domains that were previously powered and are config-
ured to power up at cold start remain powered and go through a reset sequence.

The CM includes memory-mapped registers that can override the default exception vec-
tor location. This allows different boot vectors to be specified for each of the VPs, so
they can execute unique code if required. Furthermore, signals by the system also
determine which VPs on each core start execution up. The CPC implements the capabil-
ity to bring a core out of reset with no VPs running, letting the system hardware start
one or more VPs at a later time.

I/O Coherence Unit (IOCU)

Hardware I/O coherence is provided by the I/O Coherence Unit (IOCU), which maintains
I/O coherence of the caches in all coherent CPUs in the cluster.

The IOCU acts as an interface block between the Coherence Manager (CM3.5) and I/O
devices. Reads and writes from I/O devices may access the L1 and L2 caches by passing
through the IOCU and the CM3.5. Each request from an I/O device may be marked as
coherent, or uncached. Coherent requests access the L1 and L2 caches. Uncached
requests bypass both the L1 and L2 caches and are routed to main memory.

The IOCU provides an AXI slave interface to the I/O interconnect for I/O devices to read
and write system memory.

The IOCU provides several features for easier integration:

• Supports incremental bursts up to 256 beats (128 bits per beat) on I/O side. These
requests are split into cache-line sized requests on the CM3.5 side

• Coherent writes are issued to the CM3.5 in the order they were received

Global Interrupt Controller (GIC)

The Global Interrupt Controller handles the distribution of interrupts between and
among the CPUs in the cluster. This block has the following features:

• Software interface through relocatable memory-mapped address range

• Configurable number of system interrupts from 8 to 256 in multiples of 8

• Support for different interrupt types:

• Level-sensitive: active high or low

21

I6500 Multiprocessing System Datasheet — Revision 01.00

• Edge-sensitive: positive-, negative-, or double-edge sensitive

• Ability to mask and control routing of interrupts to a particular CPU

• Support for NMI routing

• Standardized mechanism for sending inter-processor interrupts

• Support for Virtualization of interrupts: each interrupt to be mapped to Guest or
Root

Global Configuration Registers (GCR)

The Global Configuration Registers (GCR) are a set of memory-mapped registers that
are used to configure and control various aspects of the Coherence Manager and the
coherence scheme.

Some of the control options include:

• Address map — The base address for the various peripheral blocks, such as the CPC,
GCR, User GCRs, and GIC address ranges can be specified

• Error reporting and control — Logs information about errors detected by the CM3.5
and controls how errors are handled (ignored, interrupt, etc.)

• Control Options — Various features of the CM3.5 can be disabled or configured

• L2 Cache operations — Registers used during L2 cache maintenance instructions

• Mapping registers — Route requests to one of the non-coherent Auxiliary (AUX)
AXI-4 ports

• Multi-cluster register access — Allows a CPU of one cluster to access a register on a
remote cluster via the REGTC/REGTN AXI4 buses

Custom GCRs

The CM3.5 provides the ability to implement a 64 KB block of custom registers that can
be used to control system level functions. These registers are user defined and then
instantiated into the design. Two global registers are provided by the CM3.5 to imple-
mentation custom registers: the Global Custom Base register, and the Global Custom
Status register.

Interthread Communication Unit (ITU)

The I6500 MPS includes an integrated cluster ITU, which provides a gating storage
capability for synchronization between threads on all I6500 CPUs.

The I6500 ITU includes the following features:

22

I6500 Multiprocessing System Datasheet — Revision 01.00

• Memory Mapped ITU Control Registers (ICR) within the ITU Addressable Region

• Entry Cell storage: 64-bit Dword

• Multi Entry Cell storage: 64-bit wide FIFO with build time configurable depth of 2 - 8

Clocking Options

The I6500 Multiprocessing System has the following clock domains:

• Reference Clock — This clock is created by the SOC and used by the I6500 Multipro-
cessing System. The reference clock is controlled and scaled by the input clock. This
clock drives the CPC.

