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Architecture Overview

This document describes the software-programmable aspects of the 64-bit MIPS I6500 Multiprocessing System 
(MPS). The device consists of the logic blocks shown in Figure 1.1. The majority of blocks in the diagram have at 
least one dedicated chapter that describes how to control the hardware using registers and assembly code. The regis-
ter-programming examples describe a programming sequence of how to set or change a programmable parameter 
using registers. The assembly code examples show how the MIPS instruction set can be used to perform the same 
function. 

Each chapter provides the relevant background information required by the programmer in order to understand the 
examples. Common examples such as enabling and initialization are provided for each block, as well as more in 
depth examples relative to that block. 

An overview of the material provided in this document is as follows:

• Memory Management (MMU): This chapter describes the programmable elements of the Translation Lookaside 
Buffer or TLB of the I6500 Multiprocessing System. The first section gives an overview of the TLB architecture, 
a description of its functionality and a description of the elements that go into programming the TLB. The sec-
tions that follow cover specific information on programming for the Translation Lookaside Buffer (TLB). 

• Caches: This chapter provides an overview of the cache architecture, a description of its functionality, and a 
description of the elements that go into programing the caches. A description of the CP0 register interface to each 
cache is provided, as well as initialization code for all three caches, setting up cache coherency, handling cache 
exceptions, and testing the cache RAM.

• Exceptions: This chapter describes an overview of exception processing and a definition of the interrupt modes. 
Information on how to program the reset, boot, and general exception vectors in memory is also covered. A list 
of exception priorities is provided, along with an assembly language example of an exception handler.

• Coherence Manager (CM): The I6500 MPS contains a third generation Coherence Manager. This chapter pro-
vides an overview of the CM register ring bus and associated table that lists each device ID on the bus. The pro-
grammer uses this information to access these devices. An overview of the CM register address space is also 
provided. In addition, the chapter describes how to program the CM to perform various functions, including set-
ting the base addresses in memory, accessing another VP in the same core, accessing a VP in another core, 
accessing the Global Interrupt Controller (GIC), Cluster Power Controller (CPC), and/or Debug Unit (DBU) reg-
isters via the CM, and setting the clock ratios between the various I6500 system components. For the exact revi-
sion number of the Coherence Manager, refer to the Release Notes. 

This chapter also introduces the multi-cluster configuration that allows multiple I6500 Multiprocessing Systems 
to be connected through a Network-On-Chip (NOC) interface. The section describes the registers used to per-
form a cluster-to-cluster access.

• Cluster Power Controller (CPC): This chapter provides an overview of how power is managed in the I6500 Mul-
tiprocessing System and identifies the various power and clock domains the programmer can use to manage 
power consumption in the device. In addition, a procedure on how to set the CPC base address in memory is pro-
vided. Other programming principles include setting the device to coherent or non-coherent mode, requestor 
(core or IOCU) access of CPC registers, system power-up policy, programming examples of a clock domain 
change and clock delay change, powering up the CPC in standalone mode (no cores enabled), reset detection, VP 
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run/suspend mechanism, local RAM shutdown and wake-up procedure, accessing registers in another power 
domain, and fine tuning internal and external signal delays to help the programmer easily integrate the device 
into a system environment.

• Global Interrupt Controller (GIC): This chapter describes how to program the various elements of the GIC using 
both register examples and code examples. Some of these elements include setting the operating mode, setting up 
the address map, GIC register layout and distribution, setting the GIC base address, determining the number of 
external interrupts, and configuring individual interrupt sources.

• Floating Point Unit (FPU): This chapter provides information on how to enable the FPU, how to handle floating 
point exceptions, how to set the rounding mode, and operation of the Flush-to-Zero (FS) function.

• MIPS SIMD Architecture (MSA): This chapter describes the MIPS Single-Instruction-Multiple-Data (SIMD) 
architecture. It provides information on how to enable MSA, how to map scalar floating point registers to MSA 
vector registers, and MSA exception handling.

• Virtualization (VZ): The Virtualization Module defines a set of new instructions, registers, and machine states to 
the I6500 core to manage the efficient implementation of virtualized systems. The Virtualization Module is 
designed to enable full virtualization of operating systems and allows for the execution of Guest Operating Sys-
tems in a fully virtualized environment.

• DSPRAM: The optional Data Scratch Pad RAM (DSPRAM) block provides a general scratch pad RAM used for 
temporary storage of data. The DSPRAM provides a connection to on-chip memory or memory-mapped regis-
ters, which are accessed in parallel with the L1 data cache to minimize access latency. 

• Inter-Thread Communication Unit (ITU): The ITU provides an alternative to Linked-Load/Store-Conditional 
synchronization for fine grained multithreading by utilizing gating storage. The chapter describes the purpose for 
the ITU and the configuration and programming aspects.

• Multi-threading: This chapter provides an overview of the hardware multi-threading mechanism in the I6500 
MPS. 

• On-Chip Instrumentation (OCI): This chapter provides a brief overview of the interface and external debugging 
environment required to debug MIPS processors that incorporate the MIPS On-Chip Instrumentation (OCI) 
debug system for multi-core designs.

Throughout all of the aforementioned chapters, there are assembly language examples that describe how various pro-
gramming elements are handled in software. These examples can be used by programmer’s writing their own code to 
program a particular block, or for writing a low-level support library, RTOS, or their own tool chain. However, most 
of the code examples described are part of the MIPS Codescape tool chain. As such, it is not necessary for the pro-
grammer to manually execute these code examples when using Codescape as this functionality is already built in to 
the Codescape software.

This document is meant to be used with two other companion documents:

• 64-bit MIPS I6500 Technical Reference Manual contained in the document suite. This document contains sup-
plemental information to the I6500 Programmers Guide.

• 64-bit MIPS I6500 Multiprocessing System Integrator’s Guide (MD01041), This companion document provides 
hardware details about the device, including functional verification, system integration, and system implementa-
tion.
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1.1 Product Overview

The I6500 series is a high performance multi-core microprocessor system that provides a best in class power effi-
ciency for use in system-on-chip (SoC) applications. The I6500 Coherence Manager maintains Level 2 (L2) cache 
and system level coherency between all cores, main memory, and I/O devices. The I6500 Multiprocessing System 
(MPS) can be configured with a variable number of cores, I/O coherent interfaces, and L2 cache size.

Each I6500 core implements the Release 6 of the MIPS64 Instruction Set Architecture with full hardware multi-
threading and hardware virtualization support. In addition, the core can be configured with a SIMD engine supporting 
integer, single and double precision, and floating and fixed point operations.

The I6500 MPS supports both single-cluster and multi-cluster configurations as described in the following subsec-
tions.

1.1.1 Single-Cluster Configuration

Figure 1.1 shows a block diagram of a single-cluster I6500 Multiprocessing System. The I6500 MPS contains the fol-
lowing logic blocks:

• Up to six cores

• Coherence Manager (CM) with integrated L2-cache

• Up to eight I/O Coherence Units (IOCU)

• Cluster Power Controller (CPC)

• Global Interrupt Controller (GIC)

• Global Configuration Registers (GCR)

• Multiprocessor debug via in-system Debug Unit (DBU) 

In the I6500 MPS the total number of cores and IOCUs together must be less than or equal to eight. All cores and 
IOCU’s are optional and can be configured in any combination of up to eight.
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Figure 1.1 System-level Block Diagram of Single-Cluster I6500 Multiprocessing System  

For more information on the Cluster Power Controller (CPC) block, refer to the Cluster Power Controller chapter of 
this manual.

For more information on the Global Interrupt Controller (GIC) block, refer to the Global Interrupt Controller chap-
ter of this manual.

For more information on the Coherence Manager (CM), refer to the Coherence Manager chapter of this manual.

For more information on the L2 Cache Memory, refer to the Caches chapter of this manual.

For more information on the Global Configuration Registers block, refer to the companion I6500 Registers document 
that is included in the documentation package. Selected registers from this block are used throughout the Coherence 
Manager chapter of this manual to provide various CM register programming examples. 

For more information on the programmable blocks within the Core, such as MMU, FPU, MSA, etc. refer to the Figure 
1.3.

1.1.2 Multi-Cluster Configuration

In addition to the single-cluster configuration shown above, the I6500 also allows for cluster-to-cluster accesses. This 
allows a core or VP in one cluster to access a core or VP in another cluster through the Network-On-Chip (NOC) 
interface. This interface is shown in Figure 1.2. 

Cluster Power Controller

Global 
Interrupt 
Controller

Global 
Control 
Registers

Core 5
Custom 
Control 
Registers

Coherence Manager with Integrated L2 Cache

AXI‐4

L2 Cache

Debug Unit

IOCU0

IOCU1

JTAG

Coherent I/O Device

Core 1

IOCU7

Coherent I/O Device

Coherent I/O Device

Core 0

Optional



 

MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00 13

Figure 1.2 Cluster-to-Cluster Accesses Using the NOC 

For example, a VP within a core in Cluster 1 can access and update a register in a VP in Cluster 2 as shown. The 
access is processed by the CM3.5 and driven onto the NOC. The NOC then routes the request to the appropriate clus-
ter where the access is scheduled by the CM3.5 in the destination cluster. The data is fetched and returned to the 
requesting VP through the NOC.

For more information, refer to Chapter 4, Coherency Manager.

1.2 I6500 Features

The I6500 MPS contains the following architecture, system, and core-level main features as described in the follow-
ing subsections.

1.2.1 MIPS64® Release 6 Architecture

The MIPS64 Release 6 architecture is based on a fixed-length, regularly encoded instruction set, and it uses a load/
store data model. It is streamlined to support optimized execution of high-level languages. Arithmetic and logic oper-
ations use a three-operand format, allowing compilers to optimize complex expressions formulation. Availability of 
32 general-purpose registers enables compilers to further optimize code generation by keeping frequently accessed 
data in registers.

1.2.2 MIPS® SIMD Architecture

Single Instruction Multiple Data (SIMD) instructions improve performance by allowing efficient parallel processing 
of vector operations. The MIPS® SIMD Architecture (MSA) technology incorporates a software-programmable 
solution to handle those functions not covered by dedicated hardware. This programmable solution allows for 
increased system flexibility. In addition, the MSA is designed to accelerate many compute-intensive applications by 
enabling generic compiler support.

The MIPS gcc compiler has been tuned to understand the "vector" type so that your  C/C++ code can make use of 
SIMD vector features.
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1.2.3 MIPS® Virtualization

The hardware virtualization support addresses security, privacy and reliability concerns for a wide range of devices. 
Virtualization can be achieved with software only, or with hardware assistance (fully virtualized). The core element 
of virtualization is the Hypervisor, a small body of trusted and privileged code that sits above the hardware, managing 
and orchestrating all of the SoC resources. It manages the resources by defining access policies for each execution 
environment or “guest.” Guests are isolated from each other, but can communicate with the Hypervisor and with each 
other via secure APIs. This ensures the reliability of the system by allowing the rest of the guests to operate reliably 
even if one of the guests fails or otherwise becomes corrupted. The hypervisor manages all memory I/O privileges.

Contact MIPS Customer Support through our Partner Portal about recommendations on which Hypervisors are 
available for use.

1.2.4 System-level Features

• Up to six coherent MIPS64 R6 cores

• Integrated, L2 cache controller supporting 8-way and 16-way set-associativity 

• Inclusive of the L1 data caches

• 256 KB to 8 MB cache sizes 

• Error correction and detection

• High-speed L2 cache initialization

• CPC to shut down idle cores for power efficiency

• Up to eight IOCUs

• Virtualization module support

• Cache-to-cache data transfers

• Out-of-order data return

• Provides AXI-4 and ACE interfaces for connection to an external Network-On-Chip (NOC), which allows two 
I6500 clusters to be connected together.

• Hardware L2 cache prefetch controller significantly improves performance of workloads such as memcopy

• Independent clock ratios on core, memory, and IOCU ports

• SoC system interface supports the AXI-4 bus protocol with 48-bit address and 256-bit data paths

• SoC system interface supports the ACE bus protocol in the multi-cluster configuration

• Supports up to four auxiliary (AUX) AXI-4 ports per cluster.

• High bandwidth 128-bit data paths between each core and the Coherence Manager

• Software controlled core level and cluster level power management

• Debug port supporting multi-core debug (JTAG/APB)
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1.2.5 Core-level Features

• Full 64-bit MIPS64 Release 6 Instruction Set Architecture

• 48-bit virtual and physical addresses

• Power efficient design

• Dual issue instruction fetch, decode, issue, and graduate

• Hardware multithreading through seamless Virtual Processor (VP) support

• Virtualization support

• L1 caches with Error Correction Code (ECC) protection

• Memory Management Unit with first-level ITLB/DTLB backed by fast programmable on-core second-level vari-
able page size TLB (VTLB) and fixed page size TLB (FTLB)

• Load and store bonding support

• Unaligned load / store support in hardware

• Uncached Accelerated support

• Optional Inter-thread Communication Unit (ITU)

• Support for uncached and paired Load-Linked and Store Conditional (LL/SC) operations

• Optional Data Scratch Pad (DSP) RAM block for temporary storage
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1.3 I6500 Core Block Diagram

Figure 1.2 shows a block diagram of a single I6500 core.

Figure 1.3 I6500 Core-level Block Diagram

For more information on the Instruction TLB, Data TLB, and VTLB/FTLB blocks shown in Figure 1.3, refer to the 
Memory Management chapter of this manual.

For more information on the L1 Instruction Cache and L1 Data Cache blocks, refer to the Caches chapter of this 
manual.

For more information on the FPU block, refer to the FPU chapter of this manual.

For more information on the MSA block, refer to the MSA chapter of this manual.

1.4 CP0 Register to Assembler Mapping

Throughout this document, registers are referred to as C0_<REGISTER>. In order for the assembler to understand 
these names, they must be mapped to their numerical version that the assembler will understand. The numerical ver-
sion uses a $x, y reference. Table 1.1 maps the root register names to their respective numerical versions. 

Table 1.1 Assembler Mapping of CP0 Registers 

Assembler 
Idiom Register Name

Assembler 
Idiom Register Name

Assembler 
Idiom Register Name

$0, 0 C0_INDEX $12, 6 C0_GUESTCTL0 $23, 0 C0_DEBUG

$0, 4 C0_VPCONTROL $12, 7 C0_GTOFFSET $24, 0 C0_DEPC

$2, 0 C0_ENTRYLO0 $13, 0 C0_CAUSE $25, 0 C0_PERFCTL0

$3, 0 C0_ENTRYLO1 $14, 0 C0_EPC $25, 1 C0_PERFCNT0
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Note that the above table indicates those CP0 registers available in Root mode. If the device is in Guest mode, only a 
subset of these registers are available.

1.5 MIPS Software Tools

MIPS offers a complete portfolio of tools that address all stages of product development, including MIPS 
Linux, MIPS Android, Codescape SDK, Codescape debugger, compilers, MIPS boot loader, and MIPS RTOS and 
IoT support. Some of the tools provided are described in the following subsections.

1.5.1 MIPS Linux

MIPS actively supports, develops and improves the Linux kernel for the MIPS® architecture. Linux kernel and 
distributions that currently support the MIPS architecture include Debian, OpenWRT, Buildroot, Yocto, and GEN-
TOO.

For more information on the MIPS Linux,  
  

$3, 1 C0_GLOBALNUM $15, 0 C0_PRID $25, 2 C0_PERFCTL1

$4, 0 C0_CONTEXT $15, 1 C0_EBASE $25, 3 C0_PERFCNT1

$4, 2 C0_USERLOCAL $15, 2 C0_CDMMBASE $25, 4 C0_PERFCTL2

$4, 4 C0_DBGCONTEXTID $15, 3 C0_CMGCRBASE $25, 5 C0_PERFCNT2

$4,5 C0_MMID $16, 0 C0_CONFIG $25, 6 C0_PERFCTL3

$5, 0 C0_PAGEMASK $16, 1 C0_CONFIG1 $25, 7 C0_PERFCNT3

$5, 1 C0_PAGEGRAIN $16, 2 C0_CONFIG2 $26, 0 C0_ERRCTL

$6, 0 C0_WIRED $16, 3 C0_CONFIG3 $27, 0 C0_CACHERR

$7, 0 C0_HWRENA $16, 4 C0_CONFIG4 $28, 0 C0_ITAGLO

$8, 0 C0_BADVADDR $16, 5 C0_CONFIG5 $28, 1 C0_IDATALO

$8, 1 C0_BADINSTR $16, 7 C0_CONFIG7 $28, 2 C0_DTAGLO

$8, 2 C0_BADINSTRP $17, 0 C0_LLADDR $28, 3 C0_DDATALO

$9, 0 C0_COUNT $17, 1 C0_MAAR $29, 1 C0_IDATAHI

$9,6 C0_SAARI $17, 2 C0_MAARI $29, 3 C0_DDATAHI

$9,7 C0_SAAR $18, 0 C0_WATCHLO0 $30, 0 C0_ERROREPC

$10, 0 C0_ENTRYHI $18, 1 C0_WATCHLO1 $31, 0 C0_DESAVE

$10, 4 C0_GUESTCTL1 $18, 2 C0_WATCHLO2 $31, 2 C0_KSCRATCH1

$10, 5 C0_GUESTCTL2 $18, 3 C0_WATCHLO3 $31, 3 C0_KSCRATCH2

$11, 0 C0_COMPARE $19, 0 C0_WATCHHI0 $31, 4 C0_KSCRATCH3

$11, 4 C0_GUESTCTL0EXT $19, 1 C0_WATCHHI1 $31, 5 C0_KSCRATCH4

$12, 0 C0_STATUS $19, 2 C0_WATCHHI2 $31, 6 C0_KSCRATCH5

$12, 1 C0_INTCTL $19, 3 C0_WATCHHI3 $31, 7 C0_KSCRATCH6

$12, 2 C0_SRSCTL $20, 0 C0_XCONTEXT

Table 1.1 Assembler Mapping of CP0 Registers (continued)

Assembler 
Idiom Register Name

Assembler 
Idiom Register Name

Assembler 
Idiom Registe

https://www.mips.com/develop/tools/
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1.5.2 MIPS Android

The MIPS emulator can be built from the Android Open Source Project releases by Google. For every Android 
release a QA is performed and bugs found in the process are fixed. These bug-fixes, along with any MIPS optimiza-
tions, go on top of the Android release branch and get released by MIPS. Therefore, it is recom-
mended to download the latest MIPS releases to get the most stable version of Android sources for MIPS. 
Instructions are on the web site.

For more information on the MIPS Android, https://www.mips.com/develop/tools/

1.5.3 Codescape MIPS SDK

The Codescape MIPS software development toolkit provides a complete suite of compile, debug, and profile tools 
and libraries for developing and debugging software for MIPS processors. Codescape 
MIPS SDK include cross compiler (bare-metal and Linux), iaSIM simulator, optimized libraries, and profiling tools.

With Codescape, MIPS brings together a wealth of expertise in the form of Windows and Linux software 
development tools, hardware support packages and hardware development platforms, linked by a common develop-
ment environment.

For more information on the MIPS Codescape software,      
      

1.5.4 Codescape Debugger

MIPS debug environment for heterogeneous SoC development. Fully supporting all MIPS architectural fea-
tures, the Codescape Debugger enables developers to make the most of software running on MIPS cores.

For more information on the MIPS Debugger,    
    

1.5.5 Compilers

MIPS ports and maintains the GNU Compiler Collection (GCC) and provides prebuilt tool chains in the Codes-
cape MIPS SDK. A wide range of other industry leading compilers are also available for MIPS processors.

For more information on the MIPS Compilers,    
    

1.5.6 Boot Loader

MIPS offers a wide range of solutions for initializing MIPS cores and facilitating debugging. These include 
open-source and proprietary solutions to suit any requirement.

For more information on the MIPS Boot Loader    
  

https://www.mips.com/develop/tools/

https://www.mips.com/develop/tools/

https://www.mips.com/develop/tools/

, https://www.mips.com/develop/tools/
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1.5.7 MIPS RTOS and IoT Support

MIPS collaborates with open-source and commercial partners to provide MIPS support for many of the popular 
Real Time Operating Systems (RTOS) and the new generation of IoT specific Operating Systems. In addition, MIPS
has developed the MIPS Embedded Operating System (MEOS) with Virtualization extensions that target 
deeply embedded applications and the IoT space.

For more information on the MIPS RTOS and IoT support, 
   

1.5.8 Developer Resources

MIPS offers a variety of development boards and associated resources to aid in the kernel or user software develop-
ment process. Resources include development platforms, documentation, and on-line video training courses. 

For more information on the MIPS Developer Resources,    
  

https://www.mips.com/develop/tools

https://www.mips.com/develop/tools/



 

20 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00



 
Chapter 2

MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00 21

Memory Management Unit

The MMU translates virtual addresses generated by the core, to physical addresses used to access caches, memory 
and other devices. Virtual-to-physical address translation is especially useful for operating systems that must manage 
physical memory to accommodate multiple tasks active in the same virtual address space. The MMU also enforces 
the protection of memory areas and defines the cache attributes. The I6500 MMU implements a Translation Looka-
side Buffer (TLB).

This chapter covers the programmable elements of the TLB in the I6500 Multiprocessing System. The first section 
gives an overview of the TLB architecture, a description of its functionality and a description of the elements that go 
into programming the TLB. The sections that follow cover specific information on programming for the TLB. 

2.1 Overview

The I6500 TLB translates 48-bit virtual addresses to 48-bit physical addresses and provides access control for differ-
ent page segments of memory. The core writes to internal coprocessor 0 (CP0) registers with the information used to 
initialize and modify entries in the TLB, then executes a TLB write instruction (TLBWI or TLBWR) to move the data 
from the registers to the TLB.

2.1.1 TLB Types

The Memory Management Unit (MMU) in the I6500 core consists of four address-translation lookaside buffers 
(TLB): 

• Instruction TLB (ITLB)1. Number of ITLB entries varies based on the number of VPs. The ITLB maps only 4 
KB, 16 KB, or 64 KB pages. The ITLB is managed by hardware and is transparent to software.

– 1 VP = 6 entries
– 2 VPs = 12 entries
– 4 VPs = 18 entries

• Data TLB (DTLB)1. Number of DTLB entries varies based on the number of VPs. The DTLB maps only 4 KB, 
16 KB, or 64 KB pages. The DTLB is managed by hardware and is transparent to software.

– 1 VP = 8 entries
– 2 VPs = 14 entries
– 4 VPs = 20 entries

• 16 dual-entry Variable TLB (VTLB) per VP. The larger VTLB is used as a backup structure for the ITLB. If a 
fetch address cannot be translated by the ITLB or DTLB, the VTLB attempts to translate it in the following clock 
cycle or when available. If successful, the translation information is copied into the ITLB/DTLB for future use. 

1. The ITLB and DTLB perform address translations for the instruction and data caches respectively. These blocks are not soft-
ware visible and are shown only for completeness.
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Entries are automatically refilled from the VTLB when required, and automatically cleared whenever the associ-
ated VTLB is updated. 

• 512 dual-entry Fixed TLB (FTLB) that is shared between all VPs. The FTLB extends the size of the VTLB an 
extra 512 entries and is accessed at the same time as the VTLB when a miss occurs in the ITLB/DTLB. 

Figure 2.1 shows an overview of the I6500 MMU architecture.

Figure 2.1 Overview of MMU Architecture in the I6500 Core 

When an instruction address is to be translated, the ITLB is accessed first. If the translation is not found, the VTLB/
FTLB is accessed. If there is a miss in the VTLB/FTLB, an exception is taken. Similarly, when a data reference is to 
be translated, the DTLB is accessed first. If the address is not present in the DTLB, the VTLB/FTLB is accessed. If 
there is a miss in the VTLB/FTLB, an exception is taken. The OS should process the exception by overwriting a TLB 
entry from the appropriate VTLB or FTLB with the original translation requested.

For more information on the MMU architecture, refer to the I6500 Technical Reference Manual included in the docu-
mentation package.

2.1.2 TLB Instructions

This section defines the various types of instructions used when accessing the TLB. For information on the Guest 
TLB instructions used in Virtualization, refer to the Virtualization chapter of this manual.

• TLBINV — Invalidates a set of TLB entries based on ASID and Index match. TLB entries which have their G 
bit set to 1 are not modified.

• TLBINVF — Invalidates a set of TLB entries based on Index match. 
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• TLBP — The TLB Probe instruction is used to probe the TLB for a specific virtual address. The Index register is 
loaded with the address of the TLB entry whose contents match the contents of the EntryHi register.

• TLBR — The TLB Read instruction causes the EntryHi, EntryLo0, EntryLo1, and PageMask registers to be 
loaded with the contents of the TLB entry pointed to by the Index register.

• TLBWI — The TLB Write Index instruction causes the TLB entry pointed to by the Index register to be written 
with the contents of the EntryHi, EntryLo0, EntryLo1, and PageMask registers.

• TLBWR — The TLB Write Random instruction causes a random TLB entry selected by hardware to be written 
with the contents of the EntryHi, EntryLo0/1, and PageMask registers. 

• GINVT — The Global Invalidate TLB instruction provides a way to globally invalidate all TLB entries in mul-
tiple ways or the entire TLB. Refer to the Global TLB Invalidate section of this chapter for more information.

2.1.3 Shared FTLB Translations

The I6500 core supports shared FTLB translations across all VPs in a core. On previous generation cores, the FTLB 
entries were shared across the VPs, but the translations were not. In many applications, there can be multiple threads 
that are working cooperatively or running the same application on different data. In this situation, some translations 
are common across VPs and sharing the translations increases the FTLB capacity and reduces contention. Even under 
Linux, multiple threads can be associated with the same process and use the same translations on different VPs.

To enable sharing of FTLB translations across all VPs in a core and all cores in a cluster, the I6500 uses a feature 
called MemoryMapID. This feature can be used to replace the traditional Address Space Identifier (ASID) to create a 
global name space that is common across cores and VPs and will enable the hardware to identify shared translations. 
However, to maintain backward compatibility, the I6500 core supports both ASID and MMID. Either one can be 
selected using the CP0 Config5 register.

In the I6500 core, the MemoryMapID (MMID) is a replacement for the ASID. The 16-bit MMID (versus the 10-bit 
ASID) is sufficient to create a global name space for each Guest ID (GID) that is common across cores and VPs.   
Aside from reducing the need for a TLB flush when recycling ASIDs, the common name space enables sharing of 
translations between VPs and globalized TLB invalidates. 

When MMID is enabled (Config5.MI = 1), translations are common for all cores/VPs with the same GID + MMID 
(GID includes GID = 0 as root). This means that the VPID check in the FTLB will be disabled. However, the VPID 
check is still needed when operating in the legacy mode (Config5.MI = 0).

Software Constraints

When the MMID function is enabled, kernel software must adhere to the following programming constraints:

• All VPs for a given Guest ID (GID) must have the same setting in their Config5.MI field.

• The FTLB must be flushed before a change to Config5.MI.

• All VPs for a given GID must have the same FTLB page size setting.

• Root and Guest need not have the same setting in their Config5.MI fields. 

CP0 MMID Register

The MMID is stored in the MemoryMapID register located at CP0 Register 4, Select 5. There is one MemoryMapID 
register per VP.
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Figure 2.2 MemoryMapID Register Format   

CP0 Config5 Register

The CP0 Config5 register has new fields that indicate if the ASID or MMID mapping is enabled, as well as a 2-bit 
field that indicates that the core supports global invalidate instructions. Figure 2.3 shows only those bits that are new 
in the I6500 core. All other Config5 bits remain the same as before.

Figure 2.3 Config5 Register Format   

2.1.4 Global TLB Invalidate

The I6500 core provides kernel software with the ability to globally invalidate the VTLB/FTLB structure using the 
new GINVT (Global Invalidate TLB) instruction. When this instruction is executed, all entries in the VTLB/FTLB 
are invalidated in all cores and all clusters. In addition, all Instruction TLB (ITLB) and Data TLB (DTLB) entries that 
match in the VTLB are also invalidated.

The GINVT instruction provides the option to invalidate the TLB entries in the following ways:

31 16 15 0

Reserved MMID

Table 2.1 MemoryMapID Register Descriptions

Name Bit(s) Description Read/ Write Reset State

Reserved 31:16 Reserved. R 0

MMID 15:0 Stores the memory map ID value used for the translation. R/W 0

31 18 17 16 15 14 0

Refer to the CP0 Config 5 register MI GI Refer to the CP0 Config 5 register

Table 2.2 Config5 Register Field Descriptions

Name Bit(s) Description Read/ Write Reset State

31:18 No changes from previous version. Refer to the CP0 Config5 register for 
more information.

MI 17 Indicates whether the ASID or MMID is used for FTLB translations.

0: ASID is enabled.
1: MMID is enabled.

If MI = 1, MMID writes and reads are allowed, and ASID(X) writes are 
dropped and read as 0. When MI = 0, ASID(X) writes and reads will 
access the lower 8+2 bits of the register. MMID writes are dropped and 
reads return 0.

R/W 0

GI 16:15 Indicates if global invalidate instructions are supported. In the I6500 
core, this field is hardwired to 2’b11 to indicate that both global instruc-
tion cache and TLB invalidate instructions are supported.

R 2’b11

14:0 No changes from previous version. Refer to the CP0 Config5 register for 
more information.
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• Invalidate the entire TLB. If the ‘type’ field in the instruction is set to 2’b00, all TLB entries in all cores and all 
clusters are invalidated, without regard for any virtual address of memory map ID mateh.

• Invalidate by virtual address and Memory Map ID value. If the ‘type’ field is 2’b11, the TLB entries across all 
cores and clusters are invalidated only for those memory maps that match the MemoryMapID value as well as 
the virtual address.

• Invalidate by Memory Map ID value only. If the ‘type’ field is 2’b10, the TLB entries across all cores and clus-
ters are invalidated only for those memory maps that match the MemoryMapID value.

• Invalidate by virtual address only. If the ‘type’ field is 2’b01, the TLB entries across all cores and clusters are 
invalidated only for those addresses that match the virtual address.

2.2 MMU Programming

The following subsections describe some of the programming options for the I6500 MMU. Each section provides 
CP0 register information listing the register and field(s) used to determine the required information, as well as an 
assembly code example.

This section is intended to provide examples of how to program the various functions required to manage the MMU. 
It is a good reference for a programmer writing their own support library, RTOS, or tool chain. Note that most of the 
functionality of the programming examples provided in this chapter are also provided in the standard tools libraries 
incorporated into the MIPS Codescape SDK. 

2.2.1 Assembly Language Conventions

Throughout the code examples in this document, the CP0 registers are referred to by their register name. For exam-
ple, the Config4 register is referred to as C0_Config4, with C0_ indicating the register is part of the CP0 register set. 
A separate #define statement indicates that the Config4 register is located at CP0 register 16, select 4 ($16,4). The 
compiler interprets only the numerical value.

Both variables (register number and select number) are used when the select value is non-zero, such as $16,4. If the 
select value of a register is 0 (for example, 6,0 for the Wired register), the select number is not shown in the #define 
statement and will be interpreted as zero by the compiler.

2.2.2 Determining the VTLB Size

Register Interface

The 6-bit MMUSize field in the Config1 register (CP0 Register 16, Select 1) indicates the size of the VTLB. This 
value is loaded by hardware based on the system configuration. In the I6500 core the VTLB size is fixed at 16 entries, 
so the size of this field is 0x0F (15 decimal).

Determining the VTLB Size Code Example

The following example shows the assembly language instructions used to determine the VTLB size.

#define C0_CONFIG1 $16,1

mfc0 t0, C0_CONFIG1 //read Config1 register and place into t0
ext t1, t0, 25, 6 //extract value in bits 30:25 and place into t1
addiu t1, 1 //add 1 to the value in t1
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2.2.3 FTLB Page Size Configuration

The FTLB page size and configuration are described in the following subsections.

Register Interface

The I6500 core uses the following CP0 register fields to determine the size and organization of the MMU. The num-
ber of FTLB sets and FTLB ways are fixed in the I6500 core. Only the FTLB page size is configurable using the CP0 
Config4 register as follows.

Figure 2.4 CP0 Config4 FTLB Register Fields 

• Bits 3:0 of the Config4 register (Config4FTLB Sets) indicates the number of FTLB sets per way. In the I6500 core, 
this read-only value is always fixed at 64 sets per way.

• Bits 7:4 of the Config4 register (Config4FTLB Ways) indicates the number of ways in the FTLB. In the I6500 core, 
this read-only value is always fixed at 4 ways.

• Bits 12:8 of the Config4 register (Config4FTLB Page Size) determines the FTLB page size. This R/W field can be 
programmed to select pages sizes of 4 KB, 16 KB or 64 KB. The traditional page size has been 4 KB but most 
OS implementations support 4 KB or 16 KB. MIPS recommends using a 16 KB page size to improve perfor-
mance by greatly reducing the number of TLB misses. One exception to the 16 KB recommendation is when 
using the Android OS which only supports a 4 KB page size. This field is encoded as follows:

– 0x1: 4 KB
– 0x2: 16 KB
– 0x3: 64 KB

Setting the FTLB Page Size Code Example

The following example shows the assembly language instructions used to select a 16 KByte page size.

#define C0_CONFIG4 $16,4

mfc0 a0, C0_CONFIG4 // read the Config4 register and place into a0
li a3, 2 // set value for a 16k Page size into a3
ins a0, a3, 8, 5 // insert FTLB Page Size field in bits 12:8 of a0
mtc0 a0, C0_CONFIG4 // write the contents of a0 into the Config4 register

2.2.4 VTLB and FTLB Initialization

This section describes the procedure for VTLB/FTLB initialization. When the core is first powered up the TLB is not 
ready for use. Before virtual addressing can be used the VTLB must be initialized. The FTLB is initialized automati-
cally in hardware and does not require any kernel software involvement.

Register Interface

The following steps and associated CP0 registers are used to initialize the VTLB.

1. Write all zeros to the CP0 IndexINDEX field. 

31 13 12 8 7 4 3 0

See CP0 Register set for bit definitions FTLB Page Size FTLB Ways FTLB Sets
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2. Execute a TLBINVF instruction to initialize all entries in the VTLB.

Initializing the VTLB Code Example

All entries in the VTLB are initialized at the same time using the TLBINVF instruction.

#define C0_INDEX $0,0

mtc0 zero, C0_INDEX // move a zero into the Index register 
tlbinvf // TLB Invalidate Flush flushes internal TLB caches

// and invalidates all VTLB entries

The instruction sequence above must be executed on each VP before the TLB can be used.

Initializing the FTLB Code Example

In the I6500 the FTLB is initialized in hardware. No kernel software intervention is required to initialize the FTLB.

2.2.5 Indexing the VTLB and FTLB

A 10-bit index value is used to index up to a maximum of 528 dual entries of the VTLB and FTLB. This value is 
stored in bits 9:0 of the Index register (CP0 register 0, Select 0). 

The Index register determines which TLB entry is accessed by a TLBWI instruction. This register is also used for the 
result of a TLBP instruction (used to determine whether a particular address was successfully translated by the core). 
Note that a TLBP instruction which fails to find a match for the specified virtual address sets bit 31 of the Index reg-
ister, indicating a probe failure.

Register Interface

1. Set the EntryHiEHINV bit to indicate that TLBWI invalidate is enabled. When this bit is set, the TLBWI instruction 
acts as a TLB invalidate operation, setting the hardware valid bit associated with the TLB entry to the invalid 
state. This bit is ignored on a TLBWR instruction. 

2. Write the appropriate TLB index to the IndexINDEX field. Each VP contains a 16-entry VTLB, which is added to 
the 512 entry shared FTLB to determine the total number of TLB entries. 

Indexing the VTLB Code Example

The following example shows the assembly language instructions used to index VTLB entry 10.

#define C0_INDEX $0,0

li t0, 0x0000000A //set Index field = 10
mtc0 t0, C0_INDEX //write value into Index register

Indexing the FTLB Code Example

The following example shows the assembly language instructions used to index FTLB entry 255.

#define C0_INDEX $0,0

li t0, 0x0000010F //set Index field = 255 + 16 (# of VTLB entries)
mtc0 t0, C0_INDEX //write value into Index register
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2.2.6 Programming a TLB Entry

This section describes how to setup the TLB to create a virtual to physical mapping. The TLB entries are filled using 
the registers listed below. After the registers are loaded with the appropriate information, the Index register is used to 
determine which entry will be written. 

Register Interface

Each TLB entry in the VTLB/FTLB consists of a tag portion and dual-data portion as shown in Figure 2.5. In this fig-
ure, the following registers are used to manage the TLB entries.

• Index — Used when a TLBWI command is executed. During reset or power-up, this register is set to 0, and 
this value is written to all VTLB/FTLB entries.

• EntryHi — Stores the virtual page number in the TLB tag during normal operation.
• EntryLo0 — Stores even numbered physical frame number in the TLB data during normal operation.
• EntryLo1 — Stores odd numbered physical frame number in the TLB data during normal operation.
• PageMask — Indicates the TLB page size. This register must be set to the page size of the FTLB when the 

FTLB is accessed using a TLBWI command. When a TLBWR command is executed and the value in the 
PageMask register does not equal the FTLB page size, the translation is stored in the VTLB. If the value in 
the PageMask register equals the FTLB page size, the translation will most likely be stored in the FTLB. 
However, there is a slight chance the translation will be stored to the VTLB.

To fill an entry in the VTLB/FTLB, kernel software updates the registers above with the appropriate data, then exe-
cutes a TLBWI or TLBWR instruction. Note that the size of the VPN field in the EntryHi register depends on the page 
size as noted by the ‘x’ and ‘x-1’ nomenclature. The registers and corresponding fields to be programmed when 
accessing the TLB are listed as follows.

• PageMask is set in the CP0 PageMask register. This register determines the page size of the TLB entry. For the 
VTLB, page sizes of 4 KB to 1 GB in powers of four are supported. For the FTLB, page sizes of 4 KB, 16 KB, or 
64 KB are supported.

• Virtual address (VPN2) and address space identifier (ASID) are set in the MMU EntryHi register. The ‘VPN2’ 
designation indicates that this address is for a double-page-size virtual region which maps to a pair of physical 
pages. The ASID field helps to reduce the frequency of TLB flushing on a context switch. The ASID field 
extends the virtual address with an 8-bit memory space identifier assigned by the operating system. The ASID 
allows translations for multiple different applications to co-exist in the TLB (in Linux, for example, each applica-
tion has different code and data lying in the same virtual address region).

In the I6500 core, the MemoryMapID (MMID) can be used as a replacement for the ASID. For more informa-
tion, refer to the section entitled Shared FTLB Translations.

• PFN0/1, C0/1, D0/1, V0/1, G0/1, RI0/1, and XI0/1 bits are set in the MMU EntryLo0 and EntryLo1 registers. The 
‘0’ indicates the even numbered TLB entry, and the ‘1’ nomenclature indicates the odd numbered TLB entry.

• The PFN stores the corresponding physical frame number (which along with the offset becomes the physical 
address).

• The C field indicates how to cache data for this page. Each data entry can have one of three cache coherency 
attributes: Uncached, Uncached Accelerated, or Cached Coherent Read-Share.

• The D bit is the dirty flag and indicates that the page has been written, and/or is writable. If this bit is a one, 
stores to the page are permitted. If this bit is a cleared, stores to the page cause a TLB Modified exception. 
The D bit should be set in the exception handler on the first write that causes an exception. Software can use 
this bit to track pages that have been written to by clearing this bit when the page is first mapped.
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• The V bit is the valid flag and indicates that the TLB entry, and thus the virtual page mapping, is valid. If this 
bit is set, accesses to the page are permitted. If this bit is a zero, accesses to the page cause a TLB Invalid 
exception.

• The G bit is the “Global” bit. On a TLB write, the logical AND of the G bits in both the Entry 0 and Entry 1 
registers become the G bit in the TLB entry. If the TLB entry G bit is a one, then the ASID comparisons are 
ignored during TLB matches. On a read from a TLB entry, the G bits of both Entry 0 and Entry 1 reflect the 
state of the TLB G bit.

• The RI is the read-inhibit flag. If this bit is set in a TLB entry, any attempt to read data on the virtual page 
causes a a TLBRI exception (PageGrainIEC = 1), even if the V (Valid) bit is set. The RI bit is always writable 
in the I6500 core since the RIE bit of the PageGrain register is always set.

• The XI is the execute-inhibit flag. If this bit is set in a TLB entry, any attempt to fetch an instruction from the 
virtual page causes a TLB Invalid or a TLBXI exception, even if the V (Valid) bit is set. The XI bit is writ-
able only if the XIE bit of the PageGrain register is set, which is always the case in the I6500 core.

• The R field in bits are the region bits that are stored in bits 63:62 of the virtual address and divide the virtual 
memory map into one of four regions.

• If address sizes larger than 32 bits are used, support for large physical addresses must be enabled by setting 
the ELPA bit of the CP0 PageGrain register. Setting this bit allows for 48-bit physical addresses. When this 
bit is set, the PFNX field of the EntryLo0 and EntryLo1 registers is writable and concatenated with the PFN 
field to form the full page frame number.

Figure 2.5 Relationship Between CP0 Registers and TLB Entries 
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Programming a TLB Entry Code Example

The following assemble language example shows how to create a single mapping from virtual address 0x12340000 to 
physical address 0x23450000 with the C, D, V, and G bits of the entry set to a specific value.

#define C0_ENTRYHI $10,0
#define C0_ENTRYLO0 $2,0
#define C0_ENTRYLO1 $3,0
#define C0_PAGEMASK $5,0
#define C0_INDEX $0,0

li t0, 0x12340000 //set VA = 0x12340000, ASID = 0
mtc0 t0, $10 //write EntryHi with VA and ASID
li t1, 0x23450000 >> 6 //set PA = 0x23450000 and shift the PFN value right

//by 6 bits
li t2, 0x002F //load CDVG = 5,1,1,1 
dins t1, t2, 0, 6 //insert CDVG field into EntryLo bits 5:0
mtc0 t1, $2 //write EntryLo even page
mtc0 zero, $3 //write EntryLo odd page, invalidate
li t2, 0x00007FFF //set page size to 16 KB
mtc0 t2, $5 //write PageMask register
li t3, 4 //select VTLB entry 4
mtc0 t3, $0 //write Index register
tlbwi //execute TLBWI instruction to load TLB

2.2.7 Hardwiring VTLB Entries

CP0 Programming Interface

The I6500 core allows up to 15 entries of the VTLB to be hardwired such that they cannot be replaced by a TLBWR 
instruction. This is accomplished using the Wired register (CP0 register 6, Select 0). The Wired register specifies the 
boundary between the wired and random entries in the VTLB. Wired entries are fixed, non-replaceable entries that 
cannot be overwritten by a TLBWR instruction. However, wired entries can be overwritten by a TLBWI instruction.

The wired entries in the VTLB must be contiguous and start from 0. For example, if the Wired field of this register 
contains a value of 0x5, this indicates that entries 4, 3, 2, 1, and 0 of the VTLB are wired. If the value in the Wired 
register is greater than Config1.MMUSize, then the write to the Wired register is dropped. The Wired register is reset to 
zero by a Reset exception.

Note that in the I6500 core, the Wired.Limit field is set to 0 by default, indicating that all but one of the VTLB entries 
can be wired. The Limit field can be set to the value in the Config1.MMUSize field, which leaves at least one entry 
open for Guest random replacement. Root should configure the Guest.Config1.MMUSize field to avoid guest TLB 
randomization for replacing Root wired entries.

Hardwiring a TLB Entry Code Example

The following example shows the assembly language instructions used to hard-wire a TLB entry. In this example the 
first 5 entries of the VTLB are wired.

#define C0_WIRED $6,0

li t0, 0x000F0005 //set Limit field = 15 and Wired field = 5
mtc0 t0, C0_WIRED //write value into Wired register
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2.2.8 FTLB Hashing Scheme and the TLBWI Instruction

The I6500 core uses a hashing scheme based on VPN and page size to index a particular FTLB set in order to main-
tain consistency.

When a TLBWI instruction is executed targeting the FTLB, the Index register must be consistent with the FTLB set 
calculated from the EntryHi and PageMask registers. If not, a machine check exception is taken. This scheme is used 
only when the EntryHiEHINV bit is 0. When the EntryHiEHINV bit is 1, hashing is ignored and the indexing entries are 
invalidated.

When a TLBWR instruction is executed and the Pagemask register matches the page size the FTLB currently sup-
ports, hardware uses the hashing scheme to calculate the FTLB set and choose a random way to index the entry. The 
EntryHiEHINV bit is ignored for a TLBWR instruction.

2.3 TLB Exception Handler

In the event that a TLB miss occurs in either the VTLB or the FTLB, the I6500 core allows for the following types of 
TLB exceptions. 

• Address error (AdEL or AdES)
• TLB Refill (TLBL, TLBS)
• TLB Invalidate (TLBL, TLBS)
• TLB Read Inhibit (TLBRI)
• TLB Execute Inhibit (TLBXI)
• TLB Modified (TLBM)
• FTLB Parity
• Machine Check

The Address Error exceptions (AdEL and AdES) are used in kernel, user, and supervisor modes. 
• On a load in user mode, an AdEL exception is taken when user mode does not have permission for the 

address being accessed. 
• On a store in user mode, an AdES exception is taken when user mode does not have permission for the 

address being accessed. 
• On a load in supervisor mode, an AdEL exception is taken when supervisor mode does not have permission 

for the address being accessed. 
• On a store in supervisor mode, an AdES exception is taken when supervisor mode does not have permission 

for the address being accessed.

The TLB Refill exception (TLBL, TLBS) is taken on any TLB miss regardless of the operating mode and uses the fol-
lowing TLBL and TLBS opcodes.

• TLBL exception: On a non-store in any mode, there is a TLB miss.
• TLBS exception: On a store in any mode, there is a TLB miss.

The TLB Invalidate exceptions (TLBL and TLBS) are taken under the following conditions. 
• TLBL exception: On a non-store, there is a TLB hit, but the valid bit for that TLB entry is not set.
• TLBS exception: On a store in any mode, there is a TLB hit, but the valid bit for that TLB entry is not set.
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The TLB Read Inhibit exception (TLBRI) is taken when there is a TLB hit during a load operation, the RI bit of the 
entry is set, and the PageGrainIEC and PageGrainRIE bits are set, which is always the case in the I6500 core. 

The TLB Execute Inhibit exception (TLBXI) is taken when there is a TLB hit during an instruction fetch, the XI bit of 
the entry is set, and the PageGrainIEC and PageGrainXIE bits are set, which is always the case in the I6500 core.

A TLB Modified exception is taken whenever there is a TLB hit on a store and the Dirty bit associated with that entry 
is not set.

An FTLB Parity exception is taken whenever a parity error occurs on an FTLB read. The FTLB parity exception is 
taken only when bit 31 of the CP0 Error Control register (ErrCtl.PE) is set. If this bit is cleared, FTLB parity errors are 
ignored.

The Machine Check exception occurs when the processor detects an internal inconsistency. The machine check 
exception can be either precise or imprecise depending on the type of error. The following conditions cause a 
machine check exception:

• A TLBWI instruction to the FTLB and the index and VPN2 are not consistent when the EntryHiEHINV bit is not 
set.

• A TLBWI instruction to the FTLB and the PageMask register does not correspond to the FTLB page size setting 
in bits 12:8 of the Config4 register (Config4FTLB Page Size).

• A TLBP instruction and a duplicate/overlap is detected across the FTLB/VTLB.

• Any TLB lookup and a duplicate/overlap is detected across the FTLB/VTLB.

Register Interface

The I6500 core uses the following CP0 registers to manage TLB exceptions. 
• Context (CP0 register 4, Select 0): Contains the pointer to an entry in the page table entry (PTE) array.
• XContext (CP0 register 20, Select 0): The XContext register is a read/write register containing a pointer to an 

entry in the page table entry (PTE) array. This array is an operating system data structure that stores virtual-
to-physical translations.The XContext register is primarily intended for use with the XTLB Refill handler, 
but is also loaded by hardware on a TLB Refill. The XContext register duplicates some of the information 
provided in the BadVAddr register.

• BadVAddr (CP0 register 8, Select 0): The 64-bit BadVAddr register is a read-only register that captures the 
most recent virtual address that caused the exception. The BadVAddr register does not capture address infor-
mation for cache or bus errors, since they are not addressing errors.

• BadInstr (CP0 register 8, Select 1): The 64-bit BadInstr register is a read-only register that captures the most 
recent instruction which caused the exception to occur. The BadInstr register is provided to allow accelera-
tion of instruction emulation. The BadInstr register is only set by exceptions which are synchronous to an 
instruction. 

• BadInstrP (CP0 register 8, Select 2): The BadInstrP register is used in conjunction with the BadInstr register. 
The BadInstrP register contains the prior branch instruction, when the faulting instruction is in a branch 
delay slot.

For more information on these registers, refer to the CP0 Registers companion document provided in the documenta-
tion package.
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TLB Exception Handler Code Example

The exception handler can directly use the value in the CP0 Context register as the memory address to read the 
EntryLo0/1 settings. The processor also writes the Virtual Page Number (VPN) that missed to the EntryHi register so 
it is ready to write the TLB entry. The following example shows the assembly language implementation of a TLB 
exception handler for 32-bit addressing mode.

.set noreorder
#define C0_ENTRYLO0 $2,0
#define C0_ENTRYLO1 $3,0
#define C0_CONTEXT $4,0
#define C0_XCONTEXT $20,0

TLBmiss32:

dmfc0 k1, C0_CONTEXT // Get Context register (CP0 register 4)
ld k0, 0(k1) // Load EntryLo0 into K0
ld k1, 8(k1) // Load EntryLo1 into k1
dmtc0 k0, C0_ENTRYLO0 // Move k0 to CP0 EntryLo0 (CP0 register 2)
dmtc0 k0, C0_ENTRYLO1 // Move k0 to CP0 EntryLo1 (CP0 register 3)
ehb // Clear hazard barrier to insure CP0 write takes effect
tlbwr // Write to random TLB entry
eret // Return from TLB exception

For 64-bit addressing mode the first instruction in the above example needs to read the XContext register instead of 
the Context register:

dmfc0 k1, C0_XCONTEXT // Get XContext register (CP0 register 20)

Note that some operating systems like Linux use a 3-level Page Table and do not use the Context or XContext regis-
ters for page table lookup. Instead they use the CP0 BadVaddr register and their own scheme to access the correct 
page table entry. Refer to the Linux OS documentation for details on the page table handling. 

2.4 Additional Information

The MMU chapter of the I6500 Technical Reference Manual serves as a supplement to this chapter and provides 
additional information about the MMU, including an overview of virtual to physical address translation with 4 
KByte, 16 KByte, and 64 KByte page size examples, address translation flow to illustrate the circumstances under 
which TLB exceptions are taken, FTLB parity errors, address error detection, multi-threading considerations, guest 
and root operating systems, and an in depth discussion of how to select between 32- and 64-bit addressing modes, and 
the associated address mapping in the kernel, supervisor, user, and debug operating modes.
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Caches

The I6500 Multiprocessing System contains the following caches: L1 instruction, L1 data, and shared L2. These 
caches provide on-chip temporary storage of information that can be retrieved much faster than accessing main mem-
ory. The dedicated L1 instruction and data caches have the fastest access times and are accessed first. If the data is not 
present in the L1 cache, the shared L2 cache is accessed. The L2 cache contains both data and instructions, hence the 
name ‘shared’. If the requested data is not in the L2 cache, the main memory is accessed. 

This chapter provides an overview of the cache architecture and a description of the elements that go into program-
ming the caches. A description of the CP0 register interface to each cache is provided, as well as cache initialization 
code. Other programmable elements include setting up cache coherency and handling cache exceptions.

3.1 Cache Subsystem Overview

In the I6500 MPS, the size of each cache can be configured as follows:

• L1 Instruction Cache: 32 KB or 64 KB

• L1 Data Cache: 32 KB or 64 KB

• L2 Cache: 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, or 8 MB 

Figure 3.1 shows the relative location of the caches within the I6500 Multiprocessing System. The L1 instruction and 
L1 data caches are shared by all VP’s in the same core. The L2 cache is shared by all cores.

Figure 3.1 I6500 Multiprocessing System Caches 

CPU 0

V
P
0

V
P
1

V
P
2

V
P
3

L1 Data Cache

L1 Instruction Cache

CPU n

V
P
0

V
P
1

V
P
2

V
P
3

L1 Data Cache

L1 Instruction Cache

Coherence Manager (CM3)

Shared L2 Cache



 

36 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00

3.1.1 L1 Instruction Cache

The L1 instruction cache contains two arrays: tag and data. The L1 instruction cache is virtually indexed and physi-
cally tagged. An instruction cache data entry contains eight 64-bit doublewords in the line, for a total of 64 bytes. 

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache. 
An instruction cache tag entry consists of 36-bit physical address bits and 7 Error Correction Code (ECC) bits. 

3.1.2 L1 Data Cache

The L1 data cache contains two arrays: tag and data. The L1 Data cache is physically indexed and physically tagged, 
thus eliminating the chance of a virtual aliasing.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache. 
A tag entry consists of the upper 34 or 35 bits of the physical address (depending on cache size), two coherent state 
bits, and some ECC bits. A data entry contains 64 bytes of data and associated ECC bits. All 64 bytes in the line are 
present in the data array together, hence the coherent state bits (2) stored with the tag.

After a valid line is resident in the cache, a store operation can update all or a portion of the words in that line depend-
ing on the type of store.

The data cache uses ECC so that single-bit errors can be corrected. ECC code is generated across a 32-bit word. Sub-
word stores are handled by doing a read-modify-write sequence. The error checking and correction process is handled 
entirely by hardware and is transparent to kernel software.

3.1.3 L2 Cache

The L2 cache processes transactions that miss in the L1 caches. The L2 cache is larger than the L1 caches. In the 
I6500 Multiprocessing System, the L2 cache is integrated into the Coherence Manager (CMrev). The L2 communi-
cates with external memory via an AXI-4 interface. The L2 communicates with the cores through the proprietary 
MIPS Coherence Protocol (MCP) bus.

The associativity of the L2 cache can be either 8 or 16 ways. The 8-way option is used when the cache size is 256 KB. 
The 16-way option is used for all other cache sizes. The line size is fixed at 64 bytes. The number of sets and ways is 
selected during the build process and cannot be changed by the kernel software. Software can check the set size by 
reading the GCR_L2_CONFIG register, which is part of the CMrev register address space. Refer to the Coherence 
Manager chapter for more information.

Table 3.1 shows the list of possible L2 cache configurations. 

Table 3.1 L2 Cache Configurations

Line Size
Sets per 

Way
Number of 

Ways
Total L2 

Cache Size

64 bytes 512 8 256 KBytes
64 bytes 512 16 512 KBytes
64 bytes 1024 16 1 MByte
64 bytes 2048 16 2 MBytes
64 bytes 4096 16 4 MBytes
64 bytes 8192 16 8 MBytes
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3.1.4 Cache Instructions

Operations are performed on the L1I, L1D, and L2 caches using the following instructions:

• CACHE — This instruction is used to perform various operations on the L1 instruction and data caches and the 
L2 cache. These operations are described in Table 3.2.

• PREF — This instruction causes data to be moved to or from the cache, to improve program performance. PREF 
does not cause addressing-related exceptions, including TLB exceptions. 

• SYNCI — This instruction synchronizes a data cache line with an instruction cache line. This instruction should 
be used when writing to the program image in memory to make the newly stored instruction opcodes visible to 
the instruction fetch logic via the I-Cache. The SYNCI instruction operates on all instruction caches in a cluster. 
In a multi-cluster system, this means all L1 instruction caches in all clusters.

• GINVI — This instruction is new to the I6500 and can be used to invalidate all L1 instruction caches in the sys-
tem. In a multi-cluster system, this means all L1 instruction caches in all clusters.

The SYNCI and CACHE I Hit Invalidate instructions are "globalized", which means that they will invalidate the tar-
geted cache line from all L1 instruction caches in the system.  In multi-cluster systems, the CACHE L2 Hit Invali-
date, L2 Hit Writeback, and L2 Hit Writeback Invalidate operations are globalized and will perform the specified 
operation on all L2 caches in the system (including any L1 D-Cache operations required to maintain inclusivity).  
Note that the I6500 MPS does not globalize the CACHE D Hit Invalidate, D Hit Writeback, or D Hit Writeback 
Invalidate instructions; these instructions only affect the L1 D-Cache of the core that executed the instruction. 

For more information on how these instructions are used, refer to the example in the section entitled Cache 
Initialization Routines.

Table 3.2 shows the various types of operations that can be performed using the CACHE instruction. In this table, bits 
20:18 of the instruction encode the type of operation as shown in the Code column.

Bits 17:16 of the instruction indicate the type of cache being accessed as shown in the Cache column:

• I indicates L1 instruction cache — Bits [17:16] = 2’b00

• D indicates L1 data cache — Bits [17:16] = 2’b01
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• S indicates L2 or secondary cache — Bits [17:16] = 2’b11 

Table 3.2 Encoding of Bits [20:18] of the CACHE Instruction 

Code Cache Name Operation

3’b000 I Index Invalidate Set the state of the cache line at the specified index to invalid.
This encoding may be used by kernel software to invalidate the entire instruction 
cache by stepping through all valid indices.

D, S Index Writeback 
Invalidate

If the state of the cache line at the specified index is valid and dirty, write the line back 
to the memory address specified by the cache tag. After that operation is completed, 
set the state of the cache line to invalid. If the line is valid but not dirty, set the state of 
the line to invalid.

