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Overview of the P6600 Architecture

The P6600™ series of high performance multi-core microprocessor cores provides best in class power efficiency for 
use in system-on-chip (SoC) applications. The P6600 Multiprocessing System (MPS) combines a deep pipeline with 
multi-issue out-of order-execution to deliver outstanding computational throughput. The P6600 provides full virtual-
ization support. The P6600 Multiprocessing System is fully configurable/synthesizable and contains up to six 
MIPS64® P6600 CPU cores, a system level Coherence Manager with integrated L2 cache, a coherent I/O port 
(IOCU), and optional floating point unit with SIMD functionality.

Figure 1.1 shows a block diagram of the P6600 Multiprocessing System (MPS). In the P6600 Multiprocessing Sys-
tem, the Coherence Manager (CM2) with the integrated L2 cache streamlines the dataflow. Multi-CPU coherence is 
handled in hardware by the Coherence Manager. The I/O Coherence Unit (IOCU) supports hardware I/O coherence 
by bridging a non-coherent OCP I/O interconnect to the Coherence Manager (CM2) and handling ordering require-
ments. The Global Interrupt Controller (GIC) handles the distribution of interrupts between and among the CPUs. 
Under software controlled power management, the Cluster Power Controller (CPC) can gate off the clocks and/or 
voltage supply to idle cores.
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Figure 1.1 P6600 Multiprocessing System Block Diagram



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 25

1.1 P6600 Features

P6600 Multiprocessor System is feature rich with the most current MIPS64 architecture, new CPU and system level 
features designed for the performance and features required for tomorrow’s mainstream connected consumer elec-
tronics including smart phones, tablets, connected TVs and set-top boxes.

1.1.1 MIPS Architecture

P6600 Multiprocessing System has three key architecture features that sets the core’s foundation.

1.1.1.1 MIPS64™ Release 6 Architecture

MIPS64® architecture, an industry standard, is the foundation of the P6600 product offering. 
MIPS64 architecture provides a solid high-performance foundation by incorporating powerful features, standardizing 
privileged mode instructions, supporting past ISAs, and provides a seamless upgrade path from the MIPS32 architec-
ture. MIPS64 is based on a fixed-length, regularly encoded instruction set, and it uses a load/store data model. It is 
streamlined to support optimized execution of high-level languages. Arithmetic and logic operations use a three-oper-
and format, allowing compilers to optimize complex expressions formulation. Availability of 32 general-purpose reg-
isters enables compilers to further optimize code generation by keeping frequently accessed data in registers.

MIPS64 provides backward compatibility, standardizing privileged mode, and memory management, and provides 
the information through the configuration registers. The MIPS64 architecture enables real-time operating systems 
and application code to be implemented once and reused.

1.1.1.2 MIPS® SIMD Architecture

SIMD (Single Instruction Multiple Data), important technology for modern CPU designs that improves performance 
by allowing efficient parallel processing of vector operations. A non-programmable hardware aids the CPU and GPU 
by handling heavy-duty multimedia codecs, the MIPS® SIMD Architecture (MSA) technology incorporates a soft-
ware-programmable solution into the CPU to handle emerging codecs or a small number of functions not covered by 
dedicated hardware. This programmable solution allows for increased system flexibility. In addition, the MSA is 
designed to accelerate many compute-intensive applications by enabling generic compiler support.

1.1.1.3 MIPS® Virtualization

To address security, privacy and reliability concerns in a wide range of devices, MIPS has added hardware sup-
ported virtualization technology into P6600 core. The hardware virtualization support enables processors
to be OmniShield-ready. OmniShield is security technology which ensures that applications that 
need to be secure are effectively and reliably isolated from each other, as well as protected from non-secure applica-
tions.

Virtualization can be achieved with software only (para-virtualized) or with hardware assistance (fully virtualized). 
The core element of virtualization is the Hypervisor, a small body of trusted and privileged code that sits above the 
hardware, managing and orchestrating all of the SoC resources. It manages the resources by defining access policies 
for each execution environment or “guest.” Guests are isolated from each other, but can communicate with the hyper-
visor and with each other via secure APIs. This ensures the reliability of the system by allowing the rest of the guests 
to operate reliably even if one of the guests crashes. The hypervisor manages all memory I/O privileges of the subsys-
tems.
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1.1.2 System Level Features

• Up to six coherent MIPS64 P6600 CPU cores

• Superscalar, variable-length, out -of-order data return

• Support for power management with multiple power domains

• Cluster Power Controller (CPC) to shut down idle CPU cores to save power

• Hardware I/O coherence unit (IOCU)

• Hardware Virtualization Module Support

• Cache-to-cache data transfers

• Speculative memory reads to reduce latency

• Integrated 8-way set associative L2 cache controller supporting 512 KB to 8 MB cache sizes

• Shared L2 cache controller supporting 512 KB to 8 MB cache sizes

• Separate clock ratios on memory and IOCU OCP ports

• Clock ratio of 1:1 between Core, CM2, and L2 cache

• SOC system interface supports OCP version 2.1 protocol with 32- or 40-bit address and 128-bit or 256-bit data paths

• EJTAG Debug port supporting multi-processor debugging

• MIPS PDtrace

• Full scan design achieves test coverage in excess of 99% with memory BIST for internal SRAM arrays

1.1.3 CPU Core Level Features

• 40-bit addressing

• Quad issue integer and dual issue 128-bit (integer/floating point) execution pipes

• Sophisticated branch prediction with fully associative Level 1 BTB

• Floating Point Unit with SIMD support and Out-Of-Order (OOO) execution

• Virtualization support

• Instruction Fetch Unit (IFU) with 4 instructions fetched per cycle

• Programmable Memory Management Unit with large first-level ITLB/DTLB backed by fast on-core second-level variable 
page size TLB (VTLB) and fixed page size TLB (FTLB):

• L1 Instruction and Data Caches can be configured as 32 or 64 KB per cache
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1.2 P6600 CPU Core

Figure 1.2 shows a block diagram of a single P6600 core. The logic blocks in this diagram are described in the fol-
lowing sections. 

Figure 1.2 P6600™ Core Block Diagram

For more information on the P6600 core in a multiprocessing environment, refer to Section 1.3 “Multiprocessing 
System”.

1.2.1 Instruction Fetch Unit

The Instruction Fetch Unit (IFU) fetches instructions from the instruction cache and supplies them to the Instruction 
Issue Unit (IIU). The IFU can fetch up to four MIPS64 instructions at a time from the 4-way associative instruction 
cache. Instructions can also be fetched immediately from refill buffers in the event of an instruction cache miss. 

The IFU employs sophisticated branch prediction and instruction supply strategies. The main predictor consists of 
three 2048-entry global branch history tables (BHT) that are indexed by different combinations of instruction PC and 
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global history. A proprietary scheme is used to combine information from the three arrays to make a branch direction 
prediction.

The IFU also has a hardware-based return prediction stack to predict subroutine return addresses.The main predictor 
corrects target mispredicts from lower-level predictors without paying a full branch resolution penalty. The IFU sup-
ports fully out-of-order branch resolution.

The IFU has a 16-entry micro-Instruction TLB (ITLB) used to translate the virtual address into a physical address and 
used to compare against tags in the instruction cache to determine a hit. Refer to Section 1.2.6 “Memory 
Management Unit (MMU)” for more information.

A 24-entry instruction buffer decouples the instruction fetch from the execution. To maximize performance, some 
‘bonding’ (or concatenation) of instructions is done at this stage while other types of instruction ‘bonding’ are per-
formed downstream.

The IFU can also be configured to allow for hardware prefetching of cache lines on a miss. This mechanism provides 
excellent performance without incurring the area, power and latency costs of more overly complicated branch or 
instruction prefetch strategies.

The Global History register is internal to the IFU block and supports a novel history computation scheme that factors 
different information into the history for different kinds of control transfer instructions. 

The P6600 level 1 (L1) instruction cache incorporates ‘next fetch way’ hit prediction logic. This allows the IFU to 
power on only those cache tag and data arrays that will provide the final instruction bytes and contributes to low 
power consumption.

1.2.2 Instruction Issue Unit (IIU)

The Instruction Issue Unit (IIU) is responsible for receiving instructions from the IFU and dispatching them to the 
out-of-order instruction scheduling windows and global instruction tracking window at a rate of 4 instructions per 
cycle. 

The IIU tracks dynamic data flow dependencies between operations and issues them to the various pipes as efficiently 
as possible. Two schedulers service the various integer pipes.

The schedulers employ multiple dependency wake-up and pick schemes to enable age-based scheduling at high fre-
quency. These two schedulers provide superior performance and power characteristics.

The IIU helps to ‘bond’ load and store operations whereby two 32-bit loads or 64-bit or stores to adjacent locations 
are ‘bonded’ or concatenated into one 64-bit or 128-bit memory access. This allows a factor of two improvement in 
certain memory intensive codes. 

The IIU also keeps track of the progress of each instruction through the pipeline, updating the availability of operands 
in the ‘rename map’ and in all dependent instructions. Renamed instructions are steered to the most appropriate 
schedulers, taking opcode and other information into account.

The IIU also keeps track of global pipeline flushes, adjusting the rename map and other control structures to deal with 
interrupts, exceptions and other unexpected changes of control. 
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1.2.3 Graduation Unit (GRU)

The Graduation Unit (GRU) is responsible for committing execution results and releasing buffers and resources used 
by these instructions. The GRU is also responsible for evaluating the exception conditions reported by execution 
units and taking the appropriate exception. Asynchronous interrupts are funneled into the GRU, which prioritizes 
those events with existing conditions and takes the appropriate interrupt.

After processing the exception conditions, the GRU performs the following functions:

• Destination register(s) are updated and the completion buffers are released.

• Graduation information is sent to the IIU so it can update the rename maps to reflect the state of execution results 
(such as GPRs). 

• Resolved branch information is sent to the IFU so that branch history tables can be updated and if needed, a pipe-
line redirect can be initiated. If sequential control flow is aborted for any reason, the GRU signals all core units to 
flush and recover microarchitectural state. After recovery is complete, it allows the IIU to resume dispatching 
instructions.

1.2.4 Level 1 Instruction Cache 

The Level-1 (L1) instruction cache is configurable at 32 or 64 KB in size and is organized as 4-way set associative. 
Up to four instruction cache misses can be outstanding. The instruction cache is virtually indexed and physically 
tagged to make the data access independent of virtual to physical address translation. 

Each instruction cache entry contains a tag portion, a data portion, and a way select portion.

An instruction tag entry holds 21 - 29 bits of physical address, a valid bit, a lock bit, and a parity bit. The data entry 
consists of 256 bits (8 MIPS64 instructions) of data and 32 bits of parity for a total of 288 bits. The way-select entry 
contains a 6 bit least-recently-used (LRU) field.

The P6600 core supports instruction-cache locking. Cache locking allows critical code segments to be locked into the 
cache on a “per-line” basis, enabling the system programmer to maximize the performance of the system cache.

The cache-locking function is always available on all instruction-cache entries. Entries can be marked as locked or 
unlocked on a per entry basis using the CACHE instruction.

The P6600 core implements virtual aliasing for the instruction cache, although this function can be disabled by the 
user.

1.2.5 Level 1 Data Cache 

The Level 1 (L1) data cache is configurable at 32 or 64 KB in size. It is also organized as 4-way set-associative. Data 
cache misses are non-blocking and up to nine misses may be outstanding. The data cache is virtually indexed and 
physically tagged to make the data access independent of virtual-to-physical address translation. To achieve the high-
est possible frequencies using commercially available SRAM generators, cache access and hit determination are 
spread across three pipeline stages, dedicating an entire cycle for the SRAM access. 

Each instruction cache entry contains a tag portion, a data portion, a way-select portion, and a dirty status portion.

• A data tag entry holds 21 bits of physical address in 32-bit addressing mode (29 bits in 40-bit addressing mode), 
a valid bit, a state bit, and a parity bit, making a total of 24 - 32 bits per tag entry. 
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• The data entry consists of 256 bits consisting of 32 bytes of data of data and 32 bits of parity for a total of 288 
bits. The way-select entry contains a 6 bit least-recently-used (LRU) field, a 4-bit lock field, and a 4-bit lock par-
ity field for a total of 14 bits. 

• The Dirty state entry contains a 4-bit dirty field and a 4-bit dirty parity field.

The P6600 core supports a data-cache locking mechanism identical to that used in the instruction cache. Critical data 
segments are locked into the cache on a “per-line” basis. The locked contents can be updated on a store hit, but are not 
selected for replacement on a cache miss.

The P6600 core implements virtual aliasing for the data cache. This function is managed in hardware and is transpar-
ent to the user.

1.2.6 Memory Management Unit (MMU)

The P6600 core’s Memory Management Unit (MMU) is primarily responsible for converting virtual addresses to 
physical addresses and providing attribute information for different segments of memory. The P6600 MMU contains 
the following Translation Lookaside Buffer (TLB) types:

• Instruction TLB (ITLB)

• Data TLB (DTLB) 

• Variable Page Size Translation Lookaside Buffer (VTLB)

• Fixed Page Size Translation Lookaside Buffer (FTLB) 

1.2.6.1 Instruction TLB (ITLB)

The ITLB is a 16-entry high speed TLB dedicated to performing translations for the instruction stream. The ITLB 
maps only 4 KB or 16 KB pages. Larger pages are split into smaller pages of one of these two sizes and installed in 
the ITLB.

The ITLB is managed by hardware and is transparent to software. The larger VTLB and FTLB structures are used as 
a backup structure for the ITLB. If a fetch address cannot be translated by the ITLB, the VTLB/FTLB attempts to 
translate it in the following clock cycle or when available. If successful, the translation information is copied into the 
ITLB for future use. 

1.2.6.2 Data TLB (DTLB)

The DTLB is a 32-entry high speed TLB dedicated to performing translations for the data stream. The DTLB maps 
only 4 KB or 16 KB pages. Larger pages are split into one of these configured sizes and installed in the DTLB. 

The DTLB is managed by hardware and is transparent to software. The larger VTLB and FTLB structures are used as 
a backup structure for the DTLB. If a fetch address cannot be translated by the DTLB, the VTLB/FTLB attempts to 
translate it in the following clock cycle or when available. If successful, the translation information is copied into the 
DTLB for future use. 

1.2.6.3 Variable Page Size TLB (VTLB)

The VTLB is a fully associative variable translation lookaside buffer with 64 dual entries that can map variable size 
pages from 4KB to 256MB. When an instruction address is calculated, the virtual address is first compared to the 
contents of the ITLB and DTLB. If the address is not found in either the ITLB or DTLB, the VTLB/FTLB is 
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accessed. If the entry is found in the VTLB, that entry is then written into the ITLB or DTLB. If the address is not 
found in the VTLB, a software TLB exception is taken. For data accesses, the virtual address is looked up in the 
VTLB only, and a miss causes a TLB exception.

1.2.6.4 Fixed Page Size TLB (FTLB)

The FTLB is 512 dual entries organized as 128 sets and 4 ways. Each set of each way contains dual data RAM entries 
and one tag RAM entry. If the tag RAM contents match the requested address, either the low or high RAM location of 
the dual data RAM is accessed depending on the state of the most-significant-bit (MSB) of the offset portion of the 
virtual address (VPN2). Each RAM location can only map a fixed page size, which is configurable to 4KB or 16KB.

1.2.6.5 Enhanced Virtual Address

The P6600 core supports a programmable memory segmentation scheme called Enhanced Virtual Address (EVA). 
EVA allows for more efficient use of 32-bit address space. Traditional MIPS virtual memory support divides up the 
virtual address space into fixed segments, each with fixed attributes and access privileges. Such a scheme limits the 
amount of physical memory available to 0.5GB, the size of kernel segment 0 (kseg0). 

1.2.6.6 Virtualization Support

Virtualization defines a set of extensions to the MIPS64 Architecture for efficient implementation of virtualized sys-
tems.

Virtualization is enabled by software. The key element is a control program known as a Virtual Machine Monitor 
(VMM) or hypervisor. The hypervisor is in full control of machine resources at all times.

The hypervisor is responsible for managing access to sensitive resources, maintaining the expected behavior for each 
VM, and sharing resources between multiple VMs. 

In a traditional operating system, the kernel (or supervisor) typically runs at a higher level of privilege than user 
applications. The kernel provides a protected virtual-memory environment for each user application, inter-process 
communications, IO device sharing and transparent context switching. The hypervisor performs the same basic func-
tions in a virtualized system, except that the hypervisor’s clients are full operating systems rather than user applica-
tions.

The virtual machine execution environment created and managed by the hypervisor consists of the full Instruction Set 
Architecture (ISA), including all Privileged Resource Architecture (PRA) facilities, and any device-specific or board-
specific peripherals and associated registers. It appears to each guest operating system as if it is running on a real 
machine with full and exclusive control.

The Virtualization Module enables full virtualization, and is intended to allow VM scheduling to take place while 
meeting real-time requirements, and to minimize costs of context switching between VMs.

1.2.7 Execution Pipelines

The P6600 core contains the following execution pipelines:

• Arithmetic Logic Pipeline

• Multiply-Divide Pipeline

• Memory Pipeline
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• Branch Pipeline

• Two FPU3 Pipelines 

Each of these execution units is described in the following subsections. Instructions intended for the arithmetic logic 
pipeline are driven by the out-of-order ALU Decode and Dispatch queue inside the Instruction Issue Unit (IIU) as 
shown in Figure 1.2. The other four pipelines are driven by the out-of-order Address Generation unit (AGU) Decode 
and Dispatch queue also located in the IIU.

1.2.7.1 Arithmetic Logic Pipeline

The arithmetic unit pipeline consists of one execution unit, called the ALU (Arithmetic Logic Unit), which performs 
integer instructions such as adds, shifts and bit-wise logical operations with a single cycle latency. If the IIU decodes 
a single-cycle instruction, it is usually sent to the ALU dispatch queue that feeds the arithmetic unit pipeline. This 
pipeline also contributes to performing ‘bonded’ loads. Refer to Section 1.2.2 “Instruction Issue Unit (IIU)”for a def-
inition of instruction ‘bonding’.

1.2.7.2 Multiply/Divide Pipeline

The multiply/divide pipeline executes integer multiplies, integer divides, and integer multiply-accumulate instruc-
tions. The multiply/divide pipeline incorporates a new very high-speed integer divider.

The MDU consists of a 64-bit multiplier, result/accumulation registers, a divide state machine, and all necessary mul-
tiplexers and control logic.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle whereas divides 
can be executed as fast as one every four cycles.

1.2.7.3 Memory Pipeline

The memory pipeline primarily contains the LSU (Load Store Unit). The LSU is responsible for interfacing with the 
AGU dispatch queue (see Figure 1.2) and processing load/store instructions to read/write data from data caches and 
downstream memory. 

It is capable of handling loads and stores issued out-of-order. The LSU has the ability to receive loads and stores in 
almost any order enables very high performance compared to an in-order machine. Such instruction-level parallelism 
allows maximum utilization of the memory pipe resources with minimal area and power.

The LSU can execute loads and stores at twice the rate of regular operations by concatenating data from two 32-bit or 
64-bit memory to form a single 64-bit or 128-bit entity, respectively. This ‘bonding’ of instructions allows the LSU to 
provide almost all the benefits of dual memory access pipes without incurring the area and power costs of multiple 
tag, data and TLB structures.

The memory pipeline receives instructions from the Instruction Issue Unit (IIU) and interfaces to the L1 data cache. 
Loads are non-blocking in the P6600 core. Loads that miss in the data cache are allowed to proceed with their desti-
nation register marked unavailable. Consumers of this destination register are held back and replayed as needed after 
the cache miss has been serviced by the downstream memory subsystem, which includes the high performance L2 
cache.

Graduated load misses and store hits and misses are sent in order to the Load/Store Graduation Buffer (LSGB). The 
LSGB has corresponding data and address buffers to hold all relevant attributes. 
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An 8-entry Fill Store Buffer (FSB) tracks outstanding fill or copy-back requests. It fills the data cache at the rate of 
128-bits per cycle when an incoming line is completely received. Each FSB entry can hold an entire cache line. 

The Load Data Queue (LDQ) keeps track of outstanding load misses and forwards the critical data to the main pipe as 
soon as it becomes available.

Hardware anti-aliasing allows using the core with operating systems that do not support software page coloring. The 
fully-associative DTLB operates a clock earlier in the LSU pipeline, making use of fast add-and-compare logic to 
enable virtual address to physical address translations that do not require the area and power expense of virtual tag-
ging. All of this is done completely transparent to software.

1.2.7.4 Branch Pipeline

The Branch pipeline performs the following functions:

• Executes Branch and Jump instructions

• Performs Branch resolution

• Performs Jump resolution

• Sends the redirect to the Instruction Fetch Unit (IFU)

• Performs a write-back to the Link registers

1.2.7.5 Floating Point Pipelines

The optional Floating Point Unit with SIMD contains two execution pipelines. One pipeline executes SIMD logical 
operations (ops), SIMD integer adds. The FP compares and stores. The other pipeline executes SIMD integer multi-
plies, SIMD vector shuffles, FP adds, FP multiplies, and FP divides. 

For more information, refer to Section 1.2.12 “Floating Point Unit”.

1.2.8 Bus Interface (BIU)

The BIU controls a 128-bit interface to the CM2. The interface implements the Open Core Protocol (OCP). 

1.2.8.1 Write Buffer

The BIU contains a merging write buffer. This buffer stores and combines write transactions before issuing them to 
the external interface. The write buffer is organized as eight, 32-byte buffers. Each buffer can contain data from a sin-
gle 32-byte aligned block of memory.

When using the write-through cache policy or performing uncached accelerated writes, the write buffer significantly 
reduces the number of write transactions on the external interface and reduces the amount of stalling in the core 
caused by the issuance of multiple writes in a short period of time.

The write buffer also holds eviction data for write-back lines. The load-store unit extracts dirty data from the cache 
and sends it to the BIU. In the BIU, the dirty data is gathered in the write buffer and sent out as a bursted write.

For uncached accelerated writes, the write buffer can gather multiple writes together and then perform a bursted write 
in order to increase the efficiency of the bus.
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Gathering of uncached accelerated stores can start on any arbitrary address and can be combined in any order within 
a cache line. Uncached accelerated stores that do not meet the conditions required to start gathering are treated like 
regular uncached stores.

1.2.9 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation and cache protocols, the 
exception control system, the processor’s diagnostic capability, the operating modes, and whether interrupts are 
enabled or disabled. Configuration information, such as cache size and associativity, and the presence of features like 
a floating point unit, are also available by accessing the CP0 registers.

CP0 also contains the state used for identifying and managing exceptions. Exceptions can be caused by a variety of 
sources, including boundary cases in data, external events, or program errors. 

1.2.10 Interrupt Handling

The P6600 core supports six hardware interrupts, two software interrupts, a timer interrupt, and a performance coun-
ter interrupt. These interrupts can be used in any of three interrupt modes, as defined in the MIPS64 Architecture:

• Interrupt compatibility mode.

• Vectored Interrupt (VI) mode. Adds the ability to prioritize and vector interrupts to a handler dedicated to that 
interrupt. 

• External Interrupt Controller (EIC) mode. Provides support for an external interrupt controller that handles prior-
itization and vectoring of interrupts. 

1.2.11 Modes of Operation

The P6600 core supports four modes of operation: 

• Two user modes (guest and root), most often used for application programs.

• Two supervisor modes (guest and root) provides an intermediate privilege level with access to the ksseg (kernel 
supervisor segment) address space.

• Two kernel modes (guest and root), typically used for handling exceptions and operating system kernel func-
tions, including CP0 management and I/O device accesses. 

• Debug mode is used during system bring-up and software development. Refer to Section 1.2.14 “EJTAG Debug 
Support” for more information on debug mode.

1.2.12 Floating Point Unit 

The P6600 core features an optional IEEE 754 compliant 3rd generation Floating Point Unit with SIMD.1

The FPU3 contains thirty-two, 128-bit vector registers shared between SIMD and MIPS64 instructions. 

SIMD instructions enable:

1. Requires separate MIPS license.
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• Efficient vector parallel arithmetic operations on integer, fixed-point and floating-point data.

• Operations on absolute value operands.

• Rounding and saturation options available.

• Full precision multiply and multiply-add.

• Conversions between integer, floating-point, and fixed-point data.

• Complete set of vector-level compare and branch instructions with no condition flag.

• Vector (1D) and array (2D) shuffle operations.

• Typed load and store instructions for endian-independent operation.

The FPU3 with SIMD is fully synthesizable and operates at the same clock speed as the CPU. The IIU can issue up to 
two instructions per cycle to the FPU3.

The FPU3 contains two execution pipelines for floating point and SIMD instruction execution. These pipelines oper-
ate in parallel with the integer core and do not stall when the integer pipeline stalls. This allows long-running FPU3/
SIMD operations such as divide or square root, to be partially masked by system stall and/or other integer unit 
instructions.

An out-of-order scheduler in the FPU3 issues instructions to the two execution units. The exception model is ‘pre-
cise’ at all times.

1.2.13 P6600 Core Power Management

The P6600 core offers several power management features, that support low-power designs, such as active power 
management and power-down modes of operation. The P6600 core is a static design that supports slowing or halting 
the clocks to reduce system power consumption during idle periods. 

You can also use the Cluster Power Controller (CPC) to control your power management. Refer to “Cluster Power 
Controller (CPC)” on page 37 for more details.

1.2.13.1 Instruction-Controlled Power Management

The Instruction Controlled power-down mode is invoked through execution of an instruction. When the WAIT 
instruction is executed, the internal clock is suspended; however, the internal timer and some of the input pins con-
tinue to run. When the CPU is in this instruction-controlled power management mode, any interrupt, NMI, or reset 
condition causes the CPU to exit this mode and resume normal operation.

The P6600 core asserts a sleep signal whenever it has entered low-power mode (sleep mode). The core enters sleep 
mode when all bus transactions are complete and there are no running instructions. 

The WAIT instruction can put the processor in a mode where no instructions are running. When the WAIT instruction 
is seen by the Instruction Fetch Unit (IFU), subsequent instruction fetches are stopped. The WAIT instruction is dis-
patched down the pipe and graduated. Upon graduation of the WAIT, the GRU waits for the processor to reach a qui-
escent state and allows the processor to enter sleep mode. 
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1.2.14 EJTAG Debug Support

The P6600 core includes an Enhanced JTAG (EJTAG) block for use in software debugging of application and kernel 
code. For this purpose, in addition to standard user/supervisor/kernel modes of operation, the P6600 core provides a 
Debug mode. 

Debug mode is entered when a debug exception occurs and continues until a debug exception return instruction is 
executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring 
test data in and out of the P6600 core. In addition to the standard JTAG instructions, special instructions defined in 
the EJTAG specification define which registers are selected and how they are used.

There are several types of simple hardware breakpoints defined in the EJTAG specification. These breakpoints stop 
the normal operation of the CPU and force the system into debug mode.

During synthesis, the P6600 core can be configured to support the following breakpoint options:

• Zero instruction, zero data breakpoints

• Four instruction, two data breakpoints

Instruction breaks occur on instruction fetch operations, and the break is set on the virtual address. Instruction breaks 
can also be made on the ASID value used by the MMU. A mask can be applied to the virtual address to set break-
points on a range of instructions.

Data breakpoints occur on load and/or store transactions. Breakpoints are set on virtual address and address space 
identifier (ASID) values, similar to the Instruction breakpoint. Data breakpoints can also be set based on the value of 
the load/store operation. Finally, masks can be applied to the virtual address, ASID value, and the load/store value.

1.2.14.1 Fast Debug Channel

The P6600 CPU includes the EJTAG Fast Debug Channel (FDC) for efficient bi-directional data transfer between the 
CPU and the debug probe. Data is transferred serially via the TAP interface. A pair of memory- mapped FIFOs buffer 
the data, isolating software running on the CPU from the actual data transfer. Software can configure the FDC block 
to generate an interrupt based on the FIFO occupancy or can poll the status.

1.2.14.2 PDtrace

The P5600 core includes trace support for real-time tracing of instruction addresses, data addresses, data values, per-
formance counters, and processor pipeline inefficiencies. The trace information is collected in an on-chip or off-chip 
memory, for post-capture processing by trace regeneration software. Software-only control of trace is possible in 
addition to probe-based control.

An on-chip trace memory may be configured in size from 256B to 8 MB; it is accessed either through load instruc-
tions or the existing EJTAG TAP interface, which requires no additional chip pins.

Off-chip trace is managed with the PIB2 (2nd-generation Probe Interface Block) hardware that ships with the prod-
uct. It provides a selectable trace port width of 4, 8, or 16 pins plus DDR clock. Trace data is streamed on these pins 
and captured using the MIPS Navigator™ Pro probe Other supported probes include DA-net and Joyner.
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1.3 Multiprocessing System

The Multiprocessing System (MPS) consists of the logic modules —CPC, CM2, IOCU, GIC, and GCR—shown in 
Figure 1.1. Each block is described throughout this section. In additional the clocking and debugging features are also 
described in this section

1.3.1 Cluster Power Controller (CPC)

Individual CPUs within the cluster can have their clock and/or power gated off when they are not in use. This gating 
is managed by the Cluster Power Controller (CPC). The CPC handles the power shutdown and ramp-up of all CPUs 
in the cluster. Any P6600 CPU that supports power-gating features is managed by the CPC. 

The CPC also organizes power-cycling of the CM2 dependent on the individual core status and shutdown policy. 
Reset and root-level clock gating of individual CPUs are considered part of this sequencing.

1.3.1.1 Reset Control

The reset input of the system resets the Cluster Power Controller (CPC). Reset sideband signals are required to qual-
ify a reset as system cold, or warm start. Pin settings determine the course of action for each core after a CPC reset.

• Remain in powered-down

• Go into clock-off mode

• Power-up and start execution

In case of a system cold start, after reset is released, the CPC powers up the P6600 CPUs as directed in the CPC cold 
start configuration pins. If at least one CPU has been chosen to be powered up on system cold start, the CM2 is also 
powered up. 

When supply rail conditions of power gated CPUs have reached a nominal level, the CPC will enable clocks and 
schedule reset sequences for those CPUs and the coherence manager.

At a warm start reset, the CPC brings all power domains into their cold start configuration. However, to ensure power 
integrity for all domains, the CPC ensures that domain isolation is raised before power is gated off. Domains that 
were previously powered and are configured to power up at cold start remain powered and go through a reset 
sequence.

Within a warm start reset, sideband signals are also used to qualify if coherence manager status registers and GIC 
watch dog timers are to be reset or remain unchanged. The CPC, after power up of any CPU, provides a test logic 
reset sequence per domain to initialize TAP logic.

There are memory-mapped registers that can set the value for each CPU’s SI_ExceptionBase pins. This allows dif-
ferent boot vectors to be specified for each of the cores so they can execute unique code if required. Each of the cores 
will have a unique CPU number, so it is also possible to use the same boot vector and branch based on that.

1.3.2 Coherence Manager 2 (CM2)

The Coherence Manager with integrated L2 cache (CM2) is responsible for establishing the global ordering of 
requests and for collecting the intervention responses and sending the correct data back to the requester. A high-level 
view of the request/response flow through the CM2 is shown in Figure 1.3. Each of the blocks is described in more 
detail in the following subsections.
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1.3.2.1 Request Unit (RQU)

The Request Unit (RQU) receives OCP bus transactions from multiple CPU cores and/or I/O ports, serializes the 
transactions and routes them to the Intervention Unit (IVU), Transaction Routing Unit (TRU), or an auxiliary port 
used to access a configuration registers or memory-mapped IO. The routing is based on the transaction type, the 
transaction address, and the CM2’s programmable address map.

1.3.2.2 Intervention Unit (IVU)

The Intervention Unit (IVU) interrogates the L1 data caches by placing requests on the intervention OCP interfaces. 
Each processor responds with the state of the corresponding cache line. If the processor has the corresponding data in 
its L1 data cache, it provides the data with its response. If the original request was a read, the IVU routes the data to 
the original requestor via the Response Unit (RSU). 

Figure 1.3 Coherence Manager 2 (CM2) with Integrated L2 Cache Block Diagram

The IVU gathers the responses from each of the agents and manages the following actions:

• Speculative reads are resolved (confirmed or cancelled).

• Memory reads that are required because they were not speculative are issued to the Transaction Routing Unit 
(TRU).

• Modified data returned from the CPU is sent to the TRU to be written back to the L2 cache or memory.

• Data returned from the CPU is forwarded to the Response Unit (RSU) to be returned to the requester.
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• The MESI state in which the line is installed by the requesting CPU is determined (the “install state”). If there are 
no other CPUs with the data, a Shared request is upgraded to Exclusive.

Each device updates its cache state for the intervention and responds when the state transition has completed. The 
previous state of the line is indicated in the response. If a read type intervention hits on a line that the CPU has in a 
Modified or Exclusive state, the CPU returns the cache line with its response. A cache-less device, such as the IOCU, 
does not require an intervention port. 

1.3.2.3 System Memory Unit (SMU)

The System Memory Unit (SMU) provides the interface to the memory OCP port. For an L2 refill, the SMU reads the 
data from an internal buffer and issues the refill request to the L2 pipeline. 

1.3.2.4 Response Unit (RSU)

The RSU takes responses from the SMU, L2, IVU, or auxiliary port and places them on the appropriate OCP inter-
face. Data from the L2 or SMU is buffered inside a buffer associated with each RSU port. 

When a coherent read receives an intervention hit in the MODIFIED or EXCLUSIVE state, the Intervention Unit 
(IVU) provides the data to the RSU. The RSU then returns the data to the requesting core. 

1.3.2.5 Transaction Routing Unit

The Transaction Routing Unit (TRU) arbitrates between requests from the RQU and IVU, and routes requests to 
either the L2 or the SMU. The TRU also contains the request and intervention data buffers which are written directly 
from the RQU and IVU, respectively. The TRU reads the appropriate write buffer when it processes the correspond-
ing write request. 

1.3.2.6 Level 2 Cache

The unified L2 cache holds both instruction and data references and contains a 7-stage pipeline to achieve high fre-
quencies with low power while using commercially available SRAM generators. 

Cache read misses are non-blocking; that is, the L2 can continue to process cache accesses while up to 15 misses are 
outstanding. The cache is physically indexed and physical tagged. 

• L2 Cache Configuration provides the following L2 cache configuration options: 512KB, 1MB, 2MB, 4MB, and 
8MB

• L2 Pipeline Tasks manages the flow of data to and from the L2 cache. The L2 pipeline performs the following 
tasks:

• Accesses the tags and data RAMs located in the memory block (MEM).

• Returns data to the RSU for cache hits.

• Issues L2 miss requests.

• Issues L2 write and eviction requests.

• Returns L2 write data to the SMU. The SMU issues refill requests to the L2 for installation of data for L2 
allocations

• L2 Cache Features are 
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• Supports write-back operation. 

• Pseudo-LRU replacement algorithm

• Programmable wait state generator to accommodate a wide variety of SRAMs.

• L2 prefetcher. Hardware recognizes streams of sequential accesses and prefetches memory data into the L2 
cache.

• Operates at same clock frequency as CPU.

• Cache line locking support

• ECC support for resilience to soft errors

• Single-bit error correction and 2-bit error detection support for Tag and Data arrays

• Single bit detection only for WS array

• Bypass mode

• Fully static design: minimum frequency is 0 MHz

• Sleep mode

• Memory BIST for internal SRAM arrays, with support for integrated (March C+, IFA-13) or custom BIST 
controller.

1.3.2.7 CM2 Configuration Registers

The Registers block (GCR) contains the control and status registers for the CM2. It also contains registers that control 
the Trace Funnel, EJTAG TAP state machine, and other multi-core features.

1.3.2.8 Performance Counter Unit

The CM2 implements a Performance Counter Unit (PERF) that contains the performance counters and associated 
logic.

1.3.2.9 Coherence Manager Performance

The CM2 has a number of high performance features: 

• 256-bit wide internal data paths throughout the CM2

• 128-bit or 256-bit wide system OCP interface

• Integrated L2 cache provides low latency for L2 cache hits

• CM2 and L2 can process up to 1 request per cycle

• Cache to Cache transfers: If a read request hits in another L1 cache in the EXCLUSIVE or MODIFIED state, it 
will return the data to the CM2 and it will be forwarded to the requesting CPU, thus reducing latency on the miss.
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• Speculative Reads: Coherent read requests are forwarded to the L2 cache before they are looked up in the other 
caches. This is speculating that the cache line will not be found in another CPU’s L1 cache. 

1.3.3 I/O Coherence Unit (IOCU)

Hardware I/O coherence is provided by the I/O Coherence Unit (IOCU), which maintains I/O coherence of the caches 
in all coherent CPUs in the cluster. 

The IOCU acts as an interface block between the Coherence Manager (CM2) and I/O devices. Reads and writes from 
I/O devices may access the L1 and L2 caches by passing through the IOCU and the CM2. Each request from an I/O 
device may be marked as coherent, non-coherent cached, or uncached. Coherent requests access the L1 and L2 
caches. Non-coherent cached requests access only the L2 cache. Uncached requests bypass both the L1 and L2 caches 
and are routed to main memory. 

The IOCU also provides a legacy (without coherent extensions) OCP slave interface to the I/O interconnect for I/O 
devices to read and write system memory. The design also includes an OCP Master port to the I/O interconnect that 
allows the CPUs to access registers and memory on the I/O devices.

The IOCU design provides several features for easier integration:

• Supports incremental bursts up to 256 bytes (16 beats of 128b data) on I/O side. These requests are split into 
cache-line- sized requests on the CM side

• Read responses with different TagIDs may be returned out-of-order

• Integrated I/O Memory Management Unit (IOMMU)

In addition, the IOCU contains the following features used to enforce transaction ordering.

• Writes are issued to the CM in the order they were received.

• The CM provides an acknowledge (ACK) signal to the IOCU when writes are “visible” (guaranteed that a subse-
quent CPU read will receive that data).

• Non-coherent write is acknowledged after serialization

• Coherent write is acknowledged after intervention complete on all CPUs

1.3.3.1 Software I/O Coherence

For cases where system redesign to accommodate hardware I/O coherence is not feasible, the CPUs and Coherence 
Manager provide support for an efficient software-managed I/O coherence. This support is through the globalization 
of hit-type CACHE instructions. 

When a coherent address is used for the L1 CACHE operations, the CPU makes a corresponding coherent request. 
The CM2 sends interventions for the request to all of the CPUs, allowing all of the L1 caches to be maintained 
together. The basic software coherence routines developed for single CPU systems can be reused with minimal mod-
ifications.
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1.3.4 Global Interrupt Controller

The Global Interrupt Controller (GIC) handles the distribution of interrupts between and among the CPUs in the clus-
ter. This block has the following features:

• Software interface through relocatable memory-mapped address range.

• Configurable number of system interrupts - from 128 to 1256.

• Support for different interrupt types:

• Level-sensitive: active high or low.

• Edge-sensitive: positive-, negative-, or double-edge sensitive.

• Virtualization support allows each interrupt to be mapped to Guest or Root. 

• Ability to mask and control routing of interrupts to a particular CPU.

• Support for NMI routing.

• Standardized mechanism for sending inter-processor interrupts.

1.3.5 Global Configuration Registers (GCR)

The Global Configuration Registers (GCR) are a set of memory-mapped registers that are used to configure and con-
trol various aspects of the Coherence Manager and the coherence scheme.

1.3.5.1 Inter-CPU Debug Breaks

The MPS includes registers that enable cooperative debugging across all CPUs. Each core features a debug output 
signal that indicates it has entered debug mode (possibly through a debug breakpoint). Registers are defined that 
allow CPUs to be placed into debug groups such that whenever one CPU within the group enters debug mode, a 
debug interrupt is sent to all CPUs within the group, causing them to also enter debug mode and stop executing non-
debug mode instructions.

1.3.5.2 CM2 Control Registers

Control registers in the CM2 allow software to configure and control various aspects of the operation of the CM2. 
Some of the control options include:

• Address map: the base address for the GCR and GIC address ranges can be specified. An additional four address 
ranges can be defined as well. These control whether non-coherent requests go to memory or to memory-mapped 
I/O. A default can also be selected for addresses that do not fall within any range.

• Error reporting and control: Logs information about errors detected by the CM2 and controls how errors are 
handled (ignored, interrupt, etc.).

• Control Options: Various features of the CM2 can be disabled or configured. Examples of this are disabling spec-
ulative reads and preventing ReadShared requests from being upgraded to Exclusive.
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1.4 Clocking Options

The P6600 core has the following clock domains:

• Cluster domain — This is the main clock domain, and includes all P6600 cores (including optional FPU3) and 
the CM2 (including Coherence Manager, Global Interrupt Controller, Cluster Power Controller, trace funnel, 
IOCU, and L2 cache).

• System Domain - The OCP port connecting to the SOC and the rest of the memory subsystem may operate at a 
ratio of the cluster domain. Supported ratios are 1:1, 1:2, 1:3, 1:4, 1:5, and 1:10.

• TAP domain - This is a low-speed clock domain for the EJTAG TAP controller

• IO Domain - This is the OCP port connecting the IOCU to the I/O Subsystem. This clock may operate at a ratio 
of the CM2 domain. Supported ratios are the same as the system domain.

1.5 Design For Test (DFT) Features

The P6600 core provides the following test for determining the integrity of the core.

• Internal Scan: The P6600 core supports full mux-based scan for maximum test coverage, with a configurable 
number of scan chains. ATPG test coverage can exceed 99%, depending on standard cell libraries and configura-
tion options.

• Memory BIST: The P6600 core provides an integrated memory BIST solution for testing of all internal SRAMs. 

Memory BIST can also be inserted with a CAD tool or other user-specified method. Wrapper modules and signal 
buses of configurable width are provided within the core to facilitate this approach.

1.6 Configuration Options

The P6600 provides a number of configuration options as shown in Table 1.1. These are options available to you to 
select for your P6600 configuration. 

Table 1.1 P6600 Multiprocessing System Configuration Options

Parameter Configurable Options

Number of Cores 1, 2, 3, 4, 5, or 6

L1 Instruction Cache 32 or 64 KB

L1 Data Cache 32 or 64 KB

MIPS64 + SIMD None or MIPS64 + SIMD

System Interrupts 128 or 256

L2 Cache 512 KB, 1 MB, 2 MB, 4 MB, or 8 MB

Physical Address Bits 40

Location of Boot Exception Vector Configurable

External Interface Type OCP or AXI

External Interface Width 128- or 256-bit
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CP0 Registers

The P6600 Multiprocessing System Control Coprocessor (CP0) provides the register interface to the P6600 core and 
supports memory management, address translation, exception handling, and other privileged operations. Each CP0 
register has a unique number that identifies it, referred to as its register number. A separate select number is used to 
differentiate additional registers within the register number. For example, as shown in the table below, there are eight 
configuration registers (Selects) within register number 16. If the select number is omitted, it is zero. 

This chapter contains the following sections:

• Section 2.1 “CP0 Register Summary”

• Section 2.2 “CP0 Register Descriptions”

2.1 CP0 Register Summary

The following two subsections show the CP0 register set grouped by function and grouped by number. 

2.1.1 CP0 Registers Grouped by Function

The CP0 registers set are divided into the register groups shown in Table 2.1. Note that assembly programmers mod-
ifying certain CP0 registers or register fields must clear any execution or instruction hazards created by the modifica-
tion.

The following table provides a functional listing of the CP0 registers. Click on a Name column entry to provide a link 
to the desired register. 
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Table 2.1 P6600 CP0 Registers Grouped by Function 

Category Register Name
Register 
Number

Register 
Select Location in Document

CPU Configuration 
and Status

Config 16 0 Section 2.2.1.1 on page 52

Config1 16 1 Section 2.2.1.2 on page 54

Config2 16 2 Section 2.2.1.3 on page 57

Config3 16 3 Section 2.2.1.4 on page 58

Config4 16 4 Section 2.2.1.5 on page 60

Config5 16 5 Section 2.2.1.6 on page 62

Config6 16 6 Section 2.2.1.7 on page 64

Config7 16 7 Section 2.2.1.8 on page 67

PRId 15 0 Section 2.2.1.9 on page 71

EBase 15 1 Section 2.2.1.10 on page 71

Status 12 0 Section 2.2.1.11 on page 73

IntCtl 12 1 Section 2.2.1.12 on page 76

TLB Management Index 0 0 Section 2.2.2.1 on page 79

EntryLo0 2 0 Section 2.2.2.2 on page 80

EntryLo1 3 0

EntryHi 10 0 Section 2.2.2.3 on page 82

Context 4 0 Section 2.2.2.4 on page 84

ContextConfig 4 1 Section 2.2.2.5 on page 85

XContext 20 0 Section 2.2.2.6 on page 86

XContextConfig 4 3 Section 2.2.2.7 on page 87

PageMask 5 0 Section 2.2.2.8 on page 88

PageGrain 5 1 Section 2.2.2.9 on page 89

Wired 6 0 Section 2.2.2.10 on page 91

BadVAddr 8 0 Section 2.2.2.11 on page 91

PWBase 5 5 Section 2.2.2.12 on page 92

PWField 5 6 Section 2.2.2.13 on page 93

PWSize 5 7 Section 2.2.2.14 on page 95

PWCtl 6 6 Section 2.2.2.15 on page 97

Exception Control Cause 13 0 Section 2.2.3.1 on page 100

EPC 14 0 Section 2.2.3.2 on page 104

ErrorEPC 30 0 Section 2.2.3.3 on page 104

BadInstr 8 1 Section 2.2.3.4 on page 105

BadInstrP 8 2 Section 2.2.3.5 on page 106

Timer Count 9 0 Section 2.2.4.1 on page 107

Compare 11 0 Section 2.2.4.2 on page 107



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 47

Cache Management ITagLo 28 0 Section 2.2.5.1 on page 108

ITagHi 29 0 Section 2.2.5.2 on page 110

IDataLo 28 1 Section 2.2.5.3 on page 111

IDataHi 29 1 Section 2.2.5.4 on page 111

DTagLo 28 2 Section 2.2.5.5 on page 112

DDataLo 28 3 Section 2.2.5.6 on page 115

L23TagLo 28 4 Section 2.2.5.7 on page 116

L23DataLo 28 5 Section 2.2.5.8 on page 117

L23DataHi 29 5 Section 2.2.5.9 on page 118

ErrCtl 26 0 Section 2.2.5.10 on page 118

CacheErr 27 0 Section 2.2.5.11 on page 120

Shadow Registers SRSCtl 12 2 Section 2.2.6.1 on page 121

Performance 
Monitoring

PerfCtl0 25 0 Section 2.2.7.1 on page 123

PerfCtl1 25 2

PerfCtl2 25 4

PerfCtl3 25 6

PerfCnt0 25 1 Section 2.2.7.2 on page 132

PerfCnt1 25 3

PerfCnt2 25 5

PerfCnt3 25 7

Debug Debug 23 0 Section 2.2.8.1 on page 132

DEPC 24 0 Section 2.2.8.2 on page 135

DESAVE 31 0 Section 2.2.8.3 on page 136

WatchLo0 18 0 Section 2.2.8.4 on page 136

WatchLo1 18 1

WatchLo2 18 2

WatchLo3 18 3

WatchHi0 19 0 Section 2.2.8.5 on page 137

WatchHi1 19 1

WatchHi2 19 2

WatchHi3 19 3

Table 2.1 P6600 CP0 Registers Grouped by Function (continued)

Category Register Name
Register 
Number

Register 
Select Location in Document
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PDTrace TraceControl 23 1 Section 2.2.9.1 on page 138

TraceControl2 23 2 Section 2.2.9.2 on page 140

TraceControl3 24 2 Section 2.2.9.3 on page 142

UserTraceData1 23 3 Section 2.2.9.4 on page 143

UserTraceData2 24 3 Section 2.2.9.5 on page 144

TraceIBPC 23 4 Section 2.2.9.6 on page 144

TraceDBPC 23 5 Section 2.2.9.7 on page 145

User Mode Support HWREna 7 0 Section 2.2.10.1 on page 147

UserLocal 4 2 Section 2.2.10.2 on page 148

Kernel Mode Support KScratch1 31 2 Section 2.2.11 on page 150

KScratch2 31 3

KScratch3 31 4

KScratch4 31 5

KScratch5 31 6

KScratch6 31 7

Memory Mapped CDMMBase 15 2 Section 2.2.12.1 on page 152

CMGCRBase 15 3 Section 2.2.12.2 on page 153

Virtualization GuestCtl0 12 6 Section 2.2.13.1 on page 154

GuestCtl1 10 4 Section 2.2.13.2 on page 158

GuestCtl2 10 5 Section 2.2.13.3 on page 159

GuestCtl0Ext 11 4 Section 2.2.13.4 on page 161

GTOffset 12 7 Section 2.2.13.5 on page 163

Memory Accessibility 
Attribute

MAAR 17 1 Section 2.2.14.1 on page 165

MARRI 17 2 Section 2.2.14.2 on page 168

Memory Segmentation SegCtl0 - SegCtl2 5 2 - 4 Section 2.2.15 on page 169

Table 2.1 P6600 CP0 Registers Grouped by Function (continued)

Category Register Name
Register 
Number

Register 
Select Location in Document
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2.1.2 CP0 Registers Grouped by Number

The following table provides a numerical listing of the P6600 CP0 registers. Click on a Name column entry to pro-
vide a link to the desired register. 

Table 2.2 CP0 Registers Grouped by Number 

Register

Function LocationNum Sel Name

0 0 Index Index into the TLB array Section 2.2.2.1

2 0 EntryLo0 Low-order portion of the TLB entry for even-numbered virtual pages. Section 2.2.2.2

3 0 EntryLo1 Low-order portion of the TLB entry for odd-numbered virtual pages.

4 0 Context Pointer to page table entry in memory. Section 2.2.2.4

4 1 ContextConfig Defines the bits of the Context register into which the high order bits 
of the virtual address causing a TLB exception will be written, and 
how many bits of that virtual address will be extracted.

Section 2.2.2.5

4 2 UserLocal User information that can be written by privileged software and read 
via RDHWR register 29

Section 2.2.10.2

4 3 XContextConfig Defines the bits of the XContext register into which the high order 
bits of the virtual address causing a TLB exception will be written, 
and how many bits of that virtual address will be extracted.

Section 2.2.2.7

5 0 PageMask PageMask controls the variable page sizes in TLB entries. Section 2.2.2.8

5 1 PageGrain PageGrain controls the granularity of the page sizes in TLB entries. Section 2.2.2.8

5 5 PWBase Hardware page table walker base address register. Section 2.2.2.12

5 6 PWField Hardware page table walker field configuration register. Section 2.2.2.13

5 7 PWSize Hardware page table walker size register. Section 2.2.2.14

6 0 Wired Controls the number of fixed (“wired”) TLB entries. This register is 
reserved if the TLB is not implemented.

Section 2.2.2.10

6 6 PWCtl Hardware page table walker configuration register. Section 2.2.2.15

7 0 HWREna Enables access via the RDHWR instruction to selected hardware reg-
isters in non-privileged mode.

Section 2.2.10.1

8 0 BadVAddr Reports the address for the most recent address-related exception. Section 2.2.2.11

8 1 BadInstr Captures the most recent instruction that caused the exception. Section 2.2.3.4

8 2 BadInstrP Used in conjunction with the BadInstr register. Contains the prior 
branch instruction, when the faulting instruction is in a branch delay 
slot.

Section 2.2.3.5

9 0 Count Processor cycle count. Section 2.2.4.1

10 0 EntryHi High-order portion of the TLB entry. This register is reserved if the 
TLB is not implemented.

Section 2.2.2.3

10 4 GuestCtl1 Guest ID register used in Virtualization. Section 2.2.13.2

10 5 GuestCtl2 Guest interrupt-related register used in virtualization. Section 2.2.13.3

11 0 Compare Timer interrupt control. Section 2.2.4.2

11 4 GuestCtl0Ext Extension of guest control register used in virtualization. Section 2.2.13.4

12 0 Status Processor status and control. Section 2.2.1.11
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12 1 IntCtl Setup for interrupt vector and interrupt priority features. Section 2.2.1.12

12 2 SRSCtl Shadow register set control. Section 2.2.6.1

12 6 GuestCtl0 Guest mode control register used in virtualization. Section 2.2.13.1

12 7 GTOffset Guest timer offset register used in virtualization. Section 2.2.13.5

13 0 Cause Cause of last exception. Section 2.2.3.1

14 0 EPC Program counter at last exception. Section 2.2.3.2

15 0 PRId Processor identification and revision. Section 2.2.1.9

15 1 EBase Exception base address. Section 2.2.1.10

15 2 CDMMBase Common Device Memory Map Base Address. Section 2.2.12.1

15 3 CMGCRBase Defines the 36-bit physical base address for the memory-mapped 
Coherency Manager Global Configuration Register (CMGCR) space.

Section 2.2.12.1

16 0 Config Configuration register. Section 2.2.1.1

16 1 Config1 Configuration for MMU, caches etc. Section 2.2.1.2

16 2 Config2 Configuration for MMU, caches etc. Section 2.2.1.3

16 3 Config3 Interrupt and ASE capabilities Section 2.2.1.4

16 4 Config4 Indicates presence of Config5 register Section 2.2.1.5

16 5 Config5 Provides information on EVA and cache error exception vector. Section 2.2.1.6

16 5 Config6 Provides information about the presence of optional extensions to the 
base MIPS64 architecture.

Section 2.2.1.7

16 7 Config7 P6600 family-specific configuration register. Section 2.2.1.8

17 1 MAAR Memory accessibility attribute register. Section 2.2.14.1

17 2 MARRI Memory accessibility attribute index register. Section 2.2.14.2

18 0 WatchLo0 Watchpoint address associated with instruction watchpoint 0. Section 2.2.8.4

18 1 WatchLo1 Watchpoint address associated with instruction watchpoint 1.

18 2 WatchLo2 Watchpoint address associated with data watchpoints 0.

18 3 WatchLo3 Watchpoint address associated with data watchpoints 1.

19 0 WatchHi0 Watchpoint ASID and Mask associated with instruction watchpoint 0. Section 2.2.8.5

19 1 WatchHi1 Watchpoint ASID and Mask associated with instruction watchpoint 1.

19 2 WatchHi2 Watchpoint ASID and Mask associated with data watchpoint 0.

19 3 WatchHi3 Watchpoint ASID and Mask associated with data watchpoint 1.

20 0 XContext Pointer to page table entry in memory. Section 2.2.2.6

23 0 Debug EJTAG Debug register. Section 2.2.8.1

23 1 TraceControl PDTrace control register 1. Section 2.2.9.1

23 2 TraceControl2 PDTrace control register 2. Section 2.2.9.2

23 3 UserTraceData1 PDTrace user trace data 1. Section 2.2.9.4

23 4 TraceIBPC Trace instruction breakpoint condition. Section 2.2.9.6

23 5 TraceDBPC Trace data breakpoint condition. Section 2.2.9.7

Table 2.2 CP0 Registers Grouped by Number (continued)

Register

Function LocationNum Sel Name
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24 0 DEPC Restart address from last EJTAG debug exception. Section 2.2.8.2

24 2 TraceControl3 PDTrace Control 3. Section 2.2.9.3

24 3 UserTraceData2 PDTrace user trace data 2. Section 2.2.9.5

25 0 PerfCtl0 Performance counter 0 control. Section 2.2.7.1

25 1 PerfCnt0 Performance counter 0 count. Section 2.2.7.2

25 2 PerfCtl1 Performance counter 1 control. Section 2.2.7.1

25 3 PerfCnt1 Performance counter 1 count. Section 2.2.7.2

25 4 PerfCtl2 Performance counter 2 control. Section 2.2.7.1

25 5 PerfCnt2 Performance counter 2 count. Section 2.2.7.2

25 6 PerfCtl3 Performance counter 3 control. Section 2.2.7.1

25 7 PerfCnt3 Performance counter 3 count. Section 2.2.7.2

26 0 ErrCtl Software test enable of way-select and Data RAM arrays for I-Cache 
and D-Cache.

Section 2.2.5.10

27 0 CacheErr Records information about cache parity errors Section 2.2.5.11

28 0 ITagLo Cache tag read/write interface for I-cache. Section 2.2.5.1

28 1 IDataLo Low-order data read/write interface for I-cache. Section 2.2.5.3

28 2 DTagLo Cache tag read/write interface for D-cache. Section 2.2.5.5

28 3 DDataLo Low-order data read/write interface for D-cache. Section 2.2.5.6

28 4 L23TagLo Cache tag read/write interface for L2-cache. Section 2.2.5.7

28 5 L23DataLo Low-order data read/write interface for L2-cache. Section 2.2.5.8

29 0 ITagHi Cache tag read/write interface for I-cache, upper 32 bits. Section 2.2.5.1

29 1 IDataHi High-order data read/write interface for I-cache. Section 2.2.5.4

29 5 L23DataHi High-order data read/write interface for L2-cache. Section 2.2.5.9

30 0 ErrorEPC Program counter at last error. Section 2.2.3.3

31 0 DESAVE Debug handler scratchpad register. Section 2.2.8.3

31 2 KScratch1 Kernel scratch pad register 1. Section 2.2.11

31 3 KScratch2 Kernel scratch pad register 2. Section 2.2.11

31 4 KScratch3 Kernel scratch pad register 3. Section 2.2.11

31 5 KScratch4 Kernel scratch pad register 4. Section 2.2.11

31 6 KScratch5 Kernel scratch pad register 5. Section 2.2.11

31 7 KScratch6 Kernel scratch pad register 6. Section 2.2.11

Table 2.2 CP0 Registers Grouped by Number (continued)

Register

Function LocationNum Sel Name
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2.2 CP0 Register Descriptions

The following subsections describe the CP0 registers listed in Table 2.1 above.

2.2.1 CPU Configuration and Status Registers

This section contains the following CPU Configuration and Status registers.

• Section 2.2.1.1, "Device Configuration — Config (CP0 Register 16, Select 0)" on page 52

• Section 2.2.1.2, "Device Configuration 1 — Config1 (CP0 Register 16, Select 1)" on page 54

• Section 2.2.1.3, "Device Configuration 2 — Config2 (CP0 Register 16, Select 2)" on page 57

• Section 2.2.1.4, "Device Configuration 3 — Config3 (CP0 Register 16, Select 3)" on page 58

• Section 2.2.1.5, "Device Configuration 4 — Config4 (CP0 Register 16, Select 4)" on page 60

• Section 2.2.1.6, "Device Configuration 5 — Config5 (CP0 Register 16, Select 5)" on page 62

• Section 2.2.1.7, "Device Configuration 6 — Config6 (CP0 Register 16, Select 6)" on page 64

• Section 2.2.1.8, "Device Configuration 7 — Config7 (CP0 Register 16, Select 7)" on page 67

• Section 2.2.1.9, "Processor ID — PRId (CP0 Register 15, Select 0)" on page 71

• Section 2.2.1.10, "Exception Base Address — EBase (CP0 Register 15, Select 1)" on page 71

• Section 2.2.1.11, "Status (CP0 Register 12, Select 0)" on page 73

• Section 2.2.1.12, "Interrupt Control — IntCtl (CP0 Register 12, Select 1)" on page 76

2.2.1.1 Device Configuration — Config (CP0 Register 16, Select 0)

The main role of the Config register is to be a read-only repository of information about the P6600 core resources, 
encoded so as to be useful to operating system initialization code.
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Figure 2.1 Config Register Format  

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU ISP DSP UDI SB 0 MM 0 BM BE AT AR MT 0 VI K0

Table 2.3 Field Descriptions for Config Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config1 register. R 1

K23 30:28 These fields are unused in the P6600 core since the TLB structure is supported. 
They should be written as zero only.

R/W 0x0

KU 27:25 R/W 0x0

ISP 24 Instruction Scratch Pad RAM present. This bit is always 0 in the P6600 core.
0: Instruction scratch pad RAM (ISPRAM) is not implemented. 
1: Instruction scratch pad RAM (ISPRAM) is implemented.

R 0

DSP 23 Data Scratch Pad RAM present. This bit is always 0 in the P6600 core.
0: Data scratch pad RAM (DSPRAM) is not implemented.
1: Data scratch pad RAM (DSPRAM) is implemented.

R 0

UDI 22 User-Defined Instruction. This bit is always 0 in the P6600 core.
0: The P6600 core does not contain user-defined "CorExtend" instructions.
1: The P6600 core contains user-defined "CorExtend" instructions.

R 0

SB 21 Read-only "SimpleBE" bus mode indicator, which reflects the P6600 input sig-
nal SI_SimpleBE.
0: No reserved byte enabled on the OCP interface.
1: Only simple byte enables allows on the OCP interface.
If set by hardware, the P6600 core will only do simple partial-word transfers on 
its OCP interface; that is, the only partial-word transfers will be byte, aligned 
half-word, and aligned word.
If zero, it may generate partial-word transfers with an arbitrary set of bytes 
enabled. This generates less requests, but may not be supported by all down-
stream devices.

R Externally Set

0 20:19 Must be written as zero; returns zero on read. R 0

MM 18 Write Merge.This bit indicates whether write-through merging is enabled in the 
32-byte collapsing write buffer. 
0: No merging allowed
1: Merging allowed
Setting this bit allows writes resulting from separate store instructions in write-
through mode to be merged into a single transaction at the interface. 
The state of this bit does not affect cache writebacks (which are always whole 
blocks together) or uncached writes (which are never merged). 

R/W 1

0 17 Must be written as zero; returns zero on read. R 0

BM 16 Burst Mode. 
0: Sequential burst mode
1: Subblock burst mode
This bit reads 0 when the bus uses sequential burst ordering and reads 1 when it 
uses sub-block burst ordering. This bit is set by the input signal SI_SBlock signal 
to match the system controller. 

R 0

BE 15 Endian mode.
0: Little endian
1: Big endian
This bit is written by hardware based on the state of the SI_Endian input pin.

R Externally Set
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2.2.1.2 Device Configuration 1 — Config1 (CP0 Register 16, Select 1)

The Config1 register provides information such as the size of the VTLB and the L1 instruction and data cache param-
eters. It also contains a series of single bits that indicate the presence of selected logic units on the P6600 core.

AT 14:13 Architecture type implemented by the processor. 
This field is always 0x2 to indicate the MIPS64 architecture.

R 0x2

AR 12:10 Architecture release. 
0x2: Release 6
This bit always reads 2 to reflect Release 6 of the MIPS64 architecture.

R 0x2

MT 9:7 MMU type: This field is encoded as follows. For Root mode, this field has a 
default value of 3’b001. In Guest mode, the Root can write the Guest.Config.MT 
field with a value of 3’b001 or 3’b100 depending on whether an FTLB is imple-
mented.
000: Reserved
001: VTLB Only
010 - 011: Reserved
100: VTLB + FTLB
101 - 111: Reserved

R 0x1 or 0x4

0 6:4 Must be written as zero; returns zero on read. R 0

VI 3 Virtually indexed. This bit is set by hardware and is 0 to indicate that the L1 
instruction cache is physically tagged.

R 0

K0 2:0 Kseg0 coherency attribute of the page. See Table 2.19 for the field encoding. R/W 2

Table 2.3 Field Descriptions for Config Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.2 Config1 Register Format  

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMUSize IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 2.4 Field Descriptions for Config1 Register

Name Bit(s) Description Read/ Write Reset State

M 31 Continuation bit, set to 1 to indicate that the Config2 register is implemented. R 1

MMUSize 30:25 The size of the TLB array (the array has MMUSize + 1 entries). Refer to the 
Config4 register for more information. In Root mode, this field has a default 
value of 0x3F. In Guest mode, the Root can write the 
Guest.Config1.MMUSize field with another default value depending on the 
size of the MMU.

R 0x3F

IS 24:22 L1 Instruction cache number of sets per way. This field indicates the number of 
sets per way in the L1 instruction cache. The number of sets is multiplied by 
the number of ways and the line size to derive the cache size. In this case, the 
number of sets defines the cache size since the line size and number of ways in 
the P6600 core are fixed. This field is encoded as follows:
000 - 001: Reserved
010: 256 sets per way (equates to 32 KByte instruction cache)
011: 512 sets per way (equates to 64 KByte instruction cache)
100 - 111: Reserved
Because the line size and associativity are fixed for the P6600 instruction 
cache as defined in the IL and IA fields below, the IS field is used to determine 
the overall cache size as follows:
If this field is set to 2, the instruction cache size would be:
256 sets/way x 32 bytes/line x 4 sets per way = 32 KBytes.
If this field is set to 3, the instruction cache size would be:
512 sets/way x 32 bytes/line x 4 sets per way = 64 KBytes.

R Preset

IL 21:19 L1 Instruction cache line size. In the P6600 core, the instruction cache line size 
is fixed at 32 bytes. As such, this field is encoded as follows:
000 - 011: Reserved
100: 32 byte line size
101 - 111: Reserved

R Preset

IA 18:16 L1 Instruction cache associativity. In the P6600 core, the instruction cache 
associativity is fixed at 4 ways. As such, this field is encoded as follows:
000 - 010: Reserved
011: 4-ways
100 - 111: Reserved
A default value of 3 indicates a 4-way set associative instruction cache. Refer 
to the IS field above to determine how to calculate the size of the L1 instruc-
tion cache.

R 3
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DS 15:13 L1 Data cache number of sets per way. This field indicates the number of sets 
per way in the L1 data cache and is encoded as follows: The number of sets is 
multiplied by the number of ways and the line size to derive the cache size. In 
this case, the number of sets defines the cache size since the line size and num-
ber of ways in the P6600 core are fixed. This field is encoded as follows:
000 - 001: Reserved
010: 256 sets per way (equates to 32 KByte instruction cache)
011: 512 sets per way (equates to 64 KByte instruction cache)
100 - 111: Reserved
Because the line size and associativity are fixed for the P6600 data cache as 
defined in the DL and DA fields below, the DS field is used to determine the 
overall cache size as follows:
If this field is set to 2, the data cache size would be:
256 sets/way x 32 bytes/line x 4 sets per way = 32 KBytes.
If this field is set to 3, the data cache size would be:
512 sets/way x 32 bytes/line x 4 sets per way = 64 KBytes.

R Preset

DL 12:10 L1 data cache line size. In the P6600 core, the data cache line size is fixed at 32 
bytes. As such, this field is encoded as follows:
000 - 011: Reserved
100: 32 byte line size
101 - 111: Reserved

R Preset

DA 9:7 L1 data cache associativity. In the P6600 core, the data cache associativity is 
fixed at 4 ways. As such, this field is encoded as follows:
000 - 010: Reserved
011: 4-ways
100 - 111: Reserved
A default value of 3 indicates a 4-way set associative data cache.

R 3

C2 6 This bit is always 0 to indicate that a coprocessor 2 is not supported. R Preset

MD 5 MDMX Application Specific Extension (ASE). 
A logic ‘0’ indicates that the MDMX ASE is not implemented in the floating 
point unit (FPU) of the P6600 core.

R 0

PC 4 Performance counter enable. 
There are four performance counters implemented in the P6600 core. For the 
Root version of this register, this bit is always a logic ‘1’. For the Guest version 
of this register, this bit can be cleared by the root using the MTGC0 instruc-
tion. Refer to the PerfCtl0-3 and PerfCnt0-3 registers for more information. 

R 1

WR 3 Watchpoint registers present. 
This bit always reads 1 because the P6600 core always contains watchpoint 
registers. Refer to the WatchLo 0-3/WatchHi 0-3 registers in Section 
2.2.8.4 “Watch Low 0 - 3 — WatchLo0-3 (CP0 Register 18, Select 0-3)”. 

R 1

CA 2 MIPS16e present. This bit always reads 0 to indicate the MIPS16e com-
pressed-code instruction set is not available.

R 0

EP 1 EJTAG unit present. This bit always reads 1 as the EJTAG debug unit is pro-
vided on the P6600 core. 

R 1

FP 0 Floating Point Unit present. This bit is set to indicate that a floating point unit 
is present. The floating point unit is optional on the P6600 core.

R Preset

Table 2.4 Field Descriptions for Config1 Register

Name Bit(s) Description Read/ Write Reset State
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2.2.1.3 Device Configuration 2 — Config2 (CP0 Register 16, Select 2)

The Config2 register provides information about the size and organization of L2 and L3 caches. The Config2 register 
also has fields that indicate the presence of some extensions to the base MIPS64 architecture. 

An L3 cache can be used with the P6600 core. However, the core does not support passing of the L3 configuration 
information via the Config2 register. As such, the TU, TS, TL and TA bits of this register, which handle L3 opera-
tions, are not used and are all tied to 0. Information on L3 transfers may be available in an implementation specific 
register elsewhere in the system.

Figure 2.3 Config2 Register Format  

 

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0

M TU TS TL TA SU L2B SS SL SA

Table 2.5 Field Descriptions for Config2 Register

Name Bit(s) Description Read/ Write Reset State

M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config3 register. R 1

TU 30:28 An L3 cache can be used with the P6600 core. However, the core does not sup-
port passing of the L3 configuration data via the Config2 register. As such, the 
TU, TS, TL and TA bits of this register, which report L3 information, are not 
used and are all tied to 0. Details of the L3 configuration may be available in an 
implementation specific register elsewhere in the system.

R 0

TS 27:24 R 0

TL 23:20 R 0

TA 19:16 R 0

SU 15:13 These bits are reserved in the P6600 core and is always 0. R 0

L2B 12 L2 cache bypass. Setting this bit disables or bypasses the L2 cache. Setting this 
bit also forces Config2SL to 0. Based on this information, most operating system 
code will conclude that there is no L2 cache in the system. 
Setting this bit forces hardware to drive a series of internal handshake signals 
between the core to the CM2, placing the L2 cache into bypass mode.
When this bit is set through a write operation, a subsequent read of this bit will 
not indicate a logic 1 until the L2 has asserted its internal handshake signal, indi-
cating that it has been bypassed. 

R/W 0
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2.2.1.4 Device Configuration 3 — Config3 (CP0 Register 16, Select 3)

Config3 provides information about the presence of optional extensions to the base MIPS64 architecture in addition to 
those specified in Config2. All fields in the Config3 register are read-only.

If Virtualization is supported (Config3VZ = 1), and GuestID is supported, then explicit invalid TLB entry support 
(EHINV) is required in order for a Guest to be able to detect invalid entries in the Guest TLB. 

SS 11:8 L2 cache number of sets per way. This field indicates the number of sets per way 
in the L2 cache of the Coherent Processing System (CPS) and is written by hard-
ware at reset based on the state of the L2_Sets[3:0] signals. 
At IP configuration time, the user selects the cache size and the line size. Hard-
ware then takes this information and selects the appropriate number of sets. See 
the example formulas below for determining the number of sets based on cache 
and line size.
This field is encoded as follows:
0x0 - 0x3: Reserved
0x4: 1024 sets per way
0x5: 2048 sets per way
0x6: 4096 sets per way
0x7: 8192 sets per way
0x8: 16384 sets per way
0x9: 32768 sets per way
0xA- 0xF: Reserved
For example: 
If this field is set to 0x4, the SL field is set to 0x5, and the SA field is set to 0x4, 
the L2 cache size would be:
1024 sets/way x 64 bytes/line x 8 ways = 512 KBytes
Conversely, if this field is set to 0x9, the SL field is set to 0x4, and the SA field 
is set to 0x4, the L2 cache size would be:
32768 sets/way x 32 bytes/line x 8 ways = 8 MBytes

R Preset

SL 7:4 L2 cache line size. The L2 cache line sizes can be configured at 32 or 64 bytes. 
This field is written by hardware at reset based on the state of the 
L2_LineSize[3:0] signals. These signals are driven based on the customer’s line 
size choice during IP configuration. As such, this field is encoded as follows:
0x0 - 0x3: Reserved
0x4: 32 byte line size
0x5: 64 byte line size
0x6 - 0xF: Reserved

R Preset

SA 3:0 L2 cache associativity. In the P6600 core, the L2 cache associativity is fixed at 8 
ways. This field is written by hardware at reset based on the state of the 
L2_Assoc[3:0] signals. As such, this field is encoded as follows:
0x0 - 0x6: Reserved
0x7: 8-way set associative
0x8 - 0xF: Reserved

R 0x7

Table 2.5 Field Descriptions for Config2 Register

Name Bit(s) Description Read/ Write Reset State
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Figure 2.4 Config3 Register Format   

31 30 29 28 27 26 25 24 23 22 16

M BPG CMGCR MSAP BP BI SC PW VZ 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISA ULRI RXI DSP2P DSPP CTXTC 0 LPA VEIC VInt SP CDMM MT SM TL

Table 2.6 Field Descriptions for Config3 Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 Configuration continuation bit. This bit is always one to indicate the presence 
of Config4. 

R 1

BPG 30 Big pages. This bit is always 1 to indicate that TLB pages larger than 256 MB 
are supported and that the CP0 PageMask Register is 64-bits wide.

R 1

CMGCR 29 Reads 1 to indicate that the Coherence Manager has a Global Configuration 
Register Space and the CMGCRBase cop0 register is implemented.

R 1

MSAP 28 MIPS SIMD architecture implemented. This bit indicates if the MIPS SIMD 
architecture is implemented and is encoded as follows:
0: MSA module not implemented
1: MSA module is implemented

R Preset

BP 27 BadInstrP register implemented. This bit indicates whether the faulting prior 
branch instruction word register is present. This bit is always set in the P6600 
core to indicate the presence of the BadInstrP register. 

R 1

BI 26 BadInstr register implemented. This bit indicates whether the faulting branch 
instruction word register is present. This bit is always set in the P6600 core to 
indicate the presence of the BadInstr register. 

R 1

SC 25 Segment Control implemented. This bit indicates whether the Segment Control 
registers SegCtl0, SegCtl1 and SegCtl2 are present. This bit is always 1 in the 
P6600 core. 

R 1

PW 24 HardWare page table walk implemented. This bit indicates whether the page 
table walking registers PWBase, PWField and PWSize are present. This bit is 
encoded as follows:
0: Page table walking not implemented.
1: Page table walking is implemented

R Preset

VZ 23 Virtualization Module implemented. This bit indicates whether the Virtualiza-
tion Module is implemented. This bit is always 1 for the P6600 core.
0: Virtualization module not implemented
1: Virtualization module is implemented

R 1

0 22:16 Must be written as zero; returns zero on read. R 0

ISA 15:14 Indicates the instruction set availability. This bit is always 0 to indicate 
MIPS64.

R 0

ULRI 13 Reads 1 to indicate that the UserLocal Register is implemented. R 1

RXI 12 Reads 1 to indicate that the RIE and XIE fields exist in the PageGrain register. R 1

DSP2P 11 Indicates the MIPS DSP ASE revision. This bit is ignored in the P6600 core.
0: Revision 1 (DSP R1)
1: Revision 2 (DSP R2)

R 0
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2.2.1.5 Device Configuration 4 — Config4 (CP0 Register 16, Select 4)

The Config4 register encodes additional capabilities such as TLBINV instruction support and the number of kernel 
scratch registers. 

DSPP 10 Reads 1 to indicate that the MIPS DSP ASE extension is implemented. This bit 
is always 0 in the P6600 core.

R 0

CTXTC 9 Reads 1 to indicate the ContextConfig register is implemented. The width of the 
BadVPN2 field in the Context register depends on the contents of the 
ContextConfig register. 

R 1

0 8 Must be written as zero; returns zero on read. R 0

LPA 7 Large physical address support is implemented, and the PageGrain register 
exists. 
The following Coprocessor 0 fields and associated control are present if this bit 
is a 1:

• Modifications to the EntryLo0/1, EntryHi, and BadVaddr registers to support 
40-bit physical addresses of the P6600.

• Modifications to other optional COP0 registers with PA: LLAddr, ITagLo 
and DTagLo.

• PageGrain
• Config5.MVH

R 1

VEIC 6 Support for an external interrupt controller. This bit is set or cleared by hard-
ware depending on whether the EIC option was selected at build time. 
0: Support for EIC mode not supported.
1: Support of EIC mode supported.
The value of this bit is set by the static input, SI_EICPresent. This allows exter-
nal logic to communicate whether an external interrupt controller is attached to 
the processor or not

R Externally Set

VInt 5 Vectored interrupts implemented. This bit indicates whether vectored interrupts 
are implemented. On the P6600 core, this bit reads 1 to indicate the CPU can 
handle vectored interrupts. 

R 1

SP 4 Reads 0 to indicate the CPU does not support 1 Kbyte TLB pages. R 0

CDMM 3 Reads 1 to indicate the Common Device Memory Map (CDMM) feature is 
implemented, as well as the CDMMBase register is present.

R 1

MT 2 Reads 0 to indicate the P6600 core does not include the MIPS MT module. R 0

SM 1 Reads 0 to indicate the P6600 does not include the instructions of the Smart-
MIPS ASE. 

R 0

TL 1 Reads 1 to indicate PDTrace is supported. R 0

Table 2.6 Field Descriptions for Config3 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.5 Config4 Register Format  

31 30 29 28 27 24 23 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M IE AE VTLB
SizeExt KScrExist 0 FTLB Page Size FTLB Ways FTLB Sets

Table 2.7 Field Descriptions for Config4 Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 Configuration continuation bit. This bit is one to indicate the presence of 
Config5. 

R 1

IE 30:29 TLBINV instruction support. For this field, the P6600 core only returns the 
following encoding. 
10: TLBINV, TLBINVF instruction supported, EntryHiEHINV supported. 
TLBINV, TLBINVF instruction operate on one TLB entry. 

R 0x2

AE 28 If this bit is set, then EntryHI.ASID is extended to 10 bits. R Preset

VTLBSizeExt 27:24 VTLB size extension. This field is used to extend the size of the VTLB. This 
field is always concatenated to the left of the most-significant bit of the 
Config1MMUSize. In the P6600 core the VTLB size is fixed. Hence this field 
is not used.

R Preset

KScrExist 23:16 Indicates how many scratch registers are available to kernel-mode software 
within CP0 Register 31. In the P6600 architecture, six kernel scratch regis-
ters are included at register selects 2 - 7.
Each bit represents a select for CP0 Register 31. Bit 16 represents Select 0, 
Bit 23 represents Select 7. If the bit is set, the associated scratch register is 
implemented and available for kernel-mode software. Therefore, this field 
contains a value of 0xFC (8’b11111100). This indicates that bits 18 - 23 are 
set, corresponding to selects 2 - 7.
These registers are used by the kernel for temporary storage of information. 
Refer to Section 2.2.11, "Kernel Mode Support Registers" on page 150 for 
more information.

R 0xFC

0 15:13 Reserved. Must be written as zero. Ignored on reads. R 0

FTLB Page 
Size

12:8 Indicates the Page Size of the FTLB Array Entries. The FTLB must be 
flushed of any valid entries before this register field value is changed by soft-
ware. The FTLB behavior is UNDEFINED if there are valid FTLB entries 
which were not all programmed using a common page size.
This field is encoded as follows:
00000: Reserved
00001: 4 KB
00010: 16 KB
00011 - 11111: Reserved

R/W 0x01

FTLB Ways 7:4 Indicates the set associativity of the FTLB array, which is fixed at 4 in the 
P6600 architecture. This field is encoded as follows:
0000 - 0001: Reserved
0010: 4 way
0011 - 1111: Reserved

R 0x2

FTLB Sets 3:0 Indicates the number of sets per way within the FTLB array, which is fixed at 
128 in the P6600 architecture. This field is encoded as follows:
0000 - 0110: Reserved
0111: 128 sets
1000 - 1111: Reserved

R 0x7
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2.2.1.6 Device Configuration 5 — Config5 (CP0 Register 16, Select 5)

The Config5 register encodes additional capabilities for the address mode programming and cache error exceptions.

Figure 2.6 Config5 Register Format  

31 30 29 28 27 26 16

M K CV EVA MSAEN 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 XNP 0 DEC L2C UFE FRE 0 SBRI MVH LLB MRP 0 NFE

Table 2.8 Field Descriptions for Config5 Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 Configuration continuation bit. Even though the Config6 and Config7 regis-
ters are used in the P6600 Multiprocessing System, they are both defined as 
implementation-specific registers. As such, this bit is zero and is not used to 
indicate the presence of Config6. 

R 0

K 30 This bit effects the cache coherency attributes, the boot exception vector 
overlay, and the location of the exception vector as follows:
When this bit is cleared, the following events occur:
1. The ConfigK0 field is used to set the cache coherency attributes for the 
kseg0 region (0x8000_0000 - 0x9FFF_FFFF).
2. Hardware creates two boot overlay segments, one for kseg0 and one for 
kseg1.
3. The exception vectors are forced to reside in kseg0/kseg1 by ignoring the 
state of bits 31:30 of the EBase register as well as the 
SI_ExceptionBase[31:30] pins and forcing them to a value of 2’b10.
When this bit is set, the following events occur:
1: The Configk0 field is ignored and the cache coherency attributes are 
derived from the C fields of the various segmentation control registers 
(SegCtl0 - SegCtl2).
2. Hardware creates one boot overlay segment that can reside anywhere in 
virtual address space. 
3. The exception vectors are not forced to reside in kseg0/kseg1. Rather, bits 
31:30 of the EBase register, as well as the SI_ExceptionBase[31:30] signals 
and used to place the exception vectors anywhere within virtual address 
space.

R/W 0

CV 29 Cache error exception vector control. Disables logic forcing use of kseg1 
region in the event of a Cache Error exception when StatusBEV = 0.
When the CV bit is cleared, bits 31:30 of the EBase Register are fixed with 
the value 2’b10 to force the exception base address to be in the kseg0 or 
kseg1 unmapped virtual address segments. Bit 29 of exception base address 
will be forced to 1 on Cache Error exceptions so the exception handler will 
be executed from the uncached kseg1 segment. 
When the CV bit is set, the ExcBase field is expanded to include bits 31:30 
to facilitate programmable memory segmentation.

R/W 0

EVA 28 This bit is always a logic one to indicate support for enhanced virtual address 
(EVA).

R 1
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MSAEN 27 MIPS SIMD architecture (MSA) enable. This bit is encoded as follows:
0: MSA instructions and registers are disabled. Executing an MSA instruc-
tion causes a MSA disabled exception.
1: MSA instructions and registers are enabled.

R/W 0

Reserved 26:14 Reserved. Must be written as zero. Ignored on reads. R 0

XNP 13 Extended LL/SC family of instructions. The LLX/SCX family of instruc-
tions is required for Release 6 Double-Width atomic support. This support is 
provided by extending the capability of legacy LL/SC instructions.
0: LLX/SCX instruction family supported
1: LLX/SCX instruction family not supported
This bit is always 1 in the P6600 core.
This bit can be read in user mode by setting the XNP bit in the HWREna CP0 
register. Refer to Section 2.2.10.1, "Hardware Enable — HWREna (CP0 
Register 7, Select 0)".

R 1

0 12 Reserved. Must be written as zero. Ignored on reads. R 0

DEC 11 Dual Endian Capability. Determines endian capability of processor.If both 
modes are supported, then the processor will initially boot in little-endian 
mode always. Thereafter, software can force a change in endian mode by set-
ting a bit in a memory-mapped external register. The endian mode change 
will only take effect on a subsequent reset. For current endian state, software 
should read Config.BE.
0: Only Little-Endian mode supported. Any implementation must support 
Little-endian mode.
1: Both Little and Big-Endian modes supported.

R 1

L2C 10 Indicates presence of COP0 Config2.
0: Config2 present. Software can read Config2 to determine L2/L3 cache 
configuration.
1: Config2 not present. Replaced by memory mapped register that software 
can read instead.

R 0

UFE 9 Enable for user mode access to Config5.FRE. User mode can conditionally 
access Config5.FRE using CTC1 and CFC1 instructions.
0: An attempt by the user to read/write Config5.FRE causes a Reserved 
Instruction exception.
1: User is allowed to write Config5.FRE (only) using CTC1, and read 
Config5.FRE (only) using CFC1.
A kernel can access Config5 using MTC0/MFC0. Config5.UFE applies also 
to kernel use of CFC1/CTC1. Config5.UFE is reserved if: FIR.FREP is 0 or 
Config1.FP=0.

R/W 0

FRE 8 Enable for user mode to emulate Status.FR = 0 handling on an FPU with Sta-
tus.FR hardwired to 1. User mode can conditionally access Config5.FRE 
using the CTC1 and CFC1 instructions.
Release 6 eliminates the Status.FR = 0. If Status.UFE = 0, which is always 
the case in the P6600 core, then FRE always equals 0.
0: Instructions impacted by Config5.FRE do not generate additional excep-
tion conditions.
1: The following instructions cause a Reserved Instruction exception:
- All single-precision FP arithmetic instructions.
- All LWC1 and MTC1 instructions.
- All SWC1 and MFC1 instructions.
COP1 branches are not affected by Config5.FRE.

R/W 0

Table 2.8 Field Descriptions for Config5 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.2.1.7 Device Configuration 6 — Config6 (CP0 Register 16, Select 6) 

Config6 provides information about the presence of optional extensions to the base MIPS64 architecture. Note that 
this register is implemented only by the root context and not by the guest context.

Figure 2.7 Config6 Register Format   

0 7 Reserved. Must be written as zero. Ignored on reads. R 0

SBRI 6 SDBBP instruction Reserved Instruction control. The purpose of this field is 
to restrict availability of SDBBP to kernel mode operation. It prevents user 
(and supervisor) code from entering Debug mode using SDBBP.
0: SDBBP instruction executes as defined prior to Release 6.
1: SDBBP instruction can only be executed in kernel mode. User or supervi-
sor execution of SDBBP causes a Reserved Instruction exception.

R/W 0

MVH 5 Move To/From High COP0 (MTHC0/MFHC0) instructions. These instruc-
tion are not used in the P6600, hence this bit is always 0.
0: MTHC0 and MFHC0 instructions are not supported.
1: MTHC0 and MFHC0 instruction are supported.

R 0

LLB 4 Load-Linked Bit software support present. Features enabled by setting this 
bit are recommended if Virtualization is supported (Config3VZ = 1). This bit 
is set by hardware to indicate support for LLB and is encoded as follows:
0: LLB functionality is not supported.
1: LLB functionality is supported. When this bit is set, the following features 
are supported.
• ERETNC instruction added.
• CP0 LLAddrLLB bit must be set.
• LLbit is software accessible through the LLADDR[0] bit in the LLADDR 

register.

R 1

MRP 3 COP0 Memory Accessibility Attribute Registers, MAAR and MAARI, pres-
ent. This bit is encoded as follows:
0: MAAR and MAARI not present.
1. MAAR and MAARI present. Software may program these registers to 
apply additional attributes to fetch, load, or store accesses to memory/IO 
address ranges.

R 1

0 2:1 Reserved. Must be written as zero. Ignored on reads. R 0

NFE 0 Nested fault. Setting this bit indicates that the nested fault feature exists. The 
nested fault allows recognition of faulting behavior within an exception han-
dler.

R 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 FPDSR DOPC 0 DSFW DWP DL1B DNPE ODTG ODDG DLSB DFIS HITLB HDTLB FTLBP

15 14 13 12 10 9 1 0

FLTBEn SPCD 0 IFUPerfCtl 0 JRCD

Table 2.8 Field Descriptions for Config5 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Table 2.9 Field Descriptions for Config6 Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 31:30 Reserved. Write as zero. Ignored on reads. R 0

FPDSR 30 Floating point disable square root.
0: Enable floating point divide and square root
1: Disable floating point divide and square root 

R/W 0

DOPC 29 Opcode cache disable. Setting this bit indicates that the opcode cache is dis-
abled.
0: Opcode cache is enabled.
1: Opcode cache is disabled.

R/W 0

0 28 Reserved. Write as zero. Ignored on reads. R 0

DSFW 27 Disable superforwarding. 
0: Enable superforwarding.
1: Disable superforwarding.

R/W 0

DWP 26 Disable IFU way prediction. 
0: Enable IFU way prediction.
1: Disable IFU way prediction.

R/W 0

DL1B 25 Disable L1 branch target buffer. 
0: Enable L1 branch target buffer.
1: Disable L1 branch target buffer.

R/W 0

DNPE 24 Disable NOP elimination. 
0: Enable NOP elimination.
1: Disable NOP elimination.

R/W 0

ODTG 23 Override data cache tag clock gater. 
0: Enable data cache tag clock gating.
1: Override data cache tag clock gating. Enable the clock to data cache tag 
array always.

R/W 0

ODDG 22 Override data cache data clock gater. 
0: Enable data cache data clock gating.
1: Override data cache data clock gating. Enable the clock to data cache data 
array always.

R/W 0

DLSB 21 Disable load/store bonding. 
0: Enable load/store bonding.
1: Disable load/store bonding.

R/W 0

DFIS 20 Disable ‘cracking’. 
0: Enable cracking.
1: Disable cracking.

R/W 0

HITLB 19 Half size instruction TLB (ITLB). When this bit is set, the ITLB becomes 
half of its current size.
0: Full size ITLB.
1: Half size ITLB.

R/W 0

HDTLB 18 Half size data TLB (DTLB). When this bit is set, the DTLB becomes half of 
its current size.
0: Full size DTLB.
1: Half size DTLB.

R/W 0
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FTLBP 17:16 FTLB probability. On a TLBWR instruction, if the PageMask register 
matches the FTLB page size, the write would be done to the FTLB. Other-
wise it would go to the FTLB. However, for systems that use only a single 
page size, the FTLB would be used and most of the FTLB would be unused. 
This field allows some TLBWR instruction to go to the VTLB instead of the 
FTLB whenever the PageMask register matches the FTLB page size. If the 
contents of the PageMask register do not match the FTLB page size, the 
TLBWR instruction goes to the VTLB.
0: FTLB only. All TLBWR instructions go to the FTLB.
1: FTLB:VTLB = 15:1. For every 16 TLBWR instructions, 15 go to the 
FTLB and 1 goes to the VTLB.
2: FTLB:VTLB = 7:1. For every 8 TLBWR instructions, 7 go to the FTLB 
and 1 goes to the VTLB.
3: FTLB:VTLB = 3:1. For every 4 TLBWR instructions, 3 go to the FTLB 
and 1 goes to the VTLB.

R/W 0

FTLBEn 15 FTLB enable. Setting this bit indicates that the FTLB is enabled.
0: FTLB is disabled.
1: FTLB is enabled.

R/W 0

SPCD 14 Sleep state performance counter disable. When this bit is set, the perfor-
mance counter P6600 clocks are prevented from shutting down.
The primary use of this bit is to keep performance counters alive when the 
P6600 core is in sleep mode.
0: Performance counters are enabled in sleep mode.
1: Performance counters are disabled in sleep mode.

R/W 0

0 13 Reserved. Write as zero. Ignored on reads. R 0

Table 2.9 Field Descriptions for Config6 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.2.1.8 Device Configuration 7 — Config7 (CP0 Register 16, Select 7)

This register controls machine-specific features of the P6600 core. A few of them are for hardware interface adapta-
tion, but most are for chip or system test only. They default to a "safe" value. Most software, including bootstrap soft-
ware, can and should ignore these registers unless specifically advised to use them. Note that in the P6600 
Multiprocessing System, this register is implemented only by the root context and not by the guest context.

IFUPerfCtl 12:10 IFU Performance Control. This field encodes IFU events that provide debug 
and performance information for the IFU pipeline and is encoded as follows: 

Lost IDU bandwidth occurs when the IDU is accepting instructions, but 
instructions are not being provided by the IFU. The count of these events can 
be seen via Performance Counters 0 or 3, and the event number 11. In order 
to view the IFU Perf Ctl events, the Performance Counter Control needs to 
be programmed accordingly See Table 2.64, "Performance Counter Events 
and Codes" for general information on event number 11.

R/W 0

0 9:1 Reserved. Write as zero. Ignored on reads. R 0

JRCD 0 Jump register cache prediction disable. Setting this bit disables the Jump 
Register (JR) target address prediction.
0: JR cache target address prediction is enabled.
1: JR cache target address prediction is not enabled.

R/W 0

Table 2.9 Field Descriptions for Config6 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State

 Encoding Meaning

000 IDU is accepting instructions, but IFU is not 
providing any.

001 A control transfer instruction such as a 
branch or jump causes lost IDU bandwidth.

010 A stalled instruction such as an unpredicted 
jump must wait for an address and thus 
causes lost IDU bandwidth.

011 Cache prediction was correct.
100 Cache prediction was incorrect.
101 Cache did not predict due to invalid JR 

cache entry, or the instruction tag miscom-
pared with tag in JR cache.

110 Unimplemented.
111 Condition branch was taken.
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Figure 2.8 Config7 Register Format   

 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WII FPFS IHB 0 SEHB 0 DGHR SG SUI 0 HCI 0 AR

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PREF IAR IVAD ES 0 CP1IO 0 ULB BP RPS BHT SL

Table 2.10 Field Descriptions for Config7 Register 

Name Bit(s) Description
Read/ 
Write Reset State

WII 31 Wait IE Ignore. When this bit is set, an interrupt will unblock a wait instruc-
tion, even if StatusIE is preventing the interrupt from being taken. If WII reads 0, 
the P6600 core remains in the wait condition forever if entered with interrupts 
disabled. If set to 1, it allows operating system code to avoid complex race con-
ditions. 

R 1

FPFS 30 Fast prepare for store. When this bit is set, pref 31 will behave as specified, 
i.e., the prefetch instruction will only validate the data tag but not write 0’s into 
the data cache. 
By default, this bit will be 0 and pref 31 will behave like pref 30. This 
means that pref 31 will validate the data tag and write 0’s into the data cache 
array for the specified line.

R/W 0

IHB 29 Implicit hazard barrier.
If IHB = 1, the following behavior will be true:
• When the P6600 sees any explicit/implicit mtc0(cache, ll, mtc0, 
tlbop, eret, deret, sync-in-debug-mode, di, ei) followed by 
any implicit mfc0 (ehb, mfc0, eret, deret, di, ei), the pipe-
line will behave as if an ehb is introduced implicitly prior to executing the 
mfc0. This ensures all state modification by mtc0 is completely seen by 
mfc0.

• Any jalr r31, jr r31 instruction seen by the CPU when CP0 is usable 
(i.e CU0=1 or Kernel or Debug mode as defined in the PRA) will automagi-
cally treat those instructions as jalr.hb and jr.hb. 

If IHB = 0, the following behavior will be true:
• Programmer is responsible for resolving hazards and put ehb or .hb where 

appropriate. Prior cores may have used some number of nops or ssnops 
to ensure that the effect of a CP0 modifying instruction is seen by a CP0 read 
instruction, but the P6600 core cannot guarantee such behavior with a small 
number of nops/ssnops.

Per Release3, the programmer is expected to put in an explicit ehb or .hb 
where needed. If there is reason to believe that the programmer has not done 
this, then this bit can be enabled to get correct operation.

R/W 0

0 28 Reserved. Write as zero. Ignored on reads. R 0

SEHB 27 Slow EHB. An experimental mode to accelerate CP0 sequences using the ehb 
instruction.
If this bit is set, ehb will block issue of instructions from the instruction buffer 
until all older instructions have graduated and the pipe is empty. By default, 
ehb will block issue of instructions from the instruction buffer only if there are 
pending explicit CP0-modifying instructions in the pipe.

R/W 0
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0 26:24 Reserved for future use. R/W 0

DGHR 23 Disables the use of any global history in the branch predictor. R/W 0

SG 22 Set 1 to allow only one instruction to graduate per cycle. This has a negative 
impact on performance and should only be used for test purposes. 

R/W 0

SUI 21 Strict Uncached Instruction (SUI) policy control.
When this bit is set, hardware runs uncached instructions strictly in order and (as 
far as possible) unpipelined. This will cause a significant performance degrada-
tion as it will introduce a bubble equivalent to the depth of the pipeline between 
each instruction. Only the branch-delay-slot instruction of a branch is fetched 
without this bubble.
The advantage is that the CPU will not wander off speculatively fetching 
unwanted instructions from a (perhaps slow) boot memory. 

R/W 0

0 20:19 Reserved. Write as zero. Ignored on reads. R 0

HCI 18 Hardware Cache Initialization: Indicates that a cache does not require initializa-
tion by software. This bit will most likely only be set on simulation-only cache 
models and not on real hardware.

R Preset

0 17 Reserved. Write as zero. Ignored on reads. R 0

AR 16 Alias removed. Hardware sets this bit to indicate that the L1 data cache is con-
figured to avoid cache aliases.

R 1

0 15:13 Reserved. Write as zero. Ignored on reads. R 0

PREF 12:11 These two bits control the extent of prefetching of instructions into the instruc-
tion cache as indicated. This field is encoded as follows:

R/W 01

IAR 10 Instruction Alias Removed.
Indicates that the P6600 core has hardware support to remove instruction cache 
aliasing. The virtual aliasing hardware can be disabled via the IVAD bit 
described below. The instruction cache virtual aliasing hardware is always pres-
ent in the P6600 core.

R 1

Table 2.10 Field Descriptions for Config7 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State

 Encoding Meaning

00 Prefetch 0 cache lines on an I-cache miss in addi-
tion to fetching the missing cache line. i.e. Disable 
I-cache prefetching.

01 Prefetch 1 cache line (sequential next line) on an 
I-cache miss in addition to fetching the missing 
cache line.

10 Reserved.
11 Prefetch 2 cache lines (sequential next 2 lines) on 

an I-cache miss in addition to fetching the missing 
cache line.
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IVAD 9 Instruction Virtual Aliasing disabled.
The hardware required to resolve instruction cache virtual aliasing is always 
present in the P6600 core as noted by the default state of the IAR bit shown 
above. However, software can toggle the IVAD bit to enable or disable the vir-
tual aliasing hardware for the instruction cache. 
Setting this bit disables the hardware alias removal on the instruction cache. If 
this bit is cleared, the CACHE Hit Invalidate and SYNCI instructions 
look up all possible aliased locations and invalidate the given cache line in all of 
them. This bit is Read-only if IAR = 0 and can only be written when IAR = 1.

R/W 0

ES 8 Externalize sync.
If this bit is set, and if the downstream device (toward memory) is capable of 
accepting SYNCs (indicated by the pin SI_SyncTxEn), the sync instruction 
causes a SYNC-specific transaction to go out on the external bus. If this bit is 
cleared or if SI_SyncTxEn is deasserted, no transaction will go out, but all 
SYNC handling internal to the CPU will nevertheless be performed. 
The sync instruction is signalled on the P6600’s OCP interface as an "ordering 
barrier" transaction. The transaction is an extension to the OCP standards, and 
system controllers which don’t support it typically under-decode it as a read 
from the boot ROM area. But that’s going to be quite slow, so set this bit only if 
your system understands the synchronizing transaction. 
When this bit is read, the value returned depends on the state of the 
SI_SyncTxEn pin. If SI_SyncTxEn is 0, a value of 0 is returned. If SI_SyncTxEn 
is 1, the value returned is the last value that was written to this bit.

R 1

0 7 Reserved. Write as zero. Ignored on reads. R 0

CP1IO 6 CP1 instruction order. By default, data sent from the P6600 core to a coproces-
sor block may be sent in an order reflecting the internal pipeline execution 
sequence. Set this bit to arrange that data will be sent only in instruction order to 
the FPU.