• Prescaled clock — The reference clock can be prescaled by a programmable value of
1:1 (no prescale) to 1:255. This prescaled clock is used a base clock for all cluster
components, except the CPC.

• Cluster clock domain — This clock drives the CM3.5 (including Coherence Manager,
Global Interrupt Controller, IOCU, and L2 cache). This clock can be configured to be
the same as Prescale Clock or Prescale / 2.

• Core-N clock domain — Each core in the cluster can operate at independent fre-
quency. This clock can be controlled at run time (via CPC).

• When the CM3.5 is operating at 1:1, the cores can run at 1:1, 1:2, 1:3, 1:4, 1:5,
1:6, 1:7 or 1:8 of the prescale clock.

• When the CM3.5 is operating at 1:2, the cores can run at 1:1, 1:2, 1:4, 1:6, or
1:8 of the prescale clock.

• System clock domain — The AXI-4 or ACE port connecting to the SOC and the rest of
the memory subsystem may operate at a ratio of the cluster clock domain. The sys-
tem clock domain can be configured to use an internal clock or an external clock.
When configured to use an internal clock, the rate is a ratio of the prescale clock.
Supported ratios are 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8.

• AUX AXI clock domains — The optional non-coherent AXI-4 port connecting to the
SOC may operate at a ratio of the cluster clock domain. Each auxiliary AXI clock
domain can be independently configured to use an internal clock or an external
clock. When configured to use an internal clock, the rate is a ratio of the pre-scale
clock. Supported ratios are 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8.

• When configured to use an external asynchronous clock, the AXI interface captures/
drives on that clock and there is an asynchronous boundary crossing implemented
internal to the cluster.

• TAP clock domain — This is a low-speed clock domain for the JTAG TAP controller,
controlled by the EJ_TCK pin. It is asynchronous to the Reference Clock.

23

I6500 Multiprocessing System Datasheet — Revision 01.00

• I/O clock domains — Each port connects the IOCU to the I/O Subsystem. Each IOCU
clock may operate at a ratio of the prescale clock domain. Supported ratios are the
same as the system clock domain. Similar to the System clock domain, each I/O
clock domain can be configured to operate at a ratio of the prescale clock or an asyn-
chronous external clock.

Debug Unit

The Debug Unit (DBU) is an optional component that enables debug using a probe con-
nected through a JTAG scan chain. Alternatively, the DBU can be connected to the sys-
tem through an APB transactor port. The DBU contains the single TAP controller in the
cluster, which can access registers through the cluster. The DBU also contains a RAM to
hold instructions and data accessed by the cores while in debug mode.

Features of the debug unit include Hardware Breakpoints and a Fast Debug Channel:

Hardware breakpoints stop the normal operation of the CPU and force the system into
debug mode. There are two types of hardware breakpoints implemented in the I6500
CPU: Instruction breakpoints and Data breakpoints.

Instruction breaks occur on virtual instruction execution addresses and may be qualified
by ASID or MMID, VP, GuestID, and Context. Addresses may be single, masked, or
ranges.

Data breaks occur on load and store operations based on virtual address, ASID or
MMID, VP, GuestID, Context, and data value. Addresses may be single, masked, or
ranges. Loads and stores may be aligned or misaligned.

The Fast Debug Channel is a mechanism for efficient bidirectional transfer between a
CPU and the debug probe. Data is transferred serially via the TAP interface. Memory-
mapped FIFOs buffer the data, isolating software running on the CPU from the actual
data transfer. Software can configure the FDC block to generate an interrupt based on
the FIFO occupancy level or can operate in a polled mode. Up to 16 virtual channels can
travel in each direction.