This encoding may be used by kernel software to invalidate the entire data cache by 
stepping through all valid indices, except during cache initialization. Note that Index 
Store Tag should be used to initialize the cache at power-up.

For the L2 cache, this operation will modify the L1 data caches as needed to maintain 
inclusivity.

3’b001 I Index Load Tag Read the tag for the cache line at the specified index into the ITagLo register.
Read the data corresponding to the dword index into the IDataLo and IDataHi regis-
ters.
The data ECC bits are stored to the CP0 IDataHi register, and the tag ECC bits are 
stored to the CP0 ITagLo register.

D Index Load Tag Read the tag for the cache line at the specified index into the CP0 DTagLo register and 
read the data corresponding to the word index into the DDataLo register. 
The data ECC bits are read into the CP0 DDataHi register and the tag ECC bits are 
read into the CP0 DTagLo register.

S Index Load Tag Read the tag for the cache line at the specified index into the CM 
CGR_L2_TAG_ADDR register at offset 0x0600. 
Read the data corresponding to the dword index into the CM GCR_L2_DATA register 
at offset 0x0610.
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3’b010 I Index Store Tag Write the tag (and data) for the cache line at the specified index from the ITagLo regis-
ter. The data comes from the IDataLo register.

The hardware automatically generates the ECC bits to write into the cache.  For test 
purposes, the ECC bits from the ITagLo and IDataHi registers are used instead of the 
automatically generated values when the ErrCtl.PO bit is set.

This operation may be used by kernel software to initialize the entire instruction cache 
by stepping through all valid indices.  Doing so requires that the ITagLo register be ini-
tialized first.

D Index Store Tag Write the tag and data for the cache line at the specified index from the CP0 DTagLo 
and DDataLow registers.

The hardware automatically generates the ECC bits to write into the cache.  For test 
purposes, the ECC bits from the DTagLo and DDataHi registers are used instead of the 
automatically generated values when the ErrCtl.PO bit is set.

This operation may be used by kernel software to initialize the entire data cache by 
stepping through all valid indices.  Doing so requires that the DTagLo register be ini-
tialized first.

S Index Store Tag Write the tag for the L2 cache line at the specified index from the CM 
CGR_L2_TAG_ADDR register at offset 0x0600.

By default, the tag ECC value is automatically calculated. For test purposes, the ECC 
bits from the CM GCR_L2_ECC register are used if the corresponding bits are set in the 
L2_CONFIG GCR register located in CM address space. 

3’b011 I, D Reserved Executed as a no-op.

S Index Store Data Write the CM GCR_L2_DATA register contents at the way and dword index specified. 

The ECC bits are always generated by the hardware.

3’b100 I, S Hit Invalidate If the cache line contains the specified address, set the state of the cache line to invalid.
This operation may be used by kernel software to invalidate a range of addresses from 
the caches by stepping through the address range by the line size of the cache. 
This instruction is globalized for the I caches, meaning that when executed, the 
instruction will invalidate the targeted cache line from all L1 instruction caches in the 
system. For the L2 cache, the instruction would invalidate all targeted cache lines 
within all L2 caches in all clusters. 

For the L2 cache, this operation will modify the L1 data caches as needed to maintain 
inclusivity.

D Hit Invalidate If the cache line contains the specified address, set the state of the cache line to invalid.
This operation may be used by kernel software to invalidate a range of addresses from 
the caches by stepping through the address range by the line size of the cache. 

Note that the I6500 MPS does not globalize the CACHE D Hit Invalidate instruction. 
This instruction only affects the L1 D-Cache of the core that executed the instruction. 

Table 3.2 Encoding of Bits [20:18] of the CACHE Instruction (continued)

Code Cache Name Operation
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3.2 Cache Coherency

The I6500 core defines a set of Cache Coherency Attributes (CCA). The cache coherency can be set in one of three 
ways:

• In KSEG0 space, coherency is set using the CP0 Config.K0 field. 

• Using the TLB entry for mapped address regions.

• Using the XKPHYS memory segments.

3’b101 I Fill Fill the cache from the specified address.

The cache line is refetched even if it is already in the cache. In that case, the existing 
copy in the cache is invalidated

D, S Hit WriteBack 
Invalidate

If the cache line contains the specified address and it is valid and dirty, write the 
contents back to memory. After that operation is completed, set the state of the cache 
line to invalid. If the line is valid but not dirty, set the state of the line to invalid.

This operation may be used by kernel software to invalidate a range of addresses from 
the data cache by stepping through the address range by the line size of the cache.

Note that the I6500 MPS does not globalize the CACHE D Hit Writeback Invalidate 
instruction. This instruction only affects the L1 D-Cache of the core that executed the 
instruction. 

For the L2 cache, this operation will modify the L1 data caches as needed to maintain 
inclusivity.

3’b110 D, S Hit WriteBack If the cache line contains the specified address and it is valid and dirty, write the 
contents back to memory. After the operation is completed, leave the state of the line 
valid, but clear the dirty state.

Note that the I6500 MPS does not globalize the CACHE D Hit Writeback instruction. 
This instruction only affects the L1 D-Cache of the core that executed the instruction. 

For the L2 cache, this operation will modify the L1 data caches as needed to maintain 
inclusivity.

3’b111 I, D Fetch and Lock The Fetch and Lock encoding is not supported in the I6500 L1 instruction and data 
caches. For the L1 instruction and data caches this operation executes as a no-op.

L2 Fetch and Lock If the L2 cache does not contain the specified address, fill it from memory and 
writeback the data from the line being replaced. Set the state to valid and locked. If the 
cache already contains the specified address, set the state to locked. The way selected 
on fill from memory is the least recently used.

The lock state is cleared by executing an Index Invalidate, Index Writeback Invalidate, 
Hit Invalidate, or Hit Writeback Invalidate operation to the locked line, or via an Index 
Store Tag operation with the lock bit reset in the associated STATE field of the GCR L2 
Tag RAM Cache Op Address register.

It is illegal to lock all ways at a given cache index. 

Table 3.2 Encoding of Bits [20:18] of the CACHE Instruction (continued)

Code Cache Name Operation
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The I6500 core supports the following cacheability attributes:

• Uncached (code #2): Addresses in a memory area indicated as uncached are not read from the cache. Stores to 
such addresses are written directly to main memory, without changing cache contents.

• Cacheable, coherent, write-back, write-allocate, read misses request shared. (code #5): Use coherent data. Load 
misses request data in the shared state (will get exclusive if the data is not being shared by another CPU). Multi-
ple caches can contain data in the shared state. Stores bring data into the cache in an exclusive state - no other 
caches can contain that same line. If a store hits on a shared line in the cache, the line is updated to the exclusive 
state and any shared copies of the line in other L1 data caches are invalidated.

• Uncached Accelerated (code #7): Uncached stores are gathered together for more efficient bus utilization.

The mapping of cacheability attributes is shown in Table 3.3. 

3.3 Self-modified Code

When the processor writes memory with new instructions at run-time, software must accommodate the Harvard 
architecture and write-back policy of the I6500 L1 caches. When using cacheable memory accesses (CCA = 3 or 
CCA = 5), the following steps must be taken to prevent execution of the previous (stale) contents of the modified 
memory addresses:

1. Any stale instructions must be invalidated from the L1 I-Cache.  The SYNCI, CACHE I Hit Invalidate, CACHE 
I Index Invalidate or GINVI instructions can be used for this purpose.  The SYNCI and CACHE I Hit Invalidate 
instructions are globalized, which means they invalidate the targeted line from all I-Caches in the system.  The 
GINVI instruction can be more efficient when writing a large block of instructions as it invalidates the entire I-
Cache with a single instruction.

2. The processor must wait until all of the new instructions have been written to the L1 D-Cache before attempting 
to fetch and execute the new instructions.  This can be accomplished by the SYNC and JALR.HB or ERET 
instructions.

Note that unlike some other MIPS cores, on an I-Cache miss the I6500 core fetches the latest coherent data from the 
L1 D- and L2-Caches (including from other cores and clusters) so there is no need to force a writeback from the L1 
D-Cache.

Table 3.3  Mapping of Cacheability Attributes for the K0 Field in the CP0 Config Register

K[2:0]1

1. This field is also mapped to the C field in bits 5:3 of the CP0 EntryLo0 and EntryLo1 registers.

Attribute

3’b000 Mapped to ‘3b101 (code #5).

3’b001 Mapped to ‘3b101 (code #5).

3’b010 Uncached.

3’b011 Cacheable. Mapped to ‘3b101 (code #5).

3’b100 Mapped to ‘3b101 (code #5).

3’b101 Cacheable, coherent, write-back, write-allocate, read misses request shared.

3’b110 Mapped to ‘3b101 (code #5).

3’b111 Uncached Accelerated.
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The following example shows a routine which can be called after the new instruction stream is written to make those 
changes effective. The SYNCI instruction could be replaced with an appropriate CACHE or GINVI instruction (when 
access to Coprocessor 0 is available), and that the JR.HB instruction could be replaced with JALR.HB, ERET, or 
DERET instructions, as appropriate. A SYNC instruction is required between the final SYNCI instruction in the loop 
and the instruction that clears instruction hazards.

/*
* This routine makes changes to the instruction stream effective to the
* hardware. It should be called after the instruction stream is written.
* On return, the new instructions are effective.
*

* Inputs;
* a0 = Start address of new instruction stream
* a1 = Size, in bytes, of new instruction stream
*/

beq a1, zero, 20f /* If size==0, */
nop /*   branch around */
daddu a1, a0, a1 /* Calculate end address + 1 */
rdhwr v0, HW_SYNCI_Step /* Get step size for SYNCI */
beq v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */

10: synci 0(a0) /* Synchronize all caches around address */
daddu a0, a0, v0 /* Add step size in delay slot */
sltu v1, a0, a1 /* Compare current with end address */
bne v1, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */

20: jr.hb ra /* Return, clearing instruction hazards */
nop

3.4 Register Interface

This section provides information on the CP0 registers used to manage the L1 instruction and data caches, and the L2 
cache. 

3.4.1 L1 Instruction Cache Control Registers

The I6500 core uses the following CP0 registers for instruction cache operations. 

Table 3.4 Instruction Cache Register Interface

CP0 Registers CP0 Register Number

Config Register 16, Select 0

Config1 Register 16, Select1

CacheErr Register 27, Select 0

ITagLo Register 28, Select 0

IDataLo Register 28, Select 1

IDataHi Register 29, Select 1
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3.4.1.1 Config Register (CP0 register 16, Select 0)

In the Config register - the K0 field contains the cache attributes for the unmapped KSEG0 memory region.

3.4.1.2 Config1 Register (CP0 register 16, Select 1)

This register allows kernel software to obtain the L1 cache parameters such as number of sets, line size, and cache 
associativity.

The Config1.IS field (bits 24:22) indicates the number of sets per way in the instruction cache. The I6500 L1 instruc-
tion cache supports 128 sets per way, which is used to configure as a 32 KB cache, or 256 sets per way, which is used 
to configure a 64 KB cache.

The Config1.IL field (bits 21:19) indicates the line size for the instruction cache. The I6500 L1 instruction cache sup-
ports a fixed line size of 64 bytes as indicated by a value of 5 for this field.

The Config1.IA field (bits 18:16) indicates the set associativity for the instruction cache. The I6500 L1 instruction 
cache is fixed at 4-way set associative as indicated by a value of 3 for this field.

These fields are all read-only; their values are determined during IP configuration and are built into the core.

3.4.1.3 CacheErr Register (CP0 register 27, Select 0)

The CacheErr register contains information regarding the type of cache error that occurred. This register provides 
information such as:

• Correctable or uncorrectable error 

• Array where the error occurred; L1I tag/data, L1D tag/data. FTLB tag/data, or L2 tag/data

• The cache way where the error was detected

3.4.1.4 L1 Instruction Cache TagLo Register (CP0 register 28, Select 0)

This register stores the cache address tag information of a cache line being read/written by the CACHE load tag/store 
tag operations (bits 47:14 for a 64-KByte cache, and bits 47:13 for a 32-KByte cache). The register also stores the 
ECC bits associated with the tag entry. Separate Valid and Error bits indicate that the tag entry is valid, or if an ECC 
error has occurred. 

3.4.1.5 L1 Instruction Cache DataLo Register (CP0 register 28, Select 1)

This register holds the data (instruction opcodes) being read/written by the CACHE load tag/store tag operations. 
Two registers (IDataHi, IDataLo) are needed to store both the data and instruction precode information (calculated by 
hardware unless overridden). This register stores the 64 bits of the load data.

3.4.1.6 L1 Instruction Cache DataHi Register (CP0 register 29, Select 1)

This register works in conjunction with the IDataLo register described above to store the associated instruction pre-
code bits, error information, and ECC status.
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3.4.2 L1 Data Cache Control Registers

The I6500 core uses the following CP0 registers for data cache operations. 

3.4.2.1 Config Register (CP0 register 16, Select 0)

In the Config register - the K0 field contains the cache attributes for the unmapped KSEG0 memory region.

3.4.2.2 Config1 Register (CP0 register 16, Select 1)

The Config1 CP0 register allows kernel software to obtain the following information about the L1 data cache.

The Config1.DS field (bits 15:13) indicates the number of sets per way in the data cache. The I6500 L1 data cache sup-
ports 128 or 256 sets per way, which corresponds to a 32 KB or 64 KB cache, respectively.

The Config1.DL field (bits 12:10) indicates the line size for the data cache. The I6500 L1 data cache supports a fixed 
line size of 64 bytes as indicated by a value of 5 for this field.

The Config1.DA field (bits 9:7) indicates the set associativity for the data cache. The I6500 L1 data cache is fixed at 4-
way set associative as indicated by a value of 3 for this field.

These fields are all read-only; their values are determined during IP configuration and are built into the core.

3.4.2.3 CacheErr Register (CP0 register 27, Select 0)

The CacheErr register contains information regarding the type of cache error that occurred. This register provides 
information such as:

• Correctable or uncorrectable error 

• Array where the error occurred; L1I tag/data, L1D tag/data. FTLB tag/data, or L2 tag/data

• Fatal or non-fatal error

• The cache way where the error was detected

• Which one of four words in the L1 data cache data line caused the error

3.4.2.4 L1 Data Cache TagLo Register (CP0 register 28, Select 2)

This register stores the data cache address tag information of a cache line being read/written by the CACHE load tag/
store tag operations (bits 47:14 for a 64-KByte cache, and bits 47:13 for a 32-KByte cache). The register also stores 

Table 3.5 Data Cache Register Interface 

CP0 Registers CP0 number

Config Register 16, Select 0

Config1 Register 16, Select 1

CacheErr Register 27, Select 0

DTagLo Register 28, Select 3

DDataLo Register 28, Select 3

DDataHi Register 29, Select 3
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the coherence state (MESI) and ECC bits associated with the tag entry.  An error  flag bit indicates that an ECC error 
was detected by the index load tag operation. 

3.4.2.5 L1 Data Cache DataLo Register (CP0 register 28, Select 3)

This is a staging register for a special CACHE instruction, which loads or stores data from or to the cache line. This 
register stores the lower 32 bits of the load data.

3.4.2.6 L1 Data Cache DataHi Register (CP0 register 29, Select 3)

This is a staging register for a special CACHE instruction, which loads or stores data from or to the cache line. This 
register stores the ECC information from the load data, as well as a bit to indicate if the hardware detected an ECC 
error during the IndexLoadTag operation.

3.4.3 L2 Cache CM GCR Control Registers

The I6500 Coherency Manager (CM) uses the following GCR registers for L2 cache operations. Note that these regis-
ters are located in CM address space at the offsets shown. They are not located in CP0 space like the L1 instruction 
and data cache control registers. This is unlike most previous MIPS cores which do store L2 configuration informa-
tion in the CP0 registers. The CP0 Config5.L2C field indicates that the L2 cache information is stored in a memory-
mapped register instead of CP0.

Refer to the CM Coherence Manager chapter for more information on accessing these registers.

3.4.3.1 GCR_ERR_CONTROL (Offset 0x0038)

In this register, the L2_ECC_SUPPORTED field indicates that the L2 cache has ECC logic. The L2_ECC_EN bit 
enables ECC.

3.4.3.2 L2_Config Register (Offset 0x0130)

The L2_Config register provides information on the L2 cache configuration. This register contains the following 
information:

Table 3.6 L2 Cache GCR Register Interface

GCR Registers Offset Address Address Space

GCR_ERR_CONTROL 0x0038 GCR Global

L2_CONFIG 0x0130 GCR Global

L2_RAM_CONFIG 0x0240 GCR Global

L2_PFT_CONTROL 0x0300 GCR Global

L2_PFT_CONTROL_B 0x0308 GCR Global

GCR_L2_TAG_ADDR 0x0600 GCR Global

GCR_L2_TAG_STATE 0x0608 GCR Global

GCR_L2_DATA 0x0610 GCR Global

GCR_L2_ECC 0x0618 GCR Global

GCR_L2SM_COP 0x0620 GCR Global

GCR_L2SM_TAG_ADDR_COP 0x0628 GCR Global

CPC_STAT_CONFIG 0x0008 CPC Local
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• Read-only fields that provide the organization of the cache (set size, line size, and associativity).

• L2 bypass mode.

• Tag and data ECC write protocol. When these bits are set, the contents of the respective TAG_ECC and 
DATA_ECC registers are written into the ECC portion of the L2 RAM when an L2 store cacheop is executed.

3.4.3.3 L2_RAM_Config Register (Offset 0x0240)

This register contains three 2-bit fields that indicate the number of wait states for the Tag RAM’s, Data RAM’s and 
Way Select RAM’s. Another read-only bit is set by hardware when the hardware cache initialization is complete. This 
register also contains support for HCI supported/done, L2 dynamic sleep mode, and L2 dynamic sleep wake-up delay.

3.4.3.4 L2_PFT_Control Register (Offset 0x0300)

This register contains information on the L2 hardware prefetcher. This includes a prefetcher enable bit, the number of 
L2 prefetchers in the system, and a mask field that indicates the minimum operating system page size.

3.4.3.5 L2_PFT_Control_B Register (Offset 0x0308)

This register contains additional information on the L2 hardware prefetcher, including how the prefetch unit handles 
coherent write invalidate requests, L2 prefetching enable per port ID, and global code prefetch enable.

3.4.3.6 L2_TAG_ADDR Register (Offset 0x0600)

This register is loaded with the tag address from the L2 Tag RAMs when the L2 Load Tag CACHE instruction is exe-
cuted. The value of this register is written to the address portion of the L2 Tag RAM when an L2 Store Tag CACHE 
instruction is executed.

3.4.3.7 L2_TAG_STATE Register (Offset 0x0608)

This register is loaded with state information from the L2 Tag RAMs and LRU information when the L2 Load Tag 
CACHE instruction is executed. The value of this register is written to the tag state information portion of the L2 Tag 
RAM and the LRU data of the LRU and WS RAMs when an L2 Store Tag CACHE instruction is executed. This reg-
ister contains a tag state field, and a LRU state field.

3.4.3.8 L2_DATA Register (Offset 0x0610)

This register is loaded with data information from the L2 Data RAMs when the L2 Load Data CACHE instruction is 
executed. The value of this register is written to the L2 Data RAM when an L2 Store Data CACHE instruction is exe-
cuted. This register contains a 64-bit data field.

3.4.3.9 L2_DATA_ECC Register (Offset 0x0618)

This register is loaded with the ECC information from the L2 Tag and Data RAMs when the L2 Load Tag CACHE 
instruction is executed. If the GCR_L2_CONFIG.COP_DATA_ECC_WE bit is set then value of the DATA_ECC reg-
ister is written to the ECC portion of the L2 Data RAM when a L2 Store Tag CACHE instruction is executed. If the 
GCR_L2_CONFIG.COP_TAG_ECC_WE bit is set then value of the TAG_ECC register is written to the ECC portion 
of the L2 Tag RAM when a L2 Store Tag CACHE instruction is executed.

3.4.3.10 L2SM_COP Register (Offset 0x0620)

This register controls the L2 cache state machine during initialization, flush, and burst operations. The state machine 
can be started and stopped using the L2SM_COP_CMD field in bits 1:0. The L2SM_COP_TYPE field indicates the 
type of operation to be performed. The L2SM_COP_MODE bit indicates whether the L2 state machine is idle or run-
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ning. The L2SM_COP_RESULT field in bits 8:6 is a read-only field that indicates when the operation is complete 
and if errors were encountered.

3.4.3.11 L2SM_TAG_ADDR_COP Register (Offset 0x0628)

For L2 cache burst operations, this register is used to set the starting address in the cache using the 
L2SM_COP_START_TAG_ADDR field in bits 47:6. This field indicates the address at where the operation begins. 
The L2SM_NUM_LINES field in bits 63:48 indicates the number of lines to operate on relative to the starting 
address. The actual operation to be performed is programmed into the L2SM_COP register as described in the previ-
ous subsection.

3.4.3.12 CPC_CL_STAT_CONF Register (Offset 0x0008)

The hardware initialization operations described in the section entitled L2 Cache Initialization Options require that 
the L2_HW_INIT_EN bit (24) of this register is set before hardware initialization can proceed. 

3.5 L2 Cache Initialization Options

The I6500 Multiprocessing System provides three ways to initialize the L2 cache:

• Automatically selected hardware cache initialization

• Manually selected hardware cache initialization

• Software cache initialization

For hardware initialization, there are two types:

• L2 Tag array only (fast)

• L2 Tag and data arrays (slow)

Automatically selected hardware cache initialization (fast mode) initializes only the L2 tag array. Manually selected 
hardware cache initialization can initialize either the L2 tag array only (fast mode), or both the tag and data arrays 
(slow mode). For software initialization by the kernel, one or both arrays can be initialized depending on the design of 
the software.

Each of these options are described in the following subsections.

3.5.1 Automatic Hardware Cache Initialization

The I6500 MPS allows for the L2 cache to be automatically initialized by hardware when the following conditions 
are met at reset:

• The external input pin (si_cpc_l2_hw_init_inhibit) is driven low, indicating that automatic hardware initializa-
tion can proceed.

• Automatic hardware cache initialization is enabled by setting the L2_HW_INIT_EN bit in the CPC Local Status 
and Configuration register (CPC_CL_STAT_CONF_REG) located at offset 0x0008 in CPC CM-local address 
space.

• The L2 initialization delay has expired. Once this delay has expired, automatic hardware cache initialization can 
begin. 
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• MBIST is not enabled. If it is enabled, the cache initialization does not begin until the MBIST operation is com-
plete. Even if the delay has expired, the cache initialization does not begin until the MBIST has completed.

Once all of these conditions are met, the L2 cache Tag RAM is automatically initialized by hardware. No initializa-
tion code is required. Once the initialization is complete, hardware sets the HCI_DONE bit in the L2 RAM Configura-
tion register (GCR_L2_RAM_CONFIG) at offset address 0x0240 in GCR address space. Software can poll this bit to 
determine when the initialization is complete.

3.5.2 Manual Hardware Cache Initialization

The I6500 MPS allows for the L2 cache to be manually initialized by hardware. The user can choose to initialize only 
the Tag RAM, or both the Tag RAM and Data RAM, when the following conditions are met at reset:

• The external input pin (si_cpc_l2_hw_init_inhibit) is driven high, indicating that automatic hardware initializa-
tion described in the previous subsection is not selected and cannot proceed. 

For manual cache initialization, kernel software indicates the type of cache initialization to be performed using the 
following procedure.

1. Read the L2SM_COP_REG_PRESENT bit in the L2 Cache Op State Machine Config/Control register 
(GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine if this register is present. A ‘1’ 
in this bit indicates that the flush cache operation is supported. 

2. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register 
(GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine the state of the L2 state 
machine. This bit must be 0, indicating the state machine is idle, in order for cache initialization to proceed.

3. Set the type of operation to be performed by programming the L2SM_COP_TYPE field in bits 4:2 of the L2 
Cache Op State Machine Config/Control register (GCR_L2SM_COP). A value of 0x1 in this field indicates that 
only the Tag RAM is initialized. A value of 0x2 in this field indicates that both the Tag RAM and Data RAM is 
initialized. Note that this operation is slower than initializing the Tag RAM only.

4. Start the L2 state machine by setting the L2SM_COP_CMD field in bits 1:0 of the L2 Cache Op State Machine 
Config/Control register (GCR_L2SM_COP) to a value of 0x1. This starts the L2 cache initialization process. 

5. To determine the result of the initialization, poll the L2SM_COP_RESULT field in bits 8:6 of the L2 Cache Op 
State Machine Config/Control register (GCR_L2SM_COP). A value of 0x0 indicates the process is still running. 
A value of 0x1 indicates that the process completed with no errors. 

3.5.3 Software Cache Initialization

The I6500 MPS allows for the L2 cache to be manually initialized by software. Note that this type of initialization is 
much slower than either of the hardware initialization options described above. The code used to perform software 
cache initialization is shown in the section entitled Initializing the Level 2 Cache.

3.6 L2 Cache Flush, Burst, and Abort

This section describes the L2 cache flush, burst, and abort operations.
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3.6.1 L2 Cache Flush

An L2 flush operation can only be initiated by software. To flush the entire L2 cache in one operation, perform the 
following steps:

1. Read the L2SM_COP_REG_PRESENT bit in the L2 Cache Op State Machine Config/Control register 
(GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine if this register is present. A ‘1’ 
in this bit indicates that the flush cache operation is supported. 

2. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register to determine the 
state of the L2 state machine. This bit must be 0, indicating the state machine is idle, in order for flush operation 
to proceed.

3. Program the L2SM_COP_TYPE field in bits 4:2 of the L2 Cache Op State Machine Config/Control register to a 
value of 0x0. This selects the full cache flush operation.

4. Program the L2SM_COP_CMD field in bits 1:0 of the L2 Cache Op State Machine Config/Control register to a 
value of 0x1. This starts the cache flush operation.

5. To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6 of the L2 Cache Op 
State Machine Config/Control register. A value of 0x0 indicates the process is still running. A value of 0x1 indi-
cates that the process completed with no errors. 

3.6.2 L2 Cache Burst Operations

The L2 Cache supports the following burst operations (CacheOps): 

• Hit_Inv

• Hit_WB_Inv

• Hit_WB

These operations can be requested only by software and can be performed on a range of addresses in the cache. Burst 
operations can be executed using the following procedure. Note that the number of cache lines requested must be less 
than or equal to the available cache lines in the cache and also less than 65,536.

1. Program the starting address where the flush operation begins into the L2SM_COP_START_TAG_ADDR field 
in bits 47:6 of the GCR L2 Cache Op State Machine Tag Address register (GCR_L2SM_TAG_ADDR_COP) at 
offset address 0x0628 in GCR address space. 

2. Program the L2SM_COP_NUM_LINES field in bits 63:48 of the GCR L2 Cache Op State Machine Tag Address 
register to indicate the number of lines to be flushed from the starting address defined in step 1.

3. Program the type of operation to be performed on each line using the L2SM_COP_TYPE field in bits 4:2 of the 
L2 Cache Op State Machine Config/Control register. A value of 0x4 in this field indicates Hit Invalidate. A value 
of 0x5 indicates Hit Writeback Invalidate, and a value of 0x6 indicates Hit Writeback.

4. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register to determine the 
state of the L2 state machine. This bit must be 0, indicating the state machine is idle, in order for the CacheOp to 
proceed.
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5. If the state machine is idle as determined in step 4, program the L2SM_COP_CMD field in bits 1:0 of the L2 
Cache Op State Machine Config/Control register to a value of 0x1. This initiates the CacheOp starting from the 
address defined in step 1 and continuing for the number of lines defined in step 2. The operation to be performed 
in each of the selected cache lines is defined in step 3.

6. To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6 of the L2 Cache Op 
State Machine Config/Control register. A value of 0x0 indicates the process is still running. A value of 0x1 indi-
cates that the process completed with no errors.

3.6.3 Abort Operations

During the automatic hardware initialization process described in the section entitled Automatic Hardware Cache 
Initialization, no coherent requests are permitted. Even if a coherent request is generated during the initialization pro-
cedure, it is not allowed to enter the pipeline until the procedure is complete.

For the manual hardware initialization procedure described in the section entitled Manual Hardware Cache 
Initialization, coherent requests can be generated during this time but are not allowed. It is up to software to mange 
the flow of these requests during the initialization process. This is also true for the Flush operations described in the 
section entitled L2 Cache Flush, and cache burst operations described in the section entitled L2 Cache Burst 
Operations. 

3.7 Cache Initialization Routines

The cache must be initialized during power-up or reset to place the lines of the cache in a known state. This is accom-
plished via the boot code (or, for the L2, by hardware as described in the previous section). This section provides indi-
vidual routines for initializing the L1 instruction, L1 data, and L2 caches.

A sample boot code is shown in the following subsections. This code is designed to be portable to microprocessors 
that implement the MIPS ISA, and provides subroutines such as decoding the cache sizes and configuration parame-
ters from the CP0 registers are included.

3.7.1 Initializing the Instruction Cache

The Instruction cache can be initialized using either the a software invalidation routine, or the GINVI instruction. The 
GINVI instruction fully invalidates all remote primary instruction caches, or a specified single cache, whether local 
or remote. The local primary instruction cache is also fully invalidated in the case where all remote caches are to be 
invalidated. Which cache is invalidated depends on the rs field of the instruction.

3.7.1.1 L1 Instruction Cache Invalidation Using the GINVI Instruction

The GINVI instruction is new in the R6 architecture and is used to manage L1 instruction cache invalidation across 
all cores in the system, including single-cluster and multi-cluster systems. The GINVI instruction can be used in one 
of two ways:

• Invalidate all L1 instruction cache entries in all cores and all clusters simultaneously

• Invalidate all entries in a specific L1 instruction cache of any core in any cluster

The rs field in bits 20:16 of the GINVI instruction is a pointer to one of 32 general purpose registers (GPR) in the 
core. If the rs field is 0, then all L1 instruction caches of all cores in all clusters are to be invalidated. In this case, 
based on the value in the rs field, the core executing the GINVI instruction invalidates all entries of its own L1 
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instruction cache. In addition, the core sends a request to the CM, which in turn broadcasts the request to all other 
cores and clusters, instructing them to invalidate their own L1 instruction caches.

Individual L1 instruction caches can also be invalidated using the GINVI instruction. If the rs field is a non-zero 
value, the core reads the value of the GPR identified by the rs field and compares that register value to the value in the 
CP0 Global Number register, which contains the corresponding cluster number and core number. For example, 
assume that core 0 executes the GINVI instruction, and the rs field of the instruction contains a value of 5. Hardware 
would then read the GPR 5 register and compare the contents to its own CP0 Global Number register. If there is a 
match, the L1 instruction cache is invalidated for that core and the operation is complete. Note that if the rs field in 
the instruction is 0 as described above, the caches are invalidated automatically. No GPR register compare is per-
formed and the CP0 Global Number register is not used. 

If there is not a match, the core sends the request through the CM to all other cores in the cluster. In a multi-cluster 
system, the request is also routed by the CM3.5 through the coherent interconnect block used to communicate with 
other clusters in the system. Each core compares the value in the request to their own Global Number register to 
determine if it matches their unique cluster and core numbers. If there is a match, the corresponding L1 instruction 
cache is invalidated. Note that there is one Global Number register per core. Therefore, in a 4-core single-cluster sys-
tem, there are four L1 instruction caches, so the compare of the CM request would be done four times, once per core. 
All compares are done simultaneously and independently of one another.

The Global Number register assigns a number to each VP in a core, each core in a cluster, and each cluster. This 
allows each processing element throughout the entire system to have a unique ID number down to the VP level. So 
when the request is sent out by the CM, both the ClusterNum and CoreNum fields of the Global Number register are 
compared to determine the exact L1 instruction cache to be invalidated. Note that it is not required for the GINVI 
instruction to operate at the VP level because the L1 instruction cache is shared between all VP’s in a core. As such, 
the VPID field of the Global Number register is not used during the compare. 

3.7.1.2 L1 Cache Initialization Routine

This section provides the instruction cache initialization routine.

LEAF(init_icache)

// Can be skipped if Config7.HCI is set (Hardware Cache Initialization)
mfc0 TEMP1, C0_CONFIG, 7 // Read CP0 Config7
ext TEMP1, TEMP1, HCI, 1 // extract HCI
bne TEMP1, zero, done_icache
nop

// Determine how big the I$ is:
mfc0 CONFIG1_a2, C0_CONFIG1 // read C0_Config1

// Set line size
addiu LINE_SIZE_v1, zero, ILINE_SIZE

// Since the line size and associativity are fixed values
// the number of sets in the cache is what determines the size of the cache
// Here the set size is determined from the value in the C0_CONFIG register
ext  SET_SIZE_a0, CONFIG1_a2, CFG1_ISSHIFT, 3 // extract IS
li  TEMP1, 64
sllv SET_SIZE_a0, TEMP1, SET_SIZE_a0 // I$ Sets per way

// Set associativity (number of cache ways)
addiu ASSOC_a1, zero, IASSOC

li TEMP1, (LINES_PER_ITER)
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dmul SET_SIZE_a0, SET_SIZE_a0, ASSOC_a1 // Total number of sets
dmul TOTAL_BYTES, SET_SIZE_a0, LINE_SIZE_v1 // Total number of bytes
dmul BYTES_PER_LOOP_v0, LINE_SIZE_v1, TEMP1 // Total bytes per loop

// Set the starting address at the beginning of kgeg0 (0x80000000) which
// corresponds to way 0 index 0 of the cache
dli CURRENT_ADDR, 0x0000000080000000
dsrl TEMP1, BYTES_PER_LOOP_v0, 1
daddu CURRENT_ADDR, TEMP1, CURRENT_ADDR
daddu END_ADDR_a3, CURRENT_ADDR, TOTAL_BYTES // make ending address
dsubu END_ADDR_a3, END_ADDR_a3, BYTES_PER_LOOP_v0 // -1

// Clear TagLo/TagHi registers
mtc0 zero, C0_ITAGLO // write C0_ITagLo

next_icache_tag:
// To be more efficient this loop does 8 cache lines at a time
// Index Store Tag Cache Op invalidates the tag entry, clears the 
// lock bit, and clears the LRF bit

    cache 0x8, (ILINE_SIZE*-2)(CURRENT_ADDR)
    cache 0x8, (ILINE_SIZE*-1)(CURRENT_ADDR)
    cache 0x8, (ILINE_SIZE*0)(CURRENT_ADDR)
    cache 0x8, (ILINE_SIZE*1)(CURRENT_ADDR)
    cache 0x8, (ILINE_SIZE*-4)(CURRENT_ADDR)
    cache 0x8, (ILINE_SIZE*-3)(CURRENT_ADDR)
    cache 0x8, (ILINE_SIZE*2)(CURRENT_ADDR)
    cache 0x8, (ILINE_SIZE*3)(CURRENT_ADDR)

daddu    CURRENT_ADDR, BYTES_PER_LOOP_v0// Get next starting line address
bgeuc    END_ADDR_a3,  CURRENT_ADDR, next_icache_tag// Done yet?
nop // needed for MIPS64 R6 forbidden slot (following instruction is jalr)

done_icache:

    jalr zero, ra
    nop
END(init_icache)

3.7.2 Initializing the Data Cache

This section provides the data cache initialization routine.

#include <mips/regdef.h>// #defines for GPRs
#include <mips/m32c0.h>// #defines for CP0 registers
#include <core_config.h>// #defines for ILINE_SIZE, DLINE_SIZE and HCI

#define LINE_SIZE_v1 v1
#define BYTES_PER_LOOP_v0 v0
#define SET_SIZE_a0 a0
#define ASSOC_a1 a1
#define CONFIG1_a2 a2
#define END_ADDR_a3 a3
#define TOTAL_BYTES t0
#define CURRENT_ADDR t1
#define TEMP1 t2
#define TEMP2 t3
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#define LINES_PER_ITER 8 // number of cache instructions per loop

.set noreorder // Don't allow the assembler to reorder instructions.

.set noat     // Don't allow the assembler to use r1(at) for synthetic instr.

LEAF(init_dcache)

// Can be skipped if Config7[HCI] set (Hardware Cache Initialization)
mfc0 TEMP1, C0_CONFIG, 7 // Read CP0 Config7
ext TEMP1, TEMP1, HCI, 1 // extract HCI
bne TEMP1, zero, done_dcache
nop

mfc0 CONFIG1_a2, C0_CONFIG1 // read C0_Config1

// Set line size
addiu LINE_SIZE_v1, zero, DLINE_SIZE

// Since the line size and associativity are fixed values the number of sets in 
// the cache is what determines the size of the cache. Here the set size is 
// determined from the value in the C0_CONFIG register

ext SET_SIZE_a0, CONFIG1_a2, CFG1_DSSHIFT, 3 // extract DS
li TEMP1, 64
sllv SET_SIZE_a0, TEMP1, SET_SIZE_a0 // D$ Sets per way

// Set associativity (number of cache ways)
addiu ASSOC_a1, zero, DASSOC

li TEMP1, (LINES_PER_ITER)

dmul SET_SIZE_a0, SET_SIZE_a0, ASSOC_a1 // Total number of sets
dmul TOTAL_BYTES, SET_SIZE_a0, LINE_SIZE_v1 // Total number of bytes
dmul BYTES_PER_LOOP_v0, LINE_SIZE_v1, TEMP1 // Total bytes per loop

// Set the starting address at the beginning of kgeg0 (0x80000000) which
// corresponds to way 0 index 0 of the cache
lui CURRENT_ADDR, 0x8000
srl TEMP1, BYTES_PER_LOOP_v0, 1
addu CURRENT_ADDR, TEMP1, CURRENT_ADDR

addu END_ADDR_a3, CURRENT_ADDR, TOTAL_BYTES // make ending address
subu END_ADDR_a3, END_ADDR_a3, BYTES_PER_LOOP_v0 // -1

// Clear TagLo/TagHi registers
mtc0 zero, C0_TAGLO, 2 // write C0_DTagLo

// due to offset field restrictions, the code assumes the line size is not
// more than 64 bytes

next_dcache_tag:
// Index Store Tag Cache Op
// Invalidates the tag entry, clears the lock bit, and clears the LRF bit
cache 0x9, (DLINE_SIZE*-2)(CURRENT_ADDR)

    cache 0x9, (DLINE_SIZE*-1)(CURRENT_ADDR)
    cache 0x9, (DLINE_SIZE*0)(CURRENT_ADDR)
    cache 0x9, (DLINE_SIZE*1)(CURRENT_ADDR)
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    cache 0x9, (DLINE_SIZE*-4)(CURRENT_ADDR)
    cache 0x9, (DLINE_SIZE*-3)(CURRENT_ADDR)
    cache 0x9, (DLINE_SIZE*2)(CURRENT_ADDR)
    cache 0x9, (DLINE_SIZE*3)(CURRENT_ADDR)

daddu    CURRENT_ADDR, BYTES_PER_LOOP_v0// Get next starting line address
bgeuc    END_ADDR_a3,  CURRENT_ADDR, next_dcache_tag // Done yet?
nop // needed for MIPS64 R6 forbidden slot (following instruction is jalr)

done_dcache:

    jalr zero,      ra
    nop
END(init_dcache)

3.7.3 Initializing the Level 2 Cache

This section provides the L2 cache initialization routine. This routine is only used during the software initialization 
procedure. If either automatic or manual hardware initialization is invoked as described in the section entitled L2 
Cache Initialization Options, then this routine is not used.

#include <mips/regdef.h>// #defines for GPRs
#include <mips/m32c0.h>// #defines for CP0 registers
#include <core_config.h>// #defines for ILINE_SIZE, DLINE_SIZE and HCI

#define LINE_SIZE_v1 v1
#define BYTES_PER_LOOP_v0 v0
#define SET_SIZE_a0 a0
#define ASSOC_a1 a1
#define CONFIG1_a2 a2
#define END_ADDR_a3 a3
#define TOTAL_BYTES t0
#define CURRENT_ADDR t1
#define TEMP1 t2
#define TEMP2 t3

#define LINES_PER_ITER 8 // number of cache instructions per loop

.set noreorder // Don't allow the assembler to reorder instructions.

.set noat     // Don't allow the assembler to use r1(at) for synthetic instr.

LEAF(init_L2)

bnez r8_core_num, done_L2_cach_init// Only done from core 0.

// Read L2 Configuration register
ld CONFIG_L2_a2, GCR_L2_CONFIG(r22_gcr_addr) 
dli TEMP_s1, 0x1 // set to uncached (bypass)
dins CONFIG_L2_a2, TEMP_s1, 20, 1    // Insert bits
sd CONFIG_L2_a2, GCR_L2_CONFIG(r22_gcr_addr)// Write L2 Configuration register
// Read back the L2 Configuration register
ld CONFIG_L2_a2, GCR_L2_CONFIG(r22_gcr_addr) 

// Isolate L2$ Line Size
dext LINE_SIZE_v1, CONFIG_L2_a2, 8, 4 // extract LINE_SIZE

// Skip ahead if No L2$
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beq LINE_SIZE_v1, zero, done_l2
nop

dli TEMP_s1, 2
dsllv LINE_SIZE_v1, TEMP_s1, LINE_SIZE_v1
// decode for true L2$ line size in bytes

// Isolate L2$ Sets per Way
dext SET_SIZE_a0, CONFIG_L2_a2, 12, 4// extract SET_SIZE_a0
dli TEMP_s1, 64
dsllv SET_SIZE_a0, TEMP_s1, SET_SIZE_a0// decode for sets per way

// Isolate L2$ Associativity
dext ASSOC_a1, CONFIG_L2_a2, 0, 4// extract ASSOC_a1
daddiu ASSOC_a1,ASSOC_a1, 1// decode for # of ways

dli TEMP_s1, (LINES_PER_ITER)

dmul SET_SIZE_a0, SET_SIZE_a0, ASSOC_a1 // Get total number of sets in L2
dmul TOTAL_BYTES, SET_SIZE_a0, LINE_SIZE_v1 // Total number of bytes
dmul BYTES_PER_LOOP_v0, LINE_SIZE_v1, TEMP_s1 // Total bytes per loop

dli CURRENT_ADDR, 0x80000000// load a KSeg0 address for cacheops
daddu END_ADDR_a3, CURRENT_ADDR, TOTAL_BYTES // make ending address
dsubu END_ADDR_a3, END_ADDR_a3, BYTES_PER_LOOP_v0 // -1 bytes per loop

// Clear L2 Tag registers
sd zero, 0x600(r22_gcr_addr) // GCR_L2_TAG_ADDR
sd zero, 0x608(r22_gcr_addr) // GCR_L2_TAG_STATE
sd zero, 0x610(r22_gcr_addr) // GCR_L2_DATA

// L2$ Index Store Tag Cache Op. Invalidates the tag entry.

next_L2_cache_tag:

// Index Store Tag Cache Op
// Invalidate the tag entry, clear the lock bit, and clear the LRF bit
cache 0xB, (L2LINE_SIZE*-2)(CURRENT_ADDR)
cache 0xB, (L2LINE_SIZE*-1)(CURRENT_ADDR)
cache 0xB, (L2LINE_SIZE*0)(CURRENT_ADDR)
cache 0xB, (L2LINE_SIZE*1)(CURRENT_ADDR)
cache 0xB, (L2LINE_SIZE*-4)(CURRENT_ADDR)
cache 0xB, (L2LINE_SIZE*-3)(CURRENT_ADDR)
cache 0xB, (L2LINE_SIZE*2)(CURRENT_ADDR)
cache 0xB, (L2LINE_SIZE*3)(CURRENT_ADDR)
bne CURRENT_ADDR, END_ADDR_a3, next_L2_cache_tag // Done yet?
daddu CURRENT_ADDR, BYTES_PER_LOOP_v0 // Get next starting line address

done_L2_cach_init:

// Clear L2 ByPass (enable L2)
ld  a0, GCR_L2_CONFIG(r22_gcr_addr) // Read L2 Configuration register
dins a0, zero, 20, 1    // Insert bits
sd a0, GCR_L2_CONFIG(r22_gcr_addr) // Write L2 Configuration register

done_l2:

jalr zero,      ra
nop
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END(init_L2)

3.8 Flushing the L1 Data Cache

The I6500 L1 D-Cache uses a write-back policy, which means that the D-Cache may contain the only copy of data 
stored by the core.  In some situations, software may need to force modified data to be written back from the L1 D-
Cache to the L2-Cache (e.g. before powering down the core or when interacting with non-coherent DMA).  This sec-
tion describes the routine for writing back and invalidating all data from the L1 D-Cache. Note that this routine 
should not be executed until after the data cache has been initialized.

LEAF(flush_dcache)

mfc0 CONFIG1_a2, C0_CONFIG1 // read C0_Config1

// Isolate D$ Line Size
ext  LINE_SIZE_v1, CONFIG1_a2, CFG1_DLSHIFT, 3 // extract DL

// Skip ahead if No D$
beq  LINE_SIZE_v1, zero, done_flush_dcache
nop

li TEMP1, 2
sllv LINE_SIZE_v1, TEMP1, LINE_SIZE_v1// Now have true D$ line size in bytes

ext SET_SIZE_a0, CONFIG1_a2, CFG1_DSSHIFT, 3 // extract DS
li TEMP1, 64
sllv SET_SIZE_a0, TEMP1, SET_SIZE_a0 // D$ Sets per way

// Config1DA == D$ Assoc - 1
ext ASSOC_a1, CONFIG1_a2, CFG1_DASHIFT, 3 // extract DA
addiu ASSOC_a1, 1

li TEMP1, (LINES_PER_ITER)

dmul SET_SIZE_a0, SET_SIZE_a0, ASSOC_a1 // Total number of sets
dmul TOTAL_BYTES, SET_SIZE_a0, LINE_SIZE_v1 // Total number of bytes
dmul BYTES_PER_LOOP_v0, LINE_SIZE_v1, TEMP1 // Total bytes per loop
lui CURRENT_ADDR, 0x8000    // Get a KSeg0 address for cacheops
srl TEMP1, BYTES_PER_LOOP_v0, 1
addu CURRENT_ADDR, TEMP1, CURRENT_ADDR

addu END_ADDR_a3, CURRENT_ADDR, TOTAL_BYTES // make ending address
subu END_ADDR_a3, END_ADDR_a3, LINE_SIZE_v1 // -1

fnext_dcache_tag:

// Index writeback invalidate Cache Op
// Writes any modified data back to memory, invalidates the tag entry, clears 
// the lock bit, and clears the LRU bit
cache 0x1, (DLINE_SIZE*-2)(CURRENT_ADDR)
cache 0x1, (DLINE_SIZE*-1)(CURRENT_ADDR)
cache 0x1, (DLINE_SIZE*0)(CURRENT_ADDR)
cache 0x1, (DLINE_SIZE*1)(CURRENT_ADDR)
cache 0x1, (DLINE_SIZE*-4)(CURRENT_ADDR)
cache 0x1, (DLINE_SIZE*-3)(CURRENT_ADDR)
cache 0x1, (DLINE_SIZE*2)(CURRENT_ADDR)
cache 0x1, (DLINE_SIZE*3)(CURRENT_ADDR)



 

MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00 57

daddu    CURRENT_ADDR, BYTES_PER_LOOP_v0 // Get next starting line address
bgeuc    END_ADDR_a3,  CURRENT_ADDR, fnext_dcache_tag // Done yet?
nop // needed for MIPS64 R6 forbidden slot (following instruction is jalr)

done_flush_dcache:
sync
jalr zero,      ra
nop
END(flush_dcache)

3.9 Setting the KSEG0 Memory Space Cache Coherency

The Cache Coherency attribute for a mapped address is set by the TLB entry for that address. If the address resides in 
the KSGE0 memory range, the CCA is set in the Config.K0 field. The following code shows how this is done.

Note that the code that does the modification of the CCA for KSEG0 cannot be executed from a KSGE0 address. 
Rather, it must be done in KSEG1 or an uncached address (not KSGE0 uncached). For the I6500 the CCA is set to 
coherent because all cached access for the I6500 are coherent.

#define C0_CONFIG $16,0
LEAF(change_k0_cca)

// NOTE! This code must be executed in KSEG1 (not KSGE0 uncached). Set CCA for 
kseg0 to cacheable

mfc0 t1, C0_CONFIG // read C0_Config0
li t2, 5 // CCA for coherent
ins t1, t2, 0, 3 // instert K0
mtc0 t1, C0_CONFIG // write C0_Config
jalr.hb   zero, ra
nop

END(change_k0_cca)
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Exceptions

An exception is defined as any event that causes the core to halt normal execution and branch to a dedicated kernel 
software routine called an exception handler. The exception handler is responsible for determining and then resolving 
the exception. 

Exception events can occur within the core, which are known as internal events, or external to the core, which are 
known as external events. Internal events include arithmetic overflows, traps, watch address match, reserved instruc-
tions, misses in the translation lookaside buffer (TLB), etc. A complete list of exceptions is shown in Table 4.5. 

An external event is known as an interrupt. These are generated by asserting dedicated hardware interrupt pins. When 
a pin is asserted, an exception is taken. The kernel software then halts execution of the current instruction stream and 
branches to the interrupt handler to determine and resolve the interrupt. The MIPS architecture provides three types 
of hardware interrupt modes as described in the section entitled Overview of Exception Processing.

This chapter provides an overview of exception processing and a definition of the interrupts modes. Information on 
how to program the reset, boot, and general exception vectors in memory is also covered. A list of exception priorities 
is provided, along with an assembly language example of an exception handler.

4.1 Overview of Exception Processing

The I6500 core includes support for three interrupt modes:

• Interrupt Compatibility mode, in which the behavior of the I6500 core is identical to the behavior of an imple-
mentation of Release 1 of the Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to 
that interrupt. 

• External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support 
for an external interrupt controller that handles prioritization and vectoring of interrupts. The presence of this 
mode is denoted by the VEIC bit in the Config3 register. Note that the Global Interrupt Controller (GIC) serves as 
the external interrupt controller when the system is in EIC mode. Refer to the GIC chapter in this manual for 
more information.

Following reset, the I6500 core defaults to Interrupt Compatibility mode.

Table 4.1 shows the current interrupt mode of the processor as a function of the Coprocessor 0 register fields that can 
affect the mode. 

Table 4.1 Interrupt Modes 

StatusBEV CauseIV IntCtlVS Config3VINT Config3VEIC Interrupt Mode

1 x x x x Compatibility

x 0 x x x Compatibility
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4.1.1 Exception Types

Exceptions may be precise or imprecise. Precise exceptions are those for which the EPC can be used to identify the 
instruction that caused the exception. For precise exceptions, the restart location in the EPC register is the address of 
the instruction that caused the exception or, if the instruction was executing in the delay slot or forbidden slot of a 
branch (as indicated by the BD bit in the Cause register), the address of the branch instruction immediately preceding 
the slot. 

Conversely, imprecise exceptions are those for which no return address can be identified. A bus error is an example of 
an imprecise exception.

4.1.2 Detecting an Exception

When an exception is detected, the core takes the following actions:

• Suspends the normal sequence of instruction execution

• Loads the Exception Program Counter (EPC) register with the location where execution can restart after the 
exception has been serviced

• Enters kernel mode

• Forces execution of the software exception handler located at a specific address

Once invoked, the exception handler should save the context of the processor, including the contents of the program 
counter, the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so 
that it can be restored when the exception has been serviced. 

4.1.3 Exception Conditions

When a precise exception condition occurs, the instruction causing the exception and all those that follow it in the 
pipeline are cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced 
this instruction are inhibited. The value in the EPC (or ErrorEPC for errors or DEPC for debug exceptions) is suffi-
cient to restart execution. It also ensures that exceptions are taken in program order. 

Imprecise exceptions are taken after the instruction that caused them has completed and potentially after following 
instructions have completed.

x x 0 x x Compatibility

0 1 0 1 0 Vectored Interrupt

0 1 0 x 1 External Interrupt Controller (EIC)

0 1 0 0 0 Cannot occur because IntCtl VS cannot be non-zero if 
neither Vectored Interrupt nor External Interrupt Con-
troller mode is implemented.

“x” denotes don’t care

Table 4.1 Interrupt Modes (continued)

StatusBEV CauseIV IntCtlVS Config3VINT Config3VEIC Interrupt Mode
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4.2 Defining the Exception Vector Locations

When the processor is powered up or reset, the first instruction is fetched from the boot exception vector (BEV) in 
memory. Registers in the determine whether the exception vector is mapped to the lower 512 MBytes of physical 
memory, as in the legacy mode, or anywhere within the 4 GByte physical memory space. Both of these options are 
described in the following subsections.

The I6500 contains two registers located in CM register space that kernel software can program to set the base 
address for the reset and boot exception vector locations in memory:

• BEV Base Register (GCR_BEV_BASE)

• VP Local Reset Exception Base Register (GCR_CL_RESET_BASE)

The boot exception vector is stored in a global register and pertains to all VP’s in the core. This means that all VP’s 
will access the same BEV during boot-up. Conversely, the reset exception vector is stored in a local register, meaning 
that each VP can have its own reset vector code in memory.

Control bits in these registers also indicate whether the device maps the exception vector to the lower 512 MBytes of 
physical memory, or within the lower 4 GByte address range as described in the following subsections.

Both of these registers are described in detail in the CM chapter of the I6500 Technical Reference manual. 

4.2.1 Mapping the BEV to the Lower 512 MBytes of the Physical Address

The boot exception vector is placed in the lower 512 MBytes of physical memory by clearing the 
BEV_BASE_MODE bit in the GCR_BEV_BASE register located in the CM global register space. When this bit is 
cleared, bits 31:29 of the BEV_BASE field are forced by hardware to a binary value of 3’b101, causing the BEV to 
reside in the KSEG 1 address space (always uncached). 

The remaining bits 28:12 of the BEV_BASE field are used to place the vector somewhere within the lower 512 
MByte space. The hardware configuration default for the field is 0xBFC0_0. This default setting sets the BEV to a 
virtual address of FFFF_FFFF_BFC0_0000, which directly maps to physical address of 0x0000_0000_1FC0_0000.

This concept is shown in Figure 4.1.
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Figure 4.1 Mapping the BEV in the Lower 512 MBytes Using the MIPS Default Address 

4.2.2 Mapping the BEV to the Lower 4 GBytes of the Physical Address

In the case where it is necessary to be able to map the boot exception vector in physical memory to a location outside 
of the lower 512 MByte range described in the previous subsection, a 4 GByte mapping can be used. In this case the 
KX bit in the CP0 Status register must be set to enable 64-bit kernel segments.

The boot exception vector can be placed anywhere in the 4 GByte physical address space by setting the 
BEV_BASE_MODE bit in the GCR_BEV_BASE register located in the CM global register space. When this bit is 
one, bits 31:12 of the BEV_BASE field are used to map the boot exception vector anywhere within the 4 GByte 32-
bit physical address space. 

Setting the BEV_BASE_MODE bit maps the 64-bit virtual address to the XKPhys uncached space which starts at 
virtual address 0x9000_0000_0000_0000. This maps to a physical memory space of (0x0000_0000_0000_0000 - 
0x0000_0000_FFFF_FFFF). 

This concept is shown in Figure 4.2.
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FFFF_FFFF_FFFF_FFFF
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Figure 4.2 Mapping the Boot Exception Vector in 64-bit Mode 

4.2.3 Mapping the Reset Vector to the Lower 512 MBytes of the Physical Address

The reset exception vector is mapped in the same manner as the boot exception vector described above. The main dif-
ference is that the BEV is global to all VP’s in the core, whereas the reset exception vector is local to each VP in the 
core, meaning that each VP can have its own reset exception vector.

The reset exception vector is placed in the lower 512 MBytes of physical memory by clearing the 
RESET_BASE_MODE bit in the GCR_CL_RESET_BASE register located in CM Local address space. A logic ‘0’ 
in this field indicates legacy mode. When this bit is zero, bits 31:29 of the RESET_BASE field are forced by hard-
ware to a binary value of 3’b101, causing the reset exception vector to reside in the KSEG 1 address space (always 
uncached). 

The remaining bits 28:12 of the RESET_BASE field are used to place the reset vector somewhere within the 512 
MByte space. The hardware configuration default for the field is BFC0_0. This setting sets the BEV to a virtual 
address of FFFF_FFFF_BFC0_0000, which directly maps to physical address of 0x0000_0000_1FC0_0000.

This concept is the same as shown in Figure 4.1.

4.2.4 Mapping the Reset Vector to the Lower 4 GBytes of the Physical Address

In the case where it is necessary to be able to map the reset exception vector in physical memory to a location outside 
of the lower 512 MByte range described in the previous subsection, a 4 GByte mapping can be used. In this case the 
KX bit in the CP0 Status register must be set to enable 64-bit kernel segments.

The reset exception vector can be placed anywhere in the 4 GByte physical address space by setting the 
RESET_BASE_MODE bit in the GCR_CL_RESET_BASE register. When this bit is set to one, bits 31:12 of the 
RESET_BASE field are used to map the boot exception vector anywhere within the 4 GByte 32-bit physical address 
space. This is different from when RESET_BASE_MODE is 0 as described in the previous subsection, where 

9000_0000_0000_0000

9000_FFFF_FFFF_FFFF

0000_0000_0000_0000

FFFF_FFFF_FFFF_FFFF

XKPhys (CCA = 2)

64-bit Virtual Address

4 GByte Virtual Address
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BEV can be mapped anywhere in
the 4 GByte physical address space.
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RESET_BASE[31:29] are set to a fixed value, forcing the location of the reset vector into the lower 512 MBytes of 
the 4 GByte physical address space.

Setting the RESET_BASE_MODE bit maps the 64-bit virtual address to the XKPhys uncached space which starts at 
virtual address 0x9000_0000_0000_0000. This maps to a physical memory space of (0x0000_0000_0000_0000 - 
0x0000_0000_FFFF_FFFF). 