R/W 0

0 5 Reserved. Write as zero. Ignored on reads. R 0

ULB 4 Uncached load blocking. Set to 1 to make all uncached loads blocking (a pro-
gram usually only blocks when it uses the data which is loaded).

R/W 0

BP 3 Branch prediction. When set, no branch prediction is done, and all branches 
stall.

R/W 0

RPS 2 Return prediction stack. When set, the return address branch predictor is dis-
abled, so jr $31 is treated just like any other jump register. An instruction 
fetch stalls after the branch delay slot, until the jump instruction reaches the 
Address Generation pipeline and can provide the right address. 

R/W 0

BHT 1 Branch history table. When set, the branch history table is disabled and all 
branches are predicted taken. This bit is don’t care if Config7BP is set. 

R/W 0

SL 0 Scheduled loads. When set, non-blocking loads are disabled. Normally the 
P6600 core continues after a load instruction, even if it misses in the D-cache, 
until the data is used. When this bit is set, the CPU stalls on any D-cache load 
miss. 

R/W 0

Table 2.10 Field Descriptions for Config7 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.2.1.9 Processor ID — PRId (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the 
manufacturer, manufacturing options, processor identification, and revision level of the processor.

Figure 2.9 PRId Register Format 

2.2.1.10 Exception Base Address — EBase (CP0 Register 15, Select 1)

The 64-bit EBase register is a read/write register containing the base address of the exception vectors used when 
StatusBEV equals 0, and a read-only CPU number value that may be used by software to distinguish different proces-
sors in a multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor system, 
and allows the exception vectors for each processor to be different. Bits 63:12 of the EBase register are concatenated 
with zeros to form the base of the exception vectors when StatusBEV is 0. The exception vector base address comes 
from the fixed defaults when StatusBEV is 1, or for any EJTAG Debug exception. 

The size of the ExcBase field depends on the state of the WG bit. At reset, the WG bit is cleared by default. In this 
case, the ExcBase field is comprised of bits 29:12. Bits 63:30 of the EBase Register are not writeable and retain their 
previous state. This is shown in Figure 2.10.

31 24 23 16 15 8 7 0

CoOpt CoID ProcType Rev

Table 2.11 Field Descriptions for PRId Register

Name Bit(s) Description
Read/ 
Write Reset State

CoOpt 31:24 Company Option. Should be a number between 0 and 127— higher values are 
reserved by MIPS Technologies. 

R Preset

CoID 23:16 Company ID. Identifies the company that designed or manufactured the proces-
sor. In the P6600, this field contains a value of 1 to indicate MIPS Technologies, 
Inc.

R 0x01

ProcType 15:8 Processor ID. Identifies the type of processor. This field allows software to dis-
tinguish between the various types of processors from MIPS Technologies. The 
value of this field is 0xA4 for the P6600 core.

R 0xA4

Rev 7:0 The revision number of the P6600 design. This field allows software to distin-
guish between one revision and another of the same processor type.
This field is broken up into the following three subfields:

R Preset

Bit(s) Name Meaning

7:5 Major
Revision

This number is increased on major 
revisions of the P6600 core.

4:2 Minor
Revision

This number is increased on each 
incremental revision of the processor 
and reset on each new major revision.

1:0 Patch 
Level

If a patch is made to modify an older 
revision of the processor, this field will 
be incremented.
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When the WG bit is set, bits 63:30 of the ExcBase field become writeable and are used to relocate the ExcBase field 
to other segments. This is shown in Figure 2.11. Note that if the WG bit is set by software (allowing bits 63:30 to 
become part of the ExcBase field) and then cleared, bits 63:30 can no longer be written by software and the state of 
these bits remains unchanged for any writes after WG was cleared.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal to 1. The operation 
of the processor is UNDEFINED if the exception base field is written with a different value when StatusBEV is 0.

Combining bits 63:12 with the Exception Base field allows the base address of the exception vectors to be placed at any 
16 Kbyte page boundary.

Figure 2.10 EBase Register Format — WG = 0 

Figure 2.11 EBase Register Format — WG = 1 

63 30 29 12 11 10 9 0

Fill (not writable) ExcBase WG 0 CPUNum

63 12 11 10 9 0

ExcBase WG 0 CPUNum

Table 2.12 Field Descriptions for EBase Register

Name Bit(s) Description
Read/ 
Write Reset State

Fill 63:30 When the WG bit is cleared, this field is not writable by software and retains its 
previous value.

R/W Undefined

ExcBase 29:12
or 63:12

Exception Base Address. The size and behavior of this field depends on the state 
of the WG bit. When the WG bit is set, the ExcBase field includes bits 63:12. 
When the WG bit is cleared, bits 63:30 are not writable and the exception base 
address is stored in bits 29:12. Bits 31:30 default to a value of 2’b10, forcing the 
exception vector into kseg0/kseg1 address space to maintain 32-bit backward 
compatibility.
Setting EBase in any CPU to a unique value allows that CPU can have its own 
unique exception handlers.
This field should be written only when StatusBEV is set so that any exception will 
be handled through the ROM entry points. 

R/W 0x8000.0
or

0xF.FFFF.
FFF8.0000

WG 11 Write gate. 
When the WG bit is set, the ExcBase field is expanded to include bits 31:30 of 
the EBase register to facilitate programmable memory segmentation controlled 
by the SegCtl0 through SegCtl2 registers.
When the WG bit is cleared, bits 31:30 of the EBase register are not writeable 
and remain unchanged from the last time that WG was cleared.

R/W Externally Set

0 10 Reserved. Write as zero. Ignored on reads. R 0

CPUNum 9:0 This field contains an identifier that will be unique among the CPU’s in a multi-
processor system. The value in this field is set by the SI_CPUNum[9:0] static 
input pins to the P6600 core. 

R Externally Set
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2.2.1.11 Status (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and diagnostic states 
of the processor. Fields in this register and the CP0 Debug register combine to create operating modes for the proces-
sor. Selected bits are encoded as follows to place the processor into one of the operating modes. Refer to the MMU 
chapter for more information on the various operating modes. A brief summary is provided below. 

Figure 2.12 shows the format of the Status Register; Table 2.14 describes the Status register fields.

Table 2.13 Operating Mode Encoding

StatusIE StatusERL StatusEXL StatusKSU DebugDM Mode of Operation

1 0 0 x 0 Individual interrupts can be disabled/enabled 
using the StatusIM7-0 mask bits.

x 0 0 2’b2 0 User Mode. In user mode, the CPU has access 
only to the mapped kuseg address region.

x 0 0 2’b1 0 Supervisor Mode. In supervisor mode, the CPU 
has access to the top half of the kseg2 region 
(sometimes known as kseg3), but no access to 
CP0 registers or most kernel memory.

x x x 2’b0 0 Kernel addressing mode. In this mode, a TLB 
miss goes to the TLB Refill Handler.

x x 1 x 0 Kernel addressing mode. In this mode, a TLB 
miss goes to the TLB Refill Handler.

x 1 x x 0 Kernel addressing mode. In this mode, a TLB 
miss goes to the general exception handler as 
opposed to the TLB Refill handler.

x x x x 1 Debug Mode. In debug mode, the processor has 
full access to all resources that are available in 
Kernel Mode operation, in addition to those pro-
vided by EJTAG.
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Figure 2.12 Status Register Format   

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 5 4 3 2 1 0

CU3 CU2 CU1 RW 0 FR RE M
X PX BEV 0 SR NMI 0 CEE 0 IM7-0 KX SX UX KSU ERL EXL IE

Table 2.14 Field Descriptions for Status Register 

Name Bit(s) Description
Read/ 
Write Reset State

CU3 31 Coprocessor 3 usable. Because the P6600 core does not support a coprocessor 3, 
StatusCU3 is hardwired to zero.

R 0

CU2 30 Coprocessor 2 usable. Because the P6600 core does not support a coprocessor 2, 
StatusCU2 is hardwired to zero.

R 0

CU1 29 Coprocessor 1 Usable. Controls access to coprocessor 1.
0: Access not allowed.
1: Access allowed. 
CU1 is most often used for a floating-point unit. When no coprocessor 1 is pres-
ent, this bit is read-only and reads zero. 

R/W Undefined

RW 28 Read/write field. This bit can be written by software without side-effects. A use 
case is for the kernel to set this bit to signify that the exception condition is due 
to user code, prior to saving Status to the stack in memory. This bit is not used by 
the P6600 core hardware.

R/W Undefined

0 27 Reserved. Write as zero. Ignored on reads. R 0

FR 26 Floating Register. This bit is used to indicate the floating-point register mode for 
64-bit floating point units: This bit is encoded as follows:

0: Floating point registers can contain any 32-bit data type. 64-bit data types are 
stored in even-odd pairs of registers.
1: Floating point registers can contain any data type.
If the P6600 core is equipped with an optional FPU, set this bit to 0 for MIPS I 
compatibility mode, which allows for 16 real FP registers, with 16 odd FP regis-
ter numbers reserved for access to the high-order bits of double-precision values.

R 1

0 25 Reserved. Write as zero. Ignored on reads. R 0

MX 24 MIPS DSP Extension. Enables access to DSP ASE resources. This bit is always 
0 in the P6600 core.
0: Access not allowed.
1: Access allowed. 
An attempt to execute any DSP ASE instruction before when this bit is 0 will 
cause a DSP State Disabled exception. The state of this bit is reflected in 
Config3DSPP .

R 0

PX 23 Enables access to 64-bit operations in User mode, without enabling 64-bit 
addressing. 
0: Access not allowed
1: Access allowed

R 0

BEV 22 Boot Exception Vector. Controls the location of exception vectors:
0: Normal. Refer to the EBase register for more information 
1: Bootstrap
When set to 1, all exception entry points are relocated to near the reset start 
address.

R/W 1

0 21 Reserved. Write as zero. Ignored on reads. R 0
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SR 20 Soft Reset. The P6600 core only supports a full external reset, so this bit is not 
used and always reads zero. 

R 0

NMI 19 Indicates that the entry through the reset exception vector was due to an NMI.
0: Not NMI (reset)
1: NMI
Software can only write a 0 to this bit to clear it and cannot force a 0 to 1 transi-
tion. As such, a write of 1 to this bit is ignored.

R/W0 1 for NMI
0 otherwise

0 18:16 Reserved. Write as zero. Ignored on reads. R 0

IM7-0 15:8 Interrupt Mask. Bitwise interrupt enables for the eight interrupt conditions. The 
state of these bits is visible in CauseIP7-0, except in EIC mode. 
External Interrupt Controller (EIC) mode is activated when the Config3VEIC is 
set by hardware at reset based on the state of the SI_EICPresent signal. If this bit 
is set by hardware, software should set the CauseIV bit, then write a non-zero 
"vector spacing" in the VS bit of the IntCtl register.
In EIC mode, IM7-2 is used as a 6-bit StatusIPL (Interrupt Priority Level) field. 
An interrupt is only triggered when the interrupt controller presents an interrupt 
code which is numerically higher than the current value of StatusIPL.
StatusIM1-0 always acts as a bitwise mask for the two software interrupt bits pro-
grammable in CauseIP1-0. 

R/W Undefined

KX 7 Setting this bit enables the following:
• Access to 64-bit Kernel Segments
• Use of the XTLB Refill Vector for references to Kernel Segments
This bit is encoded as follows:
0: Access to 64-bit Kernel Segments is disabled; the TLB Refill Vector is used 
for references to Kernel Segments.
1: Access to 64-bit Kernel Segments is enabled; the XTLB Refill Vector is used 
for references to Kernel Segments.

R/W 0

SX 6 Setting this bit enables the following:
• Access to 64-bit Supervisor Segments
• Use of the XTLB Refill Vector for references to Supervisor Segments
This bit is encoded as follows:
0: Access to 64-bit Supervisor Segments is disabled; the TLB Refill Vector is 
used for references to Supervisor Segments.
1: Access to 64-bit Supervisor Segments is enabled; the XTLB Refill Vector is 
used for references to Supervisor Segments. 
In the P6600 core, a write of 1 to this register is ignored when KX = 0.

R/W 0

UX 5 Setting this bit enables the following:
• Access to 64-bit User Segments
• Use of the XTLB Refill Vector for references to User Segments
This bit is encoded as follows:
0: Access to 64-bit User Segments is disabled; the TLB Refill Vector is used for 
references to User Segments.
1: Access to 64-bit User Segments is enabled; the XTLB Refill Vector is used for 
references to User Segments. 
In the P6600 core, a write of 1 to this register is ignored when KX = 0 or SX = 0.

R/W 0

Table 2.14 Field Descriptions for Status Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.2.1.12 Interrupt Control — IntCtl (CP0 Register 12, Select 1)

The IntCtl register controls the interrupt capabilities of the P6600 core, including vectored interrupts and support for 
an external interrupt controller. 

KSU 4:3 These bits denote the processor’s operating mode.
2’b00: Kernel Mode
2’b01: Supervisor Mode
2’b10: User Mode.
2’b11: Reserved
A value of 2’b11 in this field is an illegal value that will drop the entire write 
operation.
Note that the processor can also be in Kernel mode if ERL or EXL is set, regard-
less of the state of these bits.

R/W 2’b00

ERL 2 Error Level; Set by the processor when a Reset, NMI, or Cache Error exception 
is taken.
0: Normal level
1: Error level
When ERL is set:

• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in ErrorEPC instead of 

EPC
• When ERL = 1 in the Status register, the segment kuseg (legacy) or xkseg0 

(EVA) is treated as an unmapped and uncached address space. While in this 
setting, the kuseg virtual address maps directly to the same physical address, 
and does not include the ASID field. 

R/W 1

EXL 1 Exception Level; Set by the processor when any exception other than Reset, 
Cache Error, or NMI exception is taken.
0: Normal level
1: Exception level
When EXL is set:

• The processor is running in Kernel Mode.
• Hardware and software interrupts are disabled.
• TLB Refill exceptions use the general exception vector instead of the TLB 

Refill vector.
When an exception occurs and EXL is set, a nested TLB Refill exception is sent 
to the general exception handler (rather than to its dedicated handler) and the 
values in EPC and CauseBD are not overwritten. The result is that, after return-
ing from the second exception, the processor jumps back to the code that was 
executing before the first exception occurred.

R/W 0

IE 0 Interrupt Enable. Acts as the master enable for software and hardware interrupts.
0: Interrupts are disabled
1: Interrupts are enabled
This bit can be written using the di/ei instructions. 

R/W 0

Table 2.14 Field Descriptions for Status Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.13 IntCtl Register Format  

31 29 28 26 25 23 22 10 9 5 4 0

IPTI IPPCI IPFDCI 0 VS 0

Table 2.15 Field Descriptions for IntCtl Register 

Name Bit(s) Description
Read/ 
Write Reset State

IPTI 31:29 For Interrupt Compatibility and Vectored Interrupt modes, this field specifies 
the IP number to which the Timer Interrupt request is merged, and allows soft-
ware to determine whether to consider CauseTI for a potential interrupt. This 
field is encoded as shown in Table 2.16, "Encoding of IPTI, IPPCI, and IPFDCI 
Fields".
The value of this bit is set by the static input, SI_IPTI[2:0]. This allows external 
logic to communicate the specific SI_Int hardware interrupt pin to which the 
SI_TimerInt signal is attached.
The value of this field is not meaningful if External Interrupt Controller Mode is 
enabled. The external interrupt controller is expected to provide this information 
for that interrupt mode.

R Externally Set

IPPCI 28:26 For Interrupt Compatibility and Vectored Interrupt modes, this field specifies 
the IP number to which the Performance Counter Interrupt request is merged, 
and allows software to determine whether to consider CausePCI for a potential 
interrupt. This field is encoded as shown in Table 2.16, "Encoding of IPTI, 
IPPCI, and IPFDCI Fields".
The value of this bit is set by the static input SI_IPPCI[2:0]. This allows exter-
nal logic to communicate the specific SI_Int hardware interrupt pin to which the 
SI_PCInt signal is attached.
The value of this field is not meaningful if External Interrupt Controller Mode is 
enabled. The external interrupt controller is expected to provide this information 
for that interrupt mode.

R Externally Set

IPFDCI 25:23 For Interrupt Compatibility and Vectored Interrupt modes, this field specifies 
the IP number to which the Fast Debug Channel Interrupt request is merged, and 
allows software to determine whether to consider CauseFDCI for a potential 
interrupt. This field is encoded as shown in Table 2.16, "Encoding of IPTI, 
IPPCI, and IPFDCI Fields".
The value of this bit is set by the static input, SI_IPFDCI[2:0]. This allows 
external logic to communicate the specific SI_Int hardware interrupt pin to 
which the SI_FDCInt signal is attached.
The value of this field is not meaningful if External Interrupt Controller Mode is 
enabled. The external interrupt controller is expected to provide this information 
for that interrupt mode.

R Externally Set

0 22:10 Reserved. Write as zero. Ignored on reads. R 0
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VS 9:5 Vector Spacing. If vectored interrupts are implemented (as denoted by 
Config3VInt or Config3VEIC), this field specifies the spacing between vectored 
interrupts.

All other values are reserved. The operation of the processor is UNDEFINED if 
a reserved value is written to this field.

R/W 0

0 4:0 Reserved. Write as zero. Ignored on reads. R 0

Table 2.16 Encoding of IPTI, IPPCI, and IPFDCI Fields

Encoding IP bit Hardware Interrupt Source

0 0 Reserved

1 1 Reserved

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Table 2.15 Field Descriptions for IntCtl Register 

Name Bit(s) Description
Read/ 
Write Reset State

VS Field 
Encoding

Spacing Between 
Vectors (hex)

Spacing Between 
Vectors (decimal)

0x00 0x000 0
0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512
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2.2.2 TLB Management Registers

This section contains the following TLB management registers.

• Section 2.2.2.1, "Index (CP0 Register 0, Select 0)" on page 79

• Section 2.2.2.2, "EntryLo0 - EntryLo1 (CP0 Registers 2 and 3, Select 0)" on page 80

• Section 2.2.2.3, "EntryHi (CP0 Register 10, Select 0)" on page 82

• Section 2.2.2.4, "Context (CP0 Register 4, Select 0)" on page 84

• Section 2.2.2.5, "Context Configuration — ContextConfig (CP0 Register 4, Select 1)" on page 85

• Section 2.2.2.6, "XContext Register (CP0 Register 20, Select 0)" on page 86

• Section 2.2.2.7, "XContext Configuration — XContextConfig (CP0 Register 4, Select 3)" on page 87

• Section 2.2.2.8, "PageMask (CP0 Register 5, Select 0)" on page 88

• Section 2.2.2.9, "Page Granularity — PageGrain (CP0 Register 5, Select 1)" on page 89

• Section 2.2.2.10, "Wired (CP0 Register 6, Select 0)" on page 91

• Section 2.2.2.11, "Bad Virtual Address — BadVAddr (CP0 Register 8, Select 0)" on page 91

• Section 2.2.2.12, "PWBase Register (CP0 Register 5, Select 5)" on page 92

• Section 2.2.2.13, "PWField Register (CP0 Register 5, Select 6)" on page 93

• Section 2.2.2.14, "PWSize Register (CP0 Register 5, Select 7)" on page 95

2.2.2.1 Index (CP0 Register 0, Select 0)

Index is used as the TLB index when reading or writing the TLB with TLBR/TLBWI/TLBINV/TLBINVF respec-
tively. It is also set by a TLB probe (TLBP) instruction to return the location of an address match in the TLB.

During execution of a TLBR instruction, the Index field that was previously written by software or by a TLBP 
instruction is used to indicate the TLB entry to be read. Hardware then uses this information to perform the read oper-
ation.

During execution of a TLBWI, TLBINV, or TLBINVF instruction, the Index field that was previously written by soft-
ware or by a TLBP instruction is used to indicate the TLB entry to be written or invalidated. Hardware then uses this 
information to perform the respective write or invalidate operation.

Prior to executing a TLBP instruction, the VPN to be searched should have been written to the VPN2 field in the 
EntryHi register. During the TLBP instruction, hardware searches the TLB array for a match to the VPN stored in the 
EntryHi register. If a match is found, hardware writes the index into the Index field of this register. 

The P bit of this register is set by hardware to indicate that a match was not found. If this bit is not set, software can 
then read the corresponding index from this register.
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The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

Note that when virtualization is enabled, there is one Index register for Root and one for each Guest.

Figure 2.14 Index Register Format  

2.2.2.2 EntryLo0 - EntryLo1 (CP0 Registers 2 and 3, Select 0)

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR 
instructions. These registers store the contents of a TLB entry. Each entry maps a pair of pages. The EntryLo0 and 
EntryLo1 register store even and odd numbered virtual pages respectively. These registers are read during a TLBWR or 
TBLWI instruction, and written by a TLBR instruction. They are not used for any other purpose.

Software may determine the value of PABITS by writing all ones to the EntryLo0 or EntryLo1 registers and reading 
the value back. Bits read as “1” from the PFN field allow software to determine the boundary between the PFN and 
Fill fields to calculate the value of PABITS.

The contents of the EntryLo0 and EntryLo1 registers are not defined after an address error exception and some fields 
may be modified by hardware during the address error exception sequence. Software writes of the EntryHi register 
(via MTC0) do not cause the implicit update of address-related fields in the BadVAddr or Context registers.

31 30 10 9 0

P 0 Index
(VTLB and FTLB)

Table 2.17 Field Descriptions for Index Register

Name Bit(s) Description
Read/ 
Write Reset State

P 31 Probe Failure. This bit is automatically set when a TLBP search of the TLB 
fails to find a matching entry. The following rules apply when accessing this bit:
1. Root can only set Root.Index.P value to 1 (and not clear it) using the MTC0 
instruction.
2, Guest can only set Guest.Index.P value to 1 (and not clear it) using the MTC0 
instruction.
3. Root can both set and clear Guest.Index.P value using the MTGC0 instruc-
tion.

WO
or 

R/W
(See 

descr)

0

0 30:10 Must be written as zero; returns zero on reads. 0 0

Index 9:0 An index into the TLB used for TLBR, TLBWI, TLBINV and 
TLBINVF instructions. This field is set by the TLBP instruction when it finds 
a matching entry. 

R/W 0
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Figure 2.15 EntryLo0 and EntryLo1 Register Format  

63 62 61 34 33 32

RI XI 0 PFNX

31 30 29 6 5 3 2 1 0

PFNX PFN C D V G

Table 2.18 Field Descriptions for EntryLo0 and EntryLo1 Registers

Name Bit(s) Description
Read/ 
Write Reset State

RI 63 Read Inhibit. If this bit is set in a TLB entry, any attempt to read data on the vir-
tual page causes either a TLB Invalid or a TLBRI exception, even if the V 
(Valid) bit is set. The RI bit is writable only if the RIE bit of the PageGrain reg-
ister is set. For more information, refer to Section 2.2.2.9, "Page Granularity — 
PageGrain (CP0 Register 5, Select 1)".
If the RIE bit of the PageGrain register is not set, the RI bit of Entry 0 and 
Entry 1 are set to zero on any write to the register, regardless of the value writ-
ten.

R/W 0

XI 62 Execute Inhibit. If this bit is set in a TLB entry, any attempt to fetch an instruc-
tion or to load MIPS16 PC-relative data from the virtual page causes a TLB 
Invalid or a TLBXI exception, even if the V (Valid) bit is set. The XI bit is writ-
able only if the XIE bit of the PageGrain register is set. For more information, 
refer to Section 2.2.2.9, "Page Granularity — PageGrain (CP0 Register 5, Select 
1)".
If the XIE bit of the PageGrain register not set, the XI bit of TLB Entry 0 - 1 is 
set to zero on any write to the register, regardless of the value written.

R/W 0

Fill 61:34 These bits are ignored on writes and return 0 on reads. R/W 0

PFNX 33:30 Page Frame Number Extension. This field is used to extend the size of the PFN. 
This field is concatenated with the PFN field to form the full page frame number 
corresponding to the physical address, thereby providing up to 40 bits of physi-
cal address.
If the processor is not enabled to support 1KB pages (Config3SP = 0 or 
PageGrainESP = 0), the combined PFNX || PFN fields corresponds to 0b00 || 
bits PABITS-1..12 of the physical address (the field is unshifted and the upper 
two bits must be written as zero).
The boundaries of this field change as a function of the value of PABITS. If sup-
port for large physical addresses is enabled (Config3.LPA = 1 or 
PageGrain.ELPA = 1), this field is R/W and can be written by software. If sup-
port for large physical addresses is not enabled (Config3.LPA = 0 or 
PageGrain.ELPA = 0), this field is read-only. In that case, the PFNX bits are 
ignored on write and return 0 on read.

R/W
or R

Undefined

PFN 29:6 The 24 bits of PFN, together with the 4-bit PFNX field and 12 bits of in-page 
address, make up a 40-bit physical address. The PFNX field in bits 33:30 of this 
register is appended to the upper bits of the PFN to create the extended address. 

R/W Undefined

C 5:3 Coherency attribute of the page. See Table 2.19. R/W Undefined

D 2 The "Dirty" flag. Indicates that the page has been written, and/or is writable. If 
this bit is a one, stores to the page are permitted. If this bit is a zero, stores to the 
page cause a TLB Modified exception.
Software can use this bit to track pages that have been written to. When a page 
is first mapped, this bit should be cleared. It is set on the first write that causes 
an exception. 

R/W Undefined
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2.2.2.3 EntryHi (CP0 Register 10, Select 0)

The EntryHi register contains the upper portion of the virtual address match information used for TLB read, write, and 
access operations. The remaining information is stored in the EntryLo0 and EntryLo1 registers described in Section 
2.2.2.2 “EntryLo0 - EntryLo1 (CP0 Registers 2 and 3, Select 0)”.

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, or TLB Modi-
fied) causes bits VA47:13 of the virtual address to be written into the VPN2 field of the EntryHi register and VA[63:62] 
to be written to the Region (R) field of the EntryHi register. A TLBR instruction writes the EntryHi register with the 
corresponding fields from the selected TLB entry. The ASID field is written by software with the current address 
space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID and EHINV fields are overwritten by a TLBR instruction, software must save and restore the value 
of ASID around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in 
other memory management software.

V 1 The “Valid” flag. Indicates that the TLB entry, and thus the virtual page map-
ping, are valid. If this bit is a set, accesses to the page are permitted. If this bit is 
a zero, accesses to the page cause a TLB Invalid exception.
This bit can be used to make just one of a pair of pages valid. 

R/W Undefined

G 0 The “Global” bit. On a TLB write, the logical AND of the G bits in both the 
Entry 0 and Entry 1 registers become the G bit in the TLB entry. If the TLB 
entry G bit is a one, then the ASID comparisons are ignored during TLB 
matches. On a read from a TLB entry, the G bits of both Entry 0 and Entry 1 
reflect the state of the TLB G bit.

R/W Undefined

Table 2.19 Cache Coherency Attributes Encoding of the C Field

C[5:3] / K0[2:0]1 Name Cache Coherency Attribute

0 — Reserved

1 — Reserved

2 UC Uncached, non-coherent

3 WB Cacheable, non-coherent, write-back, write allocate

4 CWBE Cacheable, coherent, write-back, write-allocate, read misses request Exclusive

5 CWB Cacheable, coherent, write-back, write-allocate, read misses request Shared

6 — Reserved

7 UCA Uncached Accelerated, non-coherent

1. State of the K0 field at bits 2:0 of the Config register. See Section 2.2.1.1 “Device Configuration — Config (CP0 Register 16, Select 
0)”

Table 2.18 Field Descriptions for EntryLo0 and EntryLo1 Registers

Name Bit(s) Description
Read/ 
Write Reset State
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The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified by 
hardware during the address error exception sequence. Software writes of the EntryHi register (via MTC0) do not 
cause the implicit write of address-related fields in the BadVAddr and Context registers.

The EntryHiEHINV field has been added to support explicit invalidation of TLB entries via the TLBWI instruction. 
When EntryHiEHINV = 1, the TLBWI instruction acts as a TLB invalidate operation, setting the hardware valid bit 
associated with a TLB entry to the invalid state. When EntryHiEHINV = 1, only the Index register is required to be 
valid. Behavior of the TLBWR instruction is unmodified by EntryHiEHINV. The TLBR instruction copies the EHINV 
bit from the TLB Entry to EntryHIEHINV. Note that execution of the TLBP instruction does not change this value.

Figure 2.16 EntryHi Register Format  

  

63 62 61 48 47 32

R 0 VPN2

31 13 12 11 10 9 8 7 0

VPN2 0 EHINV 0 ASID

Table 2.20 Field Descriptions for EntryHi Register

Name Bit(s) Description
Read/ 
Write Reset State

R 63:62 Virtual memory region, corresponding to VA[63:62]. This field is 
encoded as follows:
00: xuseg: user address region
01: xsseg: supervisor address region. If Supervisor Mode is not imple-
mented, this encoding is reserved
10: Reserved
11: xkseg: kernel address region
This field is written by hardware on a TLB exception or on a TLB read, 
and is written by software before a TLB write.

R/W 0

0 61:48 Reserved. Write as zero. Ignored on reads. R 0

VPN2 47:13 EntryHiVPN2 is the virtual address to be matched on a TLBP. This field 
consists of VA39:13 of the virtual address (virtual page number / 2). It is 
also the virtual address to be written into the TLB on a TLBWI and 
TLBWR, and the destination of the virtual address on a TLBR. 
On a TLB-related exception, the VPN2 field is automatically set to the 
virtual address that was being translated when the exception occurred. 
This field is written by software before a TLBP or TLBWI and written 
by hardware in all other cases.

R/W Undefined

0 12:11 Reserved. Write as zero. Ignored on reads. R 0

EHINV 10 TLBWI invalidate enable. When this bit is set, the TLBWI instruction 
acts as a TLB invalidate operation, setting the hardware valid bit associ-
ated with the TLB entry to the invalid state. When this bit is set, the 
PageMask and EntryLo0/EntryLo1 registers do not need to be valid. Only 
the Index register is required to be valid.
This bit is ignored on a TLBWR instruction. 

R/W 0

0 9:8 Reserved. Write as zero. Ignored on reads. R 0
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2.2.2.4 Context (CP0 Register 4, Select 0)

The 64-bit Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. 
This array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the 
operating system loads the TLB with the missing translation from the PTE array. The Context register duplicates some 
of the information provided in the BadVAddr register but is organized in such a way that the operating system can 
directly reference an 8-byte page table entry (PTE) in memory.

The BadVPN2 field of the Context register is not defined after an address error exception, and this field may be modi-
fied by hardware during the address error exception sequence.

The pointer implemented by the Context register can point to any power-of-two-sized PTE structure within memory. 
This allows the TLB refill handler to use the pointer without additional shifting and masking steps. For example, if 
the low-order bit of the PTEBase field is 20, the page table entry (PTE) structure occurs on a 1M boundary. If the 
low-order bit is 21, PTE structure occurs on a 2M boundary, etc. Depending on the value in the ContextConfig register, 
it may point to an 8-byte pair of 32-bit PTEs within a single-level page table scheme, or to a first level page directory 
entry in a two-level lookup scheme.

A TLB exception (Refill, Invalid, Modified, Read Inhibit, Execute Inhibit) causes the virtual address to be written to 
a variable range of bits, defined as (X-1):Y of the Context register. This range corresponds to the contiguous range of 
set bits in the ContextConfig register. Bits 63:X, Y-1:0 are read/write to software and are unaffected by the exception. 

For example, if X = 23 and Y = 4, i.e. bits 22:4 are set in ContextConfig, the behavior is identical to the standard 
MIPS32 Context register (bits 22:4 are filled with VA31:13). Although the fields have been made variable in size and 
interpretation, the MIPS32 nomenclature is retained. Bits 63:X are referred to as the PTEBase field, and bits X-1:Y 
are referred to as BadVPN2. 

The value of the Context register is UNPREDICTABLE following a modification of the contents of the ContextConfig 
register. After the ContextConfig register is modified, software should write the PTEBase field of the Context register. 
However, note that the contents of the BadVPN2 field will not be valid until the next TLB exception.

Figure 2.17 shows the format of the Context Register; Table 2.21 describes the Context register fields.

ASID 7:0 Address space identifier. This field is used to stage data to and from the 
TLB, but in normal running software it’s also the source of the current 
"ASID" value, used to extend the virtual address and help to map address 
translations for the current process. 
This field is written by hardware on a TLB read and by software to estab-
lish the current ASID value for TLB write and against which TLB refer-
ences match each entry’s TLB ASID field. 
This field supports up to 256 unique ASID values, consisting of a virtual 
tag that is in addition to the 32-bit address.

R/W 0

Table 2.20 Field Descriptions for EntryHi Register

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.17 Context Register Format   

2.2.2.5 Context Configuration — ContextConfig (CP0 Register 4, Select 1)

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address 
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the 
selected BadVPN2 field of the Context register are read/write to software and serve as the PTEBase field. Bits below 
the selected BadVPN2 field of the Context register serve as the PTEBaseLow field.

Software writes a set of contiguous ones to the VirtualIndex field of the ContextConfig register. Hardware then deter-
mines which bits of this register are high and low. The highest order bit that is a logic ‘1’ serves as the MSB of the 
BadVPN2 field of the Context register. The lowest order bit that is a logic ‘1’ serves as the LSB of the BadVPN2 field 
of the Context register. A value of all zero’s in the VirtualIndex field means that the full 32 bits of the Context register 
are R/W for software and are unaffected by TLB exceptions.

Figure 2.18 shows the formats of the ContextConfig register; Table 2.22 describes the ContextConfig register fields.

63 X X-1 Y Y-1 0

PTEBase BadVPN2 PTEBaseLow

Table 2.21  Context Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

PTEBase Variable, 63:X This field is for use by the operating system and is 
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer to 
an array of data structures in memory corresponding 
to the address region that contains the virtual address 
which caused the exception. 
The size of the BadVPN2 field is determined by num-
ber of contiguous ‘ones’ in the VirtualIndex field of 
the ContextConfig register described below. If the 
VirtualIndex field is all ‘ones’, then the BadVPN2 
field is comprised of bits 22:2. If the VirtualIndex 
field is all ‘zero’, then there is no BadVPN and the 
PTEBase and PTEBase low fields are merged 
together to form a single 32-bit PTEBase value. 

R/W Undefined

BadVPN2 Variable, (X-1):Y This field is written by hardware on a TLB exception. 
It contains bits VA31:32-X+Y of the virtual address that 
caused the exception. 

R Undefined

PTEBaseLow Variable, (Y-1):0 This field is for use by the operating system and is 
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer to 
an array of data structures in memory corresponding 
to the address region that contains the virtual address 
which caused the exception.

R/W Undefined
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Figure 2.18 ContextConfig Register Format   

2.2.2.6 XContext Register (CP0 Register 20, Select 0)

The XContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This 
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The XContext register is primarily intended 
for use with the XTLB Refill handler, but is also loaded by hardware on a TLB Refill. However, it is unlikely to be 
useful to software in the TLB Refill Handler. The XContext register duplicates some of the information provided in the 
BadVaddr register. The size of the BadVPN2 field, indicated by the X-1:Y parameter in the figure below, depends on 
the number of consecutive ones in the XContextConfig register.

Figure 2.19 shows the format of the XContext register.

Figure 2.19 XContext Register Format 

31 23 22 2 1 0

0 VirtualIndex 0

Table 2.22  ContextConfig Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:23 Ignored on write; returns zero on read. R 0x00

VirtualIndex 22:2 A mask of 0 to 21 contiguous 1 bits in this field causes the corre-
sponding bits of the Context register to be written with the high-
order bits of the virtual address causing a TLB exception.
Behavior of the processor is UNDEFINED if non-contiguous 1 
bits are written into the register field. Note that it is the responsi-
bility of software to ensure that this field is written with contigu-
ous ones because if non-contiguous 1 bits are written, no exception 
will be taken.

R/W 0x1F_FFFC

0 1:0 Ignored on write; returns zero on read. R 0

63 X X-1 Y Y-1 0

PTEBase BadVPN2 PTEBaseLow

Table 2.23  XContext Register Field Descriptions when Config3.CTXTC = 1 

Fields

Description
Read / 
Write Reset StateName Bits

PTEBase 63:X This field is for use by the operating system and is normally written 
with a value that allows the operating system to use the XContext Reg-
ister as a pointer to an array of data structures in memory corresponding 
to the address region containing the virtual address which caused the 
exception. Note that the lower 2-bits of PTEBase are always 0.

R/W Undefined
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2.2.2.7 XContext Configuration — XContextConfig (CP0 Register 4, Select 3)

The XContextConfig register defines the bits of the XContext register into which the high order bits of the virtual address 
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the 
selected BadVPN2 field of the Context register are read/write to software and serve as the PTEBase field. Bits below 
the selected BadVPN2 field of the Context register serve as the PTEBaseLow field.

Software writes a set of contiguous ones to the VirtualIndex field of the XContextConfig register. Hardware then 
determines which bits of this register are high and low. The highest order bit that is a logic ‘1’ serves as the MSB of 
the BadVPN2 field of the XContext register. The lowest order bit that is a logic ‘1’ serves as the LSB of the BadVPN2 
field of the XContext register. A value of all zero’s in the VirtualIndex field means that the full 32 bits of the XContext 
register are R/W for software and are unaffected by TLB exceptions.

Figure 2.18 shows the formats of the XContextConfig register; Table 2.22 describes the XContextConfig register fields.

Figure 2.20 XContextConfig Register Format 

 

BadVPN2 X-1:Y This field is written by hardware on a TLB exception. It contains the 
virtual address that caused the exception. The upper and lower bound 
of this field is determined by the consecutive number of 1’s in the 
XContextConfig register.

R Undefined

PTEBaseLow (Y-1):0 This field is for use by the operating system and is normally written 
with a value that allows the operating system to use the Context Regis-
ter as a pointer to an array of data structures in memory corresponding 
to the address region that contains the virtual address which caused the 
exception.

R/W Undefined

63 39 38 2 1 0

0 VirtualIndex 0

Table 2.24  XContextConfig Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

0 63:39 Ignored on write; returns zero on read. R 0x00

Table 2.23  XContext Register Field Descriptions when Config3.CTXTC = 1 (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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2.2.2.8 PageMask (CP0 Register 5, Select 0)

Every TLB entry has an independent virtual-address mask that allows it to ignore some address bits when deciding to 
match. By selectively ignoring lower page addresses, the entry can be made to match all the addresses in a "page" 
larger than 4KB. 

Software can determine the maximum page size supported by writing all ones to the PageMask register, then reading 
the value back. If a pair of bits reads back as ones, the processor implements that page size. Note that the bits are read 
in pairs, so bits 14:13 are read first and can have only a value of 00 or 11. If they are both 11, bits 16:15 are read, and 
so on.

The operation of the processor is UNDEFINED if software loads the Mask field with a value other than one of those 
listed in Table 2.26, even if the hardware returns a different value on read. Hardware may depend on this requirement 
in implementing hardware structures.

VirtualIndex 38:2 A mask of 0 to 37 contiguous 1 bits in this field causes the corre-
sponding bits of the XContext register to be written with the high-
order bits of the virtual address causing a TLB exception.
Behavior of the processor is UNDEFINED if non-contiguous 1 
bits are written into the register field. Note that it is the responsi-
bility of software to ensure that this field is written with contigu-
ous ones because if non-contiguous 1 bits are written, no exception 
will be taken.

R/W 0x1F_FFFF
_FFFC

0 1:0 Ignored on write; returns zero on read. R 0

Table 2.24  XContextConfig Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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Figure 2.21 PageMask Register Format   

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading the 
value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the proces-
sor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table 2.26, even if 
the hardware returns a different value on read. Hardware may depend on this requirement in implementing hardware 
structures.

2.2.2.9 Page Granularity — PageGrain (CP0 Register 5, Select 1) 

The PageGrain register is a read/write register used for XI/RI TLB protection bits. Figure 2.22 shows the format of 
the PageGrain register. Table 2.27 describes the PageGrain register fields.

63 33 32 13 12 0

0 Mask 0

Table 2.25 Field Descriptions for PageMask Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 63:33 Ignored on write; returns zero on read. R 0

Mask 32:13 The mask field is a bit mask in which a logic “1” indicates that the correspond-
ing bit of the virtual address should not participate in the TLB match. Note that 
only a restricted range of PageMask values are legal (i.e., with "1"s filling the 
PageMaskMask field from low bits upward, two at a time).
Maximum page size is 4 GB. The legal values for this field are shown in Table 
2.26 below.

R/W Undefined

0 12:0 Ignored on write; returns zero on read. R 0

Table 2.26 PageMask Register Values

PageMask Register Value Size of Each Output Page

0x0000_0000_0000.6000 16 Kbytes

0x0000_0000_0001.E000 64 Kbytes

0x0000_0000_0007.E000 256 Kbytes

0x0000_0000_001F.E000 1 Mbyte

0x0000_0000_007F.E000 4 Mbytes

0x0000_0000_01FF.E000 16 Mbytes

0x0000_0000_07FF.E000 64 Mbytes

0x0000_0000_1FFF.E000 256 Mbytes

0x0000_0000_7FFF.E000 1 Gbytes

0x0000_0001_FFFF.E000 4 Gbytes
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Figure 2.22 PageGrain Register Format   

31 30 29 28 27 26 5 4 0

RIE XIE ELPA ESP IEC 0 MCAUSE

Table 2.27 Field Descriptions for PageGrain Register 

Name Bit(s) Description
Read/ 
Write Reset State

RIE 31 Read inhibit enable. This bit is always 1 to indicate that the RI bit of the Entry0 
and Entry1 registers is enabled.

R 1

XIE 30 Execute inhibit enable. This bit is always 1 to indicate that the XI bit of the 
Entry0 and Entry1 registers is enabled.

R 1

ELPA 29 Enables support for large physical addresses. This field is encoded as follows:
0: Large physical address support is disabled.
1: Large physical address support is enabled.
If this bit is a 1, the following changes occur to coprocessor 0 registers:

• The PFNX field of the EntryLo0 and EntryLo1 registers is writable and con-
catenated with the PFN field to form the full page frame number.

• Access to optional COP0 registers with PA extension, LLAddr, TagLo is 
defined. 

If this bit is a 0 and Config3LPA=1, then writes to above registers or fields are 
ignored and reads return 0.

R/W 0

ESP 28 This bit is always 0 as 1K pages are not supported. This bit must be written with 
0.

R 0

IEC 27 Enables unique exception codes for the Read-Inhibit and Execute-Inhibit excep-
tions. This bit is always 1 to indicate that Read-Inhibit exceptions use the TLBRI 
exception code, and that Execute-Inhibit exceptions use the TLBXI exception 
code.

R 1

0 26:5 Reserved. Ignored on write; returns zero on read. R 0

MCAUSE 4:0 Machine Check Cause. Only valid after a Machine Check Exception. This field 
indicates the cause of the machine check exception and it encoded as follows:
0x0: No Machine Check Reported
0x1: Multiple Hit in TLB(s).
0x2: Multiple Hits in TLB(s) for speculative accesses. The value in EPC might 
not point to the faulting instruction.
0x3: For Dual VTLB and FTLB. A page with EntryHi.EHINV=0 is written into 
FTLB and PageMask is not set to a page size that is supported by the FTLB.
0x4: For Dual VTLB and FTLB. A page with EntryHi.EHINV=0 is written into 
FTLB but the VPN2 field is not consistent with the TLB set selected by the 
Index register.
0x5: For Hardware Page Table Walker and Dual Page Mode of Directory Level 
PTEs - first PTE accessed from memory has PTEVld bit set but second PTE 
accessed from memory does not have PTEVld bit set.
0x6: For Hardware Page Table Walker and derived Huge Page size is power-of-
4 but Dual Page mode not implemented.
0x7 - 0x31: Reserved.

R 0
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2.2.2.10 Wired (CP0 Register 6, Select 0)

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the 
TLB as shown in Figure 2.28. Wired entries are fixed, non-replaceable entries that cannot be overwritten by a 
TLBWR instruction. Wired entries can be overwritten by a TLBWI instruction.

Note that wired entries in the TLB must be contiguous and start from 0. For example, if the Wired field of this register 
contains a value of 5, this indicates that entries 4, 3, 2, 1, and 0 of the VTLB are wired. Release 6 adds the Limit field. 
The intent of a non-zero value for this field is to place a limit on the number of wired entries in a TLB such that non-
wired entries may be shared. If the Limit field is greater than 0, and software attempts to wire an entry greater than 
the value programmed into the Limit field, the write is ignored. The Wired register is reset to zero by a Reset excep-
tion. 

Hardware will drop any attempt to write the Wired.Wired field with a value greater than either the number stored in 
the Limit field, or the number of VTLB entries.Wired can be set to a non-zero value to prevent the random replace-
ment of up to 63 VTLB pages.

Figure 2.23 Wired Register Format  

2.2.2.11 Bad Virtual Address — BadVAddr (CP0 Register 8, Select 0)

The 64-bit BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the 
following exceptions: 

• Address error (AdEL or AdES)

31 21 20 16 15 6 5 0

0 Limit 0 Wired

Table 2.28 Field Descriptions for Wired Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 31:21 Ignored on write; returns zero on read. R 0

Limit 20:16 Limit field. This field indicates the maximum number of entries that can be 
wired, which in the P6600 core is 31. Values above 31 are ignored and the value 
in this field is truncated to 0x1F.

However, if the value in the Limit field is 0, hardware will allow all writes to the 
Wired field as long as the value being written is less than the total number of 
TLB entries.

R 0x1F

0 15:6 Ignored on write; returns zero on read. R 0

Wired 5:0 Defines the number of wired dual entries in the VTLB. A value of 0 in this field 
indicates that no TLB entries are hard wired. A value of 0x1F indicates that all 
31 VTLB entries are hard wired. 

This field is encoded as follows:
0x00: 0 VTLB entries are hardwired
0x01: 1 VTLB entry is hardwired
0x02: 2 VTLB entries are hardwired
......
0x1F: 31 VTLB entries are hardwired

R/W 0
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• TLB Refill

• TLB Invalid (TLBL, TLBS)

• TLB Read Inhibit (TLBRI)

• TLB Execute Inhibit (TLBXI)

• TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing 
errors.

There is more information about this register in the notes to the CauseExcCode field.

Figure 2.24 BadVAddr Register Format   

2.2.2.12 PWBase Register (CP0 Register 5, Select 5)

The PWBase register contains the Page Table Base virtual address, used as the starting point for hardware page table 
walking. It is used in combination with the PWField and PWSize registers. The existence of this register is indicated 
when Config3PW = 1. For more information on page table walking, refer to Chapter 3 of this manual.

Figure 2.25 shows the format of the PWBase register; Table 2.30 describes the PWBase register fields.

Figure 2.25 PWBase Register Format

63 0

BadVAddr

Table 2.29 BadVAddr Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

BadVAddr 63:0 Bad virtual address. This register stores the virtual address that causes one 
of the TLB exceptions listed above.

R Undefined

63 0

PWBase

Table 2.30 PWBase Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

PWBase 63:0 Page Table Base address pointer. R/W 0
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2.2.2.13 PWField Register (CP0 Register 5, Select 6)

The PWField register configures hardware page table walking for TLB refills. It is used in combination with the 
PWBase and PWSize registers. 

The hardware page walker supports multi-level page tables - up to four directory levels plus one page table level. The 
lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a Page Table 
(PT) and is indexed using bits from the faulting address. A single-level page table system contains only a single Page 
Table.

A multi-level page table system consists of multiple levels, the lowest level being the Page Table Entries. Levels 
above the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each pointer 
in a directory is either to another directory or to a Page Table. 

The Page Table and the Directories are indexed by bits extracted from the faulting address. The PWBase register con-
tains the base address of the first Directory or Page Table which will be accessed. The PWSize register specifies the 
number of index bits to be used for each level. The PWField register specifies the location of the index fields in the 
faulting address. This PWField register only exists if Config3PW = 1. 

If a synchronous exception condition is detected on a read operation during hardware page-table walking, the auto-
mated process is aborted and a TLB Refill exception is taken. 

Figure 2.26 shows the formats of the PWField Register; Table 2.31 describes the PWField register fields.

Figure 2.26 PWField Register Format   
63 38 37 32

0 BDI

31 30 29 24 23 18 17 12 11 6 5 0

0 GDI UDI MDI PTI PTEI

Table 2.31 PWField Register Field Descriptions 

Fields

Description
Read / 
Write

Reset 
StateName Bits

0 63:38 Must be written as zero; returns zero on read. R 0

BDI 37:32 Base Directory index. Least significant bit of the index field extracted from the 
faulting address, which is used to index into the Base Directory. The number of 
index bits is specified by PWSize.BDW.

R 0x0

GDI 29:24 Global Directory index. Least significant bit of the index field extracted from 
the faulting address, which is used to index into the Global Directory. The num-
ber of index bits is specified by PWSizeGDW.
This register must contain a value greater than 0x0C at all times. The entire 
write is dropped if the write value to this field is less than 12 decimal.

R/W 0xC
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Note that the PTEI field can be incorrectly programmed so that the entire PFN, C, V, G TLB fields are overwritten 
with zeros by the logical right shift operation. The intention of this facility is to only remove the SW-only bits of the 
PTE from the value which will be later written into the TLB. 

UDI 23:18 Upper Directory index. Least significant bit of the index field extracted from 
the faulting address, which is used to index into the Upper Directory. The num-
ber of index bits is specified by PWSizeUDW.
This register must contain a value greater than 0x0C at all times. The entire 
write is dropped if the write value to this field is less than 12 decimal.

R/W 0xC

MDI 17:12 Middle Directory index. Least significant bit of the index field extracted from 
the faulting address, which is used to index into the Middle Directory. The 
number of index bits is specified by PWSizeMDW.
This register must contain a value greater than 0x0C at all times. The entire 
write is dropped if the write value to this field is less than 12 decimal.

R/W 0xC

PTI 11:6 Page Table index. Least significant bit of the index field extracted from the 
faulting address, which is used to index into the Page Table. The number of 
index bits is specified by PWSizePTW.
This register must contain a value greater than 0x0C at all times. The entire 
write is dropped if the write value to this field is less than 12 decimal.

R/W 0xC

PTEI 5:0 Page Table Entry shift. 
Specifies the logical right shift and rotation which will be applied to Page Table 
Entry values loaded by hardware page table walking.

The entire PTE is logically right shifted by PTEI-2 bits first. The purpose of 
this shift is to remove the software-only bits from what will be written into the 
TLB entry. Then the two least-significant bits of the shifted value are rotated 
into position for the RI and XI protection bit locations within the TLB entry. 

A value of 2 means rotate the right-most 2 bits into the RI/XI bit positions for 
the TLB entry. 

A value of 3 means logical shift right by 1 bit the entire PTE and then rotate the 
right-most 2 bits into the RI/XI positions for the TLB entry. A value of 4 means 
logical shift right by 2bits the entire PTE and then rotate the right-most 2 bits 
into the RI/XI positions for the TLB entry. 

In the P6600 core, the values of 1 and 0 in this field are RESERVED and 
should not be used; the operation of the page table walker is UNPREDICT-
ABLE for these cases. 

The set of available non-zero shifts is implementation-dependent. Software can 
discover the available values by writing this field. If the requested shift value is 
not available, PTEI will remain unchanged. A shift of zero must be imple-
mented.

R/W 0x2

Table 2.31 PWField Register Field Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits
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2.2.2.14 PWSize Register (CP0 Register 5, Select 7)

The 64-bit PWSize register configures hardware page table walking for TLB refills. It is used in combination with the 
PWBase and PWField registers. For more information on the page table walker, refer to Chapter 3 of this manual.

The hardware page walk feature supports multi-level page tables - up to four directory levels plus one page table 
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a 
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a 
single Page Table.

A multi-level page table system contains multiple levels, the lowest of which are Page Table Entries. Levels above 
the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each pointer in a 
directory is either to another directory or to a Page Table. 

The Page Table and the Directories are indexed by bits extracted from the faulting address BadVAddr. The PWBase reg-
ister contains the base address of the first Directory or Page Table which will be accessed. The PWSize register speci-
fies the number of index bits to be used for each level. The PWField register specifies the location of the index fields 
in BadVAddr.

Index values used to access Directories are multiplied by the 32-bit native pointer size for the refill. When PWSizePS = 
0, the native pointer size is 32 bits (2 bit left shift), and hardware page table walking is applied only when the TLB 
exception would be taken. When PWSizePS = 1, the native pointer size is 64 bits (3 bit left shift), and hardware page 
table walking is applied only when a TLB Refill exception would be taken. 

The index value used to access the Page Table is multiplied by the native pointer size. An additional multiplier (left 
shift value) can be specified using the PWSizePTEW field. This allows space to be allocated in the Page Table structure 
for software-managed fields.

This register only exists if Config3PW = 1. 

Figure 2.27 shows the formats of the PWSize Register; Table 2.32 describes the PWSize register fields.

Figure 2.27 PWSize Register Format   
63 38 37 32

0 BDW

31 30 29 24 23 18 17 12 11 6 5 0

0 PS GDW UDW MDW PTW PTEW

Table 2.32 PWSize Register Field Descriptions 

Fields

Description
Read / 
Write

Reset 
StateName Bits

0 63:38 Must be written as zero; returns zero on read. 0 0

BDW 37:32 Base Directory index. This field is encoded as follows:

0: No read is performed using the base directory index.
0x01 - 0x3F: The number of bits to be extracted from BadVAddr to create an 
index into the base directory. The least significant bit of the field is specified by 
the PWField.BDI field.

R 0x0
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0 31 Must be written as zero; returns zero on read. 0 0

PS 30 Pointer Size. This field determines whether the pointer is loaded with 32-bit 
aligned addresses or 64-bit aligned address and is encoded as follows:

0: 32-bit pointer size. Pointers within Directories are loaded as 32-bit 
addresses. Hardware Page Table Walking is activated only for 32-bit address 
regions, when the TLB Refill vector would be used.
1: 64-bit pointer size. Pointers within Directories are loaded as 64-bit 
addresses. Hardware Page Table Walking is activated only for 64-bit address 
regions, when the XTLB Refill vector would be used.

R/W 0

GDW 29:24 Global Directory index width. This field is encoded as follows:

0: No read is performed using Global Directory index.
0x01 - 0x 3F: A non-zero number in this field indicates the number of bits to be 
extracted from BadVAddr to create an index into the Global Directory. The 
least significant bit of the field is specified by PWFieldGDI.

R/W 0

UDW 23:18 Upper Directory index width.

0: No read is performed using Upper Directory index.
0x01 - 0x 3F: A non-zero number in this field indicates the number of bits to be 
extracted from BadVAddr to create an index into the Upper Directory. The least 
significant bit of the field is specified by PWFieldUDI.

R/W 0

MDW 17:12 Middle Directory index width.

0: No read is performed using Middle Directory index.
0x01 - 0x 3F: A non-zero number in this field indicates the number of bits to be 
extracted from BadVAddr to create an index into the Middle Directory. The 
least significant bit of the field is specified by PWFieldMDI.

R/W 0

PTW 11:6 Page Table index width. This field is encoded as follows:

0: UNPREDICTABLE. A value of 0 in this field causes unpredictable behav-
ior. This field should have a non-zero value. 
1: Number of bits to be extracted from BadVAddr to create an index into the 
Page Table. The least significant bit of the field is specified by PWFieldPTI.

Note that a write of 0 to this bit causes the entire write to be dropped.

R/W 1

PTEW 5:0 Specifies the left shift applied to the Page Table index, in addition to the shift 
required to account for the native data size of the machine.

In the P6600 core, the PTEW field cannot be set to value 1 if PWSizePS = 1. In 
addition, if PWSizePTEW is already set to 1 and PWSizePS is changed from 0 to 
1, hardware forces the PWSizePTEW field to a value to 0 (as a side-effect of 
updating PWSizePS to 1). Therefore, if PWSizePS = 0, then PTEW can be set to 
1, else it is always 0.

R/W 0

Table 2.32 PWSize Register Field Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits
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Table 2.33 describes valid PWSize PS/PTEW and PWCtlHugePg settings. 

2.2.2.15 PWCtl Register (CP0 Register 6, Select 6)

The 32-bit PWCtl register configures hardware page table walking for TLB refills. It is used in combination with the 
PWBase, PWField and PWSize registers. Hardware page table walking is disabled when PWCtlPWEn = 0.

The hardware page walker feature supports multi-level page tables - up to four directory levels plus one page table 
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a 
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a 
single Page Table.

A multi-level page table system supports multiple levels, the lowest of which are Page Table Entries. Levels above 
the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each pointer in a 
directory is either to another directory or to a Page Table. 

The Page Table and the Directories are indexed by bits extracted from the faulting address BadVAddr. The PWBase reg-
ister contains the base address of the first Directory or Page Table which will be accessed. The PWSize register speci-
fies the number of index bits to be used for each level. The PWField register specifies the location of the index fields 
in BadVAddr. The existence of this register is denoted when Config3PW = 1. 

Figure 2.28 shows the formats of the PWCtl Register; Table 2.34 describes the PWCtl register fields.

Table 2.33  PS/PTEW Usage 

PWSizePS PWCtlHugePg PWSizePTEW

Pointer 
Addressing

Directory 
Pointer Size

Non-leaf 
PTE Size

Leaf PTE 
SIze Suggested Use Case

0 0 0 32b 32b N/A 32b 32-bit Compatibility

0 0 1 32b 32b N/A 64b 32-bit PA
32-bit Compatibility

0 1 0 32b 32b 32b 32b 32-bit with Huge Page
Compatibility

0 1 1 32b 64b 64b 64b 32-bit with Huge Pages and PA
32-bit Compatibility

1 0 0 64b 64b N/A 64b 64-bit Base

1 0 1 64b 64b N/A 128b 64-bit with Extended PTE

1 1 0 64b 64b 64b 64b 64-bit with Huge Pages

1 1 1 64b 128b 128b 128b 64-bit with Huge Pages and 
Extended PTE
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Figure 2.28 PWCtl Register Format   

Software enables Huge Pages by setting PWCtlHugePg = 1. Software can disable Huge Pages by setting PWCtlHugePg = 
0. The 6-bit PWCtlPsn field indicates the starting bit position for PTEvld up to bit 64 in the PTE. Software can deter-
mine the supported range by writing ones to PWCtlPsn, then reading the value. 

31 30 29 28 27 26 25 8 7 6 5 0

PWEn PWDirExt 0 XK XS XU 0 DPH HugePg Psn

Table 2.34 PWCtl Register Field Descriptions  

Fields

Description
Read / 
Write

Reset 
StateName Bits

PWEn 31 Hardware Page Table walker enable
If this bit is set, then the Hardware Page Table is enabled. 

R/W 0

PWDirExt 30 PW Indices - PWField and PWSize - extended for 4th directory level - the Base 
level.

R 0

0 29 Reserved, Must be written as zero; returns zero on read. R 0

XK 28 XKSEG kernel address space management. This bit is encoded as follows:
0: xkseg misses generate a TLB miss exception. The hardware page walk is not 
initiated.
1: The page table walker handles xkseg.

R/W 0

XS 27 XSSEG supervisor address space management. This bit is encoded as follows:
0: xsseg misses generate a TLB miss exception. The hardware page walk is not 
initiated.
1: The page table walker handles xsseg accesses.

R/W 0

XU 26 XUSEG user address space management. This bit is encoded as follows:
0: xuseg misses generate a TLB miss exception. The hardware page walk is not 
initiated.
1: The page table walker handles xuseg accesses.

R/W 0

0 25:8 Reserved, Must be written as zero; returns zero on read. R 0

DPH 7 Dual Page format of Huge Page support. This bit is only used when HugePg = 
1. 

If DPH bit is set, then a Huge Page PTE can represent a power-of-4 memory 
region or a 2x power-of-4 memory region. For the first case, one PTE is used 
for even TLB page and the adjacent PTE is used for the odd PTE. For the latter 
case, the Hardware will synthesize the physical addresses for both the even and 
odd TLB pages from the single PTE entry. 

If DPH bit is clear, then a Huge Page PTE can only represent a region that is 2 x 
power-of-4 in size. For this case, the Hardware will synthesize the physical 
addresses for both the even and odd TLB pages from the single PTE entry. 

R/W 0

HugePg 6 Huge Page PTE supported in Directory levels. If this bit is set, then Huge Page 
PTE in non-leaf table (i.e., directory level) is supported.

R/W 0

PSn 5:0 Bit position of PTEvld in Huge Page PTE. Only used when HugePg field is set. R/W 0
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Table 2.35 describes how the HugePg field is used to denote whether Huge Pages are supported or not.

Table 2.36 describes how Huge Pages are represented in the Directory Levels.

Table 2.37 describes the usage of the XK, XS, and XU fields is used to indicate the hardware page walker capability. 

Table 2.35 HugePg Field and Huge Page configurations 

PWCTLHugePg

Type of Entry
Rsvd Field in Non-

leaf entry CommentNon-Leaf Leaf

0 Always Pointer

PTEPTEVld not used

Always PTE

PTEPTEVld not used

X No Huge-Page Support

1 PTEPTEVld = 0 means Pointer 

PTEPTEVld = 1 means Huge Page

Always PTE

PTEPTEVld not used

Must be 0 Huge-Page Support

Table 2.36 Huge Page representation in Directory Levels 

PWCTLDPH

Size of Huge Page

CommentPower of 4 non-Power of 4 

0 Not Allowed

If encountered, HW Page Walker aborts 
and TLB Refill exception is taken. 

Allowed

Even TLB page and Odd TLB page 
entries both derived from single PTE

Huge-Page region can only be 2x 
power-of-4 

1 Allowed 

Two PTEs are read from memory by the 
HW Page Walker to be used for the 
Even and Odd TLB page entries. 

Allowed

Even TLB page and Odd TLB page 
entries both derived from single PTE

Huge-Page region can be any power-of-2
(either power of 4 or 2x power-of-4) 

Table 2.37 PWCtl XK/XS/XU Register Field Configurations

Register Fields
VA Bits Prepended to 
Global Directory Index Hardware Walker CapabilityPWCTLXK PWCTLXS PWCTLXU

0 0 0 None Disabled

0 0 1 None xuseg

0 1 0 --- Reserved. Not supported in the P6600 core.

0 1 1 62 xuseg and xsseg

1 0 0 --- Reserved. Not supported in the P6600 core.

1 0 1 63 xuseg and xkseg

1 1 0 --- Reserved. Not supported in the P6600 core.

1 1 1 63:62 xuseg, xsseg, xkseg



 

100 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.3 Exception Control Registers

This section contains the following exception control registers.

• Section 2.2.3.1, "Cause (CP0 Register 13, Select 0)" on page 100

• Section 2.2.3.2, "Exception Program Counter — EPC (CP0 Register 14, Select 0)" on page 104

• Section 2.2.3.3, "Error Exception Program Counter — ErrorEPC (CP0 Register 30, Select 0)" on page 104

• Section 2.2.3.4, "BadInstr Register (CP0 Register 8, Select 1)" on page 105

• Section 2.2.3.5, "BadInstrP Register (CP0 Register 8, Select 2)" on page 106

Also refer to the Interrupt Control register in Section 2.2.1.12, "Interrupt Control — IntCtl (CP0 Register 12, Select 
1)" on page 76.

2.2.3.1 Cause (CP0 Register 13, Select 0)

The Cause register describes the cause of the most recent exception and controls software interrupt requests and the 
vector through which interrupts are dispatched. With the exception of the IP1:0, DC, IV, and WP fields, all fields in the 
Cause register are read-only. IP7:2 are interpreted as the Requested Interrupt Priority Level (RIPL) in External Inter-
rupt Controller (EIC) interrupt mode.

Figure 2.29 Cause Register Format  

 

31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP FDCI 0 IP7-2 IP1-0 0 ExcCode 0

Table 2.38 Field Descriptions for Cause Register 

Name Bit(s) Description
Read/ 
Write Reset State

BD 31 Indicates whether the last exception taken occurred in a branch delay slot.
0: Exception taken was not in delay slot
1: Exception taken was in delay slot
The processor updates BD only if the EXL bit in the Status register was zero 
when the exception occurred.
If the exception occurred in a branch delay slot, the exception program counter 
(EPC) is set to restart execution at the branch. Software should read this bit to 
determine if the exception was taken in a delay slot. 

R Undefined

TI 30 Timer Interrupt. Denotes whether a timer interrupt is pending (analogous to the 
IP bits for other interrupt types)
0: No timer interrupt is pending
1: Timer interrupt is pending
Hardware sets this bit based on the state of the external SI_TimerInt signal. See 
also the descriptions of the Count and Compare registers.

R Undefined
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CE 29:28 Coprocessor unit number referenced when a Coprocessor Unusable exception is 
taken. This field is loaded by hardware on every exception, but is UNPRE-
DICTABLE for all exceptions except Coprocessor Unusable.
00: Coprocessor 0
01: Coprocessor 1
10: Coprocessor 2 (not supported in P6600)
11: Coprocessor 3 (not supported in P6600)

R Undefined

DC 27 Disable Count register. In some power-sensitive applications, the Count register 
is not used but may still be the source of some noticeable power dissipation. 
This bit allows the Count register to be stopped in such situations. For example, 
this can be useful during low-power operation following a wait instruction.
0: Enable counting of Count register
1: Disable counting of Count register

R/W 0

PCI 26 Performance Counter Interrupt. Indicates whether a performance counter inter-
rupt is pending (analogous to the IP bits for other interrupt types).
0: No performance counter interrupt is pending
1: Performance counter interrupt is pending
See also the description of the PerfCnt registers. 

R Undefined

0 25:24 Reserved. Write as zero. Ignored on reads. R 0

IV 23 Indicates whether an interrupt exception uses the general exception vector or a 
special interrupt vector:
0: Use the general exception vector (0x180)
1: Use the special interrupt vector (0x200)
When the IV bit in the Cause register is 1 and the BEV bit in the Status register is 
0, the special interrupt vector represents the base of the vector interrupt table.

R/W Undefined

WP 22 Indicates that a watch exception was deferred because either the StatusEXL bit or 
the StatusERL bit was a logic ‘1’ at the time the watch exception was detected. 
This bit both indicates that the watch exception was deferred, and causes the 
exception to be initiated when StatusEXL and StatusERL are both zero. As such, 
software must clear this bit as part of the watch exception handler to prevent a 
watch exception loop.
Software should never write a 1 to this bit when its value is a 0, thereby causing 
a 0-to-1 transition. If such a transition is caused by software, it is UNPRE-
DICTABLE whether hardware ignores the write, accepts the write with no side 
effects, or accepts the write and initiates a watch exception once StatusEXL and 
StatusERL are both zero. Software should clear this bit, but never set it. It is set 
by hardware.

R/W Undefined

FDCI 21 Fast Debug Channel Interrupt: This bit denotes whether an FDC interrupt is 
pending (analogous to the IP bits for other interrupt types).
0: No FDC interrupt is pending
1: FDC interrupt is pending
This bit is set by hardware based on the state of the external SI_FDCInt signal.

R Undefined

0 20:16 Reserved. Write as zero. Ignored on reads. R 0

Table 2.38 Field Descriptions for Cause Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State



 

102 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

IP7-2
RIPL

15:10 Indicates an interrupt is pending. 
If External Interrupt Controller (EIC) mode is disabled (Config3VEIC = 0), timer 
interrupts are combined in a system-dependent way with any hardware interrupt. 
Each bit of this field maps to an individual hardware interrupt.

If EIC interrupt mode is enabled (Config3VEIC = 1), these bits take on a different 
meaning and are interpreted as the Requested Interrupt Priority Level (RIPL) 
field.
When EIC interrupt mode is enabled, this field (RIPL) contains the encoded (0 - 
63) value of the requested interrupt. A value of zero indicates that no interrupt is 
requested.

R Undefined

IP1-0 9:8 Controls the request for software interrupts: 

These bits are exported to an external interrupt controller for prioritization in 
EIC interrupt mode with other interrupt sources. The state of these bits are 
driven onto the external SI_SWInt[1:0] bus.

R/W Undefined

0 7 Reserved. Write as zero. Ignored on reads. R 0

ExcCode 6:2 Encodes the cause of the last exception as described in Table 2.39. R Undefined

0 1:0 Reserved. Write as zero. Ignored on reads. R 0

Table 2.39 Exception Code Values in ExcCode Field of Cause Register 

Value
(decimal)

Value
(hex) Code Description

0 0x0 Int Interrupt

1 0x1 Mod Store, but page marked as read-only in the TLB

2 0x2 TLBL Load or fetch, but page not present or marked as invalid in the TLB

3 0x3 TLBS Store, but page not present or marked as invalid in the TLB

4 0x4 AdEL Address error on load/fetch or store respectively. Address is either wrongly aligned, or a 
privilege violation.5 0x5 AdES

6 0x6 IBE Bus error signaled on instruction fetch

7 0x7 DBE Bus error signaled on load/store (imprecise)

Table 2.38 Field Descriptions for Cause Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State

Bit Name Meaning

15 IP7 Hardware interrupt 5
14 IP6 Hardware interrupt 4
13 IP5 Hardware interrupt 3
12 IP4 Hardware interrupt 2
11 IP3 Hardware interrupt 1
10 IP2 Hardware interrupt 0

Bit Name Meaning

9 IP1 Request software interrupt 1
8 IP0 Request software interrupt 0
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8 0x8 Sys System call, i.e. syscall instruction executed.

9 0x9 Bp Breakpoint, i.e. break instruction executed. If an SDBBP instruction is executed while 
the processor is running in EJTAG Debug Mode, this value is written to the 
DebugDExcCode field to denote an SDBBP in Debug mode. 

10 0xA RI Reserved instruction. Instruction code not recognized (or not legal)

11 0xB CpU Coprocessor Unusable Exception. Instruction code was for a co-processor which is not 
enabled in StatusCU3-0.

12 0xC Ov Overflow exception. Overflow from a trapping variant of integer arithmetic instructions.

13 0xD Tr Trap exception. Condition met on one of the conditional trap instructions teq etc.

14 0xE MSAFPE MSA floating point unit exception.

15 0xF FPE Floating point unit exception — more details in the FPU control/status registers.

16 0x10 TLBPAR TLB parity error exception.

17 - 18 0x11 - 0x12 - Available for implementation-dependent use.

19 0x13 TLBRI TLB read inhibit exception.

20 0x14 TLBXI TLB execute inhibit exception.

21 0x15 MDADi MSADi exception.

22 0x16 - Reserved.

23 0x17 WATCH Instruction or data reference matched a watchpoint. Refer to WatchHi/WatchLo address.

24 0x18 MCheck Machine check exception.

25 0x19 - Reserved

26 0x1A DSPDis DSP ASE not enabled or not present exception. This exception occurs when trying to run 
an instruction from the MIPS DSP ASE, but the ASE is either not enabled or not avail-
able. If this exception occurs and the DSP ASE is present in the system, check the state 
of the StatusMX bit to make sure it is set to ‘1’. This value is not used in the P6600 core.

27 0x1B GE Hypervisor Exception (Guest Exit). GE is set to 1 in following cases:
- Hypervisor-intervention exception occurred during guest mode execution. 
- Hypercall executed in root mode 
GuestCtl0GExcCode contains additional cause information. 

28 29 0x1C - 0x1D - Reserved.

30 0x1E CacheErr Parity/ECC error occurred somewhere in the P6600 core, on either an instruction fetch, 
load, or cache refill. This exception does not occur during normal operation, but can 
occur while in debug mode. Refer to Section 2.2.8.1 “Debug (CP0 Register 23, Select 
0)” for more information.

31 0x1F - Reserved.

Table 2.39 Exception Code Values in ExcCode Field of Cause Register (continued)

Value
(decimal)

Value
(hex) Code Description
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2.2.3.2 Exception Program Counter — EPC (CP0 Register 14, Select 0)

Following an exception other than an error or debug exception, the 64-bit Exception Program Counter (EPC) contains 
the address at which processing resumes after the exception has been serviced (the corresponding debug and error 
exception use DEPC and ErrorEPC respectively).

Unless the EXL bit in the Status register is set (indicating, among other things, that interrupts are disabled), the proces-
sor writes the EPC register when an exception occurs.

• For synchronous (precise) exceptions, EPC contains either:

• The virtual address of the instruction that was the direct cause of the exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing 
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set. 

• For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the eret instruction.

Figure 2.30 EPC Register Format  

2.2.3.3 Error Exception Program Counter — ErrorEPC (CP0 Register 30, Select 0)

The 64-bit ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error 
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program 
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

This full 32-bit register is filled with the restart address on a cache error exception or any kind of CPU reset — in fact, 
any exception which sets StatusERL and leaves the CPU in "error mode".  

63 0

EPC

Table 2.40 EPC Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

EPC 63:0 Exception Program Counter. R/W Undefined

Figure 2.31 ErrorEPC Register Format

63 0

ErrorEPC
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2.2.3.4 BadInstr Register (CP0 Register 8, Select 1)

The 32-bit BadInstr register is a read-only register that captures the most recent instruction which caused one of the 
following exceptions:

• Instruction validity

Coprocessor Unusable, Reserved Instruction

• Execution Exception

Integer Overflow, Trap, System Call, Breakpoint, Floating Point, Coprocessor 2 exception

• Addressing

Address Error, TLB or XTLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

The BadInstr register is provided to allow acceleration of instruction emulation. The BadInstr register is only set by 
exceptions which are synchronous to an instruction. The BadInstr register is not set by Interrupts, NMI, Machine 
check, Bus Error or Cache Error exceptions. The BadInstr register is not set by Watch or EJTAG exceptions.

When a synchronous exception occurs for which there is no valid instruction word (for example TLB Refill - Instruc-
tion Fetch), the value stored in BadInstr is UNPREDICTABLE. Presence of the BadInstr register is indicated by the 
Config3BI bit.

Figure 2.32 shows the format of the BadInstr register; Table 2.42 describes the BadInstr register fields.

Figure 2.32 BadInstr Register Format

Table 2.41 ErrorEPC Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

ErrorEPC 63:0 Error Exception Program Counter. R/W Undefined

31 0

BadInstr

Table 2.42 BadInstr Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

BadInstr 31:0 Faulting instruction word. 
Instruction words smaller than 32 bits are placed in bits 15:0, with 
bits 31:16 containing zero. 

R Undefined
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2.2.3.5 BadInstrP Register (CP0 Register 8, Select 2)

The 32-bit BadInstrP register is used in conjunction with the BadInstr register. The BadInstrP register contains the prior 
branch instruction, when the faulting instruction is in a branch delay slot.

The BadInstrP register is updated for these exceptions: 

• Instruction validity

Coprocessor Unusable, Reserved Instruction

• Execution Exception

Integer Overflow, Trap, System Call, Breakpoint, Floating Point, Coprocessor 2 exception

• Addressing

Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

The BadInstrP register is provided to allow acceleration of instruction emulation. The BadInstrP register is only set by 
exceptions which are synchronous to an instruction. The BadInstrP register is not set by Interrupts, NMI, Machine 
check, Bus Error or Cache Error exceptions. The BadInstr register is not set by Watch or EJTAG exceptions.

When a synchronous exception occurs and the faulting instruction is not in a branch delay slot, then the value stored 
in BadInstrP is UNPREDICTABLE. Presence of the BadInstrP register is indicated by the Config3BP bit. 

Figure 2.33 shows the proposed format of the BadInstrP register; Table 2.43 describes the BadInstrP register fields.

Figure 2.33 BadInstrP Register Format

2.2.4 Timer Registers

This section contains the following timer registers.

• Section 2.2.4.1, "Count (CP0 Register 9, Select 0)" on page 107

• Section 2.2.4.2, "Compare (CP0 Register 11, Select 0)" on page 107

31 0

BadInstrP

Table 2.43 BadInstrP Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

BadInstrP 31:0 Prior branch instruction. 
Instruction words smaller than 32 bits are placed in bits 15:0, 
with bits 31:16 containing zero. 

R Undefined
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2.2.4.1 Count (CP0 Register 9, Select 0)

The 32-bit Count register acts as a timer, incrementing at a constant rate. Incrementing of this register occurs whether 
or not an instruction is executed, retired, or any forward progress is made through the pipeline. When enabled by 
clearing the DC bit in the Cause register, the counter increments every other clock (half the clock rate). 

The Count may be stopped in either of the following two circumstances.

• Some implementations may stop Count in the low-power mode, for example, through the wait instruction, but 
only if the CauseDC flag is set to 1. 

• When the device is in debug mode, the Count register can be stopped by setting DebugCountDM. By writing the 
CountDM bit, it is possible to control whether the Count register continues incrementing while the processor is in 
debug mode.

The Count field starts counting from whatever value is loaded into it. However, OS timers are usually implemented by 
leaving Count free-running and writing Compare as necessary. This counter rolls over when reaching it maximum 
value.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor is in debug mode.

Figure 2.34 Count Register Format  

2.2.4.2 Compare (CP0 Register 11, Select 0)

The 32-bit Compare register acts in conjunction with the Count register to implement a timer and timer interrupt func-
tion. When the value of the Count register equals the value of the Compare register, the SI_TimerInt output pin is 
asserted. SI_TimerInt remains asserted until the Compare register is written. 

The SI_TimerInt output can be fed back into the P6600 core on one of the interrupt pins to generate an interrupt. Tradi-
tionally, this has been done by multiplexing it with hardware interrupt 5 in order to set interrupt bit IP(7) in the Cause 
register. 

For diagnostic purposes, the Compare register is a read/write register. In normal use however, the Compare register is 
write-only. As a side effect, writing a value to this register clears the timer interrupt.

31 0

Count

Table 2.44 Count Register Field Description

Fields

Description Read / Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined
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Figure 2.35 Compare Register Format  

2.2.5 Cache Management Registers

This section contains the following cache management registers.

• Section 2.2.5.1, "Level 1 Instruction Cache Tag Low — ITagLo (CP0 Register 28, Select 0)" on page 108

• Section 2.2.5.2, "Level 1 Instruction Cache Tag High — ITagHi (CP0 Register 29, Select 0)" on page 110

• Section 2.2.5.3, "Level 1 Instruction Cache Data Low — IDataLo (CP0 Register 28, Select 1)" on page 111

• Section 2.2.5.4, "Level 1 Instruction Cache Data High — IDataHi (CP0 Register 29, Select 1)" on page 111

• Section 2.2.5.5, "Level 1 Data Cache Tag Low — DTagLo (CP0 Register 28, Select 2)" on page 112

• Section 2.2.5.6, "Level 1 Data Cache Data Low — DDataLo (CP0 Register 28, Select 3)" on page 115

• Section 2.2.5.7, "Level 2/3 Cache Tag Low — L23TagLo (CP0 Register 28, Select 4)" on page 116

• Section 2.2.5.8, "Level 2/3 Cache Data Low — L23DataLo (CP0 Register 28, Select 5)" on page 117

• Section 2.2.5.9, "Level 2/3 Cache Data High — L23DataHi (CP0 Register 29, Select 5)" on page 118

• Section 2.2.5.10, "ErrCtl (CP0 Register 26, Select 0)" on page 118

• Section 2.2.5.11, "Cache Error — CacheErr (CP0 Register 27, Select 0)" on page 120

2.2.5.1 Level 1 Instruction Cache Tag Low — ITagLo (CP0 Register 28, Select 0) 

The 64-bit ITagLo register acts as the interface to the instruction cache tag array. The Index Store Tag and Index Load 
Tag operations of the CACHE instruction use the ITagLo register as the source of tag information. 

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In 
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array. 

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag 
operations.

The interpretation of this register changes depending on the setting s of ErrCtlWST and ErrCtlSPR. 

31 0

Compare

Table 2.45 Compare Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W 0xFFFF_FFFF
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• Default cache interface mode (ErrCtlWST = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1)

See the diagrams below for a description.

ITagLo (ErrCtlWST = 0) 

In this mode, this register is a staging location for cache tag information being read/written with cache load-tag/
store-tag operations—routinely used in cache initialization. 

Figure 2.36 ITagLo Register Format (ErrCtlWST = 0)    

ITagLo-WST (ErrCtlWST = 1)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access the data in these fields either by cache load-tag or store-tag operations when ErrCtlWST is set. 

63 40 39 32

0 PTagLo

31 12 11 8 7 6 5 4 1 0

PTagLo 0 V 0 L 0 P

Table 2.46 Field Descriptions for ITagLo Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 63:40 Must be written as zero; returns zero on read. R 0

PTagLo 39:12 The cache address tag, which is a physical address because the P6600’s caches 
are physically tagged. It holds bits 40:16 of the physical address. The low-order 
16 bits of the address are implied by the position of the data in the cache.

R/W Undefined

0 11:8 Must be written as zero; returns zero on read. R 0

V 7 Set to 1 if this cache entry is valid (set to zero to initialize the cache). R/W Undefined

0 6 Must be written as zero; returns zero on read. R 0

L 5 Specifies the lock bit for the cache tag. This bit is set to lock this cache entry, 
preventing it from being replaced by another line when a cache miss occurs. 
When this bit is set, and the V bit is set, the corresponding cache line will not be 
replaced by the cache replacement algorithm.
This can be used for critical data that must not be removed from the cache. How-
ever, this can reduce the efficiency of the cache for memory data competing for 
space at this index. 

R/W Undefined

0 4:1 Must be written as zero; returns zero on read. R 0

P 0 Parity bit over the cache tag entries. This bit is updated with tag array parity on 
CACHE Index Load Tag operations and used as tag array parity on Index Store 
Tag operations when the PO bit of the ErrCtl register is set.

R/W Undefined
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Figure 2.37 ITagLo Register Format (ErrCtlWST = 1)    

2.2.5.2 Level 1 Instruction Cache Tag High — ITagHi (CP0 Register 29, Select 0)

This register represents the I-cache Predecode bits and is intended for diagnostic use only.  

63 32

0

31 16 15 10 9 0

0 LRU 0

Table 2.47 Field Descriptions for ITagLo-WST Register

Name Bit(s) Description
Read/ 
Write Reset State

0 63:16 Must be written as zero; returns zero on read. R/W Undefined

LRU 15:10 LRU bits. This field contains the value read from the WS array after a 
CACHE Index Load WS operation. It is used to store into the WS array 
during CACHE Index Store WS operations.
When reading or writing the tag in way-select test mode (that is, with 
ErrCtlWST set), this field reads or writes the LRU ("least recently used") 
state bits, held in the way-select RAM. 

R/W Undefined

0 9:8 Must be written as zero; returns zero on read. R 0

Figure 2.38 ITagHi Register Format

31 25 24 18 17 11 10 4 3 2 1 0

PREC_67 PREC_45 PREC_23 PREC_01 P_67 P_45 P_23 P_01

Table 2.48 Field Descriptions for ITagHi Register

Name Bit(s) Description
Read/ 
Write Reset State

PREC_67 31:25 P6600 family cores do some decoding of instructions when they’re loaded into 
the I-cache, which helps speed instruction dispatch. When you use cache tag 
load/store instructions, you see that information here.
The individual PREC fields hold precode information for pairs of adjacent 
instructions in the I-cache line, and the P fields hold parity over them. 

R/W Undefined

PREC_45 24:18 R/W Undefined

PREC_23 17:11 R/W Undefined

PREC_01 10:4 R/W Undefined

P_67 3 R/W Undefined

P_45 2 R/W Undefined

P_23 1 R/W Undefined

P_01 0 R/W Undefined
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2.2.5.3 Level 1 Instruction Cache Data Low — IDataLo (CP0 Register 28, Select 1)

The IDataLo register is a register that acts as the interface to the instruction cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values 
into the IDataLo register. If the WST bit in the ErrCtl register is set, then the contents of IDataLo can be written to the 
cache data array by doing an Index Store Data CACHE instruction. 

Two registers (IDataHi, IDataLo) are needed, because the P6600 core loads I-cache data at least 64 bits at a time.   

2.2.5.4 Level 1 Instruction Cache Data High — IDataHi (CP0 Register 29, Select 1)

The IDataHi register is a register that acts as the interface to the cache data array and is intended for diagnostic opera-
tions only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the 
IDataHi register. If the WST bit in the ErrCtl register is set, then the contents of IDataHi can be written to the cache data 
array by doing an Index Store Data CACHE instruction. 

Because the interface to the I-cache only operates on pairs of instructions, two registers (IDataHi, IDataLo) are needed 
because the P6600 core loads I-cache data at least 64-bits at a time. The high instruction is written into the IDataHi 
register. Note that IDataHi and IDataLo reflect the memory ordering of the instructions. Depending on the endianness 
of the system, Instruction0 belongs in either IDataHi (BigEndian) or IDataLo (LittleEndian) and vice versa for 
Instruction1.  

Figure 2.39 IDataLo Register Format

31 0

DATA

Table 2.49 IDataLo Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

Figure 2.40 IDataHi Register Format

31 0

DATA

Table 2.50 IDataHi Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined
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2.2.5.5 Level 1 Data Cache Tag Low — DTagLo (CP0 Register 28, Select 2)

The 64-bit DTagLo register acts as the interface to the data cache tag array. The Index Store Tag and Index Load Tag 
operations of the CACHE instruction use the DTagLo register as the source of tag information. 

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In 
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag 
operations. 

The D-cache has five logical memory arrays associated with this DTagLo register. The tag RAM stores tags and other 
state bits with special attention to the needs of the CPU. The duplicate tag RAM also stores tags and state, but is opti-
mized for the needs of interventions. Both of these arrays are set-associative (4-way). The Dirty RAM and duplicate 
Dirty RAM store the dirty bits (indicating modified data) for intervention uses, and each combine their ways together 
in a single entry per set. The WS RAM also combines the lock and LRU data in a single entry per set. Accessing these 
arrays for index cache loads and stores is controlled by using three bits in the ErrCtl register to create modes that 
allow the correct access to these arrays.

Note that the P6600 core does not implement the DTagHi register.

The interpretation of this register changes depending on the settings of ErrCtlWST and ErrCtlDYT. 

• Default cache interface mode (ErrCtlWST = 0, ErrCtlDYT = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1, ErrCtlDYT = 0)

• Diagnostic "dirty array test mode" (ErrCtlWST = 0, ErrCtlDYT = 1)

For all modes, the data RAM, tag RAM, WS RAM, and duplicate tag RAM are read. In addition, for duplicate tag 
array test mode, the duplicate tag RAM is also read, and for duplicate dirty array test mode, the duplicate Dirty RAM 
is read. Table 2.51 shows which RAMs are accessed for each mode for Loads and Stores. 

Table 2.51 Summary of D-cache RAM accesses for Index Loads and Stores 

Index 
Cacheop

Mode RAM Being Accessed

WST DYT
Primary 
Tag RAM WS RAM Data RAM

Dirty 
RAM

Duplicate 
Tag RAM

Duplicate 
Dirty 
RAM

Tag Store 0 0 WR partial WR RD — WR —

Tag Load 0 0 RD RD RD RD — —

Tag Store 1 0 — partial WR RD — — —

Tag Load 1 0 RD RD RD RD — —

Data Store 1 0 — — WR — — —

Tag Store 0 1 — — RD WR — WR

Tag Load 0 1 RD RD RD RD — —
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DTagLo (ErrCtlWST = 0, ErrCtlDYT = 0)

In this mode, this register is a staging location for cache tag information being read/written with cache load-tag/
store-tag operations—routinely used in cache initialization. For stores in this mode, the tag RAM, WS RAM, and 
duplicate tag RAM are written. Also for stores, the ErrCtlPO bit controls whether the tag RAM is written with P bit or 
with generated parity; the other RAMs written in this mode always use generated parity. 

Figure 2.41 DTagLo Register Format (ErrCtlWST = 0, ErrCtlDYT = 0) 

 

63 40 39 12 11 10 8 7 6 5 4 1 0

Unused PTagLo 
(40-bit address mode) VA11 0 V E L 0 P

Table 2.52 Field Descriptions for DTagLo Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 63:40 Unused R/W Undefined

PTagLo 39:12 The cache address tag — a physical address because the P6600 caches 
are physically tagged. It holds bits 39:12 of the physical address. The low 
12 bits of the address are implied by the position of the data in the cache. 

R/W Undefined

VA11 11 This bit always gets the virtual address bit [11] of the tag if the index load 
tag cache instruction is executed. 

R/W Undefined

0 10:8 Reserved. Write as zero. Ignored on reads. R 0

V 7 Valid entry: This bit is set if this cache entry is valid (set zero to initialize 
the cache). 
Index Load: load from V field in primary tag RAM
Index Store: store to V field in primary and duplicate tag RAM

R/W Undefined

E 6 Exclusive entry: This bit is set if this cache entry is exclusive (set zero to 
initialize the cache). 
Index Load: load from E field in primary tag RAM
Index Store: store to E field in primary tag RAM

R/W Undefined

L 5 Locked entry: This bit is set to lock this cache entry, preventing it from 
being replaced by another line when there’s a cache miss. Done when you 
have data so critical that it must be in the cache: it’s quite costly, reducing 
the efficiency of the cache for memory data competing for space at this 
index. 
Index Load: load from appropriate way of L field in WS RAM
Index Store: store to appropriate way of L and LP field in WS RAM, and 
if V is set, make selected way MRU in WS RAM; also, store to L field of 
duplicate tag RAM.

R/W Undefined

0 4:1 Reserved. Write as zero. Ignored on reads. R 0

P 0 Parity bit over the PTAG, E, and V bits of the cache tag entries
Index Load: load from P field in primary tag RAM
Index Store: possible write value for the P field of the primary tag RAM; 
write this bit if ErrCtl.PO = 1, else generate; 
parity written to other RAMs is generated.

R/W Undefined
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DTagLo-WST(ErrCtlWST = 1, ErrCtlDYT = 0)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access either by cache load-tag/store-tag operations when ErrCtlWST is set: then you get the data in these 
fields. For stores in this mode, the WS RAM is written. Also for stores, the ErrCtlPO bit controls whether the WS 
RAM is written with LP bits or with generated parity; the other RAMs written in this mode always use generated par-
ity. Also for stores, the LP and L fields only have the appropriate way written in the WS RAM. It is software’s 
responsibility to maintain consistency with the value of the L field written into the duplicate tag RAM.

Figure 2.42 DTagLo Register Format (ErrCtlWST = 1, ErrCtlDYT = 0)   

DTagLo-DYT (ErrCtlWST = 0, ErrCtlDYT = 1)

The dirty RAM is another slice of the cache memory (distinct from the tag and data arrays). Test software can access 
either by cache load-tag/store-tag operations when ErrCtlDYT is set: then you get the data in these fields. For stores, 
the Dirty RAM is written. For stores, the Dirty RAM and duplicate Dirty RAM are written. Also for stores, the 
ErrCtlPO bit controls whether the Dirty RAM is written with DP bits or with generated parity; the other RAMs written 
in this mode always use generated parity.

63 32

0

31 24 23 20 19 16 15 10 9 0

0 LP L LRU 0

Table 2.53 Field Descriptions for DTagLo-WST Register

Name Bit(s) Description
Read/ 
Write Reset State

0 63:24 Reserved. Write as zero. Ignored on reads. R 0

LP 23:20 Parity for Cache-line locking control bits, held in the way select RAM. 
Each bit of this field is a parity bit for the corresponding bit in the L field.
Index Load: load from LP field of WS RAM
Index Store: store to appropriate way of LP field of WS RAM if 
ErrCtlPO=1,
else generate; 

R/W Undefined

L 19:16 Cache-line locking control bits, held in the way select RAM.
Index Load: load from L field of WS RAM
Index Store: store to appropriate way of L field of WS RAM.

R/W Undefined

LRU 15:10 When reading or writing the tag in way select test mode (that is, with 
ErrCtlWST set) this field reads or writes the LRU ("least recently used") 
state bits, held in the way select RAM. 
Index Load: load from LRU field of WS RAM
Index Store: store to LRU field of WS RAM

R/W Undefined

0 9:0 Reserved. Write as zero. Ignored on reads. R 0
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Figure 2.43 DTagLo-DYT Register Format   

2.2.5.6 Level 1 Data Cache Data Low — DDataLo (CP0 Register 28, Select 3)

In the P6600 core, software can read or write cache data using a cache index load tag/index store data instruction. 
Which word of the cache line is transferred depends on the low address fed to the cache instruction. 

The DDataLo register acts as the interface to the data cache data array and is intended for diagnostic operations only. 
The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the DDataLo regis-
ter. If the WST bit in the ErrCtl register is set, then the contents of DDataLo can be written to the cache data array by 
doing an Index Store Data CACHE instruction. 

63 32

0

31 24 23 20 19 16 15 12 11 10 9 0

0 DP D 0 A 0

Table 2.54 Field Descriptions for DTagLo-DYT Register

Name Bit(s) Description
Read/ 
Write Reset State

0 63:24 Reserved. Write as zero. Ignored on reads. R 0

DP 23:20 Parity for Cache line "dirty" bits.
Index Load: load from DP field of Dirty RAM
Index Store: store to DP field of Dirty RAM if ErrCtlPO=1, else generate;

R/W Undefined

D 19:16 Cache line "dirty" bits.
Index Load: load from D field of Dirty RAM
Index Store: store to D field of Dirty RAM

R/W Undefined

0 15:12 Reserved. Write as zero. Ignored on reads. R 0

A 11:10 Cache line "alias" bits. 
Index Load: load from A field of Dirty RAM
Index Store: store 0 and A[10] to A field of Dirty RAM

R/W Undefined

0 9:0 Reserved. Write as zero. Ignored on reads. R 0

Figure 2.44 DDataLo Register Format

31 0

DATA

Table 2.55 DDataLo Register Field Description 

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined
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2.2.5.7 Level 2/3 Cache Tag Low — L23TagLo (CP0 Register 28, Select 4)

The L23TagLo register acts as the interface to the L2 or L3 cache tag array. The L2 and L3 Index Store Tag and Index 
Load Tag operations of the CACHE instruction use the L23TagLo register as the source of tag information. Note that 
the P6600 CPU does not implement the L23TagHi register.

Figure 2.45 and Table 2.56 describe the fields of L23TagLo as interpreted by the L2 during Index Load Tag and Index 
Store Tag cache-ops. In Figure 2.46, the Tag field is always left justified so system address bit 31 is at L23TagLo[31].

Figure 2.45 L23TagLo Register (Tag Accesses)   

63 40 39 32

0 Tag

31 14 13 9 8 7 6 5 4 0

Tag 0 TP V D L Parity

Table 2.56 L23TagLo Register (Tag Accesses) Field Descriptions 

Fields

Description
Read/
Write Reset StateName Bits

0 63:40 Reserved. Write as zero. Ignored on reads. R 0

Tag 39:14 Tag. R/W Undefined

0 13:9 Reserved. Write as zero. Ignored on reads. R/W Undefined

TP 8 Total Parity. R/W Undefined

V 7 Valid. R/W Undefined

D 6 Dirty. R/W Undefined

L 5 Lock. R/W Undefined

Parity 4:0 Parity. R/W Undefined
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Figure 2.46 L23TagLo Register (WS Accesses)  

2.2.5.8 Level 2/3 Cache Data Low — L23DataLo (CP0 Register 28, Select 5)

The L23DataLo register is a register that acts as the interface to the L2 or L3 cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values 
into the L23DataLo register. If the WST bit in the ErrCtl register is set, then the contents of L23DataLo can be written to 
the cache data array by doing an Index Store Data CACHE instruction. 

The core can be configured without L2/L3 cache support. In this case, this register will be a read-only register that 
reads as 0. 

On P6600 family cores, test software can read or write cache data using a cache index load/store data instruction. 
Which word of the cache line is transferred depends on the low address fed to the cache instruction. 

63 32

0

31 24 23 16 15 9 8 0

DP D LRU 0

Table 2.57 L23TagLo Register (WS Accesses) Field Descriptions 

Fields

Description
Read/
Write Reset StateName Bits

0 63:32 Reserved. Write as zero. Ignored on reads. R/W Undefined

DP 31:24 Dirty Parity. R/W Undefined

D 23:16 Dirty. R/W Undefined

LRU 15:9 LRU algorithm. For Cache-Ops that access the LRU field, the asso-
ciativity impacts the number of LRU bits present and how they 
affect line replacement and refill. The P6600 core supports an 8-
way set associative L2 cache. 

The 8-way configuration uses all bits of the LRU field (15:9), but 
since it is a pseudo-LRU algorithm, the value of the LRU field does 
not directly correspond to the least-to-most order of the 8 ways.

R/W Undefined

0 8:0 Reserved. Write as zero. Ignored on reads. R/W Undefined

Figure 2.47 L23DataLo Register Format

31 0

DATA

Table 2.58 L23DataLo Register Field Description 

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined
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2.2.5.9 Level 2/3 Cache Data High — L23DataHi (CP0 Register 29, Select 5)

On P6600 family cores, test software can read or write cache data using a cache index load/store data instruction. 
Which word of the cache line is transferred depends on the low address fed to the cache instruction. 

2.2.5.10 ErrCtl (CP0 Register 26, Select 0)

Most of the fields of this register are for test software only. The MIPS64 architecture defines this register as imple-
mentation-dependent, but most CPUs put the parity-enable control in the top bit. So running OS software is well 
advised to set this register to 0x8000.0000 to enable cache parity checking, or to zero to disable parity checking. 

Figure 2.49 Error Control Register Format  

 

Figure 2.48 L23DataHi Register Format

31 0

DATA

Table 2.59 L23DataHi Register Field Description 

Fields

Description
Read / 
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the cache data array. R/W Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 4 3 0

PE PO WST 0 PCO 0 LBE WABE L2P PCD DYT SE FE 0 PI PD

Table 2.60 Field Descriptions for ErrCtl Register 

Name Bit(s) Description
Read/ 
Write Reset State

PE 31 This bit is set to 1 to enable cache parity checking and is encoded as follows:
0: Parity disabled
1: Parity enabled

R/W 0

PO 30 Parity Overwrite. Set 1 to set the parity bit regardless of parity computation, 
which is only for diagnostic/test purposes.
After setting this bit you can use cache IndexStoreTag to set the 
cache data parity to the value currently in PI (for I-cache) or PD (for D-cache), 
while the tag parity is forcefully set from ITagLoP/DTagLoP.
0 = User calculated parity
1 = Override calculated parity

R/W 0

WST 29 Write to 1 for test mode for cache IndexLoadTag/
cache IndexStoreTag instructions, which then read/write the cache’s 
internal way-selection RAM instead of the cache tags.

R/W 0

0 28 Reserved. Write as zero. Ignored on reads. This bit should never be set. R/W 0
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PCO 27 Precode override. Used for diagnostic/test of the instruction cache. When this 
bit is set, then the precode values in the ITagHi register are used instead of the 
hardware generated precode values. This applies to index store data cacheop 
operations.

R/W 0

0 26 Reserved. Write as zero. Ignored on reads. R 0

LBE 25 Indicates whether a bus error (the last one, if there’s been more than one) was 
triggered by a load or a write-allocate respectively. A write-allocate is where a 
cacheable write has missed in the cache, and the cache has read the line from 
memory.
Where both a load and write-allocate are waiting on the same cache-line refill, 
both could be set. These bits are "sticky", remaining set until explicitly written 
zero. 

R/W0 Undefined

WABE 24 R/W0 Undefined

L2P 23 L2 cache parity enable. Indicates whether parity is enabled on the L2Cache if 
present. If the L2 cache is not present, this bit has no meaning.
0: L2 cache present, L2 parity disabled
1: L2 cache present, L2 parity enabled

R/W 0

PCD 22 Precode Disable. When set, cache IndexStoreTag instructions do 
not update the corresponding precode field and precode parity in the instruction 
cache tag array. 