Inter-CPU Debug Breaks

The MPS includes registers that enable cooperative debugging across all VPs. Program-
mable registers allow VPs to be placed into debug groups such that whenever one VP
within the group enters debug mode, a debug interrupt (DINT) is sent to all VPs within
the group, causing them to also enter debug mode and stop executing non-debug mode
instructions. This same mechanism can be used to have multiple VPs exit debug mode
simultaneously.

PC Sampling

Each VP has hardware to provide periodic sampling of the program counter. Through the
DBU, a probe can read addresses that have been executed. The host software can accu-
mulate these executed addresses and provide views of program hot spots, from the
module and function level down to the source line and individual instruction levels.

24

I6500 Multiprocessing System Datasheet — Revision 01.00

PDtrace

The I6500 core includes trace support for real-time tracing of instructions, data
addresses, data values, and performance counters. A Trace funnel muxes the PDTrace
stream from all cores and the CM, and either stores the trace information into an on-
chip trace RAM or off-chip memory for post-capture processing by trace regeneration
software. Software-only control of trace is possible in addition to probe-based control.
The on-chip trace memory may be accessed either through load instructions or the
existing JTAG TAP interface, which requires no additional chip pins.

The off-chip trace is managed with the PIB3 (3rd-generation Probe Interface Block)
hardware that ships with the product. It provides a selectable trace port width of 8 or 16
pins plus DDR clock. The trace data is streamed on these pins and captured using a
compatible probe such as the MIPS Sysprobe SP58ET.

25

I6500 Multiprocessing System Datasheet — Revision 01.00

Initial and Possible Configurations

The I6500 Multiprocessing System can support a variety of configurations. Initially, the
following configurations listed in Table 1.2 will be supported. If a different configuration
is required, contact your sales account manager for current configurations and to
request a new configuration. Each of the initial configurations can include an optional
SIMD engine (with integer and floating point data types).

Multi-core offerings are symmetric (same cache size, VPs, SIMD for each core) but dif-
ferent clock ratios per core are supported.

Table 1.2 I6500 Configurations

Config Type Feature Name Description
Allowed
Values

Defined in cm3_config.vh

Cores num_cores Number of cores per cluster 0, 1, 2, 3, 4, 5, 6

L2 cache l2_cache_size L2 cache size 256, 512, 1024,
2048 KB

L2 cache misses l2_missq_override L2 cache misses in flight (to override
default)

8 - 96

L2 data buffer l2_mem_sdb_override L2 Store data buffer size (to override
default)

8 - 64

L2 prefetch l2_pref L2 Prefetch 0, 1 (for absent or
present)

Pipes num_pipes Number of pipes or scheduler paths in
the Coherence Manager

1, 2

ACE requests l2_num_intv_override Number of incoming ACE snoop requests 1 - 16

Interrupts num_irqs Number of interrupts. Interrupts are as a
number of 'slices' where a 'slice' is 8
interrupts.

8 - 256
(in increments of 8)

IOCUs num_iocus Number of I/O Coherence Units (IOCUs) 0 - 8

IOCU size iocu_size IOCU size information. Chooses the size
of the IOCU implementation for
reads/writes and SDB IDs.
Small=4 RDs, 4 WRs, 4 SDB IDs
Medium=8 RDs, 8 WRs, 8 SDB IDs
Large=16 RDs, 12 WRs, 16 SDB IDs

Small, Medium, Large

IOCU reads iocu_num_reads Number of IOCU reads in flight.
N.B: overrides iocu_size.

4, 8, 12, 16

IOCU writes iocu_num_writes Number of IOCU writes in flight.
N.B: overrides iocu_size.

4, 8, 12

IOCU buffer IDs iocu_sdb_ids Number of IOCU Store Data Buffer IDs.
N.B: overrides iocu_size.