This concept is the same as shown in Figure 4.2.

4.2.5 Selecting Between the BEV and Reset Exception Vectors

The I6500 core provides a way for the programmer to select which exception vector is used on an exception, the boot 
exception vector or the reset exception vector. This is accomplished by programming the SELECT_BEV bit (0) in the 
GCR_CL_RESET_BASE register located at offset 0x0020 in CM GCR local address space.

If the SELECT_BEV bit is 0, then the VP uses the address stored in the GCR_CL_RESET_BASE register to jump to 
the corresponding Reset exception vector.

If the SELECT_BEV bit is 1, then the VP uses the address stored in the GCR_BEV_BASE register to jump to the 
global boot exception vector.

4.2.6 Exception Vector Base Address per Exception Type

Table 4.3 shows the offsets from the vector base address as a function of the exception. Note that the IV bit in the 
Cause register causes interrupts to use a dedicated exception vector offset, rather than the general exception vector. 

Table 4.2 Exception Vector Base Addresses 

Exception

StatusBEV

0 1

Reset RESET_BASE + (SELECT_BEV = 0)

NMI 0xFFFF_FFFF_BFC0.0000

Debug with DmxSegEn = 0 and 
DCRDVec = 0 in the VP_Control1 
register.

0xFFFF_FFFF_BFC0.0480

Debug with DmxSegEn = 0 and 
RDVec = 1 in the CP0 VP_Control1 
register.

DebugVectorAddr[31:7] || 7’b0000000

Debug with DmxSegEn = 1 and Pro-
betrap = 1 in the VP_Control1 register.

0xFFFF_FFFF_FF20.0200

Cache Error EBase63..30  1 EBase28..12  0x100 BEV_BASE + 0300

Other EBase63..12  0x000
Note that EBase31..30 has the fixed value of 
2’b10.

BEV_BASE + 0200

‘||’ denotes bit string concatenation
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Table 4.4 combines these three tables into one that contains all possible vector addresses as a function of the state that 
can affect the vector selection. To avoid complexity in the table, it is assumed that IntCtlVS = 0. 

Table 4.3 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 0x000

General Exception 0x180

Interrupt, CauseIV = 1 0x200

Reset, NMI None (uses either RESET_BASE or BEV_BASE)

Table 4.4 Exception Vectors 

Exception St
at

us
B

E
V

St
at

us
E

X
L

C
au

se
IV

D
m

xS
eg

En

Pr
ob

eT
ra

p

Vector
(IntCtlVS = 0)

Reset RESET_BASE1

1. Derived from VP Local Reset Exception Base register in CM3 GCR address space at offset 0x0020. This register is instantiated per-
VP, which allows each VP to have its own reset vector. 

NMI x x x x x 0xFFFF_FFFF_BFC0_0000

Debug x x x 0 x 0xFFFF_FFFF_BFC0_0480 (if VP_Control1.RDVec = 0)
DebugVectorAddr[31:7]  7’b0000000 (if VP_Control1.RDVec = 1)

Debug x x x 1 1 0xFFFF_FFFF_FF20.0200

TLB Refill 0 0 x x x EBase[63:12]  0x000

TLB Refill 0 1 x x x EBase[63:12]  0x180

TLB Refill 1 0 x x x BEV_BASE2 + 0x200

2. Derived from the global Boot Exception Vector Base Address register located in GCR address space at offset 0x0680. This register is 
instantiated per-core.

TLB Refill 1 1 x x x BEV_BASE + 0x380

Cache Error 0 x x x x EBase[63:30]  0b1  EBase[28:12]  0x100

Cache Error 1 x x x x BEV_BASE + 0300

Interrupt 0 0 0 x x EBase[63:12]  0x180

Interrupt 0 0 1 x x EBase[63:12]  0x200

Interrupt 1 0 0 x x BEV_BASE + 0380

Interrupt 1 0 1 x x BEV_BASE + 0400

All others 0 x x x x EBase[63:12]  0x180

All others 1 x x x x BEV_BASE + 0380

‘x’ denotes don’t care, 
‘||’ denotes bit string concatenation
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4.3 Core-Level Exception Priorities

Table 4.5 contains a list and a brief description of all core level exception conditions. The exceptions are listed in the 
order of their relative priority, from highest priority (Reset) to lowest (Load/store bus error). When several exceptions 
occur simultaneously, the exception with the highest priority is taken. The number of the exception taken is recorded 
in the ExcCode field of the CP0 Cause register. 

Table 4.5 Priority of Exceptions 

Cause.ExcCode 
Field Encoding

Exception Description ModeDecimal Hex

n/a n/a Reset Assertion of SI_Reset signal. In this case the device is reset. No 
specific register is written when a Reset exception occurs.

Root

n/a n/a DSS Debug Single Step. Prioritized above other exceptions, including 
asynchronous exceptions, so that one can single-step into inter-
rupt (or other asynchronous) handlers.

When a DSS exception occurs, hardware sets the CP0 Debug.DSS 
bit.

Debug

n/a n/a DINT Debug Interrupt. Caused by the assertion of the external DINT 
input, or by setting the appropriate DINT bit in the DBU Break 
register, which is part of the General Interrupt Controller (GIC) 
register set. Refer to the GIC chapter of this manual for more 
information. 

When a DINT exception occurs, hardware sets the CP0 
Debug.DINT bit. Note that there is one DINT bit per VP.

Debug

n/a n/a DDBLImpr Debug Data Break Load. Imprecise.

When a DDBLImpr exception occurs, hardware sets the CP0 
Debug.DDBLImpr bit. 

Debug

n/a n/a NMI Indicates the assertion of the SI_NMI signal. When an NMI inter-
rupt occurs, hardware sets the CP0 Status.NMI bit. 

Root

24 0x18 Machine Check - Lookup Root, or Root TLB related. This exception occurs during the TLB 
lookup process and can only occur as part of a guest (second step) 
address translation, root address translation, and root TLB opera-
tion (write, probe) whether for guest or root TLB. It is recom-
mended that the Machine-Check be synchronous.

A Machine check exception can have many causes. When this 
exception occurs during a lookup, the exact cause is encoded by 
hardware in the CP0 Root.PageGrain.MCAUSE field.

Root

Guest TLB related.
This can only occur as part of a guest address translation (first
step), and guest TLB operation (write, probe). It is recommended
that the Machine-Check be synchronous. 

A Machine check exception can have many causes. When this 
exception occurs during a lookup, the exact cause is encoded by 
hardware in the CP0 Guest.PageGrain.MCAUSE field.

Guest

0 0x00 Interrupt A root-enabled interrupt occurred. Root
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n/a n/a Deferred Watch - Root A Root deferred watch exception, deferred because EXL was a 
logic ‘1’ when the exception was detected, was asserted after 
EXL went to ‘0’. 

When a deferred WATCH exception occurs in Root mode, hard-
ware sets the WP bit in CP0 Root.Cause register. In addition, 
hardware sets the I, R, or W bits in the CP0 Root.WatchHi register 
depending on whether the exception occurred during a fetch (I), a 
load (R), or a store (W).

Root

0 0x00 Interrupt A guest-enabled interrupt occurred. Guest

n/a n/a Deferred Watch - Guest A Guest deferred watch exception, deferred because EXL was a 
logic ‘1’ when the exception was detected, was asserted after 
EXL went to ‘0’. 

When a deferred WATCH exception occurs in Guest mode, hard-
ware sets the WP bit in CP0 Guest.Cause register. In addition, 
hardware sets the I, R, or W bits in the CP0 Root.WatchHi register 
depending in whether the exception occurred during a fetch, a 
store, or a load.

Guest

n/a n/a DIB An EJTAG Debug Instruction Breakpoint (DIB) condition was 
asserted. Prioritized above instruction fetch exceptions to allow 
break on illegal instruction addresses.

When a DIB exception occurs, hardware writes the DBP bit of the 
CP0 Debug register. 

Root

23 0x17 WATCH - Instruction Fetch A root context watch address match was detected on an instruc-
tion fetch. Prioritized above instruction fetch exceptions to allow 
watch on illegal instruction addresses.

Root

A guest context watch address match was detected on an instruc-
tion fetch. Prioritized above instruction fetch exceptions to allow 
watch on illegal instruction addresses.

Guest

4 0x04 AdEL Instruction fetch address alignment error. A non-word-aligned 
address was loaded into the PC in the current mode.

Root or 
Guest

2 0x02 TLBL/XTLBL Refill - 
instruction fetch or load

Root TLB/XTLB refill - Instruction fetch or load. A Root TLB 
miss occurred on an instruction fetch or a data load. This can 
occur due to a Root or Guest translation.

Root

Guest TLB/XTLB refill - Instruction fetch or data load. A Guest 
TLB miss occurred on either an instruction fetch or a data load. 

Guest

TLB Invalid - instruction 
fetch or load

The valid bit was zero in the Root TLB entry mapping the address 
referenced by an instruction fetch. This can occur due to a Root or 
Guest translation.

Root

The valid bit was zero in the guest context TLB entry mapping 
the address referenced by an instruction fetch.

Guest

Table 4.5 Priority of Exceptions (continued)

Cause.ExcCode 
Field Encoding

Exception Description ModeDecimal Hex
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3 0x3 TLB Invalid - store The valid bit was zero in the Root TLB entry mapping the address 
referenced during a store. This can occur due to a Root or Guest 
translation.

Root

The valid bit was zero in the guest context TLB entry mapping 
the address referenced during a store.

Guest

20 0x14 TLBXI TLB Execute Inhibit.
An instruction fetch matched a valid Root TLB entry which had 
the XI bit set. This can occur due to a Root or Guest translation.

Root

An instruction fetch matched a valid Guest TLB entry which had 
the XI bit set.

Guest

30 0x1E I-cache Error - 
instruction fetch

A Cache error occurred on an instruction fetch. Root

6 0x06 IBE - instruction fetch A Bus error occurred on an instruction fetch. Root

n/a n/a SDBBP An EJTAG SDDBP instruction was executed. When this occurs, 
hardware programs a value of 0x9 into the DExcCode field of the 
CP0 Debug register.

Root

8 0x08 Sys 
(Validity exception)1

Execution of SYSCALL instruction. Root or 
Guest

9 0x09 Bp 
(Validity exception)1

Execution of BREAK instruction. Root or 
Guest

10 0x0A RI 
(Validity exception)1

Execution of a Reserved Instruction. Root or 
Guest

11 0x0B CpU 
(Validity exception)1

Execution of a coprocessor instruction for a coprocessor that is 
not enabled. The I6500 core supports the CP0 and CP1 coproces-
sors.

Root or 
Guest

Coprocessor unusable - guest. Access to a coprocessor was per-
mitted by the Guest.Status.CU1-2 bits, but denied by the setting 
of the Root.Status.CU1-2 bits.

Root

21 0x14 MSADis 
(Validity exception)1

MSA Disabled exception - Root. Root or 
Guest

MSA Disabled - guest. Access to the MSA unit was permitted by
Guest.Config5.MSAEn, but denied by Root.Config5.MSAEn.

Root

24 0x18 Machine Check - 
TLB Operation

Root TLB related. This exception is similar to the higher-priority 
Machine Check exception listed above, but occurs during the 
TLB operation rather than during the TLB lookup.
This can only occur as part of a Guest or Root address translation, 
or when a TLBP/TLBWI/TLBGP/TLBGWI is executed in root-
mode.

Root

Guest TLB related.
This can only occur as part of a Guest address translation, or 
when a TLBP/TLBWI instruction is executed in guest-mode.

Guest

15 0x0F FPE 
(Execution exception)2

Floating Point exception. Root or 
Guest

Table 4.5 Priority of Exceptions (continued)

Cause.ExcCode 
Field Encoding

Exception Description ModeDecimal Hex
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12 0x0C Ov 
(Execution exception)2

Execution of an arithmetic instruction that overflowed. Root or 
Guest

13 0x0D Tr 
(Execution exception)2

Execution of a trap (when trap condition is true). Root or 
Guest

27 0x1B VzGuest 
(Execution exception)2

Virtualized Guest exception. Note that all of the execution excep-
tions have the same priority. This encoding encompasses all types 
of virtualization guest exceptions. The exact type of exception is 
written to the CP0 GuestCtl0.GExcCode field. Refer to Table 
4.6 for more information and a listing of VzGuest exception pri-
orities.

Root

n/a n/a DDBL / DDBS Precise Debug Data Address Break. A precise EJTAG data break 
on load/store (address match only) or a data break on store 
(address + data match) condition was asserted. Prioritized above 
data fetch exceptions to allow break on illegal data addresses.

When this exception occurs, hardware sets the CP0 Debug.DDBL 
bit if the error occurred during a load, or the Debug.DDBS bit if 
the error occurred during a store.

Root

23 0x17 WATCH - data access A root context watch address match was detected on the address 
referenced by a load or store. 

Root

A guest context watch address match was detected on the address 
referenced by a load or store. 

Root

4 0x04 AdEL - Data Access Load address alignment error. An unaligned address, or an 
address that was inaccessible in the current processor mode was 
referenced by a load instruction.

Root or 
Guest

5 0x05 AdES - Data Access Store address alignment error. An unaligned address, or an 
address that was inaccessible in the current processor mode was 
referenced by a store instruction.

Root or 
Guest

2 0x02 TLBL/XTLBL refill - 
data access

Load TLB miss. A root TLB miss occurred on a data access. This 
can occur due to a Root or Guest translation.

Root

A guest TLB miss occurred on a data access. Root or 
Guest

3 0x03 TLBS Store TLB miss in Root or Guest mode. Root or 
Guest

2 0x2 TLB Invalid - data load On a data load, a matching root TLB entry was found, but the 
valid (V) bit was zero. This can occur due to a Root or Guest 
translation.

Root

On a data load, a matching guest TLB entry was found, but the 
valid (V) bit was zero.

Guest

3 0x3 TLB Invalid - data store On a data store, a matching root TLB entry was found, but the 
valid (V) bit was zero. This can occur due to a Root or Guest 
translation.

Root

On a data store, a matching guest TLB entry was found, but the 
valid (V) bit was zero.

Guest

Table 4.5 Priority of Exceptions (continued)

Cause.ExcCode 
Field Encoding

Exception Description ModeDecimal Hex
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19 0x13 TLBRI TLB Read Inhibit.
On a data read access, a matching root TLB entry was found, and 
the RI bit was set. This can occur due to a Root or Guest transla-
tion.

Root

On a data read access, a matching guest TLB entry was found, 
and the RI bit was set.

Guest

1 0x01 TLB Modified The dirty bit was zero in the root TLB entry mapping the address 
referenced by a store instruction.

Root

The dirty bit was zero in the guest TLB entry mapping the address
referenced by a store instruction.

Guest

30 0x1E Dcache Error - data access A cache error occurred on a load or store data reference. Root

7 0x07 DBE - Data bus error Load or store bus error. Imprecise. Root

n/a n/a DDBL Precise Debug Data Address Break. A precise EJTAG data break 
on load (address + data match only) condition was asserted. Prior-
itized last because all aspects of the data access must complete in 
order to do a data value match.

Root

1. All of the Instruction Validity exceptions have the same priority level.
2. All of the Execution exceptions have the same priority level.

Table 4.5 Priority of Exceptions (continued)

Cause.ExcCode 
Field Encoding

Exception Description ModeDecimal Hex
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4.4 Hypervisor Exception Priorities

In Table 4.5, the VZGuest exceptions entry, which appears as encoding 0x1B (27 decimal) in the CP0 Cause.ExcCode 
field, corresponds to all of the Guest related exceptions described in Table 4.6. When one of the guest-related excep-
tions in the table is taken, the actual exception type is encoded into the GuestCtl0.GExcCode field as shown. In addi-
tion, hardware writes a value of 0x1B to the CP0 Cause.ExcCode field, indicating a virtualization related exception. 

During guest mode execution, control can be returned to root mode at any time. When an exception condition is 
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any 
exception state is saved. As a result, exception state in the guest CP0 context is not affected.

The switch to root mode is achieved by setting Root.StatusEXL = 1 or Root.StatusERL = 1 (as appropriate) before any 
other state is saved. This ensures that all exception states are stored into root CP0 context, regardless of whether the 
processor was executing in root or guest mode when the exception was detected. 

Table 4.6 GuestCtl0 GExcCode Values 

Exception code value

Mnemonic DescriptionDecimal Hexadecimal

0 0x00 GPSI Guest Privileged Sensitive instruction. 
This exception is taken when execution of a Guest Privileged Sensitive 
Instruction was attempted from guest-kernel mode, but the instruction was not 
enabled for guest-kernel mode. Refer to the CP0 GuestCtl0 register for more 
information on enabling access to core functions.

1 0x01 GSFC Guest Software Field Change event. 
Note that the MC bit (29) of the CP0 GuestCtl0 register must be set in order 
for the an interrupt to occur on a software initiated change. If this bit is cleared, 
software initiated changes are not recognized.

2 0x02 HC Hypercall

3 0x03 GRR Guest Reserved Instruction Redirect. 
A Reserved Instruction or MDMX Unusable exception would be taken in 
guest mode. When GuestCtl0RI = 1, this root-mode exception is raised before 
the guest-mode exception can be taken.

4 - 7 0x4 - 0x7 RSV Reserved.

8 0x08 GVA Guest mode initiated Root TLB exception has Guest Virtual Address avail-
able.
Set when a Guest mode initiated TLB translation results in a Root TLB related 
exception occurring in Root mode and the Guest Physical Address is not avail-
able.

9 0x09 GHFC Guest Hardware Field Change event. 
Note that the MC bit (29) of the CP0 GuestCtl0 register must be set in order 
for the an interrupt to occur on a hardware initiated change. If this bit is 
cleared, hardware initiated changes are not recognized.

10 0x0A GPA Guest mode initiated Root TLB exception has Guest Physical Address avail-
able.
Set when a Guest mode initiated TLB translation results in a Root TLB related 
exception occurring in Root mode and the Guest Physical Address is available.

11 - 31 0x0B - 0x1F - Reserved
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4.5 General Exception Processing

With the exception of Reset, NMI, cache error, and Debug exceptions, exceptions have the same basic processing 
flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution is restarted. 
The BD bit is set appropriately in the Cause register. The value loaded into the EPC register is dependent on 
whether the instruction is in a forbidden slot, or the delay slot of a branch, or a jump which has delay slots. Table 
4.7 shows the value stored in each of the CP0 PC registers, including EPC.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the 
Cause register. 

• The CE and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The 
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor begins executing at the exception vector.

The value loaded into the EPC register represents the restart address for the exception and need not be modified by 
exception handler in the normal case. Kernel software need not look at the BD bit in the Cause register unless it 
wishes to identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither the EPC nor CauseBD are modified */
if (expn)
if StatusEXL = 1 then

vectorOffset  0x180
else

if (DS)
EPC  PC - 4
BD = 1

else
EPC  PC
BD = 0

endif
CauseBD  0

endif

/* Compute vector offsets as a function of the type of exception */
if ExceptionType = TLBRefill then

vectorOffset  0x000

Table 4.7 Value Stored in EPC, ErrorEPC, or DEPC on Exception

In Branch/Jump 
Delay/Forbidden Slot? Value stored in EPC/ErrorEPC/DEPC

No Address of the instruction

Yes Address of the branch or jump instruction (PC-4)
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elseif (ExceptionType = Interrupt) then
if (CauseIV = 0) then

vectorOffset  0x180
else

if (StatusBEV = 1) or (IntCtlVS = 0) then
vectorOffset  0x200

else
if Config3VEIC = 1 then

VecNum  CauseRIPL
else

VecNum  VIntPriorityEncoder()
endif
vectorOffset  0x200 + (VecNum  (IntCtlVS  0b00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */
endif /* if StatusEXL = 1 then */

CauseCE  FaultingCoprocessorNumber
CauseExcCode  ExceptionType
StatusEXL  1

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase  0xFFFF_FFFF_BFC0.0200
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC  vectorBase63..30  (vectorBase29..0  vectorOffset29..0)

/* No carry between bits 29 and 30 */

4.6 Exception Handling and Servicing Flowcharts

Figure 4.3 and Figure 4.4 contain flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions 

• TLB miss exceptions

Exceptions are handled by hardware and then serviced by kernel software. Note that unexpected debug exceptions to 
the debug exception vector at 0xFFFF_FFFF_BFC0_0200 may be viewed as a reserved instruction since uncon-
trolled execution of an SDBBP instruction caused the exception. The DERET instruction must be used at return from 
the debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET instruction 
returns to the address in the DEPC register.
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Figure 4.3 General Exception Servicing Guidelines (SW) 

ERET

MTC0 -
EPC,STATUS

EXL = 1
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* ERET is not allowed in the branch delay slot of 
another Jump Instruction
* PC  EPC; EXL  0
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Check Cause value & Jump to 
appropriate Service Code

* After EXL=0, all exceptions allowed 
(except interrupt if masked by IE) 

(Optional - only to enable Interrupts while keeping Kernel 
Mode)

MTC0 -
Set Status bits:

UM0, EXL0, IE1

MFC0 -
Context, EPC, Status, Cause

* Unmapped vector so TLBMod, TLBInv, or TLB Refill 
exceptions not possible
* EXL=1 so Watch and Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

Comments
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Figure 4.4 TLB Exception Servicing Guidelines (SW) 

Comments

ERET

Service Code

MFC0 -CONTEXT

* Unmapped vector so TLBMod, TLBInv, or TLB Refill 
exceptions not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

* Load the mapping of the virtual address in Context 
Reg. Move it to EntryLo and write into the TLB
* There could be a TLB miss again during the mapping 
of the data or instruction address. The processor will 
jump to the general exception vector since the EXL is 
1. (Option to complete the first level refill in the general 
exception handler or ERET to the original instruction 
and take the exception again)

* ERET is not allowed in the branch delay slot of 
another Jump Instruction
* PC  EPC; EXL  0
* LLbit  0
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4.7 Interrupt Mode Code Examples

As described in the section entitled Overview of Exception Processing, the I6500 supports three interrupts modes. 
The following subsections show how an interrupt handler might look for in each of these modes.

4.7.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 0x180 (if CauseIV = 0) or vector offset 0x200 (if 
Cause IV = 1). This mode is in effect when any of the following conditions are true:

• CauseIV = 0, or

• StatusBEV = 1, or

• IntCtlVS = 0, which is the case if vectored interrupts are not implemented or have been disabled.

Here is a typical exception handler for compatibility mode:

/*
 * Assumptions:
 *  - CauseIV = 1 (if it were zero, the interrupt exception would have to
 *                 be isolated from the general exception vector before arriving
 *                 here)
 *  - GPRs k0 and k1 are available
 *  - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_CAUSE /* Read Cause register for IP bits */
mfc0 k1, C0_STATUS /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted.  Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simple UART interrupt). The
 *   SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
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 *   case the software model determines which interrupts are disabled during
 *   the processing of this interrupt. Typically, this is either the single
 *   StatusIM bit that corresponds to the interrupt being processed, or some
 *   collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simply return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * saving any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below cannot cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_STATUS /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/*   this must include at least the IM bit */
/*   for the current interrupt, and may include */
/*   others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_STATUS /* Modify mask, switch to kernel mode, */

/*   re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with the core running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /*   and EPC */
mtc0 k0, C0_STATUS /* Restore the original value */
mtc0 k1, C0_EPC /*  and EPC */
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/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

4.7.2 Vectored Interrupt Mode

In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be 
used to direct each interrupt to a dedicated handler routine. VI mode is in effect when all the following conditions are 
true: 

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS  0

• CauseIV = 1

• StatusBEV = 0

A typical software handler for Vectored Interrupt mode bypasses the entire sequence of code following the 
IVexception label shown for the compatibility mode handler code example described in the previous subsection. 
Instead, the hardware performs the prioritization, dispatching directly to the interrupt processing routine.

A nested interrupt is similar to that shown for compatibility mode. Such a routine might look as follows:

NestedException:
/*
* Nested exceptions typically require saving the EPC and Status registers,
* disabling the appropriate IM bits in Status to prevent an interrupt loop,
* putting the processor in kernel mode, and re-enabling interrupts. The sample 
* code below cannot cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/

mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_STATUS /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/*   this must include at least the IM bit */
/*   for the current interrupt, and may include */
/*   others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/*   re-enable interrupts */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /*   and EPC */
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mtc0 k0, C0_STATUS /* Restore the original value */
mtc0 k1, C0_EPC /*  and EPC */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

4.7.3 External Interrupt Controller Mode

External Interrupt Controller (EIC) mode redefines the way that the processor interrupt logic is configured in order to 
provide support for an external interrupt controller. The interrupt controller is responsible for prioritizing all inter-
rupts, including hardware, software, timer, fast debug channel, and performance counter interrupts, and directly sup-
plying to the processor the vector number of the highest priority interrupt. 

EIC interrupt mode is in effect if all of the following conditions are true:

• Config3VEIC = 1

• IntCtlVS  0

• CauseIV = 1

• StatusBEV = 0

The Config3VEIC = 1 bit register indicates support for EIC mode. The state of this bit is reflected in the EIC_MODE 
read-write bit of the GIC VL Control (GIC_VL_CTL) register. This bit can be written by kernel software to enable or 
disable EIC mode. This is useful for systems that may want to power up in legacy mode, then switch to EIC mode. 

In EIC mode, the processor sends the state of the interrupt requests (CauseIP1..IP0) and the timer, performance coun-
ter, and fast debug channel interrupt requests (CauseTI/PCI/FDCI) to the GIC, which prioritizes these interrupts with 
other hardware interrupts.

A typical exception handler for EIC mode bypasses the entire sequence of code following the IV exception label 
shown for the Compatibility-mode handler above. Instead, the hardware performs the prioritization, dispatching 
directly to the interrupt processing routine. 

A nested interrupt is similar to that shown for compatibility mode. It must also copy CauseRIPL to StatusIPL to prevent 
lower priority interrupts from interrupting the handler. Here is an example of such a routine:

NestedException:
/*
* Nested exceptions typically require saving the EPC and Status registers,
* disabling the appropriate IM bits in Status to prevent an interrupt loop, 
* putting the processor in kernel mode, and re-enabling interrupts. 
* The sample code below can not cover all nuances of this processing and is
* intended only to demonstrate the concepts.
*/

mfc0 k1, C0_CAUSE /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_STATUS /* Get Status value */
sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
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mtc0 k0, C0_STATUS /* Modify IPL, switch to kernel mode, */
/*   re-enable interrupts */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */
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Coherence Manager

The Coherence Manager (CM) communicates with all cores and other devices in the I6500 Multiprocessing System 
(MPS), as well as coherent devices external to the I6500 MPS, to achieve system-wide coherence. In a multi-cluster 
system, the CM also interfaces to an external Network-on-Chip (NOC) controller, which facilitates communication 
between clusters.

The CM includes an integrated low-latency shared L2 cache. A directory-based coherence protocol is used to effi-
ciently maintain coherence among the L1 data caches of each I6500 core, with up to eight I/O coherence units 
(IOCUs), providing the I/O subsystem coherent access to the L1 Data and L2 caches.

This chapter provides an overview of the CM register ring bus and associated table that lists each device ID on the 
bus. The programmer uses this information to access these devices. An overview of the CM register address space is 
also provided. In addition, the chapter describes how to program the CM to perform various functions, including set-
ting the base addresses in memory, accessing another VP in the same core, accessing a VP in another core, accessing 
the General Interrupt Controller (GIC), Cluster Power Controller (CPC), and/or Debug Unit (DBU) registers via the 
CM, and setting the clock ratios between the various I6500 system components. For the exact revision number of the 
Coherence Manager, refer to the Release Notes.

5.1 CM Overview

This section provides an overview of the CM and describes information necessary for programming, including the 
register ring bus and device ID information, and the CM register map. 

5.1.1 CM Interface — Register Ring Bus and Device ID’s

The CM communicates with the various system devices via a register ring bus. The devices connected to the CM are 
shown in Figure 5.1. The I6500 Multiprocessing System can have up to 6 cores per cluster.
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Figure 5.1 Interface Ports and Register Ring Bus Interface to the CM  

Certain devices such as the cores and IOCU’s connect to the CM via an internal proprietary bus called the MIPS 
Coherence Protocol (MCP) bus. This bus consists of three unidirectional channels used to maximize throughput. The 
bus implements a credit-based protocol to allow multiple simultaneous in-flight operations. In the above figure, note 
that the I6500 MPS supports up to a total of eight cores and IOCUs together. For example, if there are four cores, 
there can only be up to four IOCUs.

The CM accesses the registers of the various devices shown in Figure 5.1 using a register ring bus, indicated by the 
dotted line. As shown above, the CM and DBU can function as both Master (M) and Slave (S). All other devices, 
including the cores, are slave devices. Each device on the ring bus is assigned a 6-bit ID value stored in the destina-
tion ID (dest_id) or source ID (src_id) fields of the packet being sent. When a device initiates an access to the regis-
ters of another device, the corresponding ID is attached to the packet. Only the device whose ID number matches that 
in the packet accepts the transaction. Table 5.1 lists the ID values for each logic block shown in Figure 5.1. These val-
ues are used to write to registers in these blocks as described in the following subsections. All values not shown are 
reserved. 

Table 5.1 Register Ring Bus Device ID Values 

dest_id / src_id
(Decimal value)

dest_id / src_id
(Hexadecimal value) Device Accessed

0 0x00 Core 0

1 0x01 Core 1

2 0x02 Core 2

3 0x03 Core 3

4 0x04 Core 4

5 0x05 Core 5

16 0x10 IOCU0

Coherence Manager 3.5

Memory

CPC

Core 0 Core 5

MCP MCP

GIC

MCP

IOCU 0 IOCU 7

MCP MCP

AXI4

From I/O

AXI4

From I/O

Debug

S

M

S

M

SSSS

GCRS

Custom 
GCR

Register Ring Bus

S
Unit

(DBU)

S = Slave
M = Master

Legend:

NOC

AXI4ACE
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The following example shows the path taken in order for core 0 to read a register from the GIC. The data path for this 
access is shown in Figure 5.2. This figure is similar to Figure 5.1, except only those devices involved in the example 
transaction are shown. The red color indicates the access request path, and the blue color indicates the data return 
path. The following sequence is enumerated in Figure 5.2. In this example the following actions would occur.

1. Core 0 sends a request to the CM over the MCP ‘Request’ bus. Note that Core 0 cannot access the GIC registers 
directly because it is only a Slave on the ring bus as indicated.

2. The CM processes this request, assigns the appropriate ID number as defined in Table 5.1, and drives this request 
onto the register ring bus through its Master port.

3. The GIC decodes the ID on the bus and gets a match.

4. The GIC then fetches the requested data and drives the data onto the ring bus.

5. Data is returned to the CM through its dedicated register ring bus Slave port.

17 0x11 IOCU1

18 0x12 IOCU2

19 0x13 IOCU3

20 0x14 IOCU4

21 0x15 IOCU5

22 0x16 IOCU6

23 0x17 IOCU7

24 0x18 GIC

25 0x19 User Defined GCR’s

26 0x1A Memory

32 0x20 CM

33 0x21 CPC

34 0x22 GCR

35 0x23 DBU Master

36 0x24 DBU dmxseg_normal

37 0x25 DBU dmxseg_debug

40 0x28 AUX 0

41 0x29 AUX 1

42 0x2A AUX 2

43 0x2B AUX 3

62 0x3E No Destination Error

63 0x3F No Destination OK

Table 5.1 Register Ring Bus Device ID Values (continued)

dest_id / src_id
(Decimal value)

dest_id / src_id
(Hexadecimal value) Device Accessed
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6. The CM sends the requested data back to Core 0 over the dedicated MCP ‘Response’ bus.

Figure 5.2 Data Path of Core 0 Access of IOCU0 Registers

Refer to the section entitled Core-Local and Core-Other Register Usage for more information on how these ID values 
are assigned and the programming sequence used when accessing these various devices.

5.1.2 CM GCR Register Map

The 32 KB CM GCR register block is divided into four 8 KB subblocks which perform different functions. Table 5.2 
shows the address map of the four, 8 KB GCR sub-blocks relative to the GCR_BASE as defined in the GCR Base 
Register. This 32 KByte register block can be mapped anywhere in memory on a 32 KByte boundary. The Address 
Range column shows bits 47:15. Bits 14:0 are always zero so as to align on a 32 KB boundary. 

This concept is described in Figure 5.3. For simplicity, the MIPS default value of 0x0000_1FBF_8 is used for the 
GCR base address. Each register block is assigned to a contiguous 8 KB space as shown in the figure.

Table 5.2 I6500 Control Space Address Map (Relative to GCR_BASE[47:15]) 

Address Range
GCR_BASE[47:15] Size (bytes) Description

0x0000_0000 - 0x0000_1FFF 8 KB Global Control Block. Contains registers pertaining to the global sys-
tem functionality. All cores can access this block of registers.

0x0000_2000 - 0x0000_3FFF 8 KB Core-Local Control Block (aliased for each I6500 core). Contains reg-
isters pertaining to the I6500 core issuing the request. Each core has its 
own copy of registers within this block.

0x0000_4000 - 0x0000_5FFF 8 KB Core-Other Control Block (aliased for each I6500 core). This block of 
addresses gives each Core a window into another core’s Core-Local 
Control Block. Before accessing this space, the Core-Redirect 
Register in the Local Control sub-block must be set with the CORE-
NUM of the target Core.

0x0000_6000 - 0x0000_7FFF 8 KB Global Debug Block. Contains global registers useful in debugging the 
I6500 MPS.

Coherence Manager 3

Core 0

3-channel

GIC

MCP

M

SSRegister Ring Bus

S

S = Slave
M = Master

Legend:

MCP bus 1

2

34
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Figure 5.3 CM Register Addressing Scheme Using the MIPS Default in GCR_BASE 

5.1.3 Core-Local GCRs

The Core-Local GCR block contains the configuration and status registers for a given core and/or Virtual Processor 
(VP). Some of the Core-Local registers are per-core, and some are per-VP. A core can access its own Core-Local 
block to determine the configurable parameters for that core. Parameters include base address assignments, reset 
exception base, etc.

5.1.4 Core-Other GCRs

The Core-Other GCR block is a single block that all of the cores have access to, and provides a way for one core to 
access the Core-Local registers of another core. Before a core can access the Core-Other space, the Core-Redirect 
register in that core’s own Core-Local Control Block must be set with the core number (CORENUM) of the target 
core. In this case, a particular core would program the Core-Redirect register in its own Core-Local block with the 
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core number to be accessed. The core would then write the contents of the register to be accessed into the Core-Other 
address space. 

5.1.5 Core-Local and Core-Other Register Usage

As listed in Table 5.2, the CM provides two blocks of registers. 

• Core-Local (offset range 0x2000 - 0x3FFF)

• Core-Other (offset range 0x4000 - 0x5FFF)

The CM maintains a copy of selected registers in these blocks. For registers that are instantiated per-core, the CM 
keeps one copy of the register per core. For registers that are instantiated per-VP, the CM keeps one copy of the regis-
ter for each VP in a given core. The Core-Local address space contains the GCR registers for that core. The Core-
Other address space allows a core to access the GCR registers for another core’s Core-Local GCR block. 

These registers can be located anywhere in physical memory if this option is selected during IP configuration. If this 
option is not selected, the location of these registers are located at the MIPS default address of 0x0000_1FBF_8000. 

The Core-Local block represents registers corresponding to the core that is accessing them. If a core wishes to modify 
the contents of its own set of CM GCR registers, it writes to the Core-Local block located at the address range shown 
in Table 5.2. If a core wishes to program the GCR registers of another core, it selects the core number and writes this 
value into the Core-Redirect register in its own Core-Local block at offset address 0x0018. The actual register in the 
other core to be written would use the corresponding offset in the Core-Other block shown in Table 5.2.

5.1.6 Cluster to Cluster Accesses

In addition to facilitating core-to-core and VP-to-VP accesses within the same cluster, the I6500 also allows for clus-
ter-to-cluster accesses. This allows a core or VP in one cluster to access the registers in a core or VP of another cluster 
through the Network-On-Chip (NOC) interface. This interface is shown in Figure 5.4. 

Figure 5.4 Cluster-to-Cluster Register Accesses Using the NOC 

For example, a VP within a core in Cluster 1 can access and update a register in a VP in Cluster 2 as shown. The 
access is processed by the CM and driven onto the NOC. The NOC then routes the request to the appropriate cluster 
where the access is scheduled by the CM in the destination cluster.
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If a register access is within a given cluster as shown above, the NOC is not used and the access is placed onto the 
Register Ring Bus (RRB) described in the section entitled CM Interface — Register Ring Bus and Device ID’s. If the 
register access is to another cluster, the NOC is used to transfer the access request where it is placed onto the RRB of 
the destination cluster. There are dedicated unidirectional AXI bus interfaces that move the access from the cluster to 
the NOC, and from the NOC to the cluster. A separate bidirectional bus is used to manage coherence as shown above.

For a programming example of a cluster to cluster access, refer to the section entitled Cluster to Cluster Access.

5.2 Verifying Overall System Configuration

At IP configuration time, the customer selects the number of cores in the system, the number of I/O coherency units 
(IOCU’s), and the number of address regions. When the device is built, these values are hard wired into the Global 
Configuration register at offset address 0x0000. All of these fields are read-only and allow kernel software to quickly 
determine the system configuration.

CM GCR Register Interface

Reading the Global Configuration register provides the following information:

• Bits 7:0 — Number of cores in the system (up to 6)

• Bits 11:8 — Number of IOCU’s (up to 8)

• Bits 19:16 — Number of MMIO address regions

• Bits 22:20 — Number of auxiliary memory ports

• Bits 29:23 — Number of clusters in the system

• Bit 31 — Indicates if an Inter-Thread Communication Unit is present

• Bits 39:32 — Indicates the ID number for the current cluster. Each cluster has a unique ID number.

• Bit 40 — Indicates if a Debug Unit is present

• Bits 43:41 — Indicates the type of hardware interface to the Network-On-Chip (NOC) coherent intercon-
nect.
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5.3 Programming the Base Addresses in Memory

This section describes how to set the base address of the various CM logic blocks. 

CM GCR Register Interface

The address map is programmable through a set of registers located in the GCR as summarized in Table 5.3. Up to 5 
fixed-size regions can be mapped anywhere in physical memory using the associated Base Address register. Each 
register indicates the starting address of that block in memory. 

Figure 5.5 provides an example of memory mapping for all of the aforementioned regions at different locations using 
the MIPS default base address.

Table 5.3 Setting the Base Address for the CM Peripheral Devices 

Block Register Name
Offset 

Address Field Name Bits Description

GCR GCR_BASE 0x0008 GCR_BASE_ADDR 47:15 GCR Base Address register. Sets the base 
address of the GCR registers. Note that this 
region must reside on a 32 KB boundary.

Custom 
GCR

GCR_CUSTOM_BASE 0x0060 CUSTOM_ BASE 47:16 Custom Base Address register. Sets the base 
address of the Customer GCR registers. This 
region may be disabled via the GGU_EN bit in 
the GCR Custom Base Register. Note that this 
region must reside on a 64 KB boundary.

GIC GCR_GIC_BASE 0x0080 GIC_BASE_ADDR 47:17 GIC Base Address register. Sets the base 
address of the GIC. This GIC region may be 
disabled via the GIC_EN bit in the 
GCR_GIC_BASE register. Note that this region 
must reside on a 128 KB boundary.

CPC GCR_CPC_BASE 0x0088 CPC_BASE_ADDR 47:15 CPC Base Address register. Sets the base 
address of the CPC. This CPC region may be 
disabled via the CPC_EN bit in the 
GCR_CPC_BASE register. Note that this region 
must reside on a 32KB boundary.

IOCU GCR_IOC_BASE 0x0100 IOC_BASE_ADDR 47:15 Sets the base address of the IOCU. This block 
contains the IOMMU and associated registers. 
The IOCU region may be disabled via the 
IOCU_REG_EN bit in the GCR_IOCU_BASE 
register. Note that this region must reside on a 
32 KB boundary.
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Figure 5.5 Address Map Programming Example 

The following register programming sequence is used to configure the memory map as shown in Figure 5.5 above. 
For more information on the corresponding Base Address register, refer to the I6500 Registers companion document.

1. To set the base address of the GIC registers to the MIPS default, program the GIC_BASE field of the GIC Base 
register located at offset 0x0080 with a value of 0x0000_1BDC. This sets the base address of the GIC registers. 
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2. To set the base address of the CPC registers to the MIPS default, program the CPC_BASE field of the CPC Base 
register located at offset 0x0088 with a value of 0x0000_1BDE_0. This sets the base address of the CPC regis-
ters. 

3. To set the base address of the CM GCR registers to the MIPS default, program the GCR_BASE field of the GCR 
Base register located at offset 0x0008 with a value of 0x0000_1FBF_8. This sets the base address of the 32 KB 
block of GCR registers. This block is divided into four 8 KB subblocks that contain the Global, Core-Local, 
Core-Other, and Debug register blocks. 

4. To set the base address of the IOCU registers to the MIPS default, program the IOCU_BASE_ADDR field of the 
IOCU Base Address register located at offset 0x0100 with a value of 0x0000_1FD2. 

5.4 CM Register Access Permissions

A requestor can request access to selected CM registers. A requestor can be either a core or an IOCU. The CM allows 
up to eight requestors in a system in any combination of cores and IOCU’s, from 8 cores and no IOCU’s, to 8 IOCU’s 
and no cores, or anywhere in between.  Note that all requestor’s have read permission to all CM GCR registers, but 
write access to these registers must be granted.

CM GCR Register Interface

During boot time, the programmer can decide which requestor’s are provided access to the CM registers by program-
ming the ACCESS_EN field of the Global CSR Access Privilege register located at offset 0x0120. Bits 5:0 and 23:16 
of this field each correspond to a specific requestor. In bits 5:0, each bit corresponds to a core, with bit 0 mapping to 
core 0 and bit 5 mapping to core 5. For bits 23:16, bit 16 maps to IOCU0, and bit 23 maps to IOCU7. The MIPS 
default for this field is 0x0000_0000_00FF_00FF, meaning that all requestor’s in the system (all cores and all 
IOCU’s) have access to the CM register set. 

To disable access to the registers for a particular requestor, the programmer need only clear the corresponding bit of 
this field to zero and all write requests to the CM registers by that requestor are ignored.

Note that by setting one of these bits described above, write access is granted to the requestor for both the CM GCR 
register block, as well as the Cluster Power Controller (CPC) register block. Refer to the CPC Programming chapter 
in this manual for more information.

Register Access Permissions Code Example

The base address for the location of the CM GCR registers is programmed into the CP0 CMGCRBase register. In this 
example, the base address could be any value. As a reference, a value of 0x0000_1FBF_8 is used (MIPS default) to 
indicate the base location of the CM global control registers. In this case, the base value is read and an offset is added 
to it to derive the exact register address. 

By default all IOCU’s and cores are enabled. This example reprograms the CM Global Access Privilege register to 
enable only IOCU0 and core 0.

#define c0_CMGCRBASE $15,3

mfc0 t1, c0_CMGCRBASE // move contents of CP0 CMGCRBase register into t1
dsll t1, t1, 4 // shift value in t1 left by 4 bits
li t2, 0xA000_0000 // assign KSeg1 base
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or t1, t2, t1 // create VA from CGRBase
li t0, 0x0001_0001 // set value to enable IOCU0 and core0 only
sd t0, 0x120 (t1) // write value in t0 to the base address in t1 plus 

// an offset of 0x120.

5.5 CM Programming Examples

This section describes how to program the CM to accomplish the following tasks:

• Section 5.5.1 “Programming Another Virtual Processor (VP) in the Same Core”

• Section 5.5.2 “Programming Local GCR’s Corresponding to Another Core”

• Section 5.5.3 “Accessing the CPC Local Registers via the CM”

• Section 5.5.4 “Powering Up the Debug Unit (DBU) via the CM”

• Section 5.5.5 “Setting the Clock Ratios Between the I6500 System Components”

• Section 5.5.7 “Accessing the Core-Local and Core-Other Registers in the Global Interrupt Controller”

5.5.1 Programming Another Virtual Processor (VP) in the Same Core

The I6500 MPS provides the ability for a given core to access registers within the same core, but corresponding to a 
different Virtual Processor (VP). This is done using the VP-Local GCR Redirect register located at offset address 
0x0018 in the Core-Local register block. There is one instantiation of this register per VP. As such, there can be up to 
four of these registers in a given core (in a 4-VP configuration). Bits 13:8 (CORE_REDIRECT) of this register indi-
cate the core to be accessed, and bits 2:0 (VP_REDIRECT) indicate the VP to be accessed. In this case, a different VP 
is being accessed inside the same core. 

For example, assume that core 1, VP 0 wants to modify the reset exception base address in core 1, VP 2. To facilitate 
this transaction, kernel software would program a value of 1 into the CORE_REDIRECT field in bits 13:8 of the VP-
Local GCR Redirect register located at offset address 0x0018, indicating the transaction is intended for core 1. Soft-
ware would also program a value of 2 into the VP_REDIRECT field of this same register, indicating that the transac-
tion is intended for VP 2. Software would then write the modified value to the Core-Local Reset Exception Base 
Address register located at offset address 0x0020. Both of these registers are instantiated per-VP in the I6500 core. 

When accessing another core or VP's Core-Local registers, set the CLUSTER_REDIRECT_EN bit 31 of the VP 
Local GCR Redirect register at offset 0x0018 to 0 to indicate that the access stays in this cluster.  Also set the  
BLOCK_REDIRECT field in bits 25:24 to 0 to indicate that the access should be redirected to the Core-Local block 
of registers. 

In addition to allowing one VP to access another VP within a given core, the I6500 allows different register blocks 
within the same VP to be accessed. This is accomplished by setting the CLUSTER_REDIRECT_EN bit 31 of the VP 
Local GCR Redirect register at offset 0x0018 to 0 to indicate that the access stays in this cluster, and by setting the 
BLOCK_REDIRECT field in bits 25:24 of the VP-Local GCR Redirect register located at offset address 0x0018. In 
this example, the Core-Local Reset Exception Base Address register being modified is in the Core-Local register 
block of VP2, so the value in the BLOCK_REDIRECT field would be 0 to indicate the Core-Local block of registers. 
However, if a Global register block or Debug register block was being accessed by VP1, the value in this field would 
reflect the appropriate register block. The BLOCK_REDIRECT field supports other values to allow core-other 
accesses to be redirected to other blocks such as the Global block or Debug block when accessing registers in other 
clusters.

CM GCR Register Interface
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The following steps show the register programming sequence for this example. Refer to the I6500 Registers compan-
ion document for more information on this register.

1. Core 1 writes a value of 0x01 to the CORE_REDIRECT field (bits 13:8) of the VP-Local GCR Redirect register 
located at offset 0x0018 (physical address of 0x1FBF_A018). This indicates that the register to be programmed 
corresponds to core 1. 

2. Core 1 also writes a value of 0x2 to the VP_REDIRECT field (bits 2:0) of the VP Local Redirect register located 
in its own Core-Local block at offset 0x0018 (physical address of 0x1FBF_A018). This indicates that the register 
to be programmed corresponds to VP 2 of core 1. 

3. Since the Reset Exception Base register is instantiated on a per-VP basis, Core 1 writes the appropriate value into 
the EXCBase field (bits 31:12) of the VP-Local Reset Exception Base register located in the Core-Other block at 
offset 0x0020 (physical address of 0x1FBF_C020). 

This concept is shown in Figure 5.6.

Figure 5.6 Core 1, VP 0 Accessing the BEV_BASE GCR of Core 1, VP 2 

5.5.2 Programming Local GCR’s Corresponding to Another Core

In a multiprocessor system, it is common for one core to boot up first, then have that core boot the other cores in the 
system. In the following example, assume core 0 is booted up first. Then core 0 is used to program the GCR registers 
in core 1. This example examines how core 0 would program the boot exception vector location for core 1, VP 0 by 
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setting its Reset Exception Base register. Note that this example uses the MIPS default addressing scheme and 
assumes that core 1 has already been powered up through the CPC. If the core has not been powered up, refer to the 
section entitled Accessing the CPC Local Registers via the CM. 

CM GCR Register Interface

The following steps show the register programming sequence for this example. Refer to the I6500 Registers compan-
ion document for more information on this register.

1. Core 0 writes a value of 0x01 to the CORE_REDIRECT field (bits 13:8) of the VP-Local Redirect register located 
located at offset 0x0018 (physical address of 0x1FBF_A018). This indicates that the register to be programmed 
corresponds to core 1. 

2. In addition, Core 0 also writes a value of 0x0 to the VP_REDIRECT field (bits 2:0) of the VP-Local Redirect reg-
ister. This indicates that the register to be programmed corresponds to VP 0 of core 1. 

3. Core 0 writes the appropriate value into the Reset_Base field (bits 31:12) of the Reset Exception Base register 
located in the Core-Other block at offset 0x0020 (physical address of 0x1FBF_C020). Because core 0 is setting 
the Reset base value for core 1, as opposed to its own core, the write is done to the Core-Other address block. 

Whenever one core reads or writes to the registers associated with another core, the number of the core to be written 
is programmed into that cores local CORE_REDIRECT field as described in step 1 above. Similarly, the number of 
the VP to be written is programmed into that cores local VP_REDIRECT field as described in step 2 above. The actual 
register to be programmed is accessed via the Core-Other block as described in step 3 above. 

Since there is only one Core-Other block in Table 5.2, this means that when one core wants to access any of the other 
cores in the system, the register to be accessed always resides in the Core-Other block, regardless of the number of 
cores in the system. The state of the CORE_REDIRECT field in the VP_Local Redirect register in that core’s own 
Core-Local space determines which core the data is written to. This concept is shown in Figure 5.7.
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Figure 5.7 Core 0 Accessing the Reset Exception Base Register of Core 1 

The reset vector can either be placed in the lower 512 MBytes of address space, or anywhere within the 4 GByte 
address space, depending on the programming of the RESET_BASE_MODE bit of the Reset Exception Base register 
located in the Core-Other block at offset 0x0020. This bit can be set during device configuration and is normally not 
changed once it is set. 

Note that in addition to the CORE_REDIRECT field used to indicate the number of the destination core as described 
in #1 above, a core can determine its own core number by reading the CORENUM field in its own Core-Local 
Identification register located at offset 0x0028 in the GCR Core-Local address space. 

5.5.3 Accessing the CPC Local Registers via the CM

This example shows how Core 0 uses the Core-Local and Core-Other registers to power up core 1. This sequence is 
different that the one described in the section entitled Programming Local GCR’s Corresponding to Another Core 
above, which assumes that core 1 has already been powered up. Note that this example uses the default addressing 
scheme. Refer to the I6500 Registers companion document for more information on this register.

CM GCR Register Interface

The register programming sequence for this example would be as follows:

1. Core 0 writes a value of 0x01 to the CORE_REDIRECT field (bits 13:8) of the VP_Local Redirect register located 
in its own Core-Local block at offset 0x0018 (physical address of 0x1FBF_A018 in Figure 5.5). This indicates 
that the register to be programmed corresponds to core 1.
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2. Core 0 then writes a value of 0x3 into the CMD field (bits 3:0) of the CPC Local Command register located in the 
CPC Core-Other block at offset 0x0000 (physical address of 0x1BDE_2000 in Figure 5.5). A value of 0x3 in this 
field indicates to the CPC to power up the core indicated in the CORE_REDIRECT field (bits 13:8) of the 
VP_Local Redirect register. 

This concept is shown in Figure 5.8.

Figure 5.8 Core 0 Using the CPC Core Local Register to Power Up Core 1 

5.5.4 Powering Up the Debug Unit (DBU) via the CM

The I6500 MPS contains a dedicated Debug Unit (DBU) that is used to perform debug and analysis on the various 
components in the system. This section describes how to power up the Debug Unit by accessing the DBU copy of the  
CPC Core-Local Command register.  The DBU has a ring ID value of 35, or 0x23 as described in Table 5.1. The ring 
ID value of 35 is used in the CORE_REDIRECT field of the VP-Local Redirect register to indicate that Core-Other 
accesses should target the DBU copy of the register.  Note that this example uses the MIPS default addressing 
scheme.
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The register programming sequence for this example would be as follows. Refer to the I6500 Registers companion 
document for more information on this register.

1. Core 0 writes a value of 0x23 to the CORE_REDIRECT field (bits 13:8) of the VP-Local Redirect register located 
in its own Core-Local block at offset 0x0018 (physical address of 0x1FBF_A018 in Figure 5.5). This indicates 
that the register to be programmed corresponds to the Debug Unit (DBU). 

2. Core 0 then writes a value of 0x3 into the CMD field (bits 3:0) of the CPC Local Command register located in the 
CPC Core-Other block at offset 0x0000 (physical address of 0x1BDE_4000 in Figure 5.5). A value of 0x3 in this 
field indicates to the CPC to power up the component indicated in the CORE_REDIRECT field (bits 13:8) of the 
GCR Redirect register, which in this case is the DBU (0x23).

This concept is shown in Figure 5.9.

Figure 5.9 Core 0 Using the CPC Core Other Register to Power Up the Debug Unit 

5.5.5 Setting the Clock Ratios Between the I6500 System Components

In addition to powering up elements such as cores and the DBU as described in the previous subsections, the I6500 
Multiprocessing System also allows these different elements to run at various clock frequencies relative to each other. 
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This section describes how to set a 4:1 clock ratio between the core clock and IOCU 0 by writing to an IOCU 0 copy 
of the CPC Local Clock Change Control register in the CPC address space.  The IOCU 0  has a ring ID value of 16, 
or 0x10  as described in Table 5.1. The ring ID value of 0x10 is used in the CORE_REDIRECT field of the VP-Local 
Redirect register to indicate that Core-Other accesses should target the IOCU copy of the CPC register.  Note that this 
example uses the MIPS default addressing.

CM GCR Register Interface

The following steps show the register programming sequence for this example. Refer to the I6500 Registers compan-
ion document for more information on these registers.

1. Core 0 writes a value of 0x10 to the CORE_REDIRECT field (bits 13:8) of the VP-Local Redirect register located 
in its own Core-Local block at offset 0x0018 (physical address of 0x1FBF_A018 in Figure 5.5). This indicates 
that the clock ratio to be programmed corresponds to IOCU 0. 

2. Core 0 then writes a value of 0x3 into the CLK_RATIO field (bits 3:0) of the CPC Local Clock Change Control 
register located in the CPC Core-Other block at offset 0x0018 (physical address of 0x1BDE_4018 in Figure 5.5). 
A value of 0x3 in this field indicates a clock ratio of 4:1 between the prescaled clock and IOCU 0. Hardware 
reads the VP-Local Redirect register in step 1 to determine that IOCU 0 is the device to be programmed with the 
associated clock ratio.

3. Core 0 writes a value of 0x1 into the CLK_RATIO_CHANGE_EN field (bit 8) of the CPC Local Clock Change 
Control register located in the CPC Core-Other block at offset 0x0018 (physical address of 0x1BDE_4018 in 
Figure 5.5).  A value of 0x1 in this field enables the clock domain to change rates when the clock change 
sequence is started.  

4. Initiate the clock change sequence by writing a value of 0x1 into the SET_CLK_RATIO field (bit 0x8) of the 
CPC Global Clock Control register in the CPC Global block at offset 0x0028 (physical address of 
0x1BDE_0028).

5. Poll for clock changes complete by reading the CPC Global Clock Control register in the CPC Global block at 
offset 0x0028 (physical address of 0x1BDE_0028).  If the field SET_CLK_RATIO (bit 8) is set, then the clock 
change sequence is still pending.  If the field CLK_CHANGE_ACTIVE (bit10) is set, then the clock change 
sequence is in process.  If both fields are zero, then the clock change has completed. 

This concept is shown in Figure 5.10.
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Figure 5.10 Core 0 Using the CPC Core Local Register to Set the IOCU 0 Clock Ratio 

The above procedure can be used to set the clock ratio for any of the programmable clock domains. For example, to 
program the clock ratio for IOCU 1, simply substitute a value of 0x11 for 0x10 in the above example since IOCU 1 is 
located at ring bus ID 17. Similarly, to set the main memory clock ratio, simply substitute a value of 0x1A in the 
above example since main memory is located at ring bus ID 26. Once the device has been selected, the CLK_RATIO 
field can be used to set the ratio between the prescaled clock and all selected devices to a value between 1:1 and 1:8, 
except the CM, which is limited to a clock ratio of 1:1 or 1:2.

5.5.6 Cluster to Cluster Access

As described in Section 5.1.6, the I6500 CM allows a core or IOCU in one cluster to access a software visible regis-
ters in a different cluster. 

To access a register on a remote cluster, the kernel software must use the GCR_CL_REDIRECT register. There is one 
GCR_CL_REDIRECT register per VP and IOCU in the cluster. The kernel software writes the target cluster, core, 
VP, and target register block into this register, along with setting the CLUSTER_REDIRECT_EN bit. Then an access 
to the target device's Core-Other block causes the CM to drive the request to the NOC for transfer to the target cluster.

In the following example, core 1 in Cluster 1 reads the Global CM Error Cause register in Cluster 2 to determine the 
cause of an error.

0x1FBF_A000

0x1FBF_BFFF

CM Core-Local

0x1FBF_C000

CPC Clock Change Control

0x1FBF_8000

0x1FBF_9FFF

CM Global Control

63 1413 0

0x10 0x1FBF_A018
1. Software programs the CORE_REDIRECT

and VP_REDIRECT fields of the VP-Local
Redirect register in the VP-Local address

space at offset 0x1FBF_A018.