R/W 0

DYT 21 Setting this bit allows cache load/store data operations to work on the "dirty 
array" — the slice of cache memory which holds the "dirty"/"stored-into" bits. 

R/W 0

SE 20 Indicates that a second cache or TLB error was detected before the first error 
was processed. This is an unrecoverable error. This bit is set when a cache error 
is detected while the FE bit is set. This bit is cleared on reset or when a cache 
error is detected with FE cleared.

R 0

FE 19 Indicates that this is the first cache or TLB error and therefore potentially 
recoverable. Error handling software should clear this bit when the error has 
been processed. This bit is set by hardware and cleared by software on reset. 
Refer to the SE bit description for implications of this bit. 
Note that software can only write a 0 to this bit. A write value of 1 will not have 
any effect.

R 0

0 18:12 Reserved. Write as zero. Ignored on reads. R 0

PI 11:4 Parity bits per double-word (two instructions) of data being read/written to the 
instruction cache data when the PO bit is set. During a read of IDataHi and 
IDataLo registers, the parity bits are stored here.
This field is updated by hardware on every instruction fetch and also during a 
CacheOp store. 
During a CacheOp store, this field can be used for instruction cache data parity 
error injection apart from the Instruction cache store index.
During a CacheOp read, this field can be used to check/read the instruction 
cache parity bits and also for storing the parity bits when an index load tag is 
executed.

R/W Undefined

PD 3:0 Parity bits being read/written to the data cache when PO is set. R/W 0x0

Table 2.60 Field Descriptions for ErrCtl Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State



 

120 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.5.11 Cache Error — CacheErr (CP0 Register 27, Select 0)

Read-only register used to analyze the details of a parity error. The FTLB parity error sets the EREC field to ‘b11, and 
also sets either the ED or ET bits indicating a data or tag parity error (not both) and then updates the index and way 
fields. The other bits are left as 0. Note that the index field contains the FTLB set and not the index value from the 
Index CP0 register.

Figure 2.50 CacheErr Register Format  

31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 0

EREC ED ET ES EE EB EF 0 EW Way DR 0 Index

Table 2.61 Field Descriptions for CacheErr Register

Name Bit(s) Description
Read/ 
Write Reset State

EREC 31:30 This 2-bit field indicates the block where the error occurred and is encoded as 
follows:
00: L1 instruction cache error
01: External cache error
10: L1 data cache error
11: FTLB parity error
The FTLB parity error sets the EREC field to ‘b11, and sets either the ED or ET 
bits indicating a data or tag parity error (not both). It also updates the Index (bits 
16:0) and Way (bits 21:19) fields. The other bits are left as 0. Note that the index 
field contains the FTLB set and not the index value from the CP0 Index register.

R Undefined

ED 29 The encoding of these two bits depends on the state of the EREC field above. If 
the state of this field contains an encoding of 00, 01, or 10, indicating a cache 
error, the encoding of this field is as shown below.
00: No tag or data RAM error detected
01: Primary tag RAM error
10: Data RAM error
11: Duplicate tag RAM error
A parity error in the FTLB tag sets the ET bit (28), while a parity error in the 
FTLB data sets the ED bit (29). One or both of these bits may be set.

R Undefined

ET 28 R Undefined

ES 27 Error source. In a multi-core system, this bit reads 0 if the error was caused by 
one of the cores and 1 if the error was caused by an external snoop request.
In a single-core system, this bit is not used.

R Undefined

EE 26 Error external: In a multi-core system, this bit indicates that a parity error was 
seen on a coherent L1 cache in another CPU.
In a single-core system, this bit is not used.

R Undefined

EB/EM 25 If EREC equals 0 indicating an error in the L1 cache, this bit is EB, indicating an 
error in Both caches. If data and instruction-fetch errors are reported on the same 
instruction, it is unrecoverable. If so, the rest of the register reports on the 
instruction-fetch error. 
If EREC equals 1, indicating an error in the L2 cache, this bit is EM, indicating 
there are errors in multiple locations in the cache. 

R Undefined
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2.2.6 Shadow Control Registers

Although the P6600 Multiprocessing System does not support thread contexts or shadow registers, the Shadow Reg-
ister Set Control (SRSCtl) register is implemented to allow software to read this register to determine that shadow 
registers are not implemented.

2.2.6.1 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

EF 24 Unrecoverable (fatal) error (other than the EB type above). Some parity errors 
can be fixed by invalidating the cache line and relying on good data from mem-
ory. However, if this bit is set, it indicates the error cannot be fixed. Here are 
some possible scenarios of when the EF bit might be set by hardware:

• Dirty parity error in dirty line being displaced from cache
• Line being displaced from cache has a tag parity error.
• The line being displaced from cache tag indicates it has been written by the 

CPU since it was obtained from memory (the line is "dirty" and needs a write-
back), but it has a data parity error.

• Writeback store miss and CacheErrEW error.
• At least one more cache error happened concurrently with or after this one, 

but before the original error reached the cache error exception handler. 
• If EREC equals 0, and a second L2 error occurs when an earlier L2 error is 

pending.

R Undefined

0 23 Reserved. Write as zero. Ignored on reads. R Undefined

EW 22 Parity error on way-selection RAM array. R Undefined

Way 21:19 If EREC equals 0, bit 19 is unused. Bits 21:20 indicate the way-number of the 
cache entry where the error occurred.
If EREC equals 1, indicating an L2 or higher-level cache error, bits 21:19 indi-
cate the way-number of the cache entry where the error occurred. 
On a FTLB error, bits 20:19 indicate the number of ways in each set. Bit 21 is 
not used on a FTLB error.

R Undefined

DR 18 A 1 bit indicates that the reported error affected the cache-line "dirty" bits. This 
bit is only meaningful in case of an L1 data cache access.

R Undefined

Index 16:0 The cache index or Scratchpad RAM index of the double word entry where the 
error occurred. The way of the faulty cache is written by hardware in the Way 
field. The CacheErr bits [16:0] represents the Address index bits [19:3].
The index-type cache instruction will need an "index" with the way bits glued 
on top of this cache-entry field; you know how to put that together, because the 
shape of the cache is defined in the Config1-2 registers. 
On a TLB error, this field indicates the number of sets in the FTLB. The number 
of bits is implementation dependent and is always right-justified in the Index 
field.

R Undefined

Table 2.61 Field Descriptions for CacheErr Register(continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.51 SRSCtl Register Format   

31 30 29 26 25 0

0 HSS 0

Table 2.62 SRSCtl Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

0 31:30 Must be written as zeros; returns zero on read. 0 0

HSS 29:26 Highest Shadow Set. This field contains the highest shadow set 
number that is implemented by this processor. A value of zero in this 
field indicates that only the normal GPRs are implemented.
Possible values of this field for the P6600 core are:

0x0: One shadow register set present
0x1 - 0xF: Reserved

R Preset

0 25:0 Must be written as zeros; returns zero on read. 0 0
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2.2.7 Performance Monitoring Registers

This section contains the following performance monitoring registers.

• Section 2.2.7.1, "Performance Counter Control 0 - 3 — PerfCtl0-3 (CP0 Register 25, Select 0, 2, 4, 6)" on page 
123

• Section 2.2.7.2, "Performance Counter 0 - 3 — PerfCnt0-3 (CP0 Register 25, Select 1, 3, 5, 7)" on page 132

2.2.7.1 Performance Counter Control 0 - 3 — PerfCtl0-3 (CP0 Register 25, Select 0, 2, 4, 6)

Cores in the P6600 family provide four performance counters that provide the capability to count events or cycles for 
use in performance analysis. Each performance counter consists of a pair of registers: a 32-bit control register 
(PerfCtl) and a 32-bit counter register (PerfCnt). 

Performance counters can be configured to count implementation-dependent events or cycles under a specified set of 
conditions that are determined by the performance counter’s control register. The counter register increments once for 
each enabled event; when the most-significant bit of the counter register is a one (the counter overflows), and the 
counter is enabled, the performance counter optionally requests an interrupt.

The IE flag in the performance counter control register is used to enable an interrupt to be signalled when bit 31 of the 
corresponding counter overflows. The OR of all the performance counter register interrupts becomes the CPU output 
SI_PCI, which is typically fed back into an interrupt input, conventionally identified by IntCtlIPPCI. However, systems 
using more sophisticated interrupt controllers may feed the performance counter interrupt into the interrupt controller.
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Figure 2.52 PerfCtl0-3 Register Format  

31 30 29 25 24 23 22 13 12 5 4 3 2 1 0

M W EC 0 Event IE U S K EXL

Table 2.63 Field Descriptions for PerfCtl0-3 Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 Set to 1 if there is another PerfCtl register after this one. This field is set for 
PerfCtl0-2 and cleared on PerfCtl3.

R 1 for PerfCnt 0 - 2
0 for PerfCnt 3

W 30 Specifies the width of the corresponding Counter register as follows:
0: 32-bit counter width
1: 64-bit counter width

R 0

0 29:25 Reserved. Must be written as zeros; returns zeros on reads. R 0

EC 24:23 Event Class. Root only. Reserved, read-only 0 in all other contexts. The P6600 
may detect the existence of this feature by writing a non-zero value to the field 
and reading. If value read is 0, then EC is not supported. This field is encoded 
as follows:

00: Root events counted (default). Active in Root context.
01: Root intervention events counted, Active in Root context.
10: Guest events counted. Active in Guest context.
11: Guest events plus Root intervention events counted. Active in Guest con-
text. Root will only assign encoding if it wants to give Guest visibility into 
Root intervention events.

Root events are those that occur when GuestCtl0GM = 0.
Root intervention events are those that occur when GuestCtl0GM = 1 and 
!(Root.StatusEXL = 0 and Root.StatusERL = 0 and Root.DebugDM = 0)
Guest events are those that occur when GuestCtl0GM = 1 and Root.StatusEXL = 
0 and Root.StatusERL = 0 and Root.DebugDM = 0

For the case of root intervention mode, PerfCtlU/S/K/EXL are ignored as 
Root.StatusEXL=1 and root must be in kernel mode.

An implementation must qualify existing performance counter events with the 
value of EC. For example, if an event is “Instructions Graduated” and EC = 0, 
then only instructions graduated in root mode are counted.

R/W Undefined

0 22:13 Reserved. Must be written as zeros; returns zeros on reads. R 0

Event 12:5 Determines which event to count. Available events are listed in Table 2.64, 
"Performance Counter Events and Codes". 

R/W Undefined

IE 4 Set to cause an interrupt when the counter overflows into bit 31. This can either 
be used to implement an extended count or (by presetting the counter appropri-
ately) to notify software after a certain number of events have occurred. 

R/W 0

U 3 Count events in User mode. When this bit is set, events can be counted in User 
mode. 

R/W Undefined

S 2 Count events in Supervisor mode. When this bit is set, events can be counted in 
Supervisor mode. 

R/W Undefined

K 1 Count events in Kernel mode. When this bit is set, events can be counted in 
Kernel mode. 

R/W Undefined
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Table 2.64 provides a list of performance counter events as encoded into the Event field in bits 12:5. Note that events 
128 and above are root intervention events, meaning they are only counted if PerfCtl[0-3].EC = 2’b01 of 2’b11. 
Hypercall instructions are also included when EC = 2’b01 or 2’b11. These events are not visible when EC = 2’b10. 

EXL 0 Count events in Exception mode. When this bit is set, events can be counted in 
Exception mode (when StatusEXL is set). 

R/W Undefined

Table 2.64 Performance Counter Events and Codes 

Event 
Number Counter 0/2 Counter 1/3

0 Cycles

1 Instructions graduated

2  jr $31 (return) instructions whose target is pre-
dicted.

jr $31 (return) predicted but guessed wrong.

3 Cycles where no instruction is fetched because it has 
no “next address” candidate. This includes stalls due 
to register indirect jumps such as jr, stalls follow-
ing a wait or eret 
Redirect Stall cycles due to:
• Stalls due to register indirect jumps including non-

predicted JR $31.
• Stalls due to ERET, WAIT instructions.
• Stalls due to IFU determined exception.
and stalls dues to exceptions from instruction fetch

jr $31 (return) instructions fetched and not predicted 
using RPS

4 ITLB accesses. ITLB misses, which result in an MMU access.
ITLB misses seen at the ID stage (this is the same for 
MMU instruction accesses). It is possible that a pending 
ITLB is killed before accessing the MMU.

5 Reserved Reserved

6 Instruction Cache accesses. P6600 cores have a 128-
bit connection to the I-cache and fetch 4 instructions 
every access. This counts every such access, includ-
ing accesses for instructions which are eventually 
discarded. For example, following a branch which is 
incorrectly predicted, the P6600 core will continue to 
fetch instructions, which will eventually get thrown 
away.

Instruction cache misses. Includes misses resulting from 
fetch-ahead and speculation.

7 Cycles where no instruction is fetched because we 
missed in the I-cache. 
I-cache miss stall cycles. This includes the cycles 
where the IFU state machine for a given TC is in the 
miss state. It is possible that multiple TCs requesting 
the same line will all count the same miss cycles.

Number of fetches restricted due to MAAR.

8 Uncached Instruction Fetch stall cycles.
Cycles where no instruction is fetched because we 
are waiting for an I-fetch from uncached memory.

Reserved

Table 2.63 Field Descriptions for PerfCtl0-3 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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9 Number of IFU fetch stalls due to lack of credits on 
the IBUF interface.

Valid fetch slots killed due to taken branches/jumps or 
stalling instructions.

10 Reserved in single-core environments
In a multi-core environment, store misses transition-
ing to I->M or S->M

Reserved in single-core environments
In a multi-core environment, load misses transitioning to 
I->S or I->E

11 Cycles IFU-IDU gate is closed due to mispredicted 
branch. This counts the time from when IEU closes 
the gate to when GRU opens.

Cycles IFU-IDU gate is open but no instructions fetched 
by IFU. May be overridden by changing Config6.IFU-
PerfSel field. See Table 2.9, "Field Descriptions for 
Config6 Register" for a description of the other overload-
ing events.

12 Cycles IFU-IDU gate is closed due to other reasons:
• MTC0/MFC0 sequence in pipe
• EHB
• DD_DR_DS is blocked

Reserved in single-core environments.
In a multi-core environment, intervention hits.

13 Number of cycles where no instruction is inserted in 
DDQ0 because it is full.

Number of cycles where no instruction is inserted in 
DDQ1 because it is full.

14 Number of cycles where no instructions can be 
issued because there are no completion buffer ID’s.

Reserved.

15 Reserved. Cycles where no instructions can be added to the issue 
pool, because we have filled the coprocessor 1’s shelves 
used for coprocessor 1 instructions.

16 - 17 Reserved Reserved

18 Cycles when three instructions are issued. Cycles when four instructions are issued.

19 Reserved Reserved

20 Cycles when only one instruction is issued. Cycles when two instructions are issued.

21 Number of jr (not $31) instructions mispre-
dicted at graduation.

Number of jr $31 instructions graduated.

22 Number of graduated JAR/JALR.HB D-cache line refill (not LD/ST misses)

23 Counts the number of speculative loads. Pairs of 
loads or stores that are bonded count as one.

Speculative data cache accesses and instruction cache 
Cacheops. Pairs of loads or stores that are bonded count 
as one.

24 Number of data cache misses at graduation. D-cache misses. This count is per instruction at gradua-
tion and includes load, store, prefetch, synci and 
address based cacheops.

25 JTLB translation fails on d-side (data side as 
opposed to instruction side) accesses. This pertains 
to graduated instructions only.

 Reserved

26 Load/store instruction redirects, which happen when 
the load/store follows too closely on a possibly 
matching cacheop.
Load/Store generated replays - typically, a load fol-
lowing a CacheOp that has matches the Index match 
of the CacheOp.

Reserved

Table 2.64 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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27 LSGB graduation blocked cycles. Reasons for block:

• CP1/2 store data not ready
• SYNC, SYNCI at the head
• sc at the head
• CACHEOP at the head
FSB, LDQ, WBB, or ITU FIFO full.

LSGB graduation that does not result in a request going 
out on the bus. Reasons include:

• Misses at integer pipe graduation turn into hit.
• Miss merges with outstanding fill request.

28 L2 cache writebacks L2 cache accesses

29 L2 cache misses L2 cache miss cycles

30 Cycles Fill Store Buffer (FSB) are full and cause a 
pipe stall

Cycles Fill Store Buffer (FSB) > 1/2 full

31 Cycles Load Data Queue (LDQ) are full and cause a 
pipe stall

Cycles Load Data Queue (LDQ) > 1/2 full

32 Cycles Writeback Buffer (WBB) are full and cause a 
pipe stall

Cycles Writeback Buffer (WBB) > 1/2 full

33 Not used in single-core environments.
In a multi-core environment, counts requests that 
will receive data from the Coherence Manager.

Not used in single-core environments.
In a multi-core environment, request latency to first data 
word of data from the Coherence Manager.

34 Reserved in single-core environments.
In a multi-core environment, invalidate intervention 
hits.

Reserved in single-core environments.
In a multi-core environment, all invalidate interventions.

35 Replays following optimistic issue of instruction 
dependent on load which missed. Counted only when 
the dependent instruction graduates. Reserved.

Floating Point Load instructions graduated. 

36 jr (not $31) instructions graduated. jr $31 mispredicted at graduation.

37 Integer Branch instructions graduated. Floating Point Branch instructions graduated.

38 Branch likely instructions graduated. Mispredicted Branch likely instructions graduated.

39 Conditional branches graduated. Mispredicted Conditional branches graduated.

40 Integer instructions graduated (includes nop, 
ssnop, ehb as well as all arithmetic, logic, 
shift and extract type operations). 

Floating Point instructions graduated (but not counting 
Floating Point load/store).

41 Loads graduated. Bonded load/store counted as 2. Stores graduated. Bonded load/store counted as 2.

42 j/jal graduated. Reserved.

43 no-ops graduated. integer multiply/divides graduated.

44 Reserved Reserved

45 Reserved Reserved

46 Uncached loads graduated. Uncached stores graduated.

47 Reserved in single-core environments.
In a multi-core environment, writebacks due to evic-
tions.

Reserved in single-core environments.
In a multi-core environment, writebacks due to any rea-
son.

48 Reserved in single-core environments.
In a multi-core environment, count of all invalidates 
(M,E,S)->I

Reserved in single-core environments.
In a multi-core environment, count of transitions from 
(I,S)->E.

Table 2.64 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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49 EJTAG instruction triggers. EJTAG data triggers.

50 CP1 branches mispredicted. Reserved

51 sc instructions graduated. sc instructions failed.

52 prefetch instructions graduated at the top of 
LSGB.

prefetch instructions which did nothing, because 
they hit in the cache. 

53 Cycles where no instructions graduated. Cacheable load misses in TI. Includes floating point and 
fast path loads.

54 Cycles where one instruction graduated. Cycles where two instructions graduated.

55 GFifo blocked cycles. Floating point stores graduated.

56 GFifo blocked due to TLB or Cacheop. Number of cycles no instructions graduated from the time 
the pipe was flushed because of a replay until the first 
new instruction graduates. This is an indicator graduation 
bandwidth loss due to replay. Often times this replay is a 
result of event 25 and therefore an indicator of bandwidth 
lost due to cache miss. 

57 Mispredicted branch instruction graduations without 
the delay slot (in the same cycle).

Cycles waiting for delay slot to graduate on a mispre-
dicted branch.

58 Exceptions taken. Replays initiated from graduation.

59 Indicates the load/store graduation buffer (LSGB) is 
full.

Indicates the load/store graduation buffer (LSGB) is half 
full.

60 Reserved in single-core environments.
In a multi-core environment, state transition from S-
>M (coherent and non-coh).

Reserved in single-core environments.
In a multi-core environment, state transitions from (M,E)-
>S.

61 Reserved in single-core environments.
In a multi-core environment, request latency to self-
intervention.

Reserved in single-core environments.
In a multi-core environment, count of requests that will 
receive self-intervention.

62 Prediction buffer full causing IFU stall. Reserved.

63 L2 single-bit errors detected. Reserved in single-core environments. In a multi-core 
environment, all interventions.

64 SI_Event[0] - Implementation-specific system event. 
The system integrator of the P6600 core may connect 
the SI_PCEvent[0] pin to an event to be counted.

SI_Event[1] - Implementation-specific system event. The 
system integrator of the P6600 core may connect the 
SI_PCEvent[1] pin to an event to be counted.

65 SI_Event[2] - Implementation-specific system event. 
The system integrator of the P6600 core may connect 
the SI_PCEvent[2] pin to an event to be counted.

SI_Event[3] - Implementation-specific system event. The 
system integrator of the P6600 core may connect the 
SI_PCEvent[3] pin to an event to be counted.

66 SI_Event[4] - Implementation-specific system event. 
The system integrator of the P6600 core may connect 
the SI_PCEvent[4] pin to an event to be counted.

SI_Event[5] - Implementation-specific system event. The 
system integrator of the P6600 core may connect the 
SI_PCEvent[5] pin to an event to be counted.

67 SI_Event[7] - Implementation-specific system event. 
The system integrator of the P6600 core may connect 
the SI_PCEvent[7] pin to an event to be counted.

SI_Event[8] - Implementation-specific system event. The 
system integrator of the P6600 core may connect the 
SI_PCEvent[8] pin to an event to be counted.

68 All OCP requests accepted. All OCP cacheable requests accepted.

69 OCP read requests accepted. OCP cacheable read requests accepted.

Table 2.64 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 129

70 OCP write requests accepted. OCP cacheable write requests accepted.

71 Reserved OCP write data sent.

72 Reserved OCP read data received.

73 Reserved in single-core environments.
In a multi-core environment, OCP Intervention write 
data stalled (valid but not accepted).

Reserved in single-core environments.
In a multi-core environment, OCP Intervention write data 
valid (accepted or not).

74 Cycles Fill Store Buffer (FSB) < 1/4 full. Cycles Fill Store Buffer (FSB) 1/4 to 1/2 full.

75 Cycles Load Data Queue (LDQ) < 1/4 full. Cycles Load Data Queue (LDQ) 1/4 to 1/2 full.

76 Cycles Writeback Buffer (WBB) < 1/4 full. Cycles Writeback Buffer (WBB) 1/4 to 1/2 full.

77 Counts the number of times that the L1 Branch Tar-
get Buffer (L1BTB) caused a redirect without IFU 
predecode-based prediction, causing a redirect or 
replay. Measures the number of true hits for the 
Return Prediction Stack (RPS) portion of the 
L1BTB.

Counts the number of times that the L1 Branch Target 
Buffer (L1BTB) caused a redirect without IFU prede-
code-based prediction causing a redirect or replay. Mea-
sures the number of true hits for the branch portion of the 
L1BTB.

78 Counts the number of times that the L1 Branch Tar-
get Buffer (L1BTB) caused a redirect with IFU pre-
decode-based prediction causing a redirect or replay. 
Measures the number of mis-predicts for the Return 
Prediction Stack (RPS) portion of the L1BTB.

Counts the number of times that the L1 Branch Target 
Buffer (L1BTB) caused a redirect with IFU predecode-
based prediction causing a redirect or replay. Measures 
the number of mis-predicts for the branch portion of the 
L1BTB.

79 Counts the number of writes to the Return Prediction 
Stack (RPS) portion of the L1 Branch Target Buffer 
(L1BTB) with no L1BTB hit (cold miss).

Counts the number of writes to the branch portion of the 
L1 Branch Target Buffer (L1BTB) with no L1BTB hit 
(cold miss).

80 Number of L1 Branch Target Buffer masked hits due 
to lack of credit for DS. 

Number of L1 Branch Target Buffer masked hits due to 
lack of credit for target. 

81 Number of NFW or L1 Branch Target Buffer mis-
predicts for instruction cache way-hit prediction. 

Reserved

82 - 83 Reserved Reserved

84 Counts the number of times a Write-Back Buffer 
(WBB) entry is newly allocated for an Uncached 
Accelerated (UCA) store and there is one UCA store 
already active in the WBB.

Counts the number of times a Write-Back Buffer (WBB) 
entry is newly allocated for an Uncached Accelerated 
(UCA) store and there are two UCA stores already active 
in the WBB.

85 Number of times an uncached instruction arrives at 
BIU while there is an actively gathering UCA buffer.

Reserved

86 Reserved Reserved

87 Number of stall cycles due to the lack of load/store 
queue (LSQ) ID.

Number of stall cycles due to the lack of IID.

88 Reserved. Reserved.

89 Number of cycles when no FP instructions are dis-
patched.

Number of cycles when no integer instructions are dis-
patched.

90 Number of cycles when one FP instruction is dis-
patched.

Number of cycles when one integer instruction is dis-
patched.

91 Number of cycles when two FP instructions are dis-
patched.

Number of cycles when two integer instructions are dis-
patched.

Table 2.64 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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92 - 93 Reserved Reserved

94 Number of cycles when three instructions are issued. Number of cycles when four instructions are issued.

95 - 96 Reserved Reserved

97 Number of instructions issued on AGU port from 
DDQ1.

Number of instructions issued on BSU port from DDQ1.

98 Number of instructions issued on MDU/ALU2 port 
from DDQ1.

Number of instructions issued on ALU1 port from DDQ0.

99 Number of DTLB accesses (speculative). Number of DTLB misses (speculative).

100 Data side hits in the VTLB/FTLB. This includes 
FTLB and VTLB hits and unmapped region 
accesses.

Instruction side hits in the VTLB/FTLB. This includes 
FTLB and VTLB hits and unmapped region accesses.

101 Number of data side hits in the VTLB/FTLB in an 
unmapped region.

Number of instruction side hits in the VTLB/FTLB in an 
unmapped region.

102 Number of instruction side hits in the VTLB. Number of instruction side hits in the FTLB.

103 Number of data side hits in the VTLB. Number of data side hits in the FTLB.

104 Number of TLBWR writes to the VTLB. Number of TLBWR writes to the FTLB.

105 Number of DTLB hits to the half of EntryLo that 
caused a fill (speculative).

Number of DTLB hits to the half of EntryLo that did not 
cause a fill (speculative).

106 Number of pairs of bonded stores at graduation. Number of pairs of bonded loads at graduation.

107 Reserved Speculative count of ‘over-eager’ loads that hit a store 
without the data being available.

108 Number of times a load is not issued because it is 
tagged by the ‘over-eager’ predictor.

Reserved

109 Speculative count of incorrectly bonded loads and 
stores.

Reserved

110 Number of misaligned loads that graduated. Number of misaligned stores that graduated.

111 - 112 Reserved Reserved

113 Number of cycles where one FP/MSA opcode is 
issued.

Number of cycles where FPU/MSA sent F2I strobes.

114 Number of cycles where two FP/MSA opcodes are 
issued. 

Number of cycles where FPU/MSA received I2F strobes

115 Number of data-side unmapped XKPhys accesses. Number of instruction-side unmapped XKPhys accesses.

116 Number of cycles where one FP/MSA opcode is 
retired.

Number of cycles where FPU/MSA received I2F load 
strobes.

117 Number of cycles where two FP/MSA opcodes are 
simultaneously retired.

Number of cycles where FPU/MSA received I2F bonded 
load strobes.

118 Number of cycles where FPU/MSA shelf is full. Number of cycles where FPU/MSA slowly returning 
credits.

119 Number of load and stores graduated with VA[13:12] 
!= PA[13:12]. Misaligned stores counted as two.

Reserved

120 Number of Number of noRFO stores graduated. Number of times noRFO detected.

Table 2.64 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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121 Number of refetches for integer misaligned instruc-
tions.

Number of refetches for MSA misaligned instructions.

122 Number of doubleword bonded speculative loads. Number of doubleword bonded speculative stores.

123 Number of quadword bonded speculative loads. Number of quadword bonded speculative stores.

124 - 125 Reserved Reserved

126 Hardware table walker (HTW) abort due to HTW 
access denied to XKSeg (XK = 0).

Hardware table walker (HTW) abort due to HTW access 
denied to XSSeg (XS = 0).

127 Reserved Reserved

128 Number of root exceptions taken in guest mode. Number of guest mode to root mode transitions.

129 Number of GSFC exceptions. Number of GHFC exceptions.

130 Number of GPSI exceptions. Number of GRIR exceptions.

131 Number of Hypercall exceptions. Number of guest-related root TLB exceptions taken when 
GuestCtl0.GExcCode = GVA.

132 Number of root TLB exceptions caused by instruc-
tion-side guest translation requests.

Number of root TLB exceptions caused by data-side guest 
translation requests.

133 Number of root writes that set the Guest.Cause.TI bit 
to 1.

Number of root writes to Guest.PerfCnt that set the 
Guest.Cause.PCI bit to 1.

134 Number of guest accesses to the Watch registers that 
cause GPSI when virtually shared.

Number of guest accesses to the PerfCnt and PerfCtl reg-
isters that cause GPSI when virtually shared.

135 Number of interrupts that cause a guest exit in EIC 
mode.

Number of interrupts that cause a guest exit in non-EIC 
mode.

136 Number of data side hardware page table walks 
aborted due to an exception or branch mispredict 
related to an older instruction. 

Number of instruction side hardware page table walks 
aborted due to an exception or branch mispredict related 
to an older instruction. 

137 Number of instruction or data side hardware page 
table walks aborted because a related table walk load 
has missed in the main TLB.

Number of instruction or data side hardware page table 
walks aborted because a related table walk load has 
caused an exception, including a TLB refill.

138 An instruction or data side hardware page table walk 
has been initiated.

Reserved

139 Number of dependent instructions replayed in 
ALU2/MDU due to load miss.

Number of dependent instructions replayed in CTI pipe 
due to load miss.

140 Number of dependent instructions replayed in ALU1 
pipe due to load miss.

Number of dependent instructions replayed in AGEN 
pipe due to load miss.

138 - 255 Reserved Reserved

Table 2.64 Performance Counter Events and Codes (continued)

Event 
Number Counter 0/2 Counter 1/3
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2.2.7.2 Performance Counter 0 - 3 — PerfCnt0-3 (CP0 Register 25, Select 1, 3, 5, 7) 

General purpose event counters, which operate as directed by PerfCtl0-3. 

Figure 2.53 Performance Counter 0 - 3 Register   

2.2.8 Debug Registers

This section contains the following debug registers.

• Section 2.2.8.1, "Debug (CP0 Register 23, Select 0)" on page 132

• Section 2.2.8.2, "Debug Exception Program Counter — DEPC (CP0 Register 24, Select 0)" on page 135

• Section 2.2.8.3, "Debug Save — DESAVE (CP0 Register 31, Select 0)" on page 136

• Section 2.2.8.4, "Watch Low 0 - 3 — WatchLo0-3 (CP0 Register 18, Select 0-3)" on page 136

• Section 2.2.8.5, "Watch High 0 - 3 — WatchHi0-3 (CP0 Register 19, Select 0-3)" on page 137

2.2.8.1 Debug (CP0 Register 23, Select 0)

The Debug register provides control and status information while in debug mode. During normal operation (non-
debug mode), this register may not be written at all, and only the DM bit and the EJTAGver field returns valid data.

The read-only bits are updated by hardware every time the debug exception is taken, or when a normal exception is 
taken when already in debug mode (a "nested exception"). Not all fields are valid in both circumstances: Halt and 
Doze are not defined after a nested exception, and the nested-exception-type field DExcCode is undefined from a 
debug exception. 

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

• DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug modes

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g. 
EJTAGver and DM.

31 0

Counter

Table 2.65 Performance Counter 0 - 3 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

Counter 31:0 Counter value. R/W Undefined
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Figure 2.54 Debug Register Format   

31 30 29 28 27 26 25 24 23 22 21 20

DBD DM NoDCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI

19 18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDBSImpr DDBLImpr EJTAGver DExcCode NoSSt SSt 0 DINT DIB DDBS DDBL DBp DSS

Table 2.66 Field Descriptions for Debug Register 

Name Bit(s) Description
Read/ 
Write Reset State

DBD 31 Indicates if the last debug exception or exception in debug mode occurred in a 
branch delay slot.
0: Not in delay slot
1: In delay slot
When set to 1, the Debug Exception Program Counter (DEPC) points to the 
branch instruction, which is usually the correct place to restart. 

R Preset

DM 30 Indicates if the processor is operating in debug mode.
0: Processor is operating in non-debug mode
1: Processor is operating in debug mode
In debug mode, this bit is set on any debug exception and is cleared by 
deret. 

R 0

NoDCR 29 Indicates if the dseg memory segment and a memory-mapped DCR register is 
present.
0: dseg address space is present
1: dseg address space is not present

R 0

LSNM 28 Controls access of load/store between dseg and main memory.
0: Load/stores in dseg address range goes to dseg
1: Load/stores in dseg address range goes to main memory
Setting this bit causes debug-mode accesses to dseg addresses to be sent to 
system memory. This makes most of the EJTAG unit’s control systems 
unavailable, so will probably only be done around a particular load/store. 

R/W 0

Doze 27 Indicates that the processor was in any kind of low power mode when a debug 
exception occurred.
0: Processor not in low power mode when debug exception occurred
1: Processor in low power mode when debug exception occurred
Before the debug exception, CPU was in one of the reduced power mode.

R 0

Halt 26 Indicates that the internal system bus clock was stopped when the debug 
exception occurred. 
0: Internal system bus clock running
1: Internal system bus clock stopped
Before the debug exception, the CPU was stopped — probably asleep follow-
ing a wait instruction. 

R 1

CountDM 25 Controls or indicates the Count register behavior in debug mode.
0: Count register stopped in debug mode
1: Count register is running in debug mode

R/W 1
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IBusEP 24 These "pending exception" flags remember exception events caused by 
instructions run in debug mode, but which have not yet occurred because they 
are imprecise and DebugIEXI is set. Note that you can write a 1 to any of these 
at any time, so they survive writes to the whole Debug register; but a write of 
zero to a field is ignored.
They remain set until DebugIEXI is cleared explicitly, or implicitly by a 
deret. If the deret clears the bit, the exception is taken and the pending 
bit cleared.
IBusEP remembers a bus error on an instruction fetch.  This exception is pre-
cise, so it cannot occur and the field is always zero. 
MCheckP machine check condition (usually an illegal TLB update). .  The 
machine check can be either precise or imprecise depending on the type of 
error. Refer to the Machine Check exception in the Exception chapter for 
more information. 
CacheEP indicates a precise cache parity error is pending.
Data access Bus Error exception Pending: DBusEP remembers a bus error on 
a data access. Set when an data bus error event occurs or if a 1 is written to the 
bit by software. Cleared when a Data Bus Error exception is taken by the pro-
cessor, and by reset. If DBusEP is set when IEXI is cleared, a Data Bus Error 
exception is taken by the processor, and DBusEP is cleared

R 0

MCheckP 23 R 0

CacheEP 22 R/W 0

DBusEP 21 R/W 0

IEXI 20 Imprecise Error eXception Inhibit. Set to 1 to defer imprecise exceptions. By 
default, this bit is set on entry to debug mode and cleared on exit. The deferred 
exception returns when and if this bit is cleared, and until then the occurrence 
of the imprecise exception can be observed in the “pending exception” flags 
described in bits 24:21 above.

R/W 0

DDBSImpr 19 Imprecise store breakpoint. DEPC probably points to an instruction some 
time later in the sequence than the store which triggered the breakpoint. 

R Preset

DDBLImpr 18 Imprecise load breakpoint. DEPC probably points to an instruction some time 
later in the sequence than the store which triggered the breakpoint. The 
debugger or user (or both) have to cope as best they can. 

R Preset

EJTAGver 17:15 These read-only bits encode the revision of the EJTAG specification to which 
this implementation conforms. The legal values are.
110: Version 6.0
All other values are reserved.

R 6

DExcCode 14:10 Indicates the cause of the latest exception in debug mode. Following initial 
entry to debug mode, this field is undefined. The subsequent value will be one 
of those defined in CauseExcCode. See Table 2.39 for a list of values. Value is 
undefined after a debug exception. 

R Preset

NoSSt 9 Indicates whether the single-step feature controllable by the SSt bit is avail-
able in this implementation. This read-only bit is always zero on the P6600 
core because single-step is implemented. 

R 0

SSt 8 Controls if debug single step exception is enabled. 
0 = No debug single-step exception enabled
1 = Debug single-step exception enabled

R/W 0

R 7:6 Reserved. Must be written as zeros; returns zeros on reads. R 0

DINT 5 Indicates that a debug interrupt exception (from EJTAG pin) occurred. 
Cleared on exception in debug mode.
0: No debug interrupt exception
1: Debug interrupt exception

R Preset

Table 2.66 Field Descriptions for Debug Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.2.8.2 Debug Exception Program Counter — DEPC (CP0 Register 24, Select 0)

The 64-bit Debug Exception Program Counter (DEPC) points to the instruction to restart when a deret is executed 
to exit debug mode. When DebugDBD is set, it means that the "real" return address is in a branch delay slot, and DEPC 
points to the preceding branch.

Figure 2.55 DEPC Register Format \

DIB 4 Instruction breakpoint. This bit is set by hardware when an instruction break-
point occurs. 
0: No debug exception breakpoint
1: Debug exception breakpoint occurred

R Preset

DDBS 3 Indicates that a debug data break exception occurred on a store. Cleared on 
exception in debug mode.
0: No debug data exception on a store
1: Debug instruction exception on a store

R Preset

DDBL 2 Indicates that a debug data break exception occurred on a load. Cleared on 
exception in debug mode.
0: No debug data exception on a load
1: Debug instruction exception on a load

R Preset

DBp 1 Indicates that a debug software breakpoint exception occurred. Cleared on 
exception in debug mode. 
0: No debug software breakpoint exception
1: Debug software breakpoint exception

R Preset

DSS 0 Indicates that a debug single-step exception occurred. Cleared on exception in 
debug mode.
0: No debug single-step exception
1: Debug single-step exception

R Preset

63 0

DEPC

Table 2.67 DEPC Register Formats

Field

Description
Read / 
Write ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of the 
instruction that caused the debug exception. If the instruction is in 
the branch delay slot, then the virtual address of the immediately 
preceding branch or jump instruction is placed in this register. 
Execution of the deret instruction causes a jump to the address 
in the DEPC.

R/W Preset

Table 2.66 Field Descriptions for Debug Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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2.2.8.3 Debug Save — DESAVE (CP0 Register 31, Select 0)

Software-only register, with no hardware effect. Provided because the debug exception handler can’t use the k0-1 GP 
registers, used by ordinary exception handlers to bootstrap themselves: but a debug handler can save a GPR into 
DESAVE, and then use that GPR register in code which saves everything else. 

Figure 2.56 DeSave Register Format

2.2.8.4 Watch Low 0 - 3 — WatchLo0-3 (CP0 Register 18, Select 0-3)

Used in conjunction with WatchHi0-3 respectively, each of these registers carries the virtual address and what-to-
match fields for a CP0 watchpoint. WatchLo0-1 are used for instruction side accesses and WatchLo2-3 are used for data 
side accesses. The bit assignments for each of the WatchLo registers is identical. Hence, only one register is shown 
below.

Figure 2.57 WatchLo0-3 Register Format  

63 0

DESAVE

Table 2.68 DeSave Register Field Description

Fields

Description
Read / 
Write Reset StateName Bit(s)

DESAVE 63:0 Debug exception save contents. SO Undefined

63 3 2 1 0

VAddr I R W

Table 2.69 Field Descriptions for WatchLo0-3 Register

Name Bit(s) Description
Read/ 
Write Reset State

VAddr 63:3 The address to match on, with a resolution of a doubleword. R/W Undefined

I 2 Accesses to match: 

I = Instruction fetches. This bit is always 0 in the P6600 core.
R = Reads (loads)
W = Writes (stores) 

In the P6600 core, the I bit of this field (bit 2) is always 0 for WatchLo 
registers 2 and 3, but is R/W and can be programmed for WatchLo regis-
ters 0 and 1.

WatchLo0-1R and WatchLo0-1W are fixed to zero as the P6600 core does 
not implement load/store watches. 

R/W 0

R 1 R/W 0

W 0 R/W 0
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2.2.8.5 Watch High 0 - 3 — WatchHi0-3 (CP0 Register 19, Select 0-3)

These registers provide the interface to a debug facility that causes an exception if an instruction or data access 
matches the address specified in the registers. Watch exceptions are not taken if the CPU is already in exception mode 
(that is if StatusEXL or StatusERL is already set).

Watch events which trigger in exception mode are remembered, and result in a "deferred" exception, taken as soon as 
the CPU leaves exception mode.

WatchHi0-1 are used for instruction side accesses and WatchHi2-3 are used for data side accesses. 

This CP0 watchpoint system is independent of the EJTAG debug system (which provides more sophisticated hard-
ware breakpoints).

The WatchLo0-3 registers hold the address to match, while WatchHi0-3 hold a bundle of control fields.

Figure 2.58 WatchHi0-3 Register Format  

 

31 30 29 28 27 24 23 16 15 12 11 3 2 1 0

M G WM 0 ASID 0 Mask I R W

Table 2.70 Field Descriptions for WatchHi0-3 Register 

Name Bit(s) Description
Read/ 
Write Reset State

M 31 The WatchHi0-3M bit is set whenever there is one more watchpoint register 
pair to find. Software can use these four bits (starting with WatchHi0) to deter-
mine how many watchpoints there are. This field is set for WatchHi0-2 and 
cleared on WatchHi3.

R 1
(WatchHi0-2)

0
(WatchHi3)

G 30 If the WatchHi0-3G bit is set, any address that matches that specified in the 
corresponding WatchLo register causes a watch exception. If this bit is zero, 
the ASID field of the WatchHi register must match the ASID field of the 
EntryHi register to cause a watch exception. 

R/W Undefined

WM 29:28 Virtualization support. This bit is used for root management of the Watch 
functionality. This field is reserved and read as 0 for Guest WatchHi, or if such 
functionality is unimplemented. Software can determine existence of this fea-
ture by writing then reading this field.

R/W 0

0 27:24 Reserved. Write as zero. Ignored on reads. R 0

ASID 23:16 WatchHi0-3ASID matches addresses from a particular address space (the 
"ASID" is like that in TLB entries) — except that you can set WatchHi0-3G 
("global") to match the address in any address space. 
The match a particular address, the WatchHi0-3G bit is cleared and the 
WatchHi0-3ASID value is used to ensure that the match is to the correct address 
space. If the If the WatchHi0-3G bit is set, the address is always matched, 
regardless of the WatchHi0-3ASID value.

R/W Undefined

0 15:12 Reserved. Write as zero. Ignored on reads. R 0

Mask 11:3 Watch mask. This field marks the corresponding WatchLo0-3VAddr address 
bits to be ignored when deciding whether this is a match. 

R/W Undefined
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2.2.9 PDTrace Registers

This section contains the following MIPS PDTrace registers.

• Section 2.2.9.1, "Trace Control Register — TraceControl (CP0 Register 23, Select 1)" on page 138

• Section 2.2.9.2, "Trace Control 2 Register — TraceControl2 (CP0 Register 23, Select 2)" on page 140

• Section 2.2.9.3, "Trace Control 3 Register — TraceControl3 (CP0 Register 24, Select 2)" on page 142

• Section 2.2.9.4, "User Trace Data 1 Register — UserTraceData1 (CP0 Register 23, Select 3)" on page 143

• Section 2.2.9.5, "User Trace Data 2 Register — UserDataTrace2 (CP0 Register 24, Select 3)" on page 144

• Section 2.2.9.6, "Trace Instruction Breakpoint Condition Register — TraceIBPC (CP0 Register 23, Select 4)" on 
page 144

• Section 2.2.9.7, "Trace Data Breakpoint Condition Register — TraceDBPC (CP0 Register 23, Select 5)" on page 
145

2.2.9.1 Trace Control Register — TraceControl (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below.

Figure 2.59 TraceControl Register Format  

I 2 Watch exception type. These bits indicate what type of access (if any) 
matched after a watch exception.
I = Instruction fetches
R = Reads (loads)
W = Writes (stores) 
Write a 1 to any of these bits in order to clear it (and therefore prevent the 
exception from immediately happening again). This behavior is unusual 
among CP0 registers, but it is quite convenient: to clear a watchpoint of all the 
exception causes you’ve seen, just read the value of WatchHi0-3 and write it 
back again. WatchHi0-1R and WatchHi0-1W should always read 0 and 
WatchHi2-3I should always read 0

W1C Undefined

R 1 W1C 0

W 0 W1C 0

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS UT 0 Ineff TB IO D E K S U ASID_M ASID G TFCR TLSM TIM On

Table 2.70 Field Descriptions for WatchHi0-3 Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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Table 2.71 TraceControl Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

TS 31 The trace select bit is used to select between the hardware and the software 
trace control bits. A value of zero selects the external hardware trace block 
signals, and a value of one selects the trace control bits in the TraceControl 
register. 

R/W 0

UT 30 This bit has been deprecated and is no longer used since there are now two 
explicit trace registers, UserTraceData1 and UserTraceData2. This bit is 
tied to 0 internally.

R 0

0 29 Reserved. Must be written as zero; returns zero on read. 0 0

Ineff 28 When set to 1, core-specific inefficiency tracing is enabled, and core-spe-
cific trace information is included in the trace stream. The inefficiency 
code replaces an “NI” and is interpreted in the trace stream with an 
expanded InsComp (Instruction Completion Indicator). The InsComp is 
expanded from 3b to 4b for all trace formats.

R/W 0

TB 27 Trace All Branch. When set to 1, this tells the processor to trace the PC 
value for all branches taken, not just the ones whose branch target address 
is statically unpredictable.

R/W Undefined

IO 26 Inhibit Overflow. This signal is used to indicate to the P6600 trace logic 
that slow but complete tracing is desired. Hence, the P6600 tracing logic 
must not allow a FIFO overflow and discard trace data. This is achieved by 
stalling the pipeline when the FIFO is nearly full, so that no trace records 
are ever lost.

R/W Undefined

D 25 Debug mode. When set to one, this enables tracing in debug mode. For a 
trace to be enabled in Debug mode, the On bit must also be set, and either 
the G bit must be set, or the current process ASID must match the ASID 
field in this register.

When set to zero, trace is disabled in debug mode.

R/W Undefined

E 24 Exception mode. When set to one, tracing is enabled in Exception mode. 
For a trace to be enabled in Exception mode, the On bit must be set, and 
either the G bit must be set, or the current process ASID must match the 
ASID field in this register.

When set to zero, trace is disabled in Exception Mode.

R/W Undefined

K 23 Kernel mode. When set to one, enables tracing in Kernel mode. For a trace 
to be enabled in Kernel mode, the On bit must be set, and either the G bit 
must be set, or the current process ASID must match the ASID field in this 
register.

When set to zero, trace is disabled in Kernel Mode.

R/W Undefined

S 22 Supervisor mode. When set to one, tracing is enabled in Supervisor Mode. 
For a trace to be enabled in Supervisor mode, the On bit must be set, and 
either the G bit must be set, or the current process ASID must match the 
ASID field in this register.

When set to zero, trace is disabled in Supervisor Mode, regardless of other 
bits.

If the processor does not implement Supervisor Mode, this bit is ignored 
on write and returns zero on read.

R/W Undefined
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2.2.9.2 Trace Control 2 Register — TraceControl2 (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the 
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded 
from the Trace Control Block (TCB). As such, these fields in the TraceControl2 register will not have valid values 
until the TCB asserts these values.

This register is only implemented if the MIPS Trace capability is present.

U 21 User mode. When set to one, tracing is enabled in User mode. For a trace 
to be enabled in User mode, the On bit must be set, and either the G bit 
must be set, or the current process ASID must match the ASID field in this 
register.

When set to zero, trace is disabled in User Mode, regardless of the setting 
of other bits.

R/W Undefined

ASID_M 20:13 ASID mask. This is a mask value applied to the ASID comparison (done 
when the G bit is zero). A “1” in any bit in this field inhibits the corre-
sponding ASID bit from participating in the match. As such, a value of zero 
in this field compares all bits of ASID. 

Note that the ability to mask the ASID value is not available in the hard-
ware signal bit; it is only available via the software control register.

R/W Undefined

ASID 12:5 Address space identifier. This field stores the ASID field to match when the 
G bit is zero. When the G bit is one, this field is ignored.

R/W Undefined

G 4 Global enable. When set, tracing is to be enabled for all processes, pro-
vided that other enabling functions (like U, S, etc.,) are also true.

R/W Undefined

TFCR 3 When set, this bit indicates to the PDtrace interface that the optional Fcr 
bit must be traced in the appropriate trace formats. If PC tracing is dis-
abled, the full PC of the function call (or return) instruction must also be 
traced. 

R/W Undefined

TLSM 2 Load/Store Miss trace. When set, this indicates to the PDtrace interface 
that information about data cache misses should be traced. If PC, load/
store address, and data tracing are disabled (see the TraceControl2Mode 
field), the full PC and load/store address are traced for data cache misses. 

If load/store data tracing is enabled, the LSM bit must be traced in the 
appropriate trace format. Note that data cache miss information is only 
traced if tracing is actually enabled for the current mode.

R/W Undefined

TIM 1 Trace IM bit. When set, this indicates to the PDtrace interface that the 
optional IM bit must be traced in the appropriate trace formats. If PC trac-
ing is disabled, the full PC of the instruction that missed in the I-cache 
must be traced. Note that instruction cache miss information is only traced 
if tracing is actually enabled in the current mode.

R/W Undefined

On 0 This is the master trace enable switch in software control. When zero, trac-
ing is always disabled. When set to one, tracing is enabled whenever the 
other enabling functions are also true.

R/W 0

Table 2.71 TraceControl Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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Figure 2.60 TraceControl2 Register Format 

31 30 29 10 9 7 6 5 4 3 2 0

SyPExt R Mode ValidModes TBI TBU SyP

Table 2.72 TraceControl2 Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

SyPExt 31:30 Sync period extension. Extension to the SyP (sync period) field for 
implementations that need higher numbers of cycles between synchroni-
zation events.

The value of SyP is extended by assuming that these two bits are juxta-
posed to the left of the three bits of SyP (SypExtSyP). When only SyP was 
used to specify the synchronization period, the value was 2x, where x 
was computed from SyP by adding 5 to the actual value represented by 
the bits. A similar formula is applied to the 5 bits just obtained by the 
juxtaposition of SyPExt and SyP. Sync period values greater than 231 are 
UNPREDICTABLE. That is all values greater than 11010 (26 + 5 = 31) 
are UNPREDICTABLE. With SyPExt bits, a sync period range of 25 to 
231 cycles can be obtained.

R/W 0

R 29:10 Reserved. Write as zero. Ignored on reads. R 0

Mode 9:7 When tracing is turned on, these five bits specify what information is to 
be traced by the core. Each bit turns on tracing of a specific tracing mode 
when that bit value is a 1. If the corresponding bit is 0, then the corre-
sponding trace (shown in the table below) is not traced by the processor. 

Each bit is this field is encoded as follows:

Bit 7: PC

Bit 8: Load address

Bit 9: Store address

R/W Undefined

ValidModes 6:5 This field specifies the subset of tracing that is supported by the proces-
sor. This field is encoded as follows:

01: PC and load and store address tracing only

All other values are invalid.

R 2’b01

TBI 4 This bit indicates how many trace buffers are implemented by the TCB, 
as follows.

0: Only one trace buffer is implemented, and the TBU bit of this register 
indicates which trace buffer is implemented.

1: Both on-chip and off-chip trace buffers are implemented by the TCB 
and the TBU bit of this register indicates to which trace buffer the traces 
is currently written.

R Undefined

TBU 3 This bit denotes to which trace buffer the trace is currently being written 
and is used to select the appropriate interpretation of the 
TraceControl2SyP field.

0: Trace data is being sent to an on-chip trace buffer
1: Trace Data is being sent to an off-chip trace buffer

This bit is loaded from TCBCONTROLBOfC.

R Undefined



 

142 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.9.3 Trace Control 3 Register — TraceControl3 (CP0 Register 24, Select 2)

The TraceControl3 register provides additional control and status information. This register is only implemented if the 
PDtrace capability is present. 

Figure 2.61 TraceControl3 Register Format   

SyP 2:0 The period (in cycles) to which the internal synchronization counter is 
reset when tracing is started, or when the synchronization counter has 
overflowed. This field is encoded as follows.

000: 25

001: 26

010: 27

011: 28

100: 29

101: 210

110: 211

111: 212

This field is loaded from TCBCONTROLASyP.

R Undefined

31 30 29 28 27 26 23 22 21 14 13 12 11 10 9 8 7 3 3 1 0

0 UPR 0 MSA 0 GV GuestID PeCOvf PeCFCR PeCBP PeCSync PeCE PeC 0 TRIDLE TRPAD 0

Table 2.73 TraceControl3 Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

0 31:30 Reserved. Must be written as zeros; returns zeros on reads. R 0

UPR 29 Indicates that for 128 bit load/ stores (MSA, if tracing of 128 bit MSA ld/st 
is not implemented (see bit TraceControl3.MSA) and bonded 2x64) only 
the lower 64 bits are traced. 

R 1

0 28 Reserved. Must be written as zeros; returns zeros on reads. R 0

MSA 27 128 bit MSA load/store data trace not implemented (see the UPR bit 29). R 0

0 26:23 Reserved. Must be written as zeros; returns zeros on reads. R 0

GV 22 Enable trace for all GuestIDs or only 1 GuestID.

0: Trace enabled for all Guests

1: Trace enabled only for Guest specified by TCBControlEGuestID

R/W 0

Table 2.72 TraceControl2 Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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2.2.9.4 User Trace Data 1 Register — UserTraceData1 (CP0 Register 23, Select 3) 

A software write to any bits in the UserTraceData1 register triggers a trace record to be written with a type indicator 
TU1. 

This register is only implemented if the MIPS Trace capability is present.

GuestID 21:14 The GuestID field to match when tracing.

If GuestCtl0.G1 = 1, the number of active bits in this register field matches 
the number of writeable bits in GuestCtl.ID register field and the rest of the 
bits of this field are read-only as zero. 

If GuestCtl0.G1 = 0, then only the right-most bit of this register field is 
writeable and the rest of the bits of this field are read-only as zero.

A value of 0 represents Root execution while non-zero represents Guest 
execution.

R/W Undefined

PeCOvf 13 Performance counter overflow. Setting this bit enables the trace control 
logic to trace a performance counter overflow.

R/W 0

PeCFCR 12 Performance counter function/call return. Setting this bit enables the trace 
control logic to trace a function call/return condition or an exception han-
dler entry.

R/W 0

PeCBP 11 Performance counter hardware breakpoint. Setting this bit enables the trace 
control logic to trace a hardware breakpoint condition.

R/W 0

PeCSync 10 Performance counter synchronization counter expiration. Setting this bit 
enables the trace control logic to trace a synchronization counter expiration 
condition.

R/W 0

PeCE 9 Performance counter tracing enable. When set to 0, the tracing out of per-
formance counter values as specified is disabled. To enable, this bit must 
be set to 1. This bit is used under software control. When trace is con-
trolled by an external probe, this enabling is done via TraceControl3PeCE.

R/W 0

PeC 8 Specifies whether or not Performance Control Tracing is implemented. 
This bit is always set to 1 in the P6600 processor.

R 1

0 7:3 Reserved. Must be written as zeros; returns zeros on reads. R 0

TrIDLE 2 Trace Unit Idle. This bit indicates if the trace hardware is currently idle 
(not processing any data). This can be useful when switching control of 
trace from hardware to software and vice versa. The bit is read-only and 
updated by the trace hardware.

R/W 0

TRPAD 1 Trace RAM Access Disable. Disables program software access to the on-
chip trace RAM using load/store instructions. This bit is loaded from 
TCBCONTROLBTRPAD.

R/W 0

0 0 Reserved. Must be written as zeros; returns zeros on reads. R 0

Table 2.73 TraceControl3 Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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Figure 2.62 User Trace Data 1 Register Format 

2.2.9.5 User Trace Data 2 Register — UserDataTrace2 (CP0 Register 24, Select 3)

A software write to any bits in the UserTraceData2 register triggers a trace record to be written with a type indicator 
TU2. 

These register are only implemented if the MIPS Trace capability is present.

Figure 2.63 User Trace Data 2 Register Format 

2.2.9.6 Trace Instruction Breakpoint Condition Register — TraceIBPC (CP0 Register 23, Select 4)

The TraceIBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint. 
The Instruction Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception 
breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 2.64 TraceIBPC Register Format 

63 0

Data

Table 2.74 User Trace Data 1 Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

Data 63:0 Software readable/writable data. When written, this triggers a user format 
trace record out of the PDtrace interface that transmits the Data field to 
trace memory.

R/W 0

63 0

Data

Table 2.75 User Trace Data 2 Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

Data 63:0 Software readable/writable data. When written, this triggers a user format 
trace record out of the PDtrace interface that transmits the Data field to 
trace memory.

R/W 0

31 30 29 28 27 12 11 9 8 6 5 3 2 0

0 PCT IE 0 IBPC3 IBPC2 IBPC1 IBPC0
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2.2.9.7 Trace Data Breakpoint Condition Register — TraceDBPC (CP0 Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The 
Data Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 2.65 TraceDBPC Register Format  

Table 2.76 TraceIBPC Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:30 Reserved. Must be written as zeros; returns zeros on reads. R 0

PCT 29 Used to specify whether a performance counter trigger signal is generated 
when an EJTAG instruction breakpoint match occurs.

0: Disables performance counter trigger signal from instruction breakpoints

1: Enables performance trigger signals from instruction breakpoints

R/W 0

IE 28 Used to specify whether or not the trigger signal from EJTAG instruction 
breakpoint should trigger tracing functions.

0: Disables trigger signals from instruction breakpoints
1: Enables trigger signals from instruction breakpoints

R/W 0

0 27:12 Reserved. Must be written as zeros; returns zeros on reads. R 0

IBPC3
IBPC2
IBPC1
IBPC0

11:9
9:6
5:3
2:0

The four 3-bit fields are decoded to enable different tracing modes. Table 
2.78 shows the possible interpretations. Each set of 3 bits represents the 
encoding for the instruction breakpoint n in the EJTAG implementation, if 
it exists. If the breakpoint does not exist, then the bits are reserved, read as 
zero, and writes are ignored.

R/W 0

31 30 29 28 27 6 5 3 2 0

0 PCT DE 0 DBPC1 DBPC0

Table 2.77 TraceDBPC Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

0 31:30 Reserved. Must be written as zeros; returns zeros on reads. R 0

PCT 29 Used to specify whether a performance counter trigger signal is generated 
when an EJTAG data breakpoint match occurs.

0: Disables performance counter trigger signal from data breakpoints
1: Enables performance trigger signals from data breakpoints

R/W 0

DE 28 Used to specify whether the trigger signal from EJTAG data breakpoint 
should trigger tracing functions.

0: Disables trigger signals from data breakpoints
1: Enables trigger signals from data breakpoints

R/W 0

0 27:26 Reserved. Must be written as zeros; returns zeros on reads. R 0
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DBPC0
DBPC1

2:0
5:3

The two 3-bit fields are decoded to enable different tracing modes. Table 
2.78 shows the possible interpretations. Each set of 3 bits represents the 
encoding for the data breakpoint n in the EJTAG implementation, if it exists. 
If the breakpoint does not exist then the bits are reserved, read as zero and 
writes are ignored.

R/W 0

Table 2.78 BreakPoint Control Modes: IBPC and DBPC 

Value Trigger Action Description

000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If tracing is already off, 
then there is no effect.

001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If tracing is already 
turned on, then there is no effect.

010 None Reserved for future implementations.

011 Unconditional Trace Start (core and 
CM)

Unconditionally start tracing in both core and coherence manager if tracing was 
turned off. If tracing is already turned on, then there is no effect.

100 Identical to trigger condition 000, 
and in addition, dump the full perfor-
mance counter values into the trace 
stream

If tracing is currently on, dump the full values of all the implemented perfor-
mance counters into the trace stream, and turn tracing off. If tracing is already 
off, then there is no effect.

101 Identical to trigger condition 001, 
and in addition, also dump the full 
performance counter values into the 
trace stream

Unconditionally start tracing if tracing was turned off. If tracing is already 
turned on, then there is no effect. In both cases, dump the full values of all the 
implemented performance counters into the trace stream.

110 Not used Reserved for future implementations.

111 Unconditional Trace Start (core and 
CM), and in addition, dump the full 
performance counter values into the 
trace stream

Unconditionally start tracing in both core and coherence manager if tracing was 
turned off. If tracing is already turned on, then there is no effect. Dump the full 
values of all the implemented performance counters into the trace stream.

Table 2.77 TraceDBPC Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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2.2.10 User Mode Support Registers

This section contains the following hardware access registers.

• Section 2.2.10.1, "Hardware Enable — HWREna (CP0 Register 7, Select 0)" on page 147

• Section 2.2.10.2, "UserLocal (CP0 Register 4, Select 2)" on page 148

• Section 2.2.10.3, "LLAddr Register (CP0 Register 17, Select 0)" on page 149

2.2.10.1 Hardware Enable — HWREna (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the rdhwr 
instruction when that instruction is executed in user mode. 

The low-order four bits [3:0] control access to the four registers required by the MIPS64® architecture standard. The 
two high-order bits [31:30] are available for implementation-dependent use.

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the 
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide 
direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading the 
value back. If a bit reads back as a one, the processor implements that hardware register.

Figure 2.66 HWREna Register Format  

 

31 30 29 28 6 5 4 3 2 1 0

Impl UL 0 XNP PerfCnt CCRes CC SYNCI_Step CPUNum

Table 2.79 Field Descriptions for HWREna Register

Name Bit(s) Description
Read/ 
Write Reset State

Impl 31:30 These bits control access to implementation-dependent hardware registers. These reg-
isters are not currently implemented in any P6600 family processor. Attempts to 
access these bits results in a Reserved Instruction Exception.

R 0

UL 29 UserLocal register present. This register provides read access to the coprocessor 0 
UserLocal register. Set this bit to 1 to permit user programs to obtain the value of the 
UserLocal CP0 register using rdhwr 29.

R/W 0

0 28:4 Ignored on write; returns zero on read. R 0

XNP 5 When set, this bit provides read access to the coprocessor 0 Config5.XNP register bit. 
Set this bit to 1 to permit user programs to obtain the value of the Config5.XNP CP0 
register field using rdhwr 5.

See Config5.XNP.

R/W 0

PerfCnt 4 Performance Counter Pair. Even sel selects the Control register, while odd sel selects 
the Counter register in the pair.

R/W 0
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2.2.10.2 UserLocal (CP0 Register 4, Select 2)

UserLocal is a read-write 64-bit register that is not interpreted by the hardware and conditionally readable by soft-
ware. This register is suitable for a kernel-maintained ID whose value can be read by user-level code with 
rdhwr 29, as long as HWRENAUL is set. 

The presence of the UserLocal register is indicated by Config3ULRI = 1.

CCRes 3 Resolution of the Count register. This value denotes the number of cycles between 
updates of the Count register. Setting this bit allows selected instructions to read the 
Count register. For example, if this bit is set, the execution of a user-mode rdhwr 3 
instruction read the interval at which the Count register increments. This field is 
encoded as follows:
0: Count register increments every cycle
1: Count register increments every second cycle
2: Count register increments every third cycle
etc.

R/W 0

CC 2 Count register present. This register provides read access to the coprocessor 0 Count 
Register. Set this bit to 1 so a user-mode rdhwr 2 can read out the value of the 
Count register. 

R/W 0

SYNCI_Step 1 L1 cache line size. Setting this bit allows hardware to read the line size of the L1 
cache. This field is used in conjunction synci instruction. See that instruction’s 
description for the use of this value. 
In the typical implementation, this value should be zero if there are no caches in the 
system that must be synchronized (either because there are no caches, or because the 
instruction cache tracks writes to the data cache). In other cases, the return value 
should be the smallest line size of the caches that must be synchronized.
For the P6600 core, the SYNCI_Step value is 32 since the line size is 32 bytes.
Set this bit to 1 so that a user-mode rdhwr 1 can read the cache line size (actually, 
the smaller of the L1 I-cache line size and D-cache line size). That line size deter-
mines the step between successive uses of the synci instruction, which does the 
cache manipulation necessary to ensure that the CPU can correctly execute the 
instructions. 

R/W 0

CPUNum 0 This register provides read access to the coprocessor 0 EBaseCPUNum field. Set this bit 
1 so a user-mode rdhwr 0 reads out the CPU ID number.

R/W 0

Table 2.79 Field Descriptions for HWREna Register

Name Bit(s) Description
Read/ 
Write Reset State
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Figure 2.67 UserLocal Register Format  

2.2.10.3 LLAddr Register (CP0 Register 17, Select 0)

The LLAddr register stores the physical address (to the enclosing 32-byte block) of the target location of any LL/SC 
sequence. This register is readable purely for diagnostic reasons. This register is used by the hardware to properly 
handle LL/SC sequences by monitoring if the memory location has potentially been written between the LL and SC 
instructions. 

Figure 2.68 LLAddr Register Format   

63 0

UserLocal

Table 2.80 UserLocal Register Field Description

Fields

Description
Read / 
Write Reset StateName Bits

UserLocal 63:0 Software information that is not interpreted by hardware. R/W Undefined

63 36 35 32

0 PAddr

31 1 0

PAddr LLB

Table 2.81 LLAddr Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bit(s)

0 63:36 Unused bits. For these bits, writes are ignored and reads return zero. R Undefined

PAddr 35:1 Bits [39:5] of address used by last the LL instruction. LLAddr[1] is always 
aligned to PA[5], which implies PAddr is always 32-byte aligned.

R Undefined

LLB 0 Load-Linked bit. The LL instruction sets this bit when executed. The SC 
instructions and other hardware events may clear the LLB bit.

This bit allows the LL bit to be software accessible. Software can never 
write 1 to LL bit. In this case, the state of LLAddr.LLB must remain 
unchanged. Software may clear LL bit by writing a 0 to LLAddr..LLB.

R/W 0
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2.2.11 Kernel Mode Support Registers

This section contains the following 64-bit kernel scratch registers.

• KScratch1 (CP0 Register 31, Select 2)

• KScratch2 (CP0 Register 31, Select 3)

• KScratch3 (CP0 Register 31, Select 4)

• KScratch4 (CP0 Register 31, Select 5)

• KScratch5 (CP0 Register 31, Select 6)

• KScratch6 (CP0 Register 31, Select 7)

The presence of KScratch registers is indicated by the Config4KScrExist field (bits 23:18). Six KScratch registers are 
required in the MIPSr6 architecture and reside at CP0 register 31, selects 2 - 7. As such, the various bits of the 
KScrExist field are used to identify the presence of the KScratch registers as shown in the table below. 

Each of the KScratch registers listed above have an identical bit orientation as shown below. 

KScratch1 - KScratch6 are read-write 64-bit registers used by the kernel for temporary storage of information.

The presence of the KScratch registers is indicated by Config4KScrExist[7:2] = 1’b1 as shown in Table 2.82 above.

Table 2.82 KScratch Register Map

CP0 Config4 
Register Bit Bit Name

Indicates the 
Presence of KScratch Register Location

18 KScrExist[2] KSratch1 register CP0 register 31, select 2

19 KScrExist[3] KSratch2 register CP0 register 31, select 3

20 KScrExist[4] KSratch3 register CP0 register 31, select 4

21 KScrExist[5] KSratch4 register CP0 register 31, select 5

22 KScrExist[6] KSratch5 register CP0 register 31, select 6

23 KScrExist[7] KSratch6 register CP0 register 31, select 7
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Figure 2.69 KScratch 1 - 6 Register Format  

63 0

KScratch

Table 2.83 KScratch 1 - 6 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

KScratch 63:0 Used by the kernel for temporary storage of information. R/W Undefined
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2.2.12 Memory Mapped Registers

This section contains the following memory mapped registers. 

• Section 2.2.12.1, "Common Device Memory Map Base Address — CDMMBase (CP0 Register 15, Select 2)" on 
page 152

• Section 2.2.12.2, "Coherency Manager Global Configuration Register Base Address — CMGCRBase (CP0 
Register 15, Select 3)" on page 153

2.2.12.1 Common Device Memory Map Base Address — CDMMBase (CP0 Register 15, Select 2)

The 32-bit physical base address for the Common Device Memory Map facility is defined by this register. This regis-
ter only exists if Config3CDMM is set to one.

Figure 2.70 shows the format of the CDMMBase register, and Table 2.84 describes the register fields.

Figure 2.70 CDMMBase Register  

63 40 35 11 10 9 8 0

0 CDMM_UPPER_ADDR EN CI CDMMSize

Table 2.84 CDMMBase Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 63:36 Unimplemented physical address bits. Writes are ignored, returns 
0 on read.

R 0

CDMM_UPPER_
ADDR

35:11 Bits 39:15 of the base physical address of the common device 
memory-mapped registers. 

R/W Undefined

EN 10 Enables the CDMM region. 
If this bit is cleared, memory requests to this address region go to 
regular system memory. If this bit is set, memory requests to this 
region go to the CDMM logic.
0: CDMM region is disabled.
1: CDMM region is enabled.

R/W 0

CI 9 If set to 1 by hardware, this bit indicates that the first 64-byte 
Device Register Block (DRB) of the CDMM is reserved for addi-
tional registers which manage CDMM region behavior and are 
not IO device registers.
This bit is always 0 in the P6600 core since additional I/O device 
registers are not implemented.

R 0

CDMMSize 8:0 This field represents the number of 64-byte Device Register 
Blocks (DRB) instantiated in the P6600 core.
0x000: 1 DRB
0x001: 2 DRB’s
0x010: 3 DRB’s
...
0x1FF: 512 DRB’s

R 2
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2.2.12.2 Coherency Manager Global Configuration Register Base Address — CMGCRBase 
(CP0 Register 15, Select 3)

This register is used in a multi-core environment and defines the 36-bit physical base address for the memory-mapped 
Coherency Manager Global Configuration Register (CMGCR) space. This register only exists if Config3CMGCR is 
set.

Figure 2.71 shows the format of the CMGCRBase register, and Table 2.85 describes the register fields.

Figure 2.71 CMGCRBase Register 

2.2.13 Virtualization Registers

This section contains the set of register used to control Virtualization on the P6600 core. The Virtualization Module 
extends the MIPS64 architecture with a set of new instructions and machine state, and makes backward-compatible 
modifications to existing MIPS32 features.

The Virtualization Module is designed to enable full virtualization of operating systems and allows for the execution 
of guest Operating Systems in a fully virtualized environment. Software can determine if the Virtualization Module is 
implemented by checking the state of the VZ bit in the Config3 CP0 register.

The Virtualization Module is supported by the following CP0 register. 

• Section 2.2.13.1, "GuestCtl0 Register (CP0 Register 12, Select 6)"

• Section 2.2.13.2, "GuestCtl1 Register (CP0 Register 10, Select 4)"

• Section 2.2.13.3, "GuestCtl2 Register (CP0 Register 10, Select 5)"

• Section 2.2.13.4, "GuestCtl0Ext Register (CP0 Register 11, Select 4)"

• Section 2.2.13.5, "GTOffset Register (CP0 Register 12, Select 7)"

63 36 35 11 10 0

0 CMGCR_BASE_ADDR 0

Table 2.85 CMGCRBase Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 63:36 Unimplemented physical address bits. Writes are ignored, returns 0 
on read

R 0

CMGCR_
BASE_ADDR

35:11 Bits 39:15 of the base physical address of the memory mapped 
Coherency Manager Global Configuration registers.
The number of implemented physical address bits is implementa-
tion-specific. For the unimplemented address bits, writes are 
ignored, reads return zero.
The reset value is set when the core is configured using the Config-
uration GUI.

R Preset

0 10:0 Must be written as zero; returns zero on read R 0
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2.2.13.1 GuestCtl0 Register (CP0 Register 12, Select 6)

The GuestCtl0 register contains control bits that indicate whether the base mode of the processor is guest mode or root 
mode, plus additional bits controlling guest mode access to privileged resources. The GuestCtl0 register is accessible 
only in root mode.

Note on behaviour of GuestCtl0DRG/RAD: These R/W fields define additional functions for the Guest and Root TLBs. 
Both must be interpreted together. An implementation does not have to support all valid combinations. Root software 
can test supported combinations by writing then reading legal values. Legal values for (RAD,DRG)={00,01,11}. 

Figure 2.72 shows the format of the Virtualization Module GuestCtl0 register; Table 2.86 describes the GuestCtl0 reg-
ister fields.

Figure 2.72 GuestCtl0 Register Format 

 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 2 1 0

GM RI MC CP0 AT GT CG CF G1 Impl G0E PT ASE PIP RAD DRG G2 GExcCode S FC2 S FC1

Table 2.86 GuestCtl0 Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

GM 31 Guest Mode
The processor is in guest mode when GM = 1 and the following bits are all 
zero:Root.StatusEXL= 0, Root.StatusERL = 0, and Root.DebugDM = 0.

R/W 0

RI 30 Guest Reserved Instruction Redirect. This field is encoded as follows:

0: Reserved Instruction exceptions during guest-mode execution are taken in 
guest mode.
1: Reserved Instruction exceptions during guest-mode execution result in a 
Guest Reserved Instruction Redirect exception, taken in root mode.

R/W 0

MC 29 Guest Mode-Change exception enable. The purpose of this enable is to provide 
Root software control over certain mode-changing events within guest context 
that may be frequent in guest context by causing Field Change exceptions. This 
field is encoded as follows:

0: During guest mode execution a hardware initiated change to Guest.StatusEXL 

will not trigger a Guest Hardware Field Change Exception.
During guest mode execution, a software initiated change to Guest.StatusUM/

KSU will not trigger a Guest Software Field Change Exception.
1: During guest mode execution a hardware initiated change to Guest.StatusEXL 

will trigger a Guest Hardware Field Change Exception.
During guest mode execution, a software initiated change to Guest.StatusUM/

KSU will trigger a Guest Software Field Change Exception.

R/W 0
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CP0 28 Guest access to coprocessor 0. This field is encoded as follows:

0: Guest-kernel use of any Guest Privileged Sensitive Instruction will trigger a 
Guest Privileged Sensitive Instruction exception. 
E.g., Guest use of TLBWI always causes GPSI if CP0 = 0.
1: Guest-kernel use of selective Guest Privileged Sensitive Instructions is per-
mitted, subject to all other exception conditions.
Eg., Guest use of TLBWI only causes GPSI if GuestCtl0AT !=3 while CP0 = 1.

The CP0 bit has no other effect on the operation of coprocessor 0 in guest mode.

R/W 0

AT 27:26 Guest Address Translation control This field indicates which entity has control 
over the guest MMU. In the P6600 core the value of this field is always 0x3, 
indicating that the Guest MMU is under Guest control. Guest and Root MMU 
are both implemented and active in hardware.

Guest TLB resources include: 
• TLB related instructions - TLBWR, TLBWI, TLBR, TLBP, TLBINV, 

TLBINVF. 
• Supporting Registers - Index, Random, EntryLo0, EntryLo1, EntryHi, 

Context, XContext, ContextConfig, PageMask, PageGrain, SegCtl0, SegCtl1, 
SegCtl2, PWBase, PWField, PWSize, PWCtl.

If the Guest TLB resources (excluding Index, Random, EntryLo0, EntryLo1, 
Context, XContext, ContextConfig, PageMask and EntryHi) are under Root 
control (GuestCtl0AT = 1), Guest use of these instructions or access to any of 
these registers triggers a Guest Privileged Sensitive Instruction exception, 
allowing Root to control Guest address translation directly.

In default mode (GuestCtl0AT = 3), the Guest TLB resources are active under 
Guest control.

R 0x3

GT 25 Timer register access. This register is encoded as follows: 

0: Guest-kernel access to Count or Compare registers, or a read from CC with 
RDHWR will trigger a Guest Privileged Sensitive Instruction exception.
1: Guest kernel read access from Count and guest-kernel read or write access to 
Compare is permitted. Guest reads from CC using RDHWR are permitted in 
any mode.

The GT bit has no other effect on the operation of timers in guest mode.

R/W 0

CG 24 Cache Instruction Guest-mode enable. This register is encoded as follows:

0: A Guest Privileged Sensitive Instruction exception will result from use the 
CACHE, CACHEE instruction.
1: The CACHE, CACHEE instruction can be used with an Effective Address 
Operand type of ‘Address’. A Guest Privileged Sensitive Instruction exception 
will result from use of any other Effective Address Operand type.

R/W 0

Table 2.86 GuestCtl0 Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits
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CF 23 Config register access. This register is encoded as follows:

0: Guest-kernel write access to Config0-7 triggers a Guest Privileged Sensitive 
Instruction exception.
1: Guest-kernel access to Config0-7 is permitted.

The CF bit has no other effect on the operation of Config register fields in Guest 
mode.

R/W 0

G1 22 GuestCtl1 register implemented. Set by hardware. This register is encoded as 
follows:

0: Unimplemented
1: Implemented

R Preset

Impl 21:20 Implementation defined.
These bits are implementation dependent and not defined by the architecture. If 
not implemented, they must be ignored on write and read as zero. If imple-
mented and if modifying the behavior of the processor, it must be defined in 
such a way that correct behavior is preserved if software, with no knowledge of 
these bits, reads the GuestCtl0 register, modifies another field, and writes the 
updated value back to the GuestCtl0 register.

R/W 0

G0E 19 GuestCtl0Ext register implemented. Set by hardware. This register is encoded 
as follows:

0: Unimplemented
1: Implemented

R 1

PT 18 Defines the existence of the Pending Interrupt Pass-through feature. This regis-
ter is encoded as follows:

0: GuestCtl0PIP not supported. GuestCtl0PIP is a reserved field.
All external interrupts are processed via Root intervention.
1: GuestCtl0PIP supported. Interrupts may be assigned to Root or Guest.

R 1

ASE 17:16 Reserved for MCU Module Pending Interrupt Pass-through. This field is not 
used in the P6600 core and is always zero.

0 0

PIP 15:10 Pending Interrupt Pass-through. 
In non-EIC mode, controls how external interrupts are passed through to the 
guest CP0 context. Interpreted as a bit mask and applies 1:1 to Guest.Cau-
seIP[7:2]. GuestCtl1PIP may be extended by GuestCtl1ASE.
Existence of the PIP feature is defined by the GuestCtl0PT field.
This field is encoded as follows:

0: Corresponding interrupt request is not visible in guest context.
1: Corresponding interrupt request is visible in guest context.

R/W 0

RAD 9 RAD, or “Root ASID Dealias” mode determines the means that a Virtualized 
MMU implementation uses Root ASID to dealias different contexts. This field 
is encoded as follows:

0: GuestID used to de-alias both Guest and Root TLB entries.
1: Root ASID is used to de-alias Root TLB entries, while Guest TLB contains 
only one context at any given time.

R 0

Table 2.86 GuestCtl0 Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 157

Table 2.87 describes the cause codes use for GExcCode. 

DRG 8 DRG, or “Direct Root to Guest” access determines whether an implementation 
provides root kernel the means to access guest entries directly in the Root TLB 
for access to guest memory. This bit is always 0 in the P6600 as root software 
cannot access guest entries directly.

R0 0

G2 7 GuestCtl2 register implemented. Set by hardware. This bit is always set to 1 in 
the P6600 core.

R preset

GExCode 6:2 Hypervisor exception cause code. Described in Table 2.87.
This field is UNDEFINED on a root exception.

R Undefined

SFC2 1 Guest Software Field Change exception enable for Guest.StatusCU[2].
The purpose of this enable is to provide Root software control over guest COP2 
enable related Field Change exception. This bit is not used and is always 0 in 
the P6600 as COP2 is not supported.

R 0

SFC1 0 Guest Software Field Change exception enable for Guest.StatusCU[1]. 
The purpose of this enable is to provide Root software control over guest COP1 
enable related Field Change exception. Guest software may utilize StatusCU1 
for COP1 specific context switching. This bit is encoded as follows:

0: GSFC exception taken if CU[1] is modified by guest.
1: GSFC exception not taken if CU[1] modified by guest.

R/W 0

Table 2.87 GuestCtl0 GExcCode values

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 0x00 GPSI Guest Privileged Sensitive instruction. Taken when execution of a Guest Privi-
leged Sensitive Instruction was attempted from guest-kernel mode, but the 
instruction was not enabled for guest-kernel mode.

1 0x01 GSFC Guest Software Field Change event.

2 0x02 HC Hypercall.

3 0x03 GRR Guest Reserved Instruction Redirect. A Reserved Instruction or MDMX Unus-
able exception would be taken in guest mode. When GuestCtl0RI=1, this root-
mode exception is raised before the guest-mode exception can be taken.

4 - 7 0x4 - 0x7 IMP Available for implementation specific use.

8 0x08 GVA Guest mode initiated Root TLB exception has Guest Virtual Address avail-
able.
Set when a Guest mode initiated TLB translation results in a Root TLB related 
exception occurring in Root mode and the Guest Physical Address is not avail-
able.

9 0x09 GHFC Guest Hardware Field Change event.

10 0x0A GPA Guest mode initiated Root TLB exception has Guest Physical Address avail-
able.
Set when a Guest mode initiated TLB translation results in a Root TLB related 
exception occurring in Root mode and the Guest Physical Address is available.

Table 2.86 GuestCtl0 Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits
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2.2.13.2 GuestCtl1 Register (CP0 Register 10, Select 4) 

The GuestCtl1 register defines GuestID control fields for Root (GuestCtl1RID) and Guest (GuestCtl1ID) which may be 
used in the context of TLB instructions, instruction and data address translation. The GuestCtl1RID field additionally is 
written by the processor on a TLBR or TLBGR instruction in Root mode, then containing the GuestID read from the 
TLB entry. A TLBR executed in Guest mode does not cause a write to either GuestCtl1ID and GuestCtl1RID.

GuestCtl1 is optional and thus the use of GuestID is optional in the context of TLB instructions, instruction and data 
address translation. The GuestCtl1 register only exists in Root Context. A GuestID value of 0 is reserved for Root. 
The primary purpose of the GuestID is to provide a unique component of the Guest/Root TLB entry eliminating TLB 
invalidation overhead on virtual machine level context switch.

A system implementing a GuestID is required to support a guest identifier field (GID) in each Guest and Root TLB 
entry. This GuestID field within the TLB is not accessible to the Guest. While operating in guest context, the behavior 
of guest TLB operations is constrained by the GuestCtl1ID field so that only guest TLB entries with a matching GID 
field are considered.

The actual number of bits usable in the GuestCtl1ID and GuestCtl1RID fields is implementation dependent. Software 
may determine the usable size of these fields by writing all ones and reading the value back. The size of GuestCtl1ID 
and GuestCtl1RID must be equal.

Figure 2.73 shows the format of the Virtualization Module GuestCtl1 register; Table 2.88 describes the GuestCtl1 reg-
ister fields.

Figure 2.73 GuestCtl1 Register Format

11 - 31 0xB - 0x1F - Reserved

31 24 23 16 15 8 7 0

EID RID 0 ID

Table 2.88 GuestCtl1 Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

EID 31:24 External Interrupt Controller Guest ID.
Required if an External Interrupt Controller (EIC) is supported.
A guest interrupt which is posted by the EIC to the root interrupt bus, must 
cause the Guest ID of the root interrupt bus to be registered in EID once the 
interrupt is taken. This field is read-only and set by hardware.

R 0

RID 23:16 Root control GuestID. Used by root TLB operations, and when GuestCtl0DRG = 
1 in Root mode. Legal values for this field are 0x00 - 0x0F. A value greater 
than 0x0F causes the entire write operation to be dropped.

R/W 0

0 15:8 Must be written as zero; returns zero on read. R 0

ID 7:0 Guest control GuestID. Identifies resident guest. Applies to guest address trans-
lation. A value greater than 0x0F causes the entire write operation to be 
dropped.

R/W 0

Table 2.87 GuestCtl0 GExcCode values

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal
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2.2.13.3 GuestCtl2 Register (CP0 Register 10, Select 5) 

The GuestCtl2 register is optional in an implementation. It is only required if support for Virtual Interrupts in non-
EIC mode is included in an implementation. Alternatively, if EIC mode is supported, then GuestCtl2 is required.

GuestCtl2 is present if GuestCtl2G2 = 1. 

Figure 2.74 shows the format of the Virtualization Module GuestCtl2 register in non-EIC mode. Table 2.89 describes 
the non-EIC mode GuestCtl2 register fields.

Figure 2.75 shows the format of the Virtualization Module GuestCtl2 register in EIC mode. Table 2.90 describes the 
EIC mode GuestCtl2 register fields.

Figure 2.74 GuestCtl2 Register Format for non-EIC Mode

Figure 2.75 GuestCtl2 Register Format for EIC Mode

31 30 29 24 23 18 17 16 15 10 9 0

ASEHC HC 0 ASEVIP VIP 0

31 30 29 24 23 16 15 0

ASE GRIPL 0 GVEC

Table 2.89 non-EIC mode GuestCtl2 Register Field Descriptions 

Fields

Description
Read / 
Write

Reset 
StateName Bits

ASEHC 31:30 MCU Module extension for HC. Must be written as zero; returns zero on read. R 0

HC 29:24 Hardware Clear for GuestCtl2VIP

This set of bits maps one to one to GuestCtl2VIP. 

This field is encoded as follows. 

0: The deassertion of related external interrupt (IRQ[n]) has no effect on 
GuestCtl2VIP[n]. Root software must write zero to GuestCtl2VIP[n] to clear the 
virtual interrupt. 
1: The deassertion of related external interrupt (IRQ[n]) causes GuestCtl2VIP[n] 
to be cleared by hardware.

In the case of HC = 0, Guest.CauseIP[n+2] could continue to be asserted due to 
an external interrupt when GuestCtl2VIP[n] is cleared by software. Source of 
external interrupt must be serviced appropriately.

Root software can write then read this field to determine the supported configura-
tion. 

R/W 0

0 25:18 Must be written as zero; returns zero on read. R 0
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ASEVIP 17:16 MCU Module extension for VIP. Must be written as zero; returns zero on read. R 0

VIP 15:10 Virtual Interrupt Pending.
The VIP field is used by root to inject virtual interrupts into Guest context. 
VIP[5:0] maps to Guest.StatusIP[7:2]. VIP effects Guest.StatusIP in the following 
manner:

0: Guest.StatusIP[n+2] cannot be asserted due to VIP[n], though it may be 
asserted by an external interrupt IRQ[n]. n = 5:0.
1: Guest.StatusIP[n+2] must at least be asserted due to VIP[n]. It may also be 
asserted by a concurrent external interrupt. n=5:0. 

R/W 0

0 9:0 Must be written as zero; returns zero on read. R0 0

Table 2.90 EIC mode GuestCtl2 Register Field Descriptions 

Fields

Description
Read / 
Write

Reset 
StateName Bits

ASE 31:30 MCU Module extension for GRIPL. This field is not used by the P6600 core, 
and must be written as zero; returns zero on read.

R 0

GRIPL 29:24 Guest RIPL
This field is written only when an interrupt received on the root interrupt bus 
for a guest is taken. The RIPL(Requested Interrupt Priority Level) sent by EIC 
on the root interrupt bus is written to this field.

Root software can write the field if it needs to modify the EIC value before 
assigning to guest. It may also clear this field to prevent a transition to guest 
mode from causing an interrupt if this field was set with a non-zero value ear-
lier.

R/W 0

GEICSS 21:18 Guest EICSS
This field is written only when an interrupt received on the root interrupt bus 
for a guest is taken. The EICSS (External Interrupt Controller Shadow Set) 
sent by EIC on the root interrupt bus is written to this field

Root software can write the field if it needs to modify the EIC value before 
assigning to guest.

R/W Undefined

0 23:16 Must be written as zero; returns zero on read. R 0

Table 2.89 non-EIC mode GuestCtl2 Register Field Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits
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2.2.13.4 GuestCtl0Ext Register (CP0 Register 11, Select 4)

GuestCtl0G0E should be read by software to determine if GuestCtl0Ext is implemented.

Figure 2.76 shows the format of the Virtualization Module GuestCtl0Ext register. Table 2.91 describes the GuestCtl0Ext 
register fields.

GVEC 15:0 Guest Vector
This field is written only when an interrupt is received on the root interrupt 
bus for a guest. The Vector Offset (or Number) sent by EIC on the root inter-
rupt bus is written to this field.

GVEC is not loaded into any guest CP0 field, but is used to generate an inter-
rupt vector in guest mode using the root interrupt bus vector and not the guest 
interrupt bus vector. This will only occur if the interrupt was first taken in root 
mode.

It is recommended that root software use write access only to restore context, 
not to modify the value delivered by the EIC.

R/W 0

Table 2.90 EIC mode GuestCtl2 Register Field Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits
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Figure 2.76 GuestCtl0Ext Register Format   

31 10 9 8 7 6 5 4 3 2 1 0

0 RPW NCC 0 CGI FCD OG BG MG

Table 2.91 GuestCtl0Ext Register Field Descriptions 

Fields

Description
Read / 
Write

Reset 
StateName Bits

0 31:6 Must be written as zero, returns zero on read. R0 0

RPW 9:8 Root Page Walk configuration. 
Determines whether Root COP0 Page Walk registers are used for GPA to RPA 
or RVA to RPA translations, or both.
This field is encoded as follows:

00: Pagewalk, if enabled, is enabled for both. Root software is responsible for 
restoring COP0 Page Walk related registers on context switch between root and 
guest.
01: Reserved
10: Pagewalk in root context is enabled for guest GPA to RPA translation.
Root miss in root TLB causes an exception.
11: Pagewalk in root context is enabled for root RVA to RPA translation.
Guest miss in root TLB causes a root exception.

Note that the 10 encoding is reserved for internal use. As such, software should 
never program this field with a value of 2’b10 as it will cause the entire write 
operation to be dropped.

R/W 0

NCC 7:6 Nested Cache Coherency Attributes
Determines whether guest CCA is modified by root CCA in 2nd step of guest 
address translation. This field is encoded as follows:

00: Guest CCA is independent of root CCA.
01: Guest CCA is modified by root CCA.
10: Guest CCA is passed through without being modified by the root CCA.
11: Reserved

The P6600 supports encoding 2’b10 of this field. The P6600 core converts 
unsupported CCAs to supported CCAs. CCA conversion must only be carried 
out on the effective CCA after the result of combining guest and root CCAs 
(GuestVA -> GuestPA -> RootPA). 

For RootVA -> RootPA translations, the effective CCA is the CCA from the 
root TLB entry.

R 10

0 5 Must be written as zero, returns zero on read. R0 0

CGI 4 Related to GuestCtl0CG. Allows execution of CACHE, CACHEE Index Invali-
date operations in guest mode. This field is encoded as follows:

0: Definition of GuestCtl0CG does not change. 
1: If GuestCtl0CG =1 and GuestCtl0ExtCGI =1, then all CACHE, CACHEE 
Index Invalidate (code 0xb000) operations may execute in guest mode without 
causing a GPSI.

R/W 0
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2.2.13.5 GTOffset Register (CP0 Register 12, Select 7) 

Timekeeping within the guest context is controlled by root mode. The guest time value is generated by adding the 
two’s complement offset in the Root.GTOffset register to the root timer in value Root.Count.

The guest time value is used to generate timer interrupts within the guest context, by comparison with the 
Guest.Compare register. The guest time value can be read from the Guest.Count register. Guest writes to the Guest.Count 
register always result in a Guest Privileged Sensitive Instruction exception.

The number of bits supported in GTOffset is implementation dependent but must be non-zero. It is recommended that 
a minimum of 16 bits be implemented. Root software can check the number of implemented bits by writing all ones 
and then reading. Unimplemented bits will return zero.

Figure 2.77 shows the Virtualization Module format of the GTOffset register; Table 2.92 describes the GTOffset register 
fields.

FCD 3 Disables Guest Software/Hardware Field Change Exceptions (GSFC/GHFC). 
This mode is useful for an implementation with root software that is not a full-
featured hypervisor. For e.g., the software may just support memory protection, 
but may not require protection of CP0 state.

If FCD = 1, then hardware must treat guest write, in case of GSFC, and hard-
ware events, in case of GHFC. This bit is encoded as follows:

0: GSFC or GHFC event will cause exception.
1: GSFC or GHFC event will not cause exception.

R/W 0

OG 2 Other GPSI Enable. Applies to UserLocal, HWREna, LLAddr, and KScratch1 
through KScratch6. This bit is encoded as follows:

0: GPSI not enabled for these registers unless GuestCtl0CP0=0.
1: GPSI enabled for these registers.

R/W 0

BG 1 Bad register GPSI Enable. Applies to BadVAddr, BadInstr, and BadInstrP. This 
field is encoded as follows:

0: GPSI not enabled for these registers unless GuestCtl0CP0=0.
1: GPSI enabled for these registers.

R/W 0

MG 0 MMU GPSI Enable. Applies to Index, EntryLo0, EntryLo1, Context, Context-
Config, XContextConfig, PageMask, and EntryHi. This field is encoded as fol-
lows:

0: GPSI not enabled for these registers unless GuestCtl0CP0=0.
1: GPSI enabled for these registers.

R/W 0

Table 2.91 GuestCtl0Ext Register Field Descriptions 

Fields

Description
Read / 
Write

Reset 
StateName Bits
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Figure 2.77 GTOffset Register Format   

2.2.14 Memory Accessibility Attribute Registers

The 64-bit Memory Accessibility Attribute registers (MAAR) and the 64-bit Memory Accessibility Attribute register 
Index (MAARI) define the accessibility attributes of memory regions. 

The MAAR register defines whether an instruction fetch or data load/store can speculatively access a memory region 
within the address bounds specified by MAAR. The MAARI register is used to specify a MAAR register number that 
may be accessed by software with an MTC0 or MFC0 instruction. Prior to access by MTC0 or MFC0, software must 
set the MAARIINDEX field to the appropriate value. 

MAAR Register Pairs

The P6600 core contains three pairs of MAAR registers, each of which are indexed using the MAAR Index (MAARI) 
register located at CP0 Register 17, Sel 2. Each MAAR register pair consists of a 64-bit even and an odd register. The 
three MAAR register pairs are as follows, where ‘O’ indicates the odd register of the pair and ‘E’ indicates the even 
register; MAAR0O / MAAR0E, MAAR1O / MAAR1E, and MAAR2O / MAAR2E. 

The MAARI register must be initialized with the appropriate MAAR register number before the MAAR can be 
accessed with an MTC0 or MFC0 instruction. An EHB instruction is required to be placed in between the write to 
MAARI and the subsequent execution of a MTC0 or MFC0 instruction that specifies the MAAR.

The P6600 core implements three pairs of MAAR registers. The presence of a MAAR register pair can be detected by 
software through Config5MRP.

3-Pair MAAR Implementation

The following pseudo-code shows a 3-pair MAAR implementation to determine speculation. Software must set the 
logical valid to 1 of each register in the pair to enable a MAAR pair. It may however, clear any one logical valid of the 
pair to invalidate the whole MAAR pair. Once both logical values are set to 1, hardware factors in the speculate attri-
bute of only the upper MAAR register with even index. The logical valid is determined as described in the pseudo-
code below.

speculateCCA ¬ 0 // default is not to speculate
// Modify speculate attribute as per CCA of memory access
// Cached CCA and UCA speculates
if ((CCA == “cached”) or (CCA == “uncached-accelerated (UCA)”)) 

speculateCCA ¬ 1
endif

31 0

GTOffset

Table 2.92 GTOffset Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

GTOffset 31:0 Two’s complement offset from Root.Count. R/W 0
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// Now factor in MAAR
MAARmatch ¬ 0
speculateMAAR ¬ 1
// Example of 40-bit PA is 64KB aligned
PA_Align ¬ PA[39:16]
for (i=0; i<6; i=i+2) // assume 3 pairs

// Factor in XPA (Extended Physical Addressing)
MAAR[i]V = MAAR[i]VL and (MAAR[i]VH or not PageGrainELPA)
MAAR[i+1]V = MAAR[i+1]VL and (MAAR[i+1]VH or not PageGrainELPA)
if (MAAR[i]V and MAAR[i+1]V) // both logical valids must be set to 1

if ((MAAR[i][35:12] >= PA_Align) && // upper bound
(MAAR[i+1][35:12] <= PA_Align)) // lower bound 

speculateMAAR ¬ speculateMAAR and MAAR[i]S 
MAARmatch ¬ 1

endif
endif

endfor

// if no MAAR is valid, or no MAAR match occurs, then speculateMAAR ¬ 0 speculate ¬ speculateMAAR and 
// speculateCCA and MAARmatch

Programming the State of the MAAR / MAARI Register Pair

Software must follow the described method for reprogramming the state of a MAAR pair.

• Disable the MAAR pair by clearing MAAR.VL and MAAR.VH. Accesses to the MAAR region become non-
speculative.

• Program PageGrainELPA as needed.

• Set MAAR.VL along with other fields in MAAR[63:0]

2.2.14.1 Memory Accessibility Attribute Register (CP0 Register 17, Select 1)

The Memory Accessibility Attribute Register (MAAR) is a read/write register defines the accessibility attributes of 
memory regions. In particular, MAAR defines whether an instruction fetch or data load/store can speculatively access 
a memory region within the address bounds specified by MAAR.

The purpose of the MAAR register is to control speculation on load or fetch access to memory and I/O addresses. A 
load is considered speculative if it accesses memory prior to its being the oldest instruction to retire. A fetch typically 
always speculates on access to memory, while never speculating to I/O. 

If the MAAR function yields a valid attribute, it will only override any equivalent attribute determined through other 
means, if it provides a more conservative outcome. For example, if the MMU yields a cacheable CCA, but MAAR 
yields a speculate attribute set to 0, then the access should not speculate as determined by the MAAR result. Similarly, 
if the MMU yields an uncacheable CCA, but MAAR yields a speculate attribute set to 1, then the access should not 
speculate. 

The CCA of a memory access now defines speculation, along with MAAR. A memory access with a cacheable CCA is 
allowed to speculate. A memory access with uncacheable CCA on the other hand is not allowed to speculate unless 
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the uncacheable CCA = 7 (UCA) is used. The final speculative attribute is a combination of the CCA and MAAR as 
described above. 

The address range specified by a MAAR may be used to specify an attribute for any region of the address space, 
whether memory (DRAM) or memory-mapped I/O. 

Note that the MAARI register must be initialized with the appropriate MAARI register number before the MAAR is 
accessed with an MTC0 or MFC0 instruction. An EHB instruction is required to be placed between the write to 
MAARI and subsequent execution of MTC0 or MFC0 that specifies the MAAR.

The MAAR register has the following properties:

• If all MAAR instances are invalid, then no speculation is allowed. This allows the MAAR initialization to occur 
at any point of time without the risk of execution speculative (bad path) loads or fetches from issuing to IO 
addresses, with the tradeoff possibly being lower performance.

• If any MAAR region enables speculation, then accesses to physical addresses outside this MAAR region must be 
non-speculative, unless the physical address of the access matches against a MAAR region with speculation 
enabled. This access can then speculate.

• MAAR overlap is allowed: This allows non-speculative MAAR region to overlap a speculative MAAR region. 
For e.g., with this property, a non-speculative region can be overlayed on a speculative DRAM region with the 
use of just two MAAR pairs.