8 - 32

26

I6500 Multiprocessing System Datasheet — Revision 01.00

IOCU width iocu_user_width IOCU AxUSER width, routed to MEM port,
default=8

0 - 9

GCRs ugcr User Global Configuration Registers
(GCRs)

0, 1 (for absent or
present)

Relay stages num_relay_stages_core_
mcp_cm

Number of relay stages between cores
and CM

0, 1, 2 (0 default)

ITU cluster_itu Interthread Communication Unit 0, 1 (for absent or
present)

External clock c_mem_ext_clk_en External Clock on ACE memory port (only
used if ace=1 and not integrated NoC)

0, 1 (for absent or
present)

Aux ports num_aux Number of auxiliary ports 0 - 4

Aux port 0 aux0_data_width Auxiliary Port 0 data width 32, 64, 128, 256, 512

Aux port 1 aux1_data_width Auxiliary Port 1 data width 32, 64, 128, 256, 512

Aux port 2 aux2_data_width Auxiliary Port 2 data width 32, 64, 128, 256, 512

Aux port 3 aux3_data_width Auxiliary Port 3 data width 32, 64, 128, 256, 512

defined in mips_config.vh

Clusters num_clusters Number of coherent clusters. NOTE: With
an integrated NoC, this refers to the
number of clusters instantiated in
mips_soc.
However, without an integrated NoC this
refers to the number of clusters in the
example mips_soc. It does NOT refer to
the number of clusters that you may
instantiate in your design.

1-4 (for integrated
NoC)
Generally set to 2 for
non-integrated NoC
because a dual-cluster
mips_soc example is
provided.

ACE ace MEM port includes AXI Coherency Exten-
sions

0, 1 (for absent, or
present)

Virtual Processors num_vps Number of VPs per core 1, 2, 4

PDtrace output
bus

tru_ext_bus_type Type of external bus for Pdtrace.
PIB: output of Probe Interface Block.
TC: 256-bit wide output of Trace Funnel.

PIB or TC

AXI parity axi_addr_parity AXI address parity supported. 0, 1 (for absent or
present)

AXI parity/byte axi_addr_perbyte_parity AXI address parity per-byte 0 - single parity bit,
1 - per byte parity

AXI data parity axi_data_parity AXI data parity supported. 0, 1 (for absent or
present)

PDtrace pdtrace PDtrace unit 0, 1 (for absent or
present)

Table 1.2 I6500 Configurations

Config Type Feature Name Description
Allowed
Values

27

I6500 Multiprocessing System Datasheet — Revision 01.00

PDtrace memory tru_mem PDtrace internal memory size 6, 7, 8

Pdtrace PIB tru_PIB PDtrace PIB size (width) 8, 16 bits

defined in sam_core_config.vh

L1 Instr cache l1_icache_size L1 Instruction cache size 32, 64 KB

L1 Data cache l1_dcache_size L1 Data cache size 32, 64 KB

FPU fpu_present FPU and MSA support Yes, No

DSPRAM dspram_size Core Data Scratchpad RAM (DSPRAM)
size

0, 64 KB

Table 1.2 I6500 Configurations

Config Type Feature Name Description
Allowed
Values

28

I6500 Multiprocessing System Datasheet — Revision 01.00

Revision History

Revision Date Description

01.00 March 31, 2017 • RC 1.00 Initial production release of I6500

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

	I6500 Features at a Glance
	MIPS Architecture
	System-level Features
	CPU Core-Level Features

	I6500 CPU Core Features
	Instruction Fetch Unit (IFU)
	Execution Unit (EXU)
	Load Store Unit (LSU)
	Memory Management Unit (MMU)
	Virtualization Support
	Bus Interface (BIU)
	Interrupt Handling
	Operating Modes
	I6500 Core Power Management
	Core Debug Support

	Multiprocessing System Features
	Directory Based Level 1 Cache Coherence
	CM3.5 Main Pipeline
	Cluster Power Controller (CPC)
	I/O Coherence Unit (IOCU)
	Global Interrupt Controller (GIC)
	Clocking Options
	Debug Unit

	Initial and Possible Configurations
	Revision History