63 4 3 0

0x3 0x1BDE_4018
2. Software programs the CLK_RATIO field of
the CPC Local Clock Change Control register

in the CPC Core-Other address space at
address 0x1BDE_4018.

8 7 3 2

0x0
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The following steps show the register programming sequence for this example. Refer to the I6500 Registers compan-
ion document for more information on the registers discussed in this example.

1. Core 1 writes a value of 0x0000_0000_8102_0000 to the VP-Local Redirect register located in its own Core-
Local block at offset 0x0018 (physical address of 0x1FBF_A018. This indicates an access to Cluster 2. The value 
written to this register is broken down as follows:

• The CLUSTER_REDIRECT_EN bit 31 is set to enable a request to another cluster. Setting this bit enables 
use of the CLUSTER_REDIRECT field.

• The BLOCK_REDIRECT field in bits 25:24 is set to 0x1 to indicate that a register in the CM Global Regis-
ter Block of the destination cluster is to be accessed.

• The CLUSTER_REDIRECT field in bits 21:16 is set to 0x02 to indicate that Cluster 2 is being accessed.

• The CORE_REDIRECT field in bits 13:8 VP_REDIRECT field in bits 2:0 are not programmed in this 
example as the access is not to a specific core of VP of cluster 1, but rather a GCR register inside the CM. 

2. Core 1 then reads the value in the GCR Error Cause (GCR_ERR_CAUSE) register in the Core-Other block at 
offset address 0x0048. Hardware reads the VP-Local Redirect register in step 1 to determine that read should be 
routed to cluster 2. Based on this information, the CM sends the access through the NOC to the other cluster. The 
CM in the destination cluster decodes the information and reads its local GCR_ERR_CAUSE register. The result 
is then returned through the NOC to the CM in cluster 1.

5.5.7 Accessing the Core-Local and Core-Other Registers in the Global Interrupt Con-
troller

In the previous subsections, the VP-Local, Core-Local, and Core-Other registers of the CM have been used to modify 
parameters in other cores, other VP’s within the same core, and other non-core devices on the register ring bus. This 
programming mechanism is applicable for all devices on the register ring bus except the Global Interrupt Controller 
(GIC). The GIC has it’s own Core-Local and Core-Other register set that is instantiated on a per-VP basis. The VP-
Local Redirect register is used to select the target VP copy of the register to access when a GIC Core-Other register is 
read or written. For more information, refer to the Global Interrupt Controller (GIC) chapter of this manual.

5.6 Coherency Enable

The I6500 Multiprocessing System allows each power domain to be placed in either a coherent or non-coherent 
mode. Because the I6500 implements a directory-based coherence protocol, MIPS recommends that each domain be 
placed in coherent mode during normal operation. The non-coherent mode should only be used during boot-up and 
power-down. Software should not execute any cacheable memory accesses (instruction fetch or load/store) while 
coherence is disabled.

In the CM, coherency is either enabled or disabled using the Core-Local Coherence Enable register at offset 0x0008 
in the Core-Local register block. 

CM GCR Register Interface

Coherency is enabled when hardware asserts the external Coherence Enable pin. The state of this pin is reflected in 
bit 11 (COH_EN) of the Core-Local Status and Configuration register. This register resides in the CM local register 
block at offset address 0x0008. There is one of these registers per power domain.

For more information on this register, refer to the I6500 Registers companion document included in the release.
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Note that if a power domain is in coherent mode and a change to the power state is initiated, the caches must be 
flushed prior to disabling coherence mode.

Coherency Enable Code Example

li t1, CPC_BASE_ADDR // move CPCBase  value into t1
li t0, 0x0000_0001 // Enable coherence
sd t0, 0x2008 (t1) // write value in t0 to the base address in t1 plus

// an offset of 0x2008 to access the Coherence Enable
// register.

5.7 L2 Cache Prefetch

The coherence manager in the I6500 MPS contains an L2 prefetcher used to enhance L2 performance. The L2 
prefetcher is managed using two CM GCR registers.

• L2 Prefetch Control register (GCR_L2_PFT_CONTROL) at offset 0x0300

• L2 Prefetch 2nd Control register (GCR_L2_PFT_CONTROL_B) at offset 0x0308

These registers control the following L2 capabilities:

• Minimum operating system page size (supports 4K - 64K pages in multiples of two)

• Prefetch enable

• Coherent invalidate requests

• Code prefetch enable

• L2 prefetching port ID. Each bit corresponds to a CM port ID. If the bit is set, the corresponding CM port is mon-
itored for prefetching.

5.7.1 Prefetch Enable

The number of prefetch units implemented in the I6500 Multiprocessing System is determined by the user during IP 
configuration. This value is programmed by hardware into the NPFT field (bits 7:0) of the L2 Prefetch Control regis-
ter (GCR_L2_PFT_CONTROL) located at offset address 0x0300 in the GCR Global register space. This read-only 
field allows kernel software a convenient way to determine the number of prefetch units implemented.

CM GCR Register Interface

Prefetching is enabled by setting the PFTEN bit in the GCR_L2_PFT_CONTROL register. Note that the number of 
prefetch units implemented as described above must be greater than 0 in order for this bit to have meaning.

5.7.2 Select Ports for L2 Prefetching

The CM allows up to 8 ports to be selected for L2 prefetching. These ports correspond to the (up to) six cores and (up 
to) eight IOCU’s as shown in Figure 5.1. L2 prefetching can be selected for some of all of these ports using the 8-bit 
PORT_ID field in the GCR_L2_PFT_CONTROL_B register. Each bit of this field corresponds to a single port. There 
can be any number of cores and IOCU’s up to the maximum or eight. For example, if there are 8 cores, then there 
must be 0 IOCU’s to make a total or 8, or 4 cores and 4 IOCU’s, etc. If a given bit is set, L2 prefetching is monitored 
for that port. If the bit is cleared, L2 prefetching does not occur. 
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The field is organized as cores followed by IOCU’s starting from bit 0. So in a 4-core and 2-IOCU system, bits 0 - 3 
of the field would represent cores 0 - 3 respectively. Bits 4 - 5 of the field would represent IOCU 0 - 1 respectively. 
Bits 6 - 7 would not be used in this example.

5.7.3 Enabling Code Prefetch

In addition to data prefetching, the CM allows prefetching of the code stream. Code prefetching is enabled by setting 
the CEN bit in the GCR_L2_PFT_CONTROL_B register. 

5.8 CM Uncached Semaphore Management

The I6500 CM provides a mechanism for managing uncached semaphores. This mechanism is managed by the 
Global CM Semaphore (GCR_SEM) register located at offset address 0x0640.

A write to this register with write data bit 31 = 1 is inhibited if the SEM_LOCK bit is already 1. A write to this regis-
ter proceeds normally if the write data has bit 31 = 0 or if the SEM_LOCK bit is currently 0. 

CM GCR Register Interface

To acquire the semaphore:

1. Write this register with bit 31 = 1 and the lower bits with the threads VPID.

2. Read the register.

3. If the value read in step #2 is the same as the value as written in step #1, then a semaphore has been acquired, else 
go to step #1.

To release the semaphore:

1. Write the register with bit 31 = 0.

For more information, refer to the CM GCR Semaphore Lock register (GCR_SEM) at offset 0x0640 in the I6500 
Registers companion document.

5.9 Custom GCR Implementation

The CM provides the ability for the system designer to implement a 64 KB block of custom registers that can be used 
to control system level functions. These registers are defined by the system designer and then instantiated into the 
design. 

The existence of a custom GCR implementation in the system is selected during IP Configuration. If this option is 
selected, the GGU_EX bit is set in the Global Custom Status register at offset address 0x0068 in GCR Global address 
space. This bit indicates that a custom GCR block is connected to the CM.

CM GCR Register Interface

The CM provides two global registers to handle the implementation of custom registers: the Global Custom Base reg-
ister at offset 0x0060, and the Global Custom Status register located at offset 0x0068. If a custom block is imple-
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mented, the starting address in memory of the 64 KB block is determined using the 16-bit CUSTOM_BASE field in 
the Global Custom Base register. Note that the CUSTOM_BASE field does not have a default base address and this 
field is undefined at reset. Therefore, it is programmer’s responsibility to program the base address into this field dur-
ing boot time if a custom GCR block is implemented.

In addition, the selected address region where the registers will reside must be enabled by setting the GGU_EN bit in 
the Global Custom Base register. Note that the accessibility of this bit depends on the state of the GGU_EX bit. If 
GGU_EX is cleared (zero), indicating that no custom GCR is connected to the CM, then the GGU_EN bit becomes 
RO and is not accessible by the kernel. If this bit is set, indicating that a custom GCR is connected to the CM, then the 
GGU_EN bit becomes R/W and is accessible by kernel software.

This concept is described in Figure 5.11. 

Figure 5.11 Relationship Between the CM_Present Signal and the GGU_EX and GGU_EN Bits at Reset

5.10 Error Processing

The CM detects, reports, and handles several types of hardware and software errors. When an error is detected, infor-
mation that may be useful in debugging the error is captured in the Global CM Error Cause Register and Global CM 
Error Address Register. The encoding of these registers is determined by the type of error. For more information, refer 
to the registers in the I6500 Technical Reference manual.

CM GCR Register Interface

When an error occurs, hardware updates the read-only ERR_TYPE field (bits 63:58) of the Global CM Error Cause 
register with one of the values listed in Table 5.4. When this field is written, hardware also updates the 58-bit 
ERROR_INFO field that provides additional information about the error. The organization of this field varies 
depending on the value in the ERR_TYPE field. When an error occurs, kernel software can read this register to deter-
mine the type of error and take the appropriate actions.

If a second error is detected, it is captured in bits 63:58 of the CM Error Multiple Register. The only exception is if 
the first error was an L2 RAM correctable error (MP_CORRECTABLE_ECC_ERR). In this case, the second error 
overwrites the first error stored in the Global CM Error Cause register. Note that for the second error, only the error 
type is captured, not the associated error address.
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The GCR_ERROR_CAUSE.ERR_TYPE field and the GCR_ERROR_MULT.ERR_TYPE fields can be cleared by 
either a reset or by writing the current value of GCR_ERROR_CAUSE.ERR_TYPE to the GCR_ERROR_CAUSE. 
ERR_TYPE register. 

When the Global CM Error Cause Register is loaded, an interrupt may be generated if the corresponding bit for that 
type of error is set in the Global CM Error Mask Register located at offset address 0x0040 (physical address 
0x1FBF_8040).

Note that in the CM, the error response is independent of the mask setting, which is different from the previous gen-
eration CM2. If the normal response should be an ERROR, then an ERROR response is returned regardless of the 
Error Mask Register setting. The mask setting controls whether an interrupt is generated in addition to the normal 
error response.

Table 5.4 lists the errors detected by the CM. The following subsections describe each type of error in more detail and 
provides the encoding of the ERR_INFO field for each error type. For a detailed description of each error type and 
the encoding of each error code field, refer to the I6500 Technical Reference Manual. 

Table 5.4 CM Error Types 

ERROR
TYPE Error Name Description Action

0 - Reserved -

1 MP_CORRECTABLE_ECC_ERR A correctable ECC error occurred 
during an L2 cache access. 

The error is corrected
Signal an interrupt if 
CM_ERROR_MASK[1] = 1

2 MP_REQUEST_DECODE_ERR A decoding error was detected in the 
request.

Respond with an error to the original 
requestor.
Signal an interrupt if 
CM_ERROR_MASK[2] = 1

3 MP_UNCORRECTABLE_
ECC_ERR

An uncorrectable ECC error 
occurred during an L2 cache access.

Signal an interrupt if 
CM_ERROR_MASK[3] = 1

4 MP_PARITY_ERR A parity error was detected in the L2 
data coming from either the core of 
the memory.

Signal an interrupt if 
CM_ERROR_MASK[4] = 1

5 MP_FNL_ERR If an L2 fetch and lock (FNL) 
cacheop is processed when only one 
or zero ways of the cache are 
unlocked, including pseudo-locks, 
then the FNL fails. 

Signal an interrupt if 
CM_ERROR_MASK[5] = 1

6 CMBIU_REQUEST_
DECODE_ERR

A decoding error was detected dur-
ing a request on the BIU.

Signal an interrupt if 
CM_ERROR_MASK[6] = 1

7 CMBIU_PARITY_ERR The BIU detected a parity error. Signal an interrupt if 
CM_ERROR_MASK[7] = 1

8 CMBIU_AXI_RESP_ERR The BIU detected a response error 
was detected on the AXI bus. 

Signal an interrupt if 
CM_ERROR_MASK[8] = 1

9 CMBIU_WID_ERR Signal an interrupt if 
CM_ERROR_MASK[9] = 1

10 RBI_BUS_ERR An error occurred on the Register 
Ring Bus during a register access.

Signal Interrupt if 
CM_ERROR_MASK[10] = 1

11 IOC_REQUEST_ERR An error occurred during an AXI 
request.

Signal Interrupt if 
CM_ERROR_MASK[11] = 1
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5.11 IOCU Interface

The I6500 CM contains up to eight I/O Coherency Units (IOCU) for managing cache coherency between the CM and 
external devices. The IOCU is a hardware block and is not directly programmable. However, the IOCU can be indi-
rectly controlled using the following register fields:

• The read-only NUMIOCU field in bits 11:8 of the Global Config register (GCR_CONFIG) located at offset 
0x0000 of CM GCR address space and indicates the number of IOCUs instantiated in the design. This field is 
filled by hardware during IP configuration.

• IOCU requests are prevented from being issued to MMIO regions by setting the bit 13 of the Global CM Control 
register (GCR_CONTROL) at offset 0x0010 in CM GCR address space. 

• IOCU requests to external devices are counted toward the outstanding request limit when bit 12 of the Global 
CM Control register (GCR_CONTROL) at offset 0x0010 in CM GCR address space. If this bit is set, IOCU 
accesses to MMIO regions are blocked once the MMIO outstanding limit is reached. Note that bit 13 of this reg-
ister must be 0 for this bit to have meaning as described above.

• Software can select which IOCUs are allowed to access the CM GCR registers by programming bits 23:16 of the 
Global CSR Access Privilege register (GCR_ACCESS) at offset 0x0120 in CM GCR address space. Each bit 
corresponds to one of eight IOCUs. If the corresponding bit is set, accesses from that IOCU are allowed to write 
the GCR and Cluster Power Controller (CPC) registers. 

5.12 MMIO Address Regions

As described in the section entitled Verifying Overall System Configuration, the number of MMIO address regions is 
determined at IP configuration time. The I6500 supports up to four MMIO regions. Each region is assigned an upper 
and lower address bound. 

The MMIO regions are intended to be used with communicating with external PCIe devices. The MMIO registers 
allow for counting of number of non-speculative code fetches of uncached requests in order to avoid potential dead-
lock condition by having too many requests outstanding. This is accomplished by programming the 
MMIO_REQ_LIMIT field. 

5.12.1 CM GPR Register Interface

Software can set the number of MMIO requests that can be in-flight at any given time by programming the 
MMIO_REQ_LIMIT field of the MMIO Request Limit register (GCR_MMIO_REQ_LIMIT) at offset 0x6F8.

12 IOC_PARITY_ERR The IOCU detected a parity error. Signal Interrupt if 
CM_ERROR_MASK[12] = 1

13 IOC_RESP_ERR The IOCU detected a response error. Signal Interrupt if 
CM_ERROR_MASK[13] = 1

14 HALF_PIPE_ERR The main pipeline received an error 
from the half-pipe.

Signal Interrupt if 
CM_ERROR_MASK[14] = 1

15 RBI_REGTC_REQ_ERR An illegal request was received by 
the REGTC.

Signal Interrupt if 
CM_ERROR_MASK[15] = 1

Table 5.4 CM Error Types (continued)

ERROR
TYPE Error Name Description Action
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In addition, the address range of each MMIO region is defined using the Upper and Lower Bound MMIO region reg-
isters. A pair of registers are used for each MMIO region, with each register containing a 32-bit address bound value. 
These registers are located at:

• Lower bound of MMIO region 0 (GCR_MMIO0_BOTTOM) at offset 0x0700

• Upper bound of MMIO region 0 (GCR_MMIO0_TOP) at offset 0x0708

• Lower bound of MMIO region 1 (GCR_MMIO1_BOTTOM) at offset 0x0710

• Upper bound of MMIO region 1 (GCR_MMIO1_TOP) at offset 0x0718

• Lower bound of MMIO region 2 (GCR_MMIO2_BOTTOM) at offset 0x0720

• Upper bound of MMIO region 2 (GCR_MMIO2_TOP) at offset 0x0728

• Lower bound of MMIO region 3 (GCR_MMIO3_BOTTOM) at offset 0x0730

• Upper bound of MMIO region 3 (GCR_MMIO3_TOP) at offset 0x0738

5.12.2 MMIO Region Control

Each of the four MMIO regions listed above can be enabled or disabled by programming the MMIO_EN bit that 
resides in the Lower Bound register for each MMIO region (GCR_MMIO[0-3]_BOTTOM). If the MMIO region is 
enabled, then the request address and CCA are used to determine if the request falls into an MMIO Region. The 
decoded address is used to determine if the access is to a MMIO region as shown in the following equation:

MMIO_BOTTOM_ADDR[47:16] <= phys_address[47:16] <= MMIO_TOP_ADDR[47:16]

If bits 47:16 of the physical address fall between the value in MMIO_BOTTOM_ADDR[47:16] and 
MMIO_TOP_ADDR[47:16], then the access is to the corresponding MMIO region.

If MMIO_CCA is set to 0x0, just the request address is used to determine whether the request is to an MMIO region 
as shown above.  If MMIO_CCA is set to 0x01, then the address comparison above is further qualified by whether 
the request has CCA = UC.  In other words, only UC requests will be considered eligible to hit the MMIO region. If 
MMIO_CCA is set to 0x2, then the request is qualified by CCA = UCA.  If MMIO_CCA = 0x3, then the request is 
qualified by CCA = UC or CC = UCA.  In other words, either UC or UCA requests can match the MMIO region.  

If an address hits in multiple MMIO register address regions, then the lowest-numbered enabled MMIO region hit 
takes precedence for determining which MMIO region the request matches. Once a request is determined to reside in 
an MMIO region, that region MMIO_PORT field in the Lower Bound register determines where the request will be 
routed.  Options are the main memory port or an Auxiliary interface.  See section 5.13. 

The user can limit the total number of MMIO requests issued by the CM, which can be useful to avoid deadlock when 
accessing PCIe bridges that also service incoming coherent requests. The limit is defined by the MMIO_REQ_LIMIT 
field in bits 7:0 of the MMIO Request Limit (GCR_MMIO_REQ_LIMIT) register at offset 0x06F8 in GCR address 
space. Once the limit is reached, the CM stops serializing uncached and code fetches until a response to an MMIO 
request has been received. For example, a value of 0x01 in this field indicates one outstanding MMIO request is per-
mitted. Setting this value to 0x00 disables the MMIO limiting feature, allowing any amount of outstanding requests to 
occur. The MMIO_DISABLE_REQ_LIMIT bit in the region's Lower Bound Register can be set to indicate that 
requests to the particular MMIO region should not be limited.

By default, IOCU uncached requests are never considered part of the MMIO limit (to allow for forward progress). 
However, this is controllable via the GCR_CONTROL.CM_MMIO_IOCU_ENABLE_REQ_LIMIT. When this bit is 
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set, IOCU uncached requests are counted as outstanding MMIO requests. In this case, IOCU uncached requests are 
blocked if the MMIO request limit has been reached.

5.13 Auxiliary Interfaces

The CM supports up to four non-coherent Auxiliary AXI4 buses, called AUX0 - AUX3. The AUX master ports are 
intended to be used for lower latency access to peripherals or instruction SRAM. Each cluster supports up to four 
AUX ports. Each AUX interface has a configurable data width. Values of 32, 64, 128, 256 and 512 are supported. The 
data width is determined during IP configuration. Each AUX address width is 48 bits. The number of AUX ports is 
stored in the 3-bit NUMAUX field of the Global Configuration register (GCR_CONFIG) at offset 0x0000 in GCR 
address space. 

The clock for each AUX interface can be provided internally by the cluster or provided externally from outside the 
cluster. Each internally provided AUX clock can have an independent clock ratio.  An externally provided clock can 
be provided on the external AUX clock pin.  An externally provided clock is assumed to be asynchronous to the clus-
ter. Selection between an internal versus external clock is done during IP configuration. 

The AUX ports are memory mapped by the MMIO GCR control registers.  There are up to 4 MMIO regions. Each 
GCR_MMIO<x>_BOTTOM register listed above contains an MMIO_PORT field in bits 5:2 that indicates which 
auxiliary port the request should be routed to. This field is encoded as shown in Table 5.5. 

Table 5.5 Encoding of MMIO_PORT Field

Field Name Register Bits Encoding Port Accessed

MMIO_PORT 5:2 0x0 Main memory

0x8 AUX port 0

0x9 AUX port 1

0xA AUX port 2

0xB AUX port 3
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Power Management

Power management in the I6500 Multiprocessing System is handled by the Cluster Power Controller (CPC). The 
I6500 CPC uses the concept of domains to manage both power and clocking throughout the device. Using registers, 
the programmer can enable or disable these domains in order to reduce overall power consumption. 

The CPC implements two types of domains; power and clock. In each case, registers are instantiated on a per-domain 
basis so that the domain can be individually controlled by kernel software. This is true for each power domain and 
each clock domain.

• For the power domains, kernel software uses registers in the CPC to control the power to individual elements in 
the system such as cores, IOCU’s, and the Coherence Manager (CM). The various power domains that can be 
individually controlled are defined in the section entitled Power Domains.

• For the clock domains, kernel software uses registers in the CPC to control the clock frequency to the individual 
elements in the system such as cores, IOCU’s, Coherence Manager (CM), and memory. In addition to clock man-
agement for the various devices in the I6500 Multiprocessing System, the CPC also provides the ability to 
change the clock ratios in memory, and put the caches into a low-power state. The various clock domains that can 
be individually controlled are defined in the section entitled Clock Domains.

This chapter provides an overview of how power is managed in the I6500 Multiprocessing System and identifies the 
various power and clock domains the programmer can use to manage power consumption in the device. In addition, a 
procedure on how to set the CPC base address in memory is provided. Other programming principles include setting 
the device to coherent or non-coherent mode, requestor access of CPC registers, system power-up policy, program-
ming examples of a clock domain change and clock delay change, powering up the CPC in standalone mode (no 
cores enabled), reset detection, VP run/suspend mechanism, local RAM shutdown and wakeup procedure, accessing 
registers in another power domain, and fine tuning internal and external signal delays to help the programmer easily 
integrate the device into a system environment.

6.1 Overview

This section provides an overview of the power and clock management schemes implemented in the I6500 Multipro-
cessing System.

6.1.1 Power Domains

Figure 6.1 shows the various power domains in the I6500 Multiprocessing System. Registers are instantiated for each 
power domain to allow for individual control. Note that in this figure, core 1 through core n are optional blocks 
depending on the system configuration.
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Figure 6.1 Power Domains in the I6500 Multiprocessing System

6.1.2 Clock Domains

Figure 6.2 shows the various clock domains in the I6500 Multiprocessing System. Each clock domain shown can be 
individually controlled using the CPC register interface.  

Figure 6.2 Clock Domains in the I6500 Multiprocessing System

6.1.3 Core and IOCU Selection

Figure 6.2 shows the maximum possible number of cores and IOCUs that can be instantiated into the I6500 MPS. 
However, the total number of cores and IOCUs cannot exceed eight. So for example, if there are two cores, there can-
not be more than six IOCUs. If there are four cores, there cannot be more than four IOCUs, etc. 

6.1.4 Overview of Power States

Each device in Figure 6.1, except the CM, contains its own set of Core-Local registers that can be used to indepen-
dently place each device into one of the following four power states by programming the CMD field (bits 3:0) of the 
CPC Local Command Register. For more information on this register, refer to the I6500 Registers companion docu-
ment included in the release.
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Note that each command can only be executed in non-coherent mode. If a command is executed in coherent mode, 
the command is queued, but not processed by the CPC until the device has transitioned from coherent mode to non-
coherent mode. For more information, refer to the section entitled Enabling Coherent Mode.

The states are as follows:

• ClockOff - a power domain is brought into ClockOff state when a value of 0x1 is programmed into the 4-bit 
CMD field of the CPC_CL_CMD_REG register. If the domain was powered down before, the power-on 
sequence is applied according to CPC_CL_STAT_CONF_REG settings. If the domain was active before and 
was in non-coherent operation, the power domain is brought into the ClockOff state. A domain in the Clock-
Off state can be sent into operation using the PwrUp command. 

A ClockOff command given to a domain in coherent operation remains inactive until the device has left the 
coherent mode of operation. Sending a ClkOff command to the CPC before a previous command has com-
pleted causes the CPC domain target to be redirected towards ClockOff. However, the previous steady state 
can be observed temporarily before the newly programmed state is reached. Refer to the section entitled 
Enabling Coherent Mode for more information on enabling and disabling coherence mode.

• PwrDown. A power domain is brought into PwrDown state when a value of 0x2 is programmed into the 4-
bit CMD field of the CPC_CL_CMD_REG register. This command uses setup values in the 
CPC_CL_STAT_CONF_REG register. 

A PwrDown command given to a domain in coherent operation will remain inactive until the device has left 
the coherent mode of operation. Sending a PwrDown command to the CPC before a previous command has 
completed causes the CPC domain target to be redirected towards PwrDown.

• PwrUp - A power domain is brought into PwrUp state when a value of 0x3 is programmed into the 4-bit 
CMD field of the CPC_CL_CMD_REG register. This command uses setup values in the 
CPC_CL_STAT_CONF_REG register. The execution of this command depends on the previous domain 
power state. If the domain is in the powered-down state, a PwrUp command enables power for the domain, 
applies the clocks and reset, and brings the domain into an operational state. 

• Reset - A power domain is brought into Reset state when a value of 0x4 is programmed into the 4-bit CMD 
field of the CPC_CL_CMD_REG register. This command allows a domain in the non-coherent operation to 
be reset. It also can be sent to a domain in power-down or clock-off mode. The domain will then become 
active, and a reset sequence is executed which leads to an operational steady state of the domain.

6.2 CPC Register Programming

This section describes some of the programming functions that can be performed via the CPC registers.

6.2.1 Cluster Power Controller Register Address Map

The CPC uses memory locations within the global, core-local, and core-others address space. The CPC location 
within the CPU address map is determined by the GCR_CPC_BASE register. All address locations in this document 
are relative to this base address. 



 

110 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00

In Table 6.1, all registers are accessed using 32-bit aligned uncached load/stores. In addition, the block offsets shown 
are relative to bits 31:15 of the GCR_CPC_Base register located in the CM3. Refer to Figure 6.3 for more informa-
tion on how to use this register. 

6.2.2 CPC Base Address

As mentioned above, the base address of the CPC registers is stored in bits 47:15 of the Cluster Power Controller 
Base Address register (GCR_CPC_BASE) located at offset 0x0088 in CM address space. The remaining bits (14:0) 
of the address are always zero to indicate that the CPC registers reside on a 32 KB boundary.

The following init_cpc code example is used to read the value in the GCR_CPC_BASE register and store it 
locally for future use.

LEAF(init_cpc)

The code uses the known value of the location of CPC within the system and writes that to the Cluster Power Control-
ler Base Address Register. This is a physical address. Also, bit 0 is set, to enable the address region for the CPC.

li a0, CPC_P_BASE_ADDR       // Locate CPC
sd a0, GCR_CPC_BASE (r22_gcr_addr) // GCR_CPC_BASE

Then the code stores this address for later use in r30_cpc_addr using the KSEG1 equivalent address, and is now done 
setting up the CPC. 

li r30_cpc_addr, CPC_BASE_ADDR       // copy to register

This completes the CPS initialization and the code returns to start.

done_init_cpc:
jr      ra
nop

END(init_cpc)

This concept is described in Figure 6.3. 

Table 6.1 CPC Address Map (Relative to GCR_CPC_BASE[31:15])

Block Offset Size (bytes) Description

0x0000 - 0x1FFF 8 KB Global Control Block. Contains registers pertaining to the global system 
functionality. This address section contains a single set of registers that is 
visible to all CPUs.

0x2000 - 0x3FFF 8 KB Core-Local Control Block. Aliased for each I6500 core. Contains regis-
ters pertaining to the core issuing the request. Each core has its own copy 
of registers within this block.

0x4000 - 0x5FFF 8 KB Core-Other Control Block. Aliased for each I6500 core. This block of 
addresses gives each Core a window into another Core. 
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Figure 6.3 CPC Register Addressing Scheme Using an Example Base Address of 0x0000_1BDE_0 

6.2.3 Global Control Block Register Map

All registers in the Global Control Block are 64 bits wide and should only be accessed using aligned 64-bit uncached 
load/stores. Reads from unpopulated registers in the CPC address space return 0x0, and writes to those locations are 
silently dropped without generating any exceptions. 

For more information on these registers, refer to the I6500 Registers companion document. 

6.2.4 Local and Core-Other Control Blocks

All registers in the CPC Local Control Block are 64 bits wide and should only be accessed using aligned 64-bit 
uncached load/stores. Reads from unpopulated registers in the CPC address space return 0x0, and writes to those 
locations are silently dropped without generating any exceptions.

A set of these registers exists for each core in the I6500 MPS. In the case of some CPC registers, a set of registers 
exists per power domain or per clock domain. These registers can also be accessed from other cores by first writing 
the GCR Core-Local Redirect Register (GCR_CL_REDIRECT) in the Core-Local Control Block of the CM.

For more information on these registers, refer to the CPC chapter in the I6500 Technical Reference Manual compan-
ion document.
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6.2.5 Requestor Access to CPC Registers

Register Interface

The CPC allows up to eight requestor’s in a system. A requestor can be either a core or an IOCU. The requestor may 
not have unrestricted access to the CPC registers. During boot time, the programmer determines which requestor’s 
are provided access to the CPC registers by programming the Global Access Privilege register located at offset 0x120 
in the CM register map. The 6-bit ACCESS_EN field (bits 5:0) of this register selects up to six cores, and bits 23:16 
enable access for IOCU7 through IOCU0 respectively. 

The MIPS default for ACCESS_EN field is 0x3F, meaning that all cores in the system have access to the CPC register 
set. In addition, bits 23:16 are set to allow IOCU7 through IOCU0 access to the CPC register set. To disable access to 
the registers for a particular requestor, kernel software need only clear the bit corresponding to that core or IOCU, and 
all write requests to the CPC registers by that requestor will be ignored.

For more information on this register, refer to the CPC register listed in the I6500 Register companion document 
included in the release.

6.2.6 Enabling Coherent Mode

The I6500 Multiprocessing System allows each power domain to be placed in either a coherent or non-coherent 
mode. Because the I6500 implements a directory-based coherence protocol, MIPS recommends that each domain be 
placed in coherent mode during normal operation. The non-coherent mode should only be used during boot-up and 
power-down. Software should not execute any cacheable memory accesses (instruction fetch or load/store) while 
coherence is disabled.

Register Interface

Coherency is enabled when hardware asserts the external Coherence Enable pin. The state of this pin is reflected in 
bit 11 (COH_EN) of the Core-Local Status and Configuration register. This register resides in the CM local register 
block at offset address 0x0008. There is one of these registers per power domain. 

For more information on this register, refer to the I6500 Registers companion document included in the release.

Note that if a power domain is in coherent mode and a change to the power state is initiated, the caches must be 
flushed prior to disabling coherence mode. 

Coherent Mode Enable Code Example

The base address for the location of the CM GCR registers is programmed into the CP0 CMGCRBase register. As a 
reference, a value of 0x0000_1FBF_8 is used (MIPS default) to indicate the base location of the CM global control 
registers. In this case, the base value is read from the CP0 register and an offset is added to it to derive the exact reg-
ister address where the Core Local Coherence Control register is located.

By default, coherence is disabled in the I6500 MPS.

#define c0_CMGCRBASE $15,3

mfc0 t1, c0_CMGCRBASE // move contents of CP0 CMGCRBase register into t1
dsll t1, t1, 4 // shift value in t1 left by 4 bits
li t2, 0xA000_0000 // Assign KSeg1 base
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or t1, t2, t1 // Create VA from CGRBase
li t0, 0x0000_0001 // Enable coherence
sd t0, 0x2008 (t1) // write value in t0 to the base address in t1 plus 

// an offset of 0x2008 to access the Coherence Enable 
// register.

6.2.7 Master Clock Prescaler

The clock prescaler is used to reduce the frequency of all devices in the system simultaneously.

CP0 Interface

The prescaler can be programmed as follows using the global CPC Prescale Clock Change Control register located at 
offset address 0x0048. 

1. Verify that the PRESCALE_CLK_RATIO_CHANGE_EN bit of this register (bit 8) is set. This bit must be set 
before the CLK_PRESCALE field can be changed.

2. Optionally, the programmer can read the PRESCALE_CLK_RATIO field in bits 26:23 of this register to determine 
the current clock prescaler ratio.

3. Program the CLK_PRESCALE field (bits 7:0) to set the clock ratio. A value of 0x00 indicates a 1:1 clock ratio 
(no difference between input and output frequency of the prescaler). A value of 0xFF indicates a 1:256 ratio 
between the master input clock and the output of the prescaler. 

The 8-bit CLK_PRESCALE field can be programmed as follows to select the prescaler ratio. 

For an example of how to program these fields, refer to step 1 of the procedure in Section 6.2.8.1, "Clock Domain 
Change Example — Register Programming Sequence". 

For more information on this register, refer to the CM Registers companion document included in the release.

The base address for the location of the CPC registers is programmed into the CP0 CMGCRBase register. As a refer-
ence, a value of 0x0000_BBDE_0000 is used (MIPS default) to indicate the virtual address base location of the CPC 
registers. 

Table 6.2 Encoding of the CLK_PRESCALE Field 

Encoding Description

0x00 No prescaling

0x01 Divide input clock by 2

0x02 Divide input clock by 3

0x03 Divide input clock by 4

0x04 Divide input clock by 5

..... .....

0xFD Divide input clock by 254

0xFE Divide input clock by 255

0xFF Divide input clock by 256
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By default, the clock prescaler is disabled in the I6500 MPS. In this example, the clock prescaler is enabled and the 
clock divide ratio is set to divide by 4. Note that the PRESCALE_CLK_RATIO field in bits 23:16 of this register is a 
read-only field that is updated by hardware and allows kernel software to quickly read this register to determine the 
current clock ratio. In this example this field is ignored.

li t1, 0x0000_BBDE_0000 // move CPCBase register VA value into t1
li t0, 0x0000_0103 // Enable clock prescaler and set divide ratio to 4
sd t0, 0x48(t1) // write value in t0 to the base address in t1 plus

// an offset of 0x48 to access the CPC Global Clock
// Prescale register.

6.2.8 Individual Device Clock Ratio Modification

Based on the input clock frequency to each individual device supplied by the clock prescaler, each device can further 
reduce the clock by a frequency range of 1:1 to 1:8, except for the CM, which can be programmed with a frequency 
ratio of either 1:1 or 1:2 relative to its input clock as shown in the figure. This is accomplished by programming the 
CLK_RATIO field (bits 2:0) of each CPC Local Clock Change Control register located at offset address 0x0018. For 
an example of how to program this field, refer to step 2 of the procedure in the section entitled Clock Domain Change 
Example — Register Programming Sequence. 

6.2.8.1 Clock Domain Change Example — Register Programming Sequence

The following example shows how to run core 0 at full speed, and core 2 at quarter-speed to save power. Assume the 
following:

• 2-core system 

• 1 VP per core

• si_ref_clk input frequency of 1 GHz

• Prescaler output of 1 GHz

• Core 0 input frequency of 1 GHz

• Core 1 input frequency of 250 MHz

In this example, the si_ref_clk input to the clock prescaler is 1 GHz. As shown above, the output frequency of the 
prescaler in this example is also 1 GHz. This ratio is accomplished by programming the global CPC Prescale Clock 
Change Control register located at offset address 0x0048 as follows. Note that this register is global and is seen by all 
cores and all individual devices (clock domains) in the system. 

Register Interface

To program the clock prescaler for this example:

1. Write a value of 0x100 to the global CPC Prescale Clock Change Control register located at offset address 
0x0048. This value sets the CLK_PRESCALE field to a value of 0x00, indicating a 1:1 relationship between the 
input clock and the output clock. This value also sets the PRESCALE_CLK_RATIO_CHANGE_EN bit to indi-
cate that the value in the CLK_PRESCALE field is valid. Refer to the I6500 Registers companion document for 
more information on this register.

2. In this example the core 0 is running at full speed. Core 1 is running at 1/4 speed. To set the ratio of the clock 
generators for core 0 so it operates at 1 GHz, and core 1 so it operates at 250 MHz, program the individual CPC 
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Local Clock Change Control registers. This register is instantiated as one per clock domain, so in this case each 
core has its own register since each core is in its own domain. 

3. Set the SET_CLK_RATIO bit in the CPC Global Clock Change Control register located at offset 0x0028 to initi-
ate a clock change for all clock domains participating in the clock change, which is cores 0 - 3 in this example. 
This bit is cleared by hardware once the clock change has completed. 

Table 6.3 shows the programming of the CLK_RATIO field (bits 2:0) of the corresponding CPC Local Clock Change 
Control register located at offset address 0x0018. 

Poll the following registers to determine when the clock change has completed. 

• Read the CPC_CC_CTL_REG register to determine when bit 8 (SET_CLK_RATIO) is 0. If 
SET_CLK_RATIO is 1, the change request is still pending.

• Read the CPC_CC_CTL_REG to determine when bit 10 (CLK_CHANGE_ACTIVE) is 0. If 
CLK_CHANGE_ACTIVE = 1, the clock change is in progress. 

• When both of these bits are zero, the clock change has completed. At this point, another clock change could 
be requested.

Clock Ratio Change Code Example

#define c0_CMGCRBASE $15,3

li t0, GCR_BASE_ADDR // move GCRBase value into t0

// Store VA for CPCBase register into t1

li t1, CPC_BASE_ADDR // move CPCBase value into t1

// Set the clock prescaler divide ratio to 1:1 in the CPC_PRESCALE_CC_CTL register
li t2, 0x0000_0100 // enable clock prescaler and set divide ratio to 1:1
sd t2, 0x48(t1) // write value in t2 to the base address in t1 plus

// an offset of 0x48 to access the CPC Global Clock
// Prescale register.

// Set the core number to 0 in the GCR_CL_REDIRECT register
li t2, 0x0000_0000 // set CORE number to 0 and VP number to 0
sd t2, 0x2018 (t0) // store contents to GCR_CL_REDIRECT register at 

// 0x2018 from GCRBase
sync

//Program the CPC_CO_CC_CTL register CLOCK_RATIO field to 0 (1:1 ratio)
li t2, 0x0000_0100 // enable clock change and set ratio to 1:1
sd t2, 0x4018 (t1) // store contents to CPC_CO_CC_CTL register at 0x4018

// Set the core number to 1 in the GCR_CL_REDIRECT register
li t2, 0x0000_0001 // set CORE number to 1 and VP number to 0

Table 6.3 Programming the CLK_RATIO Field of the CPC Local Clock Change Registers 

Core CLK_RATIO Value Clock Ratio Core Clock Frequency

0 3’b000 1:1 1 GHz

1 3’b100 4:1 250 MHz
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sd t2, 0x2018 (t0) // store conents to GCR_CL_REDIRECT register at 
// 0x2018

sync

//Program the CPC Local Clock Change register CLOCK_RATIO field to 3 (4:1 ratio)
li t2, 0x0000_0103 // enable clock change and set ratio to 4:1
sd t2, 0x4018 (t1) // store contents CPC_CO_CC_CTL register at 0x4018

// Initate register based clock change - program bit 8 of the CPC_CC_CTL_REG
// register at offset 0x0018 from CPCBase
ld t2, 0x0028 (t1) // load CPC_CC_CTL_REG register in to t2
ori t2, t2, 0x100 // set the SET_CLK_RATIO bit in the CPC_CC_CTL REG

// register - logically OR bit 8 with t2 and copy
// back into t2. This sets the clock change enable

sd t2, 0x0028 (t1) // store new value in t2 back to the CPC_CC_CTL reg

Loop: 
// Poll CPC_CC_CTL_REG clock change control register until bits 8 and 10 are low.
ld t2, 0x0028 (t1) // read contents of CPC_CC_CTL_REG into t2
andi t2, t2, 0x0500 // AND t2 and 0x0500, copy result into t2
bne t2, r0, loop // loop until bits 8 and 10 are low, indicating a

// successful clock change
nop

6.2.8.2 Clock Change Delay 

The CPC_CC_CTL_REGCC_DELAY field in bits 29:20 of the CPC Global Clock Control register is used to optimize 
the amount of delay during a clock change. This can be done if all clock domain ratios are low. For example, if all 
current clock ratios are less than 1:4 the value of the delay could be reduced. The intent is that clock domain changes 
do not happen very often, so setting the default of 80 clocks should not be a problem and leaving this value at its 
default delay is recommended. This register could also be used to extend the state delay period if desired. 

6.2.9 CM Standalone Powerup

Normally, the CM is automatically powered-up if any core is powered-up. Conversely, the CM is automatically pow-
ered-down if all cores are powered-down. The I6500 allows for the CM to be powered-up even if no core is powered-
up. This is useful for system debug/setup via the DBU. 

Register Interface

This functionality is controlled by the CPC Global Power Up register (CPC_PWRUP_CTL_REG) located at offset 
address 0x0030. 

The DBU may execute a one-time power-up of the CM by writing a 1 to this register. If the CM is not operational at 
the time this bit is set by the DBU, it will transition from its current state to an operational state. If the CM is already 
operational, setting this bit has no meaning and the register write is ignored.

6.2.10 Reset Detection

The CM provides a series of read-only bits that allow the programmer to determine when a given device connected to 
the CM has been reset, including the CPC itself. Whenever a device is reset, the corresponding bit of the CPC Global 
Reset Occurred register (CPC_ROCC_CTL_REG) at offset 0x0040 is set. Refer to the I6500 Registers companion 
document included in the release for more information on this register.
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In addition to the reset detection, this register also contains a 2-bit field (RESET_CAUSE) that indicates the type of 
reset for the CPC block. Reset options are cold reset, external warm reset, and watchdog timer reset. The functionality 
of this register is shown in Figure 6.4.

Figure 6.4 Reset Detection in the I6500 Multiprocessing System

6.2.11 VP Run/Suspend

Three registers are used to control the power state of each VP in the system. The I6500 Multiprocessing system sup-
ports up to four VP’s per core, and up to six cores per system. Each of these registers is instantiated per core. 

Three registers are used to control this functionality: 

• VP Run register (WO)

• VP Stop register (WO)

• VP Running register (RO)

Register Interface

The VP Run register is a Write-only register used to set each VP to the run state. The VP Run register contains a 4-bit 
field, where each bit is dedicated to a particular VP, up to four. Prior to setting one of these bits, kernel software must 
ensure that the VP in question is not already running by reading the corresponding bit in the VP Running register. If a 
given bit in the VP Running register is cleared, setting the corresponding bit in the VP Run register places the VP in 
the run state. If a given bit in the VP Running register is already set, setting the corresponding bit in the VP Run regis-
ter has no meaning. The value in this register is reset whenever the associated core is reset. The VP Run register can 
also be cleared by hardware, as well as the Debug unit.

The VP Stop register is a write-only register used to stop a VP. If a given bit in the VP Running register is set, setting 
the corresponding bit in the VP Stop register places the VP in the suspend state. Writing a 0 to any of the bits in the 
VP Stop register has no effect. 
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The VP Running register is a read-only register that indicates the run state of each VP in a given core. These bits are 
set and cleared by hardware based on the programming of the VP Run and VP Stop registers by kernel software as 
described above. 

Note that for each of these registers, the four VP’s correspond to the register bits as follows:

• Bit 0 = VP0

• Bit 1 = VP1

• Bit 2 = VP2

• Bit 3 = VP3

For example, to set VP2 of a given core to the Run state, kernel software would do the following, 

1. Read bit 2 of the VP Running register. If this bit is already set, VP2 is already running and no action need be 
taken.

2. If bit 2 of the VP Running register is cleared, indicating that VP2 is in the Suspend state, kernel software sets bit 
2 of the VP Run register to set VP2 to the Run state.

To set VP2 of a given core to the Suspend state, kernel software would do the following, 

1. Read bit 2 of the VP Running register. If this bit is already cleared, VP2 is already in the Suspend state and no 
action need be taken.

2. If bit 2 of the VP Running register is set, indicating that VP2 is in the Run state, kernel software sets bit 2 of the 
VP Stop register to set VP2 to the Suspend state.

6.2.12 Local RAM Deep Sleep / Shutdown and Wakeup Delay

The CM allows the local RAM’s within a given power domain (cores, CM, IOCU, etc) to be placed into either Shut-
down mode where the clocks are turned off, or Deep Sleep mode where the clocks are running at a fraction of their 
normal frequency. This functionality is controlled through the CPC Local RAM Sleep Control register 
(CPC_CL_RAM_SLEEP) located at offset 0x0050 (or 0x2050 relative to the CPC base address). 

This register is instantiated per power domain, so each domain has the ability to power cycle its own local RAM 
devices. 

6.2.12.1 RAM Deep Sleep Mode

When bit 31 (RAM_DEEP_SLEEP_DISABLE) of the CPC_CL_RAM_SLEEP is cleared (logic ‘0’), the RAM’s on 
the local device enter the Deep Sleep low power state when the CPC power state for the device reaches the ClockOff 
state. In this state the clocks to the local RAM’s within that power domain are running at a fraction of their normal 
frequency.

The CPC also provides a way to delay the transition from the deep sleep state to the run state using bits 23:16 
RAM_DEEP_SLEEP_WAKEUP_DELAY) of the CPC_CL_RAM_SLEEP register. Once awoken, the CPC delays the 
transition to the run state by the value programmed into this field in order to provide sufficient time for the RAMs to 
wake up from Deep Sleep. The delay can range from 1 to 255 (0xFF) clocks.
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6.2.12.2 RAM Shut Down Mode

When bit 15 (RAM_SHUT_DOWN_DISABLE) of the CPC_CL_RAM_SLEEP is cleared (logic ‘0’), the RAM’s on 
the local device enter the Shutdown low power state when the CPC power state for the device reaches the PwrDwn 
state. In this state the clocks to the local RAM’s within that power domain are off. The RAM’s remain in the Shut-
down low power state even if the CPC power state changes to ClkOff without transitioning to the operational state.

The CPC also provides a way to delay the transition from the shutdown state to the run state using bits 7:0 
RAM_SHUT_DOWN_WAKEUP_DELAY) of the CPC_CL_RAM_SLEEP register. Once awoken, the CPC delays 
the transition to the run state by the value programmed into this field in order to provide sufficient time for the RAMs 
to wake up from the Shut Down state. The delay can range from 1 to 255 (0xFF) clocks.

6.2.13 Accessing the CPC Registers in Another Power Domain

Each power domain shown in Figure 6.1 contains its own set of CPC Core-Local and Core-Other registers. This 
allows master devices such as a core or IOCU to access these registers to modify the power parameters for a given 
domain. This is accomplished by writing to registers within the CM address space using the Core number and the VP 
number of the device to be accessed.

For more information on accessing the CPC registers of another core or VP, refer to the section on Core-Local and 
Core-Other Register usage in the CM Programming chapter of this manual.

6.2.14 Fine Tuning Internal and External Signal Delays

This section describes those register fields that can be used to delay the assertion of external signals relative to one 
another, as well as the internal domain sequencer state machine. These registers are used to help accommodate a wide 
variety of timing constraints in the system. Signals can be lengthened or shortened accordingly in order to meet sys-
tem timing.

6.2.14.1 Global Sequence Delay Count

The Sequence Delay register (CPC_SEQDEL_REG) located at offset 0x0008 in the CPC Global Control Block, con-
tains a 10-bit MICROSTEP field that describes the number of clock cycles each domain sequencer state machine will 
take to advance to the next state. 

The 10-bit MICROSTEP field contains a default value of 0x002, indicating a 2-cycle delay. However, should addi-
tional delay be required based on the system implementation, this register provides the programmer with the ability to 
increase the sequence delay as necessary.

Domain sequencing begins once the RAILDELAY field has counted down to zero. Refer to the section entitled Rail 
Delay for more information.

The 10-bit MICROSTEP field is encoded as follows: 

Table 6.4 Encoding of MICROSTEP Field

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay
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6.2.14.2 Rail Delay

The Rail Delay register (CPC_RAIL_REG) located at offset 0x010 in the CPC Global Register Block contains a 10-bit 
counter field (RAILDELAY) used to schedule delayed start of power domain sequencing after the RailEnable1 signal 
has been activated by the CPC. This allows the CPC to compensate for slew rates at the gated rail.

The 10-bit counter value (RAILDELAY) delays the power-up sequence per domain. The power-up sequence starts after 
RAILDELAY has been loaded into the internal counter and a count-down to zero has concluded. At IP configuration 
time, the contents of the CPC_RAIL_REG register are preset. However, for fine tuning, the register can be written at 
run time. 

The 10-bit RAILDELAY field is encoded as follows: 

The default value for this register has been determined by MIPS as the value that should work in the majority of sys-
tem implementations. As such, this value should not need to be changed. However, should a problem arise where 
additional delay is required in order to meet system timing, this register provides the programmer with the ability to 
increase the delay as necessary.

For more information on how this counter is used, refer to the Global Sequence Delay Count section in the System 
Integration chapter of the I6500 Integrator’s Guide for more information. 

0x004 5-cycle delay

..... .....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay

1. This signal is shown only for illustration purposes. Refer to the I6500 Integrator’s Guide for the exact name and usage of this 
signal.

Table 6.5 Encoding of RAILDELAY Field 

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

..... .....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay

Table 6.4 Encoding of MICROSTEP Field

Encoding Description
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6.2.14.3 Reset Delay

During the power-up sequence, reset is applied. Typically, reset is active until the domain responds by asserting the 
internal Reset_Hold signal. However, the Global Reset Width Counter register (CPC_RESETLEN_REG) at offset 
0x0018 allows reset to be extended beyond the assertion of Reset_Hold. A series of down-counters are used to delay 
various reset pins used to boot the CM as described in the following subsections. 

The default value for this register has been determined by MIPS as the value that should work in the majority of sys-
tem implementations. As such, this value should not need to be changed. However, should a problem arise where 
additional delay is required in order to meet system timing, this register provides the programmer with the ability to 
increase the delay as necessary. 

For more information on these counters and the corresponding hardware signals that can be delayed, refer to the Reset 
Delay section in the I6500 Integrator’s Guide for more information. 

Programming the Global Reset Width Counter Register (RESETLEN)

The RESETLEN down counter is used to extend the various reset signals using bits 9:0 of the CPC Global Reset 
Width Counter Register (CPC_RESETLEN_REG) at offset 0x0018. This register field is programmed with a delay 
value between 1 and 1024 clock cycles as shown in Table 6.6. 

Programming the Global Reset Release Register — Core Reset Release (RESREL1)

The output of the RESETLEN counter described above is used to load a secondary internal counter with the value 
programmed into the RES_REL_LEN field of the CPC Global Reset Release Register (CPC_RES_REL_REG) 
located at offset 0x0038. This register is used to determine the amount of delay between the time the configuration 
signals are stable at the respective core(s), and the time that the core reset is released.

Bits 9:0 of this register (RES_REL_LEN) are programmed with a delay value between 1 and 1024 clock cycles. The 
encoding of this field is identical to the RESETLEN field shown in Table 6.6. Once this counter reaches 0, the 
Domain_Reset_n2 signal is deasserted to the core(s), allowing them to come out of reset.

Table 6.6 Encoding of the RESETLEN Field 

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

..... .....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay

2. This signal is shown only for illustration purposes. Refer to the Global Sequence Delay Count section of the I6500 Integra-
tor’s Guide for more information on the usage of this signal.
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Programming the Global Reset Release Register — Domain Ready (RESREL2)

The output of the RESREL1 counter is used to load a third internal counter (RESREL2) with the value programmed 
into the RES_REL_LEN field of the CPC Global Reset Release Register (CPC_RES_REL_REG) located at offset 
0x0038. This register is used to determine the amount of delay between the time the Domain_Reset_n signal is deas-
serted, and the deassertion of the Domain_Ready signal, indicating that the core is ready to begin execution. Note that 
the same register field (RES_REL_LEN) of the CPC_RES_REL_REG register is used to load both the RESREL1 and 
RESREL2 counters. 

The third internal counter (RESREL2) requires that the RESREL1 counter has reached zero before counting can 
begin. Once the RESREL2 counter reaches 0, the Domain_Ready signal is asserted to the core(s), allowing the core to 
begin execution.

For more information on how these counters are loaded and the signals affected once the counts reach zero, refer to 
the Global Sequence Delay Count section in the System Integration chapter of the I6500 Integrator’s Guide.
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Global Interrupt Controller

The Global Interrupt Controller (GIC) processes internal and external interrupts in the I6500 Multiprocessing Sys-
tem. Each cluster in the system supports up to 256 external interrupts in multiples of 8, as well as numerous internal 
interrupts. The GIC is responsible for mapping each internal and external interrupt to any VP within the I6500 MPS 
for servicing.

7.1 Overview

External events are defined as those that originate outside of the I6500 Multiprocessing System and require servicing 
to determine where they originated from and how they can be resolved. Internal events are those that occur within the 
I6500 Multiprocessing System. Internal events can include performance counters, watchdog timers, software, and 
Fast Debug Channel (FDC). 

Interrupts are events which interrupt program flow and require servicing to determine the type of and reason for the 
event. Events are categorized by priority. High priority events are those which require immediate attention. These 
events are handled before the lower priority events. The servicing of these events is accomplished through an inter-
rupt service routine, which is a piece of software that resides in memory. Each time an interrupt event is detected, the 
program flow is interrupted and the code branches to the interrupt service routine. This routine is specifically 
designed to deal with the interrupt event.

This chapter describes how to program the various elements of the GIC using both register examples and code exam-
ples. Some of these elements include setting the operating mode, setting up the address map, GIC register layout and 
distribution, setting the GIC base address, determining the number of external interrupts, and configuring individual 
interrupt sources.

7.1.1 GIC Virtualization

The I6500 Multiprocessing System incorporates virtualization into the interrupt control system, allowing separate 
interrupt controllers for guest and root processes. This chapter contains information on virtualization as it relates to 
interrupts and the programming of the GIC-related Root and Guest registers. Refer to the chapter on Virtualization in 
this manual for more information.

7.1.2 GIC Operating Modes

The GIC supports two types of operating modes:

• Non-EIC mode

• External Interrupt Controller (EIC) mode

7.1.2.1 Non-EIC Mode

The non-EIC mode includes both Compatibility mode, the most basic type of interrupt mode, and also Vectored Inter-
rupt (VI) mode. The main difference is that in VI mode, each interrupt type is assigned its own location in memory, 
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whereas in Compatibility mode all interrupts go to the same vector and kernel software determines the source of the 
error. In addition, for both Compatibility and VI modes, the six interrupt pins on the VP are used as individual inter-
rupts, and are not an encoded value as in the EIC mode. 

7.1.2.2 EIC Mode

The EIC mode provides support for up to 63 individual interrupts by encoding the value on the six interrupt pins of 
each VP. The GIC is responsible for encoding the proper vector number onto the six interrupt pins prior to driving the 
value to the appropriate VP. 

Software can enable EIC mode by setting the GIC_VL_CTL.EICMODE read-write register bit. Refer to the I6500 Reg-
isters companion document for more information on this register. The state of the GIC_VL_CTL.EICMODE bit is 
driven onto the SI_EICPresent pin. Hardware then uses the state of this pin to set or clear the CP0 CONFIG3.VEIC 
bit. Therefore, if kernel software changes the state of this bit, the change is reflected in the CP0 CONFIG3.VEIC bit. 
The GIC_VL_CTL.EICMODE bit allows kernel software to boot up in non-EIC mode, then switch to EIC mode once 
the appropriate interrupt connections have been established through the GIC. 

7.1.3 GIC Register Types

The GIC address space is accessed with uncached load/store commands. The physical address and the VP number of 
the requester is supplied for each load/store command. The VP number is used as an index to reference the appropri-
ate subset of the instantiated control registers. By using the VP number information, the hardware writes/reads the 
correct subset of the control registers pertaining to that VP. Software does not need to explicitly calculate the register 
index for the core in question. This done entirely by hardware.

Two address “windows” are made available to the programmer:

• A window for the “Local” VP (as specified by the VP number information). 

• A second window for an “Other” VP that allows that VP to access the register set belonging to another VP. The 
“Other” VP is specified by first writing the VP_REDIRECT field to the desired VP target and setting the 
GIC_REDIRECT_EN field to 0x1. Both of these fields are in the VP-Local GCR Redirect register

In the I6500 Multiprocessing System, any VP can access the registers of any other VP by using the VP-Other address 
spaces. Software must write the VP-Local GCR Redirect register located at offset 0x0018 (physical address of 
0x1FBF_A018) before accessing these address spaces. Set the REDIRECT_VP field to select the correct the desired 
VP subset of registers and set the GIC_REDIRECT_EN bit to 1 to indicate that a GIC VP-OTHER access should be 
redirected. 