For software to enable a speculative region out of reset, it should first initialize MAARxO[63:0] and then 
MAARxE[63:32]. 

Figure 2.78 shows the format of the MAAR register; Table 2.93 describes the MAAR register fields.

Figure 2.78 MAAR Register Format  

 

63 36 35 12 11 2 1 0

0 ADDR 0 S V

Table 2.93 MAAR Register Field Descriptions 

Fields

Description Read/Write Reset StateName Bits

0 63:36 Reserved. Writes are ignored, read as 0. R 0
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ADDR 35:12 Address bounds. 
ADDR must always specify a physical address.
MAAR regions are at least 64KB-aligned, and thus the least-sig-
nificant bit of ADDR is equal to PA[16].
If the register specifies the upper bound, then any sourced 
address must be less than or equal to ADDR.
If the register specifies the lower bound, then any sourced 
address must be greater than or equal to ADDR.
See MAAR Index (CP0 Register 17, Select 2) for the method of 
determining which register is upper or lower in a pair.

MAAR[12] = PA[16]. This allows the MAAR register to specify 
40 bits of PA, where MAAR[35] = PA[39]. The lower 16 bits of 
the PA are not specified in this register since the MAAR regions 
must be 64 KB aligned.

R/W Undefined

0 11:2 Reserved. Writes are ignored, read as 0. R 0

S 1 Speculate. 
If an access is qualified as non-speculative, it must be the oldest 
unretired instruction in the processor before being allowed to 
access memory or memory-mapped regions. This field is 
encoded as follows:

0: Instruction fetch or data load/store that matches MAAR reg-
ister pair address range is never allowed to speculatively access 
address range.
1: Instruction fetch or data load/store that matches MAAR reg-
ister pair address range may be allowed to speculate.

MAAR regions are allowed to overlap. The cumulative specula-
tive attribute for overlapping regions is determined by ANDing 
individual valid MAAR pair speculation attributes.

R/W Undefined

V 0 MAAR register valid. This field is encoded as follows:

0: MAAR register is not valid and should not modify the behav-
ior of any instruction fetch or data load/store.
1: MAAR register is valid and may modify behavior of any 
instruction fetch or data load/store that falls within the range of 
addresses specified by the MAAR register pair.

If either valid bit of the MAAR register pair is set to 0, then the 
pair is assumed invalid and thus will not modify the behavior of 
any memory access. Software may thus invalidate one register 
of the MAAR pair to invalidate the MAAR comparison. 

R/W 0

Table 2.93 MAAR Register Field Descriptions (continued)

Fields

Description Read/Write Reset StateName Bits
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Table 2.94 shows how the valid attribute for a MAAR pair is determined from the cumulative individual MAAR register 
valids.

Table 2.95 shows how the speculate attribute for a MAAR pair is determined by the cumulative individual speculate 
attributes. 

2.2.14.2 Memory Accessibility Attribute Register Index (CP0 Register 17, Select 2) 

The MAAR Index register is used in conjunction with MAAR registers (CP0 Register 17, Select 1). Multiple MAAR 
registers may be implemented - MAAR Index is used to specify a MAAR register number that may be accessed by soft-
ware with an MTC0 or MFC0 instruction. Prior to access by MTC0 or MFC0, software must set MAARIINDEX to the 
appropriate value.

Figure 2.79 shows the format of the MAAR Index register; Table 2.96 describes the MAAR Index register fields. 

The presence of MAARI can be detected by software through Config5MRP.

Figure 2.79 MAAR Index Register Format  

Table 2.94 Valid Determination for MAAR Pair

MAAR[i]V 

where i is even MAAR[i+1]V Result

0 0 Result is invalid

0 1 Result is invalid

1 0 Result is invalid

1 1 Result is valid

Table 2.95 Speculate Determination for MAAR Pair

MAAR[i]S 

where i is even MAAR[i+1]S Result

1 0/1 Valid access may speculate

0 0/1 Valid access may never speculate

63 6 5 0

0 INDEX

Table 2.96 MAARI Index Register Field Descriptions 

Fields

Description Read/Write Reset StateName Bits

0 63:6 Reserved. Writes are ignored, read as 0. R 0
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2.2.15 Memory Segmentation Registers

Programmable segmentation is a backward compatible mode in the P6600 that allows for the virtual address space 
segments to be programmed with different access modes and attributes when operating in 32-bit mode. Control of the 
4GB of virtual address space is divided into six segments that are controlled using three CP0 registers; SegCtl0 
through SegCtl2. Each register has two 16-bit fields. Each field controls one of the six address segments as shown in 
Table 2.97. For more information, refer to Section 2.6 of the MMU chapter of this manual. 

INDEX 5:0 MAAR Index. The number of MAAR registers is greater than 1. 
INDEX specifies the MAAR register to access.

MAAR registers are paired. The least-significant bit of INDEX 
is encoded as follows to indicate which register of the pair is 
being accessed.

0: This register specifies the upper address bound of the MAAR 
register pair.
1: This register specifies the lower address bound of the MAAR 
register pair.

Software may write all ones to INDEX to determine the maxi-
mum value supported. Other than the all ones, if the value writ-
ten is not supported, then INDEX is unchanged from its 
previous value since the write is dropped. The register range is 
always contiguous and starts at value 0.

R/W 0

Table 2.97 Programmable Segmentation Register Interface

Register
CP0 

Location
Memory 
Segment

Register 
Bits

Virtual Address 
Space Controlled Virtual Address Range (Hex)

SegCtl2 Register 5
Select 4

CFG5 31:16 0.0 GB to 1.0 GB 0x0000_0000_0000_0000 - 
0x0000_0000_3FFF_FFFF

CFG4 15:0 1.0 GB to 2.0 GB 0x0000_0000_4000_0000 - 
0x0000_0000_7FFF_FFFF

SegCtl1 Register 5
Select 3

CFG3 31:16 2.0 GB to 2.5 GB 0xFFFF_FFFF_8000_0000 - 
0xFFFF_FFFF_9FFF_FFFF

CFG2 15:0 2.5 GB to 3.0 GB 0xFFFF_FFFF_A000_0000 - 
0xFFFF_FFFF_BFFF_FFFF

SegCtl0 Register 5
Select 2

CFG1 31:16 3.0 GB to 3.5 GB 0xFFFF_FFFF_C000_0000 - 
0xFFFF_FFFF_DFFF_FFFF

CFG0 15:0 3.5 GB to 4.0 GB 0xFFFF_FFFF_E000_0000 - 
0xFFFF_FFFF_FFFF_FFFF

Table 2.96 MAARI Index Register Field Descriptions (continued)

Fields

Description Read/Write Reset StateName Bits
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Memory Management Unit

The P6600 core includes a Memory Management Unit (MMU) that translates virtual addresses to physical addresses. 
The MMU consists of a 16-entry Instruction TLB (ITLB), a 32-entry data TLB (DTLB), 64 dual-entry Variable TLB 
(VTLB), and a 512 dual-entry Fixed TLB (FTLB). 

This chapter contains the following sections:

• Section 3.1, "Introduction" on page 171

• Section 3.2, "Memory Management Unit Architecture" on page 172

• Section 3.3, "MMU Configuration Options" on page 175

• Section 3.4, "Overview of Virtual-to-Physical Address Translation" on page 177

• Section 3.5, "Relationship of TLB Entries and CP0 Registers" on page 182

• Section 3.6, "Indexing the VTLB and FTLB" on page 187

• Section 3.7, "Hardware Page Table Walker" on page 188

• Section 3.8, "Hardwiring VTLB Entries" on page 201

• Section 3.9, "FTLB Parity Errors" on page 201

• Section 3.10, "FTLB Hashing Scheme and the TLBWI Instruction" on page 202

• Section 3.11, "TLB Exception Handling" on page 205

• Section 3.12, "Exception Base Address Relocation" on page 213

• Section 3.13, "Address Error Detection" on page 214

• Section 3.14, "VTLB and FTLB Initialization" on page 215

• Section 3.15, "TLB Duplicate Entries" on page 217

• Section 3.16, "Modes of Operation" on page 217

• Section 3.17, "TLB Instructions" on page 238

3.1 Introduction

The MMU translates a virtual address to a physical address before the request is sent to the cache controllers for tag 
comparison or to the bus interface unit for an external memory reference. Virtual-to-physical address translation is 
especially useful for operating systems that must manage physical memory to accommodate multiple tasks active in 
the same memory, and possibly in the same virtual address space. The MMU also enforces the protection of memory 
areas and defines the cache protocols.
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3.2 Memory Management Unit Architecture

The Memory Management Unit (MMU) in the P6600 core consists of four address-translation lookaside buffers 
(TLB): 

• 16-entry Instruction TLB (ITLB)

• 32 dual-entry Data TLB (DTLB)

• 64 dual-entry Variable Page Size Translation Lookaside Buffer (VTLB)

• Optional 512 dual-entry Fixed Page Size Translation Lookaside Buffer (FTLB)

When an instruction address is to be translated, the ITLB is accessed first. If the translation is not found, the VTLB/
FTLB is accessed. If there is a miss in the VTLB/FTLB, an exception is taken. Similarly, when a data reference is to 
be translated, the DTLB is accessed directly. If the address is not present in the DTLB, the VTLB/FTLB is accessed. 
If there is a miss in the VTLB/FTLB, an exception is taken. 

Figure 3.1 shows an overview of the P6600 MMU architecture.

Figure 3.1 Overview of MMU Architecture in the P6600 Core

3.2.1 Instruction TLB (ITLB)

The ITLB is a 16-entry high speed TLB dedicated to performing translations for the instruction stream. The ITLB 
maps only 4 KB or 16 KB pages. For 4 KB or 16 KB pages, the entire page is mapped in the ITLB. IF the page size is 
larger than 16 KB, then the contents of the larger page are copied into the ITLB on a 16 KB boundary.

The ITLB is managed by hardware and is transparent to software. The larger VTLB/FTLB is used as a backup struc-
ture for the ITLB. If a fetch address cannot be translated by the ITLB, the VTLB/FTLB attempts to translate it in the 
following clock cycle or when available. If successful, the translation information is copied into the ITLB for future 
use. 

The ITLB is functionally invisible to software and is entries are automatically refilled from the VTLB/FTLB when 
required, and automatically cleared whenever the associated VTLB/FTLB is updated. 
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3.2.2 Data TLB (DTLB)

The DTLB is a 32 dual-entry high speed TLB dedicated to performing translations for the data stream. The DTLB 
maps only 4 KB or 16 KB pages. For 4 KB or 16 KB pages, the entire page is mapped in the DTLB. 

The DTLB is managed by hardware and is transparent to software. The larger VTLB/FTLB is used as a backup struc-
ture for the DTLB. If a load/store address cannot be translated by the DTLB, the VTLB/FTLB attempts to translate it 
in the following clock cycle or when available. If successful, the translation information is copied into the DTLB for 
future use. 

The DTLB is functionally invisible to software and entries are automatically refilled from the VTLB/FTLB when 
required, and automatically cleared whenever the associated VTLB/FTLB is updated. 

3.2.3 Variable Page Size TLB (VTLB)

The VTLB is a fully associative variable page size translation lookaside buffer with 64 dual entries. The purpose of 
the VTLB is to translate virtual addresses and their corresponding ASID into a physical memory address. The transla-
tion is performed by comparing the upper bits of the virtual address (along with the ASID bits) against each of the 
entries in the tag portion of the VTLB structure. This structure is used to translate both instruction and data virtual 
addresses. 

The VTLB is organized as 64 pairs of even and odd entries. The VTLB implements the following page sizes: 

4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, and 256M, 1G, and 4G

The VTLB/FTLB is organized in pairs of page entries to minimize its overall size. Each virtual tag entry corresponds 
to two physical data entries, an even page entry and an odd page entry. The highest order virtual address bit not par-
ticipating in the tag comparison is used to determine which of the two data entries is used. Since page size can vary on 
a page-pair basis, the determination of which address bits participate in the comparison and which bit is used to make 
the even-odd selection must be done dynamically during the TLB lookup.

The PageMask register is loaded with the desired page size, which is then entered into the TLB when a new entry is 
written. Thus, operating systems can provide special-purpose maps. For example, a typical frame buffer can be mem-
ory-mapped with only one TLB entry. Software can determine which page sizes are supported by writing all ones to 
the PageMask register, then reading the value back.

The VTLB/FTLB entries are controlled through select CP0 registers. Refer to Section 3.5, "Relationship of TLB 
Entries and CP0 Registers" for more information. 

3.2.4 Fixed Page Size TLB (FTLB)

The 512-entry FTLB is a fixed page size TLB organized as 128 sets and 4-ways. Each set of each way contains dual 
data RAM entries and one tag RAM entry. If the tag RAM contents matches the requested address, either the low or 
high RAM location of the dual data RAM is accessed depending on the state of the least-significant-bit (MSB) of the 
VPN field. Refer to Section 3.5.3, "Address Translation Examples" for more information on VPN2 usage.

The FTLB is organized as 512 pairs of even and odd entries. The FTLB implements the following page sizes: 

4K, 16K
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If the FTLB is implemented, the organization is as shown in Table 3.1. Note that all of the entries in the FTLB must 
be the same page size, either 4K or 16K. The size is determined by the Config4FTLB Page Size field as described in the 
following table. 

The FTLB resides at the top of the VTLB range as shown in Figure 3.2.

Figure 3.2 P6600 VTLB and FTLB 

As shown in Figure 3.3, the 512-entry FTLB contains four ways and 128 sets. Each set of each way contains one 
dual-entry.

Table 3.1 FTLB Configuration Options

FTLB Parameter Programmable Options Register Reference

Ways 4 ways Config4FTLB Ways

Sets 128 sets Config4FTLB Sets

Page Size 4 KB
16KB

Config4FTLB Page Size

0

63
64

VTLB

191

FTLB - Way 0

192

319

FTLB - Way 1

320

447

FTLB - Way 2

448

575

FTLB - Way 3
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Figure 3.3 FTLB Organization 

3.3 MMU Configuration Options

The MMU in the P6600 core can be configured with the following options.
• FTLB enabled/disabled
• MMU type
• MMU size and organization

3.3.1 FTLB Enabled/Disabled

The P6600 core allows software to enable and disable the 512-entry FTLB. This is done via the FTLBEn bit in the 
Config6 register (CP0 Register 16, Select 6). Depending on how this bit is set, one of the following will occur:

• If the Config6FTLBEn bit is set by software, the FTLB is enabled and the hardware will configure the device 
accordingly. 

• If the Config6FTLBEn bit is cleared by software, the FTLB is disabled. This mode allows the P6600 core to 
remain backward compatible with existing software. Note that if the Config6FTLBEn bit is cleared, the address 
translation mechanism acts just like a Joint TLB (JTLB) in previous generation MIPS processors.

• If the Config6FTLBEn bit is not programmed by software, the FTLB is disabled by default because this bit is 
cleared automatically at reset. 

These options are illustrated in the Table 3.2. 

Note that the size of the FTLB is fixed at 512 entries. The user cannot implement less than 512 entries if the FTLB is 
enabled.

Table 3.2 FTLB Enabled of Disabled in the System

Config6FTLBEn Bit

(Set by Software)

ConfigMT Field1

(Set by Hardware)

1. See Section 3.3.2, "MMU Type".

1 3’b100
(FTLB Enabled)

0 3’b001
(FTLB Disabled, VTLB Only)

Set 0
Set 1

Sets 2 - 126

Set 127
Way 0

Set 0
Set 1

Sets 2 - 126

Set 127
Way 1

Set 0
Set 1

Sets 2 - 126

Set 127
Way 2

Set 0
Set 1

Sets 2 - 126

Set 127
Way 3
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3.3.2 MMU Type

The MT field of the Config register (CP0 Register 16, Select 0) is programmed depending on whether the FTLB is 
enabled. This is determined by the state of the Config6FTLBEn bit described above. If Config6FTLBEn is cleared, hardware 
writes a value of 3’b001 to this field. If Config6FTLBEn is set, hardware writes a value of 3’b100 to this field. The ker-
nel code uses this field to determine how to configure the TLB.

The 3-bit ConfigMT field supports the following two encodings. All other encodings are reserved.
• 3’b001: VTLB only (FTLB disabled)
• 3’b100: VTLB and FTLB present

3.3.3 MMU Size and Organization

The P6600 core uses the following CP0 register fields to determine the size and organization of the MMU. Each of 
the items below is described in the following subsections.

• Bits 30:25 of the Config1 register (Config1MMUSIZE). Determines VTLB size. The number of VTLB entries is equal 
to Config1MMUSIZE - 1.

• Bits 12:8 of the Config4 register (Config4FTLB Page Size). Determines the FTLB page size. If the FTLB is disabled, 
this field is ignored.

• Bits 7:4 of the Config4 register (Config4FTLB Ways). This field determines the number of ways in the FTLB.

• Bits 3:0 of the Config4 register (Config4FTLB Sets). This field determines the number of sets per way in the FTLB.

3.3.3.1 Determining VTLB Size

Hardware writes a value of 0x3F into the The 6-bit MMUSize field at reset, indicating 64 entries numbered 0 - 63. Note 
that the number of VTLB entries in the P6600 core is fixed at 64. The user cannot modify this value. 

3.3.3.2 FTLB Parameters

Bits 12:0 of this register are used to indicate the FTLB page size (Config4FTLB Page Size), the number of ways 
(Config4FTLB Ways), and the number of sets (Config4FTLB Sets). In the P6600 core, only the FTLB page size is program-
mable. The number of ways is fixed at 4 and the number of sets is fixed at 128. The page size can be programmed to 
either 4KB or 16KB pages. This concept is shown in Figure 3.4.
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Figure 3.4 Determining the FTLB Characteristics — FTLB Enabled

3.4 Overview of Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with 
the virtual addresses in the TLB. There is a match when the VPN of the address is the same as the VPN field of the 
TLB entry after masking out the bits specified by the entries page size, and either:

• The Global (G) bit of both the even and odd pages of the TLB entry is set, or

• The Global (G) bit is cleared and the ASID field of the virtual address is the same as the ASID field of the TLB 
entry

This match is referred to as a TLB hit. If there is no match, a TLB Refill exception is taken by the processor, and soft-
ware is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 3.5 shows the translation of a virtual address into a physical address. In this figure, the virtual address is 
extended with an 8-bit ASID, which reduces the frequency of TLB flushes during a context switch. This 8-bit ASID 
contains the number assigned to that process.

Note that the various register fields used during a TLB translation are managed via CP0 registers as described in 
Section 3.5, "Relationship of TLB Entries and CP0 Registers".

Set 127 Set 127

Set 0
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Figure 3.5 Overview of Virtual to Physical Address Translation  

If there is a virtual address match in the TLB, the Physical Frame Number (PFN) is output from the TLB and concat-
enated with the Offset to form the physical address. The Offset represents an address within the page frame space. As 
shown in Figure 3.5, the Offset does not pass through the TLB. Note that if the G bit is set, the ASID is ignored and 
the TLB compares only the VPN portion of the virtual address. The G bit is a logical AND of the G bit in the EntryLo0 
and EntryLo1 registers. 

3.4.1 Operating and Addressing Modes

Both the operating mode and the addressing mode of the processor can be selected. The operating mode allows the 
processor to execute 64-bit operations internally. The addressing mode allows the processor to generate either 32-bit 
or 64-bit addresses.

3.4.1.1 Operating Modes

The P6600 core can operate in one of the following modes. The mode is determined by the state of the CP0 StatusKSU 
field. Refer to Table 2.13 in Chapter 2 for additional information on the encoding of this field. Note that if the DM bit 
of the Debug register is set, the device is placed in debug mode, regardless of the state of the StatusKSU field. 

Table 3.1 Determining the Operating Mode 

Status Register
KSU Field Debug.DM Field Mode

x 1 Debug mode

VPN2 ASID GPageMask TLB Tag

PFN0 C0 D0 V0RI0 XI0

PFN1 C1 D1 V1RI1 XI1

Flags TLB Data

Entry 0

Entry 1

VPNASID G Offset

Virtual Address

PFN Offset

Physical Address

TLB

1. The virtual address represented by the virtual page number
(VPN) is compared with the tag portion of the TLB entry.

2. If there is a match, the page frame number 
(PFN0 or PFN1) representing the upper bits of 
the physical address (PA) is output from the TLB.

3. The offset, which does not pass through the
TLB, is concatenated with the PFN output of
the TLB to form the physical address.

One TLB Entry
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Once in the appropriate operating mode, the processor can execute either 32-bit or 64-bit operations. This information 
can be obtained from the CP0 Status register as shown in the following table. 

3.4.2 Address Translation in 64-bit Mode

Figure 3.6 shows a flow diagram of the 64-bit address translation process for a 4 KByte page size. In the MIPSr6 
architecture, VA[63:62] are used to perform the memory segmentation function to indicate which of the following 
area of VA space is being accessed. 

• Kernel: VA[63:62] = 11

• XKPhys: VA[63:62] = 10

• Supervisor: VA[63:62] = 01

• User: VA[63:62] = 00

In the P6600 core, which implements a 48-bit virtual address, VA[63:62] are appended to the end of the VA and 
reside in VA[49:48]. The remaining 36 bits of the address (VA[47:12]) represent the virtual page number (VPN) at the 
segment of memory determined by VA[49:48]. The width of the Offset is defined by the page size. For more informa-
tion, refer to Table 3.14 later in this chapter.

In the figure below, VPN 47:12 represent the virtual address. Bits 49:48 are the Region bits and are used to divide the 
virtual address space into four segments: 

2’b00 0 Kernel mode

2’b01 0 Supervisor mode

2’b10 0 User mode

Table 3.2 Determining the Addressing Mode

Status.KX Status.SX Status.UX Status.PX Mode

0 0 0 0 32-bit compatibility mode.

1 0 0 0 Access to 64-bit kernel address space is enabled. 
Uses the XTLB refill exception on a TLB Miss for a kernel address.

1 1 0 0 Access to 64-bit Kernel and 64-bit Supervisor address space enabled. 
Uses the XTLB refill exception on a TLB Miss for a kernel/supervisor 
address.

1 1 1 0 Access to 64-bit Kernel/Supervisor/User address space enabled. 
Uses the XTLB refill exception on a TLB Miss for any mapped address.

1 1 0 1 Access to 64bit Kernel/Supervisor address space enabled. 
64-bit operations are enabled in User space, but no access to 64-bit 
address space. 
Uses the TLB Refill exception on a TLB Miss.

1 1 1 1 Access to 64bit Kernel/Supervisor/Use address space enabled.
Uses the XTLB refill exception on a TLB Miss for any mapped address.

Table 3.1 Determining the Operating Mode (continued)

Status Register
KSU Field Debug.DM Field Mode
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Figure 3.6 64-bit Virtual Address Translation — 4 KB Page Size 

Figure 3.7 shows a flow diagram of the 64-bit address translation process for a 16 MByte page size. The width of the 
Offset is defined by the page size. The remaining bits of the address represent the virtual page number (VPN). Note 
that the P6600 core can support page sizes up to 4 GB, which yields a 32-bit offset and a 16-bit VPN.

Figure 3.7 64-bit Virtual Address Translation — 16 MB Page Size 

3.4.3 Address Translation in 32-bit Mode

In the P6600 core, all address translations are performed on 64-bit values. To maintain backward compatibility, 
addresses translation can be done on 32-bit addresses by sign-extending the unused bits 47:32. The 64-bit address 
space maps to the 32-bit compatibility mode as described in Figure 3.31.

3.4.4 Address Translation Flow

During an address translation, the hardware checks for various conditions such as the addressing mode (user, kernel 
etc.), access permissions based on the mode, the access type (load/store, etc), and the state of selected bits in the TLB 
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entry. If one or more of the conditions for translation are not met, a TLB exception is taken. This concept is shown in 
Figure 3.8.

Figure 3.8 Address Translation Flow  
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3.5 Relationship of TLB Entries and CP0 Registers

Each TLB entry in the VTLB/FTLB consists of a tag portion and dual-data portion as shown in Figure 3.9. In this fig-
ure, the following registers are used to manage the TLB entries.

• EntryLo0 (CP0 Register 2, Select 0)
• EntryLo1 (CP0 Register 3, Select 0)
• EntryHi (CP0 Register 10, Select 0)
• PageMask (CP0 Register 5, Select 0)

In order to fill an entry in the VTLB/FTLB, software executes a TLBWI or TLBWR instruction (see Section 3.17). 
Prior to invoking one of these instructions, the CP0 registers listed above must be updated with the information to be 
written to the TLB entry:

• PageMask is set in the CP0 PageMask register.

• VPN2, and ASID are set in the CP0 EntryHi register.

• PFN0, C0, D0, V0, RI, XI, and G bits are set in the CP0 EntryLo0 register.

• PFN1, C1, D1, V1, RI, XI, and G bits are set in the CP0 EntryLo1 register.

These register fields and their relationship to a TLB entry is described in the following subsections.
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Figure 3.9 Relationship Between CP0 Registers and TLB Entries 

3.5.1 TLB Tag Entry

The tag portion of the TLB entry contains the fields necessary to match an incoming address against that entry. This 
section describes each field of the TLB tag entry shown in Figure 3.9.

3.5.1.1 VPN2 Field

The virtual page number (VPN) contains the high bits of the program (virtual) address. The ‘VPN2’ designation indi-
cates that this address is for a double-page-size virtual region which will map to a pair of physical pages. The VPN2 
field is generated using the EntryHi register.

Note that on a TLB-related exception, the VPN2 field is automatically set to the virtual address that was being trans-
lated when the exception occurred. If the outcome of the exception handler is to find and install the translation to that 
address, the VPN2 field will already contain the correct value. 

3.5.1.2 ASID Field

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The ASID 
field extends the virtual address with an 8-bit memory space identifier assigned by the operating system. The ASID 
allows translations for multiple different applications to co-exist in the TLB (in Linux, for example, each application 
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has different code and data lying in the same virtual address region). The ASID field is generated using the EntryHi 
register.

3.5.1.3 PageMask Field

The size of the tag can be configured using the ‘PageMask’ field. This field determines how many incoming address 
bits to match. For the VTLB, the P6600 core allows page sizes of 4 Kbytes up to 4 Gbytes in multiples of four. For the 
FTLB, the P6600 core allows page sizes of 4 Kbytes and 16 Kbytes. The PageMask field is generated using the 
PageMask register.

In the PageMask field, a ‘1’ on a given bit means "don’t compare this address bit when matching this address". How-
ever, only a restricted range of PageMask values are legal. The values must start with "1"s filling the PageMask field 
from the low-order bits upward, two at a time. A list of valid 32-bit PageMask register values, the corresponding 
binary value of the PageMask[32:13] field, and the corresponding page size is shown in Table 3.3. For the Page-
Mask[32:13] field, note that the bits are set two at a time from the least significant bit (LSB) to the most significant 
bit (MSB).  

Note that the 4 KByte and 16 KByte entries in the above table correspond to the VTLB and the FTLB. All other 
entries correspond to the VTLB only.

3.5.1.4 Global (G) Bit

The ‘G’ (global) bit in the tag entry is a logical AND between the G bits of the EntryLo0 and EntryLo1 registers. When 
set, it causes addresses to match regardless of their ASID value, thus defining a part of the address space which will 
be shared by all applications. For example, Linux applications share some ‘kseg2’ space used for kernel extensions.

Note that since the G bit in the TLB tag entry is a logical AND between two G bits, software must be sure to set 
EntryLo0G and EntryLo1G to the same value. 

3.5.2 TLB Data Entry

The data portion of the TLB entry contains the data and associated flag bits for the corresponding tag entry. This sec-
tion describes each field of the TLB data entry shown in Figure 3.9.

Table 3.3 PageMask Value and Corresponding Page Size

33-bit PageMask 
Register Value PageMask[32:13] Page Size

Even/Odd Bank Select 
Bit

0x0_0000_0000 0x00_0000_0000_0000_00 4 KBytes VAddr[12]

0x0_0000_6000 0x00_0000_0000_0000_11 16 KBytes VAddr[14]

0x0_0001_E000 0x00_0000_0000_0011_11 64 KBytes VAddr[16]

0x0_0007_E000 0x00_0000_0000_1111_11 256 KBytes VAddr[18]

0x0_001F_E000 0x00_0000_0011_1111_11 1 MByte VAddr[20]

0x0_007F_E000 0x00_0000_1111_1111_11 4 MBytes VAddr[22]

0x0_01FF_E000 0x00_0011_1111_1111_11 16 MBytes VAddr[24]

0x0_07FF_E000 0x00_1111_1111_1111_11 64 MBytes VAddr[26]

0x0_1FFF_E000 0x11_1111_1111_1111_11 256 MBytes VAddr[28]

0x0_7FFF_E000 0x1111_1111_1111_1111_11 1 GByte VAddr[30]

0x1_FFFF_E000 0x11_1111_1111_1111_1111_11 4 GBytes VAddr[32]
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3.5.2.1 Page Frame Number (PFN)

The Page Frame Number (PFN) contains the high-order bits of the physical address. For a 4 KByte page size, the 28-
bit PFN, together with the lower 12 bits of address that are not translated, make up the 40-bit physical address.

3.5.2.2 Flag Fields (C, D, V, RI, and XI)

These flag bits contain information about the translated address. All of these bits are generated by the EntryLo0 and 
EntryLo1 registers.

C Field: This field contains the cacheability attributes for the corresponding TLB entry. It indicates how to cache data 
for this page. Pages can be marked cacheable, uncacheable non-coherent, uncached accelerated, write-back, etc. 

D bit: The "dirty" flag. Setting this bit indicates that the page has been written, and/or is writable. If this bit is a one, 
stores to the page are permitted. If this bit is a cleared, stores to the page cause a TLB Modified exception. Software 
can use this bit to track pages that have been written to. When a page is first mapped, this bit should be cleared. It is 
set on the first write that causes an exception. 

V bit: The "valid" flag. Indicates that the TLB entry, and thus the virtual page mapping, are valid. If this bit is set, 
accesses to the page are permitted. If this bit is a zero, accesses to the page cause a TLB Invalid exception.

RI bit: The ‘read inhibit’ flag. If this bit is set in a TLB entry, any attempt to read data on the virtual page causes a 
TLBRI exception depending on the state of the PageGrainIEC bit, even if the V (Valid) bit is set. Since the PageGrainIEC 
bit is always set, a TLBRI exception is taken. Note that the RI bit is writable only if the RIE bit of the PageGrain regis-
ter is set.

XI bit: The ‘execute inhibit’ flag. If this bit is set in a TLB entry, any attempt to fetch an instruction from the virtual 
page causes a TLBXI exception depending on the state of the PageGrainIEC bit, even if the V (Valid) bit is set. Since the 
PageGrainIEC bit is always set, and TLBXI exception is taken. Note that the XI bit is writable only if the XIE bit of the 
PageGrain register is set.

3.5.3 Address Translation Examples

As shown in Figure 3.9, there are two PFN values for each tag match. Which of them is used is determined by the 
lowest-order bit of the VPN field of the address. So in standard form (using 4 KByte pages) each entry translates an 8 
KByte region of virtual address, but each 4Kbyte page can be mapped onto any physical address (with any permis-
sion flag bits). This concept is described in the following subsections.

4 KByte Page Size Example

In a 4KB page size, 12 address bits are required to select an entry within the page. Therefore, 12 bits of the virtual 
address are used for the offset into the page. The upper 36 bits of the virtual address, along with the Region bits 
VA[63:62], are used as a pointer to the page table. 

The upper 36 bits of virtual address and the Region bits pass through the TLB to generate the corresponding physical 
address. As described in Section 3.4, the P6600 core implements a dual-entry VTLB/FTLB scheme, where each TLB 
tag corresponds to two data entries. To select between these two entries, hardware reads the low-order bit of the VPN 
(first bit after the offset, shown as the S bit in the figure below). In a 4 KByte page example, this equates to bit 12. 
This is shown in Figure 3.10.
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Figure 3.10 Selecting Between PFN0 and PFN1 — 4 KByte Page Size  

As shown in Figure 3.10, the PageMask field is derived from the PageMask register and is used to determine the page 
size for the application. Since the P6600 core supports VTLB/FTLB page sizes in multiples of four (4 KByte, 16 
KByte, 64 KByte, etc. up to 4 GByte), page masking is done in pairs. During translation, hardware checks the VPN 
against the contents of the PageMask field to determine the page size, and therefore how many VPN bits to compare. 
Refer to Table 3.3 for a list of valid PageMask values.

In the above example, all of the PageMask field bits are 0, indicating a 4 KByte page size. For a 16 KByte page size, 
bits 12 and 13 of the PageMask field would be set. This concept is described below.

16 KByte Page Size Example

In a 16 KByte page size, 14 address bits are required to select an entry within the page. Therefore, 14 bits of the vir-
tual address are used for the offset into the page. The upper 34 bits of the virtual address, along with the two Region 
bits VA[63:62], are used as a pointer to the page table.

As described in Section 3.4, the P6600 core implements a dual-entry VTLB/FTLB scheme, where each TLB tag cor-
responds to two data entries. To select between these two entries, hardware reads the low-order bit of the VPN (first 
bit after the offset, shown as the S bit in the figure below). In a 16 KByte page example, this equates to bit 14. This is 
shown in Figure 3.11.
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Figure 3.11 Selecting Between PFN0 and PFN1 — 16 KByte Page Size 

As shown in Figure 3.11, the PageMask field is used to determine the page size for the application. During translation, 
hardware checks the VPN against the contents of the PageMask field to determine the page size, and therefore how 
many VPN bits to compare. In the above example, the lower 2 bits of the PageMask field bits are 11, indicating a 16 
KByte page size. Refer to Table 3.3 for a list of valid PageMask values.

3.6 Indexing the VTLB and FTLB

In the P6600 core, the VTLB is 64 dual entries, and the FTLB is 512 dual entries. If the FTLB is enabled, a 10-bit 
value is used to index all 576 dual entries of the VTLB and FTLB. If the FTLB is disabled, a 6-bit value is used to 
index the 64 dual entries of the VTLB. This is shown in Figure 3.12. This value is stored in the Index register (CP0 
register 0, Select 0). 

Figure 3.12 Index Register Format Depending on TLB Size   
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The Index register determines which TLB entry is accessed by a TLBWI instruction. This register is also used for the 
result of a TLBP instruction (used to determine whether a particular address was successfully translated by the CPU). 
Note that a TLBP instruction which fails to find a match for the specified virtual address sets bit 31 of Index register. 

3.7 Hardware Page Table Walker

Page Table Walking is the process by which a Page Table Entry (PTE) is located in memory. Hardware acceleration 
for page table walking is an optional feature in the architecture. The mechanism can be used to replace the software 
handler for the TLB or XTLB Refill condition. The existence of the Hardware Page Walking feature is denoted when 
Config3PW = 1. 

The Hardware Page Table Walker includes the following enhancements to the normal page table entry format.

1. Huge Page support in directories (non-leaf levels of the Page Table hierarchy), and Base Page Size for the (Page 
Table Entry (PTE) levels (leaf levels of the Page Table hierarchy). This is the baseline definition. Inferred size 
PTEs are supported at non-leaf levels.

2. A reserved field has been added to PTEs. This field is for future extensions.

A Huge Page may logically be specified in two ways:

1. A Huge Page is a region composed of two power-of-4 pages which have adjacent virtual and physical addresses. 
Since the even page and the odd page are derived from a single directory entry, they will both inherit the same 
attributes and all but one of the address bits from the single directory entry. The memory region is divided evenly 
between the even page and the odd page. The physical address held within the directory entry is aligned to 2 x 
size of the page (which is a power of 4). This is distinct from EntryLo0 and EntryLo1 pairs in the Page Table which 
are only guaranteed to be adjacent in virtual, but not physical address. They may also have differing page attri-
butes. This method is known as Adjacent Pages since the EntryLo0/1 physical addresses are both derived from 
one entry and have to be adjacent in the physical address space. This is the default method that is supported by 
this specification. If an implementation chooses to support Huge Pages in the directory levels, then the Adjacent 
Page method must be implemented. 

2. Where a Huge Page is itself a power-of-4 page, it is handled in exactly the same manner as a Base Page in the 
Page Table. For this case, one directory entry is used for the even page and the adjacent directory entry is used 
for the odd page. The physical address held within the directory entry is aligned to the size of the page (which is 
a power of 4). This method is known as Dual Pages since each PFN does not have to be adjacent to each other. If 
an implementation chooses to support Huge Pages in the directory levels, then the Dual Page method is an addi-
tional option.

Examples of power-of-4 regions (start with 1KB and multiply by 4 a number of times): 256MB, 1MB, 4MB, 16MB, 
64MB, 256MB, 1GB. 

Examples of 2x power-of-4 regions (start with 1KB and multiply by 4 a number of times; then multiple by 2) 512MB, 
2MB, 8MB, 32MB, 128MB, 512MB, 2GB. 

Huge Page Support is optional and is indicated by PWCtlHugepg = 1. If an Implementation supports Huge Pages in the 
directory levels, it must support the Adjacent Page method. The Dual Page method is optional if Huge Pages are sup-
ported. The implementation of Dual Page method is indicated by PWCtlDPH=1.
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3.7.1 Multi-Level Page Table Support

The hardware page table walking system specifies a mechanism for refilling the TLB, independent of the Context and 
XContext registers. Four additional coprocessor 0 registers are added. 

• The PWBase register specifies the page table base. 

• The PWField and PWSize registers specify address generation for up to four levels of page tables. 

• The PWCtl register controls the behavior of the Page Table Walker. These registers also configure the separation 
between Page Table Entries (PTEs) in memory and post-load shifting of PTEs.

A multi-level page table system contains multiple levels, the lowest of which are Page Tables. A Page Table is an 
array of Page Table Entries. Levels above the Page Tables are known as Directories. A Directory consists of an array 
of pointers. Each pointer in a Directory is either to another Directory or to a Page Table. 

The next figure shows an example of a multi-level page table structure.

Figure 3.13 Page Table Walk Process

Each executing process is typically associated with a separate page table base pointer (PWBase). In a uniprocessor 
system, only one process is active at once. Where multiple CPUs are in use, multiple processes execute simultane-
ously - thus one page table base pointer is required per CPU. The term ‘page table base’ refers to the start of a Page 
Global Directory.

A typical page table structure consists of:

• A PWBase register, containing the base of the Page Global Directory.

• Page Global Directories, indexed by upper bits from the faulting address, containing pointers to Page Upper 
Directories. 
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• Page Upper Directories, indexed by bits from the faulting address, containing pointers to Page Middle Directo-
ries.

• Page Middle Directories, indexed by bits from the faulting address, containing pointers to Page Tables.

• Page Tables, indexed by bits from the faulting address, containing Page Table Entry (PTE) pairs.

Figure 3.14 shows the registers and fields used by the page table walking scheme for a four level page table structure.

Figure 3.14 Page Table Walk Process and COP0 Control fields

Hardware page table walking is performed when enabled and a TLB or XTLB refill condition is detected.

Memory reads during hardware page table walking are performed as if they were kernel-mode load instructions. 
Addresses contained in the PWBase register and in memory-resident directories are virtual addresses.

Physical addresses and cache attributes are obtained from the Segment Configuration system when Config3SC = 1, or 
from the default MIPS segment system when Config3SC = 0.

The hardware page walk write should treat the multiple-hit case the same as a TLBWR. Assuming that the write by 
design cannot detect all duplicates, then a preferred implementation is to invalidate the single duplicate and then write 
the TLB. A Machine Check exception may subsequently be taken on a TLBP or lookup of TLB.

If a synchronous exception condition is detected during the hardware page table walk, the hardware walking process 
is aborted and a TLB or XTLB Refill exception will be taken. This includes synchronous exceptions such as Address 
Error, Precise Debug Data Break and other TLB or XTLB exceptions resulting from accesses to mapped regions.
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If an asynchronous exception is detected during the hardware page table walk, the hardware walking process is 
aborted and the asynchronous exception is taken. This includes asynchronous exceptions such as NMI, Cache Error, 
and Interrupts. It also includes the asynchronous Machine Check exception which results from multiple matching 
entries being present in the TLB following a TLB write.

If an exception is detected during the hardware page table walk, the hardware walking process is aborted and the 
exception is taken. This includes exceptions such as NMI, Cache Error, and Interrupts. It also includes the Machine 
Check exception which results from multiple matching entries being present in the TLB following a TLB write.

On the 64-bit P6600 core, the hardware page table walk can be used to accelerate TLB or XTLB refills for either 32- 
bit or 64-bit address regions, but not both. The PWSize.PS field controls whether pointers within directories are 
treated as 32- or 64-bit addresses. 

The selection between TLB and XTLB Refill exception is determined from the faulting address and the UX, SX and 
KX bits in the Status register. 

Hardware page table walking is performed as follows:

1. A temporary pointer is loaded with the contents of the PWBase register

2. The native pointer size is set to 4 or 8 bytes (32 or 64 bits) depending on the state of CP0 PWSIZE.PS register 
field

3. Check if hardware table walk is allowed to walk on a MIPS64 address. Depending on the operating mode one of 
the following CP0 register bits must be set; PWCtl.XK (kernel), PWCtl.XS (supervisor), PWCtl.XU (user). 

4. If the Global Directory is disabled by PWSizeGDW = 0, skip to the next step.

• If Huge Pages are supported, check PTEVld bit to determine if entry is PTE. If PTEVld bit is set, write Huge 
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

• Extract PWSizeGDW bits from the faulting address, with least-significant bit PWFieldGDI. This is the Global 
Directory index (Gindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native 
pointer size. The result is a pointer to a location within the Global Directory.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned 
value is placed into the temporary pointer. If an exception is detected, abort.

5. If the Upper Directory is disabled by PWSizeUDW = 0, skip to the next step.

• If Huge Pages are supported, check PTEVld bit to determine if entry is PTE. If PTEVld bit is set, write Huge 
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

• Extract PWSizeUDW bits from the faulting address, with least-significant bit PWFieldUDI. This is the Upper 
Directory index (Uindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native 
pointer size. The result is a pointer to a location within the Upper Directory.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned 
value is placed into the temporary pointer. If an exception is detected, abort.
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6. If the Middle Directory is disabled by PWSizeMDW = 0, skip to the next step.

• If Huge Pages are supported, check PTEVld bit to determine if entry is PTE. If PTEVld bit is set, write Huge 
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

• Extract PWSizeMDW bits from the faulting address, with least-significant bit PWFieldMDI. This is the Middle 
Directory index (Mindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native 
pointer size. The result is a pointer to a location within the Middle Directory.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned 
value is placed into the temporary pointer. If an exception is detected, abort.

• The temporary pointer now contains the address of the Page Table to be used.

7. Extract PWSizePTW bits from the faulting address, with least-significant bit PWFieldPTI This is the Page Table 
index (PTindex). Multiply (shift) by the native pointer size, then multiply (shift) by the size of the Page Table 
Entry, specified in PWSizePTEW.

• The temporary pointer now contains the address of the first half of the Page Table Entry.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned 
value is logically shifted right by PWFieldPTEI bits. This is the first half of the Page Table Entry. If an excep-
tion is detected, abort.

8. In the temporary pointer, set the bit located at bit location PWFieldPTEI-1. 

• The temporary pointer now contains the address of the second half of the Page Table Entry.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned 
value is shifted right by PWFieldPTEI bits. This is the second half of the Page Table Entry. If an exception is 
detected, abort.

9. Write the two halves of the Page Table Entry into the TLB, using the same semantics as the TLBWR (TLB write 
random) instruction.

10. Continue with program execution.

Coprocessor 0 registers which are used by software on a TLB refill exception are unused by the hardware page table 
walking process. The registers and fields used by software are BadVAddr, EntryHi, PageMask, EntryLo0, EntryLo1,, 
ContextBadVPN2, and XContextBadVPN2.

3.7.2 PTE and Directory Entry Format

All entries are read from in-memory data structures. There are three types of entries in the baseline definition: Direc-
tory Pointer, Huge Page non-leaf PTE of inferred size, and leaf PTE of base size. For options other than baseline, the 
entry type is a function of the table level and the PTEvld field of an entry. For all but the last level table (leaf level), 
the PTEvld bit is 0 for directory pointers to the next table and 1 for PTEs. In the leaf table, the entry is always a PTE 
and the PTEvld bit is not used by Hardware Walker. The PWCtlHugePg register field indicates whether Huge Page non-
leaf PTEs are implemented. 
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All PTEs are shifted right by PWFieldPTEI -2 (shifting in zeros at the most significant bit) and then rotated right by 2 
bits before forming the page-walker equivalents of EntryLo0 and EntryLo1 values. These operations are used to remove 
the Software-only bits and placing the RI and XI protection bits in the proper bit location before writing the TLB. If 
the RI and XI bits are implemented and enabled, the HW Page Walker feature requires the RI bit to be placed right of 
the G bit in the PTE memory format. Similarly, it is required that the XI bit to be placed right of the RI bit in the PTE 
memory format. 

Note that the bit position of PTEvld is not fixed at 0. It can be programmed by the PWCtlPsn field. If non-leaf PTE 
entries are available, there will already be a bit used by the software TLB handler to distinguish non-leaf PTE entries 
from directory pointers. Normally, the PTEvld bit is configured to point to that software bit within the PTE. 

A possible programming error to avoid is placing the PTEvld bit within the Directory Pointer field, as any of those 
address bits may be set and thus not appropriate to be used to distinguish between a Directory Pointer or a non-leaf 
PTE. 

The following figures show an example of 4-byte pointers or PTE entries. The 4-byte width is configured by hav-
ingPWSIzePTEW=0. In this example, 4bits are used for Software-only flags. The following figures assume a PTE for-
mat based on PWCtlPsn=0, PWFieldPTEI=6 and a Base Page Size of 4k for simplicity.

Figure 3.15 4-byte Leaf PTE

Figure 3.16 4-byte Non-Leaf PTE Options

After shifting out the software bits (3..0) (shifting in zeros at the most significant bit) and then rotating RI and XI 
fields into bits 31:30, the PTE matches the EntryLo register format. In the non-Leaf PTE, 4-bits which are just left of 
the C field are reserved for future features.

63 12 11 9 8 7 6 5 4 3..0 Comment

PFN C D V G RI XI S/W Use Page Size=Base

63 16 15 12 11 9 8 7 6 5 4 3..0 Comment

PFN Reserved
(must be 0) C D V G RI XI S/W Use Page Size=HgPgSz

PTE format in memory

63 16 15 12 11 9 8 7 6 5 4 3..1 0

PFN Reserved
(must be 0) C D V G RI XI Unused

by HW
PTEvld

=1

Page Size=HgPgSz
PTE format interpreted by HW Page 

Walker; PTEvld configured to be at bit 0 

63 12 11 1 0

Dir Pointer 63:12 0 PTEvld
=0

Directory Ptr format interpreted by HW 
Page Walker; PTEvld configured to be at 

bit 0
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Figure 3.17 4-Byte Rotated PTE Formats

The following figures show an example of 8-byte pointers or PTE entries. The 8-byte width is configured by hav-
ingPWSizePTEW=1, or by having PWSize.PTEW=1. 

This example uses 4-bits for Software-only flags. The use of the wider PTE allows for the use of more PFN bits to be 
used for addressing - the 8-byte PTE format is required when more than 32-bits of physical addressing is to be imple-
mented. Both the non-leaf PTE and directory pointer both take 8-bytes of memory space, though only 32-bits are 
actually used for the memory address. The following figures assume a PTE format based on PWCtlPsn=0, 
PWFieldPTEI=6 and a Base Page Size of 4k for simplicity.

Figure 3.18 8-byte Leaf PTE

Figure 3.19 8-Byte Non-leaf PTE Options

After the software bits (7..0) are right shifted away (shifting in zeros at the most significant bit) and the RI and XI 
fields are rotated to bits 63:62, the PTE matches the EntryLo register format. By setting PWSIzePTEW=1 to denote 8-
byte PTE entries, the shift operation is done on the entire 8 byte PTE, but only the lower 4-bytes are written into the 
TLB. In the non-Leaf PTE, 4-bits which are just left of the C field are reserved for future features.

Comment 63 62 60 6 5..3 2 1 0 Comment

Leaf PTE RI XI PFN C D V G Page Size=Base

63 62 60 10 9:6 5..3 2 1 0

Non-leaf PTE RI XI PFN Reserved
(must be 0) C D V G Page Size=HgPgSz

63 40 39 16 15.13 12 11 10 9 8 7..0 Comment

PFN PFN C D V G RI XI S/W Use Page Size=Base

63 40 39 20 19 16 15.13 12 11 10 9 8 7..0 Comment

PFNX PFN Reserved
(must be 0) C D V G RI XI S/W Use Page Size=HgPgSz

PTE format in memory

63 40 39 20 19 16 15.13 12 11 10 9 8 7..1 0

PNFX PFN Reserved
(must be 0) C D V G RI XI Unused 

by HW
PTEv
ld=1

Page Size=HgPgSz
PTE format interpreted by HW Page Walker

63 12 11 1 0

Directory Ptr 0 PTEv
ld=0

Directory Pointer format interpreted by HW 
Page Walker
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Figure 3.20 8-Byte Rotated PTE Formats

Leaf PTEs always occur in pairs (EntryLo0 and EntryLo1). However, non-leaf PTEs (ones which occur in the upper 
directories) can occur either in pairs (if Dual Page method is enabled) or occur with just one entry (Adjacent Page 
method). 

For the Adjacent Page method, the single non-leaf PTE represent both EntryLo0 and EntryLo1 values. When the walker 
populates the EntryLo registers for a PTE in a directory, the least significant bit above the page size is 0 for EntryLo0 
and 1 for EntryLo1. That is, EntryLo0 and EntryLo1 represent adjacent physical pages.

For the Dual Page method, the two PTEs are read from the directory level by the Hardware Page Walker. 

For Huge Page handling, the size of the Huge Page is inferred from the directory level in which the Huge Page 
resides. For the Adjacent Page Method, the size of each individual PTE in EntryLo0 and EntryLo1 as synthesized from 
the single Huge Page is always half the inferred size.

If the inferred page size is 2 x power-of-4, then the Adjacent Page Method is used. 

If the inferred page size is a power-of-4, then the Dual Page Method is used (if the Dual Page Method is imple-
mented). If the Dual Page method is implemented (PWCtlDPH=1), it is implementation-specific whether the PTEVld 
bit is checked for the second PTE when it is read from memory for writing the second TLB page. The recommended 
behavior is to check this second PTEVld bit and if it is not set, a Machine Check exception is triggered. The 
PageGrainMCCause register field is used to differentiate between different types of Machine Check exceptions. 

If the inferred Huge Page size is power-of-4, and the Dual Page Methods is not implemented, it is implementation-
specific whether a Machine Check is reported. 

An example of Huge Page handling follows. It assumes a leaf PTE size of 4KB.

• PMD Huge Page = 2^9 (PWSizePTW) * 2^12 (PWFieldPTI) = 2^21 = 2MB. Each EntryLo0/1 page is 1MB, which is 
a power-of-4 and use the Adjacent Page method.

• PUD Huge Page = 2^10 (PWSizeMDW) * 2^9 (PWSizePTW) * 2^12 (PWFieldPTI) = 2^31 = 2GB. Each EntryLo0/1 
page is 1GB, which is a power-of-4 and would use the Adjacent Page method. Note that the index into PMD has 
been extended to 10 bits from 9 bits. Each PMD table thus has 1K entries instead of the typical 512 entries.

3.7.3 Hardware Page Table Walking Process

The hardware page table walking process is described in pseudocode as follows:

/* Perform hardware page table walk
*
* Memory accesses are performed using the KERNEL privilege level.
* Synchronous exceptions detected on memory accesses cause a silent exit
* from page table walking, resulting in a TLB Refill exception.

Comment 63 62 61 53 52 30 29 6 5 3 2 1 0 Comment

Leaf PTE RI XI FILL PFNX PFN C D V G Page Size=Base

63 62 61 53 52 30 29 10 9 6 5 3 2 1 0

Non-leaf PTE RI XI FILL PFNX PFN Rsvd 
(must be 0)

C D V G Page Size=HgPgSz
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* 
* Implementations are not required to support page table walk memory 
* accesses from mapped memory regions. When an unsupported access is
* attempted, a silent exit is taken, resulting in a TLB Refill exception.
* 
* Note that if an exception is caused by AddressTranslation or LoadMemory
* functions, the exception is not taken, a silent exit is taken, 
* resulting in a TLB Refill exception.
* 
* For readability, this pseudo-code does not deal with PTEs of different widths. 
* In reality, implementations will have to deal with the different PTE 
* and directory pointer widths. 

*/
subroutine PageTableWalkRefill(vAddr) :

if (Config3PW = 0) then
return(0)  # walker is unimplemented

if (PWCtlPWEn=0) then
return (0)  # walker is disabled

if !((PWCtlPWDirExt & PWSizeBDW>0|PWSizeMDW>0)(PWSizeGDW>0|PWSizeUDW>0|PWSizeMDW>0) then
return (0) # no structure to walk

if !(PWSizePS=1 & (PWCtlXK=1 | PWCtlXS=1| PWCtlXU=1))then
return (0) # no segment to map

# Initial values
found 

encMask 
HugePage False
HgPgBDhit False
HgPgGDhit False
HgPgUDhit false
HgPgMDhit false

# Native pointer size
if PWSizePS=0 then
NativeShift 2
DSize 32
else
NativeShift 3
DSize 64

# Indices computed from faulting address
if PWCtlPWDirExt=1 then

Bindex vAddr >> PWFieldBDI) and((1<<PWSizeBDW)-1)
Gindex vAddr >> PWFieldGDI) and((1<<PWSizeGDW)-1)

else
tempPointer {(vAddr>>PWFieldGDI and ((1<<PWSizeGDW)-1)}

switch ({PWCtlXK,PWCtlXS,PWCtlXU})
case 001  # xuseg only

if (vAddr[63] or vAddr[62])=1 then
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return (0)
endif
Gindex tempPointer

case 011  # xuseg & xsseg
if (vAddr[63] and vAddr[62])=1 then
return (0)
endif
Gindex {(vAddr>>62) & 1, tempPointer}

case 101  # xuseg & xkseg
if (~vAddr[63] and vAddr[62])=1 then
return (0)
endif
Gindex {(vAddr>>63) & 1, tempPointer}

case 111  # xuseg, xsseg, xkseg
Gindex {(vAddr>>62) and 3, tempPointer}
default

return (0)
end switch
Uindex vAddr >> PWFieldUDIand((1<<PWSizeUDW)-1)
Mindex vAddr >> PWFieldMDI) and ((1<<PWSizeMDW)-1)
PTindex vAddr >> PWFieldPTI) and((1<<PWSizePTW)-1)

# Offsets into tables
Goffset Gindex << NativeShift
Uoffset Uindex << NativeShift
Moffset Mindex << NativeShift
PToffset0 PTindex >> 1) << (NativeShift + PWSizePTEW+1)
PToffset1 PToffset0 OR (1 << (NativeShift + PWSizePTEW))

EntryLo0 UNPREDICTABLE
EntryLo1 UNPREDICTABLE
ContextBadVPN2 UNPREDICTABLE
XContextBadVPN2 UNPREDICTABLE

# Starting address - Page Table Base
vAddr PWBase

# Global Directory
if (PWSizeGDW > 0) then

vAddr  vAddr or Goffset
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t  LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlPsn) && PWCtlHugpg=1) then # PTEvld is set
HugePage  true
HgPgGDHit  true
t  t >> PWFieldPTEI - 2 // shift entire PTE
t  ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
w  (PWFieldGDI)-1
if ( ( PWFieldGDI and 0x1)=1) // check if index is odd e.g. 2x power of 4 
// generate adjacent page from same PTE for odd TLB page

lsb  (1<<w)>> 6
pw_EntryLo0  t and not lsb # lsb=0 even page; note FILL fields are 0
pw_EntryLo1  t or lsb # lsb=1 odd page

elseif (PWCtlDPH = 1)
// Dual Pages - figure out whether even or odd page loaded first

OddPageBit = (1 << PWFieldGDI)
if (vAddr and OddPageBit) 
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pw_EntryLo1  t
else

pw_EntryLo0  t
endif

// load second PTE from directory for other TLB page
vAddr2 vAddr xor OddPageBit
(pAddr2, CCA2) AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t  LoadMemory(CCA2, DSize, pAddr2, vAddr2, DATA)
t  t >> PWFieldPTEI - 2 // shift entire PTE
t  ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit) 

pw_EntryLo0  t
else

pw_EntryLo1  t
endif

else
goto ERROR

endif
goto REFILL

else
vAddr  t

endif
endif

# Upper directory
if (PWSizeUDW > 0) then

vAddr  vAddr or Uoffset
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t  LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlPsn) && PWCtlHugpg=1) then# PTEvld is set
HugePage  true
HgPgUDHit  true
t  t >> PWFieldPTEI - 2 // right-shift entire PTE
t  ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
w  (PWFIELDUDI)-1
if ( (PWFIELDUDI and 0x1)= 0x1) //check if odd e.g. 2x power of 4 
// generate adjacent page from same PTE for odd TLB page

lsb  (1<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0  t and not lsb # lsb=0 even page; note FILL fields are 0
pw_EntryLo1  t or lsb # lsb=1 odd page

elseif (PWCtlDPH = 1)
// Dual Pages - figure out whether even or odd page loaded first

OddPageBit = (1 << PWFIELDUDI)
if (vAddr and OddPageBit) 

pw_EntryLo1  t
else

pw_EntryLo0  t
endif

// load second PTE from directory for odd TLB page
vAddr2 vAddr xor OddPageBit
(pAddr2, CCA2) AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t  LoadMemory(CCA2, DSize, pAddr2, vAddr2, DATA)
t  t >> PWFieldPTEI - 2 // right-shift entire PTE
t  ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit) 

pw_EntryLo0  t
else
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pw_EntryLo1  t
endif

else
goto ERROR

endif
goto REFILL

else
vAddr  t

endif
endif

# Middle directory
if (PWSizeMDW > 0) then

vAddr  vAddr OR Moffset
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t  LoadMemory(CCA, DSize, pAddr, vAddr, DATA)
if (t and (1<<PWCtlPsn) && PWCtlHugpg=1) then# PTEvld is set

HugePage  true
HgPgMDHit  true
t  t >> PWFieldPTEI - 2 // right-shift entire PTE
t  ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
pw_EntryLo0  t # note FILL fields are 0
w  (PWFieldMDI)-1
if ( (PWFieldMDI and 0x1)= 0x1) // check if odd e.g. 2x power of 4 
// generate adjacent page from same PTE for odd TLB page
lsb  (1<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0  t and not lsb # lsb=0 even page; note FILL fields are 0
pw_EntryLo1  t or lsb # lsb=1 odd page
elseif (PWCtlDPH = 1)
// Dual Pages - figure out whether even or odd page loaded first

OddPageBit = (1 << PWFieldMDI)
if (vAddr and OddPageBit) 

pw_EntryLo1  t
else

pw_EntryLo0  t
endif

// load second PTE from directory for odd TLB page
vAddr2 vAddr xor (1 << (NativeShift + PWSizePTEW)
(pAddr2, CCA2) AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t  LoadMemory(CCA2, DSize, pAddr2, vAddr2, DATA)
t  t >> PWFieldPTEI - 2 // right-shift entire PTE
t  ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit) 

pw_EntryLo0  t
else

pw_EntryLo1  t
endif

else
goto ERROR

endif
goto REFILL

else
vAddr  t

endif
endif

# Leaf Level Page Table - First half of PTE pair
vAddr  vAddr or PToffset0
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(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD, KERNEL)
temp0  LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

# Leaf Level Page Table - Second half of PTE pair
vAddr  vAddr or PToffset1
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD, KERNEL)
temp1  LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

# Load Page Table Entry pair into TLB
temp0  temp0 >> PWFieldPTEI - 2 // right-shift entire PTE
pw_EntryLo0  ROTRIGHT(temp0, 2) // 32-bit rotate to place RI/XI bits

temp1  temp1 >> PWFieldPTEI - 2 // right-shift entire PTE
pw_EntryLo1  ROTRIGHT(temp1, 2) // 64-bit rotate to place RI/XI bits

REFILL:
found  1
m (1<<PWFieldPTI)-1

if (HugePage) then
# Non-power-of-4 page size halved to provide power-of-4 page size.
# 1st step: Halve page size (1<<(w-1))

switch ({HgPgBDHit,HgPgGDHit,HgPgUDHit,HgPgMDHit})
case 1000

m (1<<(PWFieldBDI))-1
case 0100

m (1<<(PWFieldGDI))-1
case 0010

m (1<<(PWFieldUDI))-1
case 0001

m (1<<(PWFieldMDI))-1
end switch

endif
# 2nd step: Normalize mask field to 4KB as smallest base (>>12)
pw_PageMaskMask m>>12

# The hardware page walker inserts a page into the TLB in a manner
# identical to a TLBWR instruction as executed by the software refill handler

pw_EntryHi = ( vaddr and not 0xfff )| EntryHiASID
TLBWriteRandom(pw_EntryHi, pw_EntryLo0, pw_EntryLo1, pw_PageMask) 
return(found)
# If an error/exception condition is detected on a page table
# walk memory access, this function exits with found=0.
#
OnError:

return(0)
endsub

If a page is marked invalid, the hardware refill handler will still fill the page into the TLB. Software can point to 
invalid PTEs to represent regions that are not mapped. When the Software attempts to use the invalid TLB entry, a 
TLB invalid exception will be generated.
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3.8 Hardwiring VTLB Entries

The P6600 core allows up to 63 entries of the VTLB to be hardwired such that they cannot be replaced. This is 
accomplished using the Wired register (CP0 register 6, Select 0). The Wired register specifies the boundary between 
the wired and random entries in the VTLB. Wired entries are fixed, non-replaceable entries that cannot be overwritten 
by a TLBWR instruction. However, wired entries can be overwritten by a TLBWI instruction.

Note that wired entries in the VTLB must be contiguous and start from 0. For example, if the Wired field of this reg-
ister contains a value of 5, this indicates that entries 4, 3, 2, 1, and 0 of the VTLB are wired. The Wired register is reset 
to zero by a Reset exception. Figure 3.21 shows an example of hardwiring the lower 5 entries of the VTLB. A value 
of 0x0 in the Wired register indicates that no entries are hardwired and that all entries are available for replacement.

Figure 3.21 Hardwiring Entries in the VTLB

3.9 FTLB Parity Errors

FTLB parity errors are reported using bits 31:28 of the CP0 CacheErr register (CP0, Register 27, Select 0). These 
read-only bits are set by hardware and are used to report errors within the L1 instruction and data caches, as well as 
the FTLB. An FTLB parity error can be reported for either the tag portion or the data portion of the array as shown in 
Table 3.4.

VTLB Array

Value in register hardwires
TLB entries such that they

31 6 5 0
000101

Wired

0

0

4
5

63

cannot be replaced.

TLB entries cannot
be replaced.

TLB entries can
be replaced.
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Depending on the instruction being executed, hardware may or may not report a parity error for the tag and/or data 
array of the FTLB. Table 3.5 lists each TLB instruction and whether parity errors are logged for the data and tag 
arrays. 

3.10 FTLB Hashing Scheme and the TLBWI Instruction

When a TLBWI instruction is executed, the following hashing scheme is used to calculate the FTLB index from the 
VPN2 field of the EntryHi register and the Index field of the Index register. This scheme is used only when the 
EntryHiEHINV bit is 0. When EntryHiEHINV = 1, hashing is ignored and the indexing of the FLTB is performed entirely in 
hardware.

When the EntryHiEHINV bit is 0, the VPN2 field in the EntryHi register must be consistent with the index value stored in 
the 10-bit Index field of the CP0 Index register. This field is used to index the total number of entries in the TLB, 
which equates to 64 entries in the VTLB and 512 entries in the FTLB for a total of 576 entries. To determine the size 

Table 3.4 FLTB Parity Error Reporting in the CacheErr Register

EREC
(Bits 31:30)

ED
(Bit 29)

ET
(Bit 28) Condition

2’b11 0 0 No FTLB errors

0 1 FTLB Tag RAM error

1 0 FTLB Data RAM error

1 1 N/A1

1. It is not possible to set both the ED and ET bits in the P6600 core. Even if there are simulta-
neous errors in both arrays, the tag error takes precedence and the ET bit is set. In this case 
the data error is ignored.

Table 3.5 FLTB Parity Error Reporting per Instruction

Instruction

Parity Error Checked?

FTLB Data Array FTLB Tag Array

TLBINV No Yes

TLBINVF No No

TLBR Yes Yes

TLBWI No
EntryHiEHINV = 1

No
EntryHiEHINV = 1

No
EntryHiEHINV = 0

Yes
EntryHiEHINV = 0

TLBWR No Yes

TLBP Yes Yes

Lookup
(ITLB or DTLB miss)

Yes Yes



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 203

of the FTLB, hardware subtracts the VTLB size, which is always 64 entries, from the total number of entries (576) to 
derive an FTLB size of 512 entries. This number of entries is indexed by the lower 9 bits of the 10-bit Index field.

When the core is configured with an FTLB, the lower 9 bits of the Index field are organized as follows:

• Bits 6:0 = FTLB set

• Bits 8:7 = FTLB way

The FTLB set reflected in bits 6:0 of the Index field of the Index register (IndexIndex) must be the same as the set num-
ber calculated from the VPN2 field of the EntryHi register (EntryHiVPN2). 

For a 4 KByte page size, the set number is calculated by performing an Exclusive OR (XOR) function of bits [26:20] 
and bits [19:13] of the EntryHiVPN2 field. 

For a 16 KByte page size, the set number is calculated by performing an Exclusive OR (XOR) function of bits 
[28:22] and bits [21:15] of the EntryHiVPN2 field. 

If the set number calculated from the EntryHiVPN2 field as described above matches that stored in bits 6:0 of the Index 
register, the TLBWI instruction is allowed to continue and the FTLB is indexed. If the values do not match, a 
machine check exception is generated. Refer to Section 5.7.5 of the Exceptions chapter for more information on the 
machine check exception. Note that the TLBWR instruction does not use this hashing scheme because the indexing is 
performed exclusively in hardware.

The FTLB hashing scheme for a 4 KByte page size is shown in Figure 3.22. The 16 KByte page size would be iden-
tical, except for the range of VPN2 bits that are XOR’ed by hardware as described above. Note that only bits 6:0 of 
the Index field are compared with the calculated value. Bits 8:7 represent the FTLB way and bypass the compare 
operation.
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Figure 3.22 FTLB Hashing Scheme During a TLB Index Write — 4 KByte Page Size

47 0
EntryHi

FTLB set

31 0

Software writes the FTLB index
Software clears the EHINV bit to
enable hashing. VPN2 contains
a segment of the virtual address.

13 10
VPN2 EHINV

Index
9

Index

VPN2[26:20]
VPN2[19:13]

to the CP0 Index register.

Compare

Match? Machine Check
Exception

No

FTLB
Index

Yes

compare logic

Calculate set from VPN2

10
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3.11 TLB Exception Handling

The P6600 core allows for the following types of TLB exceptions. 
• Address error (AdEL or AdES)
• TLB Refill
• TLB (TLBL, TLBS)
• TLB Read Inhibit (TLBRI)
• TLB Execute Inhibit (TLBXI)
• TLB Modified
• FTLB Parity

The Address Error exceptions (AdEL and AdES) are used in both user mode and supervisor mode. 
• On a load in user mode, an AdEL exception is taken when the user does not have permission for the load 

address being accessed. 
• On a store in user mode, an AdES exception is taken when the user does not have permission for the store 

address being accessed. 
• On a load in supervisor mode, an AdEL exception is taken when the supervisor does not have permission for 

the load address being accessed. 
• On a store in supervisor mode, an AdES exception is taken when the supervisor does not have permission for 

the store address being accessed.

The TLB Refill exception is taken on any TLB miss regardless of the operating mode. 

The XTLB Refill exception is taken on any XTLB miss regardless of the operating mode. 

The TLB / XTLB exceptions (TLBL and TLBS) are taken under the following conditions. 
• TLBL exception: On a load in any mode, there is a TLB hit, but the valid bit for that TLB entry is not set.
• TLBS exception: On a store in any mode, there is a TLB hit, but the valid bit for that TLB entry is not set.

The TLB Read Inhibit exception (TLBRI) is taken when there is a TLB hit during a read operation, the RI bit of the 
entry is set, and the PageGrainEIC bit is set. 

The TLB Execute Inhibit exception (TLBXI) is taken when there is a TLB hit during an instruction fetch, the XI bit of 
the entry is set, and the PageGrainEIC bit is set. 

A TLB Modified exception is taken whenever there is a TLB hit and the Dirty bit associated with that entry is not set. 
Note that only occurs on a store instruction and not on a load/fetch instruction.

A FTLB Parity exception is taken whenever a parity error occurs on an FTLB read. The FTLB parity exception is 
taken only when bit 31 of the CP0 Error Control register (ErrCtl.PE) is set. If this bit is cleared, FTLB parity errors are 
ignored.

Note that for the CacheOp and SyncI instructions, the TLBRI and TLBXI exceptions are not supported.
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3.11.1 Overview of TLB Exception Handling Registers

The P6600 core uses three CP0 registers to manage TLB exceptions. The exception flow in terms of these registers is 
described in Section 3.11.2, "TLB Exception Flow Examples".

• Context (CP0 register 4, Select 0): Contains the pointer to an entry in the page table entry (PTE) array.
• ContextConfig (CP0 register 4, Select 1): Defines the range of bits used by the Context register into which the 

high order bits of the virtual address causing the TLB exception will be written depending on the page size.
• BadVAddr (CP0 register 8, Select 0): Stores the virtual address that caused the exception.

3.11.1.1 Context Register

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. When 
a TLB exception is taken, hardware performs the bit shifting and manipulation of the value stored in the BadVAddr 
register and places the result into the BadVPN2 field of the Context register. This eliminates software from having to 
perform this function manually.

A TLB exception causes the virtual address to be written to a variable range of bits, defined as (X-1):Y of the Context 
register. This range corresponds to the contiguous range of set bits in the ContextConfig register. Bits 63:X, Y-1:0 are 
read/write to software and are unaffected by the exception. Software sets the ContextConfigPTEBase field to point to the 
base address of a page table in memory. The ContextConfigBadVPN2 is derived from the virtual address associated with 
the exception. 

Figure 3.23 shows the format of the Context register. Refer to Section 3.11.2, "TLB Exception Flow Examples" for 
more information on the usage of this register.

Figure 3.23 Context Register Format  

3.11.1.2 ContextConfig Register

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address 
causing a TLB exception will be written (BadVPN2), and how many bits of that virtual address will be extracted. In 
the Context register, bits above the selected BadVPN2 field are read/write to software and serve as the PTEBase field. 
Bits below the selected BadVPN2 field serve as the PTEBaseLow field.

Software writes a set of contiguous ones to the ContextConfigVirtualIndex field. Hardware then determines which bits of 
this register are high and low. The highest order bit that is a logic ‘1’ serves as the MSB of the BadVPN2 field of the 
Context register. The lowest order bit that is a logic ‘1’ serves as the LSB of the BadVPN2 field of the Context regis-
ter. A value of all zero’s in the VirtualIndex field means that the full 32 bits of the Context register are R/W for soft-
ware and are unaffected by TLB exceptions.

A value of all ones in the ContextConfigVirtualIndex field means that the full 21 bits of the faulting virtual address will be 
copied into the context register, making it duplicate the BadVAddr register. A value of all zeroes means that the full 32 
bits of the Context register are R/W for software and unaffected by TLB exceptions.

Figure 3.24 shows the formats of the ContextConfig Register. Refer to Section 3.11.2, "TLB Exception Flow 
Examples" for more information on use of the this register.

63 X X-1 Y Y-1 0

PTEBase BadVPN2 PTEBaseLow
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Figure 3.24 ContextConfig Register Format 

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and 
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately 
writing all zeroes and all ones to the register, and reading back the resulting values. Table 3.6 describes some useful 
ContextConfig values. In this table, note that for a page table entry size of 32 bits per page, a total of 64 bits are copied 
from memory to support the dual-entry structure of the VTLB/FTLB. In this case, the lower 32 bits would be copied 
to entry 0 of the dual entry structure, and the upper 32 bits would be copied to entry 1 of the structure. The same is 
true for a page table with 64 bits per page. In this case, 128 bits would be fetched from memory.

3.11.1.3 BadVAddr Register

The BadVAddr is a 64-bit read-only register which holds the virtual address which caused the last address-related 
exception. It is set for the exception types shown at the beginning of Section 3.11, "TLB Exception Handling".

Note that the BadVAddr register does not capture address information for cache or bus errors, since they are not 
addressing errors.

Figure 3.25 BadVAddr Register Format

3.11.2 TLB Exception Flow Examples

The following two examples show the flow of a TLB exception for the single level and dual level page table configu-
rations.

3.11.2.1 Single Level Table Configuration

When a VTLB/FTLB error occurs, hardware writes the most recent virtual address that caused the error into bits 63:0 
of the read-only BadVAddr register. The number of bits used by hardware to index the page table depends on the page 
size. For example, with a 4 KByte page size, hardware uses bits 63:13 of the BadVAddr register, along with the 
PTEBase field of the Context register, to determine the address that caused the exception.

Hardware assembles this information and places the result into the Context register. Use of the Context and 
ContextConfig registers eliminates software from having to derive the page table index manually. Depending on the 
page table architecture, software programs the ContextConfig register to indicate how many bits of the BadVAddr regis-

31 23 22 2 1 0

0 VirtualIndex 0

Table 3.6 Example ContextConfig Values — Single Level Page Table Organization

Value
Page Table 

Organization Page Size
Page Table 
Entry Size Memory Structure

0x007F_FFF0 Single Level 4K 64 bits/page 128-bit

0x003F_FFF8 Single Level 4K 32 bits/page 64-bit

63 0

BadVAddr
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ter are used by hardware to program the Context register. This determines the size of both the ContextBadVPN2 and 
ContextPTEBase fields. 

The example shown in Figure 3.26 is for a single level table configuration with a 4 KByte page size and 32 bits per 
page. 

When an exception is taken, hardware writes the address that caused the exception into the BadVAddr register. 
Because the page table is single level and the page size is already known to be 4 KBytes, software programs a value 
of 0x3F_FFF8 into the ContextConfigVirtualIndex field. This value indicates the following information:

• The lower three bits of this value are 0, indicating that a 64-bit memory structure is being accessed. For this 
64-bit value, the lower 32 bits are written to the entry 0 of the dual-entry TLB, and the upper 32 bits are writ-
ten to entry 1 of the same TLB entry. Since the lower 3 bits of this field are zero, bit 3 (the first bit that is set) 
is used to define the low-order bit of the BadVPN2 field in the Context register. 

• The highest-order bit that is 1 in this field is bit 21. This indicates that bit 21 is the last bit of the BadVPN2 
field in the Context register. As a result, the PTEBase field of the Context register occupies bits 63:22. 

Based on this information, hardware assembles the value in the Context register as follows:
• ContextPTEBase = bits 63:22. Indicates the base address of the page table in memory. This value is a pointer to 

the start of the page table in memory.
• ContextBadVPN2 = bits 21:3. Hardware copies bits 31:13 of the BadVAddr register into this field. This 19-bit 

value is a pointer for up to 1M entries in each page table selected by the ContextPTEBase field. Bits 12:0 of the 
BadVAddr register are not used in this case since the page size is 4 KBytes.

• ContextPTEBaseLow = bits 2:0. Indicates access to a 64-bit memory location.
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Figure 3.26 32-bit TLB Exception Flow Example — Single Level Table, 4 KB Page Size 
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Figure 3.27 64-bit TLB Exception Flow Example — Single Level Table, 4 KB Page Size 
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read-only BadVAddr register. The number of bits in the BadVAddr register used by hardware to index the page table 
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ter are used by hardware to program the Context register. This determines the size of both the ContextBadVPN2 and 
ContextPTEBase fields. 

The example shown in Figure 3.28 is for a dual level table configuration with a 4 KByte page size and 32 bits per 
page. 

When an exception is taken, hardware writes the address that caused the exception into the 64-bit BadVAddr register. 
Because each table in this example contains 1K entries, software programs a value of 0x00_0FFC into the 
ContextConfigVirtualIndex field. This value indicates the following information:

• The lower two bits of this value are 0, indicating that a 32-bit memory structure is being accessed. This also 
indicates that bit 2 will be the low-order bit for the ContextBadVPN2 field.

• The highest-order bit that is ‘1’ in the ContextConfigVirtualIndex field is bit 11. This indicates that bit 11 will be 
the highest-order bit of the ContextBadVPN2 field. As a result, the ContextPTEBase field occupies bits 63:12. This 
field is used to access the location of the root level page table in memory.

Based on this information, hardware assembles the context register as follows:
• ContextPTEBase = bits 63:12. Indicates the base address of the page table in memory. This value is a pointer to 

the root page table in memory.
• ContextBadVPN2 = bits 11:2. Based on the state of the ContextConfigVirtualIndex field in this example, hardware 

copies bits 31:22 of the BadVAddr register into this field. This 10-bit value is a pointer to the 1024 entries in 
the root page table selected by the ContextPTEBase field. Bits 12:0 of the BadVAddr register are not used in this 
case since the page size is 4 KBytes.

• ContextPTEBaseLow = bits 1:0. Indicates access to a 32-bit memory location.

As stated above, bits 31:22 of the BadVAddr register are copied into the BadVPN2 field of the Context register and are 
used to select one of 1024 entries in the root page table. Each of these entries acts as a pointer to one of the 1024 sec-
ond level tables. Software uses bits 21:13 of the BadVAddr register to index one of 1024 entries in each second level 
page table.This concept is shown in Figure 3.28.
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Figure 3.28 32-bit TLB Exception Flow Example — Dual Level Table, 4 KB Page Size 
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3.12 Exception Base Address Relocation

The P6600 core allows the base address of an exception vector to be relocated. The base address of the exception is 
stored in the CP0 EBase register. In previous generation MIPS32 processors, bits 31:30 of the EBase Register were not 
writeable and had a fixed value of 2'b10 so that the exception handler would be executed from the kseg0 or kseg1 seg-
ments. This concept is shown in Figure 3.29.

Figure 3.29 Location of 32-bit Exception Vector Base Address in Traditional MIPS Virtual Address Space

In the P6600 core, the size of the exception base address is determined by the state of the WG bit in the CP0 EBase 
register (CP0 register 15, Select 1). At reset, the WG bit is cleared by default and bits 31:30 of the EBase Register are 
forced to a value of 2'b10 by hardware as described above. This is shown in Figure 3.29 above.

When the WG bit is set, bits 63:30 of the ExcBase field become writeable and are used to relocate the exception base 
address to other areas of memory. This is shown in Figure 3.30. 

Note that if the WG bit is set by software (allowing bits 31:30 to become part of the ExcBase field) and then cleared, 
bits 31:30 can no longer be written by software and the state of these bits remains unchanged for any writes after WG 
was cleared. Therefore, it is the responsibility of software to write a value of 2'b10 to bits 31:30 of the EBase register 
prior to clearing the WG bit if it wants to ensure that future exceptions will be executed from the kseg0 or kseg1 seg-
ments.

Note that the WG bit is different from the CV bit in the Config5 register. Although their functions are similar, the CV bit 
applies only to cache error exceptions, whereas the WG bit applies to all exceptions. 
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Figure 3.30 Location of Exception Vector Base Address in the P6600

3.13 Address Error Detection

This section describes the conditions on which an address error may be taken.

3.13.1 Instruction Address Errors in 64-bit Mode

An address error is taken on an instruction address in 64-bit Mode when any of the following conditions are met.

• Address is reserved/ unavailable

• Address is in Kernel or XKPhys spaces when operating in Supervisor Mode

• Address is in Kernel, XKPhys or Supervisor spaces when operating in User Mode
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• Address is in Kernel space when operating in Supervisor Mode

• Address is in Kernel or Supervisor spaces when operating in User Mode

• Address is not word-unaligned

• Address is illegal 32-bit address value

3.13.3 Data Address Errors in 64-bit Mode

A data address error is taken on a data address in 64-bit mode when any of the following conditions are met.

• Address is reserved/ unavailable

• Address is in Kernel or XKPhys spaces when operating in Supervisor Mode

• Address is in Kernel, XKPhys or supervisor spaces when operating in User Mode

• Address crosses 16-KB page boundary with specified data size

• Address is unaligned when instruction is LL, LLD, SC or SCD

• Address is unaligned when cacheability is uncached

• Address is in 64-bit Kernel space when Status.KX = 0

• Address is in 64-bit Supervisor space when Status.SX = 0

• Address is in 64-bit User space when Status.UX = 0

• Address is in XKPhys space and bits [47:32] are non-zero when operating in guest mode and 
Root.PageGrain.ELPA = 0.

3.13.4 Data Address Errors in 32-bit Mode

A data address error is taken on a data address in 32-bit mode when any of the following conditions are met.

• Address is in Kernel space when operating in Supervisor Mode

• Address is in Kernel or Supervisor spaces when operating in User Mode

• Address crosses 16-KB page boundary with specified data size

• Address is unaligned when instruction is LL, LLD, SC or SCD

• Address is unaligned when cacheability is uncached

• Address is illegal 32-bit address value (A legal 32-bit address value is one with natural sign-extension, i.e. 
VA63:32 = 32{VA31})

3.14 VTLB and FTLB Initialization

This section describes the procedure for VTLB/FTLB initialization. 

3.14.1 TLB Initialization Sequence

The following steps are used to initialize the TLB’s.

1. Read the 3-bit ConfigMT field to determine if an FTLB is enabled. If this field is 3’b001, the FTLB is disabled and 
address translation is performed only in the VTLB. If this field is 3’b100, both the VTLB and the FTLB are 
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enabled. Refer to the Config register in the chapter entitled CP0 Registers of the P6600 Core for more informa-
tion. 

2. Read the 6-bit Config1MMUSIZE field to determine the VTLB size. This field has a default of 0x3F, indicating a 
VTLB size of 64 entries. Refer to the Config1 register in the chapter entitled CP0 Registers of the P6600 Core for 
more information.

3. Read the Config4 register to determine the FTLB organization. Bits 12:0 of the Config4 register store information 
relating to FTLB organization. Bits 3:0 indicate the number of FTLB ways, bits 7:4 indicate the number of FTLB 
sets, and bits 12:8 indicate the FTLB page size. Refer to the Config4 register in the chapter entitled CP0 Registers 
of the P6600 Core for more information.

4. Set the EntryHiEHINV bit to indicate that TLBWI invalidate is enabled. When this bit is set, the TLBWI instruction 
acts as a TLB invalidate operation, setting the hardware valid bit associated with the TLB entry to the invalid 
state. This bit is ignored on a TLBWR instruction. Refer to the EntryHi register in the chapter entitled CP0 Regis-
ters of the P6600 Core for more information.

5. Write all zero’s to the EntryLo0 and EntryLo1 registers to initialize them. Refer to the EntryLo0 and EntryLo1 regis-
ters in the chapter entitled CP0 Registers of the P6600 Core for more information.

6. Write the appropriate TLB size to the IndexINDEX field. The value written depends on whether or not an FTLB is 
present. If the FTLB is not present, a value of 0x3F is programmed into the lower 6 bits of this register. If the 
FTLB is present, a value of 0x1FF is programmed into the lower 10 bits of this register and indicates a total of 
576 entries (64 VTLB + 512 FTLB). Refer to the Index register in the chapter entitled CP0 Registers of the P6600 
Core for more information.

3.14.2 TLB Initialization Code

The following code snippet can be used to initialize the VTLB and FTLB.

**************************************************************

/* ... at this point, t0 = index of highest tlb entry in jtlb or ftlb if present */

/*    initialize EntryHi.EHINV=1 */

        li      t1, M_EntryHiEHINV
mtc0    t1, C0_EntryHi         # set EntryHi.EHINV=1

/* initialize EntryLo0/1 to avoid x's in simulation */

        mtc0     zero, C0_EntryLo0
mtc0     zero, C0_EntryLo1

/*    invalidate each entry */

10:    mtc0      t0, C0_Index         # Store new index in register
tlbwi                          # Initialize the TLB entry
bne    t0, zero, 10b           # Loop if more to do
addi    t0, t0, -1             # Subtract one from index field

/* clear out EHINV bit again */
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        mtc0   zero,C0_EntryHi

**************************************************************

3.15 TLB Duplicate Entries

The VTLB entries come up in a random state on power-up and must be initialized by hardware before use. Typically, 
bootstrap software initializes each entry in the TLB. Since the VTLB is a fully-associative array and entries are writ-
ten by index, it is possible to load duplicate entries, where two or more entries match the same virtual address/ASID. 

If duplicate entries are detected on a TLB write, no machine check is generated and the older entries are just invali-
dated. The new entry gets written. When writing to the TLB, all ways of a single set in the FTLB and all the entries of 
the VTLB are searched for duplicates. If a large page is written to the VTLB and multiple duplicates exist for that 
larger page in the FTLB (multiple sets in the FTLB), then not all the duplicates are detected (and invalidated). 

3.16 Modes of Operation

The P6600 core can operate in either 32-bit mode, or 64-bit mode. In both of these modes, the core can be accessing 
Kernel, Supervisor, User, and Debug address spaces. There are three bits in the CP0 Status register that are used to 
enable access to each of these address spaces as described in the following subsection.

3.16.1 Memory Address Space Access

The KX, SX, and UX bits are used to permit access to the associated kernel, supervisor, user, and memory address 
spaces. 

• KX denotes access to kernel space

• SX denotes access to supervisor space

• UX denotes access to user space

Access to these memory spaces is enabled using bits 7:5 of the CP0 Status register (12, 0). The KX bit has priority 
over the SX and UX bits, and the SX bit has priority over the UX bit as follows: when KX = 0, SX and UX are forced 
to 0; when SX = 0, UX is forced to 0.

3.16.1.1 KX Bit

The KX bit (7) in the Status register is used to define Kernel and Debug Modes and permit access to Extended Kernel 
Segment (XKSeg), 0xC000_0000_0000_0000-0xC000_FFFF_7FFF_FFFF and XKPhys Segments. There are four 
types of Kernel/Debug modes defined as follows:

• Kernel 32-bit Mode is defined as DM=0 AND (EXL=0 OR ERL=0 OR KSU='b00) AND KX=0.

• Kernel 64-bit Mode is defined as DM=0 AND (EXL=0 OR ERL=0 OR KSU='b00) AND KX=1.

• Debug 32-bit Mode is defined as DM=1 AND KX=0.

• Debug 64-bit Mode is defined as DM=1 AND KX=1.

When KX = 1, access to XKSeg and XKPhys is allowed; when KX = 0, any access to XKSeg and XKPhys causes an 
Address Error exception. 
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3.16.1.2 SX Bit

The SX bit (6) in the Status register is used to define Supervisor Modes and permit access to Extended Supervisor 
Segment (XSSeg), 0x4000_0000_0000_0000-0x4000_FFFF_FFFF_FFFF. There are two types of Supervisor modes 
defined as follows:

• Supervisor 32-bit Mode is defined as DM=0 AND EXL=0 AND ERL=0 AND KSU='b01 AND SX=0.

• Supervisor 64-bit Mode is defined as DM=0 AND EXL=0 AND ERL=0 AND KSU='b01 AND SX=1.

When SX = 1, access to XSSeg is allowed; when SX = 0, any access to XSSeg causes an Address Error exception. 

3.16.1.3 UX Bit

The UX bit (5) in the Status register is used to define User Modes and permit access to Extended User Segment 
(XUSeg), 0x0000_0000_8000_0000-0x0000_FFFF_FFFF_FFFF. There are two types of User modes defined as fol-
lows:

• User 32-bit Mode is defined as DM=0 AND EXL=0 AND ERL=0 AND KSU='b10 AND UX=0.

• User 64-bit Mode is defined as DM=0 AND EXL=0 AND ERL=0 AND KSU='b10 AND UX=1.

When UX = 1, access to XUSeg is allowed; when UX = 0, any access to XUSeg causes an Address Error exception.

3.16.2 32-Bit Mode

The MMU’s virtual-to-physical address translation is determined by the mode in which the processor is operating. 
The P6600 core operates in one of four modes: 

• User mode

• Supervisor mode 

• Kernel mode

• Debug mode

User mode is most often used for application programs. Supervisor mode is an intermediate privilege level with 
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode is typically 
used for handling exceptions and privileged operating system functions, including CP0 management and I/O device 
accesses. 

Table 3.7 Selecting the 32-bit Addressing Mode

Mode

Status Debug

DescriptionEXL ERL KSU KX1 SX2 UX DM

User 0 0 2’b2 x x 0 0 32-bit User addressing mode. In this mode, a TLB 
miss goes to the TLB Refill Handler.

Supervisor 0 0 2’b1 x 0 x 0 32-bit Supervisor addressing mode. In this mode, a 
TLB miss goes to the TLB Refill Handler.
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3.16.2.1 Mapping 64-bit Address Space for 32-bit Addressing

With support for 64-bit operations and address calculation, the P6600 provides support for a 64-bit virtual address 
space that is sub-divided into four Segments selected by bits 63:62 of the virtual address. To provide compatibility for 
32-bit programs, a 232-byte Compatibility Address Space is defined, separated into two non-contiguous ranges in 
which the upper 32 bits of the 64-bit address are the sign extension of bit 31. The Compatibility Address Space is fur-
ther divided similarly into segments selected by bits 31:29 of the virtual address. 

Figure 3.31 shows the layout of the Address Spaces, including the Compatibility Address Space and the segmentation 
of each Address Space.

Figure 3.31 Mapping 64-bit Address Space in 32-bit Mode

Kernel x x 2’b0 0 x x 0 32-bit Kernel addressing mode. In this mode, a TLB 
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opposed to the TLB Refill handler.

Debug x x x 1 Debug mode.
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2. When SX = 0, the UX bit cannot be set.
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3.16.2.2 Virtual Memory Segments in 32-bit Mode

In the 32-bit mode, the P6600 core supports the traditional MIPS32 virtual address space, which contains fixed 
address ranges for the various user and kernel segments.

In 32-bit mode, the MIPS64 architecture supports a 4 GByte virtual address space that is partitioned into a number of 
segments, each characterized by a set of attributes defined by hardware and software. The virtual memory segments 
are different depending on the mode of operation. Figure 3.32 shows the segmentation for the 4 GByte (232 bytes) 
virtual memory space, addressed by a 32-bit virtual address, for each of the four modes.

• User mode accesses are limited to a subset of the virtual address space (0x0000_0000_0000_0000 to 
0x0000_0000_7FFF_FFFF) and can be inhibited from accessing CP0 functions. In User mode, virtual addresses 
0xFFFF_FFFF_8000_0000 to 0xFFFF_FFFF_FFFF_FFFF are invalid and cause an exception if accessed. 

• Supervisor mode adds access to sseg (0xFFFF_FFFF_C000_0000 to 0xFFFF_FFFF_DFFF_FFFF). kseg0, 
kseg1, and kseg3 will still cause exceptions if they are accessed.

• In Kernel mode, software has access to the entire address space, as well as all CP0 registers. 

• Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same 
address space and CP0 registers as Kernel mode. In addition, while in Debug mode, the CPU has access to the 
debug segment (dseg). This area overlays part of the kernel segment kseg3. Access to dseg in Debug mode can 
be turned on or off, allowing full access to the entire kseg3 in Debug mode, if so desired.
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Figure 3.32 Virtual Memory Map — 32-bit Mode

3.16.2.3 32-bit User Mode

In user mode, a single uniform virtual address space, called the user segment (useg), is available. The size of the user 
segment depends on the virtual addressing mode used. 

In the 32-bit mode, the user segment occupies the lower 2 GB of virtual address space. The user segment starts at 
address 0x0000_0000_0000_0000 and ends at address 0x0000_0000_7FFF_FFFF. Accesses to all other addresses 
cause an address error exception. This is shown in Figure 3.33.
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Figure 3.33 User Mode Virtual Address Space — 32-bit Configuration 

The processor operates in 32-bit User mode when the Status register contains the following bit values:

• KSU = 0b10

• EXL = 0

• ERL = 0

• UX = 0

In addition to the above values, the DM bit in the Debug register must be 0.

3.16.2.4 32-bit Supervisor Mode

Supervisor mode includes a 512 MByte virtual address space called the supervisor segment (sseg). The supervisor-
mode virtual address space is shown in Figure 3.34.

0x0000_0000_0000_0000

0xFFFF_FFFF_8000_0000

0x0000_0000_7FFF_FFFF

0xFFFF_FFFF_FFFF_FFFF

32 bits

Address 
Error

2GB 
Mapped useg
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Figure 3.34 32-bit Supervisor Mode Virtual Address Space 

The supervisor user segment (suseg) begins at address 0x0000_0000 and ends at address 0x7FFF_FFFF. The supervi-
sor segment begins at 0xC000_0000 and ends at 0xDFFF_FFFF. Accesses to all other addresses in Supervisor mode 
cause an address error exception.

The processor operates in Supervisor mode when the Status register contains the following bit values:

• KSU = 2’b01

• EXL = 0

• ERL = 0

• SX = 0

In addition to the above values, the DM bit in the Debug register must be 0.

Address Error

suseg

kseg0

kseg1

sseg

kseg3

Mapped, 2048MB

Address Error

Supervisor virtual address space
Mapped, 512MB

Address Error

0x0000_0000_0000_0000

0xFFFF_FFFF_8000_0000

0xFFFF_FFFF_A000_0000

0xFFFF_FFFF_C000_0000

0xFFFF_FFFF_E000_0000

0x0000_0000_7FFF_FFFF

0xFFFF_FFFF_9FFF_FFFF

0xFFFF_FFFF_BFFF_FFFF

0xFFFF_FFFF_DFFF_FFFF

0xFFFF_FFFF_FFFF_FFFF
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Table 3.8 lists the characteristics of the Supervisor mode segments in the 32-bit mode. 

The system maps all references to suseg and sseg through the TLB. The virtual address is extended with the contents 
of the 8-bit ASID field to form a unique virtual address before translation. Also, bit settings within the TLB entry for 
the page determine the cacheability of a reference.

3.16.2.5 32-bit Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one 
or more of the following values:

• KSU = 2’b00, or

• ERL = 1. or

• EXL = 1, and

• KX = 0

When a non-debug exception is detected, EXL or ERL will be set and the processor enters Kernel mode. At the end of 
the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruction 
jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode. 

In Kernel mode, a program has access to the entire virtual address space. Kernel mode virtual address space is divided 
into regions differentiated by the high-order bits of the virtual address, as shown in Figure 3.35. The characteristics of 
kernel-mode segments are listed in Table 3.9. 

The CPU enters Kernel mode both at reset and when an exception is recognized.

Table 3.8 Supervisor Mode Segments — 32-bit Configuration

Address-Bit 
Value

Status Register

Segment
Name Address Range Segment Size

Bit Value

EXL ERL UM SM

32-bit
A(31) = 0

0 0 0 1 suseg 0x0000_0000_0000_0000 --> 
0x0000_0000_7FFF_FFFF

2 GByte
(231 bytes)

32-bit
A(31:29) = 3’b110

0 0 0 1 sseg 0xFFFF_FFFF_C000_0000 ->
0xFFFF_FFFF_DFFF_FFFF

512MB
(229 bytes)
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Figure 3.35 Kernel Mode Virtual Address Space — 32-bit Configuration 

Table 3.9 Kernel Mode Segments

Address-Bit 
Values

Status Register Is 
One of These Values

Segment 
Name Address Range

Segment
SizeKSU EXL ERL

A(31) = 0 (KSU = 002
or

EXL = 1
or

ERL = 1)
and

DM = 0

kuseg 0x0000_0000_0000_0000
through

0x0000_0000_7FFF_FFFF

2 GBytes (231 bytes)

A(31:29) = 3’b100 kseg0 0xFFFF_FFFF_8000_0000
through

0xFFFF_FFFF_9FFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 3’b101 kseg1 0xFFFF_FFFF_A000_0000
through

0xFFFF_FFFF_BFFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 3’b110 ksseg/kseg2 0xFFFF_FFFF_C000_0000
through

0xFFFF_FFFF_DFFF_FFFF

512 MBytes (229 bytes)

A(31:29) = 3’b111 kseg3 0xFFFF_FFFF_E000_0000
through

0xFFFF_FFFF_FFFF_FFFF

512 MBytes (229 bytes)

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

ksseg/kseg2

kseg3

Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

0x0000_0000_0000_0000

0xFFFF_FFFF_8000_0000

0xFFFF_FFFF_A000_0000

0xFFFF_FFFF_C000_0000

0xFFFF_FFFF_E000_0000

0x0000_0000_7FFF_FFFF

0xFFFF_FFFF_9FFF_FFFF

0xFFFF_FFFF_BFFF_FFFF

0xFFFF_FFFF_DFFF_FFFF

0xFFFF_FFFF_FFFF_FFFF
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Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address 
space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses 
0x0000_0000_0000_0000 - 0x0000_0000_7FFF_FFFF. For cores with TLBs, the virtual address is extended with the 
contents of the 8-bit ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte unmapped and uncached address 
space. While in this setting, the kuseg virtual address maps directly to the same physical address, and does not include 
the ASID field.

Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when virtual address bits VA[31:29] are 3’b100, 32-bit kseg0 virtual address space is selected; it is 
the 229-byte (512-MByte) kernel virtual space located at addresses 0xFFFF_FFFF_8000_0000 - 
0xFFFF_FFFF_9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtract-
ing 0x8000_0000 from the virtual address. The K0 field of the Config register controls cacheability.

Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when virtual address bits VA[31:29] are 3’b101, kseg1 virtual address space is selected. kseg1 is the 
229-byte (512-MByte) kernel virtual space located at addresses 0xFFFF_FFFF_A000_0000 - 
0xFFFF_FFFF_BFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtract-
ing 0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory 
(or memory-mapped I/O device registers) are accessed directly.

Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)

In Kernel mode, when KSU = 2’b00, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and 
the most-significant three bits of the 32-bit virtual address are 3’b110, 32-bit kseg2 virtual address space is selected. 

Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when virtual address bits VA[31:29] are 3’b111, the kseg3 virtual address space is selected. The ker-
nel virtual space is located at physical addresses 0xFFFF_FFFF_E000_0000 - 0xFFFF_FFFF_FFFF_FFFF. 

3.16.2.6 Debug Mode

Except for kseg3, debug-mode address space is identical to kernel-mode address space with respect to mapped and 
unmapped areas. In kseg3, a debug segment (dseg) coexists in the virtual address range 0xFFFF_FFFF_FF20_0000 
to 0xFFFF_FFFF_FF3F_FFFF. The layout is shown in Figure 3.36.
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Figure 3.36 Debug Mode Virtual Address Space 

dseg is subdivided into the dmseg segment at 0xFFFF_FFFF_FF20_0000 to 0xFFFF_FFFF_FF2F_FFFF, which is 
used when the debug probe services the memory segment, and the drseg segment at 0xFFFF_FFFF_FF30_0000 to 
0xFFFF_FFFF_FF3F_FFFF, which is used when memory-mapped debug registers are accessed. The subdivision and 
attributes of the segments are shown in Table 3.10.