The value of this register is used by hardware to index the appropriate subset of the control registers. For more infor-
mation, refer to the GCR Redirect (GCR_CL_REDIRECT) register in the I6500 Registers companion document. 
Also in this manual, an additional section called the User-Mode Visible Register is used to give quick user-mode read 
access to specific GIC registers. The use of this section is meant to avoid the overhead of system calls to read GIC 
resources, such as counter registers.

7.1.4 GIC Register Distribution

The GIC contains various register blocks described above that are located at different address spaces as shown in 
Figure 7.2. Some of the registers are shared between all VP’s in the system, while other registers are local to a partic-
ular VP. This relationship is shown in Figure 7.1.
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Figure 7.1 GIC Register Distribution

7.1.5 GIC Address Space Configuration

The GIC address space is divided into four blocks:

• A 32 KByte Shared section in which the external interrupt sources are registered, masked, and assigned to a par-
ticular VP and interrupt pin. This section is shared by all VPs and all cores in the system. 

• A 16 KByte VP-Local section in which interrupts local to a VP are registered, masked, and assigned to a particu-
lar interrupt pin. If External Interrupt Controller Mode (EIC) mode is used for a particular VP, the EIC encoder is 
instantiated here. 

• A 16 KByte VP-Other section in which the local VP can access the VP-Local section of another VP. by which the 
interrupt can be registered, masked, and assigned to a particular interrupt pin of another VP. Using the VP-other 
segment, the "local" VP can access the registers of another VP by using the VP-Other address space. Software 
must write the VP-Local GCR Redirect register located at offset 0x0018 (physical address of 0x1FBF_A018) 
Register before accessing these spaces. The value of this register is used by hardware to index the appropriate 
subset of the control registers for the other core(s). One VP can setup the GIC for all VPs in the system using this 
section. 

• A 64 KByte User Mode Visible section that contains aliases for GIC registers that are read so often that it makes 
sense to make them available to user-mode programs without requiring a system call. The use of this section is 
meant to avoid the overhead of system calls to read GIC resources, such as counter registers. Currently, the only 
register aliased into this space is the GIC_SH_COUNTER register. Refer to Figure 7.1.2 for more information.

In the GIC, the Shared, VP-Local, and VP-Other sections are meant to be located in privileged system virtual address 
space, in which only kernel mode software can initialize and update the interrupt controller. 

Figure 7.2 shows the mapping of the GIC registers. In this figure an example base address of 0x1BDE_0 is used. 
Each register is mapped using the GIC base address, the register block, and the corresponding register offset within 
that block. Refer to the I6500 Technical Reference Manual for more information on the derivation of these addresses.

VP0

GIC_VL0_xxx

GIC_VO0_xxx

VP1

GIC_VL1_xxx

GIC_VO1_xxx

VP23

GIC_VL23_xxx

GIC_VO23_xxx

GIC 

GIC Shared Registers — GIC_SH_xxxx
(shared among all VPs)

VP2

GIC_VL2_xxx

GIC_VO2_xxx
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Figure 7.2 GIC Register Addressing Scheme Using an Example Base Address of 0x1BDC_0 

7.2 GIC Programming

This section covers the programming for the following tasks.

• Setting the GIC Base Address and Enabling the GIC

• Configuration of interrupt sources

• External interrupt source configuration 

• Level Sensitivity, active high or active low

• Edge Sensitivity, dual or single edge (falling or rising)

• Routing of external interrupts to specific processors

• Enabling or disabling interrupts

• Inter-Processor Interrupts (IPI)

• Local device interrupt configuration 

0x0000_1BDC_0000

0x0000_1BDC_7FFF

47 17
GCR_GIC_BASE

GCR_GIC_BASE Register
GIC Shared Block

+0x4000

+0x8000 (32 KBytes)

0x0000_1BDC_8000

0x0000_1BDC_BFFF

GIC Core-Local Block
(16 KBytes)

+0x4000

0x0000_1BDC_C000

0x0000_1BDC_FFFF

GIC Core-Other Block
(16 KBytes)

+0x10000

0x0000_1BDD_0000

0x0000_1BDD_FFFF

GIC User Mode Visible Block
(64 KBytes)
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7.2.1 Setting the GIC Base Address and Enabling the GIC

Register Interface

The GIC base address is the starting address of the GIC memory-mapped registers. The GIC base address is a 31-bit 
value that is programmed into bits 47:17 of the GCR_GIC_BASE field in the GCR GIC Base register. This register is 
located at offset address 0x0080 in the Global Control Block of the CM registers. Refer to the GCR_GIC_BASE 
Register in the Coherence Manager chapter for more information on this register. 

The following code example determines the base address of the GCR_GIC_BASE register in CM address space, then 
loads the physical GIC base address into the register and sets the GIC enable bit.

Setting the GIC Base Address Code Example

The following code example uses the following defines to make the code easier to read:

#define GCR_CONFIG_ADDR 0xffffffffbfbf8000  // KSEG1 address of the GCR registers
#define GCR_CONFIG_ADDR_PB 0xffffffffbfbf8000  // Post Boot address of the GCR 
registers
#define GIC_P_BASE_ADDR0x000000001bdc0000  // physical address of the GIC
#define GIC_BASE_ADDR0xffffffffbbdc0000  // KSEG1 address of the GIC
#define GIC_BASE_ADDR_PB0xffffffffbbdc0000// Post Boot address of the GIC
#define NUMINTERRUPTS 16
#define NUMINTERRUPTS_S 8

The code loads the address of the GIC Base Address Register into a1 using the li instruction.

li      a1, GCR_CONFIG_ADDR + GCR_GIC_BASE 

The code then loads a0 with the physical address of the GIC using the li instruction. Then bit 0 is set, which enables 
the GIC. This value is stored to the GCR_GIC_BASE register using the sw instruction. 

li      a0, (GIC_P_BASE_ADDR | 1) // Physical address + enable 
sw      a0, 0(a1)

7.2.2 Determining the Number of External Interrupts in the System

Register Interface

The number of external interrupt sources is a fixed value configured at build time. This number of external interrupts 
in the system is stored in the "GIC Configuration Register", GIC_SH_CONFIG. For more information, refer to the 
Global Configuration Register (GIC_SH_CONFIG at offset 0x0000) in the I6500 Registers companion document 
contained in the release.

The following is a code example used to determine the number of external interrupts in the system. This code reads 
the GIC_SH_CONFIG register and isolates the NUMINTERRUPTS field in bits 23:16. Interrupt sources are config-
ured in the core in groups of 8. This field indicates how many groups of 8 the core has.

The define GIC_BASE_ADDR is the address of the Shared section of the GIC which is loaded into a1.   The Shared 
Configuration register is located at offset 0. The code loads the value of the register into a0. This examples assumes 
there are 40 external interrupts in the system. 
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Number of External Interrupts Code Example

// Verify GIC is 5 "slices" of 8 interrupts giving 40 interrupts.

li      a1, GIC_BASE_ADDR // load GIC KSEG0 Address
lw      a0, GIC_SH_CONFIG (a1) // GIC_SH_CONFIG

Then the code extracts the number of interrupt groups.

ext a0, NUMINTERRUPTS, NUMINTERRUPTS_S //extract NUMINTERRUPTS

For this example, the code loads the expected value of NUMINTERRUPTS into a3. This example is expecting 40 
interrupt sources (4 + 1 times 8). If the code does not detect this value, it executes a debug breakpoint to stop at a 
point where a debug probe can be used to evaluate the problem.

li      a3, 4
bqe     a0, a3, configure_slices
nop
sdbbp   // Failed assertion of 40 interrupts

7.2.3 EIC Mode Setting

Register Interface

EIC mode is controlled through kernel software by setting the EIC_MODE bit in the Local interrupt Control Register, 
GIC_ VPi_CTL. Setting this bit enables EIC mode for that VP. This bit defaults to 0, vectored interrupt mode. For 
more information, refer to the Local Interrupt Control Register (GIC_VL_CTL at offset 0x0000) in the I6500 Regis-
ters companion document included in the release.

Note that the state of the EIC_MODE bit is driven onto the SI_EICPresent pin. Hardware uses this pin to update the 
state of the CP0 Config3.VEIC bit to indicate support for and status of the EIC mode.

Note that the interrupt mode is a system wide setting that is determined during IP configuration time. The GIC and 
cores of the system are programmed by hardware accordingly to enable or disable this mode.

EIC Mode Setting Code Example

// Read CTL local 

li a1, GIC_BASE_ADDR     // load GIC KSEG0 Address
daddiu a1, a1, 0x08000     // add offset for local addressing space
lw a0, GIC_VL_CTL(a1)         // read GIC_VL_CTL

// Set EIC_MODE (bit 0) in GIC_VL_CTL and read CP0 Config3

li a2, 0x1
ins a0, a2, 0, 1 // set bit 0
sw a0, GIC_VL_CTL(a1) // write GIC_VL_CTL
mfc0 a2, $16, 3 // read Config3 (reg 16, select 3) 

7.2.4 Configuring Interrupt Sources

The triggering of interrupts is configured through several registers in the GIC that are shared by all processors. While 
all processors can access these registers, in practice they are usually programmed at boot time by processor 0, or by 
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the boot code for the operating system (OS). There are three register groups that control the interrupt triggering con-
figuration. 

• Trigger type register group 

• Edge type register group 

• Polarity register group

Each interrupt source is represented by one bit in each register group. Each register in a group is 64 bits so each reg-
ister controls 64 interrupt sources. The first register in each group would control interrupts 63:0, the next 127:64, and 
so on. Since there can be 256 interrupt sources there are 4 registers in each group. Interrupts are allotted in groups of 
8, from 16 to 256.

Each of the interrupt sources can have either positive (asserted high) or negative (asserted low) polarity. Similarly, 
any of these sources can be either level-sensitive, single-edge-sensitive, or dual-edge-sensitive using the polarity con-
trol registers (GIC_SH_POLx_y), the trigger type control registers (GIC_SH_TRIGx_y) and dual edge control regis-
ters (GIC_SH_DUALx_y). When interrupts are driven from the GIC to the VP, all of the interrupts are normalized to 
positive, level-sensitive signals as this is the interrupt type supported by the CPU interrupt inputs. 

For single-edge signaling, the Polarity register denotes which edge is used for setting the interrupt register and which 
edge is ignored. For double-edged signaling, both the rising and falling edges are used to set the interrupt register. 
These three registers work in conjunction with one another to define the characteristics of each specific interrupt in 
the system. Each bit of each register corresponds to an interrupt. So for a given bit, the corresponding interrupt char-
acteristics would be defined as shown in Table 7.1. The ‘n’ in the table entries denotes that it can be any bit of a given 
register, but must be the same bit of each register. 

7.2.4.1 Trigger Type Register Group

Register Interface

The trigger type register group is made up of four "Global Interrupt Trigger Type registers", GIC_SH_TRIGx_y. The 
trigger type can be set to level or edge sensitive. Setting each bit in the register configures the corresponding interrupt 

Table 7.1 Selecting Interrupt Polarity, Edge Sensitivity, and Triggering

Polarity
(GIC_SH_POL[n])

Trigger
(GIC_SH_TRIG[n])

Single/Dual Edge
(GIC_SH_DUAL[n]) Description

0 0 x Interrupt is level sensitive and active low. In this case the 
contents of the GIC_SH_DUAL have no meaning 
because level triggering is enabled.

1 0 x Interrupt is level sensitive and active high. In this case 
the contents of the GIC_SH_DUAL have no meaning 
because level triggering is enabled.

0 1 0 Interrupt is single edge triggered on the falling edge of 
the signal.

1 1 0 Interrupt is single edge triggered on the rising edge of 
the signal.

x 1 1 Interrupt is dual edge triggered. In this case the contents 
of the GIC_SH_POL have no meaning because inter-
rupts occur on both the rising and falling edges of the 
signal.
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to be edge sensitive and clearing it configures it to be level sensitive. For example, to set the interrupt source 64 to 
edge sensitive bit 0 of the second GIC_SH_TRIG register (GIC_SH_TRIG127_64) should be set. For more informa-
tion, refer to the Global Interrupt Trigger Type Registers (GIC_SH_TRIGx_y) in the I6500 Registers companion doc-
ument.

Trigger Type Code Example

The following code example programs interrupt source 31 to be edge-sensitive.

#define GIC_SH_TRIG63_0 0x0180 // offset from the GIC base address for
// trigger bits for interrupt sources 0 - 63

dli      a1, GIC_BASE_ADDR  // load virtual base address of the GIC
// registers. NOTE: must be uncached address

dli      a0, 0x0000000080000000 // interrupt source 31 (bit 31)
sd   a0, GIC_SH_TRIG63_0(a1) // (edge sensitive)

7.2.4.2 Edge Type Register Group

Register Interface

The edge type register group is made up of four "Global Dual Edge Registers", GIC_SH_DUALx_y. This register 
group is used if the trigger type described in the previous section is set to edge sensitive and has no effect if the trigger 
type is set to level sensitive. The edge type can be either single or dual edge. Setting each bit in this register group 
configures the corresponding interrupt source to be dual edge and clearing it configures it to be single edge. For 
example, to set interrupt source 64 to dual edge sensitive, bit 0 of the second Global Dual Edge register 
(GIC_SH_DUAL127_64) should be set. For more information, refer to the Global Interrupt Dual Edge Registers 
(GIC_SH_DUALx_y) in the I6500 Registers companion document.

Edge Type Code Example

The following code example programs interrupt source 31 to be dual-edge sampled.

#define GIC_SH_DUAL63_0 0x0200 // offset from the GIC base address for dual 
bits for interrupt sources 0 - 63
dli      a1, GIC_BASE_ADDR // load virtual base address of the GIC registers

 // NOTE: must be uncached address 
dli      a0, 0x0000000080000000 // interrupt source 31 (bit 31)
sd   a0, GIC_SH_DUAL63_0(a1) // Dual

7.2.4.3 Polarity Type Register Group

Register Interface

The polarity register group is made up of four "Global Interrupt Polarity Registers", GIC_SH_POLx_y. This register 
group is used to determine the polarity sensitivity of the source. Setting each bit configures the corresponding inter-
rupt to be active high, and clearing it configures it to be active low.

If the interrupt is single-edge-sensitive, then setting the source bit configures the source to rising edge toggle and set-
ting clearing it configure it to be falling edge toggle. This register group has no effect if the edge type was set to dual 
edge sensitive. For more information, refer to the Global Interrupt Polarity Registers (GIC_SH_POLx_y) in the 
I6500 Registers companion document.
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Polarity Type Code Example

The following code example programs interrupt source 31 for active high or rising edge:

#define GIC_SH_POL63_0     0x0100 //offset from the GIC base address for 
//polarity bits for interrupt sources 0 - 63

dli a1, GIC_BASE_ADDR //load virtual base address of the GIC 
//registers NOTE: must be uncached address

dli      a0, 0x0000000080000000 // interrupt source 31 (bit 31)
sd   a0, GIC_SH_POL63_0(a1) // (high/rise for 31)

7.2.5 Interrupt Routing

The routing of interrupts to a specific input on a specific VP is controlled by the setting of 2 registers.

• Global Interrupt Map to Processor register, GIC_SH_MAP_VP — maps the interrupt to a specific VP number.

• Global Interrupt Map to Pin Register, GIC_SH_MAP_PIN — maps interrupt to a specific signal on a VP.

There is one of each of these registers for each external interrupt source. The mapping of external interrupt pins and 
the registers that control them is listed in Table 7.2. 

Table 7.2 Register Mapping Based on External Interrupts  

External 
Interrupt Offset Register Name

External 
Interrupt Offset Register Name

0 0x2000 GIC_SH_MAP0_VP 248 0x3F00 GIC_SH_MAP248_VP

0x0500 GIC_SH_MAP0_PIN 0x08E0 GIC_SH_MAP248_PIN

1 0x2020 GIC_SH_MAP1_VP 249 0x3F20 GIC_SH_MAP249_VP

0x0504 GIC_SH_MAP1_PIN 0x08E4 GIC_SH_MAP249_PIN

2 0x2040 GIC_SH_MAP2_VP 250 0x3F40 GIC_SH_MAP250_VP

0x0508 GIC_SH_MAP2_PIN 0x08E8 GIC_SH_MAP250_PIN

3 0x2060 GIC_SH_MAP3_VP 251 0x3F60 GIC_SH_MAP251_VP

0x050C GIC_SH_MAP3_PIN 0x08EC GIC_SH_MAP251_PIN

4 0x2080 GIC_SH_MAP4_VP 252 0x3F80 GIC_SH_MAP252_VP

0x0510 GIC_SH_MAP4_PIN 0x08F0 GIC_SH_MAP252_PIN

5 0x20A0 GIC_SH_MAP5_VP 253 0x3FA0 GIC_SH_MAP253_VP

0x0514 GIC_SH_MAP5_PIN 0x08F4 GIC_SH_MAP253_PIN

6 0x20C0 GIC_SH_MAP6_VP 254 0x3FC0 GIC_SH_MAP254_VP

0x0518 GIC_SH_MAP6_PIN 0x08F8 GIC_SH_MAP254_PIN

7 0x20E0 GIC_SH_MAP7_VP 255 0x3FE0 GIC_SH_MAP255_VP

0x051C GIC_SH_MAP7_PIN 0x08FC GIC_SH_MAP255_PIN

8 - 247 0x2100 - 
0x0520

GIC_SH_MAP8_VP - 
GIC_SH_MAP247_VP

0x3EC0 - 
0x08DC

GIC_SH_MAP8_PIN - 
GIC_SH_MAP247_PIN
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7.2.5.1 Mapping an Interrupt Source to a VP

Register Interface

There are 256 "Global Interrupt Map to VP Registers", (GIC_SH_MAPi_VP). These registers map each external 
interrupt source to a specific VP in the system. The ‘i’ indicates the number of the interrupts in the system, between 
16 and 256. Each register contains a 24-bit field which allows each external interrupt to be mapped to up to a maxi-
mum of 24 VP’s (6 cores x 4 VP’s/core). For more information, refer to the Global Interrupt Map to VP registers 
(GIC_SH_MAPx) in the I6500 Registers companion document.

Table 7.3 shows the physical mapping of the MAP_VP field to the actual core and VP number in the system. Note 
that the encoding of this field is fixed and does not change based on the number of VP’s per core. For example, if 
there are two VP’s per core and two cores in the system, the mapping would be as follows:

• MAP_VP bits 0 and 1 would represent the two VP’s in core 0

• MAP_VP bits 2 and 3 would not be used

• MAP_VP bits 4 and 5 would represent the two VP’s in core 1

• All other bits in the MAP_VP field are unused

Note that this mapping scheme represents the view in non-virtualized mode, as well as the view of the Root in virtu-
alized mode. 

The following example shows a system with 2 cores, 2 VP’s/core, and 16 external interrupts, where external interrupt 
4 is mapped to core 1, VP1.

Table 7.3 Physical Mapping of MAP_VP Field to Core and VP Number

MAP_VP Bit
Core and VP 

Number MAP_VP Bit
Core and VP 

Number

0 Core0, VP0 12 Core3, VP0

1 Core0, VP1 13 Core3, VP1

2 Core0, VP2 14 Core3, VP2

3 Core0, VP3 15 Core3, VP3

4 Core1, VP0 16 Core4, VP0

5 Core1, VP1 17 Core4, VP1

6 Core1, VP2 18 Core4, VP2

7 Core1, VP3 19 Core4, VP3

8 Core2, VP0 20 Core5, VP0

9 Core2, VP1 21 Core5, VP1

10 Core2, VP2 22 Core5, VP2

11 Core2, VP3 23 Core5, VP3
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Figure 7.3 Example of Mapping External Interrupt 4 to a Core 1, VP 1 

In Figure 7.3, the GIC_SH_MAP4_VP register is programmed with a value of 0x00_0020 to select Core 1, VP 1 as 
the destination VP for external interrupt 4. For more information on how the 24-bit MAP_VP field is organized, refer 
to Table 7.3.

7.2.5.2 Mapping an Interrupt Source to a Specific Processor Pin

Register Interface

In addition to mapping each external interrupt to a particular VP as described above, each individual interrupt can 
also be mapped to a specific interrupt pin of a given VP. There are 256 "Global Interrupt Map to Pin Registers" 
(GIC_SH_MAPi_PIN) used to map each external interrupt to a specific interrupt pin on a core. The ‘i’ indicates the 
number of the interrupts in the system, between 8 and 256. Hence there are a maximum of 256 registers, one per 
interrupt. Each register contains a 6-bit field which allows each external interrupt to be mapped. 

The type of interrupt mode determines how the interrupt pins are interpreted. In External Interrupt Controller (EIC) 
mode, the 6-bit field is an encoded value that can decode up to 64 different interrupt levels. In non-EIC mode, each 
individual pin is an interrupt, allowing for a total of six interrupts. 

Interrupt Configuration Example 1 — Non-EIC Mode

The following examples show a system with 2 VP’s/core and 16 external interrupts. In the first example, external 
interrupt 4 is mapped to interrupt pin 3 of core 1, VP 1.

External Interrupts
015

GIC

GIC_SH_MAP4_VP

24’b0000_0000_0000_0000_0000_0010_0000

Hardware Mapper

1234567891011121314

VP0

VP1

CORE 0

VP0

VP1

CORE 1
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Figure 7.4 Example of Mapping External Interrupt 4 to a Core 1, VP 1, Int 3 — Non-EIC Mode 

In Figure 7.4, the GIC_SH_MAP4_VP register is programmed to select Core 1, VP 1 as the destination VP for exter-
nal interrupt 4. Note that this is not an encoded value. Each bit in this field represent a specific VP up to 24 in the sys-
tem. Refer to Table 7.3 for the core/VP mapping of this register.

The MAP field of the GIC_SH_MAP4_PIN register is programmed with a value of 0x03, which selects interrupt pin 
3 of the VP selected by the GIC_SH_MAP4_VP register. Bit 31 of the GIC_SH_MAP4_PIN register is set to 1 to 
indicate the external interrupt corresponds to an interrupt and not an NMI. Note that the MAP field is an encoded 
value and represents a binary value for interrupt pin 3 of the VP.

Bit 0 of the GIC_VL5_CTL register is set to 0 to indicate non-EIC interrupt mode.

Interrupt Configuration Example 2 — EIC Mode

The following examples show a system with 2 VP’s/core and 16 external interrupts. In the first example, external 
interrupt 4 is mapped to the interrupt pins of core 1, VP 1, interrupt level 15.

External Interrupts
015

GIC

GIC_SH_MAP4_VP

24’b0000_0000_0000_0000_0000_0010_0000

Hardware Mapper

1234567891011121314

VP0

CORE 0

GIC_SH_MAP4_PIN

0531

1 MAP[5:0] = 
6’b000011

SI_Int[5]
SI_Int[4]
SI_Int[3]
SI_Int[2]
SI_Int[1]
SI_Int[0]

VP1

SI_Int[5]
SI_Int[4]
SI_Int[3]
SI_Int[2]
SI_Int[1]
SI_Int[0]

VP0

CORE 1

SI_Int[5]
SI_Int[4]
SI_Int[3]
SI_Int[2]
SI_Int[1]
SI_Int[0]

VP1

SI_Int[5]
SI_Int[4]
SI_Int[3]
SI_Int[2]
SI_Int[1]
SI_Int[0]

023

GIC_VL5_CTL

031

0 

Indicates non-EIC mode
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Figure 7.5 Example of Mapping External Interrupt 4 to a Core 1, VP 1, Int Level 15 — EIC Mode

In Figure 7.5, the GIC_SH_MAP4_VP register is programmed to select Core 1, VP 1 as the destination VP for exter-
nal interrupt 4. Note that this is not an encoded value. Each bit in this field represents a specific VP up to 24 in the 
system.

The MAP field of the GIC_SH_MAP4_PIN register is programmed with a value of 0x0E, which routes the encoded 
interrupt level of 15 to the VP selected by the GIC_SH_MAP4_VP register. It is important to note that when pro-
gramming the GIC_SH_MAPi_PIN registers in EIC mode, the value in this field represents one less than the actual 
EIC interrupt level. In this case, a value of 0x0E represents interrupt level 15. Bit 31 of the GIC_SH_MAP_PIN reg-
ister is set to 1 to indicate the external interrupt corresponds to an interrupt and not an NMI. 

Bit 0 of the GIC_VL5_CTL register is set to 1 to indicate EIC interrupt mode. In this mode, the interrupt level sent to 
the target VP is a 6-bit encoded value between 0 and 63, with 0 meaning no interrupts.

In this example, a value of 6’b001110 indicates the value on the interrupt bus corresponds to external interrupt 15. 
The value in the register is one less than the actual interrupt level as described above. 

7.2.6 Enabling, Disabling, and Polling Interrupts

The enabling, disabling and polling of interrupts is configured through several registers in the GIC that are shared by 
all VP’s. 

There are 4 shared registers groups for enabling, disabling and polling of interrupts.

• Enabling an interrupt using the "GIC Set Mask Registers", GIC_SH_SMASK

External Interrupts
015

GIC

GIC_SH_MAP4_VP

24’b0000_0000_0000_0000_0010_0000

Hardware Mapper

1234567891011121314

VP0

CORE 0

GIC_SH_MAP4_PIN

0531

1 MAP[5:0] = 
6’b001110

SI_Int[5]
SI_Int[4]
SI_Int[3]
SI_Int[2]
SI_Int[1]
SI_Int[0]

VP1

SI_Int[5]
SI_Int[4]
SI_Int[3]
SI_Int[2]
SI_Int[1]
SI_Int[0]

VP0

CORE 1

SI_Int[5]
SI_Int[4]
SI_Int[3]
SI_Int[2]
SI_Int[1]
SI_Int[0]

VP1

SI_Int[5]
SI_Int[4]
SI_Int[3]
SI_Int[2]
SI_Int[1]
SI_Int[0]

023

GIC_VL5_CTL

031

1 
001111

Indicates EIC mode



 

136 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00

• Disabling an interrupt using the "GIC Reset Mask Registers", GIC_SH_RMASK

• Determining the Enable/Disable state of an interrupt state using "GIC Mask Register", GIC_SH_MASK

• Polling the interrupt active state using the "GIC Pending Register", GIC_PEND_MASK

Like the trigger registers, each interrupt source is represented by one bit in each register group. Each register in a 
group is 64 bits so each controls 64 interrupt sources. The first register in each group would control interrupts sources 
0 - 63, the next 127 - 64 and so on. Since there can be 256 interrupt sources there are 4 registers in each group. 

The number of interrupt sources is a fixed value configured at build time, so the actual number of interrupts may be 
less than 256. The actual number of system interrupts can be determined by reading the NUMINTERRUPTS field of 
the "GIC Configuration Register", GIC_SH_CONFIG. 

7.2.6.1 Enabling External Interrupts

Register Interface

The GIC Set Mask register group is used to enable external interrupts. It is made up of "GIC Set Mask Registers", 
GIC_SH_SMASK. For synchronization purposes this is a write-only register. Setting the source bit enables the inter-
rupt.

7.2.6.2 Disabling External Interrupts

Register Interface

The GIC Reset Mask register group is used to disable external interrupts. The GIC supports a maximum of 256 exter-
nal interrupts. The GIC Reset Mask register group is made up of four write-only "GIC Reset Mask Registers":

• GIC_SH_RMASK_63_0

• GIC_SH_RMASK_127_64 

• GIC_SH_RMASK_191_128 

• GIC_SH_RMASK_255_192 

Each bit in these registers corresponds to an external interrupt. Setting a bit to one resets and disables the correspond-
ing interrupt. 

7.2.6.3 Determining the Enabled or Disabled Interrupt State

Register Interface

The GIC Mask register group is used to determine if an external interrupt is enabled. It is made up of the following 
GIC_SH_MASK register. These registers are read-only. 

• GIC_SH_MASK_63_0

• GIC_SH_MASK_127_64 

• GIC_SH_MASK_191_128 

• GIC_SH_MASK_255_192 

If a bit is set the corresponding interrupt source is enabled. If it is clear the corresponding interrupt is disabled. 
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7.2.6.4 Polling for an Active Interrupt

Register Interface

The GIC Pending register group is used to determine if a external interrupt is active. These bits are set by hardware 
when an interrupt event occurs. The group is made up of the following GIC_SH_PEND read-only registers.

• GIC_SH_PEND_63_0

• GIC_SH_PEND_127_64 

• GIC_SH_PEND_191_128 

• GIC_SH_PEND_255_192 

If a bit is set the corresponding interrupt source is active. If it is clear the corresponding interrupt is inactive. 

7.2.6.5 Programming Example

When an interrupt occurs, the corresponding bit in the GIC_SH_PEND register is set by hardware. If the correspond-
ing interrupt enable bit in the GIC_SH_MASK bit is set, the GIC delivers the interrupt to the appropriate VP. The hard-
ware does this by using the GIC_SH_MAP_VP register to send the interrupt to the appropriate VP and the 
GIC_SH_MAP_PIN register to set the interrupt pins for that VP.

In the following example: 

• External interrupt 8 is asserted

• All bits of the GIC_SH_SMASK register are set, enabling all 64 interrupts.

• The receiving VP is core 0, VP 1, and the receiving interrupt level is 15. 

This example is shown in Figure 7.6.
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Figure 7.6 Masking and Mapping of Interrupts in the GIC 

7.2.7 Inter-processor Interrupts

Register Interface

Each processor in the system can interrupt any other processor. Each inter-processor interrupt is configured just like 
an external interrupt using sources not being used by external devices. The interrupt sources chosen for this purpose 
must be configured to be edge sensitive by setting the appropriate bits in GIC_SH_TRIG registers.

The "Global Interrupt Write Edge Register", GIC_SH_WEDGE is a shared register used to deliver an interrupt to 
another processor (only one per system). It is also used to clear an interrupt. There are two fields in the 
GIC_SH_WEDGE register used to do this.

63 0
GIC_SH_PEND63_0

Interrupt pending status
written by hardware based
on external interrupt activity.

63 0
GIC_SH_MASK

63 0
GIC_SH_SMASK63_0

63 0
GIC_SH_RMASK63_0

Writing to the GIC_SH_RMASK
register allows software to reset any
bit in the GIC_SH_MASK to 0 as a
way to disable a given interrupt.

Writing to the GIC_SH_SMASK
register allows software to set any
bit in the GIC_SH_MASK to 1 as a
way to enable a given interrupt.

Hardware reads the GIC_SH_MAP_VP
and GIC_SH_MAP_PIN registers to determine
the destination VP and interrupt pin for the
interrupt to be processed.

Read-Only

Write-Only Write-Only

Read-Only

0xFFFF_FFFF_FFFF_FFFF

Interrupt 8 is asserted by
external hardware.

0x0000_0000_0000_0000
0x0000_0000_0000_0100

23 0
GIC_SH_MAP_VP*Write-Only

Software writes a value of
0x00_0002 to indicate

core 0, VP 1 as the recipient of
the interrupt. 0x00_0002

31 0
GIC_SH_MAP_PIN Write-Only

0x1000_000E

Software writes a value
of 0x1000_000E to indicate
Int[15] as the interrupt of
the destination VP.

Hardware Check

Interrupt sent to VP1, 
interrupt 15 in EIC mode.

Note: Software can use the RMASK
register to disable certain interrupts from
being generated. It is not used in this 
example.

*24’b0000_0000_0000_0000_0000_0010
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• The RW bit determines if the interrupt is being set (delivered) or cleared. Setting this bit delivers an interrupt and 
clearing the bit clears the interrupt.

• The INTERRUPT field should be set to the interrupt number to be set or cleared.

7.2.7.1 WEDGE Register Programming Example

A write that sets the R/W bit of the Write Edge (WEDGE) register is treated equivalently to having the edge detection 
logic see an active edge. Because the programming of the Write Edge register has a direct effect on the state of the 
internal Edge Detect register, the Write Edge register can be used to bypass the edge detection logic. Thus, it does not 
matter whether the corresponding interrupt is configured to be rising, falling, or dual edge sensitive. 

When VP 0 wants to interrupt VP 1, the number of the interrupt to be used is programmed into the GIC_SH_WEDGE 
register. The selected interrupt must be mapped to the target VP (VP1 in this example) using the GIC_SH_MAPi_VP 
register). 

For example, assume VP 0 wants to toggle interrupt 40. In this case, kernel software writes a value of 0x28 into the 
GIC_SH_WEDGE register. Hardware then writes the value in the WEDGE register into the Edge Detect hardware 
register, effectively bypassing the edge detection logic. Hardware determines that interrupt being toggled belongs to 
VP 1, not VP 0. The GIC routing logic then routes interrupt 40 onto the appropriate VP 1 interrupt pins.

Figure 7.7 shows how the Write Edge register can be used to bypass the interrupt detection logic and assert interrupt 
directly. Setting a bit in the Write Edge register in turn sets the corresponding bit in the internal Edge Detect register, 
forcing an interrupt to be generated and allowing for inter-processor interrupts within the GIC.

Figure 7.7 Sending Inter-Processor Interrupts in the GIC 

Interrupt Detection Logic

63 0
EDGE_DETECT

7 0
GIC_SH_WEDGE.INTERRUPT Write-Only

External Interrupts

32

63 0
GIC_SH_PENDRead-Only

Interrupt Masking and
Mapping Function

Hardware Register
(not software visible)

Software can set bits in the GIC_SH_WEDGE
register to bypass the interrupt detection logic
and send an interrupt message directly by toggling
a bit in the Edge Detect register. 

Interrupt sent to the 
appropriate VP and 
interrupt pin.

Software write 0x28 to GIC_SH_WEDGE.INTERRUPT
field to bypass the interrupt detection logic
and send an interrupt message directly by toggling
a bit in the Edge Detect register. 
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Example of Sending an Inter-Processor Interrupt — C Code

The following is a C code example of sending an inter-processor interrupt. First the #defines: 

void set_ipi(int cpu_num) {

// Add the enable bit, the first IPI number and the cpu number and write it to the GIC_SH_WEDGE register

    GIC_SH_WEDGE = 0x80000000 + FIRST_IPI + cpu_num ; 

Code Example of Clearing an Inter-Processor Interrupt

Once received, the interrupt routine should do whatever action is intended for the interrupt and clear the interrupt by 
writing the interrupt number to the GIC_SH_WEDGE register before executing the ERET instruction. NOTE: only 
the interrupt number is set before the write so the R/W bit is cleared indicating that the interrupt is to be cleared.

li      k0, (GIC_SH_WEDGE | GIC_BASE_ADDR)
mfc0    k1, C0_EBASE                // Get CP0 EBase
ext     k1, k1, 0, 10       // Extract CPUNum
addiu   k1, 0x20       // Offset to base of IPI interrupts.
sw      k1, 0(k0)      // Clear this IPI.

7.2.8 Local Timer Configuration

The GIC also controls how devices within the processor and the GIC are configured and mapped locally to the pro-
cessor.

There are 2 devices that are added as part of the GIC described in this section:

• GIC Interval Timer - a 64 bit timer that compares a local compare register, GIC_CORE_COMPARE of a proces-
sor with a global counter, GIC_SH_COUNTER in the GIC and activates an interrupt when they match.

• GIC Watchdog Timer - a 32 bit decrementing counter, GIC_VO_WD_COUNT. 

7.2.8.1 GIC Interval Timer

The interval timer is similar to the CP0 Count/Compare timer within each processor. The difference is that the 
GIC_SH_ COUNTER register is global to the cluster so that all processors in the same cluster have the same time ref-
erence.

Counter Registers

The counter register (GIC_SH_COUNTER) is in the shared section of the GIC memory map. The counter must be 
stopped before it is set. This is done by setting the COUNTSTOP bit of the GIC_SH_CONFIG register. In practical 
use the counter is usually set by an OS at boot time by one processor. This counter register is also available (read 
only) in user mode located at offset 0 of the User Mode Visible Section of the GIC. 

#define Value Description

GIC_SH_WEDGE *((volatile unsigned int*) (0xbbdc0280)) Address of the GIC_WEDGE_REGISTER.

FIRST_IPI 32 Source number for the first IPI.
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The COUNTBITS field of the GIC_SH_CONFIG register is used to set up the width of the GIC_SH_Counter register. 
In the GIC design, this field has a default value of 0x8, indicating a total counter size of 64-bits.

Compare Registers

The compare register (GIC_VLi_COMPARE) is located in the local section of the GIC memory map making the count 
specific to each processor. These registers can be written at any time. When the count value equals the compare value 
an interval timer interrupt is asserted. The interrupt is cleared (de-asserted) by writing to the GIC_VLi_COMPARE 
register. 

Determining the Counter Width

To derive the total width of the counter, the following formula is used:

32 + COUNTBITS x 4

Where:

‘32’ is the minimum width of the counter and ‘COUNTBITS’ is the value in the COUNTBITS field of the 
GIC_SH_CONFIG register.

For example, if the COUNTBITS field contains a value of 0x8, the overall width of the counter would be:

32 + 8 x 4 = 64 bits

In the GIC design, the counter can be a value between 32 and 64 bits in increments of 4. For example, 32 bits, 36 bits, 
40 bits, etc.

Counter Based Interrupt Example

In the example shown in Figure 7.8, the width of the counter is 64-bits, and the Compare value is 0x1_FFFF_FFFF 
which corresponds to 8G clock cycles. When this count is reached, hardware generates an internal interrupt.
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Figure 7.8 Example of GIC Internal Counter-Based Interrupt Generation 

63 0

In the GIC_SH_CONFIG register,

Hardware Compare

hardware sets the value of 
COUNTBITS to 0x8 to implement

27 24
0x8

28

COUNTSTOP
This value is used to determine
the width of the counter

063
GIC_SH_COUNTER register

Software writes 0x0000_0000_0000_0000 
to set the initial count to zero

063

Software programs the Compare register
register with a value of 0xFFFF_FFFF_FFFF_FFFF 
for a value of 8G counts. 

Hardware compares the value in GIC_SH_COUNTER
with the value in GIC_VL_COMPARE. When these two
values are equal, hardware generates an internal interrupt.

After programming the GIC_SH_COUNTER
registers, software writes a 0 to the 
COUNTSTOP bit to restart the counter.

a 64-bit counter.

Software writes 0x1 to the COUNTSTOP
bit of the GIC_SH_CONFIG register to
stop the counter before programming the
GIC_SH_COUNTER register.

Hardware sets bit 1 of the
GIC_VLi_PEND register
for further processing.

GIC_VL_Compare register

23
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7.2.8.2 GIC Watchdog Timer

Register Interface

Each VP supports a Watchdog timer that is controlled by the following three registers.

• The "GIC Watchdog Timer Configuration Register", GIC_VLi_WD_CONFIG is local to each processor and 
reports state information and configures the characteristics of the timer.

• The "Watchdog Timer Initial Count Register", GIC_VLi_WD_INITIAL is local to each processor and is used to 
set the timer interval. 

• The "Watchdog Timer Count Register", GIC_VLi_WD_COUNT is a read only register local to each processor 
that contains the current value of the countdown.

GIC Watchdog Timer Configuration Register

The GIC Watchdog Timer Configuration register contains bits that control the function of the timer.

• Clearing the WAIT bit of GIC_VLi_WD_CONFIG register (default value) causes the counter to stop counting 
when the processor is executing a WAIT instruction or is in a low power state controlled by the Cluster Power 
Controller (CPC). Setting this bit causes it to continue counting down.

• Clearing the Debug bit (default value) causes the counter to stop counting when the VP enters debug mode. 
When this bit is set the count continues counting down.

• The TYPE field in bits 3:1 of this register determines what happens when the timer reaches 0.

Clearing the WD_START bit disables the timer and when it is set it enables the timer. Writing WD_START with a 1 
triggers a reload of the GIC_VL_WD_COUNT register with the value in the GIC_VLi_WD_INITIAL register. For 

Table 7.4 GIC Watchdog Timer Modes

Encoding Mode Behavior 

0x0 One Trip An interrupt is asserted and the timer stops (typically an NMI).

0x1 Second Countdown An interrupt is asserted and the timer reloads. If the timer expires for the second 
time before being reloaded again, all cores are reset. 

This mode provides a way to distinguish between a Software hang and a Hardware 
hang. Usually the Watchdog Timer Interrupt is routed to the NMI interrupt. This 
causes the processor to soft reboot. That is what happens in this mode when the 
timer expires the first time.

If this was a software hang during the reboot the kernel software should reload the 
Watchdog Timer, thus avoiding the second expiration. If the processor itself does 
not respond to the interrupt, then it is assumed to be a hardware issue. Therefore, 
when the count expires the second time a reset signal is sent to all processors in the 
system.

0x2 Programmable 
Interval Timer (PIT)

An interrupt is asserted, the initial count is reloaded and the time starts counting 
down again interrupting each time the counter reaches 0.

This mode provides a per-processor interval timer. This is one mode where the inter-
rupt should not be routed to NMI. It should instead be routed to a normal interrupt 
where for example the interrupt could be used in a time slicing OS.
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more information, refer to the Watchdog Timer Config Register (GIC_VL_WD_CONFIG) at offset 0x0090 in the 
I6500 Registers companion document included in the release.

Watchdog Timer Initial Count Register

Register Interface

The "Watchdog Timer Initial Count Register", GIC_VLi_WD_INITIAL is local to each processor and is used to set 
the timer interval. To start the counter for the first time the counter should be disabled by clearing the WD_START bit 
in the  GIC_VLi_WD_CONFIG register and the countdown value loaded into this register and then the counter 
enabled by setting the WD_START bit. For more information, refer to the Watchdog Timer Initial Count Register 
(GIC_WD_INITIAL) at offset 0x0098 in the I6500 Registers companion document included in the release.

Watchdog Timer Count Register

The "Watchdog Timer Count Register", GIC_VL_WD_COUNT is a read only register that contains the current value 
of the countdown. This register is reloaded with the value in the GIC_VLi_WD_INITIAL register each time the 
WD_START bit in the GIC_VLi_WD_CONFIG register is set. For more information, refer to the Watchdog Timer 
Count Register (GIC_WD_COUNT) at offset 0x0094 in the I6500 Registers companion document included in the 
release.

Watchdog Timer Masking and Mapping

Register Interface

Once a Watchdog timer interrupt is generated, hardware sets bit 0 of the Local Interrupt Pending register 
(GIC_VLi_PEND) at offset address 0x0004. Hardware then reads the state of bit 0 in the Local Interrupt Mask register 
(GIC_VLi_MASK) at offset address 0x0008 to determine whether the Watchdog timer interrupt has been masked. The 
GIC_VLi_MASK register is read-only. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register (GIC_VLi_SMASK) 
at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_VLi_RMASK) at offset address 0x000C. 
Software sets bit 0 of the SMASK register to enable the Watchdog timer interrupt, or it can set bit 0 of the RMASK reg-
ister to disable Watchdog timer interrupts. Note that when the WatchDog timer is programmed to generate a hardware 
reset, the reset cannot be masked by the Local Interrupt Mask register.

Once hardware has determined the masking characteristics of the interrupt, it uses the Watchdog Timer Map-to-Pin 
register at offset address 0x0040 to determine which SI_Int[5:0] or NMI pins the interrupt will be driven onto. In non-
EIC mode, bits 5:0 of this register are used to select one of 6 VP interrupts. For example, if kernel software programs 
this field with a value of 0x2, then the Watchdog timer interrupt will be driven onto SI_Int[2]. In non-EIC mode, only 
encodings 0 - 5 are valid. 

In EIC mode, the VP encodes this field to support up to 64 interrupts. For example, if kernel software programs this 
field with a value of 0x20, then the Watchdog timer interrupt corresponds to interrupt 32. This encoded value is then 
driven onto SI_Int[5:0]. 
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Figure 7.9 Watchdog Timer Interrupt Masking and Mapping in the GIC  

Watchdog Timer and Debug Mode

Under certain conditions, kernel software may want to suspend Watchdog timer operation while the I6500 Multipro-
cessing System is in debug mode. This can be accomplished by clearing the DEBUG bit of the Watchdog Timer 
Config register located at offset address 0x0090. When this bit is cleared, counting is stopped. Note that the DM bit of 
the CP0 Debug register (DEBUGDM) must be set to place the device in debug mode.

If the DEBUG bit is set, entering debug mode has no effect on the Watchdog timer counting process.

Watchdog Timer and Low Power Mode

Under certain conditions, kernel software may want to suspend Watchdog timer operation while the I6500 Multipro-
cessing System is in low power mode. This can be accomplished by clearing the WAIT bit of the Watchdog Timer 
Config register located at offset address 0x0090. When this bit is cleared, counting is stopped, including when low 
power mode is entered via the WAIT instruction.
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If this bit is set by the kernel, entering low power mode has no effect on the Watchdog timer counting process.

7.2.9 Local Interrupt Routing and Masking

Local interrupts are internal events that occur within the I6500 Multiprocessing System. The routing and masking of 
local interrupts is handled in a similar manner to the Watchdog timer interrupts described in the previous section. The 
local interrupts are defined as follows:

• Count/Compare interrupt

• Local CPU timer interrupt

• Performance counter interrupt

• Two software interrupts

• Fast Debug Channel (FDC) interrupt

Each of these interrupts can be routed and masked as described in the following subsections.

7.2.9.1 Local Interrupt Routing

There is a Local Interrupt Map-to-Pin Register for each local interrupt source that maps the local interrupt to a spe-
cific input on the processor. There are two bits, MAP_TO_PIN and MAP_TO_NMI that control the type of input that 
is assigned to the interrupt source. Only one of these bits can be set at any one time for each interrupt.

• The local MAP_TO_PIN registers map each local interrupt source to Interrupt Pending bits in the CP0 Cause 
register of the core. If the MAP_TO_PIN bit (31) of the corresponding register is set, indicating that the interrupt 
source is mapped to an interrupt pin, the actual interrupt is mapped to a specific interrupt pin using the 6-bit MAP 
field of this register. This field contains the encoded value of the interrupt (0 - 63) in EIC mode. For example, a 
value of 0x20 in the MAP field indicates interrupt 33 (decimal). For vectored interrupt (non-EIC) mode, each bit 
of the MAP field corresponds to one of six interrupt pins.

• If the MAP_TO_NMI bit (30) of this register is set, this indicates that the interrupt source will be mapped to the 
NMI bit in the CP0 Status register. This in essence will cause the core to soft boot using the boot exception vector 
as the start of the interrupt routine.

7.2.9.2 Local Interrupt Masking

Register Interface

In addition to the routing of interrupts, the I6500 core also provides the ability to mask interrupts using the following 
registers:

• Local Interrupt Pending register (GIC_VL_PEND). This read-only register indicates the status of each of the local 
interrupts listed at the beginning of the section entitled Local Interrupt Routing and Masking.

• Local Interrupt Mask register (GIC_VL_MASK). This read-only register indicates the whether a given local inter-
rupts has been enabled prior to interrupt processing. This register manages the mask status for each of the local 
interrupts listed at the beginning of the section entitled Local Interrupt Routing and Masking.

• Local Interrupt Reset Mask register (GIC_VL_RMASK). This write-only register allows the programmer to dis-
able one or more of the local interrupts by setting the bits of this register. If a given bit is set, interrupt are dis-
abled for the corresponding interrupt type. This register manages the reset mask function for each of the local 
interrupts listed at the beginning of the section entitled Local Interrupt Routing and Masking.
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• Local Interrupt Set Mask register (GIC_VL_SMASK). This write-only register allows the programmer to enable 
one or more of the local interrupts by setting the bits of this register. If a given bit is set, interrupts are enabled for 
the corresponding interrupt type. This register manages the set mask function for each of the local interrupts 
listed at the beginning of the section entitled Local Interrupt Routing and Masking.

When any of the local interrupts occurs, hardware sets the corresponding of the Local Interrupt Pending register 
(GIC_VLi_PEND) at offset address 0x0004. Hardware then reads the state of the Local Interrupt Mask register 
(GIC_VLi_MASK) at offset address 0x0008 to determine whether the interrupt has been masked. If a bit in this register 
is set, the corresponding interrupt is ignored. 

Local interrupts can be enabled by setting the appropriate bits of the Local Interrupt Set Mask register 
(GIC_VLi_SMASK) at offset address 0x0010. Conversely, interrupts can be disabled by setting the appropriate bits of 
the Local Interrupt Reset Mask register (GIC_VLi_RMASK) at offset address 0x000C. 

Each of the registers listed in the above examples can be found in the I6500 Registers companion document included 
in the release.

7.3 Virtualization Support

The I6500 MPS supports virtualization and the concept of guest and root modes. The following list shows some of 
the changes made to the GIC to support Virtualization. Each external interrupt source is assigned a GuestID for this 
purpose. The Hypervisor is expected to program these fields prior to initializing interrupts in the system.

7.3.1 Enabling Virtualization Mode

Register Interface

The I6500 GIC provides Virtualization support as indicated by a logic 1 in the GIC_CONFIG.VZP bit. The GIC can be 
programmed by kernel software to operate in either virtualized (GIC_CONFIG.VZE = 1) or non-virtualized 
(GIC_CONFIG.VZE = 0) modes.

In the GIC non-virtualized mode, the following rules apply:

• Any registers, or any fields in the Shared and VP-Local sections that have been added for virtualization should be 
considered reserved and read-only.

• Any Core-Local state is maintained in the fully populated root context.

• The GIC interface to the guest context in the core, known as the Guest Interrupt Bus, is always inactive (always 
0) in both EIC and non-EIC modes.

• If the core is enabled for virtualization, all guest accesses must be ignored (loads return 0s, stores are dropped).

7.3.2 Routing of Guest External Source Interrupts

Each external interrupt source, or a logical group of external interrupt sources, is assigned a GuestID. This GuestID 
may be a maximum of 8-bits. The per-external-interrupt source GuestID field has been added to the shared section 
Global Interrupt Map to Pin registers.

The developer may choose to assign one GuestID to each external interrupt source. Alternatively, since the number of 
interrupt sources may be large (up to 256 interrupts), an implementation may choose to group external interrupt 
sources by GuestID, or provide an intermediate configuration such that some number of sources are each assigned a 
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GuestID, while the remaining are grouped, and each group is assigned a GuestID. An example intermediate solution 
is one where the 1st 32 interrupt sources are individually assigned GuestIDs, while the remaining sources are divided 
up into groups of 8, each group with a GuestID. 

To facilitate the configuration of GuestID grouping, a 256-bit wide vector is provided which needs to be set at build 
time as per the required GuestID grouping scheme. This vector is 256 bits wide, which is the maximum number of 
external interrupt sources supported by the I6500 GIC. However, only the relevant lower indexed bits will take effect 
when the GIC is configured for less than 256 external interrupts. 

Each bit in this vector represents whether or not a physical GuestID register exists ('1' in the bit) or not ('0' in the bit) 
for that bits corresponding external interrupt source. In the case where a physical GuestID register does not exist for 
an external interrupt source, that external interrupt source uses the GuestID value from whatever the next lower 
indexed external interrupt source which has a physical GuestID register. For example, in a 64-interrupt system where 
the 1st 32 interrupt sources are individually assigned GuestIDs and the remaining sources are divided up into groups 
of 8, the 256-bit GuestID grouping vector would be configured with the value shown below:

Software can determine the GuestID grouping scheme configured at build time by reading this 256-bit GuestID 
grouping vector registers. For more information, refer to the ID Group Configuration Registers 
(GIC_SH_GID_CONFIG) at offsets 0x0080 through 0x0098 in the I6500 Registers companion document included in 
the release.

By convention, a GuestID of 0 specifies root, while a non-zero GuestID specifies a guest. In addition, each Core-
Local section in the GIC is aware of the GuestID resident in the physical core. These resident GuestIDs will be 
brought into the GIC via the SI*_GID input ports and this is equal to the core cores GuestCtl1ID CP0 register field.

7.3.3 Qualification of Root or Guest Software Access to GIC registers

In general, only the root software (hypervisor) requires access to the GIC configuration registers. Such configuration 
registers include, but not limited to, are for the specification of each interrupt's type (e.g., polarity, edge/level etc), 
Core assignment, interrupt routing etc. However, the guest software may require access to a subset of GIC registers 
for reading interrupt pending information, masking and clearing interrupts etc. Since a subset of GIC registers are 
shared by multiple guests and root, any guest-specific reads/writes must be qualified to avoid effecting the interrupts 
that are not associated with the intended guest. 

The shared section registers listed below need to be directly accessed by guest. The individual interrupts are repre-
sented using the n_m nomenclature, 

where n_m = the range of interrupt. For example, GIC_SH_PEND_63_0, where n = 63 and m = 0. As such, for all 
registers using the n_m nomenclature, there are four registers of each type to manage all 256 possible interrupts.

• GIC_SH_WEDGE - to cause Inter-Processor-Interrupts (IPI) and clear EDGE registered external interrupts.

256'h00000000000000000000000000000000000000000000000001010101FFFFFFFF

One guest ID for group of 8 interrupts [39:32]
One guest ID for each of the first 32 interrupts [31:0]

One guest ID for group of 8 interrupts [47:40]
One guest ID for group of 8 interrupts [55:48]
One guest ID for group of 8 interrupts [63:56]
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• GIC_SH_PENDn_m - to determine which external interrupts are pending.

• GIC_SH_MASKn_m  - to determine which external interrupts are masked.

• GIC_SH_SMASKn_m  - to set mask bits for external interrupts.

• GIC_SH_RMASKn_m - to clear mask bits for external interrupts.

• GIC_SH_TRIGn_m - to allow guest to set EDGE for causing IPI to other cores.

• GIC_SH_POLn_m - there is currently no identified reason for guest access to this register, but it is safe to do so.

• GIC_SH_DUALn_m - there is currently no identified reason for guest access to this register, but it is safe to do 
so.

Apart from the WEDGE register, all of the above listed registers contains one bit per external interrupt source. Guest 
accesses to each of these per external interrupt source bits are qualified with a per-external interrupt source valid vec-
tor. On guest writes to the WEDGE register, the encoded interrupt number value gets decoded out to drive the per-
external interrupt source logic. Guest writes to the WEDGE register are qualified by gating this driving of per-exter-
nal-interrupt source logic with the same per-external-interrupt source valid vector.

The following guest context replicated VP-Local section registers may need to be directly accessed by guest soft-
ware.

• GIC_VLi_PEND - for guest software to determine which local guest interrupts are pending.

• GIC_VLi_MASK - for guest software to determine which local guest interrupts are masked.

• GIC_VLi_SMASK - for guest software to set mask bits for local guest interrupts.

• GIC_VLi_RMASK - for guest software to clear mask bits for local guest interrupts.

• GIC_VLi_Compare - This allows the guest software to directly set its compare value after sampling its offset 
counter value. 

where i = 0 to 31, the max number of configured cores.

Each of these registers is described in the previous sections of this chapter.

7.3.4 Guest Mode Count-Compare Timer Interrupts

For guest context use of the Count-Compare (CC) timer interrupts, the global counter value that is common to root 
and all guests cannot be used. Therefore, a counter which is offset by an n-bit (set to 8 by default) value is used for 
each guest context. To specify this guest counter offset value, a GIC_VLi_COFFSET register is added to each Core-
Local section and the root is expected to program this offset value register. In addition, the compare value registers 
are replicated for the guest context and these are added as GIC_VLi_Compare register to each Core-Local section. 
This allows guest and root contexts in each core to set compare independently. 

To facilitate this guest context interrupt routing, the Count-Compare register bits are replicated for guest context reg-
isters GIC_VL_[PEND/MASK/SMASK/RMASK]_MAP registers and also the GIC_VL_COMPARE register repli-
cated for guest context. 

Note the guest software is not allowed to write to GIC_SH_COUNTER register and also cannot disable the counter by 
writing to the GIC_SH_CONFIGCOUNTSTOP field.
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7.3.5 Watchdog (WD) Timer Guest and Root Interrupts 

In the GIC, a single WatchDog timer is present for the root context. The root may allow the guest to utilize this single 
WatchDog timer by setting the newly added control bit GEN in the GIC_VLi_WD_CONFIG register. In virtualized 
mode (GIC_SH_CONFIGVZP = 1 and GIC_SH_CONFIGVZE = 1) if the root software sets GEN = 1, then the guest 
software is allowed to access the WatchDog timer related registers GIC_VLi_WD_[MAP/CONFIG/COUNT/INITIAL]. 
However, in non-virtualized mode (GIC_SH_CONFIGVZP = 1 and GIC_SH_CONFIGVZE = 0), this GEN control bit is 
a don't care and is not used to qualify any GIC register accesses.

Even when guest is allowed access to WatchDog timer with GEN = 1, there are further restrictions for guest accesses 
of certain WatchDog timer related register fields. These further restrictions are as follows,

• Guest has limited access to GIC_VLi_WD_CONFIG register:
- The WDRESET, WAIT and DEBUG fields are read-only 0 for guest.
- The guest can only set the TYPE field with values 0x0 and 0x2 and not the value of 0x1. Thus when guest 
writes this 3-bit field, the LSB is dropped and for guest reads, the LSB returns 0.

• Guest has limited access to GIC_VLi_WD_MAP register.
- The guest writes to MAP_TO_NMI field is further gated by GIC_SH_CONFIGGNMI field. 

When guest is allowed access to WatchDog timer, the guest may handle the generated WatchDog interrupts without 
root intervention. To facilitate this, the WatchDog related bits are replicated in GIC_VLi_[PEND/MASK/RMASK/
SMASK] registers for guest context and guest software is given direct access to them. 

7.4 GIC User-Mode Visible Section

The Shared (SH), VP-local (VL), and VP-other (VO) sections of the GIC register map are meant to be located in priv-
ileged system virtual address space, in which only kernel mode software can initialize and update the interrupt con-
troller.

A separate 64KB address space is allocated so that it may be mapped to user-mode virtual address space. Within this 
address space are aliases for GIC registers that are read so often that it makes sense to make them available to user-
mode programs without requiring a system call. The aliases for these registers are read-only. Currently, the only reg-
ister aliased into this space is the shared Counter registers. 