Accesses to memory that would normally cause an exception in kernel mode cause the CPU to re-enter debug mode 
via a debug-mode exception. This includes accesses usually causing a TLB exception, with the result that such 
accesses are not handled by the usual memory-management routines.

The unmapped kseg0 and kseg1 segments from kernel-mode address space are available in debug mode, which 
allows the debug handler to be executed from uncached, unmapped memory. 

Debug Mode, Register (drseg)

The behavior of CPU access to the drseg address range at 0xFFFF_FFFF_FF30_0000 to 0xFFFF_FFFF_FF3F_FFFF 
is determined as shown in Table 3.11 

Table 3.10 Physical Address and Cache Attributes for dseg, dmseg, and drseg 

Segment 
Name

Sub-Segment 
Name Virtual Address Generates Physical Address

Cache 
Attribute

dseg dmseg 0xFFFF_FFFF_FF20_0000
through

0xFFFF_FFFF_FF2F_FFFF

dmseg maps to addresses 0x0_0000 - 
0xF_FFFF in EJTAG probe memory 

space. 
drseg maps to the breakpoint registers 

0x0_0000 - 0xF_FFFF

Uncached

drseg 0xFFFF_FFFF_FF30_0000
through

0xFFFF_FFFF_FF3F_FFFF

Table 3.11 CPU Access to drseg

Transaction
LSNM Bit in Debug 

Register Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care drseg, see comments below

Load / Store 0

0x0000_0000_0000_0000

0xFFFF_FFFF_FF20_0000

0xFFFF_FFFF_FF40_0000
0xFFFF_FFFF_FFFF_FFFF

dseg

kseg1

kseg0 Unmapped

Mapped if mapped in Kernel Mode
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Debug software is expected to read the Debug Control register (DCR) to determine which other memory-mapped regis-
ters exist in drseg. The value returned in response to a read of any unimplemented memory-mapped register is unpre-
dictable, and writes are ignored to any unimplemented register in drseg. For more information about the DCR, refer to 
Chapter 13, “EJTAG Debug Support”.

The allowed access size is limited for the drseg. Only word-size transactions are allowed. Operation of the processor 
is undefined for other transaction sizes.

Debug Mode, Memory (dmseg)

The conditions for CPU accesses to the dmseg address range (0xFFFF_FFFF_FF20_0000 to 
0xFFFF_FFFF_FF2F_FFFF) are shown in Table 3.12.

An attempt to access dmseg when the ProbEn bit in the DCR register is 0 should not happen, because debug software 
is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such a refer-
ence does occur, the reference hangs until it is satisfied by the probe. The probe must not assume that there will never 
be a reference to dmseg when the ProbEn bit in the DCR register is 0, because there is an inherent race between the 
debug software sampling the ProbEn bit as 1, and the probe clearing it to 0.

3.16.3 64-Bit Mode

The MMU’s virtual-to-physical address translation is determined by the mode in which the processor is operating. 
The P6600 core operates in one of four modes: 

• User mode

• Supervisor mode 

• Kernel mode

• Debug mode

User mode is most often used for application programs. Supervisor mode is an intermediate privilege level with 
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode is typically 
used for handling exceptions and privileged operating system functions, including CP0 management and I/O device 
accesses. Debug mode is used for software debugging and usually occurs within a software development tool.

Table 3.12 CPU Access to dmseg

Transaction

ProbEn Bit in 

DCR Register1

1. The NoDCR bit in the CP0 Debug register indicates if the dmseg and drseg address spaces and associated DCR 
register exists in memory mapped space. The NoDCR bit must be cleared, this DCR register exists. If the bit is 
set, the register does not exist.

LSNM Bit in 
Debug Register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0 dmseg

Fetch 0 Don’t care See comments below

Load / Store 0 0 See comments below
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3.16.3.1 Virtual Memory Segments in 64-bit Mode

In the 64-bit mode, the P6600 core supports the full virtual address space, with fixed address ranges for the various 
segments as shown in Table 3.14. Bits 63:62 of the address determine which of the four address segments is accessed:

• Kernel Segment: VA[63:62] = 11

• XKPhys Segment: VA[63:62] = 10

• Supervisor Segment: VA[63:62] = 01

• User Segment: VA[63:62] = 00

User mode consists of two segments: a 32-bit compatible segment and a 64-bit segment. 32-bit compatible accesses 
are limited to a subset of the virtual address space 0x0000_0000_0000_0000 to 0x0000_0000_7FFF_FFFF and can 
be inhibited from accessing CP0 functions. 64-bit compatible accesses can access not only the 32-bit compatible 
space, but also the 64-bit user segment located at virtual address space 0x0000_0000_8000_0000 to 
0x0000_FFFF_FFFF_FFFF. In User mode, virtual addresses 0x0001_0000_0000_0000 to 
0x3FFF_FFFF_FFFF_FFFF are reserved as shown in the table below and cause an address error exception if 
accessed. 

The Supervisor mode XKSSeg address space is accessed in 64-bit mode at virtual addresses 
0x4000_0000_0000_0000 to 0x4000_FFFF_FFFF_FFFF. In Supervisor mode, virtual addresses 
0x4001_0000_0000_0000 to 0x7FFF_FFFF_FFFF_FFFF are reserved as shown in the table below and cause an 
address error exception if accessed.

XKPhys address space can only be address by the kernel in 64-bit mode and reside at virtual addresses space 
0x8000_0000_0000_0000 to 0xBFFF_FFFF_FFFF_FFFF. This address space is split into eight segments. Each seg-
ment contains a dedicated CCA value (0 - 7), as well as a Reserved portion. Accesses to the Reserved portions shown 
in Table 3.14 cause an address error exception if accessed. 

Table 3.13 Selecting the 64-bit Addressing Mode

Mode

Status Debug

DescriptionEXL ERL KSU KX SX UX DM

User 0 0 2’b10 x x 1 0 User addressing mode. In this mode, a TLB miss goes to 
the XTLB Refill Handler.

Supervisor 0 0 2’b01 x 1 x 0 Supervisor addressing mode. In this mode, a TLB miss 
goes to the XTLB Refill Handler.

Kernel x x 2’b00 1 x x 0 Kernel addressing mode. In this mode, a TLB miss goes to 
the XTLB Refill Handler. The core is in the XKPhys 
address space when VA[63:62] = 2’b11.

x 1 x 1 x x 0 Kernel addressing mode. In this mode, a TLB miss goes to 
the XTLB Refill Handler. The core is in the XKPhys 
address space when VA[63:62] = 2’b11.

1 x x 1 x x 0 Kernel addressing mode. In this mode, a TLB miss goes to 
the general exception handler as opposed to the XTLB 
Refill handler. The core is in the XKPhys address space 
when VA[63:62] = 2’b11.

Debug x x x x x x 1 Debug mode.
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Kernel mode contains both 64-bit and 32-bit compatible segments. The XKseg segment can only be accessed in 64-
bit mode and resides at virtual addresses 0xC000_0000_0000_0000 to 0xC000_FFFF_7FFF_FFFF. The Kseg0, 
Kseg1, SSeg/KSeg2, and Kseg3 segments are all 32-bit compatible. In Kernel mode, software has access to the entire 
address space (except reserved spaces) shown in Table 3.14, as well as all CP0 registers. 

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same 
address space and CP0 registers as Kernel mode. In addition, while in Debug mode, the CPU has access to the debug 
segment (dseg). This area overlays part of the kernel segment kseg3. Access to dseg in Debug mode can be turned on 
or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

Table 3.14 MIPS64 Address Space

Segment Address Name Mapping CCA Segment Type

Kernel 
[63:62] = 11

FFFF_FFFF_FFFF_FFFF - 
FFFF_FFFF_E000_0000

KSeg3 Kernel Mapped From TLB 32-bit Compatible

FFFF_FFFF_DFFF_FFFF - 
FFFF_FFFF_C000_0000

SSeg/Kseg2 Supervisor Mapped From TLB 32-bit Compatible

FFFF_FFFF_BFFF_FFFF - 
FFFF_FFFF_A000_0000

KSeg1 Kernel Unmapped Uncached 32-bit Compatible

FFFF_FFFF_9FFF_FFFF - 
FFFF_FFFF_8000_0000

KSeg0 Kernel Unmapped From Config.K0 32-bit Compatible

Reserved
C000_FFFF_7FFF_FFFF - 

C000_0000_0000_0000
XKSeg Kernel Mapped From TLB 64-bit

XKPhys 
[63:62] = 10

Reserved
B800_FFFF_FFFF_FFFF - 

B800_0000_0000_0000
XKPhys Unmapped CCA = 7 64-bit

Reserved
B000_FFFF_FFFF_FFFF - 

B000_0000_0000_0000
XKPhys Unmapped CCA = 6 64-bit

Reserved
A800_FFFF_FFFF_FFFF - 

A800_0000_0000_0000
XKPhys Unmapped CCA = 5 64-bit

Reserved
A000_FFFF_FFFF_FFFF - 

A000_0000_0000_0000
XKPhys Unmapped CCA = 4 64-bit

Reserved
9800_FFFF_FFFF_FFFF - 

9800_0000_0000_0000
XKPhys Unmapped CCA = 3 64-bit

Reserved
9000_FFFF_FFFF_FFFF - 

9000_0000_0000_0000
XKPhys Unmapped CCA = 2 64-bit

Reserved
8800_FFFF_FFFF_FFFF - 

8800_0000_0000_0000
XKPhys Unmapped CCA = 1 64-bit

Reserved
8000_FFFF_FFFF_FFFF - 

8000_0000_0000_0000
XKPhys Unmapped CCA = 0 64-bit
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3.16.3.2 64-bit User Mode

In 64-bit user mode, a single uniform virtual address space, called the user segment (useg), is available. 

The user segment occupies the portion of the virtual address space shown below. The user segment starts at address 
0x0000_0000_0000_0000 and ends at address 0x0000_FFFF_FFFF_FFFF. Accesses to addresses 
0x0001_0000_0000_0000 and ends at address 0x3FFF_FFFF_FFFF_FFFF cause an address error exception. This is 
shown in Figure 3.37.

Figure 3.37 User Mode Virtual Address Space — 64-bit Address Mode

The processor operates in User mode when the Status register contains the following bit values:

• KSU = 2’b10

• EXL = 0

• ERL = 0

• UX = 1

In addition to the above values, the DM bit in the Debug register must be 0.

3.16.3.3 64-bit Supervisor Mode

The 64-bit supervisor-mode virtual address space is shown in Figure 3.38. Accesses to addresses 
0x4001_0000_0000_0000 - 0x7FFF_FFFF_FFFF_FFFF in Supervisor space cause an address error exception.

Supervisor
[63:62] = 01

Reserved
4000_FFFF_FFFF_FFFF - 

4000_0000_0000_0000
XSSeg Supervisor Mapped From TLB 64-bit

User
[63:62] = 00

Reserved
0000_FFFF_FFFF_FFFF - 

0000_0000_8000_0000
XUSeg User Mapped From TLB 64-bit

0000_0000_7FFF_FFFF - 
0000_0000_0000_0000

USeg User Mapped From TLB 32-bit Compatible

Table 3.14 MIPS64 Address Space

Segment Address Name Mapping CCA Segment Type

64 bits

Address 
Error

Mapped

0x0000_0000_0000_0000

0x0000_FFFF_FFFF_FFFF
0x0001_0000_0000_0000

0x3FFF_FFFF_FFFF_FFFF
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Figure 3.38 64-bit Supervisor Mode Virtual Address Space 

The accessible supervisor segment begins at address 0x4000_0000_0000_0000 and ends at address 
0x4000_FFFF_FFFF_FFFF. The processor operates in Supervisor mode when the Status register contains the follow-
ing bit values:

• KSU = 2’b01

• EXL = 0

• ERL = 0

• SX = 0

In addition to the above values, the DM bit in the Debug register must be 0.

3.16.3.4 64-bit Kernel Mode

Kernel mode has access to the entire 64-bit address space (except reserved spaces), including supervisor and user 
mode spaces, and the entire XKPhys address segment. The processor operates in Kernel mode when the DM bit in the 
Debug register is 0 and the Status register contains one or more of the following values:

• KSU = 2’b00, or

• ERL = 1, or

• EXL = 1, and

• KX = 1

When a non-debug exception is detected, hardware sets the EXL or ERL bits in the Status register and the processor 
enters Kernel mode. At the end of the exception handler routine, an Exception Return (ERET) instruction is generally 
executed. The ERET instruction jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return 
the processor to User mode. 

In Kernel mode, a program has access to the entire virtual address space. Kernel mode virtual address space is divided 
into regions differentiated by the high-order bits of the virtual address, as shown in Figure 3.35. The characteristics of 
kernel-mode segments are listed in Table 3.9. 

Address Error

XSSegMapped

0x4000_0000_0000_0000

0x4000_FFFF_FFFF_FFFF
0x4001_0000_0000_0000

0x7FFF_FFFF_FFFF_FFFF
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The CPU enters Kernel mode both at reset and when an exception is recognized.

Figure 3.39 Kernel Mode 64-bit Virtual Address Space 

Kernel Mode, Kernel User Space (XKSeg)

The XKSeg segment is accessed under the following conditions:

• The most significant bits of the address (VA[63:62]) are 2’b11, and

• VA[61:48] of the virtual address are all 0’s, and

• The address does not fall in reserved address space of 0xC000_FFFF_8000_0000 to 0xC000_FFFF_FFFF_FFFF

In this configuration, kernel virtual user space is located at addresses 0xC000_0000_0000_0000 - 
0xC000_FFFF_7FFF_FFFF. References to XKSeg are kernel mapped and the CCA attributes come from the TLB.

Kernel Mode, Kernel Space 1 (KSeg1)

The KSeg1 segment is accessed under the following conditions:

• The most significant bits of the address (VA[63:62]) are 2’b11, and

• VA[61:32] of the virtual address are all 1’s, and

• VA[31:29] is 3’b101

In this configuration, kernel virtual space 1 is located at addresses 0xFFFF_FFFF_A000_0000 - 
0xFFFF_FFFF_BFFF_FFFF. References to XKSeg0 are kernel unmapped and uncached. Caches are disabled for 
accesses to these addresses, and physical memory (or memory-mapped I/O device registers) are accessed directly.

0xC000_0000_0000_0000

0xC000_FFFF_7FFF_FFFF

0xFFFF_FFFF_8000_0000

0xFFFF_FFFF_9FFF_FFFF

Reserved

0xFFFF_FFFF_A000_0000

0xFFFF_FFFF_BFFF_FFFF
0xFFFF_FFFF_C000_0000

0xFFF_FFFF_DFFF_FFFF
0xFFFF_FFFF_E000_0000

0xFFFF_FFFF_FFFF_FFFF

XKSeg
Kernel Mapped, CCA from TLB

KSeg0
Kernel Unmapped, CCA from Config.K0

KSeg1
Kernel Unmapped, Uncached

KSeg3
Kernel Mapped, CCA from TLB

SSeg/KSeg2
Kernel Mapped, CCA from TLB

0xC000_FFFF_8000_0000

0xFFFF_FFFF_7FFF_FFFF
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Kernel Mode, Kernel/Supervisor Space 2 (KSSeg/KSeg2)

The KSeg1 segment is accessed under the following conditions:

• The most significant bits of the address (VA[63:62]) are 2’b11, and

• VA[61:32] of the virtual address are all 1’s, and

• VA[31:29] is 3’b110

In this configuration, kernel virtual space 2 is located at addresses 0xFFFF_FFFF_C000_0000 - 
0xFFFF_FFFF_DFFF_FFFF. References to XKSeg2 are supervisor mapped, and the CCA for this segment is defined 
by the TLB. 

Kernel Mode, Kernel Space 3 (KSeg3)

The KSeg3 segment is accessed under the following conditions:

• The most significant bits of the address (VA[63:62]) are 2’b11, and

• VA[61:32] of the virtual address are all 1’s, and

• VA[31:29] is 3’b111

In this configuration, kernel virtual space 3 is located at addresses 0xFFFF_FFFF_E000_0000 - 
0xFFFF_FFFF_FFFF_FFFF. References to XKSeg3 are kernel mapped, and the CCA for this segment is defined by 
the TLB. 

3.16.3.5 64-bit Debug Mode

Except for XKSeg3, debug-mode address space is identical to kernel-mode address space with respect to mapped and 
unmapped areas. In XKSeg3, a debug segment (dseg) coexists in the virtual address range 
0xFFFF_FFFF_FF20_0000 to 0xFFFF_FFFF_FF3F_FFFF. The layout is shown in Figure 3.40.

Figure 3.40 64-Bit Debug Mode Virtual Address Space 

dseg is subdivided into the dmseg segment at 0xFFFF_FFFF_FF20_0000 to 0xFFFF_FFFF_FF2F_FFFF, which is 
used when the debug probe services the memory segment, and the drseg segment at 0xFFFF_FFFF_FF30_0000 to 
0xFFFF_FFFF_FF3F_FFFF, which is used when memory-mapped debug registers are accessed. The subdivision and 
attributes of the segments are shown in Table 3.10.

dseg

Unmapped

Mapped if mapped in Kernel Mode

0xC000_0000_0000_0000

0xFFFF_FFFF_FF20_0000

0xFFFF_FFFF_FF40_0000

0xFFFF_FFFF_FFFF_FFFF

XKSeg0

XKSeg1
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Accesses to memory that would normally cause an exception in kernel mode cause the CPU to re-enter debug mode 
via a debug-mode exception. This includes accesses usually causing a TLB exception, with the result that such 
accesses are not handled by the usual memory-management routines.

The unmapped XKSeg0 and XKSeg1 segments from kernel-mode address space are available in debug mode, which 
allows the debug handler to be executed from uncached, unmapped memory. 

Debug Mode, Register (drseg)

The behavior of CPU access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is determined as shown in 
Table 3.11 

Debug software is expected to read the Debug Control register (DCR) to determine which other memory-mapped regis-
ters exist in drseg. The value returned in response to a read of any unimplemented memory-mapped register is unpre-
dictable, and writes are ignored to any unimplemented register in drseg. For more information about the DCR, refer to 
Chapter 13, “EJTAG Debug Support”.

The allowed access size is limited for the drseg. Only word-size transactions are allowed. Operation of the processor 
is undefined for other transaction sizes.

Debug Mode, Memory (dmseg)

The conditions for CPU accesses to the dmseg address range (0xFFFF_FFFF_FF20_0000 to 
0xFFFF_FFFF_FF2F_FFFF) are shown in Table 3.17.

Table 3.15 Physical Address and Cache Attributes for dseg, dmseg, and drseg 

Segment 
Name

Sub-Segment 
Name Virtual Address Generates Physical Address

Cache 
Attribute

dseg dmseg 0xFFFF_FFFF_FF20_0000
through

0xFFFF_FFFF_FF2F_FFFF

dmseg maps to addresses 0x0_0000 - 
0xF_FFFF in EJTAG probe memory 

space. 
drseg maps to the breakpoint registers 

0x0_0000 - 0xF_FFFF

Uncached

drseg 0xFFFF_FFFF_FF30_0000
through

0xFFFF_FFFF_FF3F_FFFF

Table 3.16 CPU Access to drseg

Transaction
LSNM Bit in Debug 

Register Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care drseg, see comments below

Load / Store 0

Table 3.17 CPU Access to dmseg

Transaction

ProbEn Bit in 

DCR Register1
LSNM Bit in 

Debug Register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0 dmseg
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An attempt to access dmseg when the ProbEn bit in the DCR register is 0 should not happen, because debug software 
is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such a refer-
ence does occur, the reference hangs until it is satisfied by the probe. The probe must not assume that there will never 
be a reference to dmseg when the ProbEn bit in the DCR register is 0, because there is an inherent race between the 
debug software sampling the ProbEn bit as 1, and the probe clearing it to 0.

3.16.3.6 64-bit XKPhys Address Segment

The Extended Kernel Physical Segment (XKPhys) is divided into a series of eight equal segments, each with a differ-
ent Cache Coherency Attribute (CCA). The attribute information is stored in the C field of the EntryLo0 and 
EntryLo1 registers. 

The eight segments reside within the following address ranges.

• 8000_0000_0000_0000 — 8000_FFFF_FFFF_FFFF: XKPhys0, CCA = 0

• 8800_0000_0000_0000 — 8800_FFFF_FFFF_FFFF: XKPhys1, CCA = 1

• 9000_0000_0000_0000 — 9000_FFFF_FFFF_FFFF: XKPhys2, CCA = 2

• 9800_0000_0000_0000 — 9800_FFFF_FFFF_FFFF: XKPhys3, CCA = 3

• A000_0000_0000_0000 — A000_FFFF_FFFF_FFFF: XKPhys4, CCA = 4

• A800_0000_0000_0000 — A800_FFFF_FFFF_FFFF: XKPhys5, CCA = 5

• B000_0000_0000_0000 — B000_FFFF_FFFF_FFFF: XKPhys6, CCA = 6

• B800_0000_0000_0000 — B800_FFFF_FFFF_FFFF: XKPhys7, CCA = 7

Note that there are empty spaces or gaps between each XKPhys memory segment. These empty spaces are reserved 
and cause an address error exception if accessed. For example, the address range of 8001_0000_0000_0000 — 
87FF_FFFF_FFFF_FFFF is the empty space between the XKPhys0 and XKPhys1 address spaces. 

In the P6600 core address space, the following types of accesses are supports; 

• Uncached (CCA = 2)

• Cache Coherent Read (CCA = 5)

• Uncached Accelerated (CCA = 7).

All CCA values map to one of these attributes.

Fetch 0 Don’t care See comments below

Load / Store 0 0 See comments below

1. The NoDCR bit in the CP0 Debug register indicates if the dmseg and drseg address spaces and associated DCR 
register exists in memory mapped space. The NoDCR bit must be cleared, this DCR register exists. If the bit is 
set, the register does not exist.

Table 3.17 CPU Access to dmseg

Transaction

ProbEn Bit in 

DCR Register1
LSNM Bit in 

Debug Register Access
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Figure 3.41 XKPhys Address Segments in 64-bit Virtual Address Space 

Unmapped, 256 GB, CCA = 0

0x8000_0000_0000_0000

0x8000_FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA = 1

0x8800_0000_0000_0000

0x8800_FFFF_FFFF_FFFF

Reserved

Unmapped, 256 GB, CCA = 2

0x9000_0000_0000_0000

0x9000_FFFF_FFFF_FFFF

Reserved

Unmapped, 256 GB, CCA = 3

0x9800_0000_0000_0000

0x9800_FFFF_FFFF_FFFF

Reserved

Unmapped, 256 GB, CCA = 4

0xA000_0000_0000_0000

0xA000_FFFF_FFFF_FFFF

Reserved

Unmapped, 256 GB, CCA = 5

0xA800_0000_0000_0000

0xA800_FFFF_FFFF_FFFF

Reserved

Unmapped, 256 GB, CCA = 6

0xB000_0000_0000_0000

0xB000_FFFF_FFFF_FFFF

Reserved

Unmapped, 256 GB, CCA = 7

0xB800_0000_0000_0000

0xB800_FFFF_FFFF_FFFF

Reserved
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3.17 TLB Instructions

Table 3.18 lists the TLB-related instructions implemented in the P6600 core. .

Refer to the Instructions chapter for more information on the TLB instructions.

Table 3.18 TLB Instructions

Mnemonic Instruction Description

TLBP Translation Lookaside Buffer Probe Used to determine whether a particular address was 
successfully translated. When a TLBP instruction is 
executed and fails to find a match for the specified 
virtual address, hardware sets bit 31 of the Index 
register.

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index TLB write extended to support invalidation of
individual TLB entries.

TLBWR Translation Lookaside Buffer Write Random

TLBINV Translation Lookaside Buffer Invalidate Added to support set level invalidation of TLB
entries.

TLBINVF Translation Lookaside Buffer Invalidate Flush Added to support VTLB flush based invalidation
of TLB entries.



 
Chapter 4

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 239

Caches

This chapter describes the caches present in an P6600 core and contains the following sections:

• Section 4.1 “Cache Configurations”

• Section 4.2 “L1 Instruction Cache”

• Section 4.3 “L1 Data Cache”

• Section 4.4 “L1 Instruction and Data Cache Software Testing”

• Section 4.5 “L2 Cache”

• Section 4.6 “The CACHE Instruction”

4.1 Cache Configurations

The P6600 core contains three caches; L1 instruction, L1 data, and shared L2. These caches are non-optional in the 
P6600 architecture and are always present. The size of each cache can be configured as shown in Table 4.1. 

The L1 instruction cache is attached to the Instruction Fetch Unit (IFU) via two 64-bit data paths, allowing for up to 
four instruction fetches per cycle. The L1 data cache contains two 64-bit data paths, allowing for up to two data read/
write operations per cycle. The L2 cache is embedded within the Coherence Manager (CM2) and communicates with 
external memory via a configurable 128-bit or 256-bit OCP interface.

For more information on the L1 instruction cache, refer to Section 4.2 “L1 Instruction Cache”. 

For more information on the L1 data cache, refer to Section 4.3 “L1 Data Cache”. 

For more information on the L2 cache, refer to Section 4.5 “L2 Cache”.

Table 4.1 P6600 Cache Configurations

Attribute L1 Instruction Cache L1 Data Cache L2 Cache

Size1

1. For Linux-based applications, MIPS recommends an optimum L1 cache size of 64 KB, and a minimum L1 cache size of 32 KB.

32 KB or 64 KB 32 KB or 64 KB 512 KB
1 MB, 2 MB, 4 MB, or 8 MB

Line Size 32-byte 32-byte 32-byte

Number of Cache Sets 256 or 512 256 or 512 2048, 4096, 
8192, 16384, or 32768

Associativity 4 way 4 way 8 way
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4.1.1 Cacheability Attributes

The P6600 core supports the following cacheability attributes:

• Uncached (code #2): Addresses in a memory area indicated as uncached are not read from the cache. Stores to 
such addresses are written directly to main memory, without changing cache contents.

• Non-coherent Writeback With Write Allocation (code #3): Loads and instruction fetches first search the cache, 
reading main memory only if the desired data does not reside in the cache. On data store operations, the cache is 
first searched to see if the target address is in the cache. If it is, the cache contents are updated, but main memory 
is not written. If the cache lookup misses on a store, main memory is read to bring the line into the cache and 
merge it with the new store data. Hence, the allocation policy on a cache miss is read- or write-allocate. Data 
stores will update the appropriate dirty bit in the ‘dirty’ array to indicate that the line contains modified data. 
When a line with dirty data is displaced from the cache, it is written back to memory.

• Coherent Write-back With Write Allocation, Exclusive (code #4): This attribute is similar to code #5 described 
below, except that load misses bring data into the cache in the exclusive state rather than the shared state. This 
can be used if data is not shared and will eventually be written. This can reduce bus traffic, because the line does 
not have to be refetched in an exclusive state when a store is done.

• Coherent Write-back With Write Allocation, Exclusive on Write (code #5): Use coherent data. Load misses will 
bring the data into the cache in a shared state. Multiple caches can contain data in the shared state. Stores will 
bring data into the cache in an exclusive state - no other caches can contain that same line. If a store hits on a 
shared line in the cache, the line will be invalidated and brought back into the cache in an exclusive state.

• Uncached Accelerated (code #7): Uncached stores are gathered together for more efficient bus utilization. 
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4.2 L1 Instruction Cache

The L1 instruction cache contains three arrays: tag, data, and way-select. The L1 instruction cache is virtually 
indexed, since a virtual address is used to select the appropriate line within each of the three arrays. The caches are 
physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache. 
The way-select array holds information to select the way to be filled.

An instruction cache tag entry consists of the upper bits of the physical address bits, one valid bit for the line, and a 
lock bit. An instruction cache data entry contains four, 64-bit doublewords in the line, for a total of 32 bytes. All four 
words in the line are present or not in the data array together, hence the single valid bit stored with the tag. 

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm. 
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set. The instruc-
tion cache only supports reads, hence only LRU entries are stored in the instruction way-select array.

Table 4.2 shows the key characteristics of the L1 instruction cache. Figure 4.1 shows the format of an entry in the 
three arrays comprising the instruction cache: data, tag, and way-select. 

Table 4.2 L1 Instruction Cache Attributes 

Attribute With Parity

Size1

1. For Linux based applications, MIPS recommends a 64 KB L1 instruction cache size, with a minimum size of 32 KB.

32 KB or 64 KB

Line Size 32-byte

Number of Cache Sets 256 or 512

Associativity 4-way

Replacement LRU

Cache Locking per line

Data Array

Read Unit 144b x 4

Write Unit 144b

Tag Array

Read Unit 63b x 4

Write Unit 63b

Way-Select Array

Read Unit 6b

Write Unit 1-6b
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Figure 4.1 L1 Instruction Cache Organization  

4.2.1 L1 Instruction Cache Virtual Aliasing

The instruction cache on the P6600 core is virtually indexed and physically tagged. The lower bits of the virtual 
address are used to access the cache arrays and the physical address is used in the tags. Because the way size can be 
larger than the minimum TLB page size, there is a potential for virtual aliasing. This means that one physical address 
can exist in multiple indices within the cache, if it is accessed with different virtual addresses. Virtual aliasing comes 
into effect only for cache sizes that are larger than 16 KB.

In the P6600 core, the Config7IAR bit is always set to indicate the existence of instruction cache virtual aliasing 
hardware. The core allows a physical address to reside at multiple indices if accessed with different virtual addresses. 
When an invalidate request is made due to the CACHE or SYNCI instructions, the core will serially check each pos-
sible alias location for the given physical address.

The hardware can be enabled and disabled using the Config7IVAD bit. When this bit is cleared, the hardware used to 
remove instruction cache virtual aliasing is enabled. In this case the virtual aliasing is managed in hardware. No soft-
ware interaction is required. When the Config7IVAD bit is set, the virtual aliasing hardware is disabled. This can be 
done when software ensures that no cache aliases are possible, for example when using a minimum TLB page size of 
16KB. In cases where the TLB page size is less than 16 KB, it is up to software to manage virtual aliasing within the 
instruction cache.

4.2.2 L1 Instruction Cache Precode Bits

In order for the fetch unit to quickly detect branches and jumps when executing code, the instruction cache array con-
tains some additional precode bits. These bits indicate the type and location of branch or jump instructions within a 
64b fetch bundle.

4.2.3 L1 Instruction Cache Parity 

The instruction cache contains 16 parity bits — one for each byte of the 128 bits of data. The tag array has 5 parity 
bits for each tag, one for each of the 4 precode fields and one for the physical tag, lock, and valid bits. The LRU array 
does not have any parity. Instruction cache parity is always present in the instruction cache and cannot be disabled.

Tag (per way):
(63 bits total)

Data (per way):
(144 bits total)

Way-Select:
(6 bits total)

5 1 1 28 7 7 7 7

Parity Valid Lock PA[39:12] Precode_67 Precode_45 Precode_23 Precode_01

8 8 32 32 32 32

Parity Parity word3 word2 word1 word0

6

LRU
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4.2.4 L1 Instruction Cache Replacement Policy

The L1 instruction cache replacement policy refers to how a way is chosen to hold an incoming cache line on a miss 
which will result in a cache fill. The replacement policy is least-recently used (LRU), but excluding any locked ways. 
The LRU bit(s) in the way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen. 

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to 
each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

• Index (Writeback) Invalidate: Least-recently used.

• Index Load Tag: No update.

• Index Store Tag, WST = 0: Most-recently used if valid bit is set in TagLo CP0 register. Least-recently used if 
valid bit is cleared in TagLo CP0 register. 

• Index Store Tag, WST = 1: Update the field with the contents of the TagLo CP0 register.

• Index Store Data: No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit Writeback: No update.

• Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.

If all ways are valid, then any locked ways are excluded from consideration for replacement. For the unlocked ways, 
the LRU bits are used to identify the way which has been used least-recently, and that way is selected for replace-
ment.

4.2.5 L1 Instruction Cache Line Locking

The P6600 core does not support the locking of all 4 ways of either cache at a particular index. If all 4 ways of the 
cache at a given index are locked by either Fetch and Lock or Index Store Tag CACHE instructions, subsequent cache 
misses at that cache index will displace one of the locked lines.

Locking lines in the caches is somewhat counter to the idea of coherence. If a line is locked into a particular cache, it 
is expected that any processes utilizing that data will be locked to that processor and coherence is not needed. Based 
on this usage model, locking coherent lines into the cache is not recommended. However, should this occur, the CPU 
adheres to the following rules:
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• SYNCI instructions are user-mode instructions. Since locking is a kernel mode feature (requires the CACHE 
instruction), SYNCI is not allowed to unlock cache lines. This applies to both local and globalized SYNCI 
instructions.

• Locking overrides coherence. Intervention requests from other CPUs and I/O devices that match on a locked line 
are treated as misses.

• Self-intervention requests for globalized CACHE instructions are allowed to affect a locked line. This is done 
primarily for handling lock and unlock requests for kseg0 addresses when kseg0 is being treated coherently.

4.2.6 L1 Instruction Cache Memory Coherence Issues

The P6600 core supports cache coherency in a multi-CPU cluster using Cache Coherence Attributes (CCAs) speci-
fied on a per cache-line basis and an Intervention Port containing coherent requests by all CPUs in the system. Each 
P6600 core monitors its Intervention Port and updates the state of its cache lines (valid, lock, and dirty tag bits) 
accordingly. 

The L1 instruction caches utilizes a modified MESI protocol. Each cache line will be in one of the following states:

Invalid: The line is not present in this cache.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present in other L1 data caches. 
The line is still clean and is consistent with the value in L2 cache or memory.

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes the write 
buffers.

In the P6600 core, the hardware does not automatically keep the instruction caches coherent with the data caches. 
Doing so requires many additional cache lookups and would likely require the instruction cache tag array to be dupli-
cated as well. For many types of code, this would be of small benefit, and the added area and power costs would not 
make sense. Further, the existing non-coherent cores from MIPS do not keep the I-Cache coherent with the D-Cache, 
so the code already exists for software I-Cache coherence where it is required.Globalized CACHE and SYNCI 
instructions ease the task of software I-Cache coherence. Existing, single-CPU routines that push dirty data out of the 
data cache and invalidate stale instruction cache lines using hit-type CACHE or SYNCI instructions can be global-
ized, and the coherence can be handled for all of the instruction caches in parallel. 

4.2.7 Software I-Cache Coherence (JVM, Self-modifying Code)

The CPU does not support hardware I-Cache coherence, so code that modifies the instruction stream must clean up 
the instruction cache. This is equivalent to what is currently required on uniprocessor systems that also do not have a 
coherent I-Cache. The recommended SYNCI sequence shown below will also work for coherent addresses:

SW instn_address
SYNCI instn_address
SYNC
JR.HB instn_address
NOP

4.2.8 L1 Instruction Software Cache Management 

The L1 instruction cache is not fully “coherent” and requires OS intervention at times. The CACHE instruction is the 
building block of such OS interventions, and is required for correct handling of DMA data and for cache initializa-
tion. Historically, the CACHE instruction also had a role when writing instructions. Unless the programmer takes the 
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appropriate action, those instructions may only be in the D-cache and would need them to be fetched through the I-
cache at the appropriate time. Wherever possible, use the SYNCI instruction for this purpose, as described in Section 
4.2.11 “Cache Management When Writing Instructions - the “SYNCI” Instruction”. 

A cache operation instruction is written cache op,addr where addr is just an address format, written as for a load/
store instruction. Cache operations are privileged and can only run in kernel mode (SYNCI works in user mode, 
though). 

The op field packs together a 5-bit field. The lower 2 bits of this field (17:16) select which cache to work on: 

The upper 3-bits of the OP field encodes a command to be carried out on the line the instruction selects. 

The CACHE instruction come in three varieties which differ in how they pick the cache entry (the “cache line”) they 
will work on: 

• Hit-type cache operation: presents an address (just like a load/store), which is looked up in the cache. If this loca-
tion is in the cache (it “hits”) the cache operation is carried out on the enclosing line. If this location is not in the 
cache, nothing happens. 

• Address-type cache operation: presents an address of some memory data, which is processed just like a cached 
access - if the cache was previously invalid the data is fetched from memory. 

• Index-type cache operation: as many low bits of the address as are required are used to select the byte within the 
cache line, then the cache line address inside one of the four cache ways, and then the way. The size of the cache 
(contained within the Config1 register) to know exactly where the field boundaries are located. The address is 
used as follows: 

Note that the MIPS64 specification allows the CPU designer to select whether to derive the index from the vir-
tual or physical address. For index-type operations, MIPS recommends using a kseg0 address, so that the virtual 
and physical address are the same. This also avoids a potential of cache aliasing.

31 26 25 21 20 18 17 16 15 0
cache base op offset 
47 register what to do which cache

Figure 4.2 Fields in the Encoding of a CACHE Instruction 

00 L1 I-cache 
01 L1 D-cache 
10 reserved
11 L2 cache

31 5 4 0 

Unused Way1-0 Index byte-within-line 
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4.2.9 L1 Instruction Cache CP0 Register Interface 

The P6600 core uses different CP0 registers for instruction cache operations. 

4.2.9.1 Config1 Register (CP0 register 16, Select 1)

The Config1.IS field (bits 24:22) indicates the number of sets per way in the instruction cache. The P6600 L1 instruc-
tion cache supports 256 sets per way, which is used to configure a 32 KB cache, or 512 sets per way, which is used to 
configure a 64 KB cache.

The Config1.IL field (bits 21:19) indicates the line size for the instruction cache. The P6600 L1 instruction cache sup-
ports a fixed line size of 32 bytes as indicated by a default value of 4 for this field.

The Config1.IA field (bits 18:16) indicates the set associativity for the instruction cache. The P6600 L1 instruction 
cache is fixed at 4-way set associative as indicated by a default value of 3 for this field.

For more information, refer to Section 2.2.1.2, "Device Configuration 1 — Config1 (CP0 Register 16, Select 1)". 

4.2.9.2 CacheErr Register (CP0 register 27, Select 0)

The CacheErr register is a read-only register used to determine the status of a cache error. The upper two bits of this 
register (CacheErr.EREC) indicate whether the contents of the register pertain to an L1 instruction cache error, an L1 
data cache error, a TLB error, or an external error. This register provides information such as:

• L1 data versus L2 data cache error

• Tag RAM versus Data RAM error

• External snoop request indication in multi-core systems

• Indicates coherent L1 cache error in another CPU in a multi-core system

• Fatal/non-fatal error indication

For more information, refer to Section 2.2.5.11, "Cache Error — CacheErr (CP0 Register 27, Select 0)". 

4.2.9.3 L1 Instruction Cache TagLo Register (CP0 register 28, Select 0)

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag 
operations.

Table 4.3 Instruction Cache CP0 Register Interface

CP0 Registers CP0 number

Config1 16.1

CacheErr 27.0

ITagLo 28.0

ITagHi 29.0

IDataLo 28.1

IDataHi 29.1



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 247

The interpretation of this register changes depending on the setting of the ErrCtlWST bit 

• Default cache interface mode (ErrCtlWST = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1)

For more information, refer to Section 2.2.5.1, "Level 1 Instruction Cache Tag Low — ITagLo (CP0 Register 28, 
Select 0)". 

4.2.9.4 L1 Instruction Cache TagHi Register (CP0 register 29, Select 0)

This register represents the I-cache pre-decode bits and is intended for diagnostic use only.

For more information, refer to Section 2.2.5.2, "Level 1 Instruction Cache Tag High — ITagHi (CP0 Register 29, 
Select 0)". 

4.2.9.5 L1 Instruction Cache DataLo Register (CP0 register 28, Select 1)

Staging registers for special cache instruction which loads or stores data from or to the cache line. Two registers 
(IDataHi, IDataLo) are needed, because the P6600 core loads I-cache data at least 64 bits at a time. This register stores 
the lower 32 bits of the load data.

For more information, refer to Section 2.2.5.3, "Level 1 Instruction Cache Data Low — IDataLo (CP0 Register 28, 
Select 1)". 

4.2.9.6 L1 Instruction Cache DataHi Register (CP0 register 29, Select 1)

Staging registers for special cache instruction which loads or stores data from or to the cache line. Two registers 
(IDataHi, IDataLo) are needed, because the P6600 core loads I-cache data at least 64 bits at a time. This register stores 
the upper 32 bits of the load data.

For more information, refer to Section 2.2.5.4, "Level 1 Instruction Cache Data High — IDataHi (CP0 Register 29, 
Select 1)". 

4.2.10 L1 Instruction Cache Initialization

The L1 instruction cache must be initialized during power-up or reset in order to place the lines of the cache in a 
known state. This is accomplished via the cache initialization routine, which is normally part of the boot code. 
For experienced user’s, a sample boot code is shown in the following subsection.

4.2.10.1 L1 Instruction Cache Initialization Routine

The following assembly provides an example initialization routine for the instruction cache.

/**************************************************************************************
init_icache invalidates all Instruction cache entries
**************************************************************************************/

LEAF(init_icache)

// For this Core there is always an instruction cache
// The IS field determines how many sets there are:
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// IS = 2 there are 256 sets
// IS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

li $11, 32 # Line size is always 32 bytes.
mfc0 $10, $16, 1 # Read C0_Config1
ext  $12, $10, 22, 3 # Extract IS
li $14, 2 # Used to test against
beq $14, $12, Isets_done# if  IS = 2
li $12, 256 # sets = 256
li $12, 512 # else sets = 512 Skipped if branch taken

Isets_done:
lui $14, 0x8000 # Get a KSeg0 address for cacheops
// clear the lock bit, valid bit, and the LRF bit
mtc0    $0, $28 # Clear C0_ITagLo to invalidate entry

next_icache_tag:
cache   0x8, 0($14) # Index Store tag Cache opt
add     $12, -1 # Decrement set counter
bne     $12, $0, next_icache_tag # Done yet?
add     $14, $11    # Increment line address by line size

done_icache:

ins     r31_return_addr, $0, 29, 1
jr      r31_return_addr
nop

END(init_icache)

4.2.10.2 L1 Instruction Cache Initialization Routine Details

This section provides a detailed description of each line of code in the L1 instruction cache initialization routine 
described above. Note that this code represents an example of an implementation specific cache initialization. The 
code is used in specific cache sizes of 32K or 64K, is always part of the P6600 MPS, and always have the L2 cache 
present. The code example is written with those parameters in mind.

Before use, the cache must be initialized to a known state; that is, all cache entries must be invalidated. This code 
example initializes the cache, finds the total number of cache sets, then loops through the cache sets using the cache 
instruction to invalidate each cache set.

LEAF (init_icache)

// For this Core there is always an L1 instuction cache
// The IS field determines how many sets there are
// IS = 2 there are 256 sets
// IS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

li $11, 32 # Line size is always 32 bytes.

This instruction cache always has a line size of 32 bytes, 4 ways and can have a size of either 32 KB or 64 KB. The IS 
field (sets per way) of the Config1 register will be use to determine the size of the cache. This field can have one of 
two values. A value of 0x2 indicates a 32 KB cache and a value of 0x3 indicates a 64 KB cache.
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mfc0 $10, $16, 1 # Read C0_Config1
ext $12, $10, 22, 3 # Extract IS
li $14, 2 # Used to test against

If the check is true, the code uses the branch delay slot (which is always executed) to set the set iteration value to 256 
for a 32 KB cache and then branches ahead to Isets_done. If the check is false, the code assumes that the size of the 
cache is 64 KB. At this point, the code still sets the iteration value to 256 in the branch delay slot, but then falls 
through and sets it again to 512 for a 64 KB cache.

beq $14, $12, Isets_done # if  IS = 2
li $12, 256 # sets = 256
li $12, 512 # else sets = 512 Skipped if branch taken

Isets_done:

GPR 14 will be used as an index into the cache. It will be set to a virtual address, and then translated to a physical 
address. Since the address 0x8000_0000 is in kseg0, the CPU will ignore the top bit, so virtual 0x8000_0000 will 
become physical address 0x0000_0000. Since the cache is physically indexed, the first time through the loop, the 
cache instruction will write the tag to way 0 index line 0. 

The lui instruction loads 0x8000 into the upper 16 bits and clears the lower 16 bits of the GPR14 register.

lui $14, 0x8000 # Get a KSeg0 address for cacheops

Clearing the tag registers performs two important functions: it sets the Physical Tag address called PTagLo to 0, 
which ensures the upper physical address bits are zeroed out, and it also clears the valid bit for the set, which ensures 
that the set is free and may be filled as needed.

The code uses the Move to Coprocessor Zero (MTC0) instruction to move the general purpose register zero, which 
always contains a zero, to the tag register.

// clear the lock bit, valid bit, and the LRF bit

mtc0 $0, $28 # Clear C0_ITagLo to invalidate entry

The Cache instruction uses the Index Store Tag operation on the Level 1 instruction cache so the op field is 
coded with a value of 0x8. The first two bits are 2’b00 for the L1 instruction cache, and the operation code for Index 
Store tag is encoded as 3’b010 in bits two, three and four.

next_icache_tag:

cache 0x8, 0($14) # Index Store tag Cache op

The index type of operation can be used to address a byte in the cache in a specific way of the cache. This is done by 
breaking down the virtual address argument stored in the base register of the Cache instruction into several fields.

Bits 14:0 of the Cache Instruction 
14 13 12 5 4 0

Way Page Index Byte Index
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The size of the index field varies according to the size of a cache way. The larger the way, the larger the index. In the 
table above, the combined byte and page index is 13 bits because each way of the cache is 8K. The way number is 
always the next two bits following the index.

The code does not explicitly set the way bits. Instead it just increments the virtual address by the cache lines size so 
the next time through the loop the Cache instruction will initialize the next set in the cache. Eventually this incre-
ment has the effect of setting the cache to index 0 of the next way in the cache because it overflows into the way bits.

At this point all the code needs to do is loop maintenance. First decrement the loop counter (12/t4).

add $12, -1 # Decrement set counter

Then test it to see if it has gotten to zero and if it has not branch back to label one.

bne $12, $0, next_icache_tag # Done yet?

The instruction in the branch delay slot, which is always executed, is used to increment the virtual address (14/t6) to 
the next set in the cache. (11/t3) holds the line size in bytes.

add $14, $11    # Increment line address by line size

From this point on, the code can be executed from a cached address. This is easily done by changing the return 
address from a KSEG1 address to a KSEG0 address by simply inserting a 0 into bit 29 of the address. However, dur-
ing debugging, this operation will confuse the debugger and you will no longer be able to do source-level debugging. 
That is why it is commented out here. Once the code has been debugged, the "ins" line can be uncommented.

done_icache:

// Modify return address to kseg0 which is cacheable 
// (for code linked in kseg1.)
// However it makes it easier to debug if this is not done. So while
// debugging, this should be commented out.

ins     r31_return_addr, $0, 29, 1
jr      r31_return_addr
nop

END (init_icache)

4.2.11 Cache Management When Writing Instructions - the “SYNCI” Instruction

The synci instruction provides a mechanism available to user-level code for ensuring that previously written 
instructions are correctly presented for execution (it combines a D-cache writeback with an I-cache invalidate). Use 
of the synci instruction is preferred to the traditional alternative of a D-cache writeback followed by an I-cache 
invalidate.
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4.3 L1 Data Cache

The L1 data cache is similar to the instruction cache, with a few key differences;

• In addition to the three arrays (tag, data, and way-select), the L1 data cache also contains a separate dirty array to 
hold the dirty bits of cache lines.

• The data cache does not contain any precode information.

• To handle store bytes, the data array is byte-accessible, and the data parity is 1 bit per byte. 

• The way-select array for the data cache holds the lock bits (and lock parity bits) for each cache line, in addition to 
the LRU information. The lock bits indicate the cache lines that have been locked using the CACHE instruction. 

Like the L1 instruction cache, the L1 data cache is virtually indexed, since a virtual address is used to select the 
appropriate line within each of the arrays. The cache is physically tagged, as the tag array contains a physical, not vir-
tual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache. 
The way-select array holds information to choose the way to be filled, as well as dirty bits in the case of the data 
cache.

A tag entry consists of the upper bits of the physical address bits [39:11], a valid bit, and a lock bit. A data entry con-
tains the four, 64-bit doublewords in the line, for a total of 32 bytes. All four words in the line are present or not in the 
data array together, hence the single valid bit stored with the tag. Once a valid line is resident in the cache, byte, half-
word, triple-byte, word, or doubleword stores can update all or a portion of the words in that line. The tag and data 
entries are repeated for each of the 4 lines in the set. 

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm. 
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set. 

Table 4.4 shows the key characteristics of the data cache. Figure 4.3 shows the format of an entry in the arrays com-
prising the data cache: tag, data, way-select, and dirty.

Table 4.4 L1 Data Cache Organization 

Attribute With Parity

Size 32 or 64KB

Line Size 32-byte

Number of Cache Sets 256 or 512

Associativity 4-way

Replacement LRU

Cache Locking per line

Data Array

Read Unit 144b x 4

Write Unit 144b

Tag Array

Read Unit 32b x 4

Write Unit 32b
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Figure 4.3 L1 Data Cache Organization  

4.3.1 L1 Data Cache Virtual Aliasing

The data cache on the P6600 core is virtually indexed and physically tagged. The lower bits of the virtual address are 
used to access the cache arrays and the physical address is used in the tags. Because the way size can be larger than 
the minimum TLB page size, there is a potential for virtual aliasing. This means that one physical address can exist in 
multiple indices within the cache, if it is accessed with different virtual addresses. 

The following table indicates the conditions under which virtual aliasing can occur. 

Way-Select Array

Read Unit 14b

Write Unit 1-14b

Dirty Array

Read Unit 10b

Write Unit 1-10b

Table 4.5 L1 Data Cache Virtual Aliasing Conditions

Cache Size MMU Page Size Way Size
Aliasing Can 

Occur
Hardware Aliasing 

Fix Required

32 KB 4 KB 8 K Yes Yes

64 KB 4 KB 16 K Yes Yes

32 KB >= 16 KB 8 K No No

64 KB >= 16 KB 16 K No No

Table 4.4 L1 Data Cache Organization (continued)

Attribute With Parity

Data (per way):
(144 bits total)

Way-Select:
(14 bits total)

15 Parity 1 - 14 1 8 Bytes 2 - 14 8 8

Parity ... Parity Data15 ... Data1 Data0

4 4 6

Lock Parity Lock LRU

2 4 4

Reserved Dirty Parity Dirty
Dirty
(10 bits total)

Tag (per way):
(32 bits total)

1 1 29 1

Parity State PA39:11 Valid
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In the P6600 core, the read-only Config7.AR bit determines whether the data cache virtual aliasing hardware is 
enabled based on the build-time configuration. Note that for some of the configuration options in the table above, the 
hardware aliasing fix (HWAF) is required. As such, it is incumbent upon the designer to select the HWAF option at 
build time. The selection of this option causes hardware to set the Config7.AR bit. 

4.3.2 L1 Data Cache Parity

The L1 cache data parity provides one parity bit for each byte, corresponding to the minimum number of bytes for a 
store. The tag array has a single parity bit for each tag. The way-select array has separate parity bits to cover each 
dirty bit, but the LRU bits are not covered by parity. Instruction cache parity is always present in the instruction cache 
and cannot be disabled.

4.3.3 L1 Data Cache Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will result in a 
cache fill. The replacement policy is least-recently used (LRU), but excluding any locked ways. The LRU bit(s) in the 
way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen. 

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to 
each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

• Index (Writeback) Invalidate: Least-recently used.

• Index Load Tag: No update.

• Index Store Tag, WST = 0: Most-recently used if valid bit is set in TagLo CP0 register. Least-recently used if 
valid bit is cleared in TagLo CP0 register.

• Index Store Tag, WST = 1: Update the field with the contents of the TagLo CP0 register.

• Index Store Data: No update.

• Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Fill: Most-recently used.

• Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

• Hit Writeback: No update.

• Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.
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If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked 
ways, the LRU bits are used to identify the way which has been used least-recently, and that way is selected for 
replacement.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 32-byte line will be writ-
ten back to memory before the new fill can occur.

4.3.4 L1 Data Cache Line Locking

The mechanism for line locking in the L1 data cache is identical to that of the L1 instruction cache. For more infor-
mation, refer to Section 4.2.5, "L1 Instruction Cache Line Locking".

4.3.5 L1 Data Cache Memory Coherence Protocol

The P6600 core supports cache coherency in a multi-CPU cluster using Cache Coherence Attributes (CCAs) speci-
fied on a per cache-line basis and an Intervention Port containing coherent requests by all CPUs in the system. Each 
P6600 core monitors its Intervention Port and updates the state of its cache lines (valid, lock, and dirty tag bits) 
accordingly. 

The L1 data caches utilize a standard MESI protocol. Each cache line will be in one of the following four states:

Invalid: The line is not present in this cache.

Shared: This cache has a read-only copy of the line. The line may be present in other L1 data caches, also in a Shared 
state. The line will have the same value as it does in the L2 cache or memory.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present in other L1 data caches. 
The line is still clean - consistent with the value in L2 cache or memory.

Modified: This cache has a dirty copy of the line. The line is not present in other L1 data caches. This is the only up-
to-date copy of the data in the system (the value in the L2 cache or memory is stale).

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes the write 
buffers.

Some of the basic characteristics of the coherence protocol are summarized below. Coherence can occur on the data 
cache. 

• Writeback cache - Uses a writeback cache to ensure high performance

• Cache-line based - Coherence and ownership is maintained per 32-byte cache line

• Snoopy protocol - Each CPU snoops the stream of transactions and updates its cache state accordingly

• Invalidate - A line is invalidated from the cache (possibly with a writeback to memory) when a store from 
another processor is seen.

4.3.6 L1 Data Cache Initialization

The L1 data cache must be initialized during power-up or reset in order to place the lines of the cache in a known 
state. This is accomplished via the cache initialization routine, which is normally part of the boot code. For expe-
rienced user’s, a sample boot code is shown in the following subsection.
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4.3.6.1 L1 Data Cache Initialization Routine

The following assembly provides an example initialization routine for the data cache.

/***************************************************************************
init_dcache invalidates all data cache entries
****************************************************************************/

LEAF (init_dcache)

// For the P6600 MPSthere is always an L1 data cache
// The ID field determines how many sets there are
// DS = 2 there are 256 sets
// DS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

li $11, 32 # Line size is always 32 bytes
mfc0 $10, $16, 1 # Read C0_Config1
ext  $12, $10, 13, 3 # Extract DS
li $14, 2 # Used to test against
beq $14, $12, Dsets_done # if  DS = 2
li $12, 256 # sets = 256
li $12, 512 # else sets = 512, skipped if branch taken

Dsets_done:

lui   $14, 0x8000 # Get a KSeg0 address for cacheops
// clear the lock bit, valid bit, and the LRF bit
mtc0    $0, $28, 2 # Clear C0_DTagLo to invalidate entry

next_dcache_tag:

cache 0x9, 0($14) # Index Store tag Cache opt
add  $12, -1 # Decrement set counter
bne $12, $0, next_dcache_tag # Done yet?
add  $14, $11 # Increment line address by line size

done_dcache:

    jr      r31_return_addr
nop

END (init_dcache)

4.3.6.2 L1 Data Cache Initialization Routine Details

This section provides a detailed description of each line of code in the initialization routine. The L1 data cache initial-
ization routine is very similar to the L1 instruction cache initialization routine.

LEAF(init_dcache)

// For the P6600 CPS there is always a L1 data cache
// The DS field determines how many sets there are
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// DS = 2 there are 256 sets
// DS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

li $11, 32 # Line size is always 32 bytes.

The data cache always has a line size of 32 bytes and 4 ways, and can have a size of either 32 KB or 64 KB. The DS 
field (sets per way) of the Config1 register is used to determine the size of the cache. This field can have one of two 
values. A value of 0x2 indicates a 32 KB cache and a value of 0x3 indicates a 64 KB cache.

mfc0 $10, $16, 1 # Read C0_Config1
ext $12, $10, 13, 3 # Extract DS
li $14, 2 # Used to test against

If the check is true, the code uses the branch delay slot (which is always executed) to set the set iteration value to 256 
for a 32 KB cache and then branches ahead to Dsets_done. If the check is false, the code assumes that the size of the 
cache is 64 KB. At this point, the code still sets the iteration value to 256 in the branch delay slot, but then falls 
through and sets it again to 512 for a 64 KB cache.

beq $14, $12, Dsets_done # if  DS = 2
li $12, 256 # sets = 256
li $12, 512 # else sets = 512 Skipped if branch taken

Dsets_done:

GPR 14 will be used as an index into the data cache. It is set to a virtual address and then translated to a physical 
address. Since the address 0x8000_0000 is in kseg0, the CPU will ignore the top bit, so virtual 0x8000_0000 will 
become physical address 0x0000_0000. Since the cache is physically indexed, the first time through the loop, the 
cache instruction will write the tag to way 0 index line 0. 

The lui instruction loads 0x8000 into the upper 16 bits and clears the lower 16 bits of the GPR14 register.

lui $14, 0x8000 # Get a KSeg0 address for cacheops

Clearing the tag registers performs two important functions: it sets the Physical Tag address called PTagLo to 0, 
which ensures the upper physical address bits are zeroed out, and it also clears the valid bit for the set, which ensures 
that the set is free and may be filled as needed.

The code uses the Move to Coprocessor zero instruction to move the general purpose register zero, which always 
contains a zero, to the tag register.

// clear the lock bit, valid bit, and the LRF bit
mtc0    $0, $28, 2 # Clear C0_DTagLo to invalidate entry

The Cache instruction uses the Index Store Tag operation on the Level 1 data cache so the op field is coded 
with a value of 0x9. The first two bits are 2’b01 for the L1 data cache, and the operation code for Index Store 
tag is encoded as 3’b010 in bits two, three and four.

next_dcache_tag:

cache 0x9, 0($14) # Index Store tag Cache opt



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 257

The index type of operation can be used to address a byte in the cache in a specific way of the cache. This is done by 
breaking down the virtual address argument stored in the base register of the Cache instruction into several fields.

Bits 14:0 of the Cache Instruction 

The size of the index field varies according to the size of a cache way. The larger the way, the larger the index. In the 
table above, the combined byte and page index is 13 bits because each way of the cache is 8K. The way number is 
always the next two bits following the index.

The code does not explicitly set the way bits. Instead it just increments the virtual address by the cache line size so the 
next time through the loop the Cache instruction will initialize the next set in the cache. Eventually this increment 
has the effect of setting the cache to index 0 of the next way in the cache because it overflows into the way bits.

At this point all the code needs to do is loop maintenance. First decrement the loop counter (12/t4).

add $12, -1 # Decrement set counter

Then test it to see if it has gotten to zero and if not branch back to label one.

bne $12, $0, next_dcache_tag # Done yet?

The instruction in the branch delay slot, which is always executed, is used to increment the virtual address (14/t6) to 
the next set in the cache. (11/t3) holds the line size in bytes

add $14, $11    # Increment line address by line size

At this point the Dcache initialization is done.

done_dcache:

    jr      r31_return_addr
nop

END (init_dcache)

14 13 12 5 4 0

Way Page Index Byte Index
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4.3.7 Data Cache CP0 Register Interface 

The P6600 core uses the following CP0 registers for data cache operations. 

4.3.7.1 Config1 Register (CP0 register 16, Select 1)

The Config1.DS field (bits 15:13) indicates the number of sets per way in the data cache. The P6600 L1 data cache sup-
ports 256 sets per way, which is used to configure a 32 KB cache, or 512 sets per way, which is used to configure a 64 
KB cache.

The Config1.DL field (bits 12:10) indicates the line size for the data cache. The P6600 L1 data cache supports a fixed 
line size of 32 bytes as indicated by a default value of 4 for this field.

The Config1.DA field (bits 9:7) indicates the set associativity for the data cache. The P6600 L1 data cache is fixed at 4-
way set associative as indicated by a default value of 3 for this field.

For more information, refer to Section 2.2.1.2, "Device Configuration 1 — Config1 (CP0 Register 16, Select 1)". 

4.3.7.2 CacheErr Register (CP0 register 27, Select 0)

The CacheErr register is a read-only register used to determine the status of a cache error. The upper two bits of this 
register (CacheErr.EREC) indicate whether the contents of the register pertain to an L1 instruction cache error, an L1 
data cache error, a TLB error, or an external error. 

For more information, refer to Section 2.2.5.11, "Cache Error — CacheErr (CP0 Register 27, Select 0)". 

4.3.7.3 L1 Data Cache TagLo Register (CP0 register 28, Select 2)

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag 
operations. 

In a multi-core system, the D-cache has four logical memory arrays associated with this DTagLo register.

• The tag RAM stores tags and other state bits with special attention to the needs of the CPU. 

• The duplicate tag RAM also stores tags and state, but is optimized for the needs of interventions. Both of these 
arrays are set-associative (4-way). 

• The Dirty RAM and duplicate Dirty RAM store the dirty bits (indicating modified data) for CPU and interven-
tion uses, and each combine their ways together in a single entry per set. 

• The WS RAM combines the dirty and LRU data in a single entry per set. Accessing these arrays for index cache 
loads and stores is controlled by using three bits in the ErrCtl register to create modes that allow the correct 
access to these arrays.

Table 4.6 Data Cache CP0 Register Interface

CP0 Registers CP0 number

Config1 16.1

CacheErr 27.0

DTagLo 28.2

DDataLo 28.3
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Note that the P6600 core does not implement the DTagHi register. 

The interpretation of this register changes depending on the settings of ErrCtlWST, ErrCtlDYT, and ErrCtlSPR. 

For more information, refer to Section 2.2.5.5, "Level 1 Data Cache Tag Low — DTagLo (CP0 Register 28, Select 
2)". 

4.3.7.4 L1 Data Cache DataLo Register (CP0 register 28, Select 3)

In the P6600 core, software can read or write cache data using a cache index load tag/index store data instruction. 
Which word of the cache line is transferred depends on the low address fed to the cache instruction. 

Note that the P6600 core does not implement the DDataHi register.

For more information, refer to Section 2.2.5.6, "Level 1 Data Cache Data Low — DDataLo (CP0 Register 28, Select 
3)". 

4.4 L1 Instruction and Data Cache Software Testing

Typically, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the pro-
cessor to test some of the arrays (prediction arrays are not accessible through software). Of course, testing of the I-
cache arrays should be done from an uncacheable space with interrupts disabled in order to maintain the cache con-
tents. There are multiple methods for testing these arrays in software, some of which are described in the following 
subsections. 

4.4.1 L1 Instruction Cache Tag Array

The L1 instruction cache tag array can be tested via the Index Load Tag and Index Store Tag varieties of 
the CACHE instruction. An Index Store Tag writes the contents of the ITagLo and ITagHi registers into the 
selected tag entry. An Index Load Tag reads the selected tag entry into the ITagLo and ITagHi registers.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in the ErrCtl 
register. This will override the parity calculation and use the parity bits in ITagLo and ItagHi as the parity values.

4.4.2 L1 Instruction Cache Data Array

This array can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction. The 
Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

The Index Store Data instruction can optionally update the corresponding precode field in the tag array.The precode 
bits in the array are updated if the PCD bit in the ErrCtl register is zero when executing the Index Store Data instruc-
tion. The precode value is generated by the hardware automatically if the PCO bit in the ErrCtl register is zero. Other-
wise, the corresponding precode value (PREC_01/PREC_23/PREC_45/PREC_67) from the ITagHi register is used in 
updating the tag array.

The parity bits in the array can be tested by setting the PO bit in the ErrCtl register. This will use the PI field in ErrCtl 
instead of calculating the parity on a write.

The rest of the data bits are read/written to/from the IDataLo and IDataHi registers.
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4.4.3 L1 Instruction Cache Way Select Array

The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By setting the 
WST bit in the ErrCtl register, these operations will read and write the WS array instead of the tag array.

4.4.4 L1 Data Cache Tag Array

The L1 data cache tag array can be tested via the Index Load Tag and Index Store Tag varieties of the 
CACHE instruction. An Index Store Tag writes the contents of the DTagLo register into the selected tag entry. 
An Index Load Tag will read the selected tag entry into the DTagLo register.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in the ErrCtl 
register. This will override the parity calculation and use the parity bits in DTagLo as the parity values. 

4.4.5 Duplicate Data Cache Tag Array

This array can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. In order to 
access the duplicate tags, the WST and SPR bits of ErrCtl should both be set. Index Store Tag will write the contents 
of the TagLo register into the selected tag entry. Index Load Tag will read the selected tag entry into the TagLo. In 
normal mode, with WST and SPR cleared, IndexStoreTags will write into both the primary and duplicate tags, while 
IndexLoadTags will read the primary tag.

If parity is implemented, the parity bit can be tested as a normal bit by setting the PO bit in the ErrCtl register. This 
will override the parity calculation and write P bit in TagLo as the parity value.

4.4.6 L1 Data Cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to set 
the initial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to the 
PAs that are resident in the cache. The value can then be read using LW instructions and compared to the expected 
data.

The parity bits can be implicitly tested using this mechanism. The parity bits can be explicitly tested by setting the PO 
bit in ErrCtl and using Index Store Data and Index Load Tag CACHE operations. The parity bits (one bit per byte) are 
read/written to/from the PD field in ErrCtl. Unlike the I-cache, the DataHi register is not used, and only 32b of data is 
read/written per operation.

4.4.7 L1 Data Cache Way Select Array

The dirty and LRU bits can be tested using the same mechanism as the I-cache WS array.

4.4.8 L1 Data Cache Dirty Bit Array

The testing of this array is also done through Index Load Tag and Index Store Tag CACHE instructions. By setting 
the DYT bit in the ErrCtl register, these operations will read and write the dirty array instead of the tag array.
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4.5 L2 Cache

The L2 cache (which is part of the Coherence manager) processes transactions that are not serviced by the L1 cache. 
L2 is generally larger than the L1 cache, but slower, due to the use of higher-density memories. The L2 communi-
cates with external memory via an Open Core Protocol (OCP) interface. 

The L2 also communicates with the CPU(s) through the performance counter interface, error reporting interface, and 
other side band signals. In addition to these interfaces, the L2 has the clock, reset, and bypass signals as well as some 
static input signals which can be used to configure it for different operating modes.

4.5.1 L2 Cache General Features

• 7-stage pipeline. (Optional 8th stage1 for pipelined memory arrays.)

• 40-bit address paths and 256-bit internal data paths

• Associativity: 8-way

• Cache size: 512 KB, 1 MB, 2 MB, 4 MB, 8 MB

• Line Size: 32 bytes (4 doublewords)

• Locking Support: Yes

• Replacement Algorithm: Pseudo LRU for 8-way

• Write policy: Write Back

• Write miss allocation policy: No-Write-Allocate and Write-Allocate

• Error Checking and Correction (ECC): 2-bit error detection and 1-bit error correction covering the tag and data 
arrays. 1-bit error detection covering the WS array

• Maximum read misses outstanding: 15

• Out-Of-Order processing (OOO): Yes

• Coherency: Non-coherent

• 256-bit or 128-bit OCP SData/MData width on memory-side OCP interface.

• OCP Burst Size on the memory interface: 1 or 2 with 128-bit OCP data width, 1 with 256-bit OCP

• Bypass Mode Support: In bypass mode, all processor requests are routed to the system. This mode is used only 
for debug purposes and should not be used during normal operation.

• Multi-cycle Data Rams: 0, 1, 2, or 3 stalls can set Data RAM access times to 1, 2, 3, or 4 clocks.

• Multi-cycle Tag Rams: 0, 1, 2, or 3 stalls can set Tag RAM access times to 1, 2, 3, or 4 clocks.

• Multi-cycle Way-Select Rams: 0, 1, 2, or 3 stalls can set the Way-Select RAM access times to 1, 2, 3, or 4 clocks.

1. Build time option. The customer must choose this option if they are using pipelined RAM’s in the wrappers instead of stan-
dard RAM cells (that are not pipelined in this way).
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• Endianness: Independent of endianness 

In the table above, the associativity of the L2 cache is fixed at 8 ways. As a result, changes to the number of sets per 
way and the line size determine the overall size of the L2 cache. Table 4.8 shows the list of possible L2 cache config-
urations. 

4.5.2 OCP Interface

In the P6600 core, the L2 cache is integrated into the CM2. This integration improves performance by eliminating the 
OCP interface that originally connected the L2 cache to the CM, or the L2 cache to the CPU depending on configura-
tion. The OCP interface between the CM2 and the memory is programmable for widths of either 128-bit or 256-bit 
and has a fixed 64-byte line size. This is shown in Figure 4.4.

Figure 4.4 .OCP Interface Between CM2 and Memory

Table 4.7 L2 Cache Attributes

Attribute With Parity

Size 512 KB, 1 MB, 2 MB, 4 MB, or 8 MB

Line Size 32-byte

Number of Cache Sets 2048, 4096, 8192, 16384 of 32768

Associativity 8 way

Table 4.8 Valid Cache Configurations

Line Size Sets per Way Number of Ways L2 Cache Size

32 bytes 2048 8 512 KBytes
32 bytes 4096 8 1 MByte
32 bytes 8192 8 2 MByte
32 bytes 16384 8 4 MByte
32 bytes 32768 8 8 MByte

Coherence Manager

L2 Cache

Main Memory

128 bits or
256 bits
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4.5.3 L2 Replacement Policy

The P6600 core uses a pseudo-LRU replacement algorithm. The system memory configuration does not affect the 
replacement policy.

4.5.4 L2 Allocation Policy

The L2 cache controller always allocates cacheable reads issued by a core. A cacheable write (such as an L1 write-
back) issued by a core is never allocated in the L2 cache. Cacheable reads and writes from the IOCU may or may not 
be allocated into the L2, depending upon signals driven with the request by the IO Subsystem. 

4.5.5 Write-Through vs. Write-Back

Write-through and write-back operations are both supported. The L2 decodes MReqInfo[2:0] fields and determines 
which way to handle the write data.

When a write hits in the L2 cache, the data is written into the L2 cache, and also sent to the main memory when it was 
write-through type (MReqInfo[2:0] = 0).

When a write misses, the no-write-allocation policy is employed in most cases. That is, the write data is forwarded to 
the main memory without updating the L2 cache contents. However, for the write-back type write with full line data, 
usually resulting from the L1 D-cache eviction, the L2 supports write-allocate on miss as well as the normal no-allo-
cate policy. This is controlled by the value on MReqInfo[4] that is set by the OCP requester. Please refer to the 
Section 4.5.4 “L2 Allocation Policy” for more details.

4.5.6 Cacheable vs. Uncacheable vs. Uncached Accelerated

The L2 cache supports cacheable and uncacheable accesses. Cacheable operations access the cache memories, 
whereas an uncached access bypasses the L2 cache arrays and is sent directly to the main memory. 

Uncached accelerated accesses are treated the same way as non-accelerated uncached accesses. This CCA enables 
uncached transactions to better utilize bus bandwidth via burst transactions.

4.5.7 Cache Aliases

The L2 cache is physically addressed and physically tagged. It is not subject to virtual aliasing.

4.5.8 Performance Counters

The L2 tracks and reports to core the number of the following events.

• the number of cached accesses

• the number of misses

• the number of write backs 

• the amount of cycles the L2 is held due to misses

• the number of single bit errors that were corrected
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• L2 pipeline utilization — Counts the number of starts into the TA stage of the L2 pipeline

• L2 hit qualifier — Counts different types of L2 cache hits and misses, crossed with the instruction being 
requested

4.5.9 Sleep Modes

The L2 cache contains two basic sleep modes:

• Instruction controlled sleep mode using the WAIT instruction

• Internal dynamic sleep mode

4.5.9.1 Sleep Mode Using the WAIT Instruction

In addition to slowing down or stopping the primary cm_clk input, software may initiate low-power Sleep Mode via 
the execution of the WAIT instruction in the processor.

When the processor enters into Sleep Mode, it will assert SI_Sleep. The SI_Sleep drives the SI_L2_Sleep input to the 
L2. The L2 then enters a low-power state and asserts the L2_Sleep output once all outstanding bus activity has com-
pleted. Most clocks in the L2 will be stopped, but a handful of flops will remain active to sense the wake up call from 
the processor, which is the deassertion of SI_L2_Sleep. 

Power is reduced since the global clock goes to the vast majority of flops within the L2, which are held idle during 
this period. There is no bus activity while the L2 is in sleep mode, so the system bus logic which interfaces to the L2 
could be placed into a low power state as well.

When the L2 samples SI_L2_Sleep asserted and there is no activity in the L2, the L2 will assert L2_Sleep two cm_clks 
later. Any activity in the L2 will delay the start of L2_Sleep assertion.

When SI_L2_Sleep is deasserted, the L2 will deassert L2_Sleep and assert PB_SCmdAccept two clocks later. If there 
is a valid PB_MCmd waiting at the L2 pins at the cm_clk, then the following cm_clk will have a coincident internal 
l2_clk edge (clocks are now enabled) and the command that was accepted is launched into the pipeline as indicated by 
inst_ta. The following clock after that will have an l2_tram_clk that initiates the tag ram access for that command. 
Thus, there is a four cm_clk latency from SI_L2_Sleep deassertion to the start of a tag ram access.

4.5.9.2 Internal Dynamic Sleep Mode

When there is no activity at the input pins of the L2 cache and all pending transactions from the CPU are completed, 
the L2 cache will eventually empty. When this occurs, the L2 cache will turn off the l2_clk signal after some small 
delay. Only data of value in the CMOS SRAM’s retains state.

Beside the WAIT instruction induced sleep mode, the L2 is also equipped with the dynamic global clock gating. 
When there are no pending transactions in the L2 cache, the L2 shuts down the majority of internal clocks to save 
power. While the most part of the L2 cache can be turned off, the minimum required logic on the core-side OCP inter-
face remain active. Thus, the L2 cache can accept a new OCP request from core at any time, and this will wake up the 
whole L2 cache controller.

4.5.10 Bypass Mode

Note: Bypass mode is strictly a debug feature and is not intended to be a normal mode of operation. It was not 
intended for active switching during normal operation.



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 265

Bypass mode is a test/bringup feature that causes the L2 cache to forward all requests received from either the core or 
the Coherency Manager to the OCP system interface to main memory. Entering or exiting from Bypass Mode other 
than at reset requires flushing of the L2 cache while running from uncached memory to restore the L2 cache state to a 
stable state. In bypass mode, all requests are forwarded to the system as received including L2 CACHE instructions 
and SYNCs.

4.5.11 Reduced L2 Hit Latency

The CM2 integrates the CM and L2 cache into a single, more tightly-coupled component, providing reduced L2 hit 
latency. Table 4.9 provides the latencies for a read request from a P6600 core to an idle CM2. 

• The system is idle prior to this request

• The L2 cache is configured with no L2 Tag RAM or Data RAM stalls

• The L2 is configured with ECC

• L2-to-memory clock ratio is 1:1

• The L2 is configured with non-pipelined Data RAM’s  

4.5.12 L2-only Sync

The CM2 adds the ability to issue a barrier-sync to the L2 without executing a SYNC instruction, thus reducing the 
latency incurred for the sync. The L2-only sync provides a mechanism to guarantee that a uncached request does not 
pass previous cached requests in the L2 pipeline. For example, the L2-only SYNC can be used between a L2 HitWB 
cacheop and a subsequent uncached write to ensure that the uncached write does not pass the writeback from the L2. 
The following sequence could be used to flush a cache line from the L1 and L2 and then provide a sentinel to a con-
suming device as follows:

L1HitWB (flush L1 data to L2. will be globalized to all cores if coherent)
L2HitWB (flush L2 data to memory. CM2 ensures this does not pass the L1 HitWB)
L2-only SYNC (ensures subsequent uncached write does not pass L2HitWB)
uncached Store (sentinel to consuming device)
consuming device receives sentinel and reads memory

Table 4.9 CM2 Read Latencies (in core clock cycles)

Request CCA Cache Hit/Miss CM2

Coherent
(CWB, CWBE)

L1 Miss/L2 Hit 11

L1 Hit 15

L1 Miss/L2 Miss 14

Cached/Non-coherent
(WB)

L2 Hit 11

L2 Miss 15

Uncached (UC) --- 12

GCR Read --- 8

Coherent Upgrade  Intervention Response 
of SHARED

11
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The L2-only sync is achieved by executing an Uncached store to an address that maps to the address region specified 
by the CM2’s GCR_L2_ONLY_SYNC_BASE register. When the L2-only SYNC write is ready to be issued to the L2 
pipeline the following actions occur:

1) Stop issuing new L2 requests until the L2 pipeline is empty and eviction queue is empty

2) The L2-only sync request is dropped and subsequent L2 requests continue.

Notice that the the L2-only sync does not ensure any ordering in the coherent portion of the CM2.

The CM_L2_ONLY_SYNC_EN in bit 0 of the GCR_L2_ONLY_SYNC_BASE register must be set to a 1 for this 
feature to be enabled. The address match is performed on a 4KB boundary. An uncached write request address 
[31:12] that matches the address [31:12] in the GCR_L2_ONLY_SYNC_BASE will cause the CM2 to treat the 
uncached write request as an L2 only Sync. 

The GCR_L2_ONLY_SYNC_BASE register is programmed through the Global Control Block Register Map located 
at offset 0x0070. 

4.5.13 L2 Cache Initialization

The L2 cache controller contains minimal hardware initialization logic. It normally relies on software to fully initial-
ize the L2 arrays. The registers used to support cache initialization are described in Section 4.5.14, "L2 Cache CP0 
Interface". For additional information, refer to the CP0 Registers chapter of this manual.

The L1 data cache must be initialized during power-up or reset in order to place the lines of the cache in a known 
state. This is accomplished via the cache initialization routine, which is normally part of the boot code. For experi-
enced user’s, a sample boot code is shown in the following subsection.

4.5.13.1 init_l2u Cache Initialization Routine

The following assembly provides an example initialization routine for the L2 cache.

LEAF(init_l2u) 
# Use CCA Override to allow cached execution of L2 init. 
# Check for CCA_Override_Enable by writing a one. 
lw r4_temp_data, 0x0008(r22_gcr_addr) # Read GCR_BASE register
li r7_temp_mark, 0x50 # CM_DEFAULT_TARGET Memory 
# CCA Override Uncached enabled 
ins r4_temp_data, r7_temp_mark, 0, 8 
sw r4_temp_data, 0x0008(r22_gcr_addr) 
lw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE 
ext r4_temp_data, r4_temp_data, 4, 1 # Extract CCA_Override_Enable 
bnez r4_temp_data, done_l2 # Skip if CCA Override is implemented. 
nop 
b init_l2u 
nop 

END(init_l2u) 
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4.5.13.2 init_l2c Cache Initialization Routine

The code in this function will be called from start.S after the L1 caches have been initialized. It will check to see if the 
core implements CCA Override. If it does, it will call the code to initialize the L2 cache.

LEAF(init_l2c)

# Skip cached execution if CCA Override is not implemented.
# If CCA override is not implemented the L2 cache would have already
# been initialized when init_l2u was called.

lw r4_temp_data, 0x0008(r22_gcr_addr) # Read GCR_BASE
bnez r16_core_num, done_l2 # Only done from core 0.
ext r4_temp_data, r4_temp_data, 4, 1 # CCA_Override_Enable
beqz r4_temp_data, done_l2 
nop

END(init_l2c)

4.5.13.3 init_L2u Initialization Routine Details

This section provides a detailed description of each line of code in the init_l2u initialization routine.

The L2 cache is a system resource used by all cores in the system. Initialization of the L2 cache is done only by Core 
0, because it only needs to be done once. The initialization of the L2 cache can be time consuming depending on its 
size. For example, a 256 KByte cache initializes quicker than an 8 MB cache.

The L2 cache initialization code executes faster if it is being run out of the instruction cache, so ideally the L2 initial-
ization should be done after the L1 instruction cache in core 0 has been initialized. The instruction cache is a per-core 
resource and not initialized in the system initialization section of the code. Therefore, to be efficient and run the L2 
cache initialization code out of the I-cache, the boot code tries to put off L2 cache initialization until the core 0 
resources have been initialized. This can only be done if the L2 cache can be disabled before other cores are released 
to run this boot code. Otherwise there is a danger that other cores will use the L2 cache before it has been initialized 
by core 0. 

The CCA override feature controls the cache attributes for the L2 cache. It allows for the disabling of the L2 cache by 
enabling the CCA override and setting the CCA to uncached. The CCA override works along with the L2 cache 
implementation. 

The init_l2u function tries to enable the CCA override and set the L2 cache to uncached in the GCR_BASE register, 
thus disabling it. On systems that do not support CCA override, writes to the CCA override field have no effect, and 
reading back the GCR_BASE register will not show the CCA override being set.

The code reads the GCR Base register.

lw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE

The next 3 lines of code are used to enable CCA Override and set the L2 cache CCA to uncached.

li r7_temp_mark, 0x50 # CM_DEFAULT_TARGET Memory
# CCA Override Uncached enabled
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ins r4_temp_data, r7_temp_mark, 0, 8
sw r4_temp_data, 0x0008(r22_gcr_addr)

Now the code reads back the GCR_BASE register. If the CCA override bit is set, it means the code above worked, 
and the L2 cache is set to uncached. In this case, the code skips the initialization for now. The routine will be recalled 
later once the code is executing out of the L1 instruction cache. If not, the code branches to the init_l2 function, which 
initializes the L2 cache.

lw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE
ext r4_temp_data, r4_temp_data, 4, 1 # CCA_Override_Enable
bnez r4_temp_data, done_l23 # Skip if CCA Override is implemented.
nop
b init_l2
nop

END(init_l2u)

4.5.13.4 init_L2c Initialization Routine Details

This section provides a detailed description of each line of code in the init_l2c initialization routine. The code in this 
function is called from the start.S function after the L1 caches have been initialized. It checks to see if the core imple-
ments CCA Override. If it does, it calls the code to initialize the L2 cache.

In Section 4.5.13.3 the code also checks to see if CCA override was implemented, If it was not, then it initialized the 
L2 cache while the code was executing in uncached mode, so there is no need to do it again here.

LEAF(init_l2c)

# Skip cached execution if CCA Override is not implemented.
# If CCA override is not implemented the L2 cache
# would have already been initialized when init_l2u was called.

lw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE
bnez r16_core_num, done_l2 # Only done from core 0
ext r4_temp_data, r4_temp_data, 4, 1 # CCA_Override_Enable
beqz r4_temp_data, done_l23 nop

END(init_l2c)
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4.5.14 L2 Cache CP0 Interface

The P6600 core uses different CP0 registers for L2 cache operations. 

This section describes the base processor core CP0 registers that support the L2 cache. A complete description and bit 
assignments for each register listed is described in Chapter 2, CP0 Registers.

4.5.14.1 Config2 Register (CP0 register 16, Select 2)

Asserting Config2.L2B (bit 12) enables the bypass-mode of the L2 cache. This bit is reflected on the L2_Bypass output 
from the core. When L2 goes into bypass-mode, L2 responds by asserting L2_Bypassed output, and the value or 
L2_Bypassed is returned when Config2.L2B is read by software. Thus, reading this Config2.L2B bit does not read back 
what was written: it reflects the value of a signal sent back from the L2. The feedback signal, L2_Bypassed, will 
reflect the previously written value with some implementation and clock ratio dependent delay.

Changing the value of Config2.L2B field in the middle of the normal operation may cause an unwanted loss of an OCP 
transaction in the L2 cache. For the safe transition into the L2 bypass-mode, an externalized SYNC before the MTC0 
Config2.L2B is necessary to make sure all the pending transactions in L2 are completed. And, these instructions should 
run from the uncached space. It might be also a good idea to check if L2 is really in bypass-mode by reading the 
Config2.L2B field before moving onto the next instructions.

The Config2.SS field (bits 11:8) indicates the number of sets per way in the data cache. The P6600 L2 cache supports 
from 512 up to 32768 sets per way, which is used to configure cache sizes from 256 KBytes to 8 MBytes.

The Config2.SL field (bits 7:4) indicates the line size for the L2 cache. The P6600 L2 cache can be configured for a 32-
byte or 64 byte line size.

The Config2.SA field (bits 3:0) indicates the set associativity for the L2 cache. The P6600 L2 cache is fixed at 8-way 
set associative as indicated by a default value of 4 for this field.

For more information, refer to Section 2.2.1.3, "Device Configuration 2 — Config2 (CP0 Register 16, Select 2)". 

4.5.14.2 Error Control Register (CP0 register 26, Select 0)

ErrorControl.L2P (bit 23) is used to enable L2 ECC checking and correction. This bit is read-only if the L2 has not 
been built with ECC/Parity support. Specific parity support is enabled using both L2P and ErrorControl.PE (bit 31) as 
described in Table 4.11. L2P is also reflected on the L2_ECCEnable output from the core.

Table 4.10 L2 Cache CP0 Register Interface

CP0 Registers CP0 number

Config2 16.2

ErrCtl 26.0

CacheErr 27.0

L23TagLo 28.4

L23DataLo 28.5

L23DataHi 29.5
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These encodings were chosen such that legacy code which is unaware of L2P, will by default enable L2 ECC logic 
when it enables L1 parity. For more information, refer to Section 2.2.5.10, "ErrCtl (CP0 Register 26, Select 0)"

4.5.14.3 Cache Error Register (CP0 register 27, Select 0)

When the L2 detects an uncorrectable error, CacheError.EC is set, identifying the exception as an L2 error. The Cache 
Error register stores information such as the cache way where the error was detected, the cache index of the double word 
in which the error was detected, the cache level at which the error was detected, if the tag RAM was involved, etc.

For more information, refer to Section 2.2.5.11, "Cache Error — CacheErr (CP0 Register 27, Select 0)". 

4.5.14.4 L23TagLo Register (CP0 register 28, Select 4)

The L23TagLo register contains the contents of the L2 tag array at the location accessed by the L2 Index Load Tag 
cache-op. It is also used as the source register for the L2 Index Store Tag cache-op. 

For more information, refer to Section 2.2.5.7, "Level 2/3 Cache Tag Low — L23TagLo (CP0 Register 28, Select 
4)". 

4.5.14.5 L23DataHi Register(CP0 register 29, Select 5) / L23DataLo Register(CP0 register 28, Select 5)

For the L2 Index Load Tag cache-op, L23DataHi and L23DataLo hold the contents of the doubleword from the L2 
data array at the indexed location. (L23DataHi holds the most-significant word and L23DataLo holds the least-signif-
icant word). For the L2 Index Load WS cache-op, L23DataHi and L23DataLo each hold the ECC parity of the dou-
bleword from the L2 data array at the indexed location. 

These registers are also used for the source data for the Index Store Data cache-op. Finally, L23DataLo is used as the 
data source for the ECC to be written by the Index Store ECC cache-ops. For more details on the data returned by the 
L2 on a Index Load Tag/Data cache-op, please refer to Section 4.6 “The CACHE Instruction”.

For more information on the L23DataLo register, refer to Section 2.2.5.8, "Level 2/3 Cache Data Low — L23DataLo 
(CP0 Register 28, Select 5)". For more information on the L23DataHi register, refer to Section 2.2.5.9, "Level 2/3 
Cache Data High — L23DataHi (CP0 Register 29, Select 5)". 

4.5.15 L2 Cache Operations

Cache-ops are used for control operations such as initialization, invalidation, eviction, etc. A brief description of the 
cache-ops implemented by the L2 are given below:

Index Writeback Invalidate: If the state of the cache line at the specified index is valid and dirty, the line is written 
back to the memory address specified by the cache tag. After that operation is completed, the state of the cache line is 
set to invalid. If the line is valid but not dirty, the state of the line is set to invalid.

Table 4.11 L2_ECC_Enable

PE L2P L2_ECCEnable

1 0 1

1 1 0

0 0 0

0 1 1
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Index Load Tag: The tag, valid, lock, dirty, parity and LRU bits for the cache line at the specified index are read. 
The doubleword indexed in the data RAM is also read.

Index Load WS: The LRU, dirty, and dirty parity bits for the cache line at the specified index are read. ECC for the 
doubleword indexed in the data RAM is also read.

Hit Invalidate: If the cache contains the specified address, the state of that cache line is set to invalid.

Hit Writeback Inv: If the cache contains the specified address and it is valid and dirty, the contents of that line are 
written back to main memory. After that operation is completed, the state of the cache line is set to invalid. If the line 
is valid but not dirty, the state of the line is set to invalid.

Hit Writeback: If the cache contains the specified address and it is valid and dirty, the contents of that line are writ-
ten back to main memory. After the operation is completed, the state of the line is left valid, but the dirty state is 
cleared.

Index Store Tag: Write the tag for the cache line at the specified index.

Index Store WS: Write the WS array for the cache line at the specified index.

Fetch And Lock: If the cache contains the specified address, lock the line. If the cache does not contain the specified 
address, refill the line from main memory and then lock the line.

Index Store Data: Write the data and ECC for the cache line at the specified index. Proper ECC is generated for the 
written data and written into the ECC field.

Index Store ECC: Write the ECC for the cache line at the specified index.

Most CP0 instructions are used rarely, in code which is not timing-critical. But an OS which has to manage caches 
around I/O operations or otherwise may have to sit in a tight loop issuing hundreds of cache operations at a time, so 
performance can be important.

4.5.15.1 Bus Transaction Equivalence

When the base processor executes an L2 CACHE instruction, the operands and as well as data to be written to CP0 
registers is transferred to and from L2. Index Load Tag and Index Load WS generate burst read transactions. All other 
L2 cache-ops generate single write transactions. 

For 64 byte line configurations, bit 5 (the LSB of the Index field) is the selector to which 32 byte half of the 64 byte 
line is targeted (essentially it becomes an additional DW bit). For tag and ws type cache-ops, this bit is disregarded 
and cache-ops with either value of bit 5 impact the exact same tag or ws entry. For data type cache-ops, bit 5 selects 
which half of the 64 byte cache line is being accessed.

Figure 4.5 Index Encoding for PB_MAddr (1MB, 8-way)

31 23 22 20 19 5 4 3 2 0

Unused Way Index DW Unused
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4.5.15.2 Details of Cache-ops

Table 4.12 indicates the operation and behavior of the L2 cache for each cache-op. 

Table 4.12 Cache-ops 

Cache-op

Effective 
Address 

Operand Type Operation

Index WB inv/
Indx Inv

(OPCODE: 0)

INDEX • If the state of the cache line at the specified index is valid and dirty, the line is written 
back to the memory address specified by the cache tag. After that operation is completed, 
the state of the cache line is set to invalid.

• If the line is valid but not dirty, the state of the line is set to invalid
• The LRU bits are updated to Least-recently-used.
• The dirty bits are updated to clean for that way.

Index Load Tag
(OPCODE: 1)

ErrCtl.WST = 0

INDEX • The tag, valid, lock, and parity fields from the tag array for the cache line at the specified 
index are written into L23TagLo. Furthermore, the dirty bit from the WS array corre-
sponding to the specified index is also written into L23TagLo. (First beat of return data)

• For the first beat of return data, the two halves of the 64-bit data bus are identical.
• The indexed doubleword is written into {L23DataHi, L23DataLo}. (2nd beat of return 

data)
• ErrCtl.PO is treated as a don’t care
• The LRU bits are unchanged

Index Load WS
(OPCODE: 1)

ErrCtl.WST = 1

INDEX • The dirty, dirty parity, and LRU fields from the WS array for the cache line at the speci-
fied index are written into L23TagLo. (First beat of return data)

• For the first beat of return data, the two halves of the 64-bit data bus are identical.
• The WS data at the indexed location is written into L23TagLo. (First beat of return data)
• The indexed doubleword’s ECC is written into {L23DataHi, L23DataLo}. (2nd beat of 

return data)
• ErrCtl.PO is treated as a don’t care
• The LRU bits are unchanged
• Data RAM:
• The DW ECC to be read in the line is determined by PB_MAddr[4:3]

Index Store Tag
(OPCODE: 2)

ErrCtl.WST = 0

INDEX • The tag, valid, and lock fields in the Tag array at the indexed location are written from 
L23TagLo.

• If ErrCtl.PO==1, the parity and total parity fields in the Tag array at the indexed location 
are written from L23TagLo.

• If ErrCtl.PO==0, the parity and total parity fields in the Tag array at the indexed location 
are written with hardware generated values.

• If valid==1, the LRU bits in the WS array are updated to make the indexed way most-
recently-used. If valid==0, the LRU bits are updated with least-recently-used.

• If valid==1, the dirty bit in the WS array at the indexed location is written from 
L23TagLo.

• If valid==0, the dirty bit in the WS array at the indexed location is cleared.
• The dirty parity bit in the WS array at the indexed location is written with the correct 

hardware generated values.

Index Store WS
(OPCODE: 2)

ErrCtl.WST = 1

INDEX • The dirty and LRU fields for all 8 ways of the WS array at the indexed location are writ-
ten from L23TagLo

• If ErrCtl.PO==1, the dirty parity fields for all 8 ways of the WS array at the indexed loca-
tion are written from L23TagLo

• If ErrCtl.PO==0, the dirty parity fields for all 8 ways of the WS array at the indexed loca-
tion are written with hardware generated values
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4.5.15.3 Sync in L2

A Sync operation can be used to guarantee ordering of transactions. The L2 ensures that all transactions preceding a 
Sync request will be ordered in front of transactions received after the Sync request. Within the L2 only requests are 
ordered, not responses, i.e., there is no guarantee of the ordering between a read response vs. the Sync.

One example of the use of a Sync involves cache operations. Normally, the L2 does not guarantee the ordering 
between a cache operation, such as a Hit-Writeback-Invalidate, vs. an subsequent uncached request. If the software 
wants to ensure that any writes on the system interface due to the Hit-Writeback-Invalidate will be ordered in front of 
a subsequent uncached write, then a Sync must be issued between the cache operation and uncached write. Note that 
in order for a core to externalize a Sync request, Config7.ES bit must be set before the sync instruction.

The L2 issues a response to a Sync after all 3 of the following have completed:

• All previous requests have cleared the L2 pipeline

• The L2 has issued all requests to the system interface that are required by previous transactions, such as 
uncached requests, cache operations, cache misses, evictions, or previous Syncs. 

Index Store Data
(OPCODE: 3)

ErrCtl.WST = 0

INDEX • The doubleword in the data array at the indexed location and doubleword offset is written 
from {L23DataHi, L23DataLo} regardless of the PB_MDataByteEn value.

• The Parity/ECC field in the data array at the indexed location and doubleword offset is 
written with a hardware generated value.

• The LRU bits in the WS array are updated to make the indexed way most-recently-used.

Index Store ECC
(OPCODE: 3)

ErrCtl.WST = 1

INDEX • The Parity/ECC field in the data array at the indexed location and doubleword offset is 
written from L23DataLo[7:0].

• The LRU bits in the WS array are updated to make the indexed way most-recently-used.

HIT Inv
(OPCODE: 4)

ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, it is invalidated and the dirty bit is cleared.
• If any arrays are written, the appropriate parity fields are updated by hardware.

HIT WB Inv
(OPCODE: 5)

ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, and it is dirty, the line is written back to main memory. It is then 

invalidated and the dirty bit is cleared.
• If the address hits in L2, and it is clean, it is invalidated.
• If any arrays are written, the appropriate parity fields are updated by hardware.

HIT WB
(OPCODE: 6)

ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, and it is dirty, the line is written back to main memory and the 

dirty bit is cleared.
• If the address hits in L2, and it is clean, nothing happens.
• If any arrays are written, the appropriate parity fields are updated by hardware.

Fetch and Lock
(OPCODE: 7)

ADDRESS • If the address is not contained in L2, the line is refilled. The refilled line is then locked in 
the cache. The LRU bits in the WS array are updated to make the fetched way most-
recently-used. The Dirty bit and the dirty parity bit are set to clean.

• On a hit the line is locked and the operation retires. The LRU bits or the dirty bits are not 
affected.

Table 4.12 Cache-ops (continued)

Cache-op

Effective 
Address 

Operand Type Operation
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• If the downstream system can take a sync OCP transaction (L2_SyncTxEn=1), it will externalize the sync 
transaction to the system once the above criteria has been satisfied. When the Sync response is received 
from the system interface, the L2 will return a Sync response to the processor interface.

4.5.15.4 L2 Cache Fetch and Lock

In the L2 cache, each line in a way can be locked independently. If a line is locked it will not be evicted. Software is 
not allowed to lock all available ways at the same cache index, since L2 would be unable to refill any other addresses 
at that index.

If the requested address is not contained in the L2 cache, the line is refilled and then locked in the cache. The LRU 
bits in the WS array are updated to make the fetched way most-recently-used. The dirty bit and the dirty parity bit are 
set to clean. 

On a hit the L2 cache line is locked and the operation retires. The LRU bits or the dirty bits are not affected.

4.5.16 L2 Cache Error Management

This section describes parity and bus error support for the L2 cache.

4.5.16.1 Parity Support

If Parity support is selected at build time, and this support is enabled via software by setting the ErrCtl.PE bit in the 
Error Control register (CP0 register 26, Select 0), then the tag and the data arrays are protected with single-error cor-
rection logic.

The Way Select RAM is protected with single-error detection logic. Correctable errors are not reported to the proces-
sor, but uncorrectable errors are reported to the processor. If Parity support is either not selected at build time or dis-
abled, then no errors are detected on any of the cache arrays.

To perform a single detection the parity bits are placed at 2n locations among the data bits. The bits at different loca-
tions are then grouped together. The grouping is done by analyzing the binary weights of the particular location. 

For example, to protect 8 data bits, 4 parity bits are needed which will be placed as below: 

Note that Bit location 0 does not exist.

The binary weight of bit location 3 is 2^0 and 2^1, which is derived from its binary value 0011b. Therefore, bit loca-
tion 3 falls in group g0 and g1. Similarly, Bit location 11 falls into groups g0, g1 and g3.

Parity bit p0 will belong to g0 and its value will is generated such that g0 will have an even parity. Similarly all other 
parity bits are generated such that their respective group ends up in even parity.

This sharing of binary weights across groups enables the L2 to determine precisely which data or parity bit was in 
error. That is achieved by recreating the parity bits from the data read from the memory and XORing it with the parity 
bits read from the memory. The XORed value, or the syndrome, points to the bit in error. Once this error is detected 
the L2 corrects it. A value of zero on the syndrome indicates that there was no error in the parity and data bits.

Table 4.13 Parity Bit Distribution

Bit Location 12 11 10 9 8 7 6 5 4 3 2 1

Parity and data bits d7 d6 d5 d4 p3 d3 d2 d1 p2 d0 p1 p0
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To achieve double bit error detection an even parity is generated across the parity and data bits, which is termed as the 
total parity bit. The total parity bit will be flipped in case of a single bit error, whereas for a double bit error it will 
remain the same. The syndrome along with the total parity bit is then used to detect a double bit error.

The WSRAM’s dirty bits are protected, whereas the LRU bits are not. For each dirty bit there is one more bit added 
called the dirty parity bit. The value of the dirty parity bit enforces even parity protection.

4.5.16.2 Tag, Data, and WS Array Format

Logical Tag Array Format

The width of the tag in an 8 way 128 MB cache is 18 bits per way. The data array format is as shown in Figure 4.14. 

Where, d0-d17 : Tag
V : Valid bit
L : Lock bit
p0-p4 : parity bits
TP : Total parity bit

For larger caches, the width of the tag reduces. In that case, the upper data bits are ignored from the calculation as 
appropriate.