The addresses for the registers within the User-Mode Visible Section of the GIC are calculated as follows:

SharedSection_Register_Physical_Address = GIC_baseaddress + 
UMVisible_Section_baseoffset + Register_Offset

Note that register is located at an offset of 1_0000 relative to the GIC base address. 

Table 7.5 User-Mode Visible Section Register Map

Register Offset Name Type Description

0x0000 GIC Counter (GIC_SH_COUNTER) R Read-only alias for GIC Shared Counter.

Any Other Offsets Reserved Reserved for future extensions.
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Floating-Point Unit (FPU)

The I6500 core features an optional IEEE 754 compliant 3rd generation Floating Point Unit (FPU3) with SIMD that 
handles all floating point operations within the I6500 Multiprocessing System. The I6500 core can issue up to two 
instructions per cycle to the FPU.

This chapter provides information on how to enable the FPU, how to handle floating point exceptions, how to set the 
rounding mode, operation of the Flush-to-Zero (FS) function, and a programming example.

8.1 Overview

The FPU supports fused multiply-adds as defined by the IEEE 754-2008, IEEE Standard for Binary Floating-Point 
Arithmetic. Most FPU instructions have a one-cycle throughput. All floating point denormalized input operands and 
results are fully supported in hardware. 

The FPU contains thirty-two, 128-bit vector registers shared between SIMD and FPU instructions (FPU uses only the 
lower 64-bits of these registers). Single precision floating point instructions use the lower 32 bits of the 128 bit regis-
ter. Double precision floating point instructions use the lower 64 bits of the 128 bit register. SIMD instructions use the 
entire 128 bit register interpreted as multiple vector elements; 16 x 8-bit, 8 x 16-bit, 4 x 32-bit, and 2 x 64-bit vector 
elements.

8.1.1 IEEE Standard 754

The IEEE Standard 754-2008 defines the following:

• Floating-point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

The standard does not define specific processing resources nor does it define an instruction set.

8.1.2 Floating Point Registers

The FPU programmable functions described in the following subsections are controlled by the Floating Point Con-
trol and Status Register (FCSR). These include elements such as enabling selected types of FPU exceptions, rounding 
mode, and flush-to-zero operation. Normally these fields are updated using a read-modify-write operation. The FSCR 
is read, the new value is logically OR’d with the existing value and merged into a single value. The result is written 
back to the FCSR.

To avoid having to use a read-modify-write sequence, the FPU provides two additional registers that allow indirect 
updates to the FCSR fields to be performed in a single write operation. 
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• The Floating Point Exceptions register (FEXR) located at CP1 Register 26, is an alternative way to read and 
write the Cause and Flags fields of the FCSR using a single write operation. In this case the programmer would 
update the fields of the FEXR in a single write. Hardware would then move these updated fields into the FCSR.

• The Floating Point Enables Register (FENR) located at CP1 register 28, is an alternative way to read and write 
the exception type enables field, the rounding mode field, and the flush-to-zero field in the FCSR using a single 
write operation. In this case the programmer would update the fields of the FENR in a single write. Hardware 
would then move these updated fields into the FCSR.

8.2 Enabling the Floating-Point Unit

The Floating Point Unit is known as Coprocessor 1 (CP1). To enable CP1, set the CU1 bit in the CP0 Status register. 

When this bit is cleared, Coprocessor 1 is disabled. Any attempt to execute a floating-point instruction causes a 
Coprocessor Unusable exception.

Floating Point Enable Code Example

#define C0_STATUS $t12,0

mfc0 t0, C0_STATUS //move CP0 Status register contents to register t0
li t1, 0x20000000 //load value into t1 register with bit 29 set
or t0, t1, t0 //logically OR contents of t0 and t1 and copy result into t0
mtc0 t0, C0_STATUS //write t0 into CP0 Status register with bit 29 set

8.3 Setting a Floating Point Exception

The Floating Point Control and Status Register (FCSR located at CP1 register 31) is used to set and monitor floating 
point exceptions. The format of this register is shown in Figure 8.1.

Figure 8.1 FCSR Format  

This register contains three fields that are used for the following purposes.

• Program the ‘Enables’ field in bits 11:7 to enable up to 5 types of exceptions as described in Table 8.1.

• If the ‘Enables’ field is programmed, use the ‘Cause’ field in bits 17:12 to determine the type of error once the 
exception occurs.

• Use the ‘Flags’ field in bits 6:2 is used when no exception conditions are enabled. It provides kernel software 
with the ability to check to see the type of error that occurred even though no exception type was enabled and no 
exception was taken. 

31 25 24 23 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FS 0
ABS
2008

NAN
2008 Cause Enables Flags RM

0 1 1 E V Z O U I V Z O U I V Z O U I

Table 8.1 Cause, Enable, and Flag Field Definitions 

Bit Name Bit Meaning

E Unimplemented Operation.
This bit exists only in the Cause field.
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8.4 Setting the Rounding Mode

To set the rounding mode for floating point operations, program the RM field (bits 1:0) in the Floating Point Control 
and Status Register (FCSR located at CP1 register 31) shown in Figure 8.1. The RM field is encoded as follows. 

V Invalid Operation. 
The Invalid Operation Exception is signaled if and only if there is no usefully definable result. In these cases 
the operands are invalid for the operation to be performed. 
When the Invalid Operation Exception is not enabled, the default floating-point result is a quiet NaN.

Z Divide by Zero. 
The Divide by Zero Exception is signaled if and only if an exact infinite result is defined for an operation on 
finite operands. 
When the Divide by Zero Exception is not enabled, the default result is an infinity correctly signed according 
to the operation.

O Overflow. 
The Overflow Exception is signaled if and only if the destination format’s largest finite number is exceeded 
in magnitude by what would have been the rounded floating-point result, were the exponent range 
unbounded. 
When the Overflow Exception is not enabled, the overflowed rounded result is delivered to the destination. 
In addition, the Inexact bit in the Cause field is set.

U Underflow.
If enabled, the Underflow Exception is signaled when a tiny non-zero result is detected after rounding 
regardless of whether the rounded result is exact or inexact.
Under default exception handling, i.e. when the Underflow Exception is not enabled, the rounded result is 
delivered to the destination and:
• If the rounded result is inexact, the Inexact bit in the Cause field is set. 
• If the rounded result is exact, no bit in the Flags field is set. Such an underflow condition has no observ-

able effect under default handling.

I Inexact.
Unless stated otherwise, if the rounded result of an operation is inexact -- that is, it differs from what would 
have been computed were both exponent range and precision unbounded -- then the Inexact Exception is sig-
naled. 
When the Inexact Exception is not enabled, the rounded result is delivered to the destination.

Table 8.2 Rounding Modes Definitions

RM Field 
Encoding Meaning

0 Round to nearest / ties to even.
Rounds the result to the nearest representable value. When two representable values are equally near, the 
result is rounded to the value whose least significant bit is zero (that is, even).

1 Round toward zero.
Rounds the result to the value closest to, but not greater in magnitude than the result.

2 Round towards positive / plus infinity.
Rounds the result to the value closest to, but not less than the result.

Table 8.1 Cause, Enable, and Flag Field Definitions (continued)

Bit Name Bit Meaning
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8.5 Operation of the FS Bit

The Flush to Zero (FS) bit in the Floating Point Control and Status Register (FCSR located at CP1 register 31) mod-
ifies the handling of denormalized operands. 

If Flush to Zero is set, every input subnormal value and tiny non-zero result is replaced with zero of the same sign. In 
addition:

• Tiny non-zero results are detected before rounding. Flushing of tiny non-zero results causes Inexact and Under-
flow Exceptions to be signaled for all instructions, except the approximate reciprocals.

• Flushing of subnormal input operands in all instructions except comparisons causes an Inexact Exception to be 
signaled.

• For floating-point comparisons, the Inexact Exception is not signaled when subnormal input operands are 
flushed. 

8.6 Programming the Floating Point FCSR Register

This section contains a programming example for programming the various bits of the FCSR as described in Sections 
10.4 (Exceptions), 10.5 (Rounding Mode), and 10.6 (Flush-to-Zero bit).

In this example, the Cause and Flags fields shown in Figure 8.1 are set to 0, all exception types are enabled, the 
rounding mode is set to ‘round towards zero’, and the FS bit is set.

#define C1_FCSR $31

mfc1 t0, C1_FCSR //move CP1 FCSR register contents to register t0
li t1, 0x01000F81 //load value into t1 register with Cause field = 0, 

//Enables field = 5’b11111, Flags field = 0, and Rounding
//Mode = 1

or t0, t1, t0 //logically OR contents of t0 and t1 and copy result into t0
mtc1 t0, C1_FCSR //write t0 into the CP1 FCSR register

3 Round towards negative / minus infinity.
Rounds the result to the value closest to, but not greater than the result.

Table 8.2 Rounding Modes Definitions

RM Field 
Encoding Meaning
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MIPS® SIMD Architecture (MSA) 

This chapter describes the MIPS Single-Instruction-Multiple-Data (SIMD) architecture, known as MSA (MIPS 
SIMD Architecture). The SMA module adds more than 150 new instructions to the MIPS architecture that allow effi-
cient parallel processing of vector operations.

The MSA provides increased system flexibility by incorporating a software-programmable solution for handling 
emerging CODECs or other functions not covered by the dedicated hardware in the device. Rather than focusing on 
narrowly defined instructions that must have optimized code written manually in assembly language in order to be 
utilized, the MSA is designed to accelerate compute-intensive applications in conjunction with leveraging generic 
compiler support. Applications such as data mining, feature extraction in video, image and video processing, human-
computer interaction, and others, have some built-in data parallelism that lends itself well to SIMD.

The SIMD instructions are easily supported within high-level languages such as C or OpenCL, enabling fast and sim-
ple development of new code, as well as leverage of existing code.

This chapter provides a brief hardware overview of the MSA architecture, including how to map scalar floating point 
registers to MSA vector registers. Programming concepts include how to enable the MSA, MSA exception handling, 
a description of each field in the MSA Control register (MSACSR) and assembly language programming example, 
and GNU compiler support. 

9.1 Overview of the SIMD Architecture

The MIPS® SIMD instructions operate on 32 vector registers of 8-, 16-, 32-, and 64-bit integer, 16-and 32-bit fixed- 
point, or 32- and 64-bit floating-point data elements. In the I6500 core, MSA implements 128-bit wide vector regis-
ters shared with the 64-bit wide floating-point unit (FPU) registers.

The MSA floating-point implementation is compliant with the IEEE Standard for Floating-Point Arithmetic 754TM-
2008. All standard operations are provided for 32-bit and 64-bit floating-point data. 16-bit floating-point storage for-
mat is supported through conversion instructions to/from 32-bit floating-point data.

9.1.1 MSA Instruction Formats

MSA instructions have 2- or 3-register, immediate, or element operands. One of the destination data format abbrevia-
tions shown in Table 9.1 is appended to the instruction name. Note that the data format abbreviation is the same 
regardless of the instruction’s assumed data type. For example, all integer, fixed-point, and floating-point instructions 
operating on 32-bit elements use the same word (.W in Table 9.1) data format. 

Table 9.1 Data Format Abbreviations 

Data Format Abbreviation

Byte, 8-bit .B

Halfword, 16-bit .H
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The FPU contains thirty-two, 128-bit vector registers shared between SIMD and FPU instructions. SIMD instructions 
use the entire 128 bit register interpreted as multiple vector elements and relate to Table 9.1 as follows:

• 16 elements x 8-bits/element (.B)

• 8 elements x 16-bits/element (.H)

• 4 elements x 32-bits/element (.W)

• 2 elements x 64 bits/element (.D)

• 1 element x 128-bits (.V)

9.1.2 SIMD Instructions

In addition to Floating point instructions the Floating point Unit (FPU3) contains a full set of over 150 SIMD instruc-
tions that are compliant with the MIPS64® SIMD Architecture. For a complete list of all new SIMD instructions, 
refer to document MD00868, ‘MIPS Architecture for Programmers Volume IV-j; The MIPS64® SIMD Architecture 
Module’.

SIMD instructions enable:

• Efficient vector parallel arithmetic operations on integer, fixed-point and floating-point data.

• Operations on absolute value operands.

• Rounding and saturation options available.

• Full precision multiply and multiply-add.

• Conversions between integer, floating-point, and fixed-point data.

• Complete set of vector-level compare and branch instructions with no condition flag.

• Vector (1D) and array (2D) shuffle operations.

• Typed load and store instructions for endian-independent operation.

The FPU plus SIMD is fully synthesizable and operates at the same clock speed as the CPU. The I6500 core can issue 
up to two instructions per cycle to the FPU.

The FPU contains two execution pipelines for SIMD instruction execution. These pipelines operate in parallel with 
the integer core and do not stall when the integer pipeline stalls. This allows long-running SIMD operations to be par-
tially masked by system stall and/or other integer unit instructions.

The FPU is optimized for SIMD performance. Most SIMD instructions have one cycle throughput. 

Word, 32-bit .W

Doubleword, 64-bit .D

Vector .V

Table 9.1 Data Format Abbreviations (continued)

Data Format Abbreviation
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9.1.3 MSA Vector Registers

The MSA operates on thirty-two 128-bit wide vector registers. If both MSA and the scalar floating-point unit (FPU) 
are present, the 128-bit MSA vector registers extend and share the 64-bit FPU registers. 

MSA vector registers have four data formats: byte (8-bit), halfword (16-bit), word (32-bit), doubleword (64-bit). 

9.1.4 Layout of MSA Registers 

Figure 9.1 through Figure 9.4 show the vector register layout for elements of all four data formats.

Figure 9.1 MSA Vector Register Byte Elements (16 x 8)

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

Figure 9.2 MSA Vector Register Halfword Elements (8 x 16)

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

[7] [6] [5] [4] [3] [2] [1] [0]

MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB

Figure 9.3 MSA Vector Register Word Elements (4 x 32)

127 96 95 64 63 32 31 0

[3] [2] [1] [0]

MSB LSB MSB LSB MSB LSB MSB LSB

Figure 9.4 MSA Vector Register Doubleword Elements (2 x 64)

127 64 63 0

[1] [0]

MSB LSB MSB LSB
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9.1.5 Mapping of Scalar Floating-Point Registers to MSA Vector Registers

The scalar floating-point unit (FPU) registers are mapped on the MSA vector registers. To facilitate register data shar-
ing between scalar floating-point instructions and vector instructions, the FPU is required to use 64-bit floating-point 
registers operating in 64-bit mode. 

The read and write operations for the FPU/MSA mapped floating-point registers are defined as follows:

• A read operation from the floating-point register r, where r = 0, …, 31, returns the value of the element with 
index 0 in the vector register r. The element’s format is word for 32-bit (single precision floating-point) read or 
double for 64-bit (double precision floating-point) read.

• A 32-bit read operation from the high part of the floating-point register r, where r = 0, …, 31, returns the value of 
the word element with index 1 in the vector register r. 

• A write operation of value V to the floating-point register r, where r = 0, …, 31, writes V to the element with 
index 0 in the vector register r and all remaining elements are UNPREDICTABLE. Figure 9.5 and Figure 9.6 
show the vector register r after writing a 32-bit (single precision floating-point) and a 64-bit (double precision 
floating-point) value V to the floating-point register r.

• A 32-bit write operation of value V to the high part of the floating-point register r, where r = 0, …, 31, writes V to 
the word element with index 1 in the vector register r, preserves word element 0, and all remaining elements are 
UNPREDICTABLE. Figure 9.7 shows the vector register r after writing a 32-bit value V to the floating-point 
register r.

Figure 9.5 FPU Word Write Effect on the MSA Vector Register

127 96 95 64 63 32 31 0

Unpredictable Unpredictable Unpredictable Word value V

Figure 9.6 FPU Doubleword Write Effect on the MSA Vector Register

127 64 63 0

Unpredictable Doubleword value V

Figure 9.7 FPU High Word Write Effect on the MSA Vector Register

127 96 95 64 63 32 31 0

Unpredictable Unpredictable Word value V Unpredictable
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9.2 MSA Programming

The following subsections describes some programming elements of the MSA block.

9.2.1 Enabling MSA

Register Interface

The presence of the MIPS SIMD architecture (MSA) implementation is indicated by the state of the Config3.MSAP 
bit (CP0 Register 16, Select 3, bit 28) at reset. The MSAP bit is fixed by the hardware implementation and is read-
only for the kernel software. Software can determine if MSA is implemented by checking if the MSAP bit is set, 
which is always the case in the I6500 core.

To enable the MSA block, the following CP0 register bits must be programmed:

• The Config5.MSAEn bit (CP0 Register 16, Select 5, bit 27) is used to enable access to the MSA instructions and 
the MSA vector registers. Executing a MSA instruction when MSAEn bit is not set causes a MSA Disabled 
Exception.

• The Status.CU1 bit must be set.

Enabling MSA Code Example

The following code example describes how to enable the MSA block using the register bits described above. 

#include <mips/m32c0.h>
#include <mips/regdef.h>
#define C0_STATUS $12,0
#define C0_CONFIG5 $16,5

//this code ensures that the CU1 and FR bits of the CP0 Status register are set.
mfc0 v1, C0_STATUS //move contents of CP0 Status Register into v1
li v0, SR_FR | SR_CU1 //OR the FR and CU1 bits and place result into v0
or v1, v1, v0 //OR v1 and v0 and place result back into v1
mtc0 v1, C0_STATUS //write result out to CP0 Status register with FR 

//and CU1 bits set
ehb

//Set MSA enable bit in Config5.
mfc0 v1, C0_CONFIG5 //move CP0 Config5 register into v1
li v0, CFG5_MSAEN //load value into v0 that sets the MSAEN bit
or v1, v1, v0 //OR v1 and v0 and place result back into v1
mtc0 v1, C0_CONFIG5 //write out result to CP0 Config5 with MSAEN bit set
ehb

This example is for a programmer writing their own code to enable the MSA block while writing a low-level support 
library, RTOS, or their own tool chain. However, this code is part of the MIPS CodeScape. As such, it is not necessary 
for the programmer to manually enable MSA when using CodeScape as this functionality is already built in to the 
CodeScape software.
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9.2.2 Setting a MSA Exception

The MSA Control and Status Register (MSACSR) is a 32-bit read/write register that controls the operation of the 
MSA unit. Figure 9.8 shows the format of the MSACSR.

The kernel software can read and write the MSACSR using the CFCMSA and CTCMSA (Copy From and To Con-
trol MSA register) instructions. 

The Floating Point Control and Status Register (FCSR, CP1 Control Register 31) and MSA Control and Status Reg-
ister (MSACSR) are closely related in their purpose and register layout. However, each serves a different functional 
unit and can exist independently of the other.

Figure 9.8 MSACSR Register Format

This register contains three fields that are used for the following purposes.

• Program the ‘Enables’ field in bits 11:7 to enable up to 5 types of exceptions as described in Table 9.2.

• If the ‘Enables’ field is programmed, use the ‘Cause’ field in bits 17:12 to determine the type of error once the 
exception occurs.

• Use the ‘Flags’ field in bits 6:2 is used when no exception conditions are enabled. It provides kernel software 
with the ability to check to see the type of error that occurred even though no exception type was enabled and no 
exception was taken. 

31 25 24 23 22 21 20 19 18 17 12 11 7 6 2 1 0

0
00000000 FS 0 Impl 0 NX Cause Enables Flags RM

E V Z O U I V Z O U I V Z O U I

Table 9.2 Cause, Enable, and Flag Field Definitions 

Bit Name Bit Meaning

E Unimplemented Operation.
This bit exists only in the Cause field.

V Invalid Operation. 
The Invalid Operation Exception is signaled if and only if there is no usefully definable result. In these cases 
the operands are invalid for the operation to be performed. 
Under default exception handling, i.e. when the Invalid Operation Exception is not enabled, the default float-
ing-point result is a quiet NaN.

Z Divide by Zero. 
The Divide by Zero Exception is signaled if and only if an exact infinite result is defined for an operation on 
finite operands. 
Under default exception handling, i.e. when the Divide by Zero Exception is not enabled, the default result is 
an infinity correctly signed according to the operation.

O Overflow. 
The Overflow Exception is signaled if and only if the destination format’s largest finite number is exceeded 
in magnitude by what would have been the rounded floating-point result, were the exponent range 
unbounded. 
Under default exception handling, i.e. when the Overflow Exception is not enabled, the overflowed rounded 
result is delivered to the destination. In addition, the Inexact bit in the Cause field is set.
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Refer to Section 9.2.6, "Programming the MSA CSR Register" for more information on programming the exception 
types.

Refer to Section 9.3, "MSA Exceptions" for more information on MSA exception types.

9.2.3 Setting the Rounding Mode

To set the rounding mode for floating point operations, program the RM field (bits 1:0) in the MSA Control and Status 
Register (MSACSR) shown in Table 9.3. The RM field is encoded as follows. 

Refer to Section 9.2.6, "Programming the MSA CSR Register" for more information on setting the rounding mode.

U Underflow.
If enabled, the Underflow Exception is signaled when a tiny non-zero result is detected after rounding 
regardless of whether the rounded result is exact or inexact.
Under default exception handling, i.e. when the Underflow Exception is not enabled, the rounded result is 
delivered to the destination and:
• If the rounded result is inexact, the Inexact bit in the Cause field is set. 
• If the rounded result is exact, no bit in the Flags field is set. Such an underflow condition has no observ-

able effect under default handling.

I Inexact.
Unless stated otherwise, if the rounded result of an operation is inexact -- that is, it differs from what would 
have been computed were both exponent range and precision unbounded -- then the Inexact Exception is sig-
naled. 
Under default exception handling, i.e. when the Inexact Exception is not enabled, the rounded result is deliv-
ered to the destination.

Table 9.3 Rounding Modes Definitions

RM Field 
Encoding Meaning

0 Round to nearest / ties to even.
Rounds the result to the nearest representable value. When two representable values are equally near, the 
result is rounded to the value whose least significant bit is zero (that is, even).

1 Round toward zero.
Rounds the result to the value closest to, but not greater in magnitude than the result.

2 Round towards positive / plus infinity.
Rounds the result to the value closest to, but not less than the result.

3 Round towards negative / minus infinity.
Rounds the result to the value closest to, but not greater than the result.

Table 9.2 Cause, Enable, and Flag Field Definitions (continued)

Bit Name Bit Meaning



 

162 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00

9.2.4 Operation of the FS Bit

The Flush to Zero (FS) bit in the MSA Control and Status Register (MSACSR) modifies the handling of denormal-
ized operands. 

If Flush to Zero is set, every input subnormal value and tiny non-zero result is replaced with zero of the same sign. In 
addition:

• Tiny non-zero results are detected before rounding. Flushing of tiny non-zero results causes Inexact and Under-
flow Exceptions to be signaled for all instructions, except the approximate reciprocals.

• Flushing of subnormal input operands in all instructions except comparisons causes an Inexact Exception to be 
signaled.

• For floating-point comparisons, the Inexact Exception is not signaled when subnormal input operands are 
flushed. 

Refer to Section 9.2.6, "Programming the MSA CSR Register" for more information on setting the FS bit.

9.2.5 Operation of the NX Bit

Setting the NX bit in the MSA CSR sets the MSA block in non-trapping floating point exception mode.

In normal exception mode, the destination register is not written and the floating point exceptions set the Cause bits 
and trap.

In non-trapping exception mode (NX bit set), the operations that would normally signal floating point exceptions do 
not write the Cause bits and do not trap. All the destination register’s elements are set either to the calculated results 
or, if the operation would normally signal an exception, to signaling NaN values with the least significant 6 bits 
recording the specific exception type detected for that element in the same format as the Cause field. The Flags bits 
are updated for all floating-point operation with an IEEE exception condition that does not result in a MSA floating 
point exception (i.e., the Enable bit is off). This field is encoded as follows:

0: Normal exception mode.
1: Non-trapping exception mode.

Refer to Section 9.2.6, "Programming the MSA CSR Register" for more information on setting the NX bit.

For more information on the NX bit, refer to Section 9.3.2 “MSA Non-Trapping Exceptions”.

9.2.6 Programming the MSA CSR Register

This section contains a programming example for programming the various bits of the MSACSR as described in Sec-
tions 11.4 (Exceptions), 11.5 (Rounding Mode), and 11.6 (Flush-to-Zero bit).

In this example, the Cause and Flags fields shown in Figure 9.8 are set to 0, all exception types are enabled, the 
rounding mode is set to ‘round towards zero’, and the FS bit is set.

cfcmsa t0, $1 //move MSA CSR register contents to register t0
li t1, 0x01040F81 //load value into t1 register with FS bit set, Cause

//field = 0, Enables field = 5’b11111, Flags field = 0,
//Rounding Mode = 1, and NX bit set

or t0, t1, t0 //logically OR contents of t0 and t1 and copy result
//into t0
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ctcmsa t0, $1 //write t0 into the MSA CSR register

9.3 MSA Exceptions

FPU exceptions are implemented in the MIPS FPU/MSA architecture with the Cause, Enables, and Flags fields of the 
FCSR/MSACSR. The flag bits implement IEEE exception status flags, and the cause and enable bits control excep-
tion trapping. Each field has a bit for each of the five IEEE exception conditions. The Cause field has an additional 
exception bit, Unimplemented Operation, used to trap for kernel software emulation assistance. If an exception type 
is enabled through the Enables field of the FCSR/MSACSR, then the FPU is operating in precise exception mode 
for this type of exception.

9.3.1 MSA Exception Types

MSA instructions can generate the following exceptions:

• Reserved Instruction, if bit Config3.MSAP (CP0 Register 16, Select 3, bit 28) is not set, or if the usable FPU 
operates in 32-bit mode; Status.CU1 (CP Register 12, Select 0, bit 29) is set. This exception uses the common 
exception vector with ExcCode field in Cause CP0 register set to 0x0A.

• Coprocessor Unusable, if CFCMSA or CTCMSA instructions attempt to read or write privileged MSA control 
registers without Coprocessor 0 access enabled. This exception uses the common exception vector with ExcCode 
field in Cause CP0 register set to 0x0B and CE field set to 0 to indicate Coprocessor 0.

• MSA Disabled, if bit Config5.MSAEn (CP0 Register 16, Select 5, bit 27) is not set or, when vector registers par-
titioning is enabled (i.e. MSAIR.WRP set), if any MSA vector register accessed by the instruction is either not 
available or needs to be saved/restored due to a context switch. This exception uses the common exception vector 
with ExcCode field in Cause CP0 register set to 0x15.

• MSA Floating Point, a data dependent exception signaled by the MSA floating point instruction. This exception 
uses the common exception vector with ExcCode field in Cause CP0 register set to 0x0E. The exact reason for 
taking this exception is in the Cause bits of the MSA Control and Status Register (MSACSR). 

9.3.2 MSA Non-Trapping Exceptions

MSA provides a non-trapping exception mode (bit NX) that enables determining which element in the MSA vector 
caused the floating point exception.

In normal operation mode, floating point exceptions are signaled if at least one vector element causes an exception 
enabled by the Enable bit. There is no precise indication in this case on which elements are at fault and the corre-
sponding exception causes. The exception handling routine should set the non-trapping exception mode bit NX and 
re-execute the MSA floating point instruction. All elements which would normally signal an exception according to 
the Enable bit-field are set to signaling NaN values, where the least significant 6 bits have the same format as the 

Table 9.4 Exception Codes

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

10 0x0a RI Reserved Instruction exception

11 0x0b CPU Coprocessor unusable exception

14 0x0e MSAFPE MSA Floating Point exception

21 0x15 MSADis MSA Disabled exception
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Cause field (see Figure 9.9) to record the specific exception or exceptions detected for that element. The other ele-
ments will be set to the calculated results based on their operands.

Figure 9.9 Output Format for Faulting Elements when NX is Set  

When the non-trapping exception mode bit NX is set, no floating point exception will be taken, not even the always 
enabled Unimplemented Operation Exception. Note that by setting the NX bit, the MSACSR Enable bit is not 
changed and is still used to generate the appropriate default results. Regardless of the NX value, if a floating point 
exception is not enabled, i.e. the corresponding MSACSR Enable bit is 0, the floating point result is a default value.

9.3.3 MSACSR Cause Register Field Update Pseudocode

The following pseudocode shows the process of updating the MSACSR Cause bits and setting the destination’s 
value. This process is invoked element-by-element for all elements the instruction operates on. It is assumed 
MSACSR Cause bits are all cleared before executing the instruction. The MSACSR Flags bits are updated after all 
the elements have been processed and MSACSR Cause contains no enabled exceptions. If there are enabled excep-
tions in MSACSR Cause, a MSA floating-point exception will be signaled and the MSACSR flags are not updated. 

MSACSRCause Update Pseudocode

Input
c: current element exception(s) E, V, Z, O, U, I bitfield

(bit E is 0x20, O is 0x04, U is 0x02, and I is 0x01)
d: default value to be used in case of a disabled exception
e: signaling NaN value to be used in case of NX set, i.e. a non-trapping

exception
r: result value if the operation completed without an exception

Output
v: value to be written to destination element
Updated MSACSRCause

enable  MSACSREnable | E /* Unimplemented (E) is always enabled */

/* Set Inexact (I) when Overflow (O) is not enabled */
if (c & O)  0 and (enable & O) = 0 then

c  c | I
endif

/* Clear Exact Underflow when Underflow (U) is not enabled */
if (c & U)  0 and (enable & U) = 0 and (c & I) = 0 then

c  c ^ U
endif

cause  c & enable

if cause = 0 then
/* No enabled exceptions, update the MSACSR Cause with all current exceptions */
MSACSRCause  MSACSRCause | c

if c = 0 then

… 6 5 4 3 2 1 0

Signaling NaN Bits Cause

E V Z O U I
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/* Operation completed successfully, destination gets the result */
v  r

else
/* Current exceptions are not enabled, destination

gets the default value for disabled exceptions case */
v  d

endif
else

/* Current exceptions are enabled */
if MSACSRNX = 0 then

/* Exceptions will trap, update MSACSR Cause with all current exceptions,
destination is not written */

MSACSRCause  MSACSRCause | c
else

/* No trap on exceptions, element not recorded in MSACSR Cause,
destination gets the signaling NaN value for non-trapping exception */

v  ((e >> 6) << 6) | c
endif

endif

MSACSRFlags Update and Exception Signaling Pseudocode

if (MSACSRCause & (MSACSREnable | E)) = 0 then /* Unimplemented (bit E 0x20)
 is always enabled */

/* No enabled exceptions, update the MSACSR Flags with all exceptions */
MSACSRFlags  MSACSRFlags | MSACSRCause

else
/* Trap on the exceptions recorded in MSACSR Cause, 

MSACSR Flags are not updated */
SignalException(MSAFPE, MSACSRCause)

9.4 MSA GNU Compiler Support

The GNU C Compiler (GCC) support for SIMD operations is based on a number of standard pattern names used for 
code generation. Ideally, the instruction set should implement as many of these operations as possible. In the process 
of MSA instruction selection and definition, supporting the standard GCC SIMD patterns was one of the most impor-
tant objectives. Most of these patterns translate directly in single MSA instructions.

Another aspect related to efficient vector code compilation for SIMD architectures is the interoperability between the 
C language arrays (of scalar data types) and the native vector data types. To support seamless mixing of scalar and 
vector data types operations, the MSA provides a rich set of typed data transfer instructions.

9.4.1 MSA ABI

The O32 ABIs have been extended to allow efficient use of the vector registers and instructions defined by MSA. The 
MSA ABI extensions are compatible with the base ABIs in the sense that existing binaries run unchanged on systems 
supporting MSA. In other words, there are no incompatibilities between the base O32 ABI and the corresponding 
MSA extended ABI. 

In particular, MSA ABI extensions;

• Do not change the base ABI data types layout / alignment
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• Do not introduce new callee-saved (aka saved) registers

• Preserve the call-clobbered (aka temporary) or callee-saved (aka saved) status of the aliased floating-point regis-
ters. 

However, vector data types are considered part of the MSA ABI by default and passed / returned by value without 
any MSA flags results in a compiler warning.

9.4.1.1 ABI Requirements

To be compatible with the MSA hardware, an ABI extension for MSA must support 32 64-bit floating point registers 
and a stack frame aligned to the size of the vector registers. The O32 FR1 ABI permits use of 64-bit floating point 
registers.

It is possible to adjust the stack alignment at run time using an existing compiler mechanism called dynamic stack 
realignment. Any ABI that does not meet the MSA stack alignment will therefore use dynamic stack re-alignment. 
For example, the 16-byte stack alignment of N32 and N64 ABIs is enough for MSA’s 128-bit vector registers. How-
ever, the O32 ABI must perform dynamic stack re-alignment in this case. 

9.4.1.2 Command Line Options and Function Attributes

Compiling for MSA (using the MSA defined instructions and vector registers) is enabled by the -mmsa command line 
option. A function compiled for MSA is referred to as a MSA function.

By default, the -mmsa option enables a faster calling convention for those functions passing vectors by value. This is 
achieved by using the vector registers for passing MSA vectors by value and returning MSA vector values.

A second MSA-related command line argument, -msimd-abi=none, can be used to disable the parameter passing/
returning values in the vector registers. With -msimd-abi=none, all vector data types follow the calling conventions of 
the base ABI.

The use of vector types passed by value without the -mmsa option results in an ABI warning stating that a non-default 
ABI will be emitted. This warning can be disabled by explicitly passing the -msimd-abi=none option. It is illegal to 
use the -msimd-abi=msa option without -mmsa.

The functionality enabled by the command line option -mmsa can be disabled using -mno-msa. The SIMD ABI can 
be controlled by varying the value given to the -msimd-abi option. In particular, two SIMD ABIs are defined:

• none - Use the base calling convention

• msa - Use the MSA calling convention (default)

Equivalently, the same functionality could be enabled/disabled at the function level using __attribute__() as shown 
below. 

• -mmsa           __attribute__((msa))

• -mno-msa        __attribute__((no_msa))

• -msimd-abi=none __attribute__((simd_abi_none))

• -msimd-abi=msa  __attribute__((simd_abi_msa))

For convenience, pre-processor symbols are defined for each option as follows:

• -mmsa           __MSA__
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• -mno-msa        __NO_MSA__

• -msimd-abi=none __SIMD_ABI_NONE___

• -msimd-abi=msa  __SIMD_ABI_MSA__

9.4.1.3 Vector and Floating-Point Register Usage for -mmsa and -msimd-abi=msa

The MSA vector registers are temporary, and all live vector registers must be saved before calling a function. This 
ensures MSA functions can call any other function and compatibility with future MSA extensions.

The first 8 vector parameters are passed via vector registers w4 to w11 and vector results are returned via vector reg-
ister w0. Floating-point registers are passed and returned as specified by the particular ABI.

For functions with variable arguments, no vector registers are used to pass vector parameters. This falls back to the 
original variable argument passing scheme from the particular ABI.

Note that compilers need to preserve the aliased callee-saved floating-point registers as specified by the O32 FR1, 
N32, and N64 ABIs: even f20, f22, ..., f30 for O32 FR1 and N32, and f24, f25, ..., f30, f31 for N64. For example, if 
the vector register w30 is used, the aliased floating point register f30 has to be preserved under all ABIs.

9.4.1.4 Inter-calling Between MSA and non-MSA Functions

A function that takes a MSA vector by value as a parameter or returns a MSA vector by value and is compiled with -
mmsa can be called only by functions compiled with -mmsa.

Any function compiled with -msimd-abi=none can be called by non-MSA functions, i.e. a functions compiled under 
the base ABI with MSA disabled.

9.4.1.5 MSA GNU Options and Directives

The MSA is supported by the GNU tool chain starting with GAS (GNU Assembler) 2.22.51 and GCC 4.7.3. The 
command line options and assembly directives to enable/disable MSA are shown in Table 9.5.

The GCC options -mfp64 and -mhard-float enforce the compatibility of the calling conventions of MSA and 
FPU, based on the fact that in the current release, MSA vector registers are shared with the 64-bit wide floating-point 
unit (FPU) registers.

Table 9.5 MSA GNU Options and Directives

GAS GCC

Enable Disable Enable Disable

Command Line Options -mmsa -mno-msa -mmsa -mfp64 -mhard-float -mno-msa

Assembly Directives .set msa .set nomsa
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The GCC integer and floating-point vector data types with generic MSA operation support are listed in Table 9.6 and 
Table 9.7. 

MSA instructions are available to the C/C++ programmer either by the inline assembly __asm__ directive, by 
msa_mnemonic() intrinsics, or when using most of the C/C++ operators on vector data types. The list of sup-
ported vector C/C++ operators include: +, -, *, /, %, ^, |, &, <<, >>, ==, !=, <, <=, >, >=, ~. 

For example, adding or comparing two single-precision floating-point vectors, as in:

wi32_t t;
wf32_t a, b, c;

a = b + c;
t = b < c;

compiles directly in MSA word floating-point add and compare instructions:

fadd.w $w3,$w0,$w1 # a is in $w3, b in $w0, c in $w1

Table 9.6 GCC Integer Vector Data Types Supported in MSA

Vector Data Type C Definition

Vector of signed bytes typedef signed char wi8_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of unsigned bytes typedef unsigned char wu8_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of signed halfwords typedef short wi16_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of unsigned halfwords typedef unsigned short wu16_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of signed words typedef int wi32_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of unsigned words typedef unsigned int wu32_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of signed doublewords typedef long long wi64_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of unsigned double-
words

typedef unsigned long long wu64_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Table 9.7 GCC Floating-Point Vector Data Types Supported in MSA

Vector Data Type C Definition

Vector of single precision 
floating-point values

typedef float wf32_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of double precision 
floating-point values

typedef double wf64_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));
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fclt.w $w4,$w0,$w1 # t is in $w4

Regarding the vector parameter passing conventions, MSA registers are all caller-saved, i.e. temporary registers are 
not preserved between function calls. The first eight vector parameters are passed in vector registers W4 to W11. 
When compiled for the MSA, the stack pointer is always aligned to 16 bytes.

9.4.2 MSA Vector Element Selection

MSA instructions select the nth element in the vector register ws (ws[n] in assembly language) based on the data for-
mat df. Valid element index values for various data formats and vector register sizes are shown in Table 9.8. 

9.4.3 Examples

Assume that vector registers W1 and W2 are initialized to the word values shown in Figure 9.10, Figure 9.11, and 
that general-purpose register R2 is initialized as shown in Figure 9.12. 

Regular MSA instructions operate element-by-element with identical source, target, and destination data types. 
Figure 9.13 through Figure 9.16 have the resulting values of destination vectors W5, W6, W7, and W8 after execut-
ing the following sequence of word additions and move instructions with different types of operands.

Table 9.8 Valid Element Index Values

Data Format Element Index

Byte n = 0, …, 15

Halfword n = 0, …, 7

Word n = 0, …, 3

Doubleword n = 0, 1

Figure 9.10 Source Vector W1 Values

127 64 63 0

a b c d

Figure 9.11 Source Vector W2 Values

127 64 63 0

A B C D

Figure 9.12 Source GPR 2 Value

31 0

E
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addv.w $w5,$w1,$w2 //add two vector operands in $w1 and $w2 and move
//into $w5. The .w indicates at the 128-bit MSA registers
//are divided into four 32-bit words.

fill.w $w6,$2 //replicate contents of GPR register $2 into w6
addvi.w $w7,$w1,17 //vector immediate operand. Add immediate 17 into w1

//and move the result into w7
splati.w $w8,$w2[2] //replicate word 2 of w2 into all elements of w8

   

Other MSA instructions operate on adjacent odd/even source elements, generating results on data formats twice as 
wide. The signed doubleword dot product DOTP_S is such an instruction (see Figure 9.17):

dotp_s.d $w9,$w1,$w2

Note that the actual instruction specifies .D (doubleword) as the destination’s data format. The data format of the 
source operands is inferred as being also signed and half the width, i.e. word, in this case.

Figure 9.13 Destination Vector W5 Value for ADDV.W Instruction

127 64 63 0

a + A b + B c + C d + D

Figure 9.14 Destination Vector W6 Value for FILL.W Instruction

127 64 63 0

E E E E

Figure 9.15 Destination Vector W7 Value for ADDVI.W Instruction

127 64 63 0

a + 17 b + 17 c + 17 d + 17

Figure 9.16 Destination Vector W8 Value for SPLAT.W Instruction

127 64 63 0

B B B B

Figure 9.17 Destination Vector W9 Value for DOTP_S Instruction

127 64 63 0

a * A + b * B c * C + d * D
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Virtualization

The Virtualization (VZ) Module defines a set of new instructions, registers, and machine states to the I6500 core to 
mange the efficient implementation of virtualized systems. The Virtualization Module is designed to enable full virtu-
alization of operating systems. The Virtualization Module allows for the execution of guest Operating Systems in a 
fully virtualized environment. 

This chapter provides an overview of the VZ module, introduction to Root and Guest operating systems, and modes 
of operation, register structure in Guest mode, software detection of Virtualization, Guest address translation, excep-
tion handling in Root and Guest mode and interrupt handling, and an overview of Guest debug mode.

10.1 Overview

The Virtualization Module defines the following elements:

• Guest Operating Mode

• Partial CP0 register set (or context) for Guest Mode use

• Registers for Guest Mode control

• Guest interrupt system

• Detection of Virtualization features

The Virtualization Module provides separate Coprocessor 0 register sets (or contexts) for guest mode operation, 
which is physically separate from, and a subset of, the Root Coprocessor 0 context.

10.1.1 Root and Guest Operating Modes

The virtualization module contains a operating modes for one Root and multiple Guests. The non-guest operating 
mode is known as root mode. The pre-existing kernel, user and supervisor operating modes can be referred to as 
root-kernel, root-user and root-supervisor respectively, to distinguish them from their guest-mode equivalents.

Guest mode consists of new operating modes guest-kernel, guest-user and guest-supervisor modes. The guest mode 
allows the separation between kernel, user and supervisor modes to be retained for a guest operating system running 
within a virtual machine. The guest-kernel mode can handle interrupts and exceptions, and manage virtual memory 
for guest-user mode processes. 

The separation between root mode and the limited-privilege guest mode allows root mode software to be in full con-
trol of the machine at all times even when a guest is running. Backward compatibility is retained for existing kernel 
software running in root mode.

The GuestCtl0 register contains the GM (Guest Mode) bit. This bit is used along with root-mode exception and error 
status bits (StatusEXL, StatusERL) and the Debug Mode bit (DebugDM) to determine whether the processor is operating 
in guest mode or root mode.
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Figure 10.1 shows the state transitions between operating modes.

Figure 10.1 State Transitions Between Operating Modes 

10.1.2 Introduction to the Hypervisor

Virtualization is enabled by kernel software. The key element is a control program known as a Virtual Machine Mon-
itor (VMM) or ‘Hypervisor’. The Hypervisor is in full control of machine resources at all times. When an operating 
system (OS) kernel is run within a virtual machine (VM), it becomes a ‘guest’ of the Hypervisor. All operations per-
formed by a guest must be explicitly permitted by the Hypervisor. To ensure that it remains in control, the Hypervisor 
always runs at a higher level of privilege than a guest operating system kernel. The hypervisor is responsible for man-
aging access to sensitive resources, maintaining the expected behavior for each VM, and sharing resources between 
multiple VMs.

In a traditional operating system, the kernel (or ‘supervisor’) typically runs at a higher level of privilege than user 
applications. The kernel provides a protected virtual-memory environment for each user application, inter-process 
communications, and I/O device sharing. The hypervisor performs the same basic functions in a virtualized system - 
except that the Hypervisor’s clients are full operating systems rather than user applications.

The virtual machine execution environment created and managed by the Hypervisor consists of the full Instruction 
Set Architecture, including all Privileged Resource Architecture facilities, plus any device-specific or board-specific 
peripherals and associated registers. It appears to each guest operating system as if it is running on a real machine 
with full and exclusive control.

The Virtualization Module enables full virtualization, and is intended to allow VM scheduling to take place while 
meeting real-time requirements, and to minimize costs of context switching between VMs. 

In virtualization, the guest operating system operates in unprivileged mode. All privileged operations attempted by 
the guest traps back to the Hypervisor, which executes in the privileged mode. The Hypervisor emulates all guest 
privileged operations, keeps track of the guest view of privileged state, and ensures that the system behaves as 
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expected by the guest. Full address translation allows an unmodified guest kernel to execute from its original location 
in memory, and allows the hypervisor to manage address translation to match the expectations of the guest kernel. 

10.1.3 Enabling Guest Mode Translations

The Virtualization Module in the I6500 core provides a separate CP0 register set and MMU for guest-mode execu-
tion. In guest mode two levels of address translation are performed as described above. 

10.1.4 MMU Considerations

For the TLB-based guest MMU, MIPS recommends that the number of entries be equal to the number of entries in 
the root-context TLB used for Guest mappings. The page sizes used in the root-mode TLB must be carefully consid-
ered to allow sufficient control for root-mode software, while maximizing the number of guest-mode TLB entries 
which are mapped through each root-mode TLB entry. Larger root TLB pages will likely result in better performance.

Both the guest and root MMU’s can be active at the same time. MIPS recommends that the Root TLB maintain an 
adequate amount of reserved TLB entries for its own use to avoid cascading TLB evictions (thrashing).

Figure 10.2 shows the outline of address translation in the Virtualization Module.
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Figure 10.2 Outline of Address Translation

Guest mode segmentation controls and the guest mode MMU have no effect on the root mode address space.

10.1.5 Guest ID

The ‘GuestID’ field (GuestCtl1ID or GuestCtl1RID ) represents a unique identifier for Root and all Guest Virtual 
Address spaces. Each Guest’s address space is identified by a unique non-zero GuestID. The GuestID value zero is 
reserved for Root address space. The GuestCtl1 CP0 register is unique in the Root register space and inaccessible in 
guest mode. GuestID is an optimization, designed to minimize TLB invalidation overhead on a virtual machine con-
text switch and simplify Root access to Guest TLB entries. 

10.1.6 CP0 Structure in Root and Guest Mode

In the I6500 core, Coprocessor 0 (CP0) contains system control registers and can be accessed only by privileged 
instructions. The presence of virtualization in the I6500 core means that a subset of the Coprocessor 0 register set are 
physically replicated for use by the Guest Operating System. 
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During guest mode execution, both the guest Coprocessor 0 and the root Coprocessor 0 are active. The presence of 
two simultaneously active Coprocessor 0 contexts is fundamental to the operation of the Virtualization Module. The 
presence of these two sets of Coprocessor 0 (CP0) registers allows for an immediate switch between guest and root 
modes without requiring a context switch to/from memory. Simultaneously accesses to the guest and root Coproces-
sor 0 registers allows guest-kernel privileged code accesses to execute with the minimum hypervisor intervention, 
and ensures that key root-mode machine systems such as timekeeping, address translation and external interrupt han-
dling continue to operate without major changes during guest execution.

Table 10.1 describes the how the various CP0 register fields are used to enter or exit an operating mode.  

10.1.7 New CP0 Registers

Coprocessor 0 registers are added by the Virtualization Module to control the guest context. Table 10.2 describes CP0 
registers introduced by the Virtualization Module. Refer to Chapter 2 of this manual for more information. 

Table 10.1 Guest, Root and Debug Modes 

Root Guest

ModeDebugDM StatusERL StatusEXL StatusKSU
GuestCtl0

GM StatusERL StatusEXL StatusKSU

1 Don’t care Debug

0 1 Don’t care Root-Kernel

0 1 Don’t care

0 00 0 Don’t care

01 Root-Supervisor

10 Root-User

Don’t care 1 1 Don’t care Guest-Kernel

0 1 Don’t care

0 00

01 Guest-Supervisor

10 Guest-User

Don’t care 11 UNPREDICTABLE

Don’t care 11 Don’t care UNDEFINED

Table 10.2 CP0 Registers Introduced by the Virtualization Module 

Register 
Number Sel Register Name Description

12 6 GuestCtl0 Controls guest mode behavior. 

10 4 GuestCtl1 Guest ID

10 5 GuestCtl2 Virtual Interrupts

11 4 GuestCtl0Ext Extension to GuestCtl0

12 7 GTOffset Offset for guest timer value
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10.1.8 New CP0 Instructions

The Virtualization Module introduces new instructions for root mode access to the guest CP0 context, and for a guest 
to make a call into root mode - a ‘hypervisor call’.

Table 10.3 describes CP0 instructions introduced by the Virtualization Module.

10.2 Software Detection of Virtualization

Software can determine if the Virtualization Module is implemented by checking the state of the VZ bit in the Config3 
CP0 register. If Virtualization is supported (Config3VZ = 1), and GuestID is supported, then explicit invalid TLB entry 
support (EHINV) is required in order for a Guest to be able to detect invalid entries in the Guest TLB. 

Figure 10.3 Config3 Register Format  

Table 10.3 CP0 Instructions Introduced by the Virtualization Module 

Instruction Description

HYPCALL Hypercall - call to root mode.

MFGC0 Move from Guest CP0

MTGC0 Move to Guest CP0

DMFGC0 Doubleword Move from Guest CP0

DMTGC0 Doubleword Move to Guest CP0

GINVGT Global Invalidate Guest TLB

TLBGINV Guest TLB Invalidate

TLBGINVF Guest TLB Invalidate Flush

TLBGP Probe Guest TLB

TLBGR Read Guest TLB

TLBGWI Write Guest TLB

TLBGWR Write Random to Guest TLB

31 30 29 28 27 26 25 24 23 22 16

VZ 0

Table 10.4 Field Descriptions for Config3 Register 

Name Bit(s) Description
Read/ 
Write Reset State

VZ 23 Virtualization Module implemented. This bit indicates whether the Virtualiza-
tion Module is implemented. This bit is always 1 for the I6500 core.
0: Virtualization module not implemented
1: Virtualization module is implemented

R 1
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10.3 Modes Of Operation

10.3.1 Root Mode Operation

Root mode operation uses one set of Coprocessor 0 registers and Guest mode operation the other. The software visi-
ble state is the contents of these registers and any state which is accessed via these registers, such as TLB entries and 
Segmentation Control configurations. 

For a Hypervisor to save, restore or switch context from one guest to another, it is the entire visible state which must 
be saved and restored, not solely the replicated registers themselves, but also the physical resources which are shared 
between Root and Guest, such as the GPRs, FPRs and Hi/Lo registers.

The following subroutine can be used to test whether processor is in root-mode.

subroutine IsRootMode() :
if (

(GuestCtl0GM=0) or
((GuestCtl0GM=1) and not ((Root.DebugDM=0) and
(Root.StatusERL=0) and (Root.StatusEXL=0))
) then
return(true)

else
return(false)

endif
endsub

10.3.2 Guest Mode Operation

In guest mode, all guest operations are first tested against the guest CP0 context, and then against the root CP0 con-
text. An ‘operation’ is any process which can trigger an exception. This includes address translation, instruction 
fetches, memory accesses for data, instruction validity checks, coprocessor accesses and breakpoints.

Guest mode software has no access to the root Coprocessor 0. Root mode software can access the guest Coprocessor 
0, and if required can emulate guest-mode accesses to disabled or unimplemented features within guest Coprocessor 
0. The guest Coprocessor 0 is partially populated - only a subset of the complete root Coprocessor 0 is implemented.

The recommended method of entering Guest mode is by executing an ERET instruction when Root.GuestCtl0GM=1, 
Root.StatusEXL=1, Root.StatusERL=0 and Root.DebugDM=0.

Guest mode operation is determined as follows. This subroutine can be used to test whether processor is in guest-
mode.

subroutine IsGuestMode() :
if (GuestCtl0GM=1) and (Root.DebugDM=0) and

(Root.StatusERL=0) and (Root.StatusEXL=0) then
return(true)

else
return(false)

endif
endsub
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10.3.3 Debug Mode

For processors that implement OCI debug, the processor is operating in debug privileged execution mode (Debug 
Mode) when Root.DebugDM=1. If the processor is running in Debug Mode, it has full access to all resources that are 
available to Root Kernel Mode operation.

Debug Mode, Root Mode and Guest Mode are mutually exclusive. At any given time, the processor can only be in 
one of the three modes. Note that Debug mode operates in the Root context, while Guest mode operates in its own 
unique context.

10.4 Address Translation Pseudocode

The following pseudocode describes the complete address translation process for the I6500 Virtualization Module. 
Segmentation, TLB lookups, hardware TLB refill and second-level address translation are invoked. The process is 
described in top-down order - subsequent sections describe the subroutines called. 

/* Inputs
* vAddr - Virtual Address
* IorD - Access type - INSTRUCTION or DATA
* LorS - Access type - LOAD or STORE
* pLevel - Privilege level - USER, SUPER, KERNEL
* 
* Outputs
* pAddr - physical address
* CCA - cache attribute (valid when mapped)
* 
* Exceptions: See called functions
* Called from guest or root context.
*/

subroutine AddressTranslation(vAddr, IorD, LorS, pLevel)

// Initialization.
// GuestID is only applicable if GuestCtl0RAD=0. Otherwise GuestID
// is ignored (not applicable) in process of address translation.
GuestID ignored

if (IsGuestMode()) then
// This is a Guest Address translation
// step 1: Guest Virtual -> Guest Physical Address translation
if (GuestCtl0RAD=0)

GuestID  GuestCtl1ID
endif
(mapped, addr, CCA)  AddressDecode(vAddr, pLevel)
if (ConfigMT=1 or ConfigMT=4) then // TLB type MMU

if (mapped) then
asid  Guest.EntryHiASID
(addr, CCA)  Guest.TLBLookup(asid, GuestID, addr, IorD, LorS)

endif
else 

if (ConfigMT=0) then
# MMU=None case is undefined
UNDEFINED

else
# Other MMU type, FMT or BAT. BAT will use LorS.
(addr, CCA)  Guest.OtherMMULookup(addr, CCA, LorS, pLevel)
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endif
endif
if (exception)

Guest Exception 
// TLB exceptions may include Refill, Invalid, Execute-Inhibit for 
// Instruction, Refill, Invalid, Modified, Read-Inhibit for Data.
// Guest segment map related exceptions may include Address Error

endif

// step 2: Guest Physical -> Root Physical Address translation
// if GuestCtl0RAD=0, then guest entry ASID is global in Root TLB.
// H/W must set G=1 for guest entry for TLBWI and TLBWR.
asid  Root.EntryHiASID
pAddr  Root.TLBLookup(asid, GuestID, addr, IorD, LorS)
if (exception)

Root Exception 
// This is a Root exception initiated in guest context
// This includes all TLB exceptions. 
// Segment map Address Error exception not included, as guest does not
// lookup root segment map.

endif

else 
// This is a Root Address translation
// Root Virtual -> Root Physical Address translation
// If GuestCtl0DRG=1,GuestCtl1RID is non-zero,Root.StatusEXL,ERL=0,
// and DebugDM=0, then all root kernel data accesses are mapped and root
// SegCtl is ignored.H/W must set G=1 as if the access were for guest.
drg_valid (GuestCtl0DRG=1 and Root.StatusKSU=00 and Root.StatusEXL=0 and 
Root.StatusERL=0 and DebugDM=0 and GuestCtl1RID!=0 and !Instruction)
if (drg_valid) then

mapped 
addr vAddr

else
(mapped, addr, CCA)  AddressDecode(vAddr, pLevel)

endif
if (!mapped) then

pAddr  addr
else if (GuestCtl0RAD=0)

if (Instruction or (!drg_valid))
GuestID  0

else 
GuestID  GuestCtl1RID

endif 
endif

asid  Root.EntryHiASID
(pAddr, CCA)  Root.TLBLookup(asid, GuestID, addr, IorD, LorS)

endif
endif
if (exception)

Root Exception
// Includes all TLB and Segment related exceptions in Root context.
// If drg_valid, and access is not by root-kernel,then an Address Error
// exception is caused.

endif

return (pAddr,CCA)
end
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subroutine AddressDecode(vAddr, pLevel) :
# Determine whether address is mapped
# - if unmapped, obtain physical address and cache attribute
if (Config3SC) then

// optional Segmentation Control based address decode
(mapped, addr, CCA)  SegmentLookup(vAddr, pLevel)

else
(mapped, addr, CCA)  LegacyDecode(, pLevel)

endif
return (mapped, addr, CCA)

endsub

10.5 Exception Handling in Root and Guest Mode

Exceptions are handled in the mode whose context triggered the exception. An exception triggered by the guest CP0 
context is handled in guest mode. An exception triggered by the root CP0 context is handled in root mode.

Figure 10.4 shows the how exceptions are handled in each of the operating modes (supervisor modes are omitted for 
clarity). 

Figure 10.4 Exception Handling in Root and Guest Mode 

In Figure 10.4, an operation executed in guest-user mode must travel through the root kernel to complete the opera-
tion. 

The first layer to be crossed is the guest CP0 context (controlled by guest-kernel mode software). All exception and 
translation rules defined by the guest CP0 context are applied, and resulting exceptions are taken in guest mode by the 
guest kernel handler. 

If the operation does not trigger a guest-context exception, the next layer to be crossed is the root CP0 context (con-
trolled by root-kernel mode software). All exception and translation rules defined by the root CP0 context are applied, 
and resulting exceptions taken in root mode by the root kernel handler as shown.
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For example, an access to Coprocessor 1 (the Floating Point Unit) must first be permitted by the guest context 
StatusCU1 bit, and then by the root context StatusCU1 bit. However, access of guest to Coprocessor 0 is not qualified 
by root context StatusCU0 as Coprocessor 0 state is not shared with root. 

Table 10.5 specifies the association of GuestID with TLB instructions. For supporting information, refer to Section 
10.1.8.