Logical Data Array Format 

The data array format is as shown in Figure 4.15.

4.5.16.3 Cache Parity Error Handling

The three types of memory arrays in the L2 have an option for parity. If selected, this option provides single bit cor-
rection and double bit detection of the tag rams and data rams. 

• The Tag RAM coverage is for each way.

• The Data RAM coverage is for each way and each double-word in each way. 

• The Way Select RAM has parity for each dirty bit. A correctable bit failure is corrected and no notification of this 
event is present at the L2 pins. 

4.5.16.4 Multiple Uncorrectable Errors

This error is reported when more than one uncorrectable error is being reported on the same L2 clock cycle. Since 
double-bit Tag RAM errors, double-bit Data RAM error, and parity bit errors in the Way Select RAM are each 
reported in different L2 pipeline stages, this assertion indicates that different requests have encountered uncorrectable 

Table 4.14 Logical Tag Array Format for a 8 Way 128 MB Cache

Bit position 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Content TP L V d17 d16 d15 d14 d13 d12 d11 p4 d10 d9 d8 d7 d6 d5 d4 p3 d3 d2 d1 p2 d0 p1 p0

Table 4.15 Logical Data Array Format

Bit position 72 71..65 64 63:33 32 31:17 16 15..9 8 7..5 4 3 2 1

Content TP [63:57] p6 [56:26] p5 [25:11] p4 [10:4] p3 [3:1] p2 [0] p1 p0
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requests. In other words, if a single request suffers all three uncorrectable errors, the error will be reported three 
times. 

4.5.16.5 Bus Error Handling

Bus errors are never originated by the L2. However, bus errors may be received from the system on an OCP read 
from the L2 to the system. The error is indicated when the read-data is returned back to the L2. The L2 propagates the 
bus error when returning data to the processor or CM2.

If a bus error is received on a 64-byte burst read to the system, the L2 signals the bus error for the processor read that 
originated the request. If the L2 receives a subsequent read to the same 64-byte cache line before all the data has been 
received from memory for the previous request, the new request also receives a bus error response.

In general, a bus error reported in a system response due to a processor/CM request is considered to be reporting the 
entire cache line as having a bus error. However, if the original request is satisfied before the L2 detects the system 
bus error, then the response to the processor/CM will not have a bus error.

There is no capability for signalling bus errors on writes. 
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4.6 The CACHE Instruction

The L1 instruction, L1 data, and L2 caches in the P6600 core each support the CACHE instruction, which allows 
users to manipulate the contents of the Data and Tag arrays, including the locking of individual cache lines. The 
behavior of the CACHE instruction is identical for both the L1 instruction and data caches. 

4.6.1 Decoding the Type of Cache Operation

The type of cache operation performed is encoded using a combination of the 5-bit op field of the CACHE instruc-
tion, and selected bits from the ErrCtl register (CP0 Register 26, Select 0). In addition to performing operations on the 
caches themselves, there are other CACHE operations that are performed on internal memories such as the way selec-
tion RAM and the Dirty Bit RAM. The ErrCtl bits determine the type internal memory where the CACHE operation 
will be performed.

The selected bits of the ErrCtl register used to determine the type of CACHE operation are as follows:

• Bit 29, WST: If this bit is set, execution of a cache IndexLoadTag or cache IndexStoreTag instruction 
reads or writes the cache’s internal way-selection RAM instead of the cache tags.

• Bit 21, DYT: Setting this bit allows cache load/store data operations to work on the "dirty array" associated with the L1 
data cache.

4.6.2 CACHE Instruction Opcodes

Refer to the implementation-specific CACHE instruction at the back of this manual for a list of CACHE instruction 
opcodes.

4.6.3 Way Selection RAM Encoding

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the Way Select (WS) 
RAM by setting the WST bit in the ErrCtl register. Note that when the WST bit is zero, the CACHE index instruction 
accesses the cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an issue, 
however, if the WS RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings 
for way selection order is shown in Table 4.16. 

Table 4.16 Way Selection Encoding, 4 Ways 

Selection Order1 WS[5:0] Selection Order WS[5:0]

0123 000000 2013 100010

0132 000001 2031 110010

0213 000010 2103 100110

0231 010010 2130 101110

0312 010001 2301 111010

0321 010011 2310 111110

1023 000100 3012 011001

1032 000101 3021 011011

1203 100100 3102 011101



 

278 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

1230 101100 3120 111101

1302 001101 3201 111011

1320 101101 3210 111111

1. The order is indicated by listing the least-recently used way to the left and the most-
recently used way to the right, etc.

Table 4.16 Way Selection Encoding, 4 Ways (continued)

Selection Order1 WS[5:0] Selection Order WS[5:0]
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Exceptions and Interrupts

The P6600 core receives exceptions from a number of sources, including arithmetic overflows, misses in the transla-
tion lookaside buffer (TLB), I/O interrupts, and system calls. When the CPU detects an exception, the normal 
sequence of instruction execution is suspended and the processor enters kernel mode, disables interrupts, loads the 
Exception Program Counter (EPC) register with the location where execution can restart after the exception has been 
serviced, and forces execution of a software exception handler located at a specific address. 

The software exception handler saves the context of the processor, including the contents of the program counter, the 
current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be 
restored when the exception has been serviced. 

Exceptions may be precise or imprecise. Precise exceptions are those for which the EPC can be used to identify the 
instruction that caused the exception. For precise exceptions, the restart location in the EPC register is the address of 
the instruction that caused the exception or, if the instruction was executing in a branch delay slot (as indicated by the 
BD bit in the Cause register), the address of the branch instruction immediately preceding the delay slot. Imprecise 
exceptions, on the other hand, are those for which no return address can be identified. Bus error exceptions and CP2 
exceptions are examples of imprecise exceptions.

This chapter contains the following sections:

• Section 5.1 “Exception Conditions”

• Section 5.2 “TLB Read Inhibit and Execute Inhibit Exceptions”

• Section 5.3 “FTLB Parity Exception”

• Section 5.4 “Exception Priority”

• Section 5.5 “Exception Vector Locations”

• Section 5.6 “General Exception Processing”

• Section 5.7 “Debug Exception Processing”

• Section 5.8 “Exception Descriptions”

• Section 5.10 “Exception Handling and Servicing Flowcharts”

• Section 5.11 “Interrupts”

5.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that follow it in the pipeline 
are cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this 
instruction are inhibited.
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When the exception condition is detected on an instruction fetch, the CPU aborts that instruction and all instructions 
that follow. When the instruction graduates, the exception flag causes it to write various CP0 registers with the excep-
tion state, change the current program counter (PC) to the appropriate exception vector address, and clear the excep-
tion bits of earlier pipeline stages.

For most types of exceptions, this implementation allows all preceding instructions to complete execution and pre-
vents all subsequent instructions from completing. Thus, the value in the EPC (or ErrorEPC for errors or DEPC for 
debug exceptions) is sufficient to restart execution. It also ensures that exceptions are taken in program order. An 
instruction taking an exception may itself be aborted by an instruction further down the pipeline that takes an excep-
tion in a later cycle.

Imprecise exceptions are taken after the instruction that caused them has completed and potentially after following 
instructions have completed.

5.2 TLB Read Inhibit and Execute Inhibit Exceptions

The P6600 core supports the following new types of exceptions listed below:

• TLB Execute-Inhibit

• TLB Read-Inhibit

The TLB Execute Inhibit exception (TLBXI) is taken when there is a TLB hit during an instruction fetch, the XI bit of 
the entry is set, the Valid (V) bit is set, and the PageGrainEIC bit is set. If the PageGrainEIC bit is cleared, a TLBL excep-
tion is taken. This type of exception is used by the operating system to prevent execute accesses to a particular page. 
Refer to Section 5.8.13 “TLB Execute-Inhibit Exception (TLBXI)” for more information.

The TLB Read Inhibit exception (TLBRI) is taken when there is a TLB hit during a read operation, the RI bit of the 
entry is set, the Valid (V) bit is set, and the PageGrainEIC bit is set. If the PageGrainEIC bit is cleared, a TLBL exception 
is taken. This type of exception is used by the operating system to prevent read accesses from a particular page. Refer 
to Section 5.8.14 “TLB Read-Inhibit Exception (TLBRI)” for more information.

5.3 FTLB Parity Exception

An FTLB Parity exception is taken whenever a parity error is detected on an FTLB read. The error can occur in either 
the FTLB Tag RAM or FTLB Data RAM. The FTLB parity exception is taken only when bit 31 of the CP0 Error 
Control register (ErrCtl.PE) is set. If this bit is cleared, FTLB parity errors are ignored. Refer to Section 5.8.15 “FTLB 
Parity Exception” for more information.

5.4 Exception Priority

Table 5.1 contains a list and a brief description of all exception conditions, The exceptions are listed in the order of 
their relative priority, from highest priority (Reset) to lowest priority (Load/store bus error). When several exceptions 
occur simultaneously, the exception with the highest priority is taken. 

Table 5.1 Priority of Exceptions 

Exception Description

Reset Assertion of SI_Reset signal.
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DSS EJTAG Debug Single Step. Prioritized above other exceptions, including asynchronous exceptions, so 
that one can single-step into interrupt (or other asynchronous) handlers.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by setting the 
EjtagBrk bit in the ECR register.

DDBLImpr/DDBSImpr Debug Data Break Load/Store. Imprecise.

NMI Asserting edge of SI_NMI signal.

FTLBPAR FTLB instruction fetch parity error.

Machine Check TLB write that conflicts with an existing entry.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

Debug Instruction Breakpoint EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.
Fetch reference to protected address.

XTLBL - Instruction Fetch XTLB miss.
Fetch XTLB hit to page with V=0

TLBL - Instruction Fetch TLB miss.
Fetch TLB hit to page with V=0

TLBXI TLB Execute Inhibit.
Occurs when there is an execute access from a page table whose XI bit is set.

I-cache Error Parity error on I-cache instruction fetch.

IBE From Instruction Fetch Unit (IFU) instruction cache ops. Indicates a bus error on an instruction fetch.

D-cache Error Data cache parity error. Imprecise.

L2-cache Error L2 cache parity error. Imprecise.

DBE Load or store bus error. Imprecise.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys (Execution exception) Execution of SYSCALL instruction. Note that all of the execution exceptions have the same priority.

Bp (Execution exception) Execution of BREAK instruction. Note that all of the execution exceptions have the same priority.

CpU (Execution exception) Execution of a coprocessor instruction for a coprocessor that is not enabled. Note that all of the execu-
tion exceptions have the same priority.

CEU (Execution exception) Execution of a CorExtend instruction modifying local state when CorExtend is not enabled. Note that all 
of the execution exceptions have the same priority.

RI (Execution exception) Execution of a Reserved Instruction. Note that all of the execution exceptions have the same priority.

FPE (Execution exception) Floating Point exception. Note that all of the execution exceptions have the same priority.

C2E (Execution exception) Coprocessor 2 unusable exception. Note that all of the execution exceptions have the same priority.

ISI (Execution exception) Implementation specific Coprocessor 2 exception. Note that all of the execution exceptions have the 
same priority.

Ov (Execution exception) Execution of an arithmetic instruction that overflowed. Note that all of the execution exceptions have the 
same priority.

Tr (Execution exception) Execution of a trap (when trap condition is true). Note that all of the execution exceptions have the same 
priority.

Table 5.1 Priority of Exceptions (continued)

Exception Description
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5.5 Exception Vector Locations

The location of the exception vector in the P6600 core depends on the operating mode. If the core is in the legacy set-
ting, the exception vector location is the same as in previous MIPS processors. However, if the core is configured for 
Enhanced Virtual Address (EVA), the exception vector can effectively be placed anywhere within kernel address 
space. Refer to the EVA chapter at the end of this manual for more information.

The SI_EVAReset pin determines the addressing scheme and whether the device boots up in the legacy setting or the 
EVA setting. The legacy setting is defined as having the traditional MIPS virtual memory map used in previous gen-
eration processors. The EVA setting places the device in the enhanced virtual address configuration, where the initial 
size and function of each segment in the virtual memory map is determined from the segmentation control registers 
(SegCtl0 - SegCtl2).

If the SI_EVAReset pin is deasserted at reset, the P6600 core comes up in the legacy configuration and hardware takes 
the following actions:

• The CONFIG5.K bit becomes read-write and is programmed by hardware to a value of 0 to indicate the legacy 
configuration. In this case, the cache coherency attributes for the kseg0 segment are derived from the Config.K0 
field as described in the previous subsection. In addition to selecting the location of the cache coherency attri-
butes, the CONFIG5.K bit also causes hardware to generate two boot exception overlay segments, one for kseg0 
and one for kseg1.

• Hardware programs the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for the legacy setting. Note that 
these registers are new in the P6600 core and are not used by legacy software. However, they are used by hard-
ware during normal operation, so their default values should not be changed. 

If the SI_EVAReset pin is asserted at reset, the P6600 core comes up in the EVA configuration (default size for xkseg0 
space = 3 GB). Refer to the EVA Application Note for more information. 

DDBL / DDBS EJTAG Data Address Break (address only). 

WATCH A reference to an address in one of the watch registers (data).

AdEL Load address alignment error.
Load reference to protected address.

AdES Store address alignment error.
Store to protected address.

XTLBL Load XTLB miss.
Load XTLB hit to page with V = 0

TLBL Load TLB miss.
Load TLB hit to page with V = 0

DFTLBPAR FTLB data load/store parity error.

XTLBS Store XTLB miss.
Store XTLB hit to page with V = 0.

TLBS Store TLB miss.
Store TLB hit to page with V = 0.

TLBRI TLB Read Inhibit.
Occurs when there is an attempt to access a page table whose RI bit is set.

TLB Mod Store to TLB page with D = 0.

Table 5.1 Priority of Exceptions (continued)

Exception Description
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The function of the Config5.K bit and the SI_UseExceptionBase pin is shown in Table 5.2.

Another degree of flexibility in the selection of the vector base address, for use when StatusBEV equals 1, is provided 
via a set of input pins, SI_UseExceptionBase, SI_ExceptionBase[31:12], and SI_ExceptionBaseMask[27:20].

In the legacy setting, when the SI_UseExceptionBase pin is 0, the Reset, Soft Reset, NMI, and EJTAG Debug excep-
tions are vectored to a specific location, as shown in Table 5.3. Addresses for all other exceptions are a combination 
of a vector offset and a vector base address. In the P6600 core, software is allowed to specify the vector base address 
via the EBase register for exceptions that occur when StatusBEV equals 0. Table 5.3 shows the vector base address 
when the core is in legacy setting and the SI_UseExceptionBase pin is 0. 

Table 5.4 shows the vector base addresses when the core is in legacy setting and the SI_UseExceptionBase equals 1. As 
can be seen in Table 5.4, when SI_UseExceptionBase equals 1, the exception vectors for cases where StatusBEV = 0 are 
not affected. 

Table 5.2 SI_UseExceptionBase Pin and CONFIG5.K Encoding

CONFIG5.K Bit
SI_UseExceptionBase 

Pin Condition Action

0 0 Legacy Mode
SI_ExceptionBase[31:12] pins are 
not used.

Use default BEV location of 0xBFC0_0000.

0 1 Legacy Mode
Use only SI_ExceptionBase[29:12] 
for the BEV base location. Bits 31:30 
are forced to a value of 2’b10 to put 
the BEV vector into KSEG0/KSEG1 
virtual address space.

The BEV location is determined as follows:

SI_ExceptionBase[31:12] = 2’b10, 
SI_ExceptionBase[29:12] pins, 12’b0

Bits 31:30 are forced to a value of 2’b10 to 
put the BEV vector into KSEG0/KSEG1 
virtual address space.

1 Don’t care EVA Mode
Use SI_ExceptionBase[31:12] pins. 
Refer to the EVA chapter for more 
information. 

The SI_ExceptionBase[31:12] pins are used 
directly to derive the BEV location. The 
SI_UseExceptionBase pin is ignored.

Table 5.3 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase = 0 

Exception

StatusBEV

0 1

Reset, NMI 0xFFFF_FFFF_BFC0.0000

EJTAG Debug (with ProbEn = 0, in the 
EJTAG_Control_register and 
DCR.RDVec=0)

0xFFFF_FFFF_BFC0.0480

EJTAG Debug (with ProbEn = 0, in the 
EJTAG_Control_register and 
DCR.RDVec=1)

DebugVectorAddr[31:7] || 7’b0000000

EJTAG Debug (with ProbEn = 1 in the 
EJTAG_Control_register)

0xFFFF_FFFF_FF20.0200
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In legacy mode, when the SI_UseExceptionBase pin is 1, the Reset, Soft Reset, NMI, and EJTAG Debug exceptions are 
vectored to a specific location, as shown in Table 5.4. 

Table 5.5 shows the offsets from the vector base address as a function of the exception. Note that the IV bit in the 
Cause register causes interrupts to use a dedicated exception vector offset, rather than the general exception vector. 
Table 5.26 (on page 322) shows the offset from the base address in the case where StatusBEV = 0 and CauseIV = 1. 

Cache Error EBase63..30  1 
EBase28..12  0x000

Note that EBase31..30 have the fixed value of 
2b’10

0xFFFF_FFFF_BFC0.0300

Other EBase63..12  0x000
Note that EBase31..30 have the fixed value of 
2’b10 when WG = 0.

0xFFFF_FFFF_BFC0.0200

‘||’ denotes bit string concatenation

Table 5.4 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase = 1 

Exception

StatusBEV

0 1

Reset, NMI 0xFFFF_FFFF || 0b10 || SI_ExceptionBase [29:12] || 0x000

EJTAG Debug (with ProbEn = 0
in the EJTAG_Control_register and 
DCR.RDVec=0)

0xFFFF_FFFF || 0b10 ||SI_ExceptionBase[29:12] || 0x480

EJTAG Debug (with ProbEn = 0
in the EJTAG_Control_register and 
DCR.RDVec=1)

 DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1 
in the EJTAG_Control_register)

0x0xFFFF_FFFF_FF20.0200

Cache Error EBase63..30  1 
EBase28..12  0x000

Note that EBase31..30 have the fixed value 
2’b10 when WG = 0. Exception 
vector resides in kseg1.

0xFFFF_FFFF 0b101  
SI_ExceptionBase[28:12]  0x300
Exception vector resides in 
kseg1.

Other EBase63..12  0x000
Note that EBase31..30 have the fixed value 
2’b10 when WG = 0. Exception 
vector resides in kseg0/
kseg1.

0xFFFF_FFFF 0b10  
SI_ExceptionBase[29:12]  0x200
Exception vector resides in 
kseg0/kseg1.

‘||’ denotes bit string concatenation

Table 5.3 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase = 0 (continued)

Exception

StatusBEV

0 1
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Table 5.6 combines these three tables into one that contains all possible vector addresses as a function of the state that 
can affect the vector selection. To avoid complexity in the table, it is assumed that IntCtlVS = 0. 

Table 5.5 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 0x000

XTLB Refill 0x080

General Exception 0x180

Interrupt, CauseIV = 1 0x200

Reset, NMI None (uses reset base address)

Table 5.6 Exception Vectors 
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(IntCtlVS = 0)

Reset, NMI 0 0 x x x x 0xFFFF_FFFF_BFC0.0000

Reset, NMI 0 1 x x x x  0xFFFF_FFFF 2’b10  SI_ExceptionBase[29:12]  0x000

Reset, NMI 1 x x x x x  0xFFFF_FFFF SI_ExceptionBase[31:12]  0x000

EJTAG Debug 0 0 x x x 0 0x0xFFFF_FFFF_BFC0.0480 (if DCR.RDVec=0)
DebugVectorAddr[31:7]  2b0000000 (if DCR.RDVec=1)

EJTAG Debug 0 1 x x x 0 0xFFFF_FFFF 2’b10  SI_ExceptionBase[29:12]  0x480 (
if DCR.RDVec=0)

DebugVectorAddr[31:7]  2b0000000 
(if DCR.RDVec=1)

EJTAG Debug 1 x x x x 0 0xFFFF_FFFF SI_ExceptionBase[31:12]  0x480 (if DCR.RDVec=0)
DebugVectorAddr[31:7]  2b0000000 (if DCR.RDVec=1)

EJTAG Debug x x x x x 1 0x0xFFFF_FFFF_FF20.0200

TLB Refill x x 0 0 x x EBase[63:12]  0x000 (EBase.WG = 1)
2’b10 EBase[29:12]  0x000 (EBase.WG = 0)

XTLB Refill x x 0 0 x x 0xFFFF_FFFF_8000_0080

TLB Refill x x 0 1 x x EBase[63:12]  0x180 (EBase.WG = 1)
2’b10 EBase[29:12]  0x180 (EBase.WG = 0)

XTLB Refill x x 0 1 x x 0xFFFF_FFFF_8000_0180

TLB Refill 0 0 1 0 x x 0x0xFFFF_FFFF_BFC0.0200

XTLB Refill x x 1 0 x x 0x0xFFFF_FFFF_BFC0.0280

TLB Refill 0 1 1 0 x x 0xFFFF_FFFF 2’b10  SI_ExceptionBase[29:12]  0x200

TLB Refill 1 x 1 0 x x  0xFFFF_FFFF SI_ExceptionBase[31:12]  0x200

TLB Refill 0 0 1 1 x x 0xFFFF_FFFF_BFC0.0380
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XTLB Refill x x 1 1 x x 0xFFFF_FFFF_BFC0.0380

TLB Refill 0 1 1 1 x x 0xFFFF_FFFF 2’b10  SI_ExceptionBase[29:12]  0x380

TLB Refill 1 x 1 1 x x  0xFFFF_FFFF SI_ExceptionBase[31:12] || 0x380

Cache Error 0 x 0 x x x EBase[63:30]  1’b1  EBase[28:12]  0x100 (EBase.WG = 1)
EBase[31:30]  1’b1  EBase[28:12]  0x100 (EBase.WG = 0)

Cache Error 1 x 0 x x x 0xFFFF_FFFF_BFC0.0100
(Config5CV = 0)

Cache Error 1 x 0 x x x 0xFFFF_FFFF || EBase[31:12] || 0x100
(Config5CV = 1)

Cache Error 0 0 1 x x x 0x0xFFFF_FFFF_BFC0.0300

Cache Error 0 1 1 x x x  0xFFFF_FFFF || 2’b101  SI_ExceptionBase[28:12]  0x300

Cache Error 1 x 1 x x x  0xFFFF_FFFF || SI_ExceptionBase[31:12]  0x300

Interrupt x x 0 0 0 x 0xFFFF_FFFF || EBase[31:12]  0x180 (EBase.WG = 0)
EBase[63:12]  0x180 (EBase.WG = 1)

Interrupt x x 0 0 1 x EBase[31:12]  0x200

Interrupt 0 0 1 0 0 x 0xBFC0.0380

Interrupt 0 1 1 0 0 x  2’b10  SI_ExceptionBase[29:12]  0x380

Interrupt 1 x 1 0 0 x  SI_ExceptionBase[31:12]  0x380

Interrupt 0 0 1 0 1 x 0xBFC0.0400

Interrupt 0 1 1 0 1 x  2’b10  SI_ExceptionBase[29:12]  0x400

Interrupt 1 x 1 0 1 x  SI_ExceptionBase[31:12]  0x400

All others x x 0 x x x EBase[31:12]  0x180

All others 0 0 1 x x x 0xBFC0.0380

All others 0 1 1 x x x  2’b10  SI_ExceptionBase[29:12]  0x380

All others 1 x 1 x x x  SI_ExceptionBase[31:12]  0x380

‘x’ denotes don’t care, 
‘||’ denotes bit string concatenation

Table 5.6 Exception Vectors (continued)
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5.6 General Exception Processing

With the exception of Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special process-
ing as described below, exceptions have the same basic processing flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be 
restarted, and the BD bit is set appropriately in the Cause register. The value loaded into the EPC register is depen-
dent on whether the instruction is in the delay slot of a branch or jump which has delay slots. Table 5.7 shows the 
value stored in each of the CP0 PC registers, including EPC.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the Cause 
register. 

• The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The CE 
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor begins executing at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception han-
dler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to identify 
the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither the EPC nor CauseBD are modified */
if StatusEXL = 1 then

vectorOffset  0x180
else

restartPC  PC
branchAdjust  4 /* Possible adjustment for delay slot */

endif
if InstructionInBranchDelaySlot then

EPC  restartPC - branchAdjust/* PC of branch/jump */
CauseBD  1

else
EPC  restartPC /* PC of instruction */
CauseBD  0

endif

Table 5.7 Value Stored in EPC, ErrorEPC, or DEPC on Exception

In Branch/Jump 
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No Address of the instruction

Yes Address of the branch or jump instruction (PC-4)

No Upper 31 bits of the address of the instruction, combined with the ISA Mode bit

Yes Upper 31 bits of the branch or jump instruction, combined with the ISA Mode bit
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/* Compute vector offsets as a function of the type of exception */
if ExceptionType = TLBRefill then

vectorOffset  0x000
if ExceptionType = XTLBRefill then

vectorOffset  0x080
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset  0x180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset  0x200
else

if Config3VEIC = 1 then
VecNum  CauseRIPL

else
VecNum  VIntPriorityEncoder()

endif
vectorOffset  0x200 + (VecNum  (IntCtlVS  0b00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */
endif /* if StatusEXL = 1 then */

CauseCE  FaultingCoprocessorNumber
CauseExcCode  ExceptionType
StatusEXL  1

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase  0xFFFF.FFFF.BFC0.0200
else

if ArchitectureRevision  2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase  0xFFFF_FFFF EBase31..12  0x000

else
vectorBase  0xFFFF.FFFF.8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC  vectorBase63..30  (vectorBase29..0  vectorOffset29..0)

/* No carry between bits 29 and 30 */

5.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the 
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if the 
instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot of a 
branch.

• The DSS, DBp, DDBL, DDBS, DIB, and DINT bits in the Debug register are updated appropriately, depending on the 
debug exception type.



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 289

• Halt and Doze bits in the Debug register are updated appropriately.

• The DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the 
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug register 
unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits [5:0]) in the 
Debug register.

No other CP0 registers or fields are changed due to the debug exception, and thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC  PC-4
DebugDBD  1

else
DEPC  PC
DebugDBD  0

endif
DebugD* bits at at [5:0]  DebugExceptionType
DebugHalt  HaltStatusAtDebugException
DebugDoze  DozeStatusAtDebugException
DebugDM  1
if EJTAGControlRegisterProbTrap = 1 then

PC  0xFFFF_FFFF_FF20_0200
else

if DebugControlRegisterRDVec = 1 then
if CacheErr then

PC  2#101  DebugVectorAddr28..7  2#0000000
else

PC  2#10  DebugVectorAddr29..7  2#0000000
else

if SI_UseExceptionBase
if CacheErr then

PC  0xFFFF.FFFF 2#101  SI_ExceptionBase[28:12]  0x000
else

PC  0xFFFF.FFFF 2#10  SI_ExceptionBase[29:12]  0x000
else

PC  0xFFFF_FFFF_BFC0_0480
endif

The location of the debug exception vector is determined by the ProbTrap bit in the EJTAG Control register (ECR) and 
the RDVec bit in the Debug Control register (DCR), as shown in Table 5.8. 

Table 5.8 Debug Exception Vector Addresses

ProbTrap bit in ECR 
Register

RDVec bit in 
DCR Register Debug Exception Vector Address

0 0 0xBFC0 0480

0 1 DebugVectorAddr31..7  0000000

1 0 0xFF20 0200 in dmseg
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The value in the optional drseg register DebugVectorAddr (offset 0x00020) is used as the debug exception vector when 
the ECR ProbTrap bit is 0 and when enabled through the optional RDVec control bit in the Debug Control Register (DCR). 
Bit 0 of DebugVectorAddr determines the ISA mode used to execute the handler. Figure 5.1 shows the format of the 
DebugVectorAddr register; Table 5.9 describes the DebugVectorAddr register fields.

Figure 5.1 DebugVectorAddr Register Format 

Bits 31:30 of the DebugVectorAddr register are fixed with the value 0b10, and the addition of the base address and the 
exception offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination 
of these two restrictions forces the final exception address to be in the kseg0 or kseg1 unmapped virtual address seg-
ments. For cache error exceptions, bit 29 is forced to a 1 in the ultimate exception base address, so that this exception 
always runs in the kseg1 unmapped, uncached virtual address segment.

If the TAP is not implemented, the debug exception vector location is as if ProbTrap=0.

5.8 Exception Descriptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 5.1.

5.8.1 Reset Exception (Reset)

A reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is not maskable. When a 
Reset exception occurs, the processor performs a full reset initialization, including aborting state machines, establish-
ing critical state, and generally placing the processor in a state in which it can execute instructions from uncached, 
unmapped address space. On a Reset exception, the state of the processor is not defined, with the following excep-
tions:

• The Wired register is initialized to zero.

• The Config register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

1 1

31 30 29 7 6 0

1 0 DebugVectorOffset 0 IM

Table 5.9 DebugVectorAddr Register Field Descriptions

Fields

Description Read / Write Reset StateName Bit(s)

1 31 Ignored on write; returns one on read. R 1

DebugVectorOffset 29:7 Programmable Debug Exception Vector Offset R/W Preset to 
0x7F8009

IM 0 ISA mode to be used for exception handler R 0 

0 30,6:1 Ignored on write; returns zero on read. R 0

Table 5.8 Debug Exception Vector Addresses

ProbTrap bit in ECR 
Register

RDVec bit in 
DCR Register Debug Exception Vector Address
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• The I, R, and W fields of the WatchLo register are initialized to 0.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may or 
may not be predictable.

• PC is loaded with 0xFFFF_FFFF_BFC0_0000 (P6600) or other address depending on the product type.

Cause Register ExcCode Value: 

None

Additional State Saved: 

None

Entry Vector Used: 

Reset (exact vector address depends on mode of operation - Legacy/EVA)

Operation:

Wired  0
Config  ConfigurationState
StatusBEV  1
StatusSR  0
StatusNMI  0
StatusERL  1
WatchLoI  0
WatchLoR  0
WatchLoW  0
if InstructionInBranchDelaySlot then

ErrorEPC  PC - 4
else

ErrorEPC  PC
endif
PC  0xBFC0_0000

5.8.2 Debug Single Step Exception (DSS)

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when 
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non-jump/
branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction in the 
delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug register, and 
are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next 
instruction to single step or execute when returning from debug mode. So the DEPC register will not point to the 
instruction which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register 
is never set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in 
one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though 
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken 
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g. 
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint 
exception, and DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch) just 
before the SDBBP instruction, causes a debug single step exception with DEPC pointing to the SDBBP instruction.
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To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions, 
except reset and soft reset.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.8.3 Debug Interrupt Exception (DINT)

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the 
TAP), or caused by the debug interrupt request signal to the CPU. 

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no 
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge sen-
sitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at 
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory, 
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

• PC is loaded with 0xFFFF_FFFF_BFC0_0000 (P6600) or other address depending on the product type.

Cause Register ExcCode Value:

None

Additional State Saved:

None
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Entry Vector Used:

Reset (exact vector address depends on mode of operation - Legacy/EVA)

Operation:

StatusBEV  1
StatusSR  0
StatusNMI  1
StatusERL  1
if InstructionInBranchDelaySlot then

ErrorEPC  PC - 4
else

ErrorEPC  PC
endif
PC  0xFFFF_FFFF_BFC0_0000

5.8.5 Machine Check Exception 

A machine check exception occurs when the processor detects an internal inconsistency. The following conditions 
cause a machine check exception:

• A TLBWI instruction to the FTLB and the index and VPN2 are not consistent and the EHINV bit is not set. See 
Section 3.12 of the MMU chapter.

• A TLBWI instruction to the FTLB and the PageMask register does not correspond to the FTLB page size setting 
in bits 12:8 of the Config4 register (Config4FTLB Page Size)

• A TLBP instruction and a duplicate/overlap is detected across the FTLB/VTLB.

• Any TLB lookup and a duplicate/overlap is detected across the FTLB/VTLB.

The machine check exception can be either precise or imprecise depending on the type of error. 

The machine check exception is imprecise on:

– A Load/Store Unit (LSU) or Instruction Fetch Unit (IFU) lookup matching duplicate entries

The machine check exception is precise on:

– TLBP matching duplicate entries.

– TLBWI to the FTLB with the page size != the FTLB page size.

– TLBWI to the FTLB with EHINV=0 and the FTLB set implied by the VPN not the same as the set implied by 
the index.

Cause Register ExcCode Value:

MCheck

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)
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5.8.6 Interrupt Exception (Int)

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requests is 
enabled by the Status register and the interrupt input is asserted. See 5.11 “Interrupts” on page 316 for more details 
about the processing of interrupts.

Register ExcCode Value:

Int

Additional State Saved: 

Entry Vector Used:

See 5.11.2 “Generation of Exception Vector Offsets for Vectored Interrupts” on page 322 for the entry vector used,
depending on the interrupt mode the processor is operating in.

5.8.7 Debug Instruction Break Exception (DIB)

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.8 Watch Exception — Instruction Fetch or Data Access (WATCH)

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data 
reference matches the address information stored in the WatchHi and WatchLo registers. A Watch exception is taken 
immediately if the EXL and ERL bits of the Status register are both zero and the DM bit of the Debug register is also 
zero. If any of those bits is a one at the time that a watch exception would normally be taken, then the WP bit in the 
Cause register is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in the 
Cause register to determine if the EPC register points at the instruction that caused the watch exception, or if the 
exception actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an 
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:

WATCH

Table 5.10 Register States an Interrupt Exception

Register State Value

CauseIP Indicates the interrupts that are pending.
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Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.8.9 Address Error Exception — Instruction Fetch/Data Access (AdEL/AdES)

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

• Fetch an instruction that is not aligned on a word boundary

• LL, LLE, SC, and SCE instructions with misaligned addresses

• Any load instruction with a misaligned address and cacheable coherency attribute of uncached

• Any store instruction with a misaligned address and cacheable coherency attribute of uncached

• Any load/store instructions with misaligned address to a region defined as a non-speculative region by the 
MAAR register

• Reference the kernel address space from User mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition 
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access 
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode 
was referenced by a load or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Table 5.11 Register States on Watch Exception

Register State Value

CauseWP Indicates that the watch exception was deferred until after 
StatusEXL, StatusERL, and DebugDM were zero. This bit 
directly causes a watch exception, so software must clear 
this bit as part of the exception handler to prevent a watch 
exception loop at the end of the current handler execution.

WatchHi I,R,W Set for the watch channel that matched, and indicates 
which type of match there was.
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Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.8.10 TLB Refill Exception — Instruction Fetch or Data Access (TLBL/TLBS)

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches a reference to a 
mapped address space and the EXL bit is 0 in the Status register. Note that this is distinct from the case in which an 
entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved: 

Entry Vector Used:

TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;

General exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

5.8.11 TLB Refill and XTLB Refill Exceptions — Instruction Fetch or Data Access (TLBL/
TLBS)

A TLB Refill or XTLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to a
mapped address space and the EXLbit is z ero in the CP0 S tatus register. Note that this is distinct from the case in

Table 5.12 CP0 Register States on Address Exception Error

Register State Value

BadVAddr Failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 5.13 CP0 Register States on TLB Refill Exception

Register State Value

BadVAddr Failing address.

Context The BadVPN2 field contains VA31:13 of the failing 
address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
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which an entry matches but has the valid bit off, in which case a TLB Invalid exception occurs. Refill exceptions have
distinct exception vector offsets: 0x000 for a 32-bit TLB Refill and 0x080 for a 64-bit extended TLB (“XTLB”) refill.
The XTLB refill handler is used whenever a reference is made to an enabled 64-bit address space. 

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

See Table 9.56 on page 238

Additional State Saved: 

Entry Vector Used

•      TLB Refill vector (offset 0x000) if 64-bit addresses are not enabled and Status.EXL = 0 at the time of exception.

•      XTLB Refill vector (offset 0x080) if 64-bit addresses are enabled and Status.EXL = 0 at the time of exception.

•      General exception vector (offset 0x180) in either case if Status.EXL = 1 at the time of exception

Table 5.14 CP0 Register States on TLB Refill Exception

Register State Value

Context If Config3.CTXTC bit is set, then the bits of the Context 
register corresponding to the set bits of the VirtualIndex 
field of the ContextConfig register are loaded with the bits 
(starting at bit 31) of the virtual address that missed.

If Config3.CTXTC bit is clear, then the BadVPN2 field 
contains VA31:13 of the failing address

XContext If Config3.CTXTC bit is set, then the bits of the BadVPN2 
field corresponding to the set bits of the VirtualIndex
field of the ContextConfig register are loaded with the 
high-order bits (starting at SEGBITS-1) of the virtual 
address that missed and the R field contains VA[63:62]
of the failing address.

If Config3.CTXTC bit is clear, then the XContext 
BadVPN2 field contains VA[SEGBITS-1:13], and the 
XContext R field contains VA[63:62] of the failing 
address.

EntryHi The EntryHi VPN2 field contains VA[SEGBITS-1:13] of 
the failing address and the EntryHi R field contains 
VA[63:62] of the failing address; the ASID field contains 
the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
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5.8.12 TLB Invalid Exception — Instruction Fetch or Data Access (TLBINV)

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in the Status register.

• A TLB entry matches a reference to a mapped address space, but the matched entry has the valid bit off.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.8.13 TLB Execute-Inhibit Exception (TLBXI)

A TLB execute-inhibit exception occurs when there is a execute access from a TLB entry whose XI bit is set. The TLB 
execute-inhibit exception type can only occur if execute-inhibit exceptions are enabled by setting bit 30 (XIE) in the 
PageGrain register.

In addition, the type of exception taken depends on the state of the PageGrainIEC bit. If the XI bit of the entry is set, 
and the PageGrainIEC bit is set, a TLBXI exception is taken. If the PageGrainIEC bit is cleared, a TLBL exception is 
taken.

Cause Register ExcCode Value:

if PageGrain.IEC == 0 TLBL

if PageGrain.IEC == 1 TLBXI

Table 5.15 CP0 Register States on TLB Invalid Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing 
address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
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Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.8.14 TLB Read-Inhibit Exception (TLBRI)

A TLB read-inhibit exception occurs when there is an attempt to read a TLB entry whose RI bit is set. The TLB read-
inhibit exception type can only occur if read-inhibit exceptions are enabled by setting bit 31 (RIE) in the PageGrain 
register.

In addition, the type of exception taken depends on the state of the PageGrainIEC bit. If the RI bit of the entry is set, 
and the PageGrainIEC bit is set, a TLBRI exception is taken. If the PageGrainIEC bit is cleared, a TLBL exception is 
taken.

Cause Register ExcCode Value:

if PageGrain.IEC == 0 TLBL

if PageGrain.IEC == 1 TLBRI

Table 5.16 CP0 Register States on TLB Execute-Inhibit Exception

Register State Value

BadVAddr Failing address.

Context If the Config3.CTXTC bit is set, then the bits of the Context 
register corresponding to the set bits of the VirtualIndex 
field of the ContextConfig register are loaded with the 
high-order bits of the virtual address that misssed.

If the Config3.CTXTC bit is clear, then the BadVPN2 field 
contains VA31:13 of the failing address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
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Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.8.15 FTLB Parity Exception

An FTLB parity exception occures when a parity error is detected on an FTLB read operation. The error can occur in 
either the FTLB Tag RAM of the FTLB Data RAM. Note that FTLB parity errors can only occur when the bit 31 (PE) 
of the CP0 Error Control register (ErrCtl.PE) is set, enabling system-wide parity errors.

When an FTLB parity error occurs, hardware sets bits 31:30 of the CP0 Cache Error register (CacheErr.EREC) to a 
value of 2’b11 to indicate that the register contains information based on a TLB error. When the EREC field is set to 
2’b11, bits 29:28 of the Cache Error register (CacheErr.ED and CacheErr.ET) indicate if the error occurred in the FTLB 
data RAM or the FTLB tag RAM respectively.

Additional State Saved: 

Entry Vector Used:

Cache Error vector (offset 0x100)

Table 5.17 CP0 Register States on TLB Read-Inhibit Exception

Register State Value

BadVAddr Failing address.

Context If the Config3.CTXTC bit is set, then the bits of the Context 
register corresponding to the set bits of the VirtualIndex 
field of the ContextConfig register are loaded with the 
high-order bits of the virtual address that misssed.

If the Config3.CTXTC bit is clear, then the BadVPN2 field 
contains VA31:13 of the failing address.

EntryHi The VPN2 field contains VA31:13 of the failing address; 
the ASID field contains the ASID of the reference that 
missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 5.18 CP0 Register States on an FTLB Parity Exception

Register State Value

CacheErr Error state. Defined in bits 31:28 of this register.

ErrorEPC Restart PC

StatusERL Set to 1
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5.8.16 Cache Error Exception (ICache Error/DCache Error)

A cache error exception occurs when an instruction or data reference detects a cache tag or data error. This exception 
is not maskable. Because the error was in a cache, the exception vector is to an unmapped, uncached address. This 
exception can be imprecise and the ErrorEPC may not point to the instruction that saw the error. Additionally, because 
the caches on the cores within the P6600 core are coherent, cache errors detected on other cores could indicate data 
corruption for a process on this CPU. An error on another CPU will still cause a Cache Error exception, with the 
CacheErrEE indicating that the error occurred on another processor.

L2 cache errors are considered to be imprecise. An L2 cache error on a data load operation can potentially corrupt the 
target GPR.

Cause Register ExcCode Value

N/A

Additional State Saved 

Entry Vector Used

Cache error vector (offset 0x100)

5.8.17 Bus Error Exception — Instruction Fetch or Data Access (IBE)

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an unca-
cheable reference) and that request terminates in an error. The bus error exception can occur on either an instruction 
fetch or a data read. Bus error exceptions cannot be generated on data writes. Bus error exceptions that occur on an 
instruction fetch have a higher priority than bus error exceptions that occur on a data access. 

Instruction errors are precise, while data bus errors can be imprecise. These errors are taken when the ERR code is 
returned on the OC_SResp input.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.18 Debug Software Breakpoint Exception (DBp)

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD 
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Table 5.19 CP0 Register States on Cache Error Exception

Register State Value

CacheErr Error state

ErrorEPC Restart PC
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Debug Register Debug Status Bit Set:

DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.19 Execution Exception — System Call (Sys)

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A system 
call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.20 Execution Exception — Breakpoint (Bp)

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.21 Execution Exception — Coprocessor Unusable (CpU)

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of 
the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU
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Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.8.22 Execution Exception — Reserved Instruction (RI)

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority. 
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed. 
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:

RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.23 Execution Exception — Floating Point Exception (FPE)

A floating point exception is initiated by the floating point coprocessor. 

Cause Register ExcCode Value:

FPE

Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.8.24 Execution Exception — Integer Overflow (Ov)

The integer overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An 
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Table 5.20 Register States on Coprocessor Unusable Exception

Register State Value

CauseCE Unit number of the coprocessor being referenced

Table 5.21 Register States on Floating Point Exception

Register State Value

FCSR Indicates the cause of the floating point exception
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Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.25 Execution Exception — Trap (Tr)

The trap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap exception 
occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180) 

5.8.26 Debug Data Break Exception (DDBL/DDBS)

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception 
has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the 
debug handler. 

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.27 TLB Modified Exception (TLB Mod)

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the following con-
dition is true:

• The matching TLB entry is valid, but not dirty.

Cause Register ExcCode Value:

Mod
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Additional State Saved: 

Entry Vector Used:

General exception vector (offset 0x180)

5.9 Synchronous and Synchronous Hypervisor Exceptions

During guest mode execution, control can be returned to root mode at any time. When an exception condition is 
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any 
exception state is saved. As a result, exception state in the guest CP0 context is not affected.

The switch to root mode is achieved by setting Root.StatusEXL=1 or Root.StatusERL=1 (as appropriate) before any 
other state is saved. This ensures that all exception state is stored into root CP0 context, regardless of whether the pro-
cessor was executing in root or guest mode at the point where the exception was detected.

Table 5.23 summarizes hypervisor conditions.

5.9.1 Guest Privileged Sensitive Instruction Exception

A Guest Privileged Sensitive Instruction exception occurs when an attempt is made to use a Guest Privileged Sensi-
tive Instruction from guest mode, where the instruction is either not permitted in guest mode or is not enabled in guest 
mode. The list of sensitive instructions follows:

• WAIT

• CACHE, CACHEE
- when GuestCtl0CG=0

Table 5.22 Register States on TLB Modified Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing address.

EntryHi The VPN2 field contains VA31:13 of the failing address; the ASID 
field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 5.23 Hypervisor Exception Conditions

Type
Root-mode 

Vector Causes Reference

Synchronous Hypervisor General Guest Privileged Sensitive Instruction Section 5.9.1

Synchronous Hypervisor General Guest Software Field Change Section 5.9.2

Synchronous Hypervisor General Guest Hardware Field Change Section 5.9.3

Synchronous Hypervisor General Guest Reserved Instruction Redirect Section 5.9.4

Synchronous Hypervisor General Hypercall Section 5.9.5
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- with anything other than ‘Address’ as Effective Address Operand Type, if GuestCtl0CG=1. Specifically 
CACHE(E) instructions with code 0b000, 0b001, 0b010, 0b011 will cause a GPSI. 

GuestCtl0ExtCGI is an optional qualifier of GuestCtl0CG. If GuestCtl0ExtCGI =1 and GuestCtl0CG=1 then 
CACHE(E) instructions of type Index Invalidate (code 0b000) are excluded from the CACHE(E) instruc-
tions that cause a GPSI.

• TLBWR, TLBWI, TLBR, TLBP, TLBINV, TLBINVF when GuestCtl0AT != 3. 
- TLBINV, TLBINVF are optional in the baseline architecture.

• Access to PageGrain, Wired, SegCtl0, SegCtl1, SegCtl2, PWBase, PWField, PWSize, PWCtl when GuestCtl0AT != 3 
(Guest TLB resources disabled)

• Write access to any Config0-7 register when GuestCtl0CF=0

• Access to Count or Compare registers when GuestCtl0GT=0
- including indirect read from CC using RDHWR providing CC is present and enabled by guest HWREna.

• Access to CP0 registers, or other non-CP0 sources (CCRes, Sync_Step), using RDHWR when 
GuestCtl0CP0=0 providing the registers are enabled for access by guest user or kernel.

- Guest user access is enabled either by guest HWREna or StatusCU0.

- Guest kernel always has access to registers specified by RDHWR, regardless of guest HWREna and 
StatusCU0.
- Guest access to CC may also cause GPSI based on GuestCtl0GT.

Whether a guest RDHWR access to an implementation defined register causes a GPSI is implementation 
defined i.e., the access may cause a GPSI or not in an implementation dependent manner. Access to reserved 
registers with RDWR generates a Reserved Instruction exception in respective context.

Guest GPSI applies to both guest user and kernel access, as GuestCtl0CP0 applies to guest kernel access also. 

• Write to Count register

• All Privileged Instruction, excluding selected Release 3 EVA instructions, when GuestCtl0CP0=0

The baseline architecture defines privileged instructions as the following: CACHE, DI, EI, MTC0, MFC0, 
ERET, DERET, RDPGPR, WRPGPR, WAIT, all Enhanced Virtual Addressing (EVA) related instructions 
(e.g., LBE, LBUE) (optional), and all TLB related instructions.

All EVA instructions except CACHEE are excluded from causing a GPSI when GuestCtl0CP0=0.

Privileged instructions are defined in Volume II of the architecture. Instructions that are supported depend on 
the architecture release that an implementation is compliant with, and in some cases instructions are optional 
within a release.

• Access to any Guest CP0 registers that are active in guest context and always take Guest Privileged Sensi-
tive Instruction Exception. 

Cause Register ExcCode value

GE (27, 0x1B)
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GuestCtl0 Register GExcCode value

GPSI (0, 0x00)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

5.9.2 Guest Software Field Change Exception

A Guest Software Field Change exception occurs when the value of certain CP0 register bitfields changes during 
guest-mode execution.

Change is caused by MTC0 execution, the instruction is copied to the root context BadInstr register (if the implemen-
tation is so equipped) and the exception is taken. The exception is used to allow the hypervisor to track changes to 
certain guest-context fields (e.g. StatusRP or CauseIV). This can be used to ensure the proper operation of the emulated 
guest virtual machine.

This exception can only be raised by a MTC0 instruction executed in guest mode. It is the responsibility of Root to 
increment EPC in order to return to the instruction following the MTC0. Note that the guest MTC0 is never executed, 
unless causing GSFC exception is disabled by GuestCtl0ExtFCD , or selectively by GuestCtl0SFC1/2. It is the respon-
sibility of Root to modify the field on the behalf of Guest, providing guest access causes a GSFC.

If a field indicated below is meant to enable access to a resource, but the implementation does not support the 
resource, then a GSFC exception is not taken. As an example, if Guest.Config1MD=0, i.e.,, MDMX Module is not 
supported, then a guest write to Guest.StatusMX will not cause a GSFC exception.

Changes to the following CP0 register bit fields always trigger the exception.

• Guest.Status bits: CU[2:1], FR, MX, BEV, SR, NMI, UM/KSU, ERL, Impl (17:16)

A change to UM/KSU can only cause a GSFC if GuestCtl0MC=1. Whether guest access to StatusImpl causes a 
GSFC is implementation-dependent.

The occurrence of GSFC on guest write to StatusFR is dependent on Config5UFR as described below.

• Config5 : MSAEn. (Enable for MIPS SIMD Architecture module. Applicable only if MSA implemented.)
: UFR. (User FR enable)

• PageGrain: ELPA. 

• Guest.Cause bits: DC, IV

• Guest.IntCtl bits: VS

• Root.PerfCnt w/ PerfCntEC=2/3: Event, EventExt(Optional)

PerfCnt does not exist in guest context. When PerfCntEC=2/3, however root context registers are accessible to 
Guest. GPSI on guest access is only taken only in this configuration.
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Guest software may modify CU[2:1] often. To prevent frequent GSFC on these events, a set of enables, 
GuestCtl0SFC2 and GuestCtl0SFC1, have been provided.

Guest write of 0 to SR or NMI will raise this exception. Guest write of 1 to Guest StatusSR or StatusNMI is UNPRE-
DICTABLE behavior as specified in the base architecture. It is optional for an implementation to cause this excep-
tion on a guest write of 1 to either the SR or NMI within the Status register. Guest StatusSR or StatusNMI are never set by 
hardware, nor will Root software write of 1 to either Guest StatusSR or StatusNMI cause an interrupt in Guest context.

Guest software modification of EXL will not cause a GSFC. This is because guest kernel will often write EXL=1 
prior to setting KSU to user mode(b10), allowing processor to stay in kernel mode. ERET will clear EXL, affecting 
change to user mode. To avoid frequent GSFC on such events, guest kernel modification of EXL is not trapped on.

If Root PerfCnt.EC=2 or 3, then Guest can access shared Root PerfCnt without GPSI exception. However, any 
change to the Event or EventExt fields must be reported as a GSFC exception to Root.

Release 6 introduces an optional feature which allows user code to change the value of StatusFR. The presence of this 
feature in a Release 6 implementation is determined by the writeable state of Config5UFR. If Config5UFR=1, then a 
GSFC exception on guest write to StatusFR is not generated.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GSFC(1, 0x01)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180)

5.9.3 Guest Hardware Field Change Exception

A Guest Hardware Field Change Exception is caused by exception/interrupt processing or a hardware initiated field 
change. The exception is taken after Guest state has been updated and before the following instruction is executed.

A Guest Hardware Field Change exception is considered synchronous with respect to the Guest action that caused it. 
In terms of priority, it is only lower than any asynchronous Root exception. It is not prioritized with respect to Guest 
exceptions: Guest exceptions are first prioritized amongst themselves, and then the Guest exception may then subse-
quently cause a Hardware Field Change exception.

When GuestCtl0ExtFCD = 1, then no Guest Hardware Field Change exception is triggered. Hardware events that 
cause the described events must be allowed to modify state as in the baseline architecture.

When GuestCtl0MC=1, changes to the following bit-fields trigger this exception.

• Guest Status bits: EXL.
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A change in value in this field causes a Guest Hardware Field Change exception, regardless of whether there is an 
effective change in mode.

Since events (Reset, NMI, Cache Error) that set ERL are always processed by Root, hardware initiated field changes 
involving ERL will not result in this exception. 

Guest StatusEXL will be modified by hardware on a Guest exception. The Guest Hardware Field Change exception is 
taken prior to the actual Guest exception handler (when EXL is set) and after the Guest exception handler is com-
pleted (when ERET clears EXL) but prior to the first Guest instruction after the handler. The Guest Hardware Field 
Change exception handler must compare state between successive invocations to determine if state of the EXL bit has 
changed.

For the transition of EXL from 0 to 1, it is recommended that guest context be loaded with exception related data as if 
the guest exception handler were to be executed. Prior to execution of first instruction of guest handler, hardware 
must cause a GHFC trap to root. The only root state modified is Root StatusEXL(=1), CauseExcCode(=”Guest Exit”) 
and GuestCtl0GExcCode(=”GHFC”). Hardware handling of transition of EXL from 1 to 0 should be similar. In this 
manner, the hardware overhead of setting appropriate context for guest and root is kept to a minimum.

The GHFC exception must be viewed atomically with respect to the guest exception that caused it. In a recommended 
implementation, the guest exception will cause guest context to be updated simultaneously along with root context 
for the GHFC exception. Guest entry on completion of GHFC exception will cause related guest exception to be 
taken. 

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GHFC(9, 0x09)

Entry Vector Used

General Exception Vector (offset 0x180).

5.9.4 Guest Reserved Instruction Redirect

A Guest Reserved Instruction Redirect Exception occurs when GuestCtl0RI=1 and a guest mode instruction would 
trigger a Reserved Instruction Exception. This exception is raised before the guest mode exception can be taken. The 
instruction is not executed, the exception is taken in Root mode and the Guest context is unchanged.

The Reserved Instruction Redirect (GRR) must be prioritized in the context of other guest-mode exceptions. For e.g., 
a Coprocessor Unusable exception due to guest context is ranked higher in priority than a Reserved Instruction excep-
tion. Thus a Reserved Instruction Redirect exception is not taken in this case. Another e.g., relates to the case where 
Root.StatusCU1=0, while Guest.Status.CU1=1. If the processor is in guest-mode and executes a reserved COP1 
instruction, then the Coprocessor Unusable exception is a result of Root qualification. It would be ranked higher pri-
ority than a Reserved Instruction exception for the same guest-mode instruction. 

Cause Register ExcCode value

GE (27, 0x1B)
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GuestCtl0 Register GExcCode value

GRR (3, 0x03)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

5.9.5 Hypercall Exception

A Hypercall Exception occurs when a HYPCALL instruction is executed. This is a Privileged Instruction and thus 
can only be executed in kernel mode (root-kernel or guest-kernel mode) or debug mode. It is specifically meant to 
cause a guest-exit.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

Hyp (2, 0x02)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

5.10 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions 

• TLB miss exceptions

• Reset and NMI exceptions

• Debug exceptions

Generally speaking, exceptions are handled by hardware and then serviced by software. Note that unexpected debug 
exceptions to the debug exception vector at 0xFFFF_FFFF_BFC0_0200 may be viewed as a reserved instruction 
since uncontrolled execution of an SDBBP instruction caused the exception. The DERET instruction must be used at 
return from the debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET 
instruction returns to the address in the DEPC register.
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Figure 5.2 General Exception Handler (HW) 

To General Exception Servicing Guidelines

=1 (bootstrap)= 0 (normal)
Status.BEV

Comments

PC  0xFFFF_FFFF_8000_0000 + 180
(unmapped, cached)
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Instr. in Br.Dly. 
Slot? 

Yes

Processor forced to Kernel Mode
& interrupts disabled
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Check if exception within another 
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EnHi and Context are set only for TLB- 
Invalid, Modified, & Refill exceptions. 
BadVA is set only for TLB- Invalid, 
Modified, Refill- and VCED/I exceptions. 
Note: not set if it is a Bus Error

EntryHi  VPN2, ASID
Context  VPN2

Set Cause EXCCode,CE
BadVA  VA

Exceptions other than Reset, NMI, or first-level TLB miss. Note: Interrupts can be 
masked by IE or IMs, and Watch is masked if EXL = 1.

No
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Figure 5.3 General Exception Servicing Guidelines (SW) 

ERET

MTC0 -
EPC,STATUS

EXL = 1

Service Code

* ERET is not allowed in the branch delay slot of another 
Jump Instruction
* Processor does not execute the instruction which is in the 
ERET’s branch delay slot
* PC  EPC; EXL  0
* LLbit  0

Check Cause value & Jump to 
appropriate Service Code

* After EXL=0, all exceptions allowed (except 
interrupt if masked by IE) 

(Optional - only to enable Interrupts while keeping Kernel Mode)

MTC0 -
Set Status bits:

UM0, EXL0, IE1

MFC0 -
Context, EPC, Status, Cause

* Unmapped vector so TLBMod, TLBInv, or TLB Refill 
exceptions not possible
* EXL=1 so Watch and Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

Comments
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Figure 5.4 TLB Miss Exception Handler (HW) 

To TLB Exception Servicing Guidelines
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EPC  (PC - 4)
Cause.BD  1
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Cause.BD  0
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PC  0xFFFF_FFFF_BFC0_0200 + 
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Status.BEV
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EXL EXL

EntryHi  VPN2, ASID
Context  VPN2

Set Cause EXCCode,CE
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Slot? 
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Figure 5.5 TLB Exception Servicing Guidelines (SW) 

Comments

ERET

Service Code

MFC0 -CONTEXT

* Unmapped vector so TLBMod, TLBInv, or TLB Refill 
exceptions not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

* Load the mapping of the virtual address in Context Reg. 
Move it to EntryLo and write into the TLB
* There could be a TLB miss again during the mapping of the 
data or instruction address. The processor will jump to the 
general exception vector since the EXL is 1. (Option to 
complete the first level refill in the general exception handler 
or ERET to the original instruction and take the exception 
again)

* ERET is not allowed in the branch delay slot of another 
Jump Instruction
* Processor does not execute the instruction which is in the 
ERET’s branch delay slot
* PC  EPC; EXL  0
* LLbit  0
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Figure 5.6 Reset and NMI Exception Handling and Servicing Guidelines 
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5.11 Interrupts

Release 6 of the MIPS64 architecture, implemented by the P6600 core, includes support for vectored interrupts and 
the implementation of a new interrupt mode that permits the use of an external interrupt controller.

Additionally, internal performance counters have been added to the P6600 core. These counters can be configured to 
count various events within the CPU. When the MSB of the counter is set, it can trigger a performance counter inter-
rupt. This interrupt, like the timer interrupt, is an output from the core that can be brought back into the cores interrupt 
pins in a system-dependent manner.

The Fast Debug Channel feature in EJTAG provides a low overhead means for sending data between CPU software 
and the EJTAG probe. It includes a pair of FIFOs for transmit and receive data. Software can define FIFO thresholds 
for generating an interrupt. The fast debug channel interrupt is also routed similarly to the timer and performance 
counter interrupts. The interrupt status is made available on an output pin and can be brought back into the cores 
interrupt pins.

5.11.1 Interrupt Modes

The P6600 core includes support for three interrupt modes:

• Interrupt Compatibility mode, in which the behavior of the P6600 core is identical to the behavior of an imple-
mentation of Release 1 of the Architecture.

• Vectored Interrupt (VI) mode adds the ability to prioritize and vector interrupts to a handler dedicated to that 
interrupt. The presence of this mode is denoted by the VInt bit in the Config3 register. Although this mode is archi-
tecturally optional, it is always present on the P6600 core, so the VInt bit will always read as a 1.

• External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support 
for an external interrupt controller that handles prioritization and vectoring of interrupts. As with VI mode, this 
mode is architecturally optional. The presence of this mode is denoted by the VEIC bit in the Config3 register. On 
the P6600 core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to indicate 
the presence of an external interrupt controller.

Following reset, the P6600 core defaults to Compatibility mode, which is fully compatible with all implementations 
of Release 1 of the Architecture.

Table 5.24 shows the current interrupt mode of the processor as a function of the Coprocessor 0 register fields that 
can affect the mode. 

Table 5.24 Interrupt Modes

StatusBEV CauseIV IntCtlVS Config3VINT Config3VEIC Interrupt Mode

1 x x x x Compatibility

x 0 x x x Compatibility

x x 0 x x Compatibility

0 1 0 1 0 Vectored Interrupt

0 1 0 x 1 External Interrupt Controller

0 1 0 0 0 Cannot occur because IntCtl VS cannot be non-zero if 
neither Vectored Interrupt nor External Interrupt Con-
troller mode is implemented.

“x” denotes don’t care
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5.11.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 0x180 (if CauseIV = 0) or vector offset 0x200 (if 
Cause IV = 1). This mode is in effect when any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which is the case if vectored interrupts are not implemented or have been disabled.

Here is a typical software handler for compatibility mode:

/*
 * Assumptions:
 *  - CauseIV = 1 (if it were zero, the interrupt exception would have to
 *                 be isolated from the general exception vector before arriving
 *                 here)
 *  - GPRs k0 and k1 are available
 *  - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted.  Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simple UART interrupt). The
 *   SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 *   case the software model determines which interrupts are disabled during
 *   the processing of this interrupt. Typically, this is either the single
 *   StatusIM bit that corresponds to the interrupt being processed, or some
 *   collection of other StatusIM bits so that “lower” priority interrupts are
 *   also disabled. The NestedInterrupt routine below is an example of this type.
 */
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SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simply return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * saving any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below cannot cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/*   this must include at least the IM bit */
/*   for the current interrupt, and may include */
/*   others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/*   re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with the core running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /*   and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /*  and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */
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5.11.1.2 Vectored Interrupt Mode

In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be 
used to direct each interrupt to a dedicated handler routine. VI mode is in effect when all the following conditions are 
true: 

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS  0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer, 
performance counter, and fast debug channel interrupts are combined in a system-dependent way (external to the 
CPU) with the hardware interrupts (the interrupt with which they are combined is indicated by the IntCtlIPTI/IPCI/IPFDCI 
fields) to provide the appropriate relative priority of the those interrupts with that of the hardware interrupts. The pro-
cessor interrupt logic ANDs each of the CauseIP bits with the corresponding StatusIM bits. If any of these values is 1, 
and if interrupts are enabled (StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority 
encoder scans the values in the order shown in Table 5.25. 

A typical software handler for Vectored Interrupt mode bypasses the entire sequence of code following the 
IVexception label shown for the compatibility mode handler above. Instead, the hardware performs the prioritiza-
tion, dispatching directly to the interrupt processing routine.

A nested interrupt is similar to that shown for compatibility mode. Such a routine might look as follows:

NestedException:
/*
* Nested exceptions typically require saving the EPC and Status registers,
* disabling the appropriate IM bits in Status to prevent an interrupt loop,
* putting the processor in kernel mode, and re-enabling interrupts. The sample 
* code below cannot cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/

Table 5.25 Relative Interrupt Priority for Vectored Interrupt Mode

Relative 
Priority

Interrupt 
Type

Interrupt 
Source

Interrupt Request 
Calculated From

Vector Number 
Generated by 

Priority Encoder

Highest Priority Hardware HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

HW0 IP2 and IM2 2

Software SW1 IP1 and IM1 1

Lowest Priority SW0 IP0 and IM0 0
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mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */

/*   this must include at least the IM bit */
/*   for the current interrupt, and may include */
/*   others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/*   re-enable interrupts */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /*   and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /*  and EPC */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

5.11.1.3 External Interrupt Controller Mode

External Interrupt Controller (EIC) mode redefines the way that the processor interrupt logic is configured to provide 
support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, 
including hardware, software, timer, fast debug channel, and performance counter interrupts, and directly supplying 
to the processor the vector number of the highest priority interrupt. 

EIC interrupt mode is in effect if all of the following conditions are true:

• Config3VEIC = 1

• IntCtlVS  0

• CauseIV = 1

• StatusBEV = 0

In EIC mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0) and the timer, performance 
counter, and fast debug channel interrupt requests (CauseTI/PCI/FDCI) to the external interrupt controller, which priori-
tizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt controller can be a 
hardwired logic block, or it can be configurable by control and status registers. This allows the interrupt controller to 
be more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest prior-
ity interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit 
encoded value in the range 0..63, inclusive. The values 1..63 represent the lowest (1) to highest (63) RIPL for the 
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interrupt to be serviced. A value of 0 indicates that no interrupt requests are pending. The interrupt controller inputs 
this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC mode.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is 
currently operating (a value of zero indicates that no interrupt is currently being serviced). When the interrupt con-
troller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested 
interrupt has a higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled 
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt request is signaled to the pipeline. When the processor starts 
the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external interrupt 
controller to notify it that the request is being serviced. The interrupt exception uses the value of CauseRIPL as the vec-
tor number. Because CauseRIPL is only loaded by the processor when an interrupt exception is signaled, it is available 
to software during interrupt processing.

The operation of EIC interrupt mode is shown in Figure 5.7.

Figure 5.7 Interrupt Generation for External Interrupt Controller Interrupt Mode                                

A typical software handler for EIC mode bypasses the entire sequence of code following the IV exception label 
shown for the compatibility-mode handler above. Instead, the hardware performs the prioritization, dispatching 
directly to the interrupt processing routine. 

A nested interrupt is similar to that shown for compatibility mod. It also need only copy CauseRIPL to StatusIPL to pre-
vent lower priority interrupts from interrupting the handler. Here is an example of such a routine:

NestedException:
/*
* Nested exceptions typically require saving the EPC and Status registers,
* disabling the appropriate IM bits in Status to prevent an interrupt loop, 
* putting the processor in kernel mode, and re-enabling interrupts. 
* The sample code below can not cover all nuances of this processing and is
* intended only to demonstrate the concepts.
*/
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mfc0 k1, C0_Cause /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/*   re-enable interrupts */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

5.11.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control 
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 0x200 to create the 
exception vector offset. For VI mode, the vector number is in the range 0..7, inclusive. For EIC interrupt mode, the 
vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtlVS field specifies 
the spacing between vector locations. If this value is zero (the default reset state), the vector spacing is zero and the 
processor reverts to Interrupt Compatibility mode. A non-zero value enables vectored interrupts. Table 5.26 shows 
the exception vector offset for a representative subset of the vector numbers and values of the IntCtlVS field. 

The general equation for the exception vector offset for a vectored interrupt is:

Table 5.26 Exception Vector Offsets for Vectored Interrupts 

Vector Number

Value of IntCtlVS Field

5’b00001 5’b00010 5’b00100 5’b01000 5’b10000

0 0x0200 0x0200 0x0200 0x0200 0x0200

1 0x0220 0x0240 0x0280 0x0300 0x0400

2 0x0240 0x0280 0x0300 0x0400 0x0600

3 0x0260 0x02C0 0x0380 0x0500 0x0800

4 0x0280 0x0300 0x0400 0x0600 0x0A00

5 0x02A0 0x0340 0x0480 0x0700 0x0C00

6 0x02C0 0x0380 0x0500 0x0800 0x0E00

7 0x02E0 0x03C0 0x0580 0x0900 0x1000





61 0x09A0 0x1140 0x2080 0x3F00 0x7C00

62 0x09C0 0x1180 0x2100 0x4000 0x7E00

63 0x09E0 0x11C0 0x2180 0x4100 0x8000
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vectorOffset  0x200  (vectorNumber  (IntCtlVS  0b00000))

5.11.3 Global Interrupt Controller

The Global Interrupt Controller (GIC) handles the routing and masking of local interrupts, such as the timer, perfor-
mance counter, fast debug channel interrupts, inter-processor interrupts, and external interrupts. This block can be 
configured to support various numbers of external interrupts and to support any of the CPU interrupt modes.

An interactive GUI is available to simplify the setup of desired event-routing through the GIC. The tool outputs a C-
language function covering all required programming registers of the GIC.
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Coherence Manager

The coherence manager (CM2) in the P6600 Multiprocessing System is used to maintain coherency between the L1 
caches of each core, and the shared L2 cache within the CM2. The CM2 also contains the Global Interrupt Controller 
(GIC), and Cluster Power Controller (CPC) and manages the interface of those components to the cores and the 
IOCU. The CM2 adds support for virtualization and L2 prefetching. Some of the new features are listed in Section 
6.1, "CM2 Features".

The P6600 Global Control Registers address space (GCR) contains control/status registers for the entire P6600 Mul-
tiprocessing System cluster (see Section 6.4 “Global Control Block”), as well as the individual P6600 cores (see 
Section 6.5 “Core-Local and Core-Other Control Blocks”) in the cluster.

The GCR address space has a total size of 32 KBytes, which is divided into 8 KByte blocks as described in Section 
6.2 “Coherence Manager Address Map”. The location of the GCR block in the system address map is controlled by 
the GCR_BASE register. 

Physically, the registers are located within the GCR block of the Coherence Manager (CM2) and are accessed by the 
P6600 cores using 32-bit aligned uncached load/store instructions, or by I/O devices via the I/O Coherence Unit 
(IOCU), using read/write instructions.

This chapter contains the following sections:

• Section 6.1 “CM2 Features”

• Section 6.2 “Coherence Manager Address Map”

• Section 6.3 “CM2 Programming”

• Section 6.4 “Global Control Block”

• Section 6.5 “Core-Local and Core-Other Control Blocks”

• Section 6.6 “Global Debug Control Block”

6.1 CM2 Features

The P6600 coherence manager contains the following features:

• 128-bit data width between the CM2 and Cores, the CM2 and IOCU, IOCU to memory subsystem and CM2 to 
memory. 

• When configured with 128-bit data the IOCU can handle requests of up to 256 bytes in length (previously was 
restricted to 128 bytes).

• The L2 Prefetcher that can dramatically improve performance for workloads with linear access patterns, such as 
memcopy. 

• 40-bit address through the CM2 and IOCU.

• The CM2 PDtrace formats are extended to support 40-bit addresses.
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• Virtualization support has been added to the General Interrupt Controller (GIC)

• Virtualization support via new IOMMU component included in IOCU.

• New performance counter events/qualifiers to measure L2 prefetcher effectiveness.

• New IOMMU functionality is embedded in the IOCU. An IOMMU standalone component is also available.

• Register access to multiple IOMMU’s supported.

• CM Trace has a new field that indicates internal source of CPU request (instruction fetch, data load, prefetch 
instruction, hardware table walker). 

• When Virtualization is enabled, the Guest ID is driven with the request on the main memory OCP port and the 
IOCU's Memory Mapped IO OCP Port.

6.2 Coherence Manager Address Map

Table 6.1 shows the address map of the four, 8-KB GCR blocks relative to the GCR_BASE as defined in the GCR Base 
Register. Each of these blocks of registers are described in the following sections.

6.2.1 Block Offsets Relative to the Base Address

The block offsets for each of the four blocks listed in Table 6.1 above are relative to a GCR base address and can be 
located anywhere in physical memory. The base address is a 17-bit value that is programmed into the GCR_BASE 
field of the GCR Base register located at offset address 0x00_0000 in the Global Control Block. The MIPS default 
location for the GCR_BASE address is 0x00_1FBF_8. To determine the physical address of each block using the 
MIPS default, this value would be added to the GCR block offset to derive the absolute physical address as shown in 
Table 6.2. 

Table 6.1 P6600 Control Space Address Map (Relative to GCR_BASE[39:15]) 

Address Range Size (bytes) Description

0x00_0000 - 0x00_1FFF 8 KB Global Control Block. Contains registers pertaining to the global system func-
tionality. All cores can access this block of registers.

0x00_2000 - 0x00_3FFF 8 KB Core-Local Control Block (aliased for each P6600 core). Contains registers 
pertaining to the P6600 core issuing the request. Each core has its own copy of 
registers within this block.

0x00_4000 - 0x00_5FFF 8 KB Core-Other Control Block (aliased for each P6600 core). This block of 
addresses gives each Core a window into another cores Core-Local Control 
Block. Before accessing this space, the Core-Other_Addressing Register in the 
Local Control Block must be set with the CORENum of the target Core.

0x00_6000 - 0x00_7FFF 8 KB Global Debug Block. Contains global registers useful in debugging the P6600 
MPS.

Table 6.2  Absolute Address of GCR Register Blocks Using the MIPS Default 

MIPS Default Base GCR Block Offset Absolute Physical Address
Size 

(bytes) Description

0x00_1FBF_8 + 0x0000 - 0x1FFF = 0x00_1FBF_ 8000 - 
0x00_1FBF_9FFF

8 KB Global Control Block. 
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6.2.2 Register Offsets Relative to the Block Offsets

In addition to the block offsets, the register offsets provided in each register description of this chapter are relative to 
the block offsets shown in Table 6.2 above. To determine the physical address of each register, the MIPS default base 
address is added to the corresponding GCR block offset plus the actual register offset to derive the absolute physical 
address as shown in Table 6.3. Note that this example shows only a few selected registers of the Global Control 
Block. 

The registers within the Core-Local blocks would be accessed in a similar manner as shown in Table 6.4. 

0x00_1FBF_8 + 0x2000 - 0x3FFF = 0x00_1FBF_ A000 - 
0x00_1FBF_BFFF

8 KB Core-Local Control Block

0x00_1FBF_8 + 0x4000 - 0x5FFF = 0x00_1FBF_ C000 - 
0x00_1FBF_DFFF

8 KB Core-Other Control Block 

0x00_1FBF_8 + 0x6000 - 0x7FFF = 0x00_1FBF_ E000 - 
0x00_1FBF_FFFF

8 KB Global Debug Block

Table 6.3  Absolute Address of Individual Global Control Block Registers

MIPS Default 
Base

Global Register 
Block Offset

Global Register 
Offset

Absolute Physical 
Address Global Control Register

0x00_1FBF_8 + 0x0000 + 0x0000 = 0x00_1FBF_ 8000 CM2 Configuration. 

0x00_1FBF_8 + 0x0000 + 0x0008 = 0x00_1FBF_ 8008 GCR Base. 

0x00_1FBF_8 + 0x0000 + 0x0010 = 0x00_1FBF_ 8010 CM2 Control. 

0x00_1FBF_8 + 0x0000 + 0x0018 = 0x00_1FBF_ 8018 CM2 Control2. 

0x00_1FBF_8 + 0x0000 + 0x0020 = 0x00_1FBF_ 8020 CM2 Access Privilege. 

........ ......... ....... ....... .........

0x00_1FBF_8 + 0x0000 + 0x0228 = 0x00_1FBF_ 8228 Attribute-Only Region 3 Mask. 

Table 6.4  Absolute Address of Individual Core-Local Block Registers

MIPS Default 
Base

Core-Local 
Block Offset

Core-Local 
Register Offset

Absolute Physical 
Address Global Control Register

0x00_1FBF_8 + 0x2000 + 0x0000 = 0x00_1FBF_ A000 Reserved. 

0x00_1FBF_8 + 0x2000 + 0x0008 = 0x00_1FBF_ A008 Core-Local Coherence Control.

0x00_1FBF_8 + 0x2000 + 0x0010 = 0x00_1FBF_ A010 Core-Local Configuration.

0x00_1FBF_8 + 0x2000 + 0x0018 = 0x00_1FBF_ A018 Core-Other Addressing.

0x00_1FBF_8 + 0x2000 + 0x0020 = 0x00_1FBF_ A020 Core-Local Reset Exception 
Base.

0x00_1FBF_8 + 0x2000 + 0x0028 = 0x00_1FBF_ A028 Core-Local Identification.

Table 6.2  Absolute Address of GCR Register Blocks Using the MIPS Default (continued)

MIPS Default Base GCR Block Offset Absolute Physical Address
Size 

(bytes) Description
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The Core-Other block would be accessed in the same manner, just with a different (Core-Other) block offset 
(0x4000).

This concept is described in Figure 6.1 below. For simplicity, the MIPS default value is used for the GCR base 
address. 

Figure 6.1 CM2 Register Addressing Scheme Using the MIPS Default in GCR_BASE 

0x00_1FBF_8 + 0x2000 + 0x0030 = 0x00_1FBF_ A030 Core-Local Reset Exception 
Extended Base.

0x1FBF_8 + 0x2000 + 0x0040 = 0x00_1FBF_ A040 TCID 0 Priority.

Table 6.4  Absolute Address of Individual Core-Local Block Registers(continued)

MIPS Default 
Base

Core-Local 
Block Offset

Core-Local 
Register Offset

Absolute Physical 
Address Global Control Register

0x0_1FBF_8000

0x0_1FBF_8008

0x0_1FBF_8010

0x0_1FBF_8018

0x0_1FBF_9FFF

35 15

GCR_BASE

MIPS Default: 0x00_1FBF_8

GCR_BASE Register
Global Control Block

0x0_1FBF_A000

0x0_1FBF_A008

0x0_1FBF_A010

0x0_1FBF_A018

0x0_1FBF_BFFF

Core-Local Block

0x0_1FBF_C000

0x0_1FBF_C008

0x0_1FBF_C010

0x0_1FBF_C018

0x0_1FBF_DFFF

Core-Other Block

0x0_1FBF_E000

0x0_1FBF_E008

0x0_1FBF_E010

0x0_1FBF_E018

0x0_1FBF_FFFF

Debug Block

0x_01FBF_A000

0x0_1FBF_C000

+0x2000

0x0_1FBF_E000

+0x2000

+0x2000
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6.3 CM2 Programming

This section provides programming examples based on the capability of the CM2 register set. Some topics described 
are:

• Section 6.3.1, "40-bit Physical Address Support"

• Section 6.3.2, "L2 Cache Prefetcher"

• Section 6.3.3, "Verifying Overall System Configuration"

• Section 6.3.4, "Requestor Access to GCR Registers"

• Section 6.3.5, "CM2 Interface Ports"

• Section 6.3.6, "Setting the CM2 Register Block Base Address"

• Section 6.3.7, "Address Regions"

• Section 6.3.8, "Address Map Programming Example"

• Section 6.3.9, "Core-Local GCRs"

• Section 6.3.10, "Core-Other GCRs"

• Section 6.3.11, "Accessing Another Cores CM2 GCR Registers"

• Section 6.3.12, "Coherency Domains"

• Section 6.3.13, "L2-Only SYNC Operation"

• Section 6.3.14, "Handling of Addresses Not Mapped to a Defined Region"

• Section 6.3.15, "Setting the Cache Coherency Attributes for Default Memory Transfers"

• Section 6.3.16, "In-Flight L1 and L2 Cache Operations"

• Section 6.3.17, "MIPS System Trace"

• Section 6.3.18, "Error Processing"

• Section 6.3.19, "Custom GCR Implementation"

• Section 6.3.20, "Attribute-Only Regions"

6.3.1 40-bit Physical Address Support

The P6600 Multiprocessing System (MPS) supports a 40-bit physical address (PA). The 40-bit address allows for 
seamless integration with other IP with similar addressing capability. 
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All ‘base address’ registers in the CM2 register space have been extended to include a second register used to store 
bits 32 through 39 of the 40-bit address. Table 6.5 lists those new CM2 registers that have been added to support the 
40-bit address. Note that all register addresses are relative to the Global Control Block offset. 

Table 6.5 Registers Used to Support the 40-bit Physical Address 

Register Address Name

0x000C GCR Base Upper Register (GCR_BASE_UPPER). This register works in conjunction with the (GCR_BASE) 
register at 0x0008 to store upper address bits 35:32. Note that the GCR_BASE extends to only 36 bits instead 
of 40 bits.

0x0054 Global CM2 Error Address Upper Register (GCR_ERROR_ADDR_UPPER). This register works in conjunc-
tion with the (GCR_ERROR_ADDR) register at 0x0050 to store upper address bits 39:32.

0x0064 GCR Custom Base Upper Register (GCR_CUSTOM_BASE_UPPER). This register works in conjunction with 
the (GCR_CUSTOM_BASE) register at 0x0060 to store upper address bits 39:32.

0x0074 Global L2 only Sync Upper Register (GCR_L2_ONLY_SYNC_BASE_UPPER). This register works in conjunc-
tion with the (GCR_L2_ONLY_SYNC_BASE) register at 0x0070 to store upper address bits 39:32.

0x0084 Global Interrupt Controller Base Address Upper Register (GCR_GIC_BASE_UPPER). This register works in 
conjunction with the (GCR_GIC_BASE) register at 0x0080 to store upper address bits 39:32.

0x008C Cluster Power Controller Base Address Upper Register (GCR_CPC_BASE_UPPER). This register works in 
conjunction with the (GCR_CPC_BASE) register at 0x0088 to store upper address bits 39:32.

0x0094 CM2 Region0 Base Address Upper Register (GCR_REG0_BASE_UPPER). This register works in conjunction 
with the (GCR_REG0_BASE) register at 0x0090 to store upper address bits 39:32.

0x009C CM2 Region0 Address Mask Upper Register (GCR_REG0_MASK_UPPER). This register works in conjunc-
tion with the (GCR_REG0_MASK) register at 0x0098 to store upper address bits 39:32.

0x00A4 CM2 Region1 Base Address Upper Register (GCR_REG1_BASE_UPPER). This register works in conjunction 
with the (GCR_REG1_BASE) register at 0x00A0 to store upper address bits 39:32.

0x00AC CM2 Region1 Address Mask Upper Register (GCR_REG1_MASK_UPPER). This register works in conjunc-
tion with the (GCR_REG1_MASK) register at 0x00A8 to store upper address bits 39:32.

0x00B4 CM2 Region2 Base Address Upper Register (GCR_REG2_BASE_UPPER). This register works in conjunction 
with the (GCR_REG2_BASE) register at 0x00B0 to store upper address bits 39:32.

0x00BC CM2 Region2 Address Mask Upper Register (GCR_REG2_MASK_UPPER). This register works in conjunc-
tion with the (GCR_REG2_MASK) register at 0x00B8 to store upper address bits 39:32.

0x00C4 CM2 Region3 Base Address Upper Register (GCR_REG3_BASE_UPPER). This register works in conjunction 
with the (GCR_REG3_BASE) register at 0x00C0 to store upper address bits 39:32.

0x00CC CM2 Region3 Address Mask Upper Register (GCR_REG3_MASK_UPPER). This register works in conjunc-
tion with the (GCR_REG3_MASK) register at 0x00C8 to store upper address bits 39:32.

0x0194 CM Attribute-Only Region0 Base Address Upper Register (GCR_REG0_ATTR_BASE_UPPER).
This register works in conjunction with the (GCR_REG0_ATTR_BASE) register at 0x0190 to store upper 
address bits 39:32.

0x019C CM Attribute-Only Region0 Address Mask Upper Register (GCR_REG0_ATTR_MASK_UPPER).
This register works in conjunction with the (GCR_REG0_ATTR_MASK) register at 0x0198 to store upper 
address bits 39:32.

0x01A4 CM Attribute-Only Region1 Base Address Upper Register (GCR_REG1_ATTR_BASE_UPPER).
This register works in conjunction with the (GCR_REG1_ATTR_BASE) register at 0x01A0 to store upper 
address bits 39:32.

0x01AC CM Attribute-Only Region1 Address Mask Upper Register (GCR_REG1_ATTR_MASK_UPPER).
This register works in conjunction with the (GCR_REG1_ATTR_MASK) register at 0x01A8 to store upper 
address bits 39:32.
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6.3.2 L2 Cache Prefetcher

The coherence manager in the P6600 MPS contains an L2 prefetcher used to enhance L2 performance. The L2 
prefetcher contains the following features.

• Improves memcopy/memset performance

• Recognizes streams with strides of +/-1 and prefetches ahead

• Increases size of prefetch window until requests for that stream hits in L2

• Up to 16 streams can be tracked simultaneously

• Tracks data fetches. GCR bit turns on prefetching for Instructions fetches 

• Prefetches will be throttled when CM2.5 resources run low

• L2 prefetcher does not prefetch beyond an O/S page

The L2 prefetcher monitors requests from the cores and IOCU’s and detect strides +/- 1 that miss in L2. It then issues 
a prefetch read for subsequent cachelines and regulates the amount of prefetching based on hit/miss and strides of 
requests in same stream.

The L2 prefetcher contains a series of prefetch trackers. Each prefetch tracker tracks a particular request stream based 
on the address. The output of each prefetch tracker is input to an arbiter which selects the prefetch request to forward. 
Each prefetch tracker maintains its own prefetch window, which is defined as the area between the last demanded 
address and the prefetch limit (the point after which the prefetcher cannot access).

The L2 prefetcher is controlled using the following two registers. Refer to the Shared register section for more infor-
mation. 

0x0214 CM Attribute-Only Region2 Base Address Upper Register (GCR_REG2_ATTR_BASE_UPPER).
This register works in conjunction with the (GCR_REG2_ATTR_BASE) register at 0x0210 to store upper 
address bits 39:32.

0x021C CM Attribute-Only Region2 Address Mask Upper Register (GCR_REG2_ATTR_MASK_UPPER).
This register works in conjunction with the (GCR_REG2_ATTR_MASK) register at 0x0218 to store upper 
address bits 39:32.

0x0224 CM Attribute-Only Region3 Base Address Upper Register (GCR_REG3_ATTR_BASE_UPPER).
This register works in conjunction with the (GCR_REG3_ATTR_BASE) register at 0x0220 to store upper 
address bits 39:32.

0x022C CM Attribute-Only Region3 Address Mask Upper Register (GCR_REG3_ATTR_MASK_UPPER).
This register works in conjunction with the (GCR_REG3_ATTR_MASK) register at 0x0228 to store upper 
address bits 39:32.

Table 6.6 Registers Used to Support L2 Prefetcher 

Register Address Name

0x0300 L2 Prefetcher control register. (GCR_L2_PFT_CONTROL). Provides L2 prefetch control.

0x0308 L2 Prefetcher control register 2. (GCR_L2_PFT_CONTROL_B). Provides additional L2 prefetch control.

Table 6.5 Registers Used to Support the 40-bit Physical Address (continued)

Register Address Name
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6.3.3 Verifying Overall System Configuration

At build-time, the developer selects the number of cores in the system, the number of I/O coherency units (IOCU’s), 
and the number of address regions. When the device is built, these values are hard-wired into the Global Configuration 
register at offset address 0x0000. Reading this register provides the following information:

• Bits 7:0 — Number of cores in the system (up to 6)

• Bits 11:8 — Number of IOCU’s (1)

• Bits 19:16 — Number of address regions

6.3.4 Requestor Access to GCR Registers

The CM2 allows up to seven requestor’s in a system. A requestor can be either a core or an IOCU. The P6600 core 
allows up to 7 requestors in a multiprocessing system; six cores and one IOCU.

The requestor’s may not have unrestricted access to the CM2 registers. During boot time, software determines which 
requestor’s are provided access to the CM2 registers by programming the CM2_ACCESS_EN field of the Global CSR 
Access Privilege register located at offset 0x0020. Each bit in this field corresponds to a specific requestor.

The MIPS default for this field is 0xFF, meaning that all requestor’s in the system have access to the CM2 register set. 
To disable access to the registers for a particular requestor, software need only clear the corresponding bit of this field 
to zero and all write requests to the CM2 registers by that requestor will be ignored.

6.3.5 CM2 Interface Ports

The CM2 contains numerous ports that allow the various system peripherals to communicate with the CM2. The 
ports connected to the CM2 are shown in Figure 6.2. The P6600 Multiprocessing System can have up to 6 cores.

Figure 6.2 Interface Ports of the CM2  

Coherence Manager 2
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Memory OCP port

GIC
GI OCP
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6.3.6 Setting the CM2 Register Block Base Address

As shown in Table 6.1 above, the CM2 register map contains four contiguous 8K blocks and can be located anywhere 
within physical memory. During IP configuration, the user can select the option to use the MIPS default base address 
of 0x0_1FBF_8, or they can select any 32 KB location in memory to locate the CM2 registers.

This decision determines how the 17-bit GCR_BASE field is programmed. If the MIPS default base address option is 
selected, a value of 0x0_1FBF_8 is loaded into this field. If the user selects their own base address, then that address 
is programmed into the GCR_BASE field. Refer to Section 6.4.2.2, "GCR Base Register (GCR_BASE Offset 
0x0008)" for more information. In addition to the value in the GCR_BASE field, the user can also select whether this 
field is R/W or RO during IP configuration.

The following example shows the assignment of the CM2 GCR registers in memory using the MIPS default address. 
Note that the physical address is shown in this diagram. During actual programming, the programmer may use the 
virtual address associated with a physical address of 0x0_1FBF_8 to address the GCR block. The virtual address is 
provided prior to address translation and will be different from the resulting physical address. Refer to Chapter 3 of 
this manual for more information on virtual to physical address translation.

Figure 6.3 Mapping the CM2 Registers in Physical Memory Using the MIPS Default Value 

6.3.7 Address Regions

The CM2 divides the address space into two types of regions:

• Fixed-size regions

• Variable-size regions

GCR Default
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6.3.7.1 Fixed-Size Regions

Fixed-size regions are those that have a fixed size in memory. These include:

• GCR Base; contains the global, core-local, core-other, and debug register blocks, fixed at 32 KB.

• GIC (global interrupt controller) address space, fixed at 128 KB

• CPC (cluster power controller) address space, fixed at 32 KB

• Custom GCR address space, fixed at 64 KB

The 32 KB GCR Base region is further divided into four 8 KB blocks as described in Table 6.1. Refer to Section 
6.3.6, "Setting the CM2 Register Block Base Address" for more information on setting the base address in memory 
for the CM2 register block. 

The GIC region is fixed at 128 KB. Refer to Section 6.4.3.1, "Global Interrupt Controller Base Address Register 
(GCR_GIC_BASE Offset 0x0080)" for more information on programming the base address for the GIC interface. 

The CPC region is fixed at 32 KB. Refer to Section 6.4.3.3, "Cluster Power Controller Base Address Register 
(GCR_CPC_BASE Offset 0x0088)" for more information on programming the base address for the CPC interface. 

The Custom GCR region is fixed at 64 KB. Refer to Section 6.4.2.13, "GCR Custom Base Register 
(GCR_CUSTOM_BASE Offset 0x0060)" for more information on programming the base address for the Custom 
GCR interface.

6.3.7.2 Variable-Size Regions

The P6600 multiprocessing system may provide four programmable variable size address regions for mapping the 
IOCU’s and memory. The number of regions is determined at IP configuration time. If an IOCU is not present, then 
the regions registers are not used. The number of regions implemented is determined as follows.

For more information, refer to the ADDR_REGIONS field in bits 19:16 of the Section 6.4.2.1, "Global Config 
Register (GCR_CONFIG Offset 0x0000)". For more information on the attribute-only regions, refer to Section 
6.3.20. 

Each region is controlled by a corresponding base and mask register as described below. These registers are used to 
determine not only the location and size of the memory space, but also whether this space is mapped to an IOCU or to 
memory. In addition, the cache coherency attributes (CCA) for each region can be defined as described in Section 
6.3.7.6, "Setting the Cache Coherency Attributes for Region Memory Transfers". 

In a MIPS core, mapped addresses are processed by the memory management unit (MMU) and the cache coherency 
attributes for a given memory page are determined. In this case, the CCA corresponds to both the L1 and L2 caches. 
In some situations it may be advantageous to have the CCA of the L2 different from that of the L1 cache. In this case, 

Table 6.7 Setting the Number of Regions

ADDR_REGIONS Field Number of Regions Region Assignments

0x0 0 None (typically used when there is no IOCU).

0x4 4 4 standard regions.

0x6 6 4 standard regions and 2 attribute-only regions.

0x8 8 4 standard regions and 4 attribute-only regions.
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software can use the CCA_Override_Value field of each Region Address Mask register to set the CCA for the L2 cache. 
This changes the attributes of the cache from what was originally assigned by the core.

The CM2 provides four base address and four address mask registers for controlling variable-size address regions 0 
through 3. These regions control how some transactions are routed by the CM2. The possible routing options for 
requests that map to these variable-size regions are: 

• To/From Memory via the CM2’s system memory OCP port

• To/From the IOCU’s via the CM2’s MMIO OCP port for Memory-Mapped I/O (in hardware I/O coherent 
systems only) 

Refer to Section 6.4.3.5, "CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 
0x00B0, 0x00C0)" and Section 6.4.3.7, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 
0x0098, 0x00A8, 0x00B8, 0x00C8)" for more information on these registers.

6.3.7.3 Address Region Priorities

The priority for the region decode is as follows:

1. GCR (highest priority)

2. Custom GCR

3. CPC

4. GIC

5. IOCU

6. Programmed MMIO regions

7. Programmed memory regions

8. CM2_DEFAULT_TARGET (lowest priority)

The above priority allows for large memory regions to be defined with small IOCU regions carved out. Note that 
these regions can overlap as described in Section 6.3.7.8, "Overlapping Regions".

6.3.7.4 Defining the Base Address Location and Size for Each Region

The address map is programmable through a set of registers located in the GCR as summarized below. Up to 8 vari-
able-size programmable regions can be implemented. When an IOCU is present (i.e., hardware I/O Coherence is 
implemented), these regions determine if requests are routed to memory or to the IOCU via the CM2’s MMIO port. 
The regions can also be used with or without an IOCU for the CCA Override feature as described in Section 
6.3.15 “Setting the Cache Coherency Attributes for Default Memory Transfers”.

• The GCR Base Register defines the address base of the GCR region. The GCR region has a fixed size of 32 
KB (see Table 6.20), hence no corresponding Mask register is required. Note that this region must reside on 
a 32 KB boundary.

• The Cluster Power Controller Base Address Register defines the address base of the CPC address region. This 
CPC region may be disabled via the CPC_EN bit in that register. When enabled, the CPC address region has 
a fixed size of 32 KB (see Table 6.38), hence no corresponding Mask register is required. Note that this 
region must reside on a 32KB boundary.
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• The Global Interrupt Controller Base Address Register defines the address base of the GIC address region. This 
GIC region may be disabled via the GIC_EN bit in that register. When enabled, the GIC address region has a 
fixed size of 128 KB (see Table 6.36), hence no corresponding Mask register is required. Note that this 
region must reside on a 128 KB boundary.

• The CM2 Region [0-3] Base Address Registers define the address base for each of the four programmable 
regions. The regions have a programmable base address and a programmable size that is selected via the cor-
responding Mask register.

• The CM2 Region [0-3] Address Mask Registers define the size for each of the four programmable regions. These 
registers work in conjunction with the corresponding CM2 Region [0-3] Base Address Registers to configure a 
given region.

• The Custom GCR Base Register defines the address base of the Custom GCR region. This region defines the 
location of registers that are implemented by the user. This region may be disabled via the GGU_EN bit in the 
Custom GCR Base Register. When enabled, the Custom GCR region has a fixed size of 64 KB (see Table 6.31), 
hence no corresponding Mask register is required. Note that this region must reside on a 64 KB boundary.

As described above, the base of each region is defined in the corresponding CM2 Region [0,1,2,3] Address Base Register 
(see Table 6.40), and the size of the region is defined in the corresponding CM2 Region [0,1,2,3] Address Mask Register 
(see Table 6.42). Because a base/mask scheme is used, the base must be located on a boundary of its size. A region 
can be sized from 64K to the entire 32-bit address space. 

Table 6.8 Setting the Base Address for the CM2 Peripheral Devices 

Block Register Name
Offset 

Address Field Name Bits Description

GCR GCR_BASE 0x0008 GCR_BASE_ADDR 35:15 Sets the base address of the GCR regis-
ters. This field has a fixed size of 32 KB.

Custom 
GCR

GCR_CUSTOM_BASE 0x0060 CUSTOM_ BASE 39:16 Sets the base address of the Customer 
GCR registers. This field has a fixed size 
of 64 KB.

GIC GCR_GIC_BASE 0x0080 GIC_BASE_ADDR 39:17 Sets the base address of the GIC. This 
field has a fixed size of 128 KB.

CPC GCR_CPC_BASE 0x0088 CPC_BASE_ADDR 39:15 Sets the base address of the CPC. This 
field has a fixed size of 32 KB.

Region 0 GCR_REG0_BASE 0x0090 REGION0_BASE_ADDR 39:16 Sets the base address of region 0 in mem-
ory. Minimum size is 64 KB.

GCR_REG0_MASK 0x0098 REGION0_BASE_MASK 39:16 Sets the size of region 0 in memory.

Region 1 GCR_REG1_BASE 0x00A0 REGION1_BASE_ADDR 39:16 Sets the base address of region 1 in mem-
ory. Minimum size is 64 KB.

GCR_REG1_MASK 0x00A8 REGION1_BASE_MASK 39:16 Sets the size of region 1 in memory.

Region 2 GCR_REG2_BASE 0x00B0 REGION2_BASE_ADDR 39:16 Sets the base address of region 2 in mem-
ory. Minimum size is 64 KB.

GCR_REG2_MASK 0x00B8 REGION2_BASE_MASK 39:16 Sets the size of region 2 in memory.

Region 3 GCR_REG3_BASE 0x00C0 REGION3_BASE_ADDR 39:16 Sets the base address of region 3 in mem-
ory. Minimum size is 64 KB.

GCR_REG3_MASK 0x00C8 REGION3_BASE_MASK 39:16 Sets the size of region 3 in memory.
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As described above, some of the blocks are a fixed size, hence there is no corresponding Mask register. Since the 
GCR, GIC, and CPC blocks each contain a dedicated Base Address register, the Region 0 - 3 registers are used to 
access the memory and IOCU peripherals.

6.3.7.5 Defining the Target Device

Each CM2 Region Address Mask register contains a field that determines how the CM2 routes requests whose address 
matches the corresponding region. As defined in the CM2_REGION_TARGET field, the transaction may be routed to 
memory or to an I/O device via the CM2’s MMIO port and IOCU. A region may be disabled by setting the 
CM2_REGION_TARGET in the corresponding CM2 Region Address Mask register to 0.

The CM2_DEFAULT_TARGET field in the GCR Base Register determines how to route the requests that don’t match any 
of the defined regions. Refer to Section 6.3.14, "Handling of Addresses Not Mapped to a Defined Region" for more 
information.

6.3.7.6 Setting the Cache Coherency Attributes for Region Memory Transfers

As described in Section 6.3.6 “Setting the CM2 Register Block Base Address”, the P6600 core provides a CCA over-
ride capability that allows the CCA’s for the L2 cache to be different from those of the L1 data cache.

This capability can be achieved via the CCA override feature in the CM2 Region Address Map Registers listed in 
Table 6.8. Software can establish up to 4 address map regions by programming the CM2 Region Base Register 0-3 and 
CM2 Region Mask Register 0-3.

Programming the CCA

Each region has the CCA_Override_Enable and CCA_Override_Value fields which can be used to set the CCA for trans-
actions on the system memory OCP port. If the CCA_Override_Enable field is set to 1 for a given region and the corre-
sponding CM2_TARGET field in bits 1:0 is set to memory (0x1), then transactions that map to that region and proceed 
to the system memory port will have a CCA value set to the corresponding CCA_Override_Value for that region. This 
field also determines the CCA value driven to system memory.

Any valid CCA value can be programmed into CCA_Override_Value, but because the L2 does not process coherent 
CCA’s, a value of CWB (5) or CWBE (4) is automatically changed to WB (3) by the CM2 before being driven on the 
system memory OCP port. The encoding of the CCA_Override_Value field is identical to that shown in Table 6.9. 

6.3.7.7 Issue Request Protocol and Region Masking

The CM2 contains four region mask registers used to set the size of a given region. These mask registers work in con-
junction with their corresponding base address registers as shown in Table 6.8. The requesting address is logically 
ANDed with the value in the selected Region Address Mask register. At the same time, the value in the corresponding 
REGION_BASE_ADDR field is compared to the value in the Region Address Mask register. If both outputs match, the 
request is routed to this region. 

When performing a comparison on a 40-bit address, the requesting address in the CM2_REGION1_BASE_ADDR and 
CM2_REGION1_BASE_ADDR_UPPER registers are compared to the value in the CM2_REGION1_ADDR_MASK and 
CM2_REGION1_ADDR_MASK_UPPER registers. If there is a match, the requesting address is routed to region 1. This 
concept is shown in Figure 6.4.

The only allowed values in this register are contiguous sets of leading 0x1’s. An 0x1 preceded by a 0x0 is not allowed 
(e.g., the value of 0xFFF0 is allowed, but the value 0xFFEF is not allowed).
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Figure 6.4 Mapping a Request to Region 1 Using the Region 1 Base and Mask Registers

6.3.7.8 Overlapping Regions

Since overlapping regions are supported, it is possible that an address maps to more than one region. In this case, the 
CCA override enable and value are used from the lowest numbered region mapped to memory. For example, if an 
address matches both CM2 Region Base/Mask Register 0 and CM2 Region Base/Mask Register 1, and both regions 0 and 1 
are mapped to Memory (CM2_REGION_TARGET is set to 1 in both CM2 Region Mask Register 0 and 1), then the values 
of CCA_Override_Enable and CCA_Override_value in CM2 Region Mask Register 0 is used to determine the CCA value 
driven on the system memory OCP Port.

This concept is shown in Figure 6.5. In this example, region 1 is a 64 KB space located inside the larger 256 KB 
region 0. 

1631
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Region1_Addr_Mask
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1631
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Request issued to Region 1
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Upper RegisterMask 39:15
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Figure 6.5 Example of Overlapping Regions 

When overriding a CCA value, only the CCA driven to the system memory OCP is affected. Otherwise, the function-
ality of the transaction within the CM2 is based on the original CCA. When the CM2 is programmed to override the 
CCAs for an address region, all accesses to that region including speculative reads and write-backs (explicit or 
implicit) from the L1 are overridden. Transactions that are never mapped to regions, such as Legacy Syncs, CohCom-
pletionSyncs or L2/L3 CacheOps are unaffected by the CCA override functionality. 

6.3.8 Address Map Programming Example

This subsection provides an example of memory mapping for all of the aforementioned regions at different locations 
using the MIPS default base address. The memory map for this example is shown in Figure 6.6.

0x00_1FC0_0000

0x00_1FC3_FFFF

0x00_1FC2_0000

0x00_1FC2_FFFF

Software programs the REGION_BASE field of the
of the Region 0 Base register at offset 0x0090 with

a value of 0x00_1FC0_0000. Region 0 size is 256 KB.

(end of Reg1)

(end of Reg 0)

(start of Reg 1)

(start of Reg 0)

Software programs the REGION_BASE field of the
Region 1 Base register at offset 0x00A0 with

a value of 0x00_1FC2_0000. Region 0 size is 64 KB.

Region 0

Region 0

Region 1

In this example, region 1 resides inside
region 0. In this case, region 1 assumes

the cache coherency attributes of region 0.
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Figure 6.6 Address Map Programming Example 

0x00_1FBF_A000

0x00_1FBF_BFFF
Core-Local (8 KB)

0x00_1FBF_C000

0x00_1FBF_DFFF
Core-Other (8 KB)

0x00_1FBF_8000

0x00_1FBF_9FFF
Global Control (8 KB)

0x00_1FBF_E000

0x00_1FBF_FFFF
Debug Block (8 KB)

3. Software programs the GCR_BASE field
of the GCR Base register at offset 0x0008

with the MIPS default of 0x0_1FBF_8. This 
field has a fixed size of 32 KB.

0x00_1BDC_0000

GIC (128 KB)

0x00_1BDD_FFFF
0x00_1BDE_0000

CPC (32 KB)

0x00_1BDE_7FFF

1. Software programs the GIC_BASE field
of the GIC Base register at offset 0x0080.

This field has a fixed size of 128 KB.

2. Software programs the CPC_BASE field
of the CPC Base register at offset 0x0088.

This field has a fixed size of 32 KB.

Global Control Registers

Main Memory

4. Software programs the REGION_BASE field
of the Region 0 Base register at offset 0x0090.

6. Software programs the REGION_BASE field
of the Region 1 Base register at offset 0x00A0.

Main Memory

0x00_1FD2_0000

0x00_1FD2_FFFF
0x00_1FD3_0000

Region 0 (64 KB)

Region 1 (64 KB)

0x00_1FD3_FFFF
0x00_1FC4_9000

Used for IOCU0

Used for IOCU1

Main Memory

Main Memory

5. Software programs the REGION_MASK field
of the Region 0 Mask register at offset 0x0098,

with a value of 0xFFFF_0000, yielding 

of the Region 1 Mask register at offset 0x00A8,
with a value of 0xFFFF_0000, yielding 

0x00_1FC0_0000

0x00_1FD1_FFFF

0x00_1BDE_8000

0x00_1FBE_7FFF

0x00_1BDB_FFFF

7. Software programs the REGION_MASK field

a size of 64 KB.

a size of 64 KB.

CM2 Default Targeta

CM2 Default Targeta

CM2 Default Targeta

CM2 Default Targeta

a. The CM2 Default Target is set using bits 1:0 of the GCR Base register.
In this case this field would be set to 0x0 to indicate memory as the
default target for addresses that do not map to any other address entry.
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The following programming sequence is used to configure the memory map as shown in Figure 6.6 above.

1. Software programs the GIC_BASE field of the GIC Base register located at offset 0x0080 with a value of 0x1BDC. 
This sets the base address of the GIC registers. This block has a fixed size of 128 KB. Refer to bits 31:17 in 
Section 6.4.3.1, "Global Interrupt Controller Base Address Register (GCR_GIC_BASE Offset 0x0080)" for 
more information. Note that this block must reside on a 128 KB boundary.

2. Software programs the CPC_BASE field of the CPC Base register located at offset 0x0088 with a value of 
0x1BDE_0. This sets the base address of the CPC registers. This block has a fixed size of 32 KB. Refer to bits 
31:15 in Section 6.4.3.3, "Cluster Power Controller Base Address Register (GCR_CPC_BASE Offset 0x0088)" 
for more information. Note that this block must reside on a 32 KB boundary.

3. Software programs the GCR_BASE field of the GCR Base register located at offset 0x0008 with a value of 
0x1FBF_8. This sets the base address of the 32 KB block of GCR registers. This block is divided into four 8 KB 
subblocks that contain the Global, Core-Local, Core-Other, and Debug register blocks. Note that if the MIPS 
default address of 0x1FBF_8 is selected for the base address of the GCR registers during IP configuration, this 
field becomes read-only. In this case, hardware writes the default value of 0x1FBF_8 to this field. Refer to bits 
31:15 in Section 6.4.2.2, "GCR Base Register (GCR_BASE Offset 0x0008)" for more information.

4. Software programs the REGION_BASE_ADDR field of the CM2 Region 0 Base register located at offset 0x0090 with 
a value of 0x1FD2. This sets the base address of region 0 to 0x1FD2_0000. Refer to bits 31:16 in Section 6.4.3.5, 
"CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 0x00B0, 0x00C0)" 
for more information.

5. Software programs the REGION_ADDR_MASK field of the CM2 Region 0 Address Mask register located at offset 
0x0098 with a value of 0xFFFF_0000. This sets the size of region 0 to 64 KB. Refer to bits 31:16 in Section 
6.4.3.7, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 0x00B8, 
0x00C8)" for more information. Other values for this field could be 0xFFFE (128 KB), 0xFFFC (256 KB), etc.

6. Software programs the REGION_BASE_ADDR field of the CM2 Region 1 Base register located at offset 0x00A0 
with a value of 0x1FD3. This sets the base address of region 1 to 0x1FD3_0000. Refer to bits 31:16 in Section 
6.4.3.5, "CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 0x00B0, 
0x00C0)" for more information.

7. Software programs the REGION_ADDR_MASK field of the CM2 Region 1 Address Mask register located at offset 
0x00A8 with a value of 0xFFFF_0000. This sets the size of region 1 to 64 KB. Refer to bits 31:16 in Section 
6.4.3.7, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 0x00B8, 
0x00C8)" for more information. Other values for this field could be 0xFFFE (128 KB), 0xFFFC (256 KB), etc.

8. Software programs the CM2_DEFAULT_TARGET field of the GCR Base register with a value of 2’b00, indicating 
that memory is the target device for addresses that do not map to any of the address blocks shown in Figure 6.6. 
Refer to bits 1:0 in Section 6.4.2.2, "GCR Base Register (GCR_BASE Offset 0x0008)" for more information.

9. Software programs the CM2_TARGET field of the CM2 Region 0 Address Mask register located at offset 0x0098 with 
a value of 2’b10. This maps region 0 to IOCU0. 

10. Software programs the CM2_TARGET field of the CM2 Region 1 Address Mask register located at offset 0x00A8 
with a value of 2’b11. This maps region 1 to IOCU1. 
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6.3.9 Core-Local GCRs

The Core-Local GCR block contains the configuration and status registers for a given core. Each core has its own 
copy of Core-Local registers. A core can access its own Core-Local block to determine the programmable parameters 
for that core. Parameters include base address assignments for cache coherency attributes, reset exception base, boot 
exception vector mask, etc.

6.3.10 Core-Other GCRs

The Core-Other GCR block is a single block that all of the cores have access to, and provides a way for one core to 
access the Core-Local registers of another core. Before a core can access the Core-Other space, the Core-Other 
Addressing register in that cores own Core-Local Control Block must be set with the core number (CORENUM) of the 
target core. In this case, a particular core would program the Core-Other Addressing register in its own Core-Local 
block with the core number to be accessed. The core would then write the contents of the register to be accessed into 
the Core-Other address space. 

6.3.11 Accessing Another Cores CM2 GCR Registers

As shown in Table 6.1, the CM2 provides two blocks of registers. 

• Core-Local (offset range 0x2000 - 0x3FFF)

• Core-Other (offset range 0x4000 - 0x5FFF)

Each core contains a copy of these registers. The Core-Local address space contains the GCR registers for that core. 
The Core-Other address space allows a core to access the GCR registers for another cores Core-Local GCR block. 

As described in Section 6.3.6, these registers can be located anywhere in physical memory if this option is selected 
during IP configuration. If this option is not selected, the location of these registers are located at the MIPS default 
address of 0x00_1FBF_8000. Refer to Section 6.2 “Coherence Manager Address Map” and related subsection for 
more information on use of the MIPS default memory location.

The Core-Local block represents registers corresponding to that core. If a core wishes to modify the contents of its 
own set of CM2 GCR registers, it writes to the Core-Local block located at the address range shown in Table 6.1. If a 
core wishes to program the GCR registers of another core, it selects the core number and writes this value into the 
Core-Other Addressing register in its own Core-Local block at offset address 0x0018. The actual register in the other 
core to be written would use the corresponding offset in the Core-Other block shown in Table 6.1.

In a multiprocessor system, it is common for one core to boot up first, then have that core boot the other cores in the 
system. In the following example, assume core 0 is booted up first. Then core 0 is used to program the GCR registers 
in core 1. This example examines how core 0 would program the boot exception vector location for core 1. Note that 
this example uses the MIPS default addressing scheme. The programming sequence would be as follows:

1. Core 0 writes a value of 0x0001 to the CORENUM field (bits 31:16) of the Core-Other Addressing register located 
in its own Core-Local block at offset 0x0018 (physical address of 0x1FBF_A018 in Table 6.3). This indicates 
that the register to be programmed corresponds to core 1. Refer to Section 6.5.2.3, "Core-Other Addressing 
Register" for more information.

2. Core 0 writes the appropriate value into the BEVEXCBase field (bits 31:12) of the Reset Exception Base register 
located in the Core-Other block at offset 0x0020 (physical address of 0x00_1FBF_C020 in Table 6.4). Because 
core 0 is setting the BEV base value for core 1, as opposed to its own core, the write is done to the Core-Other 
address block. Refer to Section 6.5.2.4, "Core Local Reset Exception Base Register (GCR_Cx_RESET_BASE 
Offset 0x0020)" for more information. 



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 343

Note that in addition to the CORENUM field in the Core-Other Addressing register used to indicate the number of the 
destination core as described in #1 above, a core can determine its own core number by reading the CORENUM field 
in its own Core-Local Identification register located at offset 0x0028 in Core-Local address space. Refer to Section 
6.5.2.5, "Core Local Identification Register (GCR_Cx_ID Offset 0x0028)" for more information.

Whenever one core read or writes to the registers associated with another core, the number of the core to be written is 
programmed into that cores local CORENUM field as described in step 1 above. The actual register to be pro-
grammed is accessed via the Core-Other block as described in step 2 above. 

Since there is only one Core-Other block in Table 6.1, this means that when one core wants to access any of the other 
cores in the system, the register to be accessed always resides in the Core-Other block, regardless of the number of 
cores in the system. The state of the CORENUM field in the Core-Other Addressing register in that cores own Core-
Local space determines which core the data will be written to. This concept is shown in Figure 6.7.

Figure 6.7 Core 0 Accessing the BEV_BASE GCR of Core 1 

6.3.12 Coherency Domains

The CM2 provides the COH_DOMAIN_EN field in Core-Local Coherence Control register at offset 0x0008 for managing 
the coherency aspects of each requestor in the system. There is one register per core. A requestor can be either a core 
or an IOCU. 

In the 8-bit COH_DOMAIN_EN field, each bit corresponds to one requestor. Setting a given bit in the 
COH_DOMAIN_EN field for the GCR local register corresponding to a given core puts that core into coherent mode. If 

0x00_1FBF_A000

0x00_1FBF_BFFF

Core-Local

0x00_1FBF_C000

0x00_1FBF_DFFF

Core-Other

0x00_1FBF_8000

0x00_1FBF_9FFF

Global Control

0x00_1FBF_E000

0x00_1FBF_FFFF

Debug Block

31 1615 0

0x0001 0x00_1FBF_A018
1. Software programs the
CORENUM field of the Core-
Other Addressing register in
the Core-Local address space 

31 12 11 0

BEV_BASE 0x00_1FBF_C020
2. Software programs the
BEVBASE field of the Reset
Exception Base register in
Core-Other address space 
at offset 0x020.

at offset 0x018.
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the same bit in the COH_DOMAIN_EN is 0 for the GCR local register corresponding to a given core, then that core is 
not in coherence mode and will never issue a coherent request. 

For example, if bit 1 of this field is set, then interventions from core 1 to core 0 are enabled and can occur. Note that 
changing the coherence mode for a local core from 0x1 to 0x0 can only be done after flushing and invalidating all the 
cache lines in the core; otherwise, the system behavior is UNDEFINED.

Also note that if bit 1 of the COH_DOMAIN_EN field is set for the GCR local register corresponding to core 0, then 
software should also set bit 0 of the COH_DOMAIN_EN field for the GCR local register corresponding to core 1.

There is no need to program COH_DOMAIN_EN for the GCR local register corresponding to IOCUs.

Section 7.1.2, "Operating Level Transitions" in Chapter 7 of this manual provides examples of how this field is used 
to transition between coherency domains.

Figure 6.8 Encoding of COH_DOMAIN_EN Field — 2 or 4 Core Package 

Core 0's COH_DOMAIN_EN

If 1 then Core 0 is in coherence mode

If 1 then Coherent requests from Core 1 are sent to Core 0

7 6 5 4 3 2 1 0

If 1 then Coherent requests from Core 2 are sent to Core 0

If 1 then Coherent requests from Core 3 are sent to Core 0

If 1 then Coherent requests from IOCU 0 are sent to Core 0. 

If 1 then Coherent requests from IOCU 1 are sent to Core 0.

Core 1's COH_DOMAIN_EN

If 1 then Core 1 is in coherence mode

If 1 then Coherent requests from Core 0 are sent to Core 1

7 6 5 4 3 2 1 0

If 1 then Coherent requests from Core 2 are sent to Core 1

If 1 then Coherent requests from Core 3 are sent to Core 1

This bit is unused in 2 or 4 core systems.

This bit is unused in 2 or 4 core systems.

If 1 then Coherent requests from IOCU 0 are sent to Core 1. 

If 1 then Coherent requests from IOCU 1 are sent to Core 1.

This bit is unused in 2 or 4 core systems.

This bit is unused in 2 or 4 core systems.



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 345

Figure 6.9 Encoding of COH_DOMAIN_EN Field — 6 Core Package

6.3.13 L2-Only SYNC Operation

In previous generation MIPS processors, the execution of a SYNC instruction would cause the entire core pipeline to 
stall until all read/write requests were completed. This included the L2 pipeline. After all instructions had been com-
pleted, a signal was sent to the L2 cache to continue. This caused a sometimes unnecessary stalling of the L2 cache.

The P6600 core provides a way to perform a SYNC operation on only the L2 cache. The core defines a fixed 4 KB 
address space for performing L2 only SYNC operations. The base address for the location of this fixed 4 KB segment 
is programmed using bits 31:12 of the L2-Only Sync Base register located at offset 0x0070. 

Bit 0 of the L2-Only Sync Base register enabled the L2-only SYNC function. If this bit is set, the CM2 treats an 
uncached write to anywhere within the 4 KB block as an L2-only SYNC. This operation does not write anything to 
memory, but rather just initiates the L2-only SYNC. 

The L2-only SYNC provides a way for the software to ensure that subsequent uncached loads and stores from a core 
will not pass previous L2 cache operations, such as L2 cacheops.

Note that the L2-Only SYNC is not required, but it can be useful for optimizing performance. Since the L2-Only 
SYNC operation does not synchronize to the L1 caches, care should be taken to ensure correct system functionality.

As an example of how this operation works, assume the 4 KB block is located at offset address 0x8000 as shown in 
Figure 6.10.

If 1 then Core 0 is in coherence mode

If 1 then Coherent requests from Core 1 are sent to Core 0

If 1 then Coherent requests from IOCU 0 are sent to Core 0

If 1 then Coherent requests from Core 3 are sent to Core 0

If 1 then Coherent requests from IOCU 1 are sent to Core 0

If 1 then Core 1 is in coherence mode

If 1 then Coherent requests from Core 3 are sent to Core 1

Core 0's COH_DOMAIN_EN 7 6 5 4 3 2 1 0

If 1 then Coherent requests from Core 2 are sent to Core 0

Core 1's COH_DOMAIN_EN

If 1 then Coherent requests from Core 0 are sent to Core 1

7 6 5 4 3 2 1 0

If 1 then Coherent requests from Core 2 are sent to Core 1

If 1 then Coherent requests from Core 5 are sent to Core 0

If 1 then Coherent requests from Core 4 are sent to Core 0

If 1 then Coherent requests from IOCU 0 are sent to Core 1

If 1 then Coherent requests from IOCU 1 are sent to Core 1

If 1 then Coherent requests from Core 5 are sent to Core 1

If 1 then Coherent requests from Core 4 are sent to Core 1
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Figure 6.10 Example of an L2-Only SYNC Operation

6.3.14 Handling of Addresses Not Mapped to a Defined Region

The CM2 handles transactions between the core and several devices as described in Figure 6.2. 

For addresses that do not map to any of the defined address regions, these transactions can be mapped to either mem-
ory or one of the IOCU’s as determined by the CM2_DEFAULT_TARGET field in bits 1:0 of the GCR Base register 
located at offset 0x0008. The default state of this field is determined by the value of the SI_CM_Default_Target[1:0] 
pins at reset, but can be changed by software at any point. Refer to Section 6.4.2.2, "GCR Base Register 
(GCR_BASE Offset 0x0008)" for more information on the CM2_TARGET field.

Because programmable regions of the address map are disabled at reset, the value of SI_CM_Default_Target[1:0] deter-
mines whether the initial boot code upon power-up is fetched from the L2/Memory port or the MMIO port. For sys-
tems without an IOCU, SI_CM_Default_Target[1:0] should be set to 0 (memory) so that all non-coherent requests are 
routed to memory. 

6.3.15 Setting the Cache Coherency Attributes for Default Memory Transfers

In previous generation MIPS processors, the cache coherency attributes (CCA) for the L1 and L2 caches were config-
ured as one, and the CCA for the L2 cache could not be different from the CCA for the L1 data cache. The P6600 core 
provides a CCA override capability that allows the CCA’s for the L2 cache to be different from those of the L1 data 
cache. For example, it may be useful to treat a line as cached in the L1, but uncached in the L2.

0x8000

0x8FFF
1. Software executes an uncached write to
L2-Only SYNC address space. No actual
memory write occurs during this operation.

L2-Only SYNC
Address Space

L2 Cache

L2 Cache Pipeline

Uncached Write

2. Hardware initiates a flush
of the L2 pipeline.

L2 pipeline stalls until the flush
operation is completed and the

Physical address space

Note that the SYNC_EN bit must be set in

pipeline is empty.

31 12 11 1 0

1SYNC_BASE

SYNC_EN

L2-Only SYNC Base Register

order to perform an L2-Only SYNC operation.
SYNC_BASE
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The default region determined by the GCR Base Address register described in Section 6.3.6 above contains a mecha-
nism for modifying the cache coherency attributes of the base region relative to that of the L1 cache. The attributes 
are programmed using the CCA_Override_Enable (bit 4) and CCA_Override_Value (bits 7:5) fields in the CM2 GCR Base 
Address Register. Addresses that do not map to any other region are mapped to the default region. 

Any valid CCA value can be programmed into CCA_Override_Value, but because the L2 does not process coherent 
CCAs, a value of CWB (0x5) or CWBE (0x4) is automatically changed to WB (0x3) by the CM2 before being driven 
on the system memory OCP port.

The various coherency options are shown in Table 6.9. Note that the CCA overrides shown below only affect the L2 
cache and not the L1 cache. 

The CCA_Override_Enable (bit 4) must be set in order for the CCA_Override_Value field to have meaning. 

When overriding a CCA value, the CCA used within the L2 cache and driven to the system memory OCP interface is 
affected. Otherwise, the functionality of the transaction within the CM2 is based on the original CCA. Transactions 
that are not routed to the system memory OCP port, such as accesses to GCRs, GIC, CPC, or MMIO are also unaf-
fected by the CCA Override.

6.3.16 In-Flight L1 and L2 Cache Operations

A core has the ability to issue a steady stream of cache operations and can potentially saturate the CM2 resources. To 
mitigate the possibility of this happening, the CM2 provides a mechanism to limit the number of successive cache 
transactions by a particular core. This limits a single core from issuing cache operations in rapid succession. The 
CM2 provides limits for both the L1 cache and the L2 cache via the Global CM2 Control2 register located at offset 
address 0x0018. The default limit for successive L2 cache operations is four, meaning that a given core can execute a 
maximum of four cache operations (bits 19:16). For the L1 cache the limit is six cache operations (bits 3:0).

Setting a value of 0x0 in either of these fields disables this limitation. In this case the CM2 will not limit the number 
of successive cache operations that can be issued by a single core.

Table 6.9 Cache Coherency Attributes

Encoding Name Descriptions

0x0 WT Write through.

0x1 — Reserved.

0x2 UC Uncached.

0x3 WB Writeback, cacheable, non-coherent.

0x4 CWBE Coherent writeback exclusive. Since the CM2 does not process coher-
ent CCA’s, this encoding automatically maps to WB (0x3).

0x5 CWB Coherent writeback. Since the CM2 does not process coherent CCA’s, 
this encoding automatically maps to WB (0x3).

0x6 — Reserved.

0x7 UCA Uncached accelerated.



 

348 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

6.3.17 MIPS System Trace

The MIPS System trace is a new feature to the P6600 Multiprocessing System and allows the SoC designer to place 
signals from their non-probe SoC logic directly into the trace funnel for PDTrace to capture. The logic and registers 
that controls System Trace are handled by the CM2. For more information, refer to Section 3.6.2 in Chapter 3 of the 
P6600 Multiprocessing System Hardware User’s Manual for more information on MIPS System Trace.

6.3.18 Error Processing

The CM2 detects, reports, and handles several types of errors that may be caused by errant software or hardware soft 
or hard errors. Table 6.10 lists the errors detected by the CM2. The first 7 errors are invalid requests to the GCR, GIC, 
or MMIO. There are two errors for invalid intervention responses due to inconsistent L1 cache states. And there are 3 
errors due to L2 RAM parity errors.

When an error is detected, information that may be useful in debugging the error is captured in the Global CM2 Error 
Cause Register and Global CM2 Error Address Register. Refer to Section 6.4.2.9, "Global CM2 Error Cause Register 
(GCR_ERROR_CAUSE Offset 0x0048)" and Section 6.4.2.10, "Global CM2 Error Address Register 
(GCR_ERROR_ADDR Offset 0x0050)" for more information.

If these registers already have valid error information and a second error is detected, the error type of the second error 
is captured in the CM2 Error Multiple Register. However, an L2 ram correctable error is overwritten by a 2nd error that 
is not a second L2 ram correctable error. Refer to Section 6.4.2.12, "Global CM2 Error Multiple Register 
(GCR_ERROR_MULT Offset 0x0058)" for more information. Note that for the second error, only the error type is 
captured, not the associated error address.

When the Global CM2 Error Cause Register is loaded, an interrupt may be generated if the corresponding bit for that 
type of error is set in the Global CM2 Error Mask Register (see Table 6.26). If the error was generated by a request that 
requires a response and the corresponding Global CM2 Error Mask Register bit is 0, then the CM2 issues an ERROR 
response. However, if the corresponding Global CM2 Error Mask Register bit is 1, then the CM2 issues a normal 
response and an interrupt will be generated instead. 

Table 6.10 CM2 Error Types 

CM2_ERROR_
TYPE Error Name Description Action

0 - Reserved -

1 GC_WR_ERR Non-Coherent Write of length > 1 to 
GCR or GIC

Drop Write
Signal Interrupt if CM_ERROR_MASK[1] = 1

2 GC_RD_ERR Non_Coherent Read of length > 1 to 
GCR or GIC

No GCR access
Return SResp = ERROR if CM_ERROR_MASK[2] 
= 0
Signal Interrupt if CM2_ERROR_MASK[2] = 1

3 COH_WR_ERR Coherent Writeback, Cacheop, or 
CohWriteInvalidate to GIC, GCR, 
MMIO

Intervention occurs
Signal Interrupt if CM_ERROR_MASK[3] = 1

4 COH_RD_ERR Coherent Read to GIC, GCR, MMIO Intervention occurs
After intervention, return SResp = ERROR to the 
original requestor if CM_ERROR_MASK[4] = 0
Signal Interrupt if CM_ERROR_MASK[4] = 1
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When an error occurs, hardware updates the read-only CM2_ERROR_TYPE field in bits 31:27 of the Global Config 
register with one of the values listed in Table 6.10 above. Refer to Section 6.4.2.1 “Global Config Register 
(GCR_CONFIG Offset 0x0000)” for more information. When this field is written, hardware also updates the 27-bit 
ERROR_INFO field that provides additional information about the error. The organization of this field varies 
depending on the value in the CM2_ERROR_TYPE field. 

5 MMIO_WR_ERR Write to MMIO from the IOCU
(only occurs if 
CM_DISABLE_MMIO_LIMIT = 0)

Drop Write
Signal Interrupt if CM_ERROR_MASK[5] = 1

6 MMIO_RD_ERR Write to MMIO from the IOCU
(only occurs if 
CM_DISABLE_MMIO_LIMIT = 0)

Return SResp = ERROR if CM_ERROR_MASK[6] 
= 0
Signal Interrupt if CM_ERROR_MASK[6] = 1

17 INTVN_WR_ERR Request does not require a response 
and: 
One core responded with M and one or 
more cores responded with E, or S
or 
One core responded with E and one or 
more cores responded with S
or Multiple cores responded with data

If multiple M or E responses then data from core 
with lowest port ID is used.

Signal Interrupt if CM_ERROR_MASK[17] = 1

18 INTVN_RD_ERR Request requires a response and: 
One core responded with M and one or 
more cores responded with E, or S
or 
One core responded with E and one or 
more cores responded with S
or Multiple cores responded with data

If multiple M or E responses then data from core 
with lowest port ID is used.
Return SResp = ERROR if 
CM_ERROR_MASK[18] = 0
Signal Interrupt if CM_ERROR_MASK[18] = 1

24 L2_RD_UNCORR Request requires a response and: 
an uncorrectable parity/ECC error 
occurred during an access to an L2 
RAM

Signal Interrupt if CM_ERROR_MASK[24] = 1

25 L2_WR_UNCORR Request does not require a response 
and: 
an uncorrectable parity/ECC error 
occurred during an access to an L2 
RAM

Signal Interrupt if CM_ERROR_MASK[25] = 1

26 L2_CORR A correctable parity/ECC error 
occurred during an access to an L2 
RAM

Signal Interrupt if CM_ERROR_MASK[26] = 1

Table 6.10 CM2 Error Types (continued)

CM2_ERROR_
TYPE Error Name Description Action
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6.3.18.1 Error Codes 1 - 15

If the decimal value in the CM2_ERROR_TYPE field is between 1 and 15, the ERROR_INFO field in the Global 
CM2 Error Cause register is organized as shown in Table 6.11.

As shown in the above table, the OCP MCmd field in bits 11:7 is further encoded as shown in Table 6.12 below. 

Consider the example where a coherent write error occurs to the MMIO region during a coherent writeback opera-
tion. In this case, the Global Config register would be programmed by hardware as follows:

Table 6.11 State of ERROR_INFO Field for Error Types 1 through 15

Bits Meaning

26:18 Reserved.

17:15 CCA

14:12 Target Region (0: MEM, 1:GCR, 2: GIC, 3: MMIO, 5: CPC)

11:7 OCP MCmd (see Table 6.12)

6:3 Source TagID

2:0 Source Port

Table 6.12 MCmd (Bits 11:7) Encoding for CM2_ERROR_INFO 

MCmd Encoding Description

0x01 Legacy Write

0x02 Legacy Read

0x08 Coherent Read Own

0x09 Coherent Read Share

0x0A Coherent Read Discard

0x0B Coherent Ready Share Always

0x0C Coherent Upgrade

0x0D Coherent Writeback

0x10 Coherent Copyback

0x11 Coherent Copyback Invalidate

0x12 Coherent Invalidate

0x13 Coherent Write Invalidate

0x14 Coherent Completion Sync
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Figure 6.11 Example of a Coherent Write Error to MMIO

6.3.18.2 Error Codes 16 - 23

If the decimal value in the CM2_ERROR_TYPE field is between 16 and 23, the ERROR_INFO field in the Global 
Config register is organized as shown in Table 6.13. 

Table 6.13 State of ERROR_INFO Field for Error Types 16 through 23

Bit Meaning

26:21 Reserved

20:19 Coherent state from core 3 (see Table 6.14)

18 Intervention SResp from core 3 (see Table 6.15)

17:16 Coherent state from core 2 (see Table 6.14)

15 Intervention SResp from core 2 (see Table 6.15)

14:13 Coherent state from core 1 (see Table 6.14)

12 Intervention SResp from core 1 (see Table 6.15)

11:10 Coherent state from core 0 (see Table 6.14)

9 Intervention SResp from core 0 (see Table 6.15)

8 Request was from a Store Conditional

7:3 OCP MCmd (see Table 6.12)

2:0 Source port

71431
Global Config Register

Hardware Decode
Logic

Coherent Write Error in MMIO Region

27

CM2_ERROR_TYPE

0x03
12 11

0x03

ERROR_INFO

Error Type Region OCP Command

0x0D
26 6 015

(Coh Write) (MMIO) (Coh Writeback)
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Note that for each of the coherent state errors in Table 6.13 (bits 20:19, 17:16, 14:13, and 11:10), the encoding for 
these fields is shown in Table 6.14. 

For each of the Intervention SResp errors in Table 6.13 (bits 18, 15, 12, and 9), the encoding for these bits is shown in 
Table 6.15. 

Bits 7:3 of the ERROR_INFO field are encoded the same as those shown in Table 6.12.

Consider the example where a core issues a coherent read, and both cores 1 and 2 respond with modified data. In this 
case, the Global Config register would be programmed by hardware as follows:

Figure 6.12 Example of a Intervention Read Error to MMIO

Table 6.14 Coherent State Values for Error Types 16 through 23

Encoding Meaning

0 Invalid

1 Shared

2 Modified

3 Exclusive

Table 6.15 Intervention SResp Values for Error Type 16 to 23

Encoding Meaning

0 OK

1 Data (DVA)
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6.3.18.3 Error Codes 24 - 26

If the decimal value in the CM2_ERROR_TYPE field is between 24 and 26, the ERROR_INFO field in the Global Config 
register is organized as shown in Table 6.16.  

For each of the errors types 24 - 26 listed in Table 6.10, the instruction associated with the error is encoded into bits 
22:18 of the ERROR_INFO field as shown in Table 6.16. The encoding for these bits is shown in Table 6.17 below. 

Table 6.16 State of ERROR_INFO Field for Error Types 24 to 26

Bit Meaning

26:24 Reserved (zero)

23 Multiple Uncorrectable

22:18 Instruction[4:0] associated with the error
see Table 6.17

17:16 Array type[1:0]:
00 = None
01 = Tag RAM single/double ECC error
10 = Data RAM single/double ECC error
11 = WS RAM uncorrectable dirty parity

15:12 DWord[3:0] with error, Array type = 2 only

11:9 Way[2:0] associated with the error

8 Multi-way error for Tag or WS RAM

7:0 Syndrome associated with Tag or WS way, or Syndrome associated 
with Data DWord

Table 6.17 Instructions for Error Type 24 to 26 

Bit Meaning

0x00 L2_NOP

0x01 L2_ERR_CORR

0x02 L2_TAG_INV

0x03 L2_WS_CLEAN

0x04 L2_RD_MDYFY_WR

0x05 L2_WS_MRU

0x06 L2_EVICT_LN2

0x08 L2_EVICT

0x09 L2_REFL

0x0A L2_RD

0x0B L2_WR

0x0C L2_EVICT_MRU

0x0D L2_SYNC

0x0E L2_REFL_ERR

0x10 L2_INDX_WB_INV

0x11 L2_INDX_LD_TAG
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Consider the example of multiple uncorrectable errors in DWord 3, way 5 of the Data RAM during an L2 Read 
instruction. In this case, the Global Config register would be programmed by hardware as follows:

Figure 6.13 Multiple Uncorrectable Errors to Byte 3 of the Data RAM During an L2 Hit Writeback Instruction

6.3.19 Custom GCR Implementation

The CM2 provides the ability for the user to implement a 64 KB block of custom registers that can be used to control 
system level functions. These registers are defined by the user and then instantiated into the design. The CM2 pro-
vides two global registers to handle the implementation of customer registers: the Global Custom Base register at offset 
0x0060, and the Global Custom Status register located at offset 0x0068.

The existence of a custom GCR implementation in the system is selected during IP Configuration. If this option is 
selected, custom GCR hardware must drive the internal GU_Present pin to the CM2. The state of this pin is loaded into 
the GGU_EX bit in the Global Custom Status register. This bit indicates that a custom GCR block is connected to the 
CM2. Note that GU_Present is an internal signal that is an output of the Custom GCR and is connected to the CM2 
logic.

0x12 L2_INDX_ST_TAG

0x13 L2_INDX_ST_DATA

0x14 L2_INDX_ST_ECC

0x18 L2_FTCH_AND_LCK

0x19 L2_HIT_INV

0x1A L2_HIT_WB_INV

0x1B L2_HIT_WB

Table 6.17 Instructions for Error Type 24 to 26 (continued)

Bit Meaning
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If a custom block is implemented, the starting address in memory of the 64 KB block is determined using the 16-bit 
CUSTOM_BASE field in the Global Custom Base register. Note that unlike the configuration of the CM2 Global con-
trol registers described in Section 6.3.6, the CUSTOM_BASE field does not have a default base address and this field 
is undefined at reset. Therefore, it is software’s responsibility to program the base address into this field during boot 
time if a custom GCR block is implemented.

In addition, the selected address region where the registers will reside must be enabled by setting the GGU_EN bit in 
the Global Custom Base register. Note that the accessibility of this bit by software depends on the state of the GGU_EX 
bit described above. If GGU_EX is cleared (zero), indicating that no custom GCR is connected to the CM2, then the 
GGU_EN bit becomes RO and is not accessible by software. If this bit is set, indicating that a custom GCR is con-
nected to the CM2, then the GGU_EN bit becomes R/W and is accessible by software.

This concept is described in Figure 6.14 below. 

Figure 6.14 Relationship Between the CM_Present Signal and the GGU_EX and GGU_EN Bits at Reset

Note that, depending on the user's implementation, the custom GCR may handle 64-bit reads/writes (unlike the nor-
mal GCR which only handles 32-bit accesses). For more information on this feature, contact MIPS Customer Sup-
port.

6.3.20 Attribute-Only Regions

The CM2 provides four standard variable-size regions as described in Section 6.3.7, "Address Regions", as well as 
four additional attribute-only regions. The attribute only regions allows the cache coherency attributes for that region 
to be modified, but they cannot be used to select between memory and I/O as the target.

In a situation where all of the standard variable size regions have been allocated, the attribute-only regions can be 
used to override the cache coherency attributes for that memory region. For example, all four attribute-only regions 
can be mapped to a single IOCU. 

The CM2 uses four sets of base/mask registers to manage up to four attribute-only regions. The Base registers 
described in Section 6.4.5.1, "CM2 Attribute-Only Region [0 - 3] Base Address Registers 
(GCR_REGn_ATTR_BASE Offsets 0x0190, 0x01A0, 0x0210, 0x0220)" contain the base address in memory for 
each region. The Mask registers described in Section 6.4.5.3, "CM Attribute-Only Region[0 - 3] Address Mask 
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Registers (GCR_REGn_ATTR_MASK Offsets 0x0198, 0x1A8, 0x218, 0x228)" contain the size of the region and 
the CCA override information.

These registers are shown starting at offset address 0x0190 in Table 6.18 below:

6.4 Global Control Block

6.4.1 Global Control Block Address Map

All registers in the Global Control Block are 32 bits wide and should only be accessed using 32-bit uncached load/
stores. Reads from unpopulated registers in the GCR address space return 0x0, and writes to those locations are 
silently dropped without generating any exceptions.  

Table 6.18 Global Control Block Register Map (Relative to Global Control Block offset)

Register Address Name Type Description

0x0000 Global Config Register
(GCR_CONFIG)

R Indicates the number of Processor cores, 
number of interrupts, number of IOCUs, 
etc.

0x0008 GCR Base Register
(GCR_BASE)

R/W Base of the control register space.

0x000C GCR Base Upper Register
(GCR_BASE_UPPER)

R/W Upper bits of the base of the control register 
space. 

0x0010 Global CM2 Control Register
(GCR_CONTROL)

R/W Control bits for the Coherence Manager

0x0018 Global CM2 Control2 Register
(GCR_CONTROL2)

R/W More Control bits for the Coherence Man-
ager

0x0020 Global CSR Access Privilege Register
(GCR_ACCESS)

R/W Controls which Cores can modify the GCR 
Registers

0x0030 GCR Revision Register
(GCR_REV)

R RevisionID of the GCR hardware

0x0040 Global CM2 Error Mask Register
(GCR_ERROR_MASK)

R/W Controls what Errors are reported as Inter-
rupts

0x0048 Global CM2 Error Cause Register
(GCR_ERROR_CAUSE)

R/W Captures info when an Error occurs within 
the CM2

0x0050 Global CM2 Error Address Register
(GCR_ERROR_ADDR)

R/W Captures address which caused the CM2 
error. 

0x0054 Global CM2 Error Address Upper Register
(GCR_ERROR_ADDR_UPPER)

R/W Captures the upper bits of the address 
(above bit 32) which caused the CM2 error.

0x0058 Global CM2 Error Multiple Register
(GCR_ERROR_MULT)

R/W Captures information for subsequent CM2 
errors.

0x0060 GCR Custom Base Register
(GCR_CUSTOM_BASE)

R/W Base address of the custom user-defined 
64KB control register space.

0x0064 GCR Custom Base Upper Register
(GCR_CUSTOM_BASE_UPPER)

R/W Upper bits of the base address of the custom 
user-defined 64KB control register space.
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0x0068 GCR Custom Status Register
(GCR_CUSTOM_STATUS)

R/W Existence and status of the custom user-
defined GCR

0x0070 Global L2 only Sync Register
(GCR_L2_ONLY_SYNC_BASE)

R/W Base address of the L2 only Sync 4KB 
address space

0x0074 Global L2 only Sync Upper Register
(GCR_L2_ONLY_SYNC_BASE_UPPER)

R/W Upper bits of the base address of the L2 
only Sync 4KB address space. 

0x0080 Global Interrupt Controller Base Address Register
(GCR_GIC_BASE)

R/W GIC Base Address

0x0084 Global Interrupt Controller Base Address Upper Register
(GCR_GIC_BASE_UPPER)

R/W GIC Upper base address. Stores address bits 
39:32.

0x0088 Cluster Power Controller Base Address Register
(GCR_CPC_BASE)

R/W CPC base address

0x008C Cluster Power Controller Base Address Upper Register
(GCR_CPC_BASE_UPPER)

R/W CPC base address. Stores address bits 
39:32.

0x0090 CM2 Region0 Base Address Register
(GCR_REG0_BASE)

R/W Address Region0 Base Address
This register is present only when the IOCU 
is present.

0x0094 CM2 Region0 Base Address Upper Register
(GCR_REG0_BASE_UPPER)

R/W Address Region0 Base Address. Stores 
address bits 39:32 of region 0 address. This 
register is present only when the IOCU is 
present.

0x0098 CM2 Region0 Address Mask Register
(GCR_REG0_MASK)

R/W Address Region0 Size and Destination
This register is present only when the IOCU 
is present.

0x009C CM2 Region0 Address Mask Upper Register
(GCR_REG0_MASK_UPPER)

R/W Address Region0 Size and Destination. 
Stores address mask bits 39:32 of region 0. 
This register is present only when the IOCU 
is present

0x00A0 CM2 Region1 Base Address Register
(GCR_REG1_BASE)

R/W Address Region1 Base Address
This register is present only when the IOCU 
is present

0x00A4 CM2 Region1 Base Address Upper Register
(GCR_REG1_BASE_UPPER)

R/W Address Region1 Base Address. Stores 
address bits 39:32 of region 1. This register 
is present only when the IOCU is present.

0x00A8 CM2 Region1 Address Mask Register
(GCR_REG1_MASK)

R/W Address Region1 Size and Destination
This register is present only when the IOCU 
is present.

0x00AC CM2 Region1 Address Mask Upper Register
(GCR_REG1_MASK_UPPER)

R/W Address Region1 Size and Destination. 
Stores address mask bits 39:32 of region 1. 
This register is present only when the IOCU 
is present

0x00B0 CM2 Region2 Base Address Register
(GCR_REG2_BASE)

R/W Address Region2 Base Address
This register is present only when the IOCU 
is present

0x00B4 CM2 Region2 Base Address Upper Register
(GCR_REG2_BASE_UPPER)

R/W Address Region1 Base Address. Stores 
address bits 39:32 of region 2. This register 
is present only when the IOCU is present.

Table 6.18 Global Control Block Register Map (Relative to Global Control Block offset)

Register Address Name Type Description
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0x00B8 CM2 Region2 Address Mask Register
(GCR_REG2_MASK)

R/W Address Region2 Size and Destination
This register is present only when the IOCU 
is present

0x00BC CM2 Region2 Address Mask Upper Register
(GCR_REG2_MASK_UPPER)

R/W Address Region2 Size and Destination. 
Stores address mask bits 39:32. This regis-
ter is present only when the IOCU is present

0x00C0 CM2 Region3 Base Address Register
(GCR_REG3_BASE)

R/W Address Region3 Base Address
This register is present only when the IOCU 
is present

0x00C4 CM2 Region3 Base Address Upper Register
(GCR_REG3_BASE_UPPER)

R/W Address Region1 Base Address. Stores 
address bits 39:32 of region 3. This register 
is present only when the IOCU is present.

0x00C8 CM2 Region3 Address Mask Register
(GCR_REG3_MASK)

R/W Address Region3 Size and Destination
This register is present only when the IOCU 
is present

0x00CC CM2 Region3 Address Mask Upper Register
(GCR_REG3_MASK_UPPER)

R/W Address Region3 Size and Destination. 
Stores address mask bits 39:32 of region 3. 
This register is present only when the IOCU 
is present

0x00D0 Global Interrupt Controller Status Register
(GCR_GIC_STATUS)

R Existence and status of GIC

0x00E0 Cache Revision Register
(GCR_CACHE_REV)

R Revision of cache attached to the coherent 
Cluster.

0x00F0 Cluster Power Controller Status Register
(GCR_CPC_STATUS)

R Existence and status of CPC.

0x0100 IOCU Base Address Register
(GCR_IOC_BASE)

R/W Address Base for IOMMU registers con-
tained within the IOCUs.

0x0104 IOCU Base Address Upper Register 
(GCR_IOC_BASE_UPPER)

R/W Upper portion of address base for IOMMU 
registers contained within the IOCUs.

0x0108 IOMMU Status Register
(GCR_IOMMU_STATUS)

R Existence of IOMMU inside IOCU.

0x0190 CM Attribute-Only Region0 Base Address Register
(GCR_REG0_ATTR_BASE)

R/W Attribute-only region 0 base address.

0x0194 CM Attribute-Only Region0 Base Address Upper Regis-
ter (GCR_REG0_ATTR_BASE_UPPER)

R/W Attribute-only region 0 upper base address. 
Stores bits 39:32 of the address.

0x0198 CM Attribute-Only Region0 Address Mask Register
(GCR_REG0_ATTR_MASK)

R/W Attribute-only region 0 mask bits.

0x019C CM Attribute-Only Region0 Address Mask Upper Regis-
ter (GCR_REG0_ATTR_MASK_UPPER)

R/W Attribute-only region 0 upper mask bits. 
Stores bits 39:32 of the address mask. 

0x01A0 CM Attribute-Only Region1 Base Address Register
(GCR_REG0_ATTR_BASE)

R/W Attribute-only region 1 base address.

0x01A4 CM Attribute-Only Region1 Base Address Upper Regis-
ter (GCR_REG1_ATTR_BASE_UPPER)

R/W Attribute-only region 1upper base address. 
Stores bits 39:32 of the address.

0x01A8 CM Attribute-Only Region1 Address Mask Register
(GCR_REG1_ATTR_MASK)

R/W Attribute-only region 1 mask bits.

Table 6.18 Global Control Block Register Map (Relative to Global Control Block offset)

Register Address Name Type Description
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6.4.2 CM2 Configuration Registers

This section describes the CM2 configuration registers, including control, error and mask, revision, and custom-GCR 
registers.

6.4.2.1 Global Config Register (GCR_CONFIG Offset 0x0000)

This register provides information on the overall system configuration. These fields are read-only and their reset state 
is determined at IP configuration time. Refer to Section 6.3.7, "Address Regions" for more information on how the 
address regions are used. 

Figure 6.15 Global Configuration Register Format  

0x01AC CM Attribute-Only Region1 Address Mask Upper Regis-
ter (GCR_REG1_ATTR_MASK_UPPER)

R/W Attribute-only region 1 upper mask bits. 
Stores bits 39:32 of the address mask. 

0x0200 IOCU Revision Register
(GCR_IOCU1_REV)

R Revision of IOCU

0x0210 CM Attribute-Only Region2 Base Address Register
(GCR_REG2_ATTR_BASE)

R/W Attribute-only region 2 base address.

0x0214 CM Attribute-Only Region2 Base Address Upper Regis-
ter (GCR_REG2_ATTR_BASE_UPPER)

R/W Attribute-only region 2 upper base address. 
Stores bits 39:32 of the address.

0x0218 CM Attribute-Only Region2 Address Mask Register
(GCR_REG2_ATTR_MASK)

R/W Attribute-only region 2 mask bits.

0x021C CM Attribute-Only Region2 Address Mask Upper Regis-
ter (GCR_REG2_ATTR_MASK_UPPER)

R/W Attribute-only region 2 upper mask bits. 
Stores bits 39:32 of the address mask. 

0x0220 CM Attribute-Only Region3 Base Address Register
(GCR_REG3_ATTR_BASE)

R/W Attribute-only region 3 base address.

0x0224 CM Attribute-Only Region3 Base Address Upper Regis-
ter (GCR_REG3_ATTR_BASE_UPPER)

R/W Attribute-only region 3 upper base address. 
Stores bits 39:32 of the address.

0x0228 CM Attribute-Only Region3 Address Mask Register
(GCR_REG3_MASK)

R/W Attribute-only region 3 mask bits.

0x022C CM Attribute-Only Region3 Address Mask Upper Regis-
ter (GCR_REG3_ATTR_MASK_UPPER)

R/W Attribute-only region 3 upper mask bits. 
Stores bits 39:32 of the address mask. 

0x0240 L2 RAM Configuration register. 
(GCR_L2_RAM_CONFIG)

R/W L2 RAM configuration parameters.

0x0300 L2 Prefetch control register. (GCR_L2_PFT_CONTROL) R/W L2 prefetch control.

0x0308 L2 Prefetch 2nd control register. 
(GCR_L2_PFT_CONTROL_B)

R/W L2 prefetch 2nd control register.

All Others Reserved. - For Future Extensions

31 20 19 16 15 12 11 8 7 0

R ADDR_REGIONS R NUMIOCU PCORES

Table 6.18 Global Control Block Register Map (Relative to Global Control Block offset)

Register Address Name Type Description
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Table 6.19 Global Config Register Descriptions 

Name Bits Description
Read/
Write Reset State

RESERVED 31:20 Reserved, Read as 0x0. Writes ignored. Must be written 
with a value of 0x0. 

R -

ADDR_REGIONS 19:16 Number of address regions. Total number of CM2 
Address Regions. Note: only 0, 4, 6, or 8 address regions 
are currently supported. All other encoded values not 
listed below are reserved.
. 

R IP Configuration Value

RESERVED 15:12 Read as 0x0. Writes ignored. Must be written with a 
value of 0x0. 

R -

NUMIOCU 11:8 Total number of IOCUs in the system. Note: only1 IOCU 
is currently supported.

0x0: Reserved
0x1: 1 IOCU
0x2 - 0xF: Reserved

R IP Configuration Value

PCORES 7:0 Total number of P6600 cores in the system not including 
the IOCUs. All values not shown are reserved.

0x00: 1 core
0x01: 2 cores
0x02: 3 cores
0x03: 4 cores
0x04: 5 cores
0x05: 6 cores
0x06 - 0xFF: Reserved

R IP Configuration Value

Encoding Meaning

0x0 0 Address Regions - no IOCU
0x4 4 Address Regions - standard
0x6 6 Address Regions - 4 standard + 2 

Attribute Only
0x8 8 Address Regions - 4 standard + 4 

Attribute Only
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6.4.2.2 GCR Base Register (GCR_BASE Offset 0x0008)

Within the physical address space, the location of the GCR is set by the GCR_BASE register. The MIPS default power-
up value produces the physical address 0x00_1FBF_8000. A different default value may be specified at IP configura-
tion time. 

Refer to Section 6.3.6, "Setting the CM2 Register Block Base Address" and Section 6.3.15, "Setting the Cache 
Coherency Attributes for Default Memory Transfers" for more information on how this register is used. 

Figure 6.16 GCR Base Register Format  

31 15 14 8 7 5 4 3 2 1 0

GCR_BASE R CCA CCAEN R CM2_TARGET

Table 6.20 GCR Base Register Descriptions 

Name Bits Description
Read/
Write Reset State

GCR_BASE 31:15 This field works in conjunction with the GCR_BASE_UPPER 
register below to set the base address of the 32KB GCR block of 
the P6600 MPS. 
This register has a fixed value after reset if configured as Read-
Only (an IP Configuration Option).

R or R/W
(IP Config-

uration)

IP Configuration Value 
MIPS Default: 
0x00_1FBF_8

RESERVED 14:8 Reads as 0x0. Must be written with a value of 0x0. R 0

CCA 7:5 CCA default override value. Used in conjunction with CCAEN to 
force the Cache Coherence Attribute (CCA) value for transactions 
on the system memory OCP. See CCAEN field.

R/W 0

CCAEN 4 If CCA_DEFAULT_OVERRIDE_ENABLE is set to 1 and 
CM2_DEFAULT_TARGET is set to Memory, then transactions 
with addresses that do not map to any region will have a CCA 
value set to CCA_DEFAULT_OVERRIDE_VALUE when driven 
to system memory.

R/W 0

RESERVED 3:2 Read as 0x0. Must be written with a value of 0x0. - 0x0

Encoding Name Description

0x0 WT Write Through
0x1 - Reserved
0x2 UC Uncached
0x3 WB Writeback, cacheable, 

noncoherent 
0x4 CWBE Mapped to WB
0x5 CWB Mapped to WB
0x6 - Reserved
0x7 UCA Uncached Accelerated
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CM2_DEFAULT_
TARGET

1:0 Determines the target device for addresses which do not match 
any address map entry.

00: Memory
01: Reserved
10: IOCU
11: Reserved

Only used for hardware I/O-Coherent systems.

R/W Value of signal 
SI_CM_Default_
Target[1:0] 

Table 6.20 GCR Base Register Descriptions (continued)

Name Bits Description
Read/
Write Reset State
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6.4.2.3 GCR Base Upper Register (GCR_BASE_UPPER Offset 0x000C)

Within the physical address space, the location of the GCR is set by the GCR_BASE register. This register works in 
conjunction with the GCR Base Register described above to provide a complete 36-bit base address.

Figure 6.17 GCR Base Upper Register Format  

6.4.2.4 Global CM2 Control Register (GCR_CONTROL Offset 0x0010)

Figure 6.18 Global CM2 Control Register Format  

31 5 4 0

R GCR_BASE_UPPER

Table 6.21 GCR Base Upper Register Descriptions 

Name Bits Description
Read/
Write Reset State

R 31:5 Reads as 0x0. Must be written with a value of 0x0. R 0

GCR_BASE_UPPER 4:0 This field works in conjunction with the GCR_BASE register 
above to set the base address of the 32KB GCR block of the 
P6600 MPS. 
This register has a fixed value after reset if configured as Read-
Only (an IP Configuration Option).

R or R/W
(IP Config-

uration)

IP Configuration Value 
MIPS Default: 0x00

31 17 16

R SYNCCTL

15 8 7 6 5 4 3 2 1 0

R U SYNCDIS IVU_EN SHST_EN PARK_EN MMIO_LIMIT_DIS SPEC_READ_EN

Table 6.22 Global CM2 Control Register Descriptions 

Name Bits Description
Read/
Write

Reset 
State

RESERVED 31:17 Read as 0x0. Must be written with a value of 0x0. - 0x0

SYNCCTL 16 Determines SYNC behavior when a SYNC level 0x0 is 
executed by a core.
SyncCtl = 1 means Sync0 generates a memory sync 
SyncCtl = 0 means Sync0 generates an intervention sync

RW 0x0

RESERVED 15:8 Read as 0x0. Must be written with a value of 0x0. R 0x0

UNUSED 7:6 These bits are currently unused. When writing to this reg-
ister, software should assign a value of 2’b00 to this field.

R/W 0x0
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SYNCDIS 5 SYNC transmit disable. Set to 1 to disable the propagation 
of SYNC transactions on the system memory port. This 
has the same effect as deasserting SI_SyncTxEn. 
Setting to 0 makes the propagation of SYNC transactions 
on the system memory port dependent solely on the state 
of SI_SyncTxEn. Refer to the pin descriptions chapter in 
the P6600 Hardware User’s Manual for more information 
on this pin.

RW 0x0

IVU_EN 4 Stall until interventions are completed.
Set to 1 to stall serialization when a core’s clock is stop-
ping or is being powered down by the CPC until all previ-
ous interventions are complete. 
Set to 0 for no stalling of serialization when a core is 
going offline.

RW 0x0

SHST_EN 3 Force coherent read data to shared state in L1 data cache.

If set to 1 then Coherent Read Data is always installed in 
the Level 1 cache of the requesting P6600 core in the 
SHARED state.

If set to 0 then Coherent Read Data may be installed in the 
Level 1 cache in the SHARED state (if the data coexists in 
other Level 1 caches) or EXCLUSIVE (if the data does 
not coexist in other Level 1 caches).

RW 0x0

PARK_EN 2 I/O port parking enable.

If set to 1 and the SI<iocu>_CMP_IOC_ParkEn signal is 
1, then I/O Port Parking is enabled for the corresponding 
IOCU. I/O Port parking is a mechanism where the CM2 
only serializes requests from the IOCU for some period of 
time.

If set to 0 or SI<iocu>_CMP_IOC_ParkEn signal is 0, 
then the I/O Port Parking is disabled for the corresponding 
IOCU.

This bit has no effect in systems without an IOCU (i.e., 
they are not hardware I/O coherent). 

RW 0x0

Table 6.22 Global CM2 Control Register Descriptions (continued)

Name Bits Description
Read/
Write

Reset 
State
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6.4.2.5 Global CM2 Control2 Register (GCR_CONTROL2 Offset 0x0018)

This register sets limits on how many consecutive cache operations are allowed to the L1 and L2 caches. Refer to 
Section 6.3.16, "In-Flight L1 and L2 Cache Operations" for more information on how this register is used. 

Figure 6.19 Global CM2 Control2 Register Format  

MMIO_LIMIT_DIS 1 Limit requests to memory-mapped I/O.

If set to 0, the CM2 avoids deadlock in systems with hard-
ware I/O coherence by limiting requests issued to Mem-
ory-Mapped I/O. An MMIO request will be selected for 
serialization only if the previous request and write data (if 
applicable) has been accepted by the IOCU.

If set to 1, MMIO requests are not limited and therefore 
deadlock may occur in systems with hardware I/O coher-
ence unless avoided by some other mechanism.

This bit has no effect in systems without an IOCU (i.e., 
they are not hardware I/O coherent) because there are no 
MMIO ports and therefore the limit does not apply.

RW 0x0

SPEC_READ_EN 0 Speculative coherent read enable.

If set to 1, the CM2 may speculatively read memory for a 
coherent read before the intervention for that read has 
completed. Performance is improved by reading memory 
in parallel with the intervention.
If set to 0, the CM2 will never issue speculative reads to 
memory.

R/W 0x1

31 20 19 16 15 4 3 0

R L2_CACEOP_LIMIT R L1_CACEOP_LIMIT

Table 6.23 Global CM2 Control2 Register 

Name Bits Description
Read/
Write

Reset 
State

RESERVED 31:20 Read as 0x0. Writes ignored. Must be written with a value 
of 0x0.

- 0x0

Table 6.22 Global CM2 Control Register Descriptions (continued)

Name Bits Description
Read/
Write

Reset 
State
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L2_CACHEOP_LIMIT 19:16 L2 CacheOp transaction limit.

The total number of L2 CacheOp transactions allowed by 
the CM2 serialization arbiter to be simultaneously in-
flight. An L2 CacheOp is defined as any transaction with 
MAddrSpace = 0b001 or 0b010. In this context, an L2 
CacheOp transaction is considered in-flight when it is 
selected for serialization by the CM2 until the request is 
issued on the CM2’s system memory OCP Port.

Setting a value of 0x0 disables the limit (i.e., the CM2 
serialization arbiter will not explicitly limit the number of 
in-flight L12 CacheOps). 

Setting a value of 0x1 allows only a single in-flight L2 
CacheOp. Setting a value of 0x2 allows two in-flight L2 
CacheOps, etc.

The purpose of this limit is to avoid the case where one or 
more cores substantially impact the performance of other 
cores by issuing a rapid succession of L2 CacheOps.

R/W 0x4

RESERVED 15:4 Read as 0x0. Writes ignored. Must be written with a value 
of 0x0.

- 0x0

L1_CACHEOP_LIMIT 3:0 L1 CacheOp transaction limit.

The total number of L1 CacheOp transactions allowed by 
the CM2 serialization arbiter to be simultaneously in-
flight. A L1 CacheOp is defined as a transaction with 
MAddrSpace = 0b011 or 0b1xx. In this context, a transac-
tion is considered in-flight when it is selected for serializa-
tion by the CM2 until its intervention response is 
processed by the CM2 (if the cacheOp did not receive a 
DVA intervention response) or until all intervention data 
has been received (if the cacheOp received a DVA inter-
vention response). 

Setting a value of 0x0 disables the limit (i.e., the CM2 
serialization arbiter will not explicitly limit the number of 
in-flight L1 CacheOps). 
Setting a value of 0x1 allows only a single in-flight L1 
CacheOp. Setting a value of 0x2 allows two in-flight L1 
CacheOps, etc...

The purpose of this limit is to avoid the case where one or 
more cores substantially impact the performance of other 
cores by issuing a rapid succession of L1 CacheOps that 
receive an intervention response of DVA.

R/W 0x6

Table 6.23 Global CM2 Control2 Register (continued)

Name Bits Description
Read/
Write

Reset 
State
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6.4.2.6 Global CSR Access Privilege Register (GCR_ACCESS Offset 0x0020)

A request can be initiated by either a core or an IOCU. The CM2 allows for a maximum of seven requestors. How-
ever, these requestors do not have unrestricted access to the CM2 register set and must be granted permission by soft-
ware via this register. Refer to Section 6.3.4, "Requestor Access to GCR Registers" for more information on how this 
register is used. 

Figure 6.20 Global CSR Access Privilege Register Format  

6.4.2.7 CM2 Revision Register (GCR_REV Offset 0x0030)

Figure 6.21 GCR Revision Register Format 

31 8 7 0

R CM2_ACCESS_EN

Table 6.24 Global CSR Access Privilege Register Descriptions  

Name Bits Description
Read/
Write Reset State

RESERVED 31:8 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0000_00

CM2_ACCESS_EN 7:0 Requester access to global control registers. Each bit in 
this field represents a coherent requester. 

If the bit is set, that requester is able to write to the GCR 
registers (this includes all registers within the Global, 
Core-Local, Core-Other, and Global Debug control 
blocks. The GIC is always writable by all requestors). 

If the bit is clear, any write request from that requestor to 
the GCR registers (Global, Core-Local, Core-Other, or 
Global Debug control blocks) will be dropped. 

R/W 0xFF

31 16 15 8 7 0

R MAJOR_REV MINOR_REV

Table 6.25 GCR Revision Register Descriptions

Name Bits Description
Read/
Write

Reset 
State

RESERVED 31:16 Reads as 0x0. Must be written with a value of 0x0. R 0x0000
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6.4.2.8 Global CM2 Error Mask Register (GCR_ERROR_MASK Offset 0x0040)

This register is used in conjunction with the Global CM2 Error Cause and Global CM2 Error Address registers to deter-
mine the type of error and the address which caused the error. Refer to Section 6.3.18, "Error Processing" for more 
information on how this register is used. 

Figure 6.22 Global CM2 Error Mask Register Format  

MAJOR_REV 15:8 CM2 Major revision number.

This field reflects the major revision of the GCR block. A 
major revision might reflect the changes from one product 
generation to another. 

This value changes based on the processor revision. Refer 
to the errata sheet of the P6600 core for the exact value of 
this field.

R Preset

MINOR_REV 7:0 CM2 Minor revision number.

This field reflects the minor revision of the GCR block. A 
minor revision might reflect the changes from one release 
to another. 

This value changes based on the processor revision. Refer 
to the errata sheet of the P6600 core for the exact value of 
this field.

R Preset

31 0

CM2_ERROR_MASK

Table 6.26 Global CM2 Error Mask Register Descriptions

Name Bits Description
Read/
Write Reset State

CM2_ERROR_MASK 31:0 CM2 Error Mask field.

Each bit in this field represents an Error Type. If the bit is 
set, an interrupt is generated if an error of that type is 
detected. 

If the bit is set, the transaction for Read-Type Errors com-
pletes with OK response to avoid double reporting of the 
error. 

The Error Types that can be captured are implementation- 
specific.

R/W 0x000A_002A
(write errors cause 

interrupts;
read errors provide 

error response)

Table 6.25 GCR Revision Register Descriptions

Name Bits Description
Read/
Write

Reset 
State
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6.4.2.9 Global CM2 Error Cause Register (GCR_ERROR_CAUSE Offset 0x0048)

This register is used in conjunction with the Global CM2 Error Mask and Global CM2 Error Address registers to deter-
mine the type of error and the address which caused the error. Refer to Section 6.3.18, "Error Processing" for more 
information on how this register is used. 

Figure 6.23 Global CM2 Error Cause Register Format  

 

6.4.2.10 Global CM2 Error Address Register (GCR_ERROR_ADDR Offset 0x0050)

This register is used in conjunction with the Global CM2 Error Cause and Global CM2 Error Mask registers to determine 
the type of error and the address which caused the error. Refer to Section 6.3.18, "Error Processing" for more infor-
mation on how this register is used. 

Figure 6.24 Global CM2 Error Address Register Format  

31 27 26 0

CM2_ERROR_TYPE ERROR_INFO

Table 6.27 Global CM2 Error Cause Register Descriptions

Name Bits Description
Read/
Write Reset State

CM2_ERROR_TYPE 31:27 Indicates type of error detected. 
When CM2_ERROR_TYPE is zero, no errors have been 
detected. When CM2_ERROR_TYPE is non-zero, another 
error will not be reloaded until a power-on reset or this field 
is written to 0.

R/W 0

ERROR_INFO 26:0 Information about the error.
If CM2_ERROR_TYPE = 1 through 15, see Table 6.11
if CM2_ERROR_TYPE = 16 through 23, see Table 6.13
if CM2_ERROR_TYPE = 24 through 26, see Table 6.16

R/W Undefined

31 0

CM2_ERROR_ADDR

Table 6.28 Global CM2 Error Address Register Descriptions

Name Bits Description
Read/
Write Reset State

CM2_ERROR_ADDR 31:0 This register works in conjunction with the CM2 Error Upper 
Address register below to request the address which caused 
the error. Loaded when the Global Error Cause Register is 
loaded. 
Bits 2:0 should always be 0.

R/W Undefined
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6.4.2.11 Global CM2 Error Address Upper Register (GCR_ERROR_ADDR_UPPER Offset 0x0054)

This register works in conjunction with the Global CM2 Error Address register above to provide a complete 40-bit 
address.

Figure 6.25 Global CM2 Error Address Upper Register Format  

6.4.2.12 Global CM2 Error Multiple Register (GCR_ERROR_MULT Offset 0x0058)

The Global CM2 Error Cause, Global CM2 Error Address, and Global CM2 Error Mask registers described above provide 
information on the type of error, and the address which caused the error. In addition to this information, the P6600 
core also provides a way to determine the type of error should an secondary error occur. However, for the secondary 
error, only the type of error is logged, not the associated address. This register is used to log the type of secondary 
error. Refer to Section 6.3.18, "Error Processing" for more information on how this register is used. 

Figure 6.26 Global CM2 Error Multiple Register Format   

6.4.2.13 GCR Custom Base Register (GCR_CUSTOM_BASE Offset 0x0060)

This register allows for the implementation of custom registers that are designed by the customer and instantiated into 
the design at build time. Refer to Section 6.3.19, "Custom GCR Implementation" for more information on how this 
register is used. 

31 8 7 0

Reserved CM2_ERROR_ADDR_UPPER

Table 6.29 Global CM2 Error Address Upper Register Descriptions

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_00

CM2_ERROR_ADDR_U
PPER

7:0 This register works in conjunction with the CM2 Error 
Address register above to request the address which caused 
the error. Loaded when the Global Error Cause Register is 
loaded. 
Bits 2:0 should always be 0.

R/W Undefined

31 5 4 0

R ERROR_2ND

Table 6.30 Global CM2 Error Multiple Register 

Name Bits Description
Read/
Write Reset State

RESERVED 31:5 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_000

CM2_ERROR_2ND 4:0 Type of second error. Loaded when the Global CM2 Error 
Cause Register has valid error information and a second error 
is detected.

R/W 5’b0
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Figure 6.27 GCR Custom Base Register Format  

6.4.2.14 GCR Custom Base Upper Register (GCR_CUSTOM_BASE_UPPER Offset 0x0064)

This register works in conjunction with the GCR Custom Base Address register above to provide a complete 40-bit 
address.

Figure 6.28 GCR Custom Base Register Upper Format  

6.4.2.15 GCR Custom Status Register (GCR_CUSTOM_STATUS Offset 0x0068)

Refer to Section 6.3.19, "Custom GCR Implementation" for more information on how this register is used. 

Figure 6.29 Global Custom Status Register Format  

31 16 15 1 0

CUSTOM_BASE R GGU_EN

Table 6.31 GCR Custom Base Register Descriptions 

Name Bits Description
Read/
Write Reset State

CUSTOM_BASE 31:16 This field works in conjunction with the GCR Cus-
tom Base Upper register to set the base address of the 
64KB GCR custom user-defined block of the P6600 
Multiprocessing System.

R/W Undefined

RESERVED 15:1 Reads as 0x0. Must be written with a value of 0x0. R 0x0000

GGU_EN 0 If this bit is set, the address region for the Custom 
GCR is enabled. 
This bit cannot be set to 1 if GGU_EX = 0, indicating 
that a custom GCR is not attached to the CM.

R/W
(if GGU_EX = 1)

R
(if GGU_EX = 0)

0

31 8 7 0

Reserved CUSTOM_BASE_UPPER

Table 6.32 GCR Custom Base Register Upper Descriptions 

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_00

CUSTOM_BASE_UPPER 7:0 This field works in conjunction with the GCR Cus-
tom Base register above to set the upper base address 
of the 64KB GCR custom user-defined block.

R/W Undefined

31 1 0

R GGU_EX
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6.4.2.16 L2-Only Sync Base Register (GCR_L2_ONLY_SYNC_BASE Offset 0x0070) 

The P6600 core provides a mechanism to execute a SYNC operation to only the L2 cache, without affecting the core. 
Refer to Section 6.3.13, "L2-Only SYNC Operation" for more information on how this register is used. 

Figure 6.30 L2-Only Sync Base Register Format  

Table 6.33 GCR Custom Status Register Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:1 Reads as 0x0. Must be written with a value of 0x0. R 0x0

GGU_EX 0 If this bit is set, the Custom GCR is connected to the 
CM2. The state of this bit is set based on whether or not 
this block is implemented at build time as determined by 
the state of the GU_Present signal.

If a Custom GCR block is not present, the GU_Present pin 
is driven to 0. If there is a custom GCR block present, then 
the user must drive GU_Present = 1 inside their custom 
GCR module.

R Build time 
option

31 12 11 1 0

SYNC_BASE R SYNC_EN

Table 6.34 L2-Only Sync Base Register Descriptions

Name Bits Description
Read/
Write Reset State

SYNC_BASE 31:12 L2-only SYNC base address.

This field works in conjunction with the L2-Only 
Sync Base Upper register below to set the base 
address of the 4KB GCR L2 only Sync of the 
P6600 MPS.

R/W Undefined

RESERVED 11:1 Reads as 0x0. Writes ignored. Must be written 
with a value of 0x0.

R 0x0

SYNC_EN 0 L2-only SYNC enable.

If this bit is set, the CM2 treats an uncached write 
request as an L2 only Sync.

If set to 0, the CM2 treats the uncached write as a 
regular uncached request.

R/W 0x0
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6.4.2.17 L2-Only Sync Base Upper Register (GCR_L2_ONLY_SYNC_BASE_UPPER Offset 0x0064)

This register works in conjunction with the GCR L2 Only Sync Base Address register above to provide a complete 
address.

Figure 6.31 GCR L2 Only Sync Base Upper Register Format  

6.4.3 CM2 Region Address Map Registers

6.4.3.1 Global Interrupt Controller Base Address Register (GCR_GIC_BASE Offset 0x0080)

Figure 6.32 Global Interrupt Controller Base Address Register Format  

31 8 7 0

Reserved SYNC_BASE_UPPER

Table 6.35 GCR L2 Only Sync Base Upper Register Descriptions 

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_00

SYNC_BASE_UPPER 7:0 This field works in conjunction with the L2-Only 
Sync Base register above to set the upper base 
address of the 64KB L2 only sync 4 KByte address 
space.

R/W Undefined

31 17 16 1 0

GIC_BASE_ADDR R GIC_EN

Table 6.36 Global Interrupt Controller Base Address Register Descriptions

Name Bits Description
Read/
Write Reset State

GIC_BASE_ADDR 31:17 Global Interrupt Controller Base Address.
This field works in conjunction with the Global Interrupt 
Controller Base Upper Address register below to set the 
base address of the 128KB Global Interrupt Controller. 

R/W Undefined

RESERVED 16:1 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

GIC_EN 0 Global Interrupt Controller Enable.
If this bit is set, the address region for the GIC is enabled. 
This bit can not be set to 1 if GIC_EX = 0, indicating that a 
GIC is not attached to the CM2.

R/W 
(if GIC_EX = 1)

R
(if GIC_EX = 0)

0
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6.4.3.2 GIC Base Address Upper Register (GCR_GIC_BASE_UPPER Offset 0x0084)

This register works in conjunction with the GCR GIC Base Address register above to provide a complete 40-bit 
address.

Figure 6.33 GCR GIC Base Upper Register Format  

6.4.3.3 Cluster Power Controller Base Address Register (GCR_CPC_BASE Offset 0x0088)

Figure 6.34 Cluster Power Controller Base Address Register Format   

6.4.3.4 GIC CPC Address Upper Register (GCR_CPC_BASE_UPPER Offset 0x0084)

This register works in conjunction with the GCR CPC Base Address register above to provide a complete 40-bit 
address.

31 8 7 0

Reserved GIC_BASE_UPPER

Table 6.37 GCR GIC Base Upper Register Descriptions 

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_00

GIC_BASE_UPPER 7:0 This field works in conjunction with the Global Inter-
rupt Controller Base Address register above to set the 
upper base address of the GIC base address space.

R/W Undefined

31 15 14 1 0

CPC_BASE_ADDR R CPC_EN

Table 6.38 Cluster Power Controller Base Address Register 

Name Bits Description
Read/
Write Reset State

CPC_BASE_ADDR 31:15 This field works in conjunction with the Cluster Power 
Controller Base Upper Address register below to set the 
40-bit base address of the 32K Cluster Power Controller. 

R/W Undefined

RESERVED 14:1 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

CPC_EN 0 If this bit is set, the address region for the CPC is enabled. 
This bit can not be set if 1 CPC_EX = 0, indicating that a 
CPC is not attached to the CM2.

R/W 
(if CPC_EX = 1)

R
(if CPC_EX = 0)

0
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Figure 6.35 GCR CPC Base Upper Register Format  

6.4.3.5 CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 
0x00B0, 0x00C0) 

Some or all of these registers may be removed during IP configuration. When an IOCU is present, there may be 4 
CM2 Address Mask Registers implemented. When no IOCU is present, there may be 0 or 4 CM2 Address Mask Reg-
isters. When a register is not present, it is defined as Reserved and Read-Only of 0.

Figure 6.36 CM2 Region [0 - 3] Base Address Register Format  

6.4.3.6 CM2 Region [0 - 3] Base Upper Address Register (GCR_REGn_BASE_UPPER Offsets 0x0094, 
0x00A4, 0x00B4, 0x00C4) 

These registers work in conjunction with their associated CM2 Region 0-3 base address registers above to form a 
complete 40-bit address.

Figure 6.37 CM2 Region [0 - 3] Base Address Upper Register Format  

31 8 7 0

Reserved CPC_BASE_UPPER

Table 6.39 GCR CPC Base Upper Register Descriptions 

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_00

CPC_BASE_UPPER 7:0 This field works in conjunction with the Cluster 
Power Controller Base Address register above to set 
the upper base address of the 40-bit CPC base address 
space.

R/W Undefined

31 16 15 14 0

CM2_REGION_BASE_ADDR R

Table 6.40 CM2 Region [0 - 3] Base Address Register Descriptions

Name Bits Description
Read/
Write Reset State

CM2_REGION_BASE_ADDR 31:16 CM2 region base address. 
This field works in conjunction with the CM2 Region 
Base Address Upper register below to set the base phys-
ical address of the memory region. 

R/W Undefined

RESERVED 15:0 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

31 8 7 0

Reserved REGION_BASE_UPPER
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6.4.3.7 CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 
0x00B8, 0x00C8)

Some or all of these registers may be removed during IP configuration. When an IOCU is present, there may be 4 
CM2 Address Mask Registers implemented. When no IOCU is present, there may be 0 or 4 CM2 Address Mask Reg-
isters. When a register is not present, it is defined as Reserved and Read-Only of 0.

Figure 6.38 CM2 Region [0-3] Address Mask Register Format  

Table 6.41 CM2 Region [0 - 3] Base Address Upper Register Descriptions

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0000_00

REGION_BASE_UPPER 7:0 CM2 region base address. 
This field works in conjunction with the CM2 Region 
Base Address Upper register below to set the 40-bit 
Region address.

R/W Undefined

31 15 14 8 7 5 4 3 2 1 0

CM2_REGION_ADDR_MASK R CCA_Override
_Value

CCA_Override
_Enable R DROP_L2 CM2_TARGET

Table 6.42 CM2 Region [0 - 3] Address Mask Register Descriptions 

Name Bits Description
Read/
Write Reset State

CM2_REGION_ADDR_MASK 31:16 This field works in conjunction with the CM2 Region 
Mask Upper Address register below to set the size of the 
CM2 Region. 

This field is used along with its equivalent CM2 Region 
Base Address Register. 
The request address is logically ANDed with the value of 
this register. The value of the associated Base Address 
Register is also logically ANDed with the value of this 
register. If both outputs match, then the request is routed 
to the CM2 region. 
The only allowed values in this register are contiguous 
sets of leading 0x1’s. An 0x1 preceded by a 0x0 is not 
allowed (e.g., the value of 0xFFF0 is allowed, but the 
value 0xFFEF is not allowed). 

R/W Undefined

RESERVED 15:8 Reads as 0x0. Must be written with a value of 0x0. R 0
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6.4.3.8 CM2 Region [0 - 3] Address Mask Upper Address Register (GCR_REGn_Mask_UPPER Offsets 
0x009C, 0x00AC, 0x00BC, 0x00CC) 

These registers work in conjunction with their associated CM2 Region 0-3 address mask registers above to forma 
complete 40-bit address.

Figure 6.39 CM2 Region [0 - 3] Address Mask Upper Register Format  

CCA_Override_Value 7:5 Used with CCA_Override_Enable to force the Cache 
Coherence Attribute (CCA) value for transactions on the 
system memory OCP. See CCA_Override_Enable field. 

R/W 0

CCA_Override_Enable 4 If CCA_Override_Enable is set and the CM2_TARGET 
field is set to Memory (0x1), then transactions with 
addresses that map to this region will have a CCA value 
set to CCA_Override_Value when driven to system mem-
ory.

R/W 0

Reserved 3 Reads as 0x0. Must be written with a value of 0x0. R 0

DROP_L2 2 Drop L2 CacheOp write.
If this bit is set, the CM2 drops the L2 CacheOp write 
after it has been serialized.
If this bit is cleared, the L2 CacheOp writes behave like a 
regular L2 CacheOp request.

R/W 0

CM2_TARGET 1:0 Maps this region to the specified device. The IOCU can 
only be mapped to regions 0 - 3, while memory can be 
mapped to all regions. 

00: Disabled
01: Memory
10: IOCU
11: Reserved

R/W 0

31 8 7 0

Reserved REGION_ADDR_MASK_UPPER

Table 6.42 CM2 Region [0 - 3] Address Mask Register Descriptions (continued)

Name Bits Description
Read/
Write Reset State

Encoding Name CCA

0x0 WT Write Through
0x1 - Reserved
0x2 UC Uncached
0x3 WB WriteBack cacheable, non-

coherent, 
0x4 CWBE Mapped to WB
0x5 CWB
0x6 - Reserved
0x7 UCA Uncached Accelerated
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6.4.4 CM2 Status and Revision Registers

This section contains the status registers for the GIC and CPC, and the revision information for the L2 cache.

6.4.4.1 Global Interrupt Controller Status Register (GCR_GIC_STATUS Offset 0x00D0)

Figure 6.40 Global Interrupt Controller Status Register Format  

Table 6.43 CM2 Region [0 - 3] Address Mask Upper Register Descriptions

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0000_00

REGION_ADDR_MASK_
UPPER

7:0 This field works in conjunction with the CM2 Region 
Mask Address register above to set the upper portion of 
the mask bits to define address region size beyond 
4GBytes.

This field is used along with its equivalent CM2 Region 
Base Address Upper Register.

The request address is logically ANDed with the value 
of this register. The value of the associated Base 
Address Upper Register is also logically ANDed with 
the value of this register. If both outputs match, then the 
request is routed to the CM2 region.

The only allowed values in this register are contiguous
sets of leading 0x1's. An 0x1 preceded by a 0x0 is not 
allowed (e.g., the value of 0xFC is allowed, but the 
value 0xFE is not allowed). 

R/W Undefined

31 1 0

R GIC_EX

Table 6.44 Global Interrupt Controller Status Register 

Name Bits Description
Read/
Write Reset State

RESERVED 31:1 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R 0

GIC_EX 0 GIC to CM2 connection.
If this bit is set, the GIC is connected to the CM2.

R 1
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6.4.4.2 Cache Revision Register (GCR_CACHE_REV Offset 0x00E0)

Figure 6.41 Cache Revision Register Format   

6.4.4.3 Cluster Power Controller Status Register (GCR_CPC_STATUS Offset 0x00F0)

Figure 6.42 Cluster Power Controller Status Register Format  

6.4.4.4 IOCU Base Address Register (GCR_IOC_BASE Offset 0x0100)

The IOCU Base Address register enables accesses to the IOMMU within each IOCU. This register only exists if at 
least one IOCU in the system contains an IOMMU.

The 32KB IOCU Address Region covers the IOCU attached to the CM2. The lowest 4K sub-region addresses the 
IOMMU registers inside the IOCU. The other 7 4KB sub-regions are not currently used. Reads to these 7 sub-regions 
or an IOMMU that does not exist returns 0's. Writes to those regions are dropped silently. 

Figure 6.43 IOCU Base Address Register Format  

31 16 15 8 7 0

R MAJOR_REV MINOR_REV

Table 6.45 Cache Revision Register 

Name Bits Description
Read/
Write Reset State

RESERVED 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R 0x0

MAJOR_REV 15:8 This field reflects the major revision of the Cache block inside the 
CM2.

R Preset

MINOR_REV 7:0 This field reflects the minor revision of the Cache block inside 
the CM2.

R Preset

31 1 0

R CPC_EX

Table 6.46 Cluster Power Controller Status Register Descriptions

Name Bits Description
Read/
Write Reset State

RESERVED 31:1 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0

CPC_EX 0 This bit is always 1 in the P6600 core as the CPC is always con-
nected to the CM2.

R 1

31 15 14 1 0

IOC_BASE_ADDR R IOC_REG_EN
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6.4.4.5 IOCU Base Address Upper Register (GCR_IOC_BASE_UPPER Offset 0x0104)

The IOCU Base Address register enables accesses to the IOMMU within each IOCU.

Figure 6.44 IOCU Base Address Upper Register Format  

6.4.4.6 IOMMU Status Register (GCR_IOMMU_STATUS Offset 0x0108)

This register provides information about the existence of an IOMMU in the IO Coherence Unit (IOCU). The exis-
tence of an IOMMU for each IOCU is determined at IP configuration time.

Figure 6.45 IOMMU Status Register Format  

Table 6.47 IOCU Base Address Register Descriptions 

Name Bits Description
Read/
Write Reset State

IOC_BASE_ADDR 31:15 This field works in conjunction with the IOCU Base Upper 
Address register below to set the IOCU base address. This value 
contains the base address of the 32K IOC Address Region. This 
region is broken into eight 4K subregions, each of which addresses 
a particular IOCU. Only the first region is used in the P6600 core.

R/W Undefined

RESERVED 14:1 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0

IOC_REG_EN 0 If this bit is set, the address region for the IOMMU within the 
IOCU is enabled. 

R/W 0

31 8 7 0

R IOC_BASE_UPPER

Table 6.48 IOCU Base Address Upper Register Descriptions 

Name Bits Description
Read/
Write Reset State

RESERVED 31:8 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0

IOC_BASE_UPPER 7:0 This field works in conjunction with the IOCU Base Address reg-
ister above to set the IOCU base address. 

R/W Undefined

31 1 0

R IOMMU0

Table 6.49 IOMMU Status Register Descriptions 

Name Bits Description
Read/
Write Reset State

RESERVED 31:1 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0

IOMMU0 0 If this bit is set, IOCU #0 contains an IOMMU. R IP Config
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6.4.4.7 IOCU Revision Register (GCR_IOCU1_REV Offset 0x0200)

This register gives the existence and revision information for an IOCU.

Figure 6.46 IOCU Revision Register Format  

6.4.5 CM2 Attribute-Only Region Address Map Registers

This section contains the base address and address mask registers for CM2 attribute-only regions 0 through 3. These 
register have the same functionality as the normal region registers, except they can not be used to map to MMIO vs. 
memory.

6.4.5.1 CM2 Attribute-Only Region [0 - 3] Base Address Registers (GCR_REGn_ATTR_BASE Offsets 
0x0190, 0x01A0, 0x0210, 0x0220) 

Some or all of these registers may be removed during IP configuration. These registers are similar to the CM2 Region 
Address Register except the attribute-only regions can not be used to determine if a request is routed to memory or 
the IOCU.

Figure 6.47 CM2 Attribute-Only Region [0 - 3] Register Format   

31 16 15 8 7 0

R MAJOR_REV MINOR_REV

Table 6.50 IOCU Revision Register Descriptions

Name Bits Description
Read/
Write Reset State

RESERVED 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0x0

MAJOR_REV 15:8 This field reflects the major revision of the IOCU attached to the 
CM2. A major revision might reflect the changes from one product 
generation to another. 
The value of 0x0 means that no IOCU is attached. 

R Preset

MINOR_REV 7:0 This field reflects the minor revision of the IOCU attached to the 
CM2. A minor revision might reflect the changes from one release 
to another. 

R Preset

31 16 15 0

CM2_REGION_BASE_ADDR R
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6.4.5.2 CM2 Attribute-Only Region [0 - 3] Base Upper Address Register (GCR_REGn_ATTR_ 
BASE_UPPER Offsets 0x0194, 0x01A4, 0x0214, 0x0224) 

These registers work in conjunction with their associated CM2 Attribute-Only Region 0-3 base address registers 
above to form a complete 40-bit address.

Figure 6.48 CM2 Attribute-Only Region [0 - 3] Base Address Upper Register Format  

6.4.5.3 CM Attribute-Only Region[0 - 3] Address Mask Registers (GCR_REGn_ATTR_MASK Offsets 
0x0198, 0x1A8, 0x218, 0x228)

These registers may be removed during IP Configuration. These registers are similar to the CM Region Address 
Mask registers except they may not be used to route requests to memory or the IOCU.

Figure 6.49 CM2 Attribute Only Region [0-3] Address Mask Register Format  

Table 6.51 CM2 Attribute-Only Region [0 - 3] Base Address Register Format

Name Bits Description
Read/
Write Reset State

CM2_REGION_BASE_ADDR 31:16 This field sets the base physical address of the memory 
region. 

R/W Undefined

RESERVED 15:0 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

31 8 7 0

Reserved ATTR_REGION_BASE_UPPER

Table 6.52 CM2 Attribute-Only Region [0 - 3] Base Address Upper Register Descriptions

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0000_00

ATTR_REGION_BASE_
UPPER

7:0 CM2 region base address. This field sets the base physi-
cal address bits 39:32.

R/W Undefined

31 15 14 8 7 5 4 3 2 1 0

CM2_REGION_ADDR_MASK R CCA_Override_Value CCA_Override_EN R DROP_L2 R
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Table 6.53 CM Attribute-Only Region [0 - 3] Address Mask Register Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

CM2_REGION_ADDR_MASK 31:16 This field is used to set the size of the CM Region. 
This field is used along with its equivalent CM Region 
Base Address Register. 
The request address is logically ANDed with the value of 
this register. The value of the associated Base Address 
Register is also logically ANDed with the value of this 
register. If both outputs match, then the request is routed 
to the CM region. 
The only allowed values in this register are contiguous 
sets of leading 0x1’s. An 0x1 preceded by a 0x0 is not 
allowed (e.g., the value of 0xfff0 is allowed, but the value 
0xffef is not allowed). 

R/W Undefined

RESERVED 15:8 Reads as 0x0. Must be written with a value of 0x0. R 0

CCA_Override_Value 7:5 Used with CCA_Override_Enable to force the Cache 
Coherence Attribute (CCA) value for transactions on the 
system memory OCP. See CCA_Override_Enable field.

R/W 0

CCA_Override_Enable 4 If set CCA_Override_Enable is set to 1 and 
CM_TARGET is set to Memory, then transactions with 
addresses that map to this region will have a CCA value 
set to CCA_Override_Value when driven to system mem-
ory.

R/W 0

RESERVED 3 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

DROP_L2 2 Set to 1 for the CM to drop L2 CacheOp writes after it has 
been serialized.
If set to 0, the L2 CacheOp writes behaves like a regular 
L2 CacheOp request.

R/W 0x0

RESERVED 1:0 Reads as 0x0. Must be written with a value of 0x0.
Since the attribute-only registers can not be used to map to 
MMIO vs. memory, this field is not needed and is 
reserved.

R/W 0x0

Encoding Name CCA

0x0 WT Write Through

0x1 - Reserved

0x2 UC Uncached

0x3 WB WriteBack cacheable, non-coherent

0x4 CWBE Mapped to WB

0x5 CWB

0x6 - Reserved

0x7 UCA Uncached Accelerated
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6.4.5.4 CM2 Atrribute-Only Region [0 - 3] Address Mask Upper Address Register 
(GCR_REGn_Attr_Mask_Upper, Offsets 0x019C, 0x01AC, 0x021C, 0x022C) 

These registers work in conjunction with their associated CM2 attribute-only Region 0-3 address mask registers 
above to form a complete 40-bit address.

Figure 6.50 CM2 Attribute-Only Region [0 - 3] Address Mask Upper Register Format  

6.4.5.5 L2 RAM Configuration Register (GCR_L2_RAM_CONFIG, Offset 0x0240) 

These registers manage the L2 prefetch control mechanism in the P6600 MPS.

Figure 6.51 L2 RAM Configuration Register Format 

31 8 7 0

Reserved REGION_ADDR_MASK_UPPER

Table 6.54 CM2 Attribute-Only Region [0 - 3] Address Mask Upper Register Descriptions

Name Bits Description
Read/
Write Reset State

Reserved 31:8 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0000_00

REGION_ADDR_MASK_
UPPER

7:0 This field is used to set the upper portion of the mask 
bits which define the size beyond 4GBytes for attribute 
only memory region.

This field is used along with its equivalent CM2 Attri-
bute-Only Region Base Address Upper Register. The 
request address is logically ANDed with the value of 
this register. The value of the associated Base Address 
Upper Register is also logically ANDed with the value 
of this register. If both outputs match, then the request is 
routed to the CM2 region.

The only allowed values in this register are contiguous
sets of leading 0x1's. An 0x1 preceded by a 0x0 is not 
allowed (e.g., the value of 0xFC is allowed, but the 
value 0xFE is not allowed).

R/W Undefined

31 30 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRESENT R L2_RAM_
COMPAT R L2_PIPE R L2_TAGRAM_

STALLS R L2_WSRAM_
STALLS R L2_DATA

RAM_STALLS
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6.4.5.6 L2 Prefetch Control Register (GCR_L2_PFT_CONTROL, Offset 0x0300) 

These registers manage the L2 prefetch control mechanism in the P6600 MPS.

Figure 6.52 L2 Prefetch Control Register Format  

Table 6.55 L2 RAM Configuration Register Descriptions 

Name Bits Description
Read/
Write Reset State

PRESENT 31 This bit is always set in the P6600 CM2 to indicate that 
the L2 RAM Configuration register is present.

R 1

Reserved 30:17 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

L2_RAM_COMPAT 16 This bit is set to indicate that the L2 is configured in 
RAM compatibility mode. This selection is made dur-
ing IP configuration.

R IP Config

Reserved 15:13 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

L2_PIPE 12 Setting this bit indicates that the L2 is configured to use 
pipeline RAMs. This selection is made during IP con-
figuration.

R IP Config

Reserved 11:10 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

L2_TAGRAM_STALLS 9:8 Number of stall cycles for L2 Tag RAM. Determined by 
the L2_TagStall pins.

R Set by hard-
ware pins

Reserved 7:6 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

L2_WSRAM_STALLS 5:4 Number of stall cycles for L2 WS RAM. Determined by 
the L2_WSStall pins.

R Set by hard-
ware pins

Reserved 3:2 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

L2_DATARAM_STALLS 1:0 Number of stall cycles for L2 Data RAMS. Determined 
by the L2_DataStall pins.

R Set by hard-
ware pins

31 12 11 9 8 7 0

PAGE_MASK R PFTEN NFPT
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6.4.5.7 L2 Prefetch Control Register 2 (GCR_L2_PFR_CONTROL_B, Offset 0x0300) 

These registers work in conjunction with L2 Prefetch Control register 2 to manage the L2 prefetch control mechanism 
in the P6600 MPS.

Figure 6.53 L2 Prefetch Control 2 Register Format  

Table 6.56 L2 Prefetch Control Register Descriptions

Name Bits Description
Read/
Write Reset State

PAGE_MASK 31:12 This field is a mask that indicates the minimum operat-
ing system page size. Address bits larger than 31 default 
to a bit mask of 1. 

The default value can change as follows depending on 
the page size. As the page size increases, less mask bits 
are required.

4K page size: 0xF_FFFF
8K page size: 0xF_FFFE
16K page size: 0xF_FFFC

R/W 0xF_FFFF

Reserved 11:9 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0000_00

PFTEN 8 Prefetch enable. This bit should be set by software only 
if the number of prefetch units in the NPFT field is 
greater than zero.

R/W 1

NPFT 7:0 Number of prefetch units. Note that if this field contains 
a value greater than 0, the PFTEN bit must be set in 
order for prefetching to occur.

RO IP Config

31 9 8 7 0

Reserved CEN PORT_ID

Table 6.57 L2 Prefetch Control Register 2 Descriptions

Name Bits Description
Read/
Write Reset State

Reserved 31:9 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0000_00

CEN 8 Code prefetch enable. R/W 0

PORT_ID 7:0 Enable port ID for L2 prefetching. Each bit in this field 
corresponds to a CM2 port ID. Each bit of this field is 
encoded as follows:

0: Requests from the corresponding CM2 port are not 
monitored for L2 prefetching.
1: Requests from the corresponding CM2 port are moni-
tored for L2 prefetching.

R/W 0xFF
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6.5 Core-Local and Core-Other Control Blocks

6.5.1 Core-Local and Core-Other Control Blocks Address Map

A set of these registers exists for each core in the P6600 MPS. These registers can also be accessed from other cores 
by first writing the Core Other Addressing Register (in the Core-Local Control Block) with the proper core number and 
then accessing these registers using the Core Other Register block.

All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from unpopulated 
registers in the GCR address space return 0x0, and writes to those locations are silently dropped without generating 
any exceptions. 

Table 6.58 Core Local and Core Other Block Register Map (Relative to Core-Local/Core-Other CB Offset)

Register Offset Name Type Description

0x0000 Reserved - Reserved

0x0008 Core Local Coherence Control Register
(GCR_CL_COHERENCE
GCR_CO_COHERENCE)

R/W Controls which coherent intervention 
transactions apply to the local core. 

0x0010 Core Local Config Register
(GCR_CL_CONFIG
GCR_CO_CONFIG)

R Contains configuration parameters for the 
Core-Local address space.

0x0018 Core Other Addressing Register
(GCR_CL_OTHER
GCR_CO_OTHER)

R/W Used to access the registers of another 
core.

0x0020 Core Local Reset Exception Base Register
(GCR_CL_RESET_BASE
GCR_CO_RESET_BASE)

R/W Sets the Reset Exception Base for the 
local core.

0x0028 Core Local Identification Register
(GCR_CL_ID
GCR_CO_ID)

R Indicates the ID number of the local core. 

0x0030 Core Local Reset Exception Extended Base
(GCR_CL_RESET_EXT_BASE
GCR_CO_RESET_EXT_BASE)

R/W Extends the capabilities of the Core Local 
Reset Exception Base Register.

0x0040 Core Local TCID_0_PRIORITY Register
(GCR_CL_TCID_0_PRIORITY
GCR_CO_TCID_0_PRIORITY)

R/W TCID 0 Priority value (2 bits) if 
IOCU_TYPE=0 in GCR_Cx_CONFIG.

All Others RESERVED - Reserved for future expansion.
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6.5.2 Core-Local and Core-Other Control Block Registers

6.5.2.1 Core Local Coherence Control Register (GCR_Cx_COHERENCE Offset 0x0008)

This register allows each core to respond to intervention requests from only a subset of the coherent masters within 
the P6600 Multiprocessing System (MPS). Software can control entry and exit from the coherence domain by setting 
the COH_DOMAIN_EN bit in this register for: 

• Initialization during (asynchronous) boot

• Power control for shutting down and bringing up a core 

Table 6.59 Core Local Coherence Control Register  

Name Bits Description
Read/
Write Reset State

RESERVED 31:8 Reads as 0. Writes ignored. Must be written with a value 
of 0x0.

W 0x0

COH_DOMAIN_EN 7:0 Each bit in this field represents a coherent requester within 
the MPS. Setting a bit within this field will enable inter-
ventions to this Core from that requester. 
The requestor bit which represents the local core is used to 
enable or disable coherence mode in the local core.
Changing the coherence mode for a local core from 0x1 to 
0x0 can only be done after flushing and invalidating all 
the cache lines in the core; otherwise, the system behavior 
is UNDEFINED.
Refer to Section 6.3.12, "Coherency Domains" for more 
information on the encoding of this field.

R/W 0x0
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6.5.2.2 Core Local Config Register

Figure 6.54 Core Local Config Register Format 

6.5.2.3 Core-Other Addressing Register

This register must be written with the correct core number before accessing the Core-Other address segment.

Figure 6.55 Core Local Config Register Format  

31 12 11 10 9 0

R IOCU_TYPE PVPE

Table 6.60 Core Local Config Register (GCR_Cx_CONFIG Offset 0x0010)

Name Bits Description
Read/
Write Reset State

RESERVED 31:12 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R -

IOCU_TYPE 11:10 R IP
Configurable 

Value

PVPE 9:0 Number of VPE’s in the system. Note that in the P6600 core, the 
term VPE is analogous to a core since there is one VPE per core.

0x000: 1 VPE
0x001 - 0x3FF: Reserved

R 0x000

31 16 15 0

CORENUM R

Encoding Meaning

0x0 This is a P6600 core and not an IOCU1. 
Only the P6600 core can access priority 
values in the 
GCR_Cx_TCID_n_PRIORITY regis-
ters.