10.5.1 Root and Guest Shared TLB Operation

The I6500 core shares a common physical TLB amongst root and guest. The I6500 core contains a TLB structure that 
incorporates a VTLB (Variable page size TLB) and FTLB (Fixed page size TLB). As such, the VTLB must accom-
modate wired entries for both root and guest in a shared structure.

10.5.1.1 Root and Guest Access to the Shared TLB

In a shared TLB implementation, the root index increases from the bottom of the physical TLB while the guest index 
increases from the top of the physical TLB. This is to avoid overlap of root and guest wired entries. On the other 

Table 10.5 GuestID Use by TLB Instructions 

TLB Operation
GuestID 

(GuestCtl1ID/GuestCtl1RID)

GINVGT GuestCtl1RID

TLBGINV GuestCtl1RID

TLBGINVF GuestCtl1RID

TLBGP GuestCtl1RID

TLBGR GuestCtl1RID

TLBGWI GuestCtl1RID

TLBGWR GuestCtl1RID

TLBINV if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBINVF if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBP if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBR if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBWI if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBWR if RootMode then GuestCtl1RID 
else GuestCtl1ID

GINVT if RootMode then GuestCtl1RID 
else GuestCtl1ID
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hand, the root and guest indices to the FTLB grow from the bottom of the FTLB. Both guest and root TLB operations 
must interpret the TLB index accordingly. 

10.5.1.2 Wired Register Management

The Root allocates the appropriate number of wired entries to itself, and then writes the guest Config1 and Config4 
related fields to set the available VTLB entries for guest. The Root then reads the Guest.Config4MMUExtDef field to 
determine which of the guest Config4 MMU size extension fields need to be written. Since the entries allocated for 
guest use also includes non wired entries shared by both root and guest, root software must be careful not to allocate 
all remaining non root-wired entries to the guest. This prevents the guest from populating all remaining non root-
wired entries with its own guest-wired entries, leaving no entries for non root-wired entries.

Root software should not change guest MMU configuration while the guest is in operation, as is the case for any 
guest configuration that is read-only to guest but writeable by root.

10.5.1.3 CP0 Register Allocation

The Virtualization Module provides a partial set of CP0 registers for use by the guest. This is known as the guest con-
text. When in guest mode, the behavior of the machine is controlled by the combination of the guest CP0 context and 
the root CP0 context. When in root mode, the behavior of the machine is controlled entirely by the root CP0 context.

The guest CP0 context consists of a base set plus optional features. Access to features within the guest CP0 context is 
controlled from root mode. The Guest.Config0 through Guest.Config7 registers determine which features are active 
during guest mode execution. The GuestCtl0 register controls whether a guest access to a privileged feature triggers 
an exception.

10.5.1.4 CP0 Register Access

Guest CP0 registers can be accessed from root mode by using the root-only MFGC0 and MTGC0 instructions. Guest 
TLB contents can be accessed by using the root-only TLBGP, TLBGR, TLBGWI and TLBGWR instructions.

10.5.1.5 CP0 Register Initialization and Control

Root context software (hypervisor) is required to manage the initial state of writable Guest context registers. On 
power-up, the initial state defaults to the hardware reset state. On a Guest context save and restore, the hypervisor is 
required to preserve and re-initialize the Guest state. For virtual boot of a Guest, the hypervisor is required to initial-
ize the Guest state equivalent to the hardware reset state. The Root may deconfigure one or more guest CP0 registers 
by writing to the guest configuration registers.

The Virtualization Module requires that scratch registers KScratch1 and KScratch2 are present in the root context. 
This ensures that hypervisor exception handlers have an adequate number of scratch registers to save and restore all 
general purpose registers in use by the guest.

10.6 Exceptions

Normal execution of instructions can be interrupted when an exception occurs. Such events can be generated as a by-
product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a 
load instruction), by an illegal attempt to use a privileged instruction (e.g. MTC0 from user mode), or by an event not 
directly related to instruction execution (e.g., an external interrupt). 

When an exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted 
instruction stream, enters Exception or Error mode, and starts a software exception handler. The saved state and the 
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address of the software exception handler are a function of both the type of exception, and the current state of the pro-
cessor.

10.6.1 Exceptions in Guest Mode

The Virtualization Module adds new rules for the processing of exception conditions detected during guest-mode 
execution.

The ‘onion model’ requires that every guest-mode operation be checked first against the guest CP0 context, and then 
against the root CP0 context. Exceptions resulting from the guest CP0 context can be handled entirely within guest 
mode without root-mode intervention. Exceptions resulting from the root-mode CP0 context (including GuestCtl0 
permissions) require a root mode (hypervisor) handler.

During guest mode execution, the mode in which an exception is taken is determined by the following:

• Guest-mode operations must first be permitted by guest-mode CP0 context and then by root mode CP0 context

• This includes all operations for which exceptions can be generated - memory accesses, coprocessor 
accesses, breakpoints and so forth.

• Exceptions are always taken in the mode whose CP0 state triggered the exception

• When architecture features in the guest context are present and enabled by the Guest.Config registers, excep-
tions triggered by those features are taken in guest mode.

• Exceptions resulting from control bits set in the Root.GuestCtl0 register, and exceptions resulting from 
address translation of guest memory accesses through the root-mode TLB are taken in root mode.

Asynchronous exceptions such as Reset, NMI, Memory Error, Cache Error are taken in root mode. External inter-
rupts are received by the root CP0 context, and if enabled are taken in root mode. If an interrupt is not enabled in root 
mode and is bypassed to the guest CP0 context, and is enabled in the guest CP0 context, the interrupt is taken in guest 
mode.

When an exception is detected during guest mode execution, any required mode switch is performed after the excep-
tion is detected and before any machine state is saved. This allows machine state to be saved to either the root or guest 
contexts, and allows the exception to be handled in the proper mode. See also Section 10.6.2.

# Booleans, indicating source of exception:
# root_async - Asynchronous root context exception
# root_sync - Synchronous exception triggered by root context
# guest_async - Asynchronous exception triggered by guest context
# guest_sync - Synchronous exception triggered by guest context
#
# Exceptions directed to root context set Root.Status.ERL or Root.Status.EXL,
# meaning that the processor executes the handler in root mode.

# Ordering of exception conditions
if (root_async) then

ctx Root
elsif (guest_async) then

ctx Guest
elsif (guest_sync) then

ctx Guest
elsif (root_sync) then

ctx Root
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else
ctx null

endif

10.6.2 Faulting Address for Exceptions from Guest Mode

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions.

• Address error

• TLB Refill

• TLB Invalid

• TLB Modified

• TLB Execute Inhibit

• TLB Read Inhibit

10.6.3 Guest Initiated Root TLB Exception

When an exception is triggered as a result of a root TLB access during guest-mode execution, the handler executes in 
root mode, and exception state is stored into root CP0 registers. The registers affected are GuestCtl0, Root.EPC, 
Root.BadVAddr, Root.EntryHi, Root.Cause and Root.ContextBadVPN2.

The faulting address value stored into Root.BadVAddr and Root.ContextBadVPN2 is ideally the Guest Physical Address 
(GPA) presented to the root TLB by the guest context. A Guest Virtual Address (GVA) unmapped by the Guest MMU 
is considered a GPA from the root’s perspective.

If a GVA is mapped by the Guest MMU, yet the GPA is not available for write to root context, then 
GuestCtl0GExcCode must indicate this. 

The GPA presented to the root TLB is the result of translation through the guest TLB if it is in a mapped region of 
memory. The value stored in Root.BadVAddr and Root.ContextBadVPN2 is the Guest Physical Address being accessed 
by the guest.

This process ensures that after an exception, both Root.BadVAddr and Root.ContextBadVPN2 refer to a virtual address 
which is immediately usable by a root-mode handler, irrespective of whether the exception was triggered by root-
mode or guest-mode execution.
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10.6.4 Exception Priority

Table 10.6 lists all possible exceptions, and the relative priority of each, highest to lowest. The table also lists new 
exception conditions introduced by the Virtualization Module, and defines whether a switch to root mode is required 
before handling each exception. 

Table 10.6 Priority of Exceptions

Exception Description Type
Taken in 

mode

Reset The Cold Reset signal was asserted to the processor Asynchronous 
Reset

Root

Soft Reset The Reset signal was asserted to the processor

Debug Single Step A Debug Single Step occurred. Prioritized above other exceptions, 
including asynchronous exceptions, so that one can single-step 
into interrupt (or other asynchronous) handlers.

Synchronous 
Debug

Root

Debug Interrupt A debug interrupt (DbgBrk or DINT) was asserted. Asynchronous 
Debug

Root

Imprecise Debug Data 
Break

An imprecise debug data break condition was asserted.

Nonmaskable Interrupt 
(NMI)

The NMI signal was asserted to the processor. Asynchronous Root

Machine Check Root, or Root TLB related. 
This can only occur as part of a guest (second step) address transla-
tion, root address translation, and root TLB operation (write, 
probe) whether for guest or root TLB. It is recommended that the 
Machine-Check be synchronous. A TLB instruction must cause a 
synchronous Machine Check. 

Asynchronous 
or Synchronous

Root

An internal inconsistency was detected by the processor. Root

Guest TLB related. 
This can only occur as part of a guest address translation (first 
step), and guest TLB operation (write, probe). It is recommended 
that the Machine-Check be synchronous. A TLB instruction must 
cause a synchronous Machine Check.

Guest

Interrupt A root enabled interrupt occurred. Asynchronous Root

Deferred Watch A Root watch exception, deferred because EXL was one when the 
exception was detected, was asserted after EXL went to zero. A 
deferred root watch exception may occur in guest mode in which 
case it is prioritized higher than a simultaneous occurring guest 
interrupt.

Asynchronous Root

Interrupt A guest enabled interrupt occurred. Asynchronous Guest

Deferred Watch A Guest watch exception, deferred because Guest EXL was one 
when the exception was detected, was asserted after EXL went to 
zero.

Asynchronous Guest

Debug Instruction Break A debug instruction break condition was asserted. Prioritized 
above instruction fetch exceptions to allow break on illegal 
instruction addresses.

Synchronous 
Debug

Root
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Watch - Instruction fetch A root context watch address match was detected on an instruction 
fetch. Prioritized above instruction fetch exceptions to allow watch 
on illegal instruction addresses. Refer to ‘Watch Registers’ - 
Section 10.8.

Synchronous Root

A guest-context watch address match was detected on an instruc-
tion fetch. Prioritized above instruction fetch exceptions to allow 
watch on illegal instruction addresses. 
Refer to ‘Watch Registers’ - Section 10.8.

Guest

Address Error - Instruc-
tion fetch

A non-word-aligned address was loaded into PC. Synchronous Current

TLB Refill - Instruction 
fetch

A Guest TLB miss occurred on an instruction fetch Synchronous Guest

A Root TLB miss occurred on an instruction fetch.
This can occur due to a Root or Guest translation.

Root

TLB Invalid - Instruction 
fetch

The valid bit was zero in the guest context TLB entry mapping the 
address referenced by an instruction fetch.

Synchronous Guest

The valid bit was zero in the Root TLB entry mapping the address 
referenced by an instruction fetch.
This can occur due to a Root or Guest translation.

Root

TLB Execute-inhibit An instruction fetch matched a valid Guest TLB entry which had 
the XI bit set.

Synchronous Guest

An instruction fetch matched a valid Root TLB entry which had 
the XI bit set.
This can occur due to a Root or Guest translation.

Root

Cache Error - Instruction 
fetch

A cache error occurred on an instruction fetch. Synchronous 
or 

Asynchronous

Root

Bus Error - Instruction 
fetch

A bus error occurred on an instruction fetch.

SDBBP A debug SDBBP instruction was executed. Synchronous 
Debug

Root

Guest Reserved Instruc-
tion Redirect

A guest-mode instruction triggers a Reserved Instruction Excep-
tion. When GuestCtl0RI=1, this root-mode exception is raised 
before the guest-mode exception can be taken. Reserved Instruc-
tion Exception processing otherwise follow standard rules of prior-
itization within a given context - Reserved Instruction Redirect is 
taken as a side-effect of this processing.

Synchronous 
Hypervisor

Root

Table 10.6 Priority of Exceptions

Exception Description Type
Taken in 

mode
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Instruction Validity 
Exceptions

An instruction could not be completed because it was not allowed 
access to the required resources, or was illegal: Coprocessor Unus-
able, Reserved Instruction, MSA disabled. If exceptions occur on 
the same instruction, the Coprocessor Unusable, MSA disabled 
Exception take priority over the Reserved Instruction Exception.

Synchronous Current

Coprocessor unusable - guest. Access to a coprocessor was permit-
ted by the Guest.StatusCU1-2 bits, but denied by 
Root.StatusCU1-2 bits.
MSA disabled - guest. Access to the MSA unit was permitted by 
Guest.Config5MSAEn, but denied by Root.Config5MSAEn.

Root

Machine Check Root TLB related. 
This can only occur as part of a Guest or Root address translation, 
or a TLBP/TLBWI/TLBGP/TLBGWI executed in root-mode.

Synchronous Root

Guest TLB related. 
This can only occur as part of a Guest address translation, or a 
TLBP/TLBWI executed in guest-mode

Guest

An internal inconsistency was detected by the processor. Root

Guest Privileged Sensi-
tive Instruction Exception

An instruction executing in guest-mode could not be completed 
because it was denied access to the required resources by the 
Root.GuestCtl0 register.

Synchronous 
Hypervisor

Root

Hypercall A HYPCALL hypercall instruction was executed. Synchronous 
Hypervisor

Root

Guest Software Field-
Change

During guest execution, a software initiated change to certain CP0 
register fields occurred.

Synchronous 
Hypervisor

Root

Guest Hardware Field-
Change

During guest execution, a hardware initiated set of StatusEXL/TS 

occurred.

Synchronous 
Hypervisor

Root

Execution Exception An instruction-based exception occurred: Integer overflow, trap, 
system call, breakpoint, floating point, coprocessor 2 exception.

Synchronous Current

Precise Debug Data Break A precise debug data break on load/store (address match only) or a 
data break on store (address+data match) condition was asserted. 
Prioritized above data fetch exceptions to allow break on illegal 
data addresses.

Synchronous 
Debug

Root

Watch - Data access A root context watch address match was detected on the address 
referenced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses. Refer to ‘Watch 
Registers’ - Section 10.8.

Synchronous Root

A guest context watch address match was detected on the address 
referenced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses. Refer to ‘Watch 
Registers’ - Section 10.8.

Guest

Table 10.6 Priority of Exceptions

Exception Description Type
Taken in 

mode
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The “Type” column of Table 10.6 describes the type of exception. Table 10.7 explains the characteristics of each 
exception type. 

Address error - Data 
access

An unaligned address, or an address that was inaccessible in the 
current processor mode was referenced, by a load or store instruc-
tion.

Synchronous Current

TLB Refill - Data access A guest TLB miss occurred on a data access. Synchronous Guest

A root TLB miss occurred on a data access.
This can occur due to a Root or Guest translation.

Root

TLB Invalid - Data access On a data access, a matching guest TLB entry was found, but the 
valid (V) bit was zero.

Synchronous Guest

On a data access, a matching root TLB entry was found, but the 
valid (V) bit was zero.
This can occur due to a Root or Guest translation.

Root

TLB Read-Inhibit On a data read access, a matching guest TLB entry was found, and 
the RI bit was set.

Synchronous Guest

On a data read access, a matching root TLB entry was found, and 
the RI bit was set.
This can occur due to a Root or Guest translation.

Root

TLB Modified - Data 
access

The dirty bit was zero in the guest TLB entry mapping the address 
referenced by a store instruction

Synchronous Guest

The dirty bit was zero in the root TLB entry mapping the address 
referenced by a store instruction.
This can occur due to a Root or Guest translation.

Root

Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
or

Asynchronous

Root

Bus Error - Data access A bus error occurred on a load or store data reference

Precise Debug Data Break A precise debug data break on load (address+data match only) 
condition was asserted. Prioritized last because all aspects of the 
data fetch must complete in order to do data match.

Synchronous 
Debug

Root

Table 10.7 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution. These exceptions 
always have the highest priority to guarantee that the processor can always be placed in a running state. 
These exceptions always require a switch to root mode.

Asynchronous Debug Denotes a debug exception that occurs asynchronously to instruction execution. These exceptions have 
very high priority with respect to other exceptions because of the desire to enter Debug Mode, even in 
the presence of other exceptions, both asynchronous and synchronous. These exceptions always 
require a switch to root mode.

Table 10.6 Priority of Exceptions

Exception Description Type
Taken in 

mode
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10.6.5 Exception Vector Locations

Exception vector locations are as defined in the base architecture. 

The vector location is determined from the values of EBase, StatusEXL, StatusBEV, IntCtlVS and Config3VEIC obtained 
from the context in which the exception is handled.

The General Exception entry point is used for new hypervisor exceptions Guest Privileged Sensitive Instruction, 
Guest Reserved Instruction Redirect, Guest Software Field Change, Guest Hardware Field Change and Hypercall.

10.6.6 Synchronous and Synchronous Hypervisor Exceptions

During guest mode execution, control can be returned to root mode at any time. When an exception condition is 
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any 
exception state is saved. As a result, exception state in the guest CP0 context is not affected.

The switch to root mode is achieved by setting Root.StatusEXL=1 or Root.StatusERL=1 (as appropriate) before any 
other state is saved. This ensures that all exception state is stored into root CP0 context, regardless of whether the pro-
cessor was executing in root or guest mode at the point where the exception was detected.

Refer to the Exceptions chapter for more information on these exceptions.

10.6.7 Guest Exception Code in Root Context

In the case of a guest exception which causes a guest exit to root, hardware must supply the appropriate value for 
Root.CauseExcCode and GuestCtl0GExcCode, as described in the following pseudo-code.

if guest exception is (GPSI or GSFC or GHFC or HC or GRR or IMP) then
Root.CauseExcCode “GE”|

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execution. These excep-
tions are shown with higher priority than synchronous exceptions mainly for notational convenience. If 
one thinks of asynchronous exceptions as occurring between instructions, they are either the lowest 
priority relative to the previous instruction, or the highest priority relative to the next instruction. The 
ordering of the table above considers them in the second way. These exceptions always require a 
switch to root mode.

Synchronous Debug Denotes an debug debug exception that occurs as a result of instruction execution, and is reported pre-
cisely with respect to the instruction that caused the exception. These exceptions are prioritized above 
other synchronous exceptions to allow entry to Debug Mode, even in the presence of other exceptions. 
These exceptions always require a switch to root mode.

Synchronous Hypervisor Denotes an exception that occurs as a result of guest-mode instruction execution which requires hyper-
visor intervention. It is reported precisely with respect to the instruction that caused the exception. 
These exceptions always require a switch to root mode.

Synchronous Denotes any other exception that occurs as a result of instruction execution, and is reported precisely 
with respect to the instruction that caused the exception. These exceptions tend to be prioritized below 
other types of exceptions, but there is a relative priority of synchronous exceptions with each other. In 
some cases, these exceptions can be handled without switching modes.

Table 10.7 Exception Type Characteristics

Exception Type Characteristics



 

190 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00

Root.GuestCtl0GExcCode “GPSI” or “GSFC” or “GHFC” or “HC” or “GRR” or “IMP”
elseif guest exception is (Root TLB-Refill or TLB-Invalid)

Root.CauseExcCode “TLBS” or “TLBL”
# loading of GPA for both TLB-Refill and TLB-Invalid is recommended.
Root.GuestCtl0GExcCode “GPA”

elseif guest exception is (Root TLB-Execute_Inhibit or TLB-Read_Inhibit)
if (Root.PageGrainIEC = 0) then

Root.CauseExcCode “TLBL”
Root.GuestCtl0GExcCode “GPA” or GVA”

elseif (TLB Execute-Inhibit)
Root.CauseExcCode “TLBXI”
Root.GuestCtl0GExcCode “GVA” or “GPA”

else
Root.CauseExcCode “TLBRI”
Root.GuestCtl0GExcCode “GVA” or “GPA”

endif
elseif guest exception is (TLB Modified)

Root.CauseExcCode “MOD”
Root.GuestCtl0GExcCode “GVA” or “GPA”

else
Root.CauseExcCode baseline “ExcCode”
Root.GuestCtl0GExcCode “UNDEFINED”

endif

10.7 Interrupts

The Virtualization Module provides a virtualized interrupt system for the guest.

The root context interrupt system is always active, even during guest mode execution. An interrupt source enabled in 
the root context always results in a root-mode interrupt. Guests cannot disable root mode interrupts.

Standard interrupt rules are used by both root and guest contexts to determine when an interrupt should be taken. An 
interrupt enabled in the root context is taken in root mode. An interrupt masked by root and enabled in the guest con-
text is taken in guest mode. Root interrupts take priority over guest interrupts.

Figure 10.5 shows the how virtualized interrupts are managed in the I6500 core. 
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Figure 10.5 Interrupt Handling in the Virtualization Module l

The Guest.CauseRIPL/IP field is the source of guest interrupts. The behavior of this field is controlled from the root 
context. Two methods can be used to trigger guest interrupts - a root-mode write to the Guest.Cause register, or direct 
assignment of real interrupt signal to the guest interrupt system. Interrupt sources are combined such that both meth-
ods can be used.

Timers and related interrupts are available in both guest and root contexts.

The set of pending interrupts seen by the guest context is the combination (logical OR) of:

• External interrupts passed through from the root context, enabled by GuestCtl0PIP if implemented.

• Interrupts generated within the guest context (e.g., Timer interrupts, Software interrupts)

• Root asserted interrupts, set by software write to GuestCtl2VIP field in non-EIC mode, or hardware capture of a 
guest interrupt in GuestCtl2GRIPL in EIC mode.

Software should enable direct interrupt assignment only when root and guest agree on the interpretation of interrupt 
pending/enable fields in the Status and Cause registers. Direct assignment is appropriate if both Root and Guest use 
EIC mode, or if both use non-EIC mode. Root can track changes to the guest interrupt system status using the field-
change exceptions which result from guest initiated changes to fields StatusBEV, CauseIV or IntCtlVS.

Root must assign interrupts to Guest with caution. For example, in non-EIC mode, if an interrupt pin (HW[5:0]) is 
shared by multiple interrupt sources, then enabling direct guest visibility (in Guest CauseIP[n] via GuestCtl0PIP[n]=1) 
causes all the interrupt sources on that pin to be visible to the Guest, possibly removing Root intervention capability. 
If Root Software needs to guarantee Root intervention capability on an interrupt then that interrupt should not be 
directly visible to Guest.

In non-EIC mode, the guest timer interrupt is always applied to the interrupt source indicated by the Guest.IntCtlIPTI 
field and is not affected by the GuestCtl0PIP field. Similarly, Guest software interrupts are not affected by the 
GuestCtl0PIP field, and are always applied to the interrupt source indicated by Guest.IntCtlIPPCI

A virtualization-based external interrupt delivery system, whether EIC or non-EIC provides the following capabili-
ties:
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1. Root assignment of External Interrupt.

Hardware delivers interrupt to root context, with root-mode servicing of external interrupt.

2. Guest assignment of External Interrupt with Root Intervention.

Hardware delivers interrupt to root context, with root-mode hand-off to guest by writing to GuestCtl2vIP, fol-
lowed by guest servicing of external interrupt.

If root requires visibility into guest interrupts, then root should use this method to deliver interrupts to guest.

3. Guest assignment of External Interrupt without Root Intervention.

Hardware delivers interrupt to guest context without root intervention, followed by guest servicing of external 
interrupt. The interrupt is not visible to root as root has made the choice to assign to guest.

A MIPS enabled virtualized external interrupt delivery system also provides support for Virtual Interrupts. Root can 
simulate a guest interrupt by writing 1 to GuestCtl2vIP. It can subsequently clear the interrupt by writing 0 to 
GuestCtl2vIP. 

Virtual Interrupt capability can be used to support guest virtual drivers. The Root injects an interrupt into the Guest 
context. The Guest fields the interrupt, and in so doing causes a trap to Root, either by device activity or protected 
memory access. Root may then clear the interrupt by writing to guest CauseIP set earlier. 

10.7.1 External Interrupts

10.7.1.1 Non-EIC Interrupt Handling

This section provides a detailed description of non-EIC handling in a recommended implementation. The term HW is 
used to represent an external interrupt source. HW is alternatively referred to as IRQ in other sections of the Module. 
HW is a set of interrupt pins common to both root and guest context. 

Whether an external interrupt is visible to guest context or root context is dependent on GuestCtl0PIP (Pending Inter-
rupt Pass-through). If GuestCtl0PIP[n] =1, then HW[n] is visible to guest context through Guest.CauseIP[n+2], other-
wise it is visible to root context through Root.CauseIP[n+2].

If GuestCtl0PIP[n]=0, but Root needs to transfer the external interrupt to Guest, then it must write to a software visible 
register, GuestCtl2vIP[n] (Interrupt Pending, Virtual). This method is also used by Root to inject a virtual interrupt 
into guest context. It is also a convenient way for Root to save and restore interrupt state of a Guest, if an interrupt 
had been injected by Root, but needs to be preserved across context switches. In the absence of GuestCtl2vIP, Root 
would need to derive the equivalent of vIP by reading Guest.CauseIP which may be problematic since other interrupts 
could also be present.

GuestCtl2vIP, Guest.CauseIP and Root.CauseIP handling is described in relation to GuestCtl2vIP and GuestCtl0PIP. The 
application of GuestCtl2HC is discussed below.

GuestCtl2vIP Handling:

if (MTC0[GuestCtl2vIP[n]]=1)
GuestCtl2vIP[n] 1

else if ((Deassertion of HW[n] and GuestCtl2HC[n]) or (MTC0[GuestCtl2vIP[n]]=0))
GuestCtl2vIP[n] 0

endif
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Guest.CauseIP Handling:

Guest.CauseIP[n+2] = ((HW[n] and GuestCtl0PIP[n]) or GuestCtl2vIP[n])

Root.CauseIP Handling:

Root.CauseIP[n+2] 

= (HW[n] and !(GuestCtl0PIP[n] or (GuestCtl2vIP[n] and GuestCtl2HC[n])))

GuestCtl2HC is provided to control how GuestCtl2vIP is reset. If a bit of GuestCtl2HC is 1, then the deassertion of 
related external interrupts always causes the associated GuestCtl2vIP to be cleared. If a bit of GuestCtl2HC is 0 then 
the deassertion of HW[n] does not cause GuestCtl2vIP to be cleared. In this case, it is the responsibility of root soft-
ware to clear by writing 0 to GuestCtl2vIP [n] . 

In summary, interrupt injection in guest context serves two purposes - root assignment of external interrupts and 
injection of virtual interrupts to Guest. GuestCtl2HC provides the means to root software to distinguish between the 
two. Root software can use this facility to transfer an external interrupt HW[n] for guest servicing. In this scenario, 
GuestCtl2HC[n]=1 and the assertion of GuestCtl2vIP[n] causes corresponding Root.CauseIP[n+2] to be cleared, thus 
transparently affecting the transfer. Otherwise, Root would have to disable interrupts for that specific source by clear-
ing Root.StatusIM[n]. On the other hand, Root can use this capability to inject interrupts into Guest context for guest 
virtual device drivers, as an e.g. In this case, GuestCtl2HC[n]=0, the assumption is that there is no external interrupt 
tied to the injected interrupt, and thus assertion of GuestCtl2vIP [n] should not cause Root.CauseIP[n+2] to be cleared. 
Guest.CauseIP[n+2] is asserted in both cases described.

Virtual interrupt handling is an option that can be detected by the presence of GuestCtl2. Hardware clear capability is 
also an option, even if virtual interrupts are supported. This capability exists if the field is writeable or preset to 1.

10.7.1.2 EIC Interrupt Handling

In EIC mode, the external interrupt controller (EIC) is responsible for combining internal and external sources into a 
single interrupt-priority level, which appears in the CauseRIPL field. 

When an implementation makes EIC mode available (as indicated by Guest.Config3VEIC=1), two interrupt priority-
level signals must be generated within the EIC - one for the root context (affecting Root.CauseRIPL), and one for the 
guest context (affecting Guest.CauseRIPL). The root and guest timer interrupt signals are combined in an implementa-
tion-dependent way with external inputs to produce the root and guest interrupt priority levels.

In addition to RIPL, the interrupt Vector (offset or number), and EICSS is also sent on each of the Root and Guest 
interrupt buses. The Vector from the EIC is either utilized by hardware as is, or derived from the EIC input. A Gues-
tID accompanies only the root bus, providing GuestID is supported in the implementation. This is because the EIC 
can also send an interrupt for guest on the root interrupt bus. Thus the GuestID for the root interrupt bus may be non-
zero. The GuestID for a guest interrupt taken in root mode must be registered in GuestCtl1EID. The guest associated 
with the guest bus is by default equal to GuestCtl1ID.

In the architecture as defined, the type of vector a virtualized core can accept from the EIC is fixed - it is either a vec-
tor number or offset but never both. This is because currently there is no capability to distinguish between the two 
types, intentionally so. It is recommended that a typical virtualized EIC source a vector number to the core.

The EIC should assign interrupts to root and guest interrupt buses as per the following rules:
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• Root interrupts must always be taken in root context and thus be presented on root interrupt bus by the EIC.

• If a guest interrupt requires root intervention, then it must be presented on the root interrupt bus by the EIC. 
And interrupt for a non-resident guest must always be sent on the root interrupt bus. An interrupt for the res-
ident guest may also be sent on the root interrupt bus.

A guest interrupt while the processor is in root mode can cause an interrupt immediately unless masked by 
Root.StatusIPL. Hardware should not stall the interrupt until the processor enters guest mode.

• Only an interrupt for a resident guest can be sent on the guest interrupt bus. If software programs the EIC to 
send an interrupt for a non-resident guest on the guest interrupt bus, then an implementation of the core is 
not required to respond to this interrupt.

To allow the EIC to distinguish between resident and non-resident guests, the core must send GuestCtl1ID to the EIC. 
An implementation must account for the delay between when the GuestCtl1ID changes and when it is visible to the 
EIC to avoid a spurious interrupt for a non-resident guest from being sent on the guest interrupt bus. 

The processor and EIC are required to implement a protocol to avoid the above mentioned race. On a guest context 
switch, root software must first write 0 to GuestCtl1ID. This is equivalent to a STOP command for the EIC. The EIC 
recognizes this as a stall and does not send interrupts to guest context by setting the requested interrupt priority level 
to 0 on the guest interrupt bus to the core. Root software can then save and restore guest context, followed by a write 
of new GuestID to GuestCtl1ID. Once the write is complete, root software can enable guest mode operation. If an EIC 
implementation and root software follow this recommendation, then this prevents loss of an interrupt posted to the 
guest interrupt bus while root is switching guest context. An interrupt for the formerly active guest is posted on the 
Root interrupt bus.

An EIC mode interrupt is generated in either guest or root context whenever hardware detects a change in RIPL on 
the respective interrupt buses from the EIC. It is possible for an EIC implementation to have active interrupts on both 
bus. In this case the root interrupt is always higher priority then the guest interrupt.

For the case of an interrupt in root context, two different interrupt vectors are used, one for root, the other for guest. 
Hardware is able to distinguish between the two by checking the GuestID on the root interrupt bus. The following 
pseudo-code describes how hardware generates the interrupt vector, depending on whether the EIC provides a vector 
offset (vectorOffset) or vector number (vectorNumber).

EIC_mode Config3.VEIC=1 && IntCtl.VS!=0 && Cause.IV=1 && Status.BEV=0

if EIC_mode 

if (EIC provides vectorNumber) 
if (GuestID=0) 

vectorOffset  0x200 + (EIC_vectorNumber x (IntCtl.VS || 0b00000))
else //GuestID is non-zero

vectorOffset 0x200
endif

else // EIC provides vectorOffset
if (GuestID=0) // EIC provides an offset relative to 0x200

vectorOffset EIC_vectorOffset 
else //GuestID is non-zero

vectorOffset 0x200
endif

endif
endif



 

MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00 195

If the interrupt is for guest, then the handler must compare GuestCtl1EID to GuestCtl1ID. If they are not equal, then 
interrupt is for non-resident guest, and interrupt servicing may either continue in root or guest context. If interrupt ser-
vicing is to continue in guest context, then the handler must first save the resident guest state (CP0, GPRs etc) follow-
ing by a restore of the new guest’s context. The root ERET instruction causes a transfer to guest mode (when 
GuestCtl0GM=1), followed by a guest interrupt providing GuestCtl2GRIPL is non-zero.

If GuestCtl1EID and GuestCtl1ID are equal, then save and restore is not needed. Interrupt servicing may either con-
tinue in root or guest context. If the interrupt is to be serviced in guest context, then the root ERET instruction causes 
a change to guest mode (when GuestCtl0GM=1), following by a guest interrupt providing GuestCtl2GRIPL is non-
zero. 

As described above, for any change in GuestCtl1ID, root software must first insert a STOP command on interface to 
EIC by writing 0 to GuestCtl1ID. Once quiescent, root software may execute whatever software sequence it needs to. 
This is followed by a write of new GuestID to GuestCtl1ID, then the root ERET instruction. There may be some arbi-
trary delay between write of GuestID and ERET instruction where EIC can respond with an interrupt on guest bus, 
but hardware does not trigger an interrupt because processor is in root mode.

A root interrupt must use Root.SRSCtlEICSS. Otherwise, hardware forces use of Root.SRSCtlESS if the interrupt on the 
root interrupt bus is for any guest. 

The guest interrupt in the scenario where the interrupt is transferred from root context after having been received on 
the root interrupt bus is caused when the processor enters guest mode and hardware detects that GuestCtl2GRIPL is 

non-zero.

Once in guest mode, the guest interrupt handler completes with an ERET instruction. The guest continues execution 
from its EPC, and not transfer back to root mode even if there was a change in guest context. If a return to root mode 
is required, then the HYPERCALL instruction must be used. 

The root CP0 register, GuestCtl2, where the root interrupt bus Vector, EICSS and RIPL storage in root CP0 state is 
required because in a typical EIC-based implementation, an acknowledgement is returned to the EIC when the inter-
rupt is triggered. If an interrupt for the guest is initially triggered in root context, then the use of these fields does not 
occur until the root ERET instruction is executed to effect a change to guest mode. In the meanwhile, another root 
interrupt can occur which can overwrite the fields on the bus. Saving the fields as root CP0 register allows for nesting 
of these fields, and thus supports nesting of interrupts.

Hardware optimizes the transfer of GuestCtl2GRIPL and GuestCtl2EICSS into guest CP0 context on guest entry. 

Hardware writes GuestCtl2GRIPL to Guest.CauseRIPL, and GuestCtl2EICSS to Guest.SRSCtlEICSS providing 
GuestCtl2GRIPL is non-zero. Root software thus has the option of preventing hardware transfer by clearing 

GuestCtl2GRIPL before guest entry. 

In the case where root injects an interrupt into guest context after the interrupt was received on the root interrupt bus, 
hardware must ensure that two acknowledgements are not returned to the EIC as this may cause a loss of an interrupt. 
In the case where an interrupt is received on the root interrupt bus, hardware must always send an acknowledgement 
on the root interrupt bus. But in the case where the interrupt was injected into guest context by root, hardware should 
not send an acknowledgement on the guest interrupt bus as the interrupt was not received on this bus. Hardware can 
determine this because GuestCtl2GRIPL would be a non-zero value for the case of root injection.

Access to COP1 FPR and COP2 may be protected setting Root.StatusCU[2:1] appropriately. If access is disabled in 
root context, then it is also disabled in guest and causes the appropriate exception (Coprocessor Unusable in root con-
text). Hi/Lo registers are not protected by any means, and must be saved/restored if necessary.
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10.7.2 Derivation of Guest.CauseIP/RIPL

The interrupt pending value seen by the guest is calculated as shown in the following pseudocode example. The result 
value can be read by the guest (and the root) from the Guest.CauseRIPL / IP field and is the value used to determine 
whether a guest interrupt is taken. Note that the value returned from Guest.CauseRIPL / IP on a read is generated from 
the value originally written by the root and from the status of directly assigned external interrupts. Hence the value 
written by the root may not be equal to the value read back.

# Returns:
# Non-EIC IP7..0. 
# EIC - (RIPL << 2) + IP1..0

subroutine GuestInterruptPending() :

if ((Guest.Config3VEIC = 1) and
(Guest.IntCtlVS != 0) and
(Guest.CauseIV = 1) and
(Guest.StatusBEV = 0)) then
# Guest in EIC mode
# - GuestCtl0PIP does not apply in EIC mode.
# - EIC must include guest interrupt sources in the EICGuestLevel signal
# - This includes Guest’s TI, IP1, IP0 and PCI if implemented.

- FDCI is only visible in root context.
# - GuestCtl2 required in EIC mode.
if (EICGuestLevel > GuestCtl2GRIPL)

irq EICGuestLevel
else 

irq GuestCtl2GRIPL
# h/w must clear if GuestCtl2GRIPL is source of interrupt.
GuestCtl2GRIPL 

endif
# Guest.CauseIP[1:0] is incorporated in EIC.
# State of Guest.CauseIP[1:0] is however preserved.
r irq << 2) OR Guest.CauseIP[1:0]

else
# Guest in non-EIC mode
# - External interrupts factored in if guest passthrough enabled.
# - Internal interrupts applied here, if implemented
# - Includes support for guest interrupt injection by root.
irq[7:2]  HW[5:0]
if (GuestCtl0PT=0)

# All interrupts processed first by root.
if (GuestCtl0G2=1)

# root software injects interrupts.
r  GuestCtl2vIP[5:0]

else
# if GuestCtl2vIP is not supported, then root writes Guest.Cause.IP
# to inject interrupt in guest context. H/W captures the write in a
# shadow register called Root_HW_VIP.
r  Root_HW_VIP[5:0]

endif
else

# Guest interrupt passthrough supported.
if (GuestCtl0G2=1)

r  Root.GuestCtl2vIP[5:0] OR (irq[7:2] AND Root.GuestCtl0PIP[5:0])
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else
r  Root_HW_VIP[5:0] OR (irq[7:2] AND Root.GuestCtl0PIP[5:0])

endif
endif
r  r << 2
r  r OR (GuestTimerInterrupt << Guest.IntCtlIPTI)
r  r OR (PCIEvent << Guest.IntCtlIPPCI)
r  r OR Guest.CauseIP[1:0]

endif

return(r)
endsub

The value returned by GuestInterruptPending() is subsequently qualified by Guest StatusIM in non-EIC mode or 
Guest StatusIPL in EIC mode, as per the base architecture.

Fields in Guest Config registers indicate which interrupt options are available to the guest.

10.7.3 Timer Interrupts

Root may inject a timer interrupt in guest context by setting Guest CauseTI and indirectly Guest CauseIP[IPTI]. This 
may happen under the scenario where a guest has been switched out, but its virtual timer, maintained by root, is trig-
gered. Root would set Guest CauseTI before entering guest mode for the guest. Guest would take a timer interrupt, 
clear Guest Compare, which would then clear Guest CauseTI. As per baseline MIPS architecture, a write to Compare 
clears CauseTI.

Root maintaining a virtual timer for a guest is recommended if there are multiple guests in operation. Otherwise, if 
there is only one guest, but the processor is in root mode, then a match on Guest Count and Guest Compare is allowed 
in an implementation to set Guest CauseTI and Guest CauseIP[IPTI]. Once Root transitions to guest mode, then guest 
timer interrupt can be signaled in guest mode.

Root Injection of Guest TI:

if (MTGC0[Guest.CauseTI]=1)
 Root.Guest.CauseTI 1

else if ((MTC0[Guest.Compare]))
 Root.Guest.CauseTI 0

endif

where Root.Guest.CauseTI is a hardware shadow copy of Guest.CauseTI that is set when Guest.CauseTI is written by 
Root.

Guest.CauseIP[IPTI] = Root.Guest.CauseTI or “Other External and Internal interrupts”.

where “Other External and Internal interrupts” is defined in Section 10.7.2.
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10.7.4 Performance Counter Interrupts

Root can configure the definition of performance counters in the Guest context via Guest Config1PC as follows:

• Guest Config1PC=0, then performance counters are unimplemented in the guest context, access is UNPRE-
DICTABLE.

• Guest Config1PC=1, the performance counters are virtually shared by root and guest contexts.

The PerfCnt register(s) are never implemented in the Guest context. A Guest may have direct access to virtual perfor-
mance counter registers under root software management when Config1PC=1. If virtually shared, the encodings of 
PerfCntEC as 0 or 1 cause a GPSI Exception to be raised on Guest access to a performance counter register. Root soft-
ware may choose to configure performance counters for legal Guest access by encoding PerfCntEC as 2 or 3. 

Software may choose to assign all performance counters to Guest or Root, but not both. This is the recommended pol-
icy for sharing between Root and Guest. Root typically configures the Guest access when it initializes guest context. 
If assigned to Guest then Guest access does not cause a GPSI Exception.

Alternatively, an implementation may optionally choose to assign a subset of the total PerfCnt registers in Root CP0 
context to Guest. Read of guest PerfCnt(N)M should return root PerfCnt(N+1)EC[1] to indicate PerfCnt(N+1) is 
owned by guest. If all PerfCnt pairs are allocated to guest, then guest read of the last M bit must return 0. Guest Perf-
Cnt pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is 
further assumed that the allotment of performance counters to a guest is not dynamic - once established after initial 
guest access (which caused GPSI), then the allotment must remain as such for duration of guest.

Once assigned to Guest or Root (default) context, that context independently manages the performance counters, 
including interrupts. E.g., if the performance counters are enabled for Root, then Root CausePCI and Root 
CauseIP[IPPCI] are set by hardware on counter overflow. Otherwise, counter overflow sets Guest.CausePCI and 
Guest.CauseIP[IPPCI].

If Root software needs to inject a performance counter interrupt into Guest context, it must do so by setting the most-
significant bit of the PerfCnt counter. Similarly Root may clear a guest performance counter interrupt by clearing the 
most-significant bit of the counter. Thus, Root does not require the ability to read/write Guest.CausePCI.

The PerfCntEC field is Root only virtualization control and is not visible to the Guest.

PerfCnt use of Status register K, S, U, and EXL fields is taken from the current Root or Guest context.

PerfCnt interrupt behavior is solely governed by PerfCntIE, enabled context Status register interrupt masks and 
enable.

10.8 Watchpoint Debug Support

Root and Guest Watchpoint debug support is provided by Coprocessor 0 WatchHi and WatchLo register pair(s). These 
registers are present in Root if Root Config1WR = 1 and in Guest if Guest Config1WR = 1.

A virtualized implementation may choose to provide no Watch register support, Root-only Watch register support, or 
Root and Guest Watch register support. Virtualized handling applies to both WatchHi and WatchLo registers but is 
generically referred to as “Watch” registers. 



 

MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00 199

In Table 10.8, the state of Guest Config1WR. conveys what support is available to Guest.

Root-only Watch registers (Root Config1WR = 1 and Guest Config1WR = 0) allows for Root Watch of Root Virtual 
Addresses (RVA). If both Root and Guest Watch registers are present (Guest Config1WR = 1), then Root and Guest 
Watch operates independently. 

The Virtualization Debug definition also allows for virtual Guest Watch via Root Watch registers (Guest Config1WR = 
0/1). This feature is optional. Root Software can test R/W state of Guest Config1WR to determine whether virtual 
Guest Watch registers are supported.

There is no support for Root emulation of Guest watch registers. Root emulation of Guest watch registers would 
require that every guest read and write trap to Root. In sharing mode, once a watch register pair is assigned to Guest, 
Guest can setup registers without Root intervention.

Referring to Table 10.9, if Guest Config1WR = 0, then no watch register pairs are enabled for Guest watch. A Guest 
access is treated as UNPREDICTABLE. The I6500 will no-op an MTC0 and return 0s on MFC0. If Guest Config1WR 

= 1, then a Guest access is treated normally except a MTC0 cannot modify WatchHiWM, and an MFC0 will return 0s 
for WatchHiWM.

If Guest Config1WR = 1, then selected Root Watch register pairs are enabled for Root or Guest watch. Referring to 
Table 10.9, this is determined by Root WatchHiWM[1]. Root WatchHiWM[0] determines whether Root is watching 
RVA or GPA. Root Watch of GPA is optional. A write of 1 to Root WatchHiWM[1:0], will write 0, defaulting to RVA 
watch. 

If under Guest control, Guest can only watch GVA. A write of 3 to Root WatchHiWM[1:0] writes 2 in this configura-
tion, defaulting to GVA watch. Root can take away privilege from Guest at any time by writing to Root Watch regis-
ters. The Root access thus does not take an exception on access of a shared pair of registers under Guest control. If 
under Root control with Root WatchHiWM[1]=0 then a Guest access results in a GPSI exception. Root may choose to 
assign this register pair to Guest at this point, or return to the guest instruction following the move.

Table 10.8 Guest Watchpoint Support 

Guest Config1WR Value R/W State Function

0 R No Guest Watch registers.

1 R Guest Watch registers 
present.

0/1 R (Guest)
R/W (Root)

Virtual Guest Watch sup-
port provided.

Table 10.9 Watch Control

Guest Config1WR 
Value

(in R/W State)
Root 

WatchHiWM[1:0] Function
Guest Exception on 

Access

Guest 
Exception on 

Match
Root 

Exception

0 X0 Root Watch RVA UNPREDICTABLE None Watch

1 00 Root Watch RVA GPSI None Watch

1 10 Guest Watch GVA None Watch None

1 11 Reserved - - -
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Guest watch is enabled strictly in guest mode as defined by the equation:

(Root.GuestCtl0GM = 1 and Root.StatusEXL = 0 and Root.StatusERL = 0 and Root.DebugDM = 0)

There is no facility for Guest to watch addresses related to Root intervention events. That is, events occurring when 
the following equation is true: 

(Root.GuestCtl0GM = 1 and (Root.StatusEXL = 1 or Root.StatusERL = 1 or Root.DebugDM = 1))

The I6500 supports virtual sharing between Root and Guest. As such, Root software may choose to assign all 
WatchHi and WatchLo to Guest or Root, but not both. This is the recommended policy for sharing between Root and 
Guest. If assigned to Guest then Guest access does not cause a GPSI exception.

10.9 Guest Mode and Debug Features

The Virtualization Module provides full access to debug facilities. When the processor is running in debug privileged 
execution mode, it has full access to all resources that are available in the Root context. 

As per Table 10.1, The debug privileged execution mode exists in the root context. A processor supporting virtualiza-
tion operates in two contexts, Root and Guest. Within Guest, there are three privileged execution modes; kernel, 
supervisor and user, and in Root context, there are four; kernel, supervisor, user and debug.

Table 10.10 lists debug features and their application to the Virtualization Module.

Table 10.10 Debug Features and Application to Virtualization Module

Feature Description Reference

Debug mode Guest mode is mutually exclusive with Debug mode. When in 
Debug mode (DebugDM=1), the processor is not in guest mode.

When the processor is running in Debug mode, it has full access to 
all resources that are available to Root-Kernel mode operation.

MIPS On-Chip Instrumentation 
Debug Technical 

Reference Manual

Debug Segment (dseg) When the processor is running in Debug mode, the memory map is 
determined by the root context. 

MIPS On-Chip Instrumentation 
Debug Technical 

Reference Manual

Access to guest CP0 context Debug tools access general purpose registers (GPRs) and coproces-
sor registers by executing instructions in the processor pipeline. 

Access to the guest CP0 context must use the Virtualization Module 
instructions provided to transfer data between the root and guest 
contexts - MTGC0 and MFGC0.

Accesses to the guest TLB must use the instructions provided to ini-
tiate guest TLB operations from the root context - TLBGP, TLBGR, 
TLBGWI, TLBGWR. These operations are used to transfer data 
between the guest TLB and the guest CP0 context. When accessing 
the guest TLB in debug mode, a two-step process is required - to 
transfer data to/from the guest CP0 context and guest TLB, and to 
transfer data to/from the root CP0 context and guest CP0 context.

Section 10.1.8
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Hardware Breakpoints When implemented, hardware breakpoints are part of the root con-
text. The root context remains active during guest mode execution, 
allowing hardware breakpoints to be used to debug guest software.

Exceptions resulting from hardware breakpoints are of type Syn-
chronous Debug or Asynchronous Debug. In both cases, the excep-
tions are handled in Debug mode.

Section 10.6.4

Watch registers Support for use of watch-point from the Guest is optionally pro-
vided. 

Refer to Section 10.8

Table 10.10 Debug Features and Application to Virtualization Module

Feature Description Reference
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Data Scratch Pad RAM

The optional Data Scratch Pad RAM (DSPRAM) block provides a general scratch pad RAM used for temporary stor-
age of data. The DSPRAM provides a connection to on-chip memory or memory-mapped registers, which are 
accessed in parallel with the L1 data cache to minimize access latency. 

The default RAM size is 64 KB, but can be set to any power of 2 size (128 KB, 256 KB, etc.) The base address of the 
DSPRAM in memory is set using two new CP0 registers. 

11.1 Overview

The DSPRAM module has the following features:

• 16 Byte wide data path for both read and write operations

• Data can be protected (parity/ECC/none on 32 bit granularity)

• One or multi-cycle latency for read/write in byte invariant format

• Multi-threaded design, so the blocking of one thread may not block other thread

• Root physical address (RPA) is checked against base and range to validate access. No other tag array.

11.1.1 New CP0 Registers

Two new Coprocessor 0 registers have been added to facilitate access to the DSPRAM as shown in Table 11.1 . 

The bit assignments for each of these register is shown below.

11.1.1.1 Special Address Access Register Index — SAARI (CP0 Register 9, Select 6)

The SAARI register is instantiated per-VP and provides an index value that determines whether the DSPRAM is 
accessed, or another block is accessed such as the Inter-Thread Communication Unit (ITC). There is one SAARI reg-
ister per VP. This means that multiple SAARI registers use the same SAAR register to access the associated block.

Table 11.1 CP0 Registers Used for Accessing the DSPRAM Module 

Register 
Number Sel Register Name Description

9 6 SAARI Special Address Access Register Index. Provides an index into the SAAR reg-
ister to indicate whether the DSPRAM or other module is being accessed. 
There is one SAARI register per VP.

9 7 SAAR Special Address Access Register. Stores the base address where the DSP will 
be located, as well as the block size. There is one SAAR register per core.
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Each SAARI register contains a 6-bit TARGET field that selects between the Inter-Thread Communication unit (ITC) 
and the DSPRAM. If the value is set to 0x01, the DSPRAM block is accessed. If the value is set to 0x00, the ITC 
block is accessed. 

Refer to the section entitled Register Programming Sequence for more information on how this register is used.

Figure 11.1 SAARI Register Format   

11.1.1.2 Special Address Access Register — SAAR (CP0 Register 9, Select 7)

The 64-bit SAAR register is instantiated per-core and stores the base address and size of the DSPRAM block. 

The 32-bit ADDR[47:16] field indicates the base address of the DSPRAM. This field is stored in bits 43:12 of the 
SAAR register. 

The 5-bit SIZE field of this register encodes the size of the DSPRAM. This field is encoded as 2^SIZE to indicate the 
size of the DSPRAM. The default for this field is 64 KBytes. For example, the default value is 0x10, corresponding to 
a decimal value of 16. This means that the default DSPRAM size is 2^16, or 64 KBytes. Similarly, a value of 0x11 
corresponds to a decimal value of 17, meaning that the size of the DSPRAM is 2^17, or 128 KBytes. 

An ENABLE bit located in bit 0 of this register enables DSPRAM / ITC accesses. Once this information is pro-
grammed into the CP0 SAAR, it is moved by hardware into either the SAAR0_ITC or SAAR1_DSPRAM hardware 
registers depending on the programming of the SAARI TARGET field described above. Refer to the section entitled 
Accessing the DSPRAM for more information on these two hardware registers.

Refer to the section entitled Register Programming Sequence for more information on how the SAAR register is 
used.

Figure 11.2 SAAR Register Format   

31 6 5 0

Reserved TARGET

Table 11.2 Field Descriptions for SAARI Register

Name Bit(s) Description Read/ Write Reset State

Reserved 31:6 Reserved. This bits should be written as zero. Reads are undefined. R 0

TARGET 5:0 Selects between the logic block to be accessed by the SAAR register. 
This field is encoded as follows:

0x00: ITC
0x01: DSPRAM
0x02 - 0x03F: Reserved

Writes to reserved values will be dropped.

R/W 0

63 44 43 12 11 6 5 1 0

Reserved ADDR[47:16] Reserved SIZE EN

Table 11.3 Field Descriptions for SAAR Register 

Name Bit(s) Description Read/ Write Reset State

Reserved 63:44 Reserved. This bits should be written as zero. Reads are undefined. R 0
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11.1.2 Changes to Existing CP0 Registers — Error Reporting

To accommodate error reporting by the DSPRAM, two existing CP0 registers have been modified as shown below.

11.1.2.1 Error Control — ErrCtl (CP0 Register 26, Select 0)

In the I6500 CP0 ErrCtl register, bit 31 is used to enable the DSPRAM to trigger on a cache error exception. When 
this bit is set and an error occurs, the CP0 CacheErr register provides details about the error. The remaining bits of 
this register behave the same as in previous cores. Refer to the I6500 CP0 Register document for more information.

11.1.2.2 Cache Error — CacheErr (CP0 Register 27, Select 0)

In the I6500 CP0 CacheErr register, the following fields are described. Note that only those bits that have changed 
are defined here. If not defined, the field(s) behave the same as in previous generation cores. Refer to the I6500 CP0 
Registers document for more information.

• Bits 29:26 are used to indicate the array where the error was detected. Encoding 0x8 of this field was added to 
indicate a DSPRAM error. 

• Bits 21:20 are used to indicate the way where the error occurred. However, since the DSPRAM is a 1-way set 
associative memory, this field is not used. 

11.2 DSPRAM Software Interface

The DSPRAM is accessed by Load and Store instructions. Read requests for load instructions can be issued to the 
DSPRAM module speculatively. Write requests for store instructions are non-speculative. The read/write access to 
the DSPRAM is 16 Bytes (128 bits) wide for data.

The CACHE, LL/SC variants, GINV*, and PREF instructions are not supported on the address space of the 
DSPRAM. The address of the load/store instruction to the DSPRAM must be aligned to the size of access (i.e. 4 
bytes, 8 bytes, or 16 bytes). Any violation of the address alignment can cause an address error exception (i.e. 
unaligned loads/stores to DSPRAM are not supported). The SYNC instruction will enforce ordering of DSPRAM 
loads and stores.

ADDR[47:16] 43:12 Base Address. This field specifies the base physical address for the loca-
tion of the DSPRAM in memory. The address must be at least 64 KB-
aligned (ADDR[47:16] = PA[47:16]).

R/W 0

Reserved 11:6 Reserved. This bits should be written as zero. Reads are undefined. R 0

SIZE 5:1 Size of the device. Encoded as 2^SIZE bytes. This is preset at build time.

For a 64 KB memory the SIZE field should be 0x10.

The actual size of the device size can be set to a smaller than 64 KB, but 
the minimum size of the address window must be 64 KB. For example, if 
the memory occupies only 16 KB, the upper 48 KB of address would not 
be used.

R/W 0x10

EN 0 This enable bit must be set to allow DSPRAM accesses. A read gives the 
current value of the bit.

R/W 0

Table 11.3 Field Descriptions for SAAR Register (continued)

Name Bit(s) Description Read/ Write Reset State
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11.3 Accessing the DSPRAM

As mentioned above, the DSPRAM is accessed using two CP0 registers; the Special Address Access Register (SAAR) 
located at CP0 (Reg 9, Sel 7), and the Special Address Access Register Index (SAARI) located at CP0 (Reg 9, Sel 6). 
From a kernel software perspective, there is one SAAR register per core, and one SAARI register per VP. This means 
that there can be multiple SAARI registers per core depending on the number of VP's instantiated.

From a hardware perspective, there are two SAAR registers per core. The SAAR0_ITC register is dedicated to the 
Inter-Thread Communication (ITC) unit, and the SAAR1_DSPRAM register is dedicated to the DSPRAM. These 
two registers are NOT software visible. Which register is accessed by hardware depends on the programming of the 
SAARI register as described in Figure 11.3. This figure shows a 2-VP implementation.

Figure 11.3 Accessing the DSRPAM 

11.3.1 Register Programming Sequence

When the TARGET field of the SAARI register is set to 0x01, kernel software programs the SAAR register with the 
base address and size of the DSPRAM block. Hardware then uses this information to program the internal 
SAAR1_DSPRAM register that is dedicated to the DSPRAM, thereby setting the base address and the size of the 
DSPRAM block. 

Conversely, when the TARGET field of the CP0 SAARI register is set to 0x00, kernel software programs the SAAR 
register with the base address and size of the ITC block. Hardware uses this information to program the internal 
SAAR0_ITC register that is dedicated to the ITC block.
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For example, to select the DSPRAM block and set the address, size, and enable fields of the SAAR, the programming 
sequence is as follows:

1. Program the TARGET field of the CP0 SAARI register with a value of 0x01 to indicate a DSPRAM access.

2. Program the base address location of the DSPRAM in the ADDR[47:16] field of the CP0 SAAR register. This 
sets the base address for the DSPRAM. Note that this field resides in bits 43:12 of the register.

3. Program the SIZE field to indicate the size of the DSPRAM as described above if it is different from the default 
value of 64 KBytes. If the size is 64 KBytes, this field need not be programmed.

4. Set the ENABLE bit in the CP0 SAAR register to enable DSPRAM accesses.

5. This is done by the privileged software (i.e. by operating system software if Virtualization is not implemented or 
by hypervisor if Virtualization is implemented). 

These steps can be represented by the following assembly language code, along with an example transfer of data:

#define c0_SAARI $9,6
#define c0_SAAR $9,7

li t0, 000000001 \\Set bit 0 to select DSPRAM as the target
mtc0 t0, c0_SAARI \\Write SAARI register with a value of 1 to select DSPRAM
dli t1, 0000000080000021 \\Set base address to 80000; set size to 64K; enable

\\DSPRAM
dmtc0 t1, c0_SAAR \\Write SAAR register with contents of register t1
dli t0, 5555AAAA5555AAAA \\load data value to be transferred to DSPRAM
dli t1, 0000000000082000 \\load address of 82000 into t1; this is offset 2000 from 
the base address of 80000
sd t0, 0(t1) \\Store the data in t0 to the address in t1; address offset = 0; Data 

\\is stored to DSPRAM address 82000

11.3.2 Programming Constraints 

The DSPRAM is shared across all VP's in the core. As such, accesses to the DSPRAM must adhere to the following 
constraints:

1. The SAARI register must be programmed before the SAAR register, so that hardware knows to move the con-
tents of the CP0 SAAR register to either the SAAR0_ITC or SAAR1_DSPRAM hardware registers.

2. If multiple VP's are present, each VP can access the DSPRAM independent of the other. Therefore, if one VP 
stores data to a location in the DSPRAM, that data can be overwritten by another VP at any time.

3. Since there is only one SAAR register per core, each VP can write to the SAAR register. Therefore, if one VP 
sets the base address and size for the DSPRAM, that information can be overwritten by another VP at any time. 
For example, in the code example above, VP0 places the DSPRAM at a base of 0x80000 with a size of 64K, so 
the DSPRAM resides from 0x80000 - 0x8FFFF in memory. However, if VP1 sets the base address at a different 
value, such as 0xA0000, then the location of the DSPRAM will be moved.

It is incumbent upon software to ensure that these conditions do not occur.
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Inter-Thread Communication Unit

The Inter-thread Communication Unit (ITU) is a configuration option that provides an alternative to Linked-Load/
Store-Conditional synchronization for fine grained multithreading by utilizing gating storage. Gating storage is used 
to synchronize execution streams, thereby allowing Inter-thread communication between threads. It is achieved 
through Load and Store requests which may be blocked until the state of the storage location changes, allowing a 
response to be given. A blocked load or store request can be precisely aborted if necessary and restarted by the con-
trolling operating system.

The ITU is memory mapped and is accessed through load and store instructions. The ITU memory region is a fixed 
size of 128 KBytes.

The ITU is made up of cells. Each cell contains tag state information and associated data. Cells can be configured to 
be single element data storage cells, or multi-element FIFO data storage cells. Both cell types appear as a single 
addressable memory location, and the ITU can contain a mix of single element cells and multi-element FIFO cells. 
The cells are configured during IP configuration based on customer requirements.

12.1 Overview

The ITU module provides the following features:

• 64-bit data path

• 4 or 8 Byte read and write operations

• Eliminates spin locking encountered with the LL/SC instructions

• Provides support for semaphore types which reduces the number of extra instructions required to perform them

• Root physical address (RPA) is checked against base and range to validate access.

12.1.1 New CP0 Registers

Two new Coprocessor 0 registers have been added to facilitate access to the ITU as shown in Table 12.1 . 

The bit assignments for each of these registers is as follows.

Table 12.1 CP0 Registers Used for Accessing the ITU Module 

Register 
Number Sel Register Name Description

9 6 SAARI Special Address Access Register Index. Provides an index into the SAAR reg-
ister to indicate whether the ITU or other block is being accessed. There is one 
SAARI register per VP.

9 7 SAAR Special Address Access Register. Stores the base address where the ITU will 
be located, as well as the block size. There is one SAAR register per core.
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12.1.1.1 Special Access Address Register Index — SAARI (CP0 Register 9, Select 6)

The 32-bit SAARI register is instantiated per-VP and provides an index value that determines whether the ITU is 
accessed, or another block is accessed such as the DSPRAM. Since there is one SAARI register per VP, this means 
that multiple SAARI registers use the same SAAR register to access the associated block.

Each SAARI register contains a 6-bit TARGET field that selects between the Inter-Thread Communication Unit 
(ITU) and the DSPRAM. If the value is set to 0x00, the ITU block is accessed. If the value is set to 0x01, the 
DSPRAM block is accessed. The default value for this field is 0x00, which is the ITU module.

Refer to the section entitled Register Programming Sequence for more information on how this register is used.

Figure 12.1 SAARI Register Format   

12.1.1.2 Special Access Address Register — SAAR (CP0 Register 9, Select 7)

The 64-bit SAAR register is instantiated per-core and stores the base address and size of the ITU block. 

The 32-bit ADDR[47:16] field indicates the base address of the ITU. This field is stored in bits 43:12 of the SAAR 
register. 

The 5-bit SIZE field of this register encodes the size of the ITU. This field is encoded as 2^SIZE to indicate the size 
of the ITU. The default for this field is 128 KBytes, which corresponds to a decimal value of 17. This means that the 
default ITU size is 2^17, or 128 KBytes. 

Note that default value for the SIZE field depends on which module is being accessed. If the SARRI.TARGET field is 
0, indicating the ITU, a read of the SAAR.SIZE field yields a value of 0x11, which corresponds to a default size of 
128 KBytes. However, if the SARRI.TARGET field is 1, indicating the DSPRAM, a read of the SAAR.SIZE field 
yields a value of 0x10, which corresponds to a default size of 64 KBytes.

An ENABLE bit located in bit 0 of this register enables DSPRAM / ITU accesses. Once this information is pro-
grammed into the CP0 SAAR, it is moved by hardware into either the SAAR0_ITU or SAAR1_DSPRAM hardware 
register depending on the programming of the SAARI.TARGET field described above. These registers are indirectly 
accessible through the CP0 SAAR register. Refer to the section entitled Accessing the ITU Module for more informa-
tion. 

Refer to the section entitled Register Programming Sequence for more information on how the SARRI register is 
used.

31 6 5 0

Reserved TARGET

Table 12.2 Field Descriptions for SAARI Register

Name Bit(s) Description Read/ Write Reset State

Reserved 31:6 Reserved. This bits should be written as zero. Reads are undefined. R 0

TARGET 5:0 Selects between the logic block to be accessed by the SAAR register. 
This field is encoded as follows:

0x00: ITU (default)
0x01: DSPRAM
0x02 - 0x03F: Reserved

Writes to reserved values will be dropped.

R/W 0
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Figure 12.2 SAAR Register Format   

12.1.2 ITU Control Register

This register can be modified when accessing cell 0 of the ITU using cell view 0xF as described in Table 12.6. Note 
that the total number of cells is implementation dependent. 

Figure 12.3 ICR0 Register Format   

63 44 43 13 12 6 5 1 0

Reserved ADDR[47:17] Reserved SIZE EN

Table 12.3 Field Descriptions for SAAR Register 

Name Bit(s) Description Read/ Write Reset State

Reserved 63:44 Reserved. This bits should be written as zero. Reads are undefined. R 0

ADDR[47:16] 43:13 Base Address. This field specifies the base physical address for the loca-
tion of the ITU block in memory. The address must be at least 128 KB-
aligned (ADDR[47:17] = PA[47:17]). 

R/W 0

Reserved 12:6 Reserved. This bits should be written as zero. Reads are undefined. R 0

SIZE 5:1 Size of the device. Encoded as 2^SIZE bytes.

For 128 KB, the SIZE field should be 0x11.

R/W 0x11

EN 0 This enable bit must be set to allow ITU accesses. A read gives the cur-
rent value of the bit.

R/W 0

Table 12.4 CM3 Registers Used for Accessing the ITU Module 

Register Name Description

ICR0 ITU Control register 0. Contains information about the ITU configuration and 
controls for the global operation of the ITU. This register is memory mapped. 
It is not physically part of cell 0, but can be accessed when PA[6:3] contains a 
value of 0xF during an access to cell 0. 

63 24 23 16 15 11 10 8 7 3 2 1 0

Reserved CELL_NUM Reserved BLK_GRAIN Reserved ERROR_
AXI

ERROR_
PARITY

ERROR_
EXEC

Table 12.5 Field Descriptions for ICR0 Register 

Name Bit(s) Description Read/ Write Reset State

Reserved 63:24 Reserved. This bits should be written as zero. Reads are undefined. R 0

CELL_NUM 23:16 Cell number. This field contains the number of cells configured in the 
ITU. Maximum number of cells is 32.

R IP Config

Reserved 15:11 Reserved. This bits should be written as zero. Reads are undefined. R 0

BLK_GRAIN 10:8 Block granularity. This field spreads out the cell addressing by virtually 
replicating the cells, giving multiple addresses to access the same cell. 
This is to allow cell access control by mapping individual or groups of 
cells across different pages. Refer to the examples in Section 12.2.5.

R/W 0

Reserved 7:3 Reserved. This bits should be written as zero. Reads are undefined. R 0
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12.2 ITU Cell Structure

This section describes the ITU cell structure, including cell types, view, state, and indexing.

12.2.1 ITU Cell Types

The ITU consists of a series of memory cells. Two cell types are supported;

• Single-element data storage cells

• Multi-element FIFO data storage cells

Single element storage cells contain a 64-bit data value and associated state information. Multi-element FIFO data 
storage cells contains multiple 64-bit data values in a FIFO format. The state information includes the FIFO depth, 
full/empty indication, and read pointer to indicate which entry in the FIFO is being read.

Note that a multi-element FIFO cell is accessed in the same manner as a single-element cell. In a 4-entry FIFO as 
shown in Figure 12.4, a write operation writes to entry 0 of the FIFO. Subsequent writes cause the data to be shifted 
through the entries in the FIFO. On a read operation, the first entry written to the FIFO is read out first.

Figure 12.4 Single- and Multi-Element Storage Cells 

ERROR_AXI 2 This bit is set by hardware to indicate an error on the AXI bus. Software 
must set this bit to clear the error.

R/W1 0

ERROR_PARITY 1 This bit is set by hardware to indicate a parity error occurred when 
accessing the ITU module. Software must set this bit to clear the error.

R/W1 0

ERROR_EXC 0 This bit is set by hardware to indicate an execution error during an access 
to the ITU module. Software must set this bit to clear the error.

R/W1 0

Table 12.5 Field Descriptions for ICR0 Register (continued)

Name Bit(s) Description Read/ Write Reset State

Single‐element Storage Cell

Cell State Tag

Cell Data

Multi‐element Storage Cell

Cell State Tag

Cell Data

FIFO Entry 0

FIFO Entry 1

FIFO Entry 2

FIFO Entry 3
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The ITU supports numerous kinds of cell operations, including cell data update, cell state update, and load/store 
blocking/nonblocking semphore requests based on the empty/full state of the target cell. The exact operation is 
embedded into bits 6:3 of the physical address when the ITU is accessed. Each type of cell can be accessed only in 
certain cell views as shown in Table 12.6. Refer to the section entitled Cell Views for more information.

12.2.2 Cell Views

The cell can operate in any of the views listed Table 12.6 above. Each of these views is described in the following 
table. The cell view is indicated in bits 6:3 of the physical address. Refer to the section entitled ITU Cell Addressing 
for more information. Refer to Table 12.6 for a definition of E/F and P/V. 

Table 12.6 Cell Views Supported by Cell Type

Cell Type Cell View Description

Single Entry Bypass
Control

E/F synchronized1

E/F try
P/V synchronized2

P/V try

1. E/F = Empty/Full
2. P/V = Probeer (try)/Verhoog (increment)

In the single entry cell type a single memory mapped word contains a 
single entry. This can be used to pass a single value between threads 
using E/F view or as an event counter using P/V view. All views are legal 
for single entry cells.

Multi-entry FIFO Bypass
Control

E/F synchronized
E/F try

In the multi-entry FIFO cell type a single memory mapped word contains 
multiple entries in a FIFO, allowing for hardware messaging queue sup-
port. The FIFO can be empty, full or neither depending on the number of 
entries already pushed onto the queue.

Note, P/V type views are not allowed on multi-entry FIFO cells. In the 
Bypass view, a read operation will read the head of the FIFO. Bypass 
stores will overwrite the tail.

Table 12.7 Cell Views

Addr[6:3] Cell View Blocking Description

0000 Bypass No Load or Store of cell data, no effect on cell state/control informa-
tion. Operation of the SC instruction is undefined when using this 
view.

0001 Control No Load or Store of cell state/control information.

0010 E/F synchronized Yes A Load request to an empty cell blocks the requesting thread.
A Load request will set the cell empty flag, on completion, if it is 
returning the last available stored value.

A Store request to a full cell will block the requesting thread.
A Store request will set the cell full flag, on completion, if the cell is 
full after storing the last possible value.

Operation of the SC instruction is undefined when using this view.
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0011 E/F/try No A Load request to an empty cell will fail, returning a value of 0.
A Load request, which fails, will not affect cell state.  

A Store request to a full cell will not block, it will fail silently.
A Store request, which fails, will not affect cell state.

SC (Store Conditional) instructions referencing the E/F Try view 
will indicate success or failure based on whether the ITU store suc-
ceeds or fails.

0100 P/V synchronized Yes A Load request will block if the cell value is 0.
A Load request will return the 16 least significant bits of cell value; 
zero extended, and causes an atomic post decrement by 1.

A Store request will never block.
A Store request's write data is ignored and an increment by 1 
occurs.
A Store request's increment saturates at 16 bits (0xFFFF)

Load/Store requests will not affect cell state.
The empty and full state bits should be cleared as part of the initial-
ization for P/V semaphore use.

Operation of the SC instruction is undefined when using this view.

0101 P/V try No A Load request will never block.
A Load request will return the 16 least significant bits of cell value; 
zero extended, and causes an atomic post decrement by 1. (Decre-
ment only occurs if cell value is not 0 )

A Store request will never block.
A Store request's write data is ignored and an increment by 1 
occurs.
A Store request's increment saturates at 16 bits (0xFFFF)

Load/Store requests will not affect cell state.
The empty and full state bits should be cleared as part of the initial-
ization for P/V semaphore use. 

Operation of the SC instruction is undefined when using this view.

0110 - 1110 Reserved No Behaves the same as the Bypass view.

1111 ICR Register No ITU control register access (ICR0)
A Load request reads from the ICR0 register.
A Store request writes to the ICR0 register. 

Table 12.7 Cell Views

Addr[6:3] Cell View Blocking Description
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12.2.3 Cell State

The cell state can be accessed in the Control view when PA[6:3]) = 0001 as described in Table 12.7. The cell state 
provides the following information. 

12.2.4 ITU Cell Addressing

The ITU is accessed using a 48-bit physical address that is organized as follows.

Table 12.8 Cell State

Bits Field Description Type Reset

63:30 R Reserved. R 0

29:28 FIFO_DEPTH Indicates that the cell FIFO depth is 2n, where n is the value in this field. 
This means that he FIFO can be encoded as follows:
00: 20 = 1 entry
01: 21 = 2 entries
10: 22 = 4 entries
11: 23 = 8 entries

Note that single-element cells this field is always 0.

R IP Config Value
0 

(Single-element)
1 - 3

(Multi-element)

27:19
27:20
27:21

R Reserved. The size of this field depends on the size of the FIFO_RD_PTR 
field. See below

R 0

18 
19:18
20:18

FIFO_RD_PTR Indicates the pointer value for the oldest entry whose value will be returned 
on the next read. The size of this pointer depends on the state of the 
FIFO_DEPTH field in bits 29:28. This field is encoded as follows:

Bit 18: Used when the cell is configured as single-element, or as a multi-ele-
ment cell with a 2-entry FIFO. A logic 0 on bit 18 selects the odd FIFO 
entry, and a logic 1 on bit 18 selects the even FIFO entry. In this configura-
tion bits 20:19 are reserved.

Bits 19:18: Used when the cell is configured as multi-element with a 4-entry 
FIFO. In this configuration bit 20 is reserved.

Bits 20:18. Used when the cell is configured as multi-element with an 8-
entry FIFO.

R IP Config Value

17 FIFO_TYPE 0 = single entry cell
1 = multi-entry FIFO

R IP Config Value

16:2 R Reserved. R 0

1 Full Cell contains valid data (single-entry cell type)
Cell contains the maximum number of entries in the FIFO (multi-entry FIFO 
cell type)

R/W 0

0 Empty Cell contains no valid data. R/W 1
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Figure 12.5 ITU Cell Addressing Format 

The address is divided into the following fields:

• ITU Base Address: This field is taken from bits 43:12 of the CP0 SAAR register described in Section 12.1.1.2. 

• Cell Index: The size of the cell index varies depending on the number of cells. The position of the cell index 
within bits 15:7 is indicated by the state of the BLK_GRAIN field as described in the following subsections.

• Cell View: This field encodes one of the cell views as described in Table 12.7.

• Offset: Each cell is 64-bits wide. In this field bits 1:0 are always 0. Bit 2 is used to select between the upper and 
lower 32-bit words.

12.2.5 Cell Indexing Examples

The Cell Index is derived from information stored in the CELL_NUM and BLK_GRAIN fields of the ICR0 register 
as described in Section 12.1.2. As shown in Figure 12.5, the cell index falls somewhere within bits 15:7 of the physi-
cal address. The exact location depends on the programming of these fields.

12.2.5.1 Example 1: 32 Cells with No Index Shift and No Invalid Cells

In this example the 32 cells are divided into 16 single-element cells and 16 FIFO cells. The value configured in the 
CELL_NUM field is 32 (0x20). The value programmed into the BLK_GRAIN field is zero. 

As shown in Figure 12.5, the cell index starts at PA[7]. Since 5 address bits are required to access these 32 cells, the 
Cell Index would reside at PA[11:7]. In this case, bits 15:12 are don’t care. Since all 32 cells are used, there are no 
invalid cells. The physical address PA[63:0] would be organized as shown in Figure 12.6.

Figure 12.6 Example 1: 32 Cells with No Index Shift 

In Figure 12.7, the cell state is accessed when PA[6:3] = 0001 as described in Table 12.7.

63 48 47 16 15 7 6 3 2 1 0

Reserved ITU Base Address Cell Index Cell View Offset

63 48 47 16 15 12 11 7 6 3 2 1 0

Reserved ITU Base Address Don’t Care Cell Index Cell View Offset
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Figure 12.7 32 Cells with No Index Shift and No Invalid Cells

12.2.5.2 Example 2: 32 Cells with 2-Bit Index Shift and No Invalid Cells

In this example the 32 cells are divided into 16 single-element cells and 16 FIFO cells. The value configured in the 
CELL_NUM field is 32 (0x20). The value programmed into the BLK_GRAIN field is two. 

As shown in Figure 12.5, the cell index starts at PA[7]. In this example the BLK_GRAIN field contains a value of 
0x2, causing the cell index to be shifted to the left 2 bits. Since 5 address bits are required to access these 32 cells, the 
Cell Index would reside at PA[13:9]. In this case, bits 15:14 are don’t care. Bits 8:7 (VA Index) can be used to map 
the ITU to multiple virtual addresses, in this case up to four. In this example there are no invalid cells. The physical 
address PA[63:0] would be organized as shown in Figure 12.8. 

Figure 12.8 Example 1: 32 Cells with 2-bit Index Shift 

In Figure 12.9, the cell state is accessed when PA[6:3] = 0001 as described in Table 12.7.

63 48 47 16 15 14 13 9 8 7 6 3 2 1 0

Reserved ITU Base Address Don’t 
Care Cell Index VA 

Index Cell View Offset

Example 1 ITC Structure

Cell State Tag

PA[11:7] = 0x00

Single‐Element Cells

Multi_Element 
FIFO Cells

PA[11:7] = 0x0F

PA[11:7] = 0x10

PA[11:7] = 0x1F
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Figure 12.9 32 Cells with 2-bit Index Shift and No Invalid Cells

12.2.5.3 Example 2: 20 Cells with 4-Bit Index Shift and Invalid Cells

In this example there are 20 cells that are divided into 10 single-element cells and 10 FIFO cells. The value pro-
grammed into the CELL_NUM field is 20 (0x14). The value programmed into the BLK_GRAIN field is four. 

As shown in Figure 12.5, the cell index starts at PA[7]. In this example the BLK_GRAIN field contains a value of 
0x4, causing the cell index to be shifted to the left 4 bits. 

Even though only 20 cells are required, the number of memory locations allocated must be on a power of 2, which 
means that 5 address bits are still required to access this memory space. Since 5 address bits are required to access 
these 20 cells, the Cell Index would reside at PA[15:11]. In this case, bits 10:7 can be used to map the ITU to multiple 
virtual address, in this case up to 16. In this example there are 20 valid cells and 12 invalid cells. The physical address 
PA[63:0] would be organized as shown in Figure 12.10. 

Figure 12.10 Example 1: 20 Cells with 4-bit Index Shift 

In the diagram below, the cell state is accessed when PA[6:3] = 0001 as described in Table 12.7.

63 48 47 16 15 11 10 7 6 3 2 1 0

Reserved ITU Base Address Cell Index VA Index Cell View Offset

Example 2:  ITC Structure

Cell State Tag

PA[13:9] = 0x00

Single‐Element Cells

Multi_Element 
FIFO Cells

PA[13:9] = 0x0F

PA[13:9] = 0x10

PA[13:9] = 0x1F
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Figure 12.11 20 Cells with 4-bit Index Shift and Invalid Cells

12.3 ITU Software Interface

The ITU is accessed by Load (LD) and Store (ST) instructions. Write requests for store instructions are non-specula-
tive. The read/write access to the ITU module is via a 64-bit wide data path.

From the core, ITU accesses are always uncached. When the physical address (PA) matches that in the 
SAAR0_ITU.ADDR[47:16] field, then the access is uncached. The SAAR0_ITU address match overwrites and 
Cache Coherency Attributes (CCA) that may be associated with the translated address.

The CACHE, GINV*, PREF, and SYNCI instructions are not supported on the address space of the ITU. The address 
of the load/store instruction to the ITU must be aligned to the size of access (i.e. 4 bytes or 8 bytes). Any violation of 
the address alignment can cause an address error exception (i.e. unaligned loads/stores to the ITU are not supported).

Store Conditional (SC) instructions referencing the ITU space are executed independent of the core's CP0 
LLAddr.LLbit. If E/F try view is used, the SC instruction indicates success or failure depending on whether the ITU 
store succeeds or fails due to the Full state. In other views, SC pass/fail behavior is undefined.

12.4 Accessing the ITU Module

As mentioned above, the ITU is accessed using two CP0 registers; the Special Address Access Register (SAAR) 
located at CP0 (Reg 9, Sel 7), and the Special Address Access Register Index (SAARI) located at CP0 (Reg 9, Sel 6). 
From a software perspective, there is one SAAR register per core, and one SAARI register per VP. This means that 
there can be multiple SAARI registers per core depending on the number of VP's instantiated. Refer to the section 
entitled ITU Software Interface for more information. 

From a hardware perspective, there are two SAAR registers per core. The SAAR0_ITU register is dedicated to the 
Inter-Thread Communication (ITU) unit, and the SAAR1_DSPRAM register is dedicated to the DSPRAM. These 
two registers are not software visible. Which register is accessed by hardware depends on the programming of the 

Example 3:  ITC Structure

Cell State Tag

PA[15:12] = 0x00

Single‐Element Cells

Multi_Element 
FIFO Cells

PA[15:12] = 0x09
PA[15:12] = 0x0A

PA[15:12] = 0x13

Invalid Cells

PA[15:12] = 0x14

PA[15:12] = 0x1F
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SAARI.TARGET field as described Figure 12.12. Both of these registers are indirectly accessed using the SAAR reg-
ister described above. This concept is shown for a 2-VP core.

Figure 12.12 Accessing the ITU 

12.4.1 Register Programming Sequence

When the SAARI.TARGET field is set to 0x00, software programs the SAAR register with the base address and size 
of the ITU block. Hardware then uses this information to program the internal SAAR0_ITU register that is dedicated 
to the ITU, thereby setting the base address and the size of the ITU block. 

Conversely, when the TARGET field of the CP0 SAARI register is set to 0x01, software programs the SAAR register 
with the base address and size of the DSPRAM block. Hardware uses this information to program the internal 
SAAR1_DSPRAM register that is used to access the memory.

For example, to select the ITU block and set the address, size, and enable fields of the SAAR, the programming 
sequence is as follows:

1. Program the TARGET field of the CP0 SAARI register with a value of 0x00 to indicate an ITU access.

2. Program the base address location of the ITU in the ADDR[47:16] field of the CP0 SAAR register. This sets the 
base address for the ITU module. Note that this field resides in bits 43:12 of the register.

3. Set the ENABLE bit in the CP0 SAAR register to enable ITU accesses. 

Note that the ITU module is a fixed size of 128 KB. As a result, the SIZE field always contains a value of 0x11 
and need not be programmed.
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4. Read back the contents of the SAAR register. If the EN bit is not set, the ITU is not present in the system.

5. Programming is done by the privileged software (i.e. by operating system software if Virtualization is not imple-
mented or by hypervisor if Virtualization is implemented). 

These steps can be represented by the following assembly language code, along with an example transfer of data:

#define c0_SAARI $9,6
#define c0_SAAR $9,7

li t0, 000000000 \\Clear bit 0 to select ITU as the target
mtc0 t0, c0_SAARI \\Write SAARI register with a value of 0 to select ITU
dli t1, 0000000040000031 \\Set base address to 40000; set size to 128K; enable ITU
dmtc0 t1, c0_SAAR \\Write SAAR register with contents of register t1
dli t0, 5555AAAA5555AAAA \\load data value to be transferred to ITU
dli t1, 0000000000042000 \\load address of 42000 into t1; this is offset 2000

\\ from the base address of 40000
sd t0, 0(t1) \\Store the data in t0 to the address in t1; address offset = 0; Data

\\is stored to ITU address 42000

12.4.2 Programming Constraints 

The ITU is shared across all VP's in the core. As such, accesses to the ITU must adhere to the following constraints:

1. The SAARI register must be programmed before the SAAR register.

2. Since there is only one SAAR register per core, each VP can write to the SAAR register. Therefore, if one VP 
sets the base address for the ITU, that information can be overwritten by another VP at any time. For example, in 
the code example above, VP0 places the ITU at a base of 0x40000 with a size of 128K, so the ITU resides from 
0x40000 - 0x5FFFF in memory. However, if VP1 sets the base address at a different value, such as 0xA0000, 
then the location of the ITU will be moved.

It is incumbent upon software to ensure that these conditions do not occur.

12.5 ITU Error Reporting

As shown in the section entitled ITU Control Register, the ICR0 register contains three error bits that are used by 
hardware to report the following error types.

• AXI bus error

• Parity error

• Execution error

12.5.1 AXI Bus Error 

The ERROR_AXI bit in the ICR0 register is set by hardware when an error occurs on the AXI bus. The ITU only 
supports 32- and 64-bit transactions. It does not support burst transactions. As such, the SIZE field of the transaction 
must be equal to either 3'b010 [32bit] or 3'b011 [64bit]. If the value of this field is any other value, hardware sets the 
ICR0.ERROR_AXI bit.
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12.5.2 Parity Error 

The ERROR_PARITY bit in the ICR0 register is set by hardware when a parity error occurs during an access to the 
ITU module. Write transactions are even-parity checked when their data is received. 

12.5.3 Execution Error

The ERROR_EXEC bit is set under any of the following conditions:

• On a E/F Load or Store to a single-element cell, when the E and F flags either both set or both cleared.

• On a P/V Load or Store to a single-element cell when cell does not have both the E and F cleared.

• On E/F Load or Store to a multi-element FIFO cell when cell has its E and F flags both set.

• On any P/V Load or Store to a multi-element FIFO cell 

In addition, the ERROR_EXEC bit is set by hardware when either of the following invalid accesses occurs:

• Invalid address

• Invalid ICR0 register access

Invalid Address

The range of address bits used to decode the cell address varies based on the ICR0.BLK_GRAIN field and the num-
ber of cells configured based on the ICR0.CELL_NUM field. The cell address range is always a power of 2 regard-
less of how many cells are configured.

The remaining address space within the cell address range is part of the invalid cell address range. This range is only 
accessed when the total number of cells is not a power of 2. If a normal request is made to an invalid cell address 
range, an error response is returned and hardware sets the ICR0.ERROR_EXEC bit. For more information, refer to 
Example 2: 20 Cells with 4-Bit Index Shift and Invalid Cells

Invalid ICR0 Register Access

In the ITU, the ICR0 register can be accessed only in cell 0. As such, any ICR view request (PA[6:3] = 0xF) to a cell 
address which has no corresponding ICR register (any cell except cell 0) will generate an execution error, causing 
hardware to set the ICR0.ERROR_EXEC bit. Note that software will see this condition as a Bus Error.
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Multithreading

The I6500 Multiprocessing System (MPS) incorporates hardware multithreading that executes multiple threads in 
such a way that the threads appear to be run in parallel. This functionality is performed entirely in hardware and does 
not require any software control. Hence this chapter is only intended to provide an overview of multithreading and 
how it is implemented in the I6500 MPS.

In the I6500, each thread is referred to as a Virtual Processor (VP). Each VP contains a complete system state (Gen-
eral, CP0, FP, and MSA registers, TLB mappings, interrupt and exception model). In addition, each thread has its 
own system debug, reset and various boot and exception vectors, and memory coherency.

There are multiple types of multithreading implementations. The I6500 MPS implements Simultaneous Multithread-
ing, where the core can execute multiple threads in parallel every cycle. In addition, instructions from different 
threads can execute at the same time in the same pipeline stage. This allows for maximum throughput and minimiza-
tion of idle hardware during execution. The I6500 is a dual-issue machine, allowing up to two threads to execute in a 
single pipeline stage. In the I6500, all threads (up to 4) can be fetched, decoded, issued, executed, and graduated in 
parallel. 

13.1 Instruction Flow

The I6500 Instruction Fetch Unit (IFU) fetches instructions from a shared Instruction Cache (IC) for all four threads. 
It fetches two instructions (for a single thread) in a cycle, using a program counter (PC) for that thread. This pair of 
instructions are sent to the Execution Unit (EXU). The IFU fetches instructions in a round-robin manner. 

The IFU also manages a shared Instruction TLB (ITLB) structure. The ITLB performs instruction address translation, 
allowing complete independence amongst threads. This ITLBs are backed up by the larger Variable TLB (VTLB) and 
Fixed TLB (FTLB). The number of shared ITLB entries depends on the number of VPs implemented. 

• 1 VP = 6 entries

• 2 VPs = 12 entries

• 4 VPs = 18 entries

For example, if there is only one VP, all entries of the ITLB are used by the VP. Conversely, if there are four VPs, 
there are 18 ITLB entries that are shared between all of the VPs.

In order to support virtualization, the thread’s Instruction Virtual Address (IVA) is translated to a Guest Physical 
Address (GPA) and then the GPA is translated to Root Physical address (RPA). The ITLBs are used to store the dou-
ble translation to minimize the number of entries and more importantly improve performance by doing the double 
translation in a single cycle.

The translated instructions are passed to the Execution Unit (EXU), which is responsible for decoding, issuing, exe-
cuting and graduating the instructions. In addition, the EXU resolves all data and resource conflicts and manages pre-
cise exceptions. In the I6500, the instructions are issued and graduated in order.
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Every cycle, the EXU decodes the top two instructions from each of the (up to) four threads and determines which 
two (of the possible eight) instructions are ready to issue based on resource availability and data dependencies. It is 
capable of issuing instructions from any of the four VPs, hence the term Simultaneous Multithreading (SMT). Note 
that the I6500 always issues instructions in order. If multiple instructions (>2) are available to issue, the EXU uses a 
fair issue policy to make sure all threads get equal representation.

Once the instructions are issued, they are executed in one of the functional units. During its execution, each instruc-
tion is appropriately tagged for thread identification and instruction order. This allows the proper instruction order to 
be maintained at graduation (completion) time. If an instruction completes, but an earlier instruction from the same 
thread has not graduated, the completed instruction remains in the graduation queue to maintain in-order completion.

13.2 Data Flow

Like the IFU mentioned above, the Load-Store Unit (LSU) manages a shared data cache to perform loads and stores 
for all threads. The LSU also performs a load or a store for a single thread in a cycle, but multiple loads and stores 
from differing threads can be queued up to access the data cache.

The LSU processes loads and stores in the order received to maintain cache coherency between threads. The data 
cache is organized as 4-way set associative cache, which eliminates most of the cache conflicts.

The LSU also manages a shared Data TLB (DTLB) structure. The DTLB performs data address translation, allowing 
complete independence amongst threads. The shared DTLB is backed up by the larger Variable TLB (VTLB) and 
Fixed TLB (FTLB). The number of shared ITLB entries depends on the number of VPs implemented. 

• 1 VP = 8 entries

• 2 VPs = 14 entries

• 4 VPs = 20 entries

For example, if there is only one VP, all eight entries of the DTLB are used by the VP. Conversely, if there are four 
VPs, there are 20 DTLB entries that are shared between all of the four VPs.

In addition, the 16 dual-entry Variable TLB (VTLB) is instantiated on a per-VP basis. The 512 dual-entry Fixed TLB 
(FTLB) is shared between all VPs.

In order to support virtualization, the thread’s Data Virtual Address (DVA) is translated to a Guest Physical Address 
(GPA) and then the GPA is translated to a Root Physical address (RPA). The DTLBs operate much like the ITLBs to 
perform a double translation in a single cycle.

Data stored by one thread does not become visible to other threads until the store instruction has graduated and the 
core has obtained ownership of the associated cache line (for cacheable accesses). In other words, data stored by one 
thread becomes visible to other threads in the same core at exactly the same point that it becomes visible to other 
cores in the system.

The I6500 manages allocation of shared resources (such as data buffers) between threads to prevent starvation and 
ensure that all threads can make forward progress.

13.3 Thread Management

Each of the threads operate independently, except to share some common resources. However, there are times when 
the processor needs to make sure the system is being accessed in a very controlled manner. The MIPS R6 Instruction 
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Set Architecture (ISA) includes specialized instructions to manage threads. These instructions allow a thread, operat-
ing in privileged state, to suspend or resume the execution of other threads to achieve that goal.

13.3.1 Disable Virtual Processor (DVP) Instruction

The DVP instruction suspends execution in all other threads. For the suspended threads, no state information is lost 
and the thread can be restarted exactly where they left off. DVP is a privileged instruction and is only available to 
Root (Hypervisor) Kernel operating mode. When appropriate, the suspended threads can be re-enabled via the EVP 
instruction.

13.3.2 Enable Virtual Processor (EVP) Instruction

The EVP instruction re-enables execution in all other threads. There is no loss of information for the resumed thread. 
The only visible effect might be the system timer continues to count while a thread is suspended, hence the system 
timing could be changed. This is a privileged instruction and is only available to Root (Hypervisor) Kernel operating 
mode.

13.4 Independent Exception Model

Since each thread has a completely independent exception model, one thread cannot block another thread. This inde-
pendent exception model includes: Synchronous Exceptions (Overflow, TLB Miss, etc.), Asynchronous Interrupts 
(Int, NMI, etc.), Debug Exceptions (DIint), and Reset. A thread can be reset to reboot, while the other threads are 
completely unaffected.
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MIPS On-Chip Instrumentation

This chapter provides a brief overview of the interface and external debugging environment required to debug MIPS 
processors that incorporate the MIPS On-Chip Instrumentation (OCI) debug system for multi-core designs. Please 
refer to the following community pages link for information on MIPS probes, Codescape debug tools, SDKs and doc-
umentation: https://www.mips.com/develop/tools/

The MIPS OCI debug system has been developed to provide comprehensive debugging and performance-monitoring 
capabilities for multi-core processor designs where there can be two or four Virtual Processors (VP) per core or mul-
tiple cores per cluster.

14.1 OCI Debug System Overview

The MIPS OCI Debug System comprises a dedicated on-chip module called the Debug Unit and various on-chip 
components that have dedicated debug resources from which debug data is gathered. These are connected by a Regis-
ter Bus (RRB).

14.1.1 Debug Unit (DBU)

There is one DBU per cluster of cores or Virtual Processors (VPs) in a system. The DBU provides several functions 
to assist debugging. Figure 14.1 shows the OCI system as implemented in a typical single-cluster core.

Saraj.Mudigonda
Typewritten Text



 

228 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00

Figure 14.1 OCI System Block Diagram
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14.1.1.1 APB Slave Port

An APB Slave Port in the DBU provides connection to an APB enabled on-chip debug controller or emulator transac-
tor interface.

14.1.1.2 JTAG TAP

A serial JTAG TAP allows connection to a JTAG debug probe. The JTAG TAP data registers reside in the DBU and 
allow read/write requests to the VPs being debugged via debug monitor code.

14.1.1.3 Debug Monitor

Debug monitor code is loaded into RAM in the DBU and schedules debug commands to the VPs via the Register 
Bus.

14.1.1.4 RAM

A dedicated block of RAM in the DBU that hosts the debug monitor code and contains the memory mapped area, 
dmxseg.  Dmxseg is a mapped to the VPs debug memory segment, dmseg, and is accessed by the VP when running in 
debug mode and when a debug probe is attached. This RAM also contains the FIFOs for Fast Debug Channels.

14.1.2 Register Bus

The DBU connects to VPs and other cluster-level coherent devices on the Register Bus (RRB) using a packet-based 
protocol.

14.1.3 Number of Breakpoints

The I6500 MPS implements 8 instruction triggers, the lower 4 of which have range triggering and the upper 4 have 
equality/mask, and 4 data triggers. Breakpoints are shared between all VPs.

14.1.4 Per Core/VP Resources

14.1.4.1 Breakpoint Controller

Each VP has its own independent breakpoint control logic and configuration registers.

14.1.4.2 Dseg

A memory mapped area of main memory, accessible from the processor in debug mode only. It contains the com-
bined dmseg and drseg areas.

14.1.4.3 Dmseg

The debug memory segment of dseg that is accessed by the core when running in debug mode when a debug probe is 
attached. This area is mirrored by dmxseg in DBU RAM.

14.1.4.4 Drseg

A region of dseg that includes registers that are mapped to debug resources such as breakpoint configuration registers 
and sampling registers. The VP and the DBU can read and write these registers indirectly via the coherence manager 
(CM). Drseg registers can be accessed from the DBU during normal and debug mode execution.
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14.1.4.5 CP0 Registers

CP0 contains specific registers that facilitate and configure various aspects of a VP's debug features.

14.1.5 Coherence Devices

The I6500 Multiprocessing System contains the following coherent devices.

14.1.5.1 GIC (Global Interrupt Controller)

This handles the distribution of interrupts between the VPs in a cluster or core and provides signals to put VPs into 
Debug Mode. The GIC also provides debug mode status monitoring and controls debug team assignments for syn-
chronous stop/go of multiple VPs.

14.1.5.2 CPC (Cluster Power Controller) 

Provides stop/run signals for VPs; reset occurred signals for the DBU, CM and VPs; registers for determining the 
state of each VPs power and clock rate; and power up and clock gating of the CM.

14.1.5.3 GCR (Global Configuration Registers) 

A set of memory mapped registers that are used to configure and control various aspects of the CM, the coherence 
scheme and CM performance counters.

14.1.5.4 CGCR - (Custom Global Configuration Registers)

An optional block of custom registers that can be used to control system level functions.

14.1.5.5 CM - (Coherence Manager) (v3) 

Controls the global ordering of requests and responses across core devices.

14.1.5.6 IOCU (I/O Coherence Unit) 

Connects coherent devices to the Coherence Manager.

14.2 More Information

For more information on the MIPS OCI debug system, refer to the document entitled;

MIPS On-Chip Instrumentation; Debug Technical Reference Manual

The I6500 MPS also contains PDTrace and CMTrace functionality that can be used to aid in the debug process. For 
more information, refer to the document entitled;

MIPS On-Chip Instrumentation PDtrace Specification



 

MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00 231



 

232 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00



 
Appendix A

MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00 233

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last 
release. Change bars are removed for changes that are more than one revision old. 

Revision Date Description

01.00 March 29, 2017 Initial version of I6500 Multi-Cluster Programmers Guide



 

234 MIPS64®  I6500 Multiprocessing System Programmer’s Guide, Revision 1.00

Copyright © Wave Computing, Inc. All rights reserved. 
www.wavecomp.ai


	MIPS64® I6500 Multiprocessing System Programmer’s Guide
	Architecture Overview
	1.1 Product Overview
	1.1.1 Single-Cluster Configuration
	1.1.2 Multi-Cluster Configuration

	1.2 I6500 Features
	1.2.1 MIPS64® Release 6 Architecture
	1.2.2 MIPS® SIMD Architecture
	1.2.3 MIPS® Virtualization
	1.2.4 System-level Features
	1.2.5 Core-level Features

	1.3 I6500 Core Block Diagram
	1.4 CP0 Register to Assembler Mapping
	1.5 Imagination Software Tools
	1.5.1 MIPS Linux
	1.5.2 MIPS Android
	1.5.3 Codescape MIPS SDK
	1.5.4 Codescape Debugger
	1.5.5 Compilers
	1.5.6 Boot Loader
	1.5.7 MIPS RTOS and IoT Support
	1.5.8 Developer Resources


	Memory Management Unit
	2.1 Overview
	2.1.1 TLB Types
	2.1.2 TLB Instructions
	2.1.3 Shared FTLB Translations
	2.1.4 Global TLB Invalidate

	2.2 MMU Programming
	2.2.1 Assembly Language Conventions
	2.2.2 Determining the VTLB Size
	2.2.3 FTLB Page Size Configuration
	2.2.4 VTLB and FTLB Initialization
	2.2.5 Indexing the VTLB and FTLB
	2.2.6 Programming a TLB Entry
	2.2.7 Hardwiring VTLB Entries
	2.2.8 FTLB Hashing Scheme and the TLBWI Instruction

	2.3 TLB Exception Handler
	2.4 Additional Information

	Caches
	3.1 Cache Subsystem Overview
	3.1.1 L1 Instruction Cache
	3.1.2 L1 Data Cache
	3.1.3 L2 Cache
	3.1.4 Cache Instructions

	3.2 Cache Coherency
	3.3 Self-modified Code
	3.4 Register Interface
	3.4.1 L1 Instruction Cache Control Registers
	3.4.1.1 Config Register (CP0 register 16, Select 0)
	3.4.1.2 Config1 Register (CP0 register 16, Select 1)
	3.4.1.3 CacheErr Register (CP0 register 27, Select 0)
	3.4.1.4 L1 Instruction Cache TagLo Register (CP0 register 28, Select 0)
	3.4.1.5 L1 Instruction Cache DataLo Register (CP0 register 28, Select 1)
	3.4.1.6 L1 Instruction Cache DataHi Register (CP0 register 29, Select 1)

	3.4.2 L1 Data Cache Control Registers
	3.4.2.1 Config Register (CP0 register 16, Select 0)
	3.4.2.2 Config1 Register (CP0 register 16, Select 1)
	3.4.2.3 CacheErr Register (CP0 register 27, Select 0)
	3.4.2.4 L1 Data Cache TagLo Register (CP0 register 28, Select 2)
	3.4.2.5 L1 Data Cache DataLo Register (CP0 register 28, Select 3)
	3.4.2.6 L1 Data Cache DataHi Register (CP0 register 29, Select 3)

	3.4.3 L2 Cache CM GCR Control Registers
	3.4.3.1 GCR_ERR_CONTROL (Offset 0x0038)
	3.4.3.2 L2_Config Register (Offset 0x0130)
	3.4.3.3 L2_RAM_Config Register (Offset 0x0240)
	3.4.3.4 L2_PFT_Control Register (Offset 0x0300)
	3.4.3.5 L2_PFT_Control_B Register (Offset 0x0308)
	3.4.3.6 L2_TAG_ADDR Register (Offset 0x0600)
	3.4.3.7 L2_TAG_STATE Register (Offset 0x0608)
	3.4.3.8 L2_DATA Register (Offset 0x0610)
	3.4.3.9 L2_DATA_ECC Register (Offset 0x0618)
	3.4.3.10 L2SM_COP Register (Offset 0x0620)
	3.4.3.11 L2SM_TAG_ADDR_COP Register (Offset 0x0628)
	3.4.3.12 CPC_CL_STAT_CONF Register (Offset 0x0008)


	3.5 L2 Cache Initialization Options
	3.5.1 Automatic Hardware Cache Initialization
	3.5.2 Manual Hardware Cache Initialization
	3.5.3 Software Cache Initialization

	3.6 L2 Cache Flush, Burst, and Abort
	3.6.1 L2 Cache Flush
	3.6.2 L2 Cache Burst Operations
	3.6.3 Abort Operations

	3.7 Cache Initialization Routines
	3.7.1 Initializing the Instruction Cache
	3.7.1.1 L1 Instruction Cache Invalidation Using the GINVI Instruction
	3.7.1.2 L1 Cache Initialization Routine

	3.7.2 Initializing the Data Cache
	3.7.3 Initializing the Level 2 Cache

	3.8 Flushing the L1 Data Cache
	3.9 Setting the KSEG0 Memory Space Cache Coherency

	Exceptions
	4.1 Overview of Exception Processing
	4.1.1 Exception Types
	4.1.2 Detecting an Exception
	4.1.3 Exception Conditions

	4.2 Defining the Exception Vector Locations
	4.2.1 Mapping the BEV to the Lower 512 MBytes of the Physical Address
	4.2.2 Mapping the BEV to the Lower 4 GBytes of the Physical Address
	4.2.3 Mapping the Reset Vector to the Lower 512 MBytes of the Physical Address
	4.2.4 Mapping the Reset Vector to the Lower 4 GBytes of the Physical Address
	4.2.5 Selecting Between the BEV and Reset Exception Vectors
	4.2.6 Exception Vector Base Address per Exception Type

	4.3 Core-Level Exception Priorities
	4.4 Hypervisor Exception Priorities
	4.5 General Exception Processing
	4.6 Exception Handling and Servicing Flowcharts
	4.7 Interrupt Mode Code Examples
	4.7.1 Interrupt Compatibility Mode
	4.7.2 Vectored Interrupt Mode
	4.7.3 External Interrupt Controller Mode


	Coherence Manager
	5.1 CM Overview
	5.1.1 CM Interface — Register Ring Bus and Device ID’s
	5.1.2 CM GCR Register Map
	5.1.3 Core-Local GCRs
	5.1.4 Core-Other GCRs
	5.1.5 Core-Local and Core-Other Register Usage
	5.1.6 Cluster to Cluster Accesses

	5.2 Verifying Overall System Configuration
	5.3 Programming the Base Addresses in Memory
	5.4 CM Register Access Permissions
	5.5 CM Programming Examples
	5.5.1 Programming Another Virtual Processor (VP) in the Same Core
	5.5.2 Programming Local GCR’s Corresponding to Another Core
	5.5.3 Accessing the CPC Local Registers via the CM
	5.5.4 Powering Up the Debug Unit (DBU) via the CM
	5.5.5 Setting the Clock Ratios Between the I6500 System Components
	5.5.6 Cluster to Cluster Access
	5.5.7 Accessing the Core-Local and Core-Other Registers in the Global Interrupt Controller

	5.6 Coherency Enable
	5.7 L2 Cache Prefetch
	5.7.1 Prefetch Enable
	5.7.2 Select Ports for L2 Prefetching
	5.7.3 Enabling Code Prefetch

	5.8 CM Uncached Semaphore Management
	5.9 Custom GCR Implementation
	5.10 Error Processing
	5.11 IOCU Interface
	5.12 MMIO Address Regions
	5.12.1 CM GPR Register Interface
	5.12.2 MMIO Region Control

	5.13 Auxiliary Interfaces

	Power Management
	6.1 Overview
	6.1.1 Power Domains
	6.1.2 Clock Domains
	6.1.3 Core and IOCU Selection
	6.1.4 Overview of Power States

	6.2 CPC Register Programming
	6.2.1 Cluster Power Controller Register Address Map
	6.2.2 CPC Base Address
	6.2.3 Global Control Block Register Map
	6.2.4 Local and Core-Other Control Blocks
	6.2.5 Requestor Access to CPC Registers
	6.2.6 Enabling Coherent Mode
	6.2.7 Master Clock Prescaler
	6.2.8 Individual Device Clock Ratio Modification
	6.2.8.1 Clock Domain Change Example — Register Programming Sequence
	6.2.8.2 Clock Change Delay

	6.2.9 CM Standalone Powerup
	6.2.10 Reset Detection
	6.2.11 VP Run/Suspend
	6.2.12 Local RAM Deep Sleep / Shutdown and Wakeup Delay
	6.2.12.1 RAM Deep Sleep Mode
	6.2.12.2 RAM Shut Down Mode

	6.2.13 Accessing the CPC Registers in Another Power Domain
	6.2.14 Fine Tuning Internal and External Signal Delays
	6.2.14.1 Global Sequence Delay Count
	6.2.14.2 Rail Delay
	6.2.14.3 Reset Delay



	Global Interrupt Controller
	7.1 Overview
	7.1.1 GIC Virtualization
	7.1.2 GIC Operating Modes
	7.1.2.1 Non-EIC Mode
	7.1.2.2 EIC Mode

	7.1.3 GIC Register Types
	7.1.4 GIC Register Distribution
	7.1.5 GIC Address Space Configuration

	7.2 GIC Programming
	7.2.1 Setting the GIC Base Address and Enabling the GIC
	7.2.2 Determining the Number of External Interrupts in the System
	7.2.3 EIC Mode Setting
	7.2.4 Configuring Interrupt Sources
	7.2.4.1 Trigger Type Register Group
	7.2.4.2 Edge Type Register Group
	7.2.4.3 Polarity Type Register Group

	7.2.5 Interrupt Routing
	7.2.5.1 Mapping an Interrupt Source to a VP
	7.2.5.2 Mapping an Interrupt Source to a Specific Processor Pin

	7.2.6 Enabling, Disabling, and Polling Interrupts
	7.2.6.1 Enabling External Interrupts
	7.2.6.2 Disabling External Interrupts
	7.2.6.3 Determining the Enabled or Disabled Interrupt State
	7.2.6.4 Polling for an Active Interrupt
	7.2.6.5 Programming Example

	7.2.7 Inter-processor Interrupts
	7.2.7.1 WEDGE Register Programming Example

	7.2.8 Local Timer Configuration
	7.2.8.1 GIC Interval Timer
	7.2.8.2 GIC Watchdog Timer

	7.2.9 Local Interrupt Routing and Masking
	7.2.9.1 Local Interrupt Routing
	7.2.9.2 Local Interrupt Masking


	7.3 Virtualization Support
	7.3.1 Enabling Virtualization Mode
	7.3.2 Routing of Guest External Source Interrupts
	7.3.3 Qualification of Root or Guest Software Access to GIC registers
	7.3.4 Guest Mode Count-Compare Timer Interrupts
	7.3.5 Watchdog (WD) Timer Guest and Root Interrupts

	7.4 GIC User-Mode Visible Section

	Floating-Point Unit (FPU)
	8.1 Overview
	8.1.1 IEEE Standard 754
	8.1.2 Floating Point Registers

	8.2 Enabling the Floating-Point Unit
	8.3 Setting a Floating Point Exception
	8.4 Setting the Rounding Mode
	8.5 Operation of the FS Bit
	8.6 Programming the Floating Point FCSR Register

	MIPS® SIMD Architecture (MSA)
	9.1 Overview of the SIMD Architecture
	9.1.1 MSA Instruction Formats
	9.1.2 SIMD Instructions
	9.1.3 MSA Vector Registers
	9.1.4 Layout of MSA Registers
	9.1.5 Mapping of Scalar Floating-Point Registers to MSA Vector Registers

	9.2 MSA Programming
	9.2.1 Enabling MSA
	9.2.2 Setting a MSA Exception
	9.2.3 Setting the Rounding Mode
	9.2.4 Operation of the FS Bit
	9.2.5 Operation of the NX Bit
	9.2.6 Programming the MSA CSR Register

	9.3 MSA Exceptions
	9.3.1 MSA Exception Types
	9.3.2 MSA Non-Trapping Exceptions
	9.3.3 MSACSR Cause Register Field Update Pseudocode

	9.4 MSA GNU Compiler Support
	9.4.1 MSA ABI
	9.4.1.1 ABI Requirements
	9.4.1.2 Command Line Options and Function Attributes
	9.4.1.3 Vector and Floating-Point Register Usage for -mmsa and -msimd-abi=msa
	9.4.1.4 Inter-calling Between MSA and non-MSA Functions
	9.4.1.5 MSA GNU Options and Directives

	9.4.2 MSA Vector Element Selection
	9.4.3 Examples


	Virtualization
	10.1 Overview
	10.1.1 Root and Guest Operating Modes
	10.1.2 Introduction to the Hypervisor
	10.1.3 Enabling Guest Mode Translations
	10.1.4 MMU Considerations
	10.1.5 Guest ID
	10.1.6 CP0 Structure in Root and Guest Mode
	10.1.7 New CP0 Registers
	10.1.8 New CP0 Instructions

	10.2 Software Detection of Virtualization
	10.3 Modes Of Operation
	10.3.1 Root Mode Operation
	10.3.2 Guest Mode Operation
	10.3.3 Debug Mode

	10.4 Address Translation Pseudocode
	10.5 Exception Handling in Root and Guest Mode
	10.5.1 Root and Guest Shared TLB Operation
	10.5.1.1 Root and Guest Access to the Shared TLB
	10.5.1.2 Wired Register Management
	10.5.1.3 CP0 Register Allocation
	10.5.1.4 CP0 Register Access
	10.5.1.5 CP0 Register Initialization and Control


	10.6 Exceptions
	10.6.1 Exceptions in Guest Mode
	10.6.2 Faulting Address for Exceptions from Guest Mode
	10.6.3 Guest Initiated Root TLB Exception
	10.6.4 Exception Priority
	10.6.5 Exception Vector Locations
	10.6.6 Synchronous and Synchronous Hypervisor Exceptions
	10.6.7 Guest Exception Code in Root Context

	10.7 Interrupts
	10.7.1 External Interrupts
	10.7.1.1 Non-EIC Interrupt Handling
	10.7.1.2 EIC Interrupt Handling

	10.7.2 Derivation of Guest.CauseIP/RIPL
	10.7.3 Timer Interrupts
	10.7.4 Performance Counter Interrupts

	10.8 Watchpoint Debug Support
	10.9 Guest Mode and Debug Features

	Data Scratch Pad RAM
	11.1 Overview
	11.1.1 New CP0 Registers
	11.1.1.1 Special Address Access Register Index — SAARI (CP0 Register 9, Select 6)
	11.1.1.2 Special Address Access Register — SAAR (CP0 Register 9, Select 7)

	11.1.2 Changes to Existing CP0 Registers — Error Reporting
	11.1.2.1 Error Control — ErrCtl (CP0 Register 26, Select 0)
	11.1.2.2 Cache Error — CacheErr (CP0 Register 27, Select 0)


	11.2 DSPRAM Software Interface
	11.3 Accessing the DSPRAM
	11.3.1 Register Programming Sequence
	11.3.2 Programming Constraints


	Inter-Thread Communication Unit
	12.1 Overview
	12.1.1 New CP0 Registers
	12.1.1.1 Special Access Address Register Index — SAARI (CP0 Register 9, Select 6)
	12.1.1.2 Special Access Address Register — SAAR (CP0 Register 9, Select 7)

	12.1.2 ITU Control Register

	12.2 ITU Cell Structure
	12.2.1 ITU Cell Types
	12.2.2 Cell Views
	12.2.3 Cell State
	12.2.4 ITU Cell Addressing
	12.2.5 Cell Indexing Examples
	12.2.5.1 Example 1: 32 Cells with No Index Shift and No Invalid Cells
	12.2.5.2 Example 2: 32 Cells with 2-Bit Index Shift and No Invalid Cells
	12.2.5.3 Example 2: 20 Cells with 4-Bit Index Shift and Invalid Cells


	12.3 ITU Software Interface
	12.4 Accessing the ITU Module
	12.4.1 Register Programming Sequence
	12.4.2 Programming Constraints

	12.5 ITU Error Reporting
	12.5.1 AXI Bus Error
	12.5.2 Parity Error
	12.5.3 Execution Error


	Multithreading
	13.1 Instruction Flow
	13.2 Data Flow
	13.3 Thread Management
	13.3.1 Disable Virtual Processor (DVP) Instruction
	13.3.2 Enable Virtual Processor (EVP) Instruction

	13.4 Independent Exception Model

	MIPS On-Chip Instrumentation
	14.1 OCI Debug System Overview
	14.1.1 Debug Unit (DBU)
	14.1.1.1 APB Slave Port
	14.1.1.2 JTAG TAP
	14.1.1.3 Debug Monitor
	14.1.1.4 RAM

	14.1.2 Register Bus
	14.1.3 Number of Breakpoints
	14.1.4 Per Core/VP Resources
	14.1.4.1 Breakpoint Controller
	14.1.4.2 Dseg
	14.1.4.3 Dmseg
	14.1.4.4 Drseg
	14.1.4.5 CP0 Registers

	14.1.5 Coherence Devices
	14.1.5.1 GIC (Global Interrupt Controller)
	14.1.5.2 CPC (Cluster Power Controller)
	14.1.5.3 GCR (Global Configuration Registers)
	14.1.5.4 CGCR - (Custom Global Configuration Registers)
	14.1.5.5 CM - (Coherence Manager) (v3)
	14.1.5.6 IOCU (I/O Coherence Unit)


	14.2 More Information

	Revision History