1. Note that the first encoding is redundant informa-
tion for convenience. It is possible for the system 
to determine if a core is an IOCU or not by read-
ing the Global Config register.

0x1 This is a non-caching IOCU (no interven-
tion port). The IOCU does not access the 
GCR_Cx_TCID_n_PRIORITY regis-
ters.

0x2 This is a caching IOCU (not currently 
implemented by MIPS).

0x3 Reserved
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6.5.2.4 Core Local Reset Exception Base Register (GCR_Cx_RESET_BASE Offset 0x0020)

This register is used to drive the SI_ExceptionBase[31:12] input to the local core. The value is used for placing the 
exception vectors within the virtual address map during core boot-up time (e.g., when COP0 StatusBEV = 1). The value 
in this register is reset only on Cold Reset (not Warm Reset).

Figure 6.56 Core Local Reset Exception Base Register Format  

For Core 0, the user can configure the reset location at IP configuration. 

Core 0 can write the register to force any of the other cores to use a different reset vector. This register write is done 
before releasing the other core from reset. 

This allows a subset of the processor cores to boot one operating system while another subset of the processor cores 
boot a different operating system. 

6.5.2.5 Core Local Identification Register (GCR_Cx_ID Offset 0x0028)

The aliased memory scheme is normally invisible to software when accessing GCR registers within the Core-Local 
control block. What actually happens is that an offset is used to make a subset of the GCR registers appear in the 
Core-Local addressing window. 

This register reports the core number that is used as the addressing offset for the Core-Local control block. 

Figure 6.57 Core Local Identification Register Format  

Table 6.61 Core-Other Addressing Register (GCR_Cx_OTHER Offset 0x0018)

Name Bits Description
Read/
Write Reset State

CORENUM 31:16 Core number of the register set to be accessed in the Core-Other 
address space. 

R/W 0x0

RESERVED 15:0 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.-

R -

31 12 11 0

BEVEXCBASE R

Table 6.62 Core Local Reset Exception Base Register 

Name Bits Description
Read/
Write Cold Reset State

BEVEXCBase 31:12 Bits [31:12] of the virtual address that the local core will 
use as the exception base in the boot environment (C0P0 
StatusBEV=1). 

R/W IP Configuration 
Value. 
MIPS Default Value 
is 0xBFC00

RESERVED 11:0 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R -

31 0

CORENUM
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Table 6.63 Core Local Identification Register

Name Bits Description
Read/
Write Reset State

CORENUM 31:0 This number is used as an index to the registers within the GCR 
when accessing the Core-local control block for this core.

R -
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6.5.2.6 Core Local Reset Exception Extended Base Register (GCR_Cx_RESET_EXT_BASE Offset 
0x0030)

This register is an extension to the Core-Local Reset Exception Base Register (see Section 6.5.2.4 “Core Local Reset 
Exception Base Register (GCR_Cx_RESET_BASE Offset 0x0020)”). It also is used to drive the SI_ExceptionBase 
input to the local core. The value is used for placing the exception vectors within the virtual address map during core 
boot-up time (e.g., when COP0 StatusBEV=1). The value in this register is reset only on Cold Reset (not Warm Reset).

Figure 6.58 Core Local Exception Extended Base Register Format  

31 30 29 28 27 20 19 8 7 1 0

EVAReset UEB R BEVExceptionBaseMask R BEVExceptionBasePA PRESENT

Table 6.64 Core Local Reset Exception Extended Base Register 

Name Bits Description
Read/
Write Cold Reset State

EVAReset 31 Assertion of this bit indicates to the core to come up in 
the EVA configuration at reset. This bit is originally set 
based on the state of the EVA_Reset pin during reset.

R/W IP Configuration 
Value. 
MIPS Default 
Value is 0

UseExceptionBase 30 UseExceptionBase address. This bit reflects the state of 
the SI_UseExceptionBase pin at reset.

In the legacy configuration, if the SI_UseExceptionBase 
pin is not asserted, then the BEV location defaults to 
0xBFC0_0000. 

If the SI_UseExceptionBase pin is asserted, address bits 
SI_ExceptionBase[31:30] are forced to a value of 2’b10 
to force the BEV location into the KSEG0/KSEG1 
space.

Refer to Section 3.7.2 in Chapter 3 for more informa-
tion. This pin is only used in the legacy configuration. 
There is one SI_UseExceptionBase pin per core. 

R/W IP Configuration 
Value.
MIPS Default 
Value is 1

RESERVED 29:28 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R -

BEVExceptionBaseMask 27:20 This field is used to determine the size of the boot 
exception vector overlay region from 1 MB to 256 MB 
in powers of two. This field reflects the state of the 
SI_ExceptionBaseMask[27:20] pins at reset.

This field is used to mask bits [27:20] of the virtual 
address that the local core will use as the exception base 
in the boot environment (C0P0 StatusBEV = 1). 
These pins are used in both the legacy and EVA config-
urations. There is one set of SI_ExceptionBaseMask 
pins per core. 

Refer to Section 3.7.2 in Chapter 3 for more informa-
tion.

R/W IP Configuration 
Value. 
MIPS Default 
Value is 0x00

RESERVED 19:8 Reads as 0x0. Must be written with a value of 0x0. R -
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BEVExceptionBasePA 7:1 BEV exception base physical address. This field con-
tains the upper bits of the physical address that the local 
core will use as the exception base in the boot environ-
ment (C0P0 StatusBEV = 1).and reflects the state of the 
SI_ExceptionBasePA[31:29] pins at reset.

The size of the overlay region defined by 
SI_ExceptionBaseMask[27:20] is remapped to a loca-
tion in physical address space pointed to by the 
SI_ExceptionBasePA[31:29] pins. This allows the over-
lay region to be placed into one of the 512 MB segments 
in physical memory. These pins are used in both the leg-
acy and EVA configurations. There is one set of 
SI_ExceptionBasePA pins per core. 

Note that the bits of this field correspond to upper 
address bits 35:29. Refer to Section 3.7.2 in Chapter 3 
for more information.

R/W IP Configuration 
Value. 
MIPS Default 
Value is 0x00.

PRESENT 0 Reads as 0x1. Writes are ignored R 1

Table 6.64 Core Local Reset Exception Extended Base Register (continued)

Name Bits Description
Read/
Write Cold Reset State
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6.5.2.7 Core Local TCID Registers (GCR_Cx_TCID_PRIORITYOffset 0x0040)

In the P6600 core, there is one thread context per core. Hence only one TCID register is required.

Figure 6.59 Core Local TCID Register Format  

31 2 1 0

Reserved TCID_PRIORITY

Table 6.65 Core Local TCID Register Description

Name Bits Description
Read/
Write Reset State

Reserved 31:2 Reads as 0x0. Must be written with a value of 0x0. R 0x0000_000

TCID_PRIORITY 1:0 TCID priority.
This 2-bit value contains the thread context priority level and is 
encoded as follows:
00: Lowest priority
....
11: Highest priority

R 0x0
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6.6 Global Debug Control Block

6.6.1 Global Debug Control Block Address Map

This block holds registers which are used for debugging the CM2 and software which uses the coherence features 
supplied by the CM2. The registers associated with PDTrace are reset upon assertion of the TAP controller reset. The 
other registers in this block are reset when the CM2 is reset. TAP reset occurs when PB_EJ_TRST_N is asserted or the 
Test-Logic-Reset TAP state is entered. 

Table 6.66  Global Debug Block Register Map (Relative to Global Debug Block Offset)

Register Offset Name Type
Reset

Source Description

0x0008 PDTrace TCBControlB Register
(GCR_DB_TCBCONTROLB)

R/W TAP Controls how the TCB deals with the 
trace information. 
This register only exists if the CM2 is 
configured with PDTrace.

0x0010 CM2 PDTrace TCBControlD Register
(GCR_DB_TCBCONTROLD)

R/W TAP Controls CM2 PDTrace.
This register only exists if the CM2 is 
configured with PDTrace.

0x0020 PDTrace TCBControlE Register
(GCR_DB_TCBCONTROLE)

R/W TAP Controls how the TCB deals with trace 
information.
This register only exists if the CM2 is 
configured with PDTrace.

0x0028 PDTrace TCB Config Register
(GCR_DB_TCBConfig)

R/W TAP Contains trace control block configura-
tion information such as probe width, on-
trace memory size, and trace clock ratios.

0x0040 PDTrace TCBSYS Register
(GCR_DB_TCBSYS)

R/W TAP Controls how external logic uses the Sys-
tem Trace interface. Bit 31 is a PRESENT 
bit and bits [30:0] are completely user 
defined. The output of this register is 
available on the TC_Sys_UserCtl pins.
This register only exists if the CM2 is 
configured with PDTrace.

0x0100 CM2 Performance Counter Control Register
(GCR_DB_PC_CTL)

R/W CM2 Controls starting/stopping of Performance 
Counters.

0x0108 PDTrace Trace Word Read Pointer Register
(GCR_DB_TCBRDP)

R/W TAP Pointer into the On-Chip Trace Buffer 
memory for reads from 
GCR_DB_TCBTW_LO and 
GCR_DB_TCBTW_HI registers. 
This register only exists if the CM2 is 
configured with PDTrace.

0x0110 PDTrace Trace Word Write Pointer Register
(GCR_DB_TCBWRP)

R/W TAP Pointer into the On-Chip Trace Buffer 
memory for the next TraceWord write 
from GCR_DB_TCBTW_LO and 
GCR_DB_TCBTW_HI registers. 
This register only exists if the CM2 is 
configured with PDTrace.
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6.6.2 Global Debug Control Block Registers

All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from unpopulated 
registers in the GCR address space return 0x0 and writes to those locations should be silently dropped without gener-
ating any exceptions. 

6.6.2.1 CM2 PDTrace TCB ControlB Register (GCR_DB_TCBCONTROLB Offset 0x0008)

The TCB includes a control register, GCR_DB_TCBCONTROLB (0x11). This register configures interfaces to the 
trace buffer. This register only exists if the CM2 is configured with PDTrace.

The format of the GCR_DB_TCBCONTROLB register is shown below, and the fields are described in Table 6.67.

0x0118 PDTrace Trace Word Start Pointer Register
(GCR_DB_TCBSTP) 

R/W TAP Pointer into On-Chip Trace Buffer 
that is used to determine when all 
entries in the trace buffer have been 
filled. 
This register only exists if the CM2 is 
configured with PDTrace.

0x0120 CM2 Performance Counter Overflow Status 
Register
(GCR_DB_PC_OV)

R/W CM2 Indicates which performance counters 
have overflowed.

0x0130 CM2 Performance Counter Event Select Reg-
ister
(GCR_DB_PC_EVENT)

R/W CM2 Selects event type of each performance 
counter.

0x0180 CM2 Performance Cycle Counter Register
(GCR_DB_PC_CYCLE)

R/W CM2 Counts cycles.

0x0190 CM2 Performance Counter 0 Qualifier Regis-
ter
(GCR_DB_PC_QUAL0)

R/W CM2 Performance counter 0 event qualifiers. 

0x0198 CM2 Performance Counter 0 Register
(GCR_DB_PC_CNT0)

R/W CM2 Performance Counter 0 value. 

0x01A0 CM2 Performance Counter 1 Qualifier Regis-
ter
(GCR_DB_PC_QUAL1)

R/W CM2 Performance counter 1 event qualifiers. 

0x01A8 CM2 Performance Counter 1 Register
(GCR_DB_PC_CNT1)

R/W CM2 Performance Counter 1 value. 

0x0200 PDTrace Trace Word Lo Register
(GCR_DB_TCBTW_LO)

R/W TAP Access point to read TraceWords from the 
On-Chip Trace Buffer memory, Least Sig-
nificant 32-bits. 

0x0208 PDTrace Trace Word Hi Register
(GCR_DB_TCBTW_HI)

R/W TAP Access point to read TraceWords from the 
On-Chip Trace Buffer memory, Most Sig-
nificant 32-bits. 

All Others RESERVED

Table 6.66  Global Debug Block Register Map (Relative to Global Debug Block Offset)(continued)

Register Offset Name Type
Reset

Source Description
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Figure 6.60 PDTrace TCB ControlB Register Format 

31 30 28 27 26 25 20 19 18 17 16 15 14 13 12 11 10 8 7 6 2 1 0

WE R TWSrcWidth R STCE TRPAD R RM TR BF TM R CR Cal R OfC EN

Table 6.67 PDTrace TCB ControlB Register 

Fields

Description
Read / 
Write

Reset 
StateName Bits

WE 31 Write Enable. 
Only when set to 1 will the other bits of this register be written.
This bit will always read 0.

R 0

Reserved 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWSrcWidth 27:26 Used to indicate the number of bits used in the source field of the 
Trace Word. The value for the CM2 is always 2’b10, indicating a four 
bit source field width.

R 2’b10

Reserved 25:20 This field is used by EJTAG to access other PDTtrace registers. 
Although the field is R/W via core accesses, this field has no function 
for core accesses.

R/W 0

STCE 19 System Trace capture enable. When asserted, the System Trace port of 
the Funnel is enabled to capture System Trace stream data. When not 
asserted,
System Trace stream data is not captured regardless of 
TC_Sys_Valid[1:0] input pin state.

R/W 0

TRPAD 18 Trace RAM access disable bit. When set, core reads and writes to the 
on-chip trace RAM using GCR accesses are inhibited. 

If TRPAD is set, memory-mapped writes to the 
GCR_DB_TCBTW_LO and GCR_DB_TCBTW_HI registers have 
no effect, and memory-mapped reads from GCR_DB_TCBTW_LO 
and GCR_DB_TCBTW_HI do not access the Trace RAM and 0 is 
returned. 
Also, when TRPAD is set, then memory-mapped writes to the follow-
ing registers are inhibited:

TCBTW
TCBRDP
TCBWRP
TCBSTP

R/W 0

Reserved 17 Reserved. Must be written as zero; returns zero on read. R 0

RM 16 Read on-chip trace memory.
When this bit is set, the read address-pointer of the on-chip memory in 
register TCBRDP is set to the value held in TCBSTP.
Subsequent access to the TCBTW register (through the TCBDATA reg-
ister), will automatically increment the read pointer in register 
TCBRDP after each read.
When the write pointer is reached, this bit is automatically reset to 0, 
and the TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is reset by 
setting the TR bit or by reading the last Trace word in TCBTW.

R/W 0
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TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip trace mem-
ory TCBSTP, TCBRDP and TCBWRP are reset to zero. Also the RM 
and BF bits are reset to 0.
This bit is automatically reset back to 0, when the reset specified 
above is completed.

R/W1 0

BF 14 Buffer Full indicator that the TCB uses to communicate to external 
software that the on-chip trace memory is full. This bit is cleared 
when writing a 1 to the TR bit.
This bit has no function if on-chip memory is not implemented.

R 0

TM 13:12 Trace Mode. This field determines how the trace memory is filled 
when using the simple-break control in the PDtrace™ IF to start or 
stop trace. 

In Trace-To mode, the on-chip trace memory is filled, continuously 
wrapping around, overwriting older Trace Words, as long as there is 
trace data coming from the core.
In Trace-From mode, the on-chip trace memory is filled from the 
point that the core starts tracing until the on-chip trace memory is full 
(when the write pointer address is the same as the start pointer 
address). If a TCBTRIGx trigger control register is used to start/stop 
tracing, then this field should be set to Trace-To mode.
These bits have no function if on-chip memory is not implemented.

R/W 0

0 11 Read as Zero. Writes ignored. Must be written with a value of 0x0. R 0

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the core 
clock to the off-chip trace memory interface clock. The clock-ratio 
encoding is shown in Table 6.68.
Note: As the Probe interface works in double data rate (DDR) mode, a 
1:2 ratio indicates one data packet sent per core clock rising edge.
These bits have no function if off-chip memory is not implemented.

R/W 3’b100

Table 6.67 PDTrace TCB ControlB Register (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

TM Trace Mode

00 Trace-To
01 Trace-From
10 Reserved
11 Reserved
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Cal 7 Calibrate off-chip trace interface.
If set, the off-chip trace pins will produce the following pattern in con-
secutive trace clock cycles. If more than 4 data pins exist, the pattern 
is replicated for each set of 4 pins. The pattern repeats from top to bot-
tom until the Cal bit is de-asserted. 

Note: The clock source of the TCB and PIB must be running.
These bits have no function if off-chip memory is not implemented.

R/W 0

Reserved 6:2 Read as Zero. Writes ignored. Must be written with a value of 0x0. R 0

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins.
If not set, trace info is sent to on-chip memory.
This bit is read only if one of these options exists.

R/W Preset

EN 0 Funnel Trace Enable. When this bit is set, the trace funnels accepts 
trace information from the CM2, cores, and/or system trace and writes 
the information to off-chip or on-chip memory. 
When this bit is cleared, the trace funnel drops all new trace informa-
tion from the those sources. The trace information already accepted by 
the trace funnel is sent to the off-chip or on-chip memory, but new 
trace information is dropped and not written out.

R/W 0

Table 6.67 PDTrace TCB ControlB Register (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits

Calibrations pattern

3 2 1 0
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0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1
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6.6.2.2 CM2 PDTrace TCB ControlD Register (GCR_DB_TCBCONTROLD Offset 0x0010)

Figure 6.61 PDTrace TCB ControlD Register Format 

 

Table 6.68 Clock Ratio Encoding of the CR Field

Encoding of CR Field Trace Clock:Core Clock Ratio

3’b000  1:20 

3’b001  1:16

3’b010  1:12

3’b011  1:10

3’b100  1:2

3’b101  1:4

3’b110  1:6

3’b111  1:8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 8 7 6 5 4 3 2 1 0

R P6_Ctl P5_Ctl P4_Ctl P3_Ctl P2_Ctl P1_Ctl P0_Ctl R TWSrcVal WB STEn IO TLev AE GCE CME

Table 6.69 CM2 PDTrace TCB ControlD Register Descriptions 

Name Bits Description
Read/
Write Reset State

RESERVED 31:30 Reserved. R/W 0x0

P6_Ctl 29:28 Provides specific control over tracing transactions on Port 
6 of the CM. (the IOCU on 6 core configurations).

R/W 0x0

P5_Ctl 27:26 Provides specific control over tracing transactions on Port 
5 of the CM2 (core 5). See encoding for P6_Ctl.

R/W 0x0

P4_Ctl 25:24 Provides specific control over tracing transactions on Port 
4 of the CM2 (core 4 on 6 core configurations or the 
IOCU on 4 core or less configurations). See encoding for 
P6_Ctl.

R/W 0x0

P3_Ctl  23:22 Provides specific control over tracing transactions on Port 
3 of the CM2 (core 3). See encoding for P6_Ctl.

R/W 0x0

Encoding Description

00 Tracing Enabled, no Address Tracing
01 Tracing Enabled with Address Tracing
10 Reserved 
11 Tracing Disabled
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This register only exists if the CM2 is configured with PDTrace.

P2_Ctl 21:20 Provides specific control over tracing transactions on Port 
2 of the CM2 (core 2). See encoding for P6_Ctl.

R/W 0x0

P1_Ctl 19:18 Provides specific control over tracing transactions on Port 
1 of the CM2 (core 1). See encoding for P6_Ctl.

R/W 0x0

P0_Ctl 17:16 Provides specific control over tracing transactions on Port 
0 of the CM2 (core 0). See encoding for P6_Ctl.

R/W 0x0

RESERVED 15:12 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0x0

TwSrcVal 11:8 The source ID inserted into the Trace Word by the CM.
NOTE: When disabling trace by setting Global_CM_En 
to 0, the value in TWSrcVal continues to be used until all 
trace messages have been flushed from the CM. There-
fore, when writing to this register to disabled, the correct 
value must still be written into the TWSrcVal field.

R/W 0xF

WB 7 When this bit is set, Coherent Writeback requests are 
traced. If this bit is not set, all Coherent Writeback 
requests are suppressed from the CM2 PDTrace Stream.

R/W 0x0

ST_En 6 System Trace Enable. Driven to the CM2 output pin 
TC_Sys_Enable. External logic can use this output to con-
trol generation of the System Trace stream.

R/W 0x0

IO 5 Inhibit Overflow on the CM2 PDTrace FIFO full condi-
tion. When set to 0, the CM2 will drop a new PDTrace 
message if the internal PDTrace FIFOs are full.
When set to 1, the CM2 will not drop PDTrace messages, 
but may stall transactions within the CM2 when the inter-
nal PDTrace FIFOs are full.

R/W 0x0

TLev 4:3 This defines the current trace level being used by CM2 
PDtrace:

R/W 0x0

AE 2 When set to 1, address tracing is always enabled for the 
CM. When set to 0, address tracing may be enabled on a 
per-port basis through the P<x>_Ctl bits.

R/W 0x0

Global_CM_En 1 Setting this bit to 1 enables tracing from the CM2 as long 
as the CM_EN bit is also enabled.

R/W 0x0

CM_EN 0 This is the master trace enable for the CM. When zero, 
tracing from the CM2 is always disabled. When set to one, 
tracing is enabled from whenever the other enabling func-
tions are also true.

R/W 0x0

Table 6.69 CM2 PDTrace TCB ControlD Register Descriptions (continued)

Name Bits Description
Read/
Write Reset State

Encoding Description

00 No Timing Information
01 Include Stall Times, Causes
10 Reserved
11 Reserved
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6.6.2.3 CM2 PDTrace TCB ControlE Register (GCR_DB_TCBCONTROLE Offset 0x0020)

Figure 6.62 PDTrace TCB ControlE Register Format   

This register only exists if the CM2 is configured with PDTrace.

6.6.2.4 CM2 PDTrace TCB Config Register (GCR_DB_TCBConfig Offset 0x0028)

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

Figure 6.63 PDTrace TCB Config Register Format  

31 9 8 7 1 0

R Tridle WB R PeC

Table 6.70 TCBCONTROLE Register 

Name Bits Description
Read / 
Write Reset State

0 31:26 Reserved for future use. Must be written as zero; returns zero on 
read.

0 0

UPR 25 Indicates that for 128 bit load/ stores (MSA, if tracing of 128 bit 
MSA ld/st is not implemented (see bit TraceControl3.MSA) and 
bonded 2x64) only the lower 64 bits are traced. 

R 1

0 24:9 Reserved. Must be written as zeros; returns zeros on reads. R 0

TrIdle 8 Trace Unit Idle. This bit indicates if the trace hardware is currently 
idle (not processing any data). This can be useful when switching 
control of trace from hardware to software and vice versa. The bit is 
read-only and updated by the trace hardware.
TrIdle is set when the system traces on all cores, and the CM2, have 
disabled PDTrace and the trace funnel has written all outstanding 
trace information to the off-chip or on-chip memory.

R 1

0 7:1 Reserved for future use; Must be written as zero; returns zero on 
read. (Hint to architect, Reserved for future expansion of perfor-
mance counter trace events).

0 0

PeC 0 Performance Control Tracing is not implemented. R 0

31 30 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 R SZ CRMax CRMin PW R OnT OfT REV

Table 6.71 TCBCONFIG Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revision, 
TCBCONFIG1 does not exist, and this bit reads zero.

R 0

Reserved 30:21 Read as Zero. Writes ignored. Must be written with a value of 0x0. R 0 
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This register only exists if the CM2 is configured with PDTrace.

6.6.2.5 CM2 Performance Counter Control Register (GCR_DB_PC_CTL Offset 0x0100)

Figure 6.64 CM2 Performance Counter Control Register Format    

SZ 20:17 On-chip trace memory size. This field holds the encoded size of the 
on-chip trace memory.
The size in bytes is given by 2(SZ+8). i.e., the lowest value is 256 
bytes, and the highest is 8 MB.
This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the core clock to the off-
chip trace memory interface clock. The clock-ratio encoding is 
shown in Table 6.68.
This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the core clock to the off-
chip trace memory interface clock. The clock-ratio encoding is 
shown in Table 6.68.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PW 10:9 Probe Width: Number of bits available on the off-chip trace inter-
face TR_DATA pins. The number of TR_DATA pins is encoded, as 
shown in the table.

00: 4 bits
01: 8 bits
10: 16 bits
11: Reserved

This field is preset based on input signals to the TCB and the actual 
capability of the TCB. 
This bit is reserved if the off-chip trace option is not implemented.

R Preset

Reserved 8:6 Read as Zero. Must be written with a value of 0x0. R 0

OnT 5 When set, this bit indicates that on-chip trace memory is present. 
This bit is preset based on the selected option when the TCB is 
implemented.

R Preset

OfT 4 When set, this bit indicates that off-chip trace interface is present. 
This bit is preset based on the selected option when the TCB is 
implemented, and on the existence of a PIB module (TC_PibPresent 
asserted).

R Preset

REV 3:0 Revision of TCB. Indicates the revision of the PDTrace Specifica-
tion. This field is set to a value of 0x4 to indicate PDTrace revision 
8.0 in the P6600 core.

R 0x4

31 30 29 28 10

R Perf-Int_En Perf_OvF_Stop R

Table 6.71 TCBCONFIG Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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9 8 7 6 5 4 3 0

P1_Reset P1_CountOn P1_Reset P1_CountOn Cycl_Cnt_Reset Cycl_Cnt_CountOn Perf_Num_Cnt

Table 6.72 CM2 Performance Counter Control Register

Name Bits Description
Read/
Write Reset State

Reserved 31 Read as Zero. Must be written with a value of 0x0. R 0x0

Perf_Int_En 30 Enable Interrupt on counter overflow. If set to 1, a CM2 per-
formance counter interrupt is generated when any enabled 
CM2 performance counter overflows. 

R/W 0x0

Perf_Ovf_Stop 29 Stop Counting on overflow. If set to 1, all CM2 Performance 
counters stop counting when any enabled CM2 performance 
counter overflows i.e., the counter has reached 
0xFFFF_FFFF.

R/W 0x0

Reserved 28:10 Read as Zero. Must be written with a value of 0x0. R 0x0

P1_Reset 9 If set to 1, CM2 Performance Counter 1 and P1_Overflow bit 
is reset before counting is started. If set to 0 counting is 
resumed from previous value. This bit is automatically set to 
0 when the counter is reset, so P1_Reset is always read as 0.

R/W 0x0

P1_CountOn 8 Start Counting. If this bit is set to 1 then CM2 Performance 
Counter 1 and the P1_Overflow bit starts counting the speci-
fied event. If this bit is set to 0 then CM2 Performance Coun-
ter 1 is disabled. This bit is automatically set to 0 if any 
counter overflows and Perf_Ovf_Stop is set to 1.

R/W 0x0

P0_Reset 7 If set to 1, CM2 Performance Counter 0 and P0_Overflow bit 
is reset before counting is started. If set to 0 counting is 
resumed from previous value. This bit is automatically set to 
0 when the counter is reset, so P0_Reset is always read as 0.

R/W 0x0

P0_CountOn 6 Start/Stop Counting. If this bit is set to 1 then CM2 Perfor-
mance Counter 0 starts counting the specified event. If this 
bit is set to 0 then CM2 Performance Counter 0 is disabled. 
This bit is automatically set to 0 if any counter overflows and 
Perf_Ovf_Stop is set to 1.

R/W 0x0

Cycl_Cnt_Reset 5 If set to 1, the CM2 Cycle Counter Register and the 
Cycl_Cnt_Overflow bit is reset before counting is started. If 
set to 0 counting is resumed from previous value. This bit is 
automatically set to 0 when the counter is reset, so 
Cycl_Cnt_Reset is always read as 0.

R/W 0x0

Cycl_Cnt_CountOn 4 Start/Stop the Cycle Counter. If this bit is set to 1 then CM2 
Cycle Counter starts counting. If this bit is set to 0 then CM2 
Cycle Counter is disabled. This bit is automatically set to 0 if 
any Counter Overflows and Perf_Ovf_Stop is set to 1.

R/W 0x0

Perf_Num_Cnt 3:0 The number of performance counters implemented (not 
including the cycle counter). The CM2 has 2 performance 
counters.

R 0x2
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6.6.2.6 CM2 PDTrace TCB Trace Word Read Pointer Register (GCR_DB_TCBRDP Offset 0x0108)

The TCBRDP register is an address pointer to on-chip trace memory. It points to the TW read when reading the TCBTW 
register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of TCBSTP.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

The format of the TCBRDP register is shown below and the fields are described in Table 6.73. The value of n depends 
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 6.65 TCBRDP Register Format 

6.6.2.7 CM2 PDTrace TCB Trace Word Write Pointer Register (GCR_DB_TCBWRP Offset 0x0110)

The TCBWRP register is an address pointer to on-chip trace memory. It points to the location where the next new TW 
for on-chip trace will be written.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

The format of the TCBWRP register is shown below and the fields are described in Table 6.74. The value of n depends 
on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always zero.

Figure 6.66 TCBWRP Register Format 

6.6.2.8 CM2 PDTrace TCB Trace Word Start Pointer Register (GCR_DB_TCBSTP Offset 0x0118)

The TCBSTP register is the start pointer register. This pointer is used to determine when all entries in the trace buffer 
have been filled (when TCBWRP has the same value as TCBSTP ). This pointer is reset to zero when the 

31 n+1 n 0

Data Address

Table 6.73 TCBRDP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written with zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Data Address

Table 6.74 TCBWRP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0
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TCBCONTROLBTR bit is written to 1. If a continuous trace to on-chip memory wraps around the on-chip memory, 
TSBSTP will have the same value as TCBWRP.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

The format of the TCBSTP register is shown below and the fields are described in Table 6.75. The value of n depends 
on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always zero.

Figure 6.67 TCBSTP Register Format 

6.6.2.9 CM2 PDTrace TCB System Trace User Control Register ( GCR_DB_TCBSYS Offset 0x0040)

The TCBSYS register contents are driven to the TC_Sys_UserCtl[31:0] output signals. This register is also mapped to 
offset 0x0040 in the Global Debug Block of the CM GCRs. Thus, any change to this register will be reflected in these 
output signals. The format of the TCBSYS register is shown below, and the fields are described in Table 6.76.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

Figure 6.68 TCBSYS Register Format 

31 n+1 n 0

Data Address

Table 6.75 TCBSTP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 30 0

STA UsrCtl

Table 6.76 TCBSYS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

STA 31 System Trace Available. Set to 1 if the System Trace Interface is 
present. Otherwise it is set to 0.

R Preset

UsrCtl 30:0 User-defined Control. R/W 0
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6.6.2.10 CM2 Performance Counter Overflow Status Register (GCR_DB_PC_OV Offset 0x120)

Figure 6.69 Performance Counter Overflow Status Register Format 

 

6.6.2.11 CM2 Performance Counter Event Select Register (GCR_DB_PC_EVENT Offset 0x130)

Figure 6.70 CM2 Performance Counter Event Select Register Format 

6.6.2.12 CM2 Cycle Counter Register

The CM2 Cycle Count Register is a 32-bit register that keeps count of CM2 clock cycles. It is controlled through the 
Cycl_Cnt_CountOn and Cycl_Cnt_Reset bits in the CM2 Performance Counter Control Register. An overflow of the 
cycle counter is indicated by a 1 in the Cycl_Cnt_Overflow bit in the CM2 Performance Counter Overflow Status Reg-
ister. 

31 3 2 1 0

R P1_OF P0_OF Cycl_Cnt_OF

Table 6.77 Performance Counter Overflow Status Register 

Register Fields

Description
Read/
Write Reset StateName Bits

Reserved 31:3 Reserved. Must be written zero, reads back zero. R 0x0

P1_OF 2 If this bit is set to 1, CM2 Performance Counter 1 has over-
flowed i.e., the counter has reached 0xFFFF_FFFF.

R
Write 1 to 

clear

0x0

P0_OF 1 If this bit is set to 1, CM2 Performance Counter 0 has over-
flowed i.e., the counter has reached 0xFFFF_FFFF.

R
Write 1 to 

clear

0x0

Cycl_Cnt_OF 0 If this bit is set to 1, the CM2 Cycle Counter Register has 
overflowed.

R
Write 1 to 

clear

0x0

31 16 15 8 7 0

R P1_Event P0_Event

Table 6.78 CM2 Performance Counter Event Select Register 

Name Bits Description
Read/
Write Reset State

Reserved 31:16 Reserved. Must be written zero, reads back zero. R 0x0

P1_Event 15:8 Event Selection for CM2 Performance Counter 1. Event num-
bers are defined in Table 14.1.

R/W 0x0

P0_Event 7:0 Event Selection for CM2 Performance Counter 0. Event num-
bers are defined in Table 14.1.

R/W 0x0
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Figure 6.71 CM2 Cycle Count Register Format  

6.6.2.13 CM2 Performance Counter n Qualifier Field Register (GCR_DB_PC_QUALn Offset 0x190, 
0x1a0)

Figure 6.72 Performance Counter n Qualifier Field Register Format  

6.6.2.14 CM2 Performance Counter n Register (GCR_DB_PC_CNTn Offset 0x198, 0x1A8)

Figure 6.73 Performance Counter n Register Format  

6.6.2.15 CM2 PDTrace TCB Trace Word LO Register ( GCR_DB_TCBTW_LO Offset 0x0200)

Reads to this register access the contents of the On-Chip Trace Buffer entry (least significant 32-bits) which is refer-
enced by the GCR_DB_TCBRDP register. Writes to this register modify the On-Chip Trace Buffer entry (least signifi-
cant 32-bits) which is referenced by the GCR_DB_TCBWRP register.

31 0

Cycle_Cnt

Table 6.79 CM2 Cycle Counter Register (GCR_DB_PC_CYCLE Offset 0x180) 

Name Bits Description
Read/
Write Reset State

Cycle_Cnt 31:0 32-bit count of CM2 clock cycles. R/W 0x0

31 0

Pn_Qualifier

Table 6.80 CM2 Performance Counter n Qualifier Field Register Descriptions

Name Bits Description
Read/
Write Reset State

Pn_Qualifier 31:0 CM2 Performance Counter n Event Qualifier. The qualifier 
corresponds to the event configured through the Performance 
Counter 0 Event Select Register.

R/W 0x0

31 0

Pn_Count

Table 6.81 CM2 Performance Counter n Register

Name Bits Description
Read/
Write Reset State

Pn_Count 31:0 32-bit Performance Counter. The event counted is specified in 
the CM2 Performance Counter Event Select Register and by 
the corresponding Qualifier Register. 

R/W 0x0
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A side effect of reading the TCBTW_LO register is that the TCBRDP register increments to the next TW in the on-
chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment wraps back to address 
zero. A side effect of writing the TCBTW_LO register is that the TCBWRP register increments to the next TW in the 
on-chip trace memory. If TCBWRP is at the max size of the on-chip trace memory, the increment wraps back to 
address zero. The use of load half-word or load byte instructions can lead to unpredictable results, and is not recom-
mended.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

Figure 6.74 TCBTW_LO Register Format  

6.6.2.16 CM2 PDTrace TCB Trace Word HI Register ( GCR_DB_TCBTW_HI Offset 0x0208) 

Reads to this register access the contents of the On-Chip Trace Buffer entry (most significant 32-bits) which is refer-
enced by the GCR_DB_TCBRDP register. Writes to this register modify the On-Chip Trace Buffer entry (most signifi-
cant 32-bits) which is referenced by the GCR_DB_TCBWRP register.

To read or write a 64-bit trace word from the Trace Buffer, the GCR_DB_TCBTW_HI register must be accessed first 
before the GCR_DB_TCBTW_LO register. The access of the GCR_DB_TCBTW_LO register causes the appropriate 
pointer register to be incremented. The use of load half-word or load byte instructions can lead to unpredictable 
results, and is not recommended.

This register is also accessible by EJTAG via the TCBDATA instruction as described in the EJTAG Debug Support 
chapter.

Figure 6.75 TCBTW_HI Register Format  

31 0

Data

Table 6.82 TCBTW_LO Register Field Descriptions 

Names Bits Description
Read / 
Write Reset State

Data 31:0 Trace Word, least significant 32-bits. R/W 0

31 0

Data

Table 6.83 TCBTW_HI Register Field Descriptions 

Names Bits Description
Read / 
Write Reset State

Data 31:0 Trace Word, most significant 32-bits. R/W 0
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Power Management and the Cluster Power Controller

This chapter describes the Cluster Power Controller (CPC) included in the P6600 Multiprocessing System. The CPC 
organizes bootstrap, reset, tree root clock gating, and power gating of CPUs. The CPC also manages power cycling, 
reset, and clock gating of the Coherence Manager, dependent on the individual core status and shutdown policy. 

The chapter contains the following sections:

• Section 7.1 “Introduction to the Cluster Power Controller”

• Section 7.2 “CPC Register Programming”

• Section 7.3 “Cluster Power Controller Address Map”

• Section 7.4 “Cluster Power Controller Commands”

• Section 7.5 “P6600 Core Power Management Options”

• Section 7.6 “P6600 Core Clock Gating”

• Section 7.7 “P6600 Core Power Gating”

7.1 Introduction to the Cluster Power Controller

The Cluster Power Controller (CPC) works in conjunction with the power management features of the individual 
P6600 cores to provide a comprehensive power management scheme.

The main purpose of the Cluster Power Controller (CPC) is to manage static leakage and dynamic power consump-
tion based on system-level power states assigned to the individual components of the P6600 Multiprocessing System. 
As such, the CPC acts as a programmable platform peripheral, accessible through cluster CPU software and SOC-
level hardware protocols.

The CPC is an integral part of the coherent cluster and is designed to boostrap, reset, tree root clock-gate and power- 
gate cluster CPUs and the Coherence Manager. Implementors may or may not chose to support some or all of the 
physical features the CPC is architected to control. The following physical power-management features can be 
selected independently:

• Power gating of selected CPUs and/or the CM. Supported by industry-standard physical design flows, 
supply voltage of individual power domains can be switched on-chip. Currently, the Common Power Format 
(CPF) and Unified Power Format (UPF) are provided for a seamless front to back-end design flow. Besides 
CPF/UPF compliant EDA tools, standard cell libraries are required to provide power-gating header or footer 
cells, as well as isolate-high and isolate-low cells to separate unpowered domains from their active sur-
roundings. The CPC provides a front-end RTL simulation environment and diagnostics to verify power-gat-
ing behavior.
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• Tree root clock gating. Independent of CPU internal power-management features such as register-bank 
level clock gating and the sleep and doze modes, the CPC provides controls to gate clocks directly at or after 
the PLL in order to quiesse the entire clock tree of a CPU. CPC clock-gating signals are designed to bridge 
large clock insertion delays and are controlled through system-level power states.

In addition to power-management functions, the CPC also acts as reset and boostrap controller of the Multiprocessing 
System (MPS) to initialize cores as they become operational, or re-initialize them upon system-level requests. The 
CPC also facilitates EJTAG debug probe access to cores by detecting the connection of a probe and enabling cores to 
respond to debug interrupt requests.

7.1.1 Power Domains of the P6600 Multiprocessing System

Figure 7.1 P6600 Multiprocessing System Power Domains

To individually power gate each core, independently controlled power domains are introduced to the P6600 core. 
RTL simulation as well as physical implementation of the CPS support five distinct domains, cpu0-N and the Coher-
ence Manager. These components are intended to be implemented with power rail switch cells to allow shutdown. 
Each controllable domain also is required to drive isolation values towards the system. This ensures proper logic val-
ues from shutdown domain boundaries into powered surroundings. 

The top level can be implemented to belong to a voltage scaled supply domain. This enables dynamic voltage and fre-
quency scaling over the full CPS with shutdown features for individual sub-domains.

With shutdown of all cores, the Coherence Manager becomes inactive unless IOCU traffic is requested. The CPC pro-
vides programmable power down for these components. 

Level 2 cache is part of the CM2. However, power management of the L2 cache is not handled by the CPC. The CMP 
cluster implementation ensures that power-down of cores and Coherence Manager does not affect L2 status.

7.1.2 Operating Level Transitions

To reach power-down and clock-off mode, software and hardware are required to go through a sequence of steps on 
each operating level to reach the next level.
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7.1.2.1 Coherent to Non-Coherent Mode Transition

To leave the coherent domain and operate independently or prepare for shutdown, the following sequence should be 
followed:

1. Switch to non-coherent CCA.

2. Flush dirty data from data cache using IndexWritebackInvalidate CACHE instruction on all lines in the cache.

3. If the instruction cache contains lines that are expected to be maintained by software as coherent (via globalized 
CACHE instructions), and the CPU is not going to go through a reset sequence, the instruction cache should be 
flushed using IndexInvalidate CACHE instructions.

4. Write GCR_CL_COHERENCE (Core Local GCR address 0x0008). Write 0 to all bits except bit for "self", 
which should stay set to 1. This is required so that the core can issue a coherent SYNC  (step 6) to make sure all 
previous interventions are complete.

5. Read GCR_CL_COHERENCE (ensures step 4 has completed).

6. Issue Coherent SYNC (intervention-only SYNC is fine).

7. Write 0 to GCR_CL_COHERENCE to completely remove core from coherence domain.

8. Read GCR_CL_COHERENCE to ensure step 7 is complete.

7.1.2.2 Non-Coherent to Coherent Mode Transition

An independently operating core becomes a member of a coherent cluster.

• Caches must be initialized first (since last reset)

• There should be no data in the caches that will later be accessed coherently. Non-coherent data is treated as 
exclusive/modified which can lead to violations of the coherence protocol if other caches have copies of the data.

• The GCR local coherence control register is programmed to add the core to the coherent domain.

• Switch to coherent Cache Coherence Attribute (CCA).

• Regular coherent programs can now start on this core.

7.1.2.3 Non-Coherent to Power Down Mode Transition

A core which is not member of a coherent domain is powered down. NOTE: When an EJTAG probe is detected, the 
CPC will prevent power down to preserve the connectivity of the TAP scan chain. A power-down command will 
instead cause the core to enter clock off mode.

• The GIC might be programmed to re-route interrupts away from this core.

• The CPC must be programmed to enter power-down mode. 

• Core outputs are held inactive towards the CM. Completion of pending bus traffic is awaited and start of new 
traffic prevented using the SI_LPReq protocol.
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• The CPC initiates the clock and power shutdown micro-sequence.

7.1.2.4 Non-Coherent to Clock Off Mode Transition

A core is disconnected from bus and stops operation. Dynamic power consumption is removed.

• Programming a CPC ClkOff command will disable the clock tree root for this core. 

• Core outputs are held inactive towards the CM. Completion of pending bus traffic is awaited and start of new 
traffic prevented using the SI_LPReq protocol.

• The GIC might be programmed to re-route interrupts for this core to others.

7.1.2.5 Clock Off to Power Down Mode Transition

Power supply is removed from a disconnected core. Dynamic and leakage power is removed.

• The CPC must be programmed to enter power-off mode. 

• The CPC initiates the clock and power shutdown micro-sequence.

7.1.2.6 Clock Off to Non-Coherent Mode Transition

A disconnected core is reconnected to the bus and starts operation.

• The CPC command register is programmed to bring the core back on-line. A CPC_PwrUp command will let the 
core resume operation immediately, or, if a Reset command given, go through a reset sequence before becoming 
operational. 

• If the core bus was isolated due to earlier power modes, this isolation is removed.

• The clock is applied and the core starts executing instructions.

7.1.2.7 PowerDown to Non-Coherent Mode Transition

A core is powered up and becomes operational.

• The GCR local coherence control register must be set inactive for this core. Powering up into a coherent state 
with uninitialized caches may corrupt coherent data.

• Software on another core can send a PwrUp or Reset command for this core or an SOC hardware signal can 
request for the CPC to schedule a power-up sequence targeting non-coherent mode. 

• The CPC will schedule a power-up sequence and the core becomes operational outside the coherent domain. 
After the core becomes operational, execution continues at the boot vector provided while power-up mode reset.
NOTE: reset is not automatically applied unless the core really was in the power-down state prior to a PwrUp 
command or hardware PwrUp signal. 

• The GIC might be reprogrammed to perform interrupt routing to this core.
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7.2 CPC Register Programming

This section describes some of the programming functions that can be performed via the CPC registers.

7.2.1 Requestor Access to CPC Registers

The CPC allows up to eight requestor’s in a system. A requestor can be either a core or an IOCU. The P6600 core 
allows up to 7 requestors in a multiprocessing system; six cores and one IOCU.

The requestor’s may not have unrestricted access to the CPC registers. During boot time, software determines which 
requestor’s are provided access to the CPC registers by programming the 8-bit CPC_ACCESS_EN field of the Global 
CPC Access Privilege register located at offset 0x000. Each bit in this field corresponds to a specific requestor.

The MIPS default for this field is 0xFF, meaning that all requestor’s in the system have access to the CPC register set. 
To disable access to the registers for a particular requestor, software need only clear the corresponding bit of this field 
to zero and all write requests to the CPC registers by that requestor will be ignored.

7.2.2 Global Sequence Delay Count

The Sequence Delay register (CPC_SEQDEL_REG) located at offset 0x0008 in the CPC Global Control Block, con-
tains a 10-bit field that describes the number of clock cycles each domain micro-sequencer will take to advance. It 
describes a set of worst-case timing of the physical implementation and is used to ensure electrical and bus protocol 
integrity. Typically, the CPC_SEQDEL_REG contents would be defined at IP configuration time. However, runtime 
write capability allows fine tuning to optimize sequencer timing. Domain sequencing begins once the RAILDELAY 
field has counted down to zero. Refer to Section 7.2.3, "Rail Delay" for more information.

The 10-bit MICROSTEP field is encoded as follows: 

Note that the physical implementation might not allow power sequence micro steps to advance with full cluster 
speed. At cluster cold start, the counter divides cluster frequency by a hard coded IP configuration value to derive a 
micro step width.

Table 7.1 Encoding of MICROSTEP Field

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

..... .....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay
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7.2.3 Rail Delay

The Rail Delay register (CPC_RAIL_REG) located at offset 0x010 in the CPC Global Register Block contains a 10-bit 
counter field (RAILDELAY) used to schedule delayed start of power domain sequencing after the RailEnable signal has 
been activated by the CPC. This allows the CPC to compensate for slew rates at the gated rail, since hardware inter-
locks such as SI_VddOk are either unavailable or don’t reflect to complete power up time of a domain.

The 10-bit counter value delays the power-up sequence per domain after the SI_RailStable and VddOK signals become 
active. The power-up micro-sequence starts after RAILDELAY has been loaded into the internal counter and a count-
down to zero has concluded.

After completion of the domain power-up micro-sequence, the DomainReady signal is raised and can be used for 
domain daisy-chaining.

At IP configuration time, the contents of the CPC_RAIL_REG register are preset. However, for fine tuning, the register 
can be written at run time. 

The 10-bit RAILDELAY field is encoded as follows: 

Table 7.2 Encoding of RAILDELAY Field

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

..... .....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay
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Figure 7.2 Relationship Between RAILDELAY and MICROSTEP During Power-Up Sequence

7.2.4 Reset Delay

Within the power-up micro-sequence, reset is applied. Typically, reset is active until the domain responds by asserting 
the internal PB_Reset_N signal. However, the CPC_RESETLEN_REG allows reset to be extended beyond the assertion 
of PB_ResetN. The down-counter starts after the sequencer has detected the assertion of PB_Reset_N. Domains without 
a PB_ResetN signal could tie this input low or connect it to an inverted reset signal. 

Figure 7.3 Extending the Reset Sequence Beyond the Assertion of the Reset Signal 

7.2.5 Executing a Power Sequence

The power sequence for the CPC block support the following commands:

• ClockOff: This command causes the domain to cycle into clock-off mode.It disables the clock to this power 
domain.

• PwrDown: This command uses the setup values in the CPC_STAT_CONF_REG register.

• PwrUp: This command uses the setup values in the CPC_STAT_CONF_REG register.

• Reset: When this command is issued, the domain is reset if it is in non-coherent mode.

A command can be executed in the local core by writing and encoded value to bits 3:0 of the Command register 
(CPC_CL_CMD_REG) of the Core-Local block located at offset address 0x000. To write a command to another 
core, bits 3:0 of the Command reigster (CPC_CO_CMD_REG) in the Core-Other block is used.

VDDOK

SI_RailStable

Load Counter w/
RAILDELAYRAILDELAY[9:0]

(CPC_RAIL_REG)

Count Down Count
Done

Start Domain
Sequencer

MICROSTEP[9:0]
(CPC_SEQDEL_REG)

PB_Reset_N

Load Conter w/
RESETLEN

RESETLEN[9:0]
(CPC_RESETLEN_REG)

Count Down Count
Done

Domain Reset
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7.2.6 Accessing Another Core

To access another core, the number of the core to be accessed is programmed into bits 23:16 of the Core-Other 
Addressing register (CPC_CL_OTHER_REG) located at offset 0x010 of the Core-Local block. This field selects the 
core number of the register set to be accessed in Core-Other address space. Refer to Section 7.3.4.2, "Core-Other 
Addressing Register" for more information.

7.3 Cluster Power Controller Address Map

The CPC uses memory locations within the global, core-local, and core-others address space. The CPC location 
within the CPU address map is determined by the GCR_CPC_BASE register. All address locations in this document are 
relative to this base address. 

In Table 7.3, all registers are accessed using 32-bit aligned uncached load/stores. In addition, the block offsets shown 
are relative to bits 31:15 of the GCR_CPC_Base register located in the CM2. Refer to Chapter 8, CM2 Global Control 
Registers for more information on this register. 

7.3.1 Block Offsets Relative to the Base Address

The block offsets for each of the three blocks listed in Table 7.3 above are relative to a CPC base address and can be 
located anywhere in physical memory. The base address is a 17-bit value that is programmed into the 
GCR_CPC_BASE field of the GCR CPC Base register located at offset address 0x0088 in the Global Control Block of 
the CM2 registers. Note that this Global Control Block is different from the one listed in Table 7.3 above. Refer to the 
GCR_CPC_BASE Register in Chapter 8, CM2 Global Control Registers for more information on this register.

To determine the physical address of each block listed in Table 7.3, the base address written to the GCR_CPC_BASE 
Register this value would be added to the CPC block offset ranges to derive the absolute physical address as shown in 
Table 7.4. Note that an example base address of 0x1BDE_0 is used for these calculations. 

Table 7.3 CPC Address Map (Relative to GCR_CPC_BASE[31:15])

Block Offset Size (bytes) Description

0x0000 - 0x1FFF 8 KB Global Control Block. Contains registers pertaining to the global system 
functionality. This address section is visible to all CPUs.

0x2000 - 0x3FFF 8 KB Core-Local Control Block. Aliased for each P6600 core. Contains regis-
ters pertaining to the core issuing the request. Each core has its own copy 
of registers within this block.

0x4000 - 0x5FFF 8 KB Core-Other Control Block. Aliased for each P6600 core. This block of 
addresses gives each Core a window into another Core’s Local Control 
Block. Before accessing this space, the Core-Other_Addressing Register 
in the Local Control Block must be set to the CORENum of the target 
Core.

Table 7.4  Example Physical Address Calculation of the CPC Register Blocks 

Example Base 
Address GCR Block Offset Absolute Physical Address

Size 
(bytes) Description

0x00_1BDE_0 + 0x0000 - 0x1FFF = 0x00_1BDE_ 0000 - 
0x1BDE_1FFF

8 KB CPC Global Control Block. 
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7.3.2 Register Offsets Relative to the Block Offsets

In addition to the block offsets, the register offsets provided in each register description of this chapter are relative to 
the block offsets shown in Table 7.4 above. To determine the physical address of each register, the base address pro-
grammed into the GCR_CPC_BASE register is added to the corresponding CPC block offset plus the actual register 
offset to derive the absolute physical address as shown in Table 7.5. In this table an example base address of 
0x1BDE_0 is used. 

Table 7.6 shows the absolute physical addresses for the CPC Core-Local block. In this table an example base address 
of 0x1BDE_0 is used. 

Table 7.6 shows the absolute physical addresses for the CPC Core-Other block. In this table an example base address 
of 0x1BDE_0 is used. 

0x00_1BDE_0 + 0x2000 - 0x3FFF = 0x00_1BDE_ 2000 - 
0x00_1BDE_3FFF

8 KB CPC Core-Local Control Block.

0x00_1BDE_0 + 0x4000 - 0x5FFF = 0x00_1BDE_ 4000 - 
0x00_1BDE_5FFF

8 KB CPC Core-Other Control Block.

Table 7.5  Absolute Address of Individual CPC Global Control Block Registers

MIPS Default 
Base

Global Register Block 
Offset

Global Register 
Offset

Absolute Physical 
Address Global Control Register

0x00_1BDE_0 + 0x0000 + 0x0000 = 0x00_1BDE_0 CPC Access Privilege. 

0x00_1BDE_0 + 0x0000 + 0x0008 = 0x00_1BDE_0 CPC Global Sequence Delay. 

0x00_1BDE_0 + 0x0000 + 0x0010 = 0x00_1BDE_0 CPC Rail Delay. 

0x00_1BDE_0 + 0x0000 + 0x0018 = 0x00_1BDE_0 CPC Reset Length. 

0x00_1BDE_0 + 0x0000 + 0x0020 = 0x00_1BDE_0 CPC Revision. 

Table 7.6  Absolute Address of Individual CPC Core-Local Block Registers

MIPS Default 
Base

Core-Local Register 
Block Offset

Core-Local 
Register Offset

Absolute Physical 
Address Core-Local Register

0x00_1BDE_0 + 0x2000 + 0x0000 = 0x00_1BDE_2000 CPC Core-Local Command. 

0x00_1BDE_0 + 0x2000 + 0x0008 = 0x00_1BDE_2008 CPC Core-Local Status and 
Configuration. 

0x00_1BDE_0 + 0x2000 + 0x0010 = 0x00_1BDE_2010 CPC Core-Other Addressing. 

Table 7.7  Absolute Address of Individual CPC Core-Other Block Registers

MIPS Default 
Base

Core-Other Register 
Block Offset

Core-Other 
Register Offset

Absolute Physical 
Address Core-Other Register

0x00_1BDE_0 + 0x4000 + 0x0000 = 0x00_1BDE_4000 CPC Core-Other Command. 

Table 7.4  Example Physical Address Calculation of the CPC Register Blocks (continued)

Example Base 
Address GCR Block Offset Absolute Physical Address

Size 
(bytes) Description
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This concept is described in Figure 7.4 below. In this figure an example base address of 0x1BDE_0 is used.

Figure 7.4 CPC Register Addressing Scheme Using an Example Base Address of 0x1BDE_0 

0x00_1BDE_0 + 0x4000 + 0x0008 = 0x00_1BDE_4008 CPC Core-Other Status and 
Configuration. 

0x00_1BDE_0 + 0x4000 + 0x0010 = 0x00_1BDE_4010 CPC Core-Other Addressing. 

Table 7.7  Absolute Address of Individual CPC Core-Other Block Registers(continued)

MIPS Default 
Base

Core-Other Register 
Block Offset

Core-Other 
Register Offset

Absolute Physical 
Address Core-Other Register

0x00_1BDE_0000

0x00_1BDE_0008

0x00_1BDE_0010

0x00_1BDE_0018

0x00_1BDE_1FFF

35 15
GCR_CPC_BASE

0x0_1BDE_0

GCR_CPC BASE Register
CPC Global Control Block

0x00_1BDE_2000

0x00_1BDE_2008

0x00_1BDE_2010

0x00_1BDE_2018

0x00_1BDE_3FFF

CPC Core-Local Block

0x00_1BDE_4000

0x00_1BDE_4008

0x00_1BDE_4010

0x00_1BDE_4018

0x00_1BDE_5FFF

CPC Core-Other Block

0x00_1BDE_2000

0x00_1BDE_4000

+0x2000

+0x2000
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7.3.3 Global Control Block Register Map

All registers in the Global Control Block are 32 bits wide and should only be accessed using aligned 32-bit uncached 
load/stores. Reads from unpopulated registers in the CPC address space return 0x0, and writes to those locations are 
silently dropped without generating any exceptions.

Table 7.8 Global Control Block Register Map (Relative to Global Control Block offset)

7.3.3.1 Global CSR Access Privilege Register

The Access privilege register configures the CPU access rights towards CPC programming registers. Its function is 
defined equally to the GCR Access Privilege Register. 

Register Offset 
in Block Name Type Description

0x000 CPC Global CSR Access Privilege Register 
(CPC_ACCESS_REG)

R/W Controls which cores can modify the CPC 
Registers.

0x008 CPC Global Sequence Delay Counter
(CPC_SEQDEL_REG)

R/W Time between microsteps of a CPC domain 
sequencer in CPC clock cycles.

0x010 CPC Global Rail Delay Counter Register 
(CPC_RAIL_REG)

R/W Rail power-up timer to delay CPS 
sequencer progress until the gated rail has 
stabilized.

0x018 CPC Global Reset Width Counter Register 
(CPC_RESETLEN_REG)

R/W Duration of any domain reset sequence. 

0x020 CPC Global Revision Register 
(CPC_REVISION_REG)

R RTL Revision of CPC

0x028
0x0F8

CPC Global RESERVED registers. - For Future Extensions

Table 7.9 CPC Global CSR Access Privilege Register (CPC_ACCESS_REG Offset 0x000)  

Register Fields

Description
Read/
Write

Reset 
StateName Bits

RESERVED 31:8 Reads as 0x0. Writes ignored. Must be written with a 
value of 0x0.

R 0

CM_ACCESS_EN 7:0 Each bit in this field represents a power domain CPU.

If the bit is set, that requester is able to write to the CPC 
registers (this includes all registers within the Global, 
Core-Local and Core-Other blocks. 
If the bit is clear, any write request from that requestor to 
the CPC registers (Global, Core-Local, Core-Other) will 
be dropped. 

R/W 0xff
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7.3.3.2 Global Sequence Delay Counter

The CPC_SEQDEL_REG describes globally the number of clock cycles each domain micro-sequencer will take to 
advance. It describes a set of worst-case timing of the physical implementation and is used to ensure electrical and 
bus protocol integrity. Mainly, buffer tree delays on SI_Isolate and/or SI_RailEnable can be used to set proper micro 
sequencer delay values.

Typically, the CPC_SEQDEL_REG contents would be defined at IP configuration time. However, runtime write capa-
bility allows fine tuning to optimize sequencer timing.

Table 7.10 Global Sequence Delay Counter Register (CPC_SEQDEL_REG, Offset 0x008)

7.3.3.3 Global Rail Delay Counter

The CPC_RAIL_REG represents a 10-bit counter register to schedule delayed start of domain operation after the 
RailEnable signal has been activated by the CPC. This allows to compensate for slew rates at the gated rail, since hard-
ware interlocks such as SI_VddOk are either unavailable or don’t reflect to complete power up time of a domain.

At IP configuration time, the contents of CPC_RAIL_REG is preset. However, for fine tuning, the register can be writ-
ten at run time. 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:10 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

R 0

MICROSTEP 9:0 This field reflects the delay in clock cycles, taken by each power 
domain micro-sequencer to advance between atomic micro 
steps. Cycles/Step = MICROSTEP[9:0] value + 1; 0 => 1cycle, 
1 => 2cycles...
Physical implementation might not allow power sequence micro 
steps to advance with full cluster speed. At cluster cold start, the 
counter divides cluster frequency by a hardcoded IP configura-
tion value to derive a micro step width.

R/W IP Configuration Value



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 423

Table 7.11 Global Rail Delay Counter Register (CPC_RAIL_REG, Offset 0x010)

7.3.3.4 Global Reset Width Counter

Within the power-up micro-sequence, reset is applied. Typically, reset is active until the domain responds with 
PB_Reset_N feedback. However, the CPC_RESETLEN_REG allows reset to be extended beyond the ResetN feedback, or 
in case the reset feedback is unavailable. Counting down will start after the sequencer has received the PB_Reset_N 
feedback. Domains without PB_ResetN feedback could tie this input low or connect it to an inverted reset signal. 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:10 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

R 0

RAILDELAY 9:0 10-bit counter value to delay power-up sequence per domain 
after RailStable and VddOK signals became active. The power-
up micro-sequence starts after RAILDELAY has been loaded 
into the internal counter and a counted down to zero has con-
cluded.
After completion of the domain power-up micro-sequence, the 
DomainReady signal is raised and can be used for domain daisy-
chaining.

R/W IP Configuration Value
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Table 7.12 Global Reset Width Counter Register (CPC_RESETLEN_REG, Offset 0x018)

7.3.3.5 Revision Register

7.3.4 Local and Core-Other Control Blocks

All registers in the CPC Local Control Block are 32 bits wide and should only be accessed using aligned 32-bit 
uncached load/stores. Reads from unpopulated registers in the CPC address space return 0x0, and writes to those 
locations are silently dropped without generating any exceptions.

A set of these registers exists for each core in the P6600 MPS. These registers can also be accessed from other cores 
by first writing the CPC Core Other Addressing Register (in the Core-Local Control Block) with the proper CoreNum 
and then accessing these registers using the Core Other address space.

The register offsets shown are relative to the offsets listed in Table 7.14. 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:10 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

R 0

RESETLEN 9:0 10-bit counter value to extend reset duration beyond 
PB_Reset_N feedback. The domain behavior after reset is deter-
mined by the domain local setup register.

R/W IP Configuration Value

Table 7.13 Revision Register (CPC_Revision_REG, Offset 0x020)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R

MAJOR_REV 15:8 This field reflects the major revision of the CPC block. A major 
revision might reflect the changes from one product generation to 
another. 

R Preset

MINOR_REV 7:0 This field reflects the minor revision of the CPC block. A minor 
revision might reflect the changes from one release to another. 

R Preset

Table 7.14 Core-Local Block Register Map 

Register Offset 
in Block Name Type Description

0x000 CPC Local Command Register 
(CPC_CL_CMD_REG)

R/W Places a new CPC domain state command 
into this individual domain sequencer. 
This register is not available within the CM 
sequencer. Writes to the CM CMD register 
are ignored while reads will return zero.
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The register offsets shown are relative to the offsets listed in Table 7.15. 

CPC Local register are used to set power-down conditions. After setup of conditions, the micro-sequencer can be 
activated through the command register. The execution of the micro-sequencer can be observed via the status register. 
Reading the status and configuration register retrieves the last executed command and status flags to reflect on recent 
commands given.

0x008 CPC Local Status and Configuration register
(CPC_CL_STAT_CONF_REG)

R/W Individual domain power status and domain 
configuration register. Reflects domain 
micro-sequencer execution. Initiates micro-
sequencer after status register program-
ming. Reflects command execution status.

0x010 CPC Core Other Addressing Register
(CPC_CL_OTHER_REG)

R/W
R/O for 

CM2

Used to access local registers of another 
core.

0x018
0x0F8

CPC Local RESERVED registers - For Future Extensions

Table 7.15 Core-Other Block Register Map 

Register Offset 
in Block Name Type Description

0x000 CPC Local Command Register 
(CPC_CO_CMD_REG)

R/W Places a new CPC domain state command 
into this individual domain sequencer. 
This register is not available within the CM 
sequencer. Writes to the CM CMD register 
are ignored while reads will return zero.

0x008 CPC Local Status and Configuration register
(CPC_CO_STAT_CONF_REG)

R/W Individual domain power status and domain 
configuration register. Reflects domain 
micro-sequencer execution. Initiates micro-
sequencer after status register program-
ming. Reflects command execution status.

0x010 CPC Core Other Addressing Register
(CPC_CO_OTHER_REG)

R/W
R/O for 

CM

Used to access local registers of another 
core.

0x018
0x0F8

CPC Local RESERVED registers - For Future Extensions

Table 7.14 Core-Local Block Register Map (continued)

Register Offset 
in Block Name Type Description
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7.3.4.1 Command Register 

Table 7.16 Local Command Register (CPC_CL[CO]_CMD_REG, Offset 0x000)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:4 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

R 0

CMD 3:0 Requests a new power sequence execution for this domain. 
Read value is the last executed command. 

R/W
Not avail-

able in 
CM

domain

0

Code Meaning

4’d1 ClockOff 
This command causes the domain to cycle into 
clock-off mode.It disables the clock to this power 
domain. Only successful if SI_CoherenceEnable 
and other protocol interlocks are observed. If not, 
the command remains inactive until the protocol 
barriers subside. After that, the command is exe-
cuted.
Depending on the current sequencer state, the 
command either causes power-up of a domain, or 
a domain leaves active duty to become inactive. A 
power-up leads to sequencer state U2, which will 
require the execution of a subsequent Reset or 
PwrUp command to make this domain opera-
tional.

4’d2 PwrDown
this domain using setup values in 
CPC_STAT_CONF_REG. Only successful if 
SI_CoherenceEnable inactive and all protocol 
interlocks are observed. If not, the command 
remains inactive until the protocol barriers sub-
side. Then, the command is executed.

4’d3 PwrUp
this domain using setup values in 
CPC_STAT_CONF_REG. Usable only for Core-
Others access. It is the software equivalent to 
SI_PwrUp hardware signal

4’d4 Reset
This domain is reset if in non-coherent mode. 
After the domain has been reset, the domain 
becomes operational and the CMD field reads as 
PwrUp cmd.

Others Reserved
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Table 7.17 Local Status and Configuration Register (CPC_CL[CO]_STAT_CONF_REG, Offset 0x008)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED [31:24] Reserved. R 0

PWRUP_EVENT 23 The SI_PowerUp pin had been activated and caused the 
sequencer to cycle into power up state. The event also caused 
the sequencer to place a PwrUp command into the CMD field. 
Writing a 0 into the PWRUP_EVENT field will clear this bit.

R/W0 0

SEQ_STATE [22:19] Current domain sequencer state. State description: R 0

RESERVED 18 Reserved. R -

CLKGAT_IMPL 17 If set, this domain is implemented with clock tree root gating. 
If cleared, the CPC will still execute power-down/clock-off 
sequences if commanded; however, no physical clock gating is 
performed. 

R IP Configuration Value

PWRDN_IMPL 16 If set, this domain is implemented as power-gated. 
If cleared, the CPC will still execute power-down sequences if 
commanded; however, no physical power switching is per-
formed. 

R IP Configuration Value

EJTAG_PROBE 15 An EJTAG probe connection event has been seen. The domain 
powers up if required and observes a reset sequence. Thereafter 
the core transitions into clock-off mode. After a probe has been 
seen once, the power domain will not assume power-off mode 
until this bit is written to zero or the CPC experiences a cold 
reset.

R/W0 0

Reserved 14:11 Reserved. R 0

Reserved 10 Reserved. R/W 1

Code State

4’h0 D0 - PwrDwn
4’h1 U0 - VddOK
4’h2 U1 - UpDelay
4’h3 U2 - UClkOff
4’h4 U3 - Reset
4’h5 U4 - ResetDly
4’h6 U5 - nonCoherent execution
4’h7 U6 - Coherent execution
4’h8 D1 - Isolate
4’h9 D3 - ClrBus
4’ha D2 - DClkOff
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PWUP_POLICY [9:8] Each CPC domain sequencer is hardwired through the 
SI_ColdPwrUp signal to either power up, remain power-gated, 
go into clock-off mode, or become operational. To influence the 
cold start behavior of the domain, three distinct policies can be 
wired for this domain:

Within a processor cluster, CPU zero would power-up, while 
peer CPU 1-3 remain unpowered until released through a 
PwrUp commands. The PWUP_POLICY field reflects the hard-
wired SI_ColdPwrUp bus.

R Hardwired IP 
Configuration Value

CM domain is hard 
coded to powerUp if any 
CPU domain is powered 

up initially.

RESERVED [7:5] Reads zero. Writes ignored R 0

IO_TRFFC_EN [4] Enable CM for stand alone IOCU traffic. Setting this bit 
changes the low power state of the CM power domain from 
PwrDwn to ClkOff. The CM_IOPwrUp signal can be used by an 
external device to enable the CM to perform IOCU data trans-
fers without CPU activities.
Deselecting IO_TRFFC_EN will power down the CM if all 
CPUs are powered down. In this case, CM_IOPwrUp signal 
activity is not observed by the CPC. 
A powered down CM domain will clear all preset CM/IOCU 
control registers. Powering up due to CPU power-up will send 
the CM/IOCU through a reset sequence, together with the CPU.

R/O for 
CPUs,

read zero

R/W for 
CM

0

CMD 3:0 Reflects most recent placed sequencer command. See definition 
in CPC_CMD_REG Table 7.3.4.1. The sequencer will over-
write the field after a Reset command, or SI_PwrUp signal 
caused power up of the domain. The command reads then as 
PwrUp.

R 0

Table 7.17 Local Status and Configuration Register (CPC_CL[CO]_STAT_CONF_REG, Offset 0x008)

Register Fields

Description
Read/
Write Reset StateName Bits

Code Meaning

2’b00 This CPU remains powered down after a sys-
tem cold start. A later PwrUp or Reset com-
mand, or SI_PwrUp signal assertion will 
make this domain operational.

2’b01 Go into Clock-Off mode. Disables domain 
clock after power-up sequence. Core will 
wake up through a CPC PwrUp or Reset 
command or a SI_PwrUp signal assertion. In 
this Clock-Off mode, the core will not be ini-
tialized and its boundary isolation will be 
maintained.

2’b10 Power up this domain after system cold start. 
The CPU will be reset and become opera-
tional based on its boot vector contents.

2’b11 Reserved
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7.3.4.2 Core-Other Addressing Register

This register must be written with the correct CoreNum value before accessing the Core-Other address segment. This 
register is not available within the CM local domain. Read access to the CM CPC_OTHER_REG will yield zero. Writes 
are ignored.

7.4 Cluster Power Controller Commands

The CPC provides a set of commands to establish a desired power domain state. CPC commands are:

• ClockOff - a power domain is brought into ClockOff state as programmed into the CPC_CMD_REG Table 
7.3.4.1. If the domain was powered down before, the power-on sequence is applied according to 
CPC_STAT_CONF_REG settings. If the domain was active before and was in non-coherent operation, the 
domain is brought into ClockOff state D2. A domain in ClockOff state can be sent into operation using the 
PwrUp command. A ClockOff command given to a domain in coherent operation will remain inactive until 
the CPU has left the coherent mode of operation. Sending a ClkOff command to the CPC before a previous 
command completed will cause the CPC domain target to be redirected towards ClockOff. However, the 
previous steady state can be observed temporarily before the newly programmed state is reached.

• PwrDwn - a power domain is powered down into state D0. CPC_STAT_CONF_REG and CPC_CMD_REG set-
tings determine the sequence observed by the CPC. Note, both register settings are observed dynamically. 
The sequencer will preempt an in flight command at the next steady state to execute the newly given com-
mand.

• PwrUp - the execution of this command depends on the previous domain power state. If the domain is pow-
ered down to state D0, a PwrUp command will enable power for the domain and bring the domain into oper-
ational state U5. However, if SI_CoherenceEnable is active, the domain will advance into state U6 - coherent 
operation. Please note, that a set of software initialization needs to complete to safely bring a non-coherent 
core into coherent state. If the previous power domain state was ‘ClkOff’, a PwrUp command will raise the 
domain state to either non-coherent or coherent operation, dependent on the GCR coherence status settings. 
This will be domain state U5 and U6 respectively.

When bringing a domain up after a PwrDwn command is executed, the Reset command is generally prefera-
ble to PwrUp. If the domain did not reach state D0 or was prevented from entering D0 because an EJTAG 
probe was connected, the CPC may identify that a reset is not required for PwrUp and will simply restart the 
clocks. This may be fine, but also may cause some problems. One common example where a reset is 
required is if the core enters an infinite loop after requesting PwrDwn.

A PwrUp command given to an active domain in non-coherent or coherent operation U5/U6 has no effect.

Table 7.18 Core-Other Addressing Register (CPC_CL[CO]_OTHER_REG Offset 0x010)

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:19 Reads as 0. Writes ignored. Must be written with a value 
of 0x000.

R 0

CORENUM 18:16 CoreNum of the register set to be accessed in the Core-
Other address space. 

R/W 0x0

RESERVED 15:0 Reads as 0. Writes ignored. Must be written with a value 
of 0x0000.

R 0
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If a PwrUp command is given to the CPC while a previous command is still in flight, the command is placed 
in the CPC command register and is executed at the earliest possible state, i.e., when the sequencer has 
reached a non-transitional state.

The hardware SI_PwrUp signal activated for this domain will always bring the core into power-up mode with 
enabled clocks. The PWUP_POLICY settings of CPC_STAT_CONF_REG have no effect on hardware wake-
ups. Also, the hardware wake-up has priority over software commands.The PWRUP_EVENT bit of 
CPC_STAT_CONF_REG is set after a hardware power-up has been executed.

• Reset - this command allows a domain in non-coherent operation (state U5) to be reset. It also can be sent to 
a domain in power-down or clock-off mode. The domain will then become active, and a reset sequence is 
executed which leads to an operational steady state of the domain (U5 or U6, dependent on GCR program-
ming).

Figure 7.5 details the CPC domain command execution. A command given to a CPC power domain will be translated 
into a domain target state, and the domain sequencer will progress towards this target. A new command is accepted as 
soon as a suitable state transition is found within the traversed states. Domain sequencer states translate directly to 
hardware control signals for reset and power gating, as depicted in Figure 7.5.

Figure 7.5 CPC Command Execution

ST
AT

C
M

D

target
calculation ta

rg
et

!=

sequencer

current statebusy
PWUP_POLICY

target state

domain 

...

H
W

-c
on

tro
ls

C
PC

 P
ro

gr
am

m
in

g 
In

te
rf

ac
e

domain states
states



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 431

7.5 P6600 Core Power Management Options

In addition to the Cluster Power Controller described in the previous sections, MIPS Technologies provides a mecha-
nism for reducing power in the P6600 core depending on the work load. The conditions under which the P6600 core 
is placed in power-down mode are determined by the SOC. 

The information in the following sections should be used only when all cores in the system are shut down. The pro-
cessor and cache states need not be saved for each core shut down as long as their is one core operation. However, 
once the last core is to be shutdown by the SOC, the following procedure can be used to save the processor state.

There are two basic options for power management in the P6600 core. 

1. Clock gating: Used to stop the clocks and put the core into sleep mode. Refer to Section 7.6, "P6600 Core Clock 
Gating" for more information. In this mode the VDD levels are maintained and power is preserved, so no data is 
lost.

2. Power gating: Used to shut down power to selected parts of the P6600 core. In this mode certain elements of the 
core, such as registers, caches, TLB, etc. are saved, allowing for a more efficient power-up process. Refer to 
Section 7.7, "P6600 Core Power Gating" for more information.

7.6 P6600 Core Clock Gating

Clock gating provides a way for the P6600 core to shut down the core clock under certain conditions. The mechanism 
used to suspend and then resume the core clock depends on the power management options selected during the core 
configuration process. These options include;

• Enabling of ‘top level clock gating’

• Enabling of ‘fine grain clock gating’

7.6.1 Designs Implementing Top Level Clock Gating

Top level clock gating is provided as an option during the core configuration process. For designs implementing top 
level clock gating, the P6600 core can be placed into sleep mode using the WAIT instuction.

When the WAIT instruction is executed during normal operation, the P6600 core completes all outstanding opera-
tions, then freezes the pipeline and asserts the SI_SLEEP signal, indicating to external logic that the P6600 core has 
entered sleep mode.

If top level clock gating is enabled, the processor turns off the internal clock to most of the P6600 core automatically 
once SI_SLEEP is asserted. The clock is maintained only for a small amount of logic that waits for an interrupt 
intended to bring the processor out of sleep mode. In addition to the interrupt logic, the following signals also remain 
active in sleep mode;

• SI_INT[5:0]

• SI_NMI

• SI_RESET

• EJ_DEBUGM
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Once the clocks are suspended, the entire contents of the processor, including registers, caches, and TLB, are saved. 
Once the ‘wake’ interrupt is received, the processor restarts its internal clock and can resume normal operation within 
a few clock cycles. The ‘wake’ interrupt can be any enabled interrupt, NMI, or debug interrupt. This is the fastest and 
most efficient mechanism to transition the P6600 core in and out of sleep mode.

Note that the SI_RESET signal can also be used to exit sleep mode. However, assertion of SI_RESET causes all 
internal data to be lost and the registers to revert back to their default values.

7.6.1.1 Reduction of VDD During Sleep Mode

The information described above deals with clock gating only. In this example, during the time that the clocks are 
powered down, VDD remains at normal power levels. To obtain the maximum power savings during sleep mode, 
external logic can reduce the core VDD voltage once the P6600 core has asserted SI_SLEEP. This additional step can 
greatly reduce leakage and consequently power consumption during sleep mode. The minimum VDD voltage that 
can be used, and still allow the P6600 core to retain state, is process dependent.

The reduction of VDD can only be controlled by external means. The P6600 core does not provide a mechanism to 
reduce VDD internally during sleep mode. Note that if this option is implemented, it will take longer to restart the 
processor since the VDD must be ramped up to appropriate level before asserting the wake interrupt.

Refer to Section 7.7 “P6600 Core Power Gating” for more information.

7.6.1.2 Restart Latency Trade-Offs

Once the decision is made to enter sleep mode, some number of clocks are required to place the P6600 core into sleep 
mode, and bring the core out of sleep mode. In most designs, once sleep mode is entered, the core must remain in 
sleep mode for at least 100 clock cycles. Otherwise, the trade-off in time and power savings becomes negligible.

7.6.2 Designs Not Implementing Top Level Clock Gating

If top level clock gating was not enabled during the core configuration process, instruction-controlled power manage-
ment can still be used. 

From an instruction standpoint, the WAIT instruction and SI_SLEEP signal can still be used to place the P6600 core 
into sleep mode. However, since top level clock gating is disabled, it is incumbent upon external logic to suspend the 
input clock to the processor. If the input clock is suspended, it is suspended to the entire P6600 core. As a result, the 
processor has no way to detect a ‘wake’ interrupt. Therefore, the assertion of SI_RESET is the only way to restart the 
P6600 core. Note that if this method is used, all data will be lost and the registers will revert back to their default val-
ues.

7.6.3 Designs Implementing Fine Grain Clock Gating

Fine grain clock gating allows the P6600 core to shut down the clocks to individual blocks of logic within the chip. 
When the ‘fine grain clock gating’ option is selected during build time, separate clock domains are assigned to the 
various register blocks within the P6600 core. In the P6600 core, there is one write enable that is used to write all reg-
isters at once. If fine grain clock gating is enabled, the clock can be enabled only to the register block that is being 
accessed. The write enable for the other blocks is still driven, but no clock is supplied to those blocks not being 
accessed.

The implementation of fine grain clock gating requires the logic required to implement multiple clock trees within the 
P6600 core. Therefore, it works best in ASIC implementations where any number of clock domains can be assigned. 
It is less useful in FPGA implementations where the number of clock trees may be limited.
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7.7 P6600 Core Power Gating

In addition to clock gating, power gating can be used to gain additional power savings. The saving and restoring of 
processor state can be used when the power savings provided by clock gating alone are not enough. In clock gating, 
the state of the processor need not be saved externally because even though the clocks are suspended, the power is 
still applied to the P6600 core, allowing the processor state to be saved internally.

In power gating, some or all of the power to the P6600 core can be shut down. This causes all data within the corre-
sponding power domain(s) to be lost once the voltage falls below the retention value as defined by the process ven-
dor. As a result, careful consideration must be taken to save some or all of the processor states before the power is 
shut down. Some of the logic blocks that can be saved prior to suspending the processor are:

• Registers (GPR, CP0, CP1, and/or CP2)

• Caches (instruction and/or data)

• Translation Lookaside Buffer (TLB)

• Scratch Pad RAM (Instruction and/or Data)

There are two methods that can be used to implement a suspend/resume mechanism in a P6600 core. These concepts 
are described in the following subsections.

• Hardware Suspend/Resume

• Software Suspend/Resume

7.7.1 Hardware Suspend/Resume

The hardware suspend/resume mechanism in the P6600 core allows the state of the caches, scratch pad RAM, and 
TLB to be transferred to memory via hardware using the suspend/resume (BIST) sideband signals that are defined 
during chip configuration. This process of moving data to and from the P6600 core is much faster than a pure soft-
ware implementation. This process is covered in more detail in the P6600 Hardware User’s Manual.

7.7.2 Software Suspend/Resume

For systems that have not implemented any hardware suspend/resume mechanism as described in the previous sec-
tion, a software mechanism can be used to save state and power down the P6600 core. This section describes the tasks 
that should be performed during the suspend and resume processes.

7.7.2.1 Overview of Suspend/Resume Process

The recommended way of implementing a system suspend/resume in software is having a function that will perform 
a seamless suspend/resume operation. This means that to the rest of the software it looks like the function was entered 
and exited like any normal function, while in reality this function self-terminates in the middle of its execution by 
turning off the power the core, then resumes from where it left off shortly after power is restored.

At a high level, the assembly language skeleton should look like this:

/* Entry point to suspend/resume function, including the function prologue. */
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suspend_resume:
...
...

/* Here we start the suspend sequence */

suspend:
...
...
...

/* At the end of the suspend sequence we turn off power to the core. The suspend sequence should never reach the 
power_is_off label*/

power_is_off:

/* This is the starting point of the resume sequence. We will get here shortly after a warm reset.*/

resume:

...

...

...

/* At the end of the resume sequence we have the function epilogue, which includes a return to the calling function.*/

...

...

...

jr $31
nop

As one can observe this function is clearly divided into two parts: 

• The first part is the function entry (prologue) and the suspend sequence all the way down to the power shutdown. 
The suspend sequence includes the state saving and other supporting actions which are described in more details 
in the other sections.

• The second part is the resume sequence followed by the function exit (epilogue) and return to caller. The resume 
sequence includes state restoring and other actions which are described in more details in other sections.
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If we look at the sequence of events on a time line it will look like this:

Figure 7.6  Suspend/Resume Sequence Time Line

7.7.3 Suspend Process

During a software suspend process, the following tasks are recommended. Each of these tasks is described in the fol-
lowing subsections.

• Save General Purpose Registers (GPR)

• Save some or all CP0 registers

• Flush the L1 data cache dirty lines and L2 cache dirty lines (if applicable)

• Save the return address

• Copy memory power down sequence into cache before switching memory to low-power mode (if applicable)

• Move memory to low-power mode (if applicable)

• Shut down power to the P6600 core

The GPR and CP0 registers are moved to the memory stack prior so that they can be easily retrieved when power is 
restored to the P6600 core. In this example, the registers would be moved to the stack and placed at the following 
memory offset addresses shown in Figure 7.7.
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Figure 7.7 GPR and CP0 Register Locations in the Memory Stack

7.7.3.1 Save GPR Registers

MIPS recommends saving those GPR registers shown in the code example below. Note that the register numbers cor-
responding to the scratch registers are not saved. This includes GPR8 - GPR15, GPR24, and GPR25. For each GPR, 
a store word (sw) instruction is used to move the contents of the GPR register to memory. 

sw $1 0x00(sp)
sw $2 0x04(sp)
sw $3 0x08(sp)

GPR1
GPR2
GPR3
GPR4
GPR5
GPR6
GPR7
GPR16
GPR17
GPR18
GPR19
GPR20
GPR21
GPR22
GPR23
GPR26
GPR27
GPR28
GPR29
GPR30
GPR31

Memory Stack

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24
0x28
0x2C
0x30
0x34
0x38
0x3C
0x40
0x44
0x48
0x4C
0x50

Status
Config0
Config1
Config2
Config3
Ebase
Pagemask
Context

0x54
0x58
0x5C
0x60
0x64
0x68
0x6C
0x70

Wired0x74
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sw $4 0x0C(sp)
sw $5 0x10(sp)
sw $6 0x14(sp)
sw $7 0x18(sp)
sw $16 0x1C(sp)
sw $17 0x20(sp)
sw $18 0x24(sp)
sw $19 0x28(sp)
sw $20 0x2C(sp)
sw $21 0x30(sp)
sw $22 0x34(sp)
sw $23 0x38(sp)
sw $26 0x3C(sp)
sw $27 0x40(sp)
sw $28 0x44(sp)
sw $29 0x48(sp)
sw $30 0x4C(sp)
sw $31 0x50(sp)

7.7.3.2 Save CP0 Registers

In the MIPS architecture the CP0 registers cannot be moved directly to memory. Therefore, they must first be moved 
to a GPR register. In this example the registers are moved to the k0 scratch pad register, then from the k0 register to 
memory at the location shown in the corresponding sw instruction. Note that the offset addresses for each sw instruc-
tion correspond to those shown in Figure 7.7.

As shown in the code snippet below, only a partial set of CP0 registers are saved. This is only an example. In some 
cases additional registers may need to be saved depending on the implementation.

mfco k0, CP0_STATUS /*Move from coprocessor 0, CP0_STATUS to k0*/
sw k0, 0x54(sp) /*Store word k0 to offset 0x54 in memory*/
mfco k0, CP0_CONFIG0 /*Move from coprocessor 0, CP0_CONFIG0 to k0*/
sw k0, 0x58(sp) /*Store word k0 to offset 0x58 in memory*/
mfco k0, CP0_CONFIG1 /*Move from coprocessor 0, CP0_CONFIG1 to k0*/
sw k0, 0x5C(sp) /*Store word k0 to offset 0x5C in memory*/
mfco k0, CP0_CONFIG2 /*Move from coprocessor 0, CP0_CONFIG2 to k0*/
sw k0, 0x60(sp) /*Store word k0 to offset 0x60 in memory*/
mfco k0, CP0_CONFIG3 /*Move from coprocessor 0, CP0_CONFIG3 to k0*/
sw k0, 0x64(sp) /*Store word k0 to offset 0x64 in memory*/
mfco k0, CP0_EBASE /*Move from coprocessor 0, CP0_EBASE to k0*/
sw k0, 0x68(sp) /*Store word k0 to offset 0x68 in memory*/
mfco k0, CP0_PAGEMASK /*Move from coprocessor 0, CP0_PAGEMASK to k0*/
sw k0, 0x6C(sp) /*Store word k0 to offset 0x6C in memory*/
mfco k0, CP0_CONTEXT /*Move from coprocessor 0, CP0_CONTEXT to k0*/
sw k0, 0x70(sp) /*Store word k0 to offset 0x70 in memory*/
mfco k0, CP0_WIRED /*Move from coprocessor 0, CP0_WIRED to k0*/
sw k0, 0x74(sp) /*Store word k0 to offset 0x74 in memory*/

7.7.3.3 Flush Dirty Lines in L1 Data Cache

The following routine can be used to flush the dirty lines in a 32 Kbyte, 4-way set associative data cache with a 32-
byte line size in preparation for shut-down. In this routine software examines each cache line and performs an invali-
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date on all non-dirty lines, and a writeback-invalidate on all dirty lines. A similar routine must be applied for L2 dirty 
lines in systems implementing a level 2 cache.

#define INDEX_BASE 0x80000000 // We use KSEG0 address as the base address for cache index access
#define WAY_SIZE 0x2000 // size of one way in a 4-way set associative 32K cache (8K)
#define WAYOFFSET 13 // offset of bits which determine the cache way to access
#define ASSOC 4 // associativity (4 ways)
#define LINE_SIZE 32 // size of each cache line
#define IDX_WB_INV_DC 0x01 // code of index write-back invalidate D-cache operation

/* This macro performs the same cache op on 32 consecutive lines. */

#define cache32_unroll32(base,op) \

__asm__ __volatile__( \
".set push \n" \
".set noreorder \n" \
".set mips3 \n" \
"cache %1, 0x000(%0); cache %1, 0x020(%0)\n" \
"cache %1, 0x040(%0); cache %1, 0x060(%0)\n" \

"cache %1, 0x080(%0); cache %1, 0x0a0(%0)\n" \
"cache %1, 0x0c0(%0); cache %1, 0x0e0(%0)\n" \
"cache %1, 0x100(%0); cache %1, 0x120(%0)\n" \
"cache %1, 0x140(%0); cache %1, 0x160(%0)\n" \|
"cache %1, 0x180(%0); cache %1, 0x1a0(%0)\n" \
"cache %1, 0x1c0(%0); cache %1, 0x1e0(%0)\n" \
"cache %1, 0x200(%0); cache %1, 0x220(%0)\n" \
"cache %1, 0x240(%0); cache %1, 0x260(%0)\n" \
"cache %1, 0x280(%0); cache %1, 0x2a0(%0)\n" \
"cache %1, 0x2c0(%0); cache %1, 0x2e0(%0)\n" \
"cache %1, 0x300(%0); cache %1, 0x320(%0)\n" \
"cache %1, 0x340(%0); cache %1, 0x360(%0)\n" \
"cache %1, 0x380(%0); cache %1, 0x3a0(%0)\n" \
"cache %1, 0x3c0(%0); cache %1, 0x3e0(%0)\n" \

".set pop \n" \
: \
: "r" (base), \
  "i" (op));

/* This function scans a 4-way set associative 32K bytes data cache with 32-byte line size and performs an index 
write-back invalidate cache operation on each of the cache lines.*/

static  void flush_32k_4way_32byteline_dcache(void)

{ \
unsigned long start = INDEX_BASE;
unsigned long end = start + WAY_SIZE;
unsigned long ws_inc = 1UL << WAYOFFSET;
unsigned long ws_end = ASSOC << WAYOFFSET;
unsigned long ws, addr;
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/* For every way (ws = the bits in the address which dertmine the cache way to access). */
for (ws = 0; ws < ws_end; ws += ws_inc)

/* In each way go from start to end address. */
for (addr = start; addr < end; addr += LINE_SIZE * 32)

/* Each time we perform the cache op on 32 lines. The address is a
   combination of the cache line offset in side the way (addr) and the way bits (ws).*/
cache32_unroll32(addr|ws, IDX_WB_INV_DC);

7.7.3.4 Save the Resume Address

This routine takes the starting address of the resume sequence and saves it somewhere on the board, external to the 
P6600 core. Later, after power up and reset, the warm boot sequence retrieves that address and jumps to it. This initi-
ates execution of the resume process.

7.7.3.5 Copy Memory Power Down Sequence Into Cache

This piece of code loads the remaining instructions of the suspend sequence into the instruction cache. This is done 
since the memory (e.g. DRAM) is about to be put in low power mode and thus become inaccessible to the core. It is 
important that all instruction fetches hit in the instruction cache because if they miss the core won't be able to fetch 
them from memory.

*/

.set noreorder

/* load the start address and end address of the remaining instructions */

la $8, mem_to_low_power
la $9, post_suspend /*after power is removed*/

/* Now fill the cache line by line starting from the start address and incrementing the address by a line size in each 
iteration until we get beyond the en address.*/

fill_icache:

cache 0x14, 0($8)
addiu $8, $8, 32
bltu $8, $9, fill_icache
nop

mem_to_low_power:

7.7.3.6 Move Memory to Low Power Mode

/* Here we have a sequence of instructions that will move the memory to low power mode. These instructions used to 
perform this function are SOC specific depending on the particular way the memory is implemented and addressed.*/

...

...

...

/* The following label comes after the end of the suspend sequence. We should never get here because we are sup-
posed to loose power earlier.*/
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post_suspend:

7.7.3.7 Shut Down Power to the P6600 Core

Once all of the above tasks have been performed, power to the P6600 core can be suspended by reducing VDD to 0V. 
This task is performed by the SOC and is implementation-dependent.

7.7.4 Resume Process

During the software resume process, the following tasks are recommended. The tasks are handled in the opposite 
order in which they were executed during the suspend operation.

• System Wake-up

• Power-Up VDD to the P6600 core and Assert Power-On Reset

• Warm/Cold Boot Detection

• Exit memory low-power mode

• Initialize caches and TLB

• Jump to resume address

• Restore CP0 registers

• Restore GPR registers

7.7.4.1 System Wake-Up

In a typical system the power management (PM) module stays active after the system enters suspend mode. This 
component will consume very little power but will keep monitoring external signals that may trigger the system to 
resume normal operation. Once a trigger is detected, the PM block will wake up various system components, one of 
these being the P6600 core. Since power to the core was shut down earlier, the core must be powered up and brought 
to its Reset state.

7.7.4.2 Power-Up VDD to the P6600 Core and Assert Power-On Reset

Once the system logic detects a resume condition, the system power management block must raise the VDD levels of 
the P6600 core to their normal operating levels and allow the voltage to stabilize. Once the voltages are stabilized, 
assert the power-on reset pin to the P6600 core.

7.7.4.3 Warm/Cold Boot Detection

When a processor core goes to its reset state it starts executing instructions from its Reset vector address. We call the 
initial sequence of instructions "boot" and it typically starts executing off of "boot ROM" memory. At this point the 
system must distinguish between two boot modes: cold boot and warm boot.

• A cold boot is typically performed when the entire system is powered up and has to initialize all of its hardware 
components. In this scenario there is typically no (or little) memory of the system's state prior to boot (although 
some systems will save configuration information in non-volatile memory). After the initial boot the operating 
system has to go through its own complete boot sequence which takes a relatively long time.
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• A warm boot is typically performed to resume a system that was previously suspended for power saving. In this 
case much of the system state prior to boot is available and can be restored (for example, it was saved into a 
memory component which did not loose power or otherwise in non-volatile memory). The warm boot sequence 
is typically short as users expect instant response (from a user point of view the system is available even when it 
was suspended for power saving). A warm boot does not require the operating system to perform its full boot 
sequence. For the most part the OS will continue from where it left off.

In the case of a warm boot, the boot software sequence starts from the same place (the Reset vector address) whether 
it is a cold boot or warm boot condition. However, shortly thereafter it detect its mode whether it is a cold or warm 
boot. If the system resumes from suspend mode, the boot software will detect this and decide to perform a warm boot. 
The indication that the system is coming back from suspend mode may be available in the PM block or in some piece 
of memory. This mechanism is implementation dependent. 

Once a decision is made to perform a warm boot and not a cold boot, the warm boot sequence will perform a basic 
initialization and then jump to the resume address in the suspend/resume function. The resume address will be avail-
able in an implementation dependent location where it was saved by the suspend sequence. Then, as discussed earlier, 
the function will restore some system state and return to its caller as if nothing ever happened. The caller may have no 
indication that the system was suspended for a while.

Examples of basic core initialization that must be carried out regardless of the boot mode are caches and TLB initial-
ization. Many users will opt not to save and restore their cache and/or TLB states. Note that the P6600 core caches 
and TLB wake-up in a random state and must be initialized before data can be written to them.

7.7.4.4 Exit Memory Low-Power Mode

This is an optional system-dependent function. If the external memory devices were placed in low-power mode dur-
ing the suspend process, the memory must exit its low-power mode before the instructions stored to the stack during 
the suspend process can be fetched by the P6600 core.

7.7.4.5 Initialize Caches and TLB

The initialize caches and TLB routines are always performed when reset is asserted to the P6600 core. This is done to 
bring the caches to an initial state. This routine would be exactly the same as the one used in the boot example that 
accompanies the delivery of each P6600 core. Refer to the boot example associated with the P6600 core package. 

7.7.4.6 Jump to Resume Address

At this point the boot process is done with general initialization process initiated by the assertion of reset and is ready 
to start the actual resume sequence. It retrieves the starting address of the resume sequence that was saved earlier (as 
part of the suspend sequence) and jumps to it, thereby initiating execution of the resume sequence.

7.7.4.7 Restore CP0 Registers

In the MIPS architecture the CP0 registers cannot be moved directly from memory. Therefore, they must first be 
moved to a GPR register. In this example the registers are moved to the k0 scratch pad register, then from the k0 reg-
ister to memory at the location shown in the corresponding lw instruction. Note that the offset addresses for each lw 
instruction correspond to those shown in Figure 7.7. 

lw k0, 0x74(sp) /*Load word k0 from offset 0x74 in memory*/
mtco k0, CP0_WIRED /*Move to coprocessor 0, CP0_WIRED from k0*/
lw k0, 0x70(sp) /*Load word k0 from offset 0x70 in memory*/
mtco k0, CP0_CONTEXT /*Move to coprocessor 0, CP0_CONTEXT from k0*/
lw k0, 0x6C(sp) /*Load word k0 from offset 0x6C in memory*/
mtco k0, CP0_PAGEMASK /*Move to coprocessor 0, CP0_PAGEMASK from k0*/
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lw k0, 0x68(sp) /*Load word k0 from offset 0x68 in memory*/
mtco k0, CP0_EBASE /*Move to coprocessor 0, CP0_EBASE from k0*/
lw k0, 0x64(sp) /*Load word k0 from offset 0x64 in memory*/
mfco k0, CP0_CONFIG3 /*Move to coprocessor 0, CP0_CONFIG3 from k0*/
lw k0, 0x60(sp) /*Load word k0 from offset 0x60 in memory*/
mtco k0, CP0_CONFIG2 /*Move to coprocessor 0, CP0_CONFIG2 from k0*/
lw k0, 0x5C(sp) /*Load word k0 from offset 0x5C in memory*/
mtco k0, CP0_CONFIG1 /*Move to coprocessor 0, CP0_CONFIG1 from k0*/
lw k0, 0x58(sp) /*Load word k0 from offset 0x58 in memory*/
mtco k0, CP0_CONFIG0 /*Move to coprocessor 0, CP0_CONFIG0 from k0*/
lw k0, 0x54(sp) /*Load word k0 from offset 0x54 in memory*/
mtco k0, CP0_STATUS /*Move to coprocessor 0, CP0_STATUS from k0*/

7.7.4.8 Restore GPR Registers

MIPS recommends loading those GPR registers shown in the code example below. Note that the register numbers 
corresponding to the scratch pad registers are not loaded. This includes GPR8 - GPR15, GPR24, and GPR25. For 
each GPR, a load word (lw) instruction is used to move the contents of the corresponding memory location into the 
GPR.

lw $31 0x50(sp)|
lw $30 0x4C(sp)
lw $29 0x48(sp)
lw $28 0x44(sp)
lw $27 0x40(sp)
lw $26 0x3C(sp)
lw $23 0x38(sp)
lw $22 0x34(sp)
lw $21 0x30(sp)
lw $20 0x2C(sp)
lw $19 0x28(sp)
lw $18 0x24(sp)
lw $17 0x20(sp)
lw $16 0x1C(sp)
lw $7 0x18(sp)
lw $6 0x14(sp)
lw $5 0x10(sp)
lw $4 0x0C(sp)
lw $3 0x08(sp)
lw $2 0x04(sp)
lw $1 0x00(sp)
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Global Interrupt Controller

This chapter describes the optional Global Interrupt Controller (GIC) included in the P6600 Multiprocessing System. 
The GIC can control up to 256 external interrupt sources in multiples of 8. This chapter describes how software con-
trols the configuration and use of the GIC.

The GIC handles the distribution of interrupts between and among the CPU’s in the cluster. The GIC has the ability to 
route interrupts to each core independently. The GIC processes incoming external interrupts and provides maximum 
flexibility in the type of level, polarity, and edge-triggering mechanism. For example, each individual interrupt can be 
level-triggered (high or low), single edge triggered (rising or falling edge), or dual edge triggered. The GIC routes the 
interrupt to the appropriate core and associated interrupt pin in the manner that the core expects based on the pro-
gramming of the GIC registers.

The P6600 Multiprocessing System incorporates Virtualization into the interrupt control system, allowing separate 
interrupt controllers for guest and root processes. Refer to the chapter in Virtualization in this manual for more infor-
mation. In the P6600 MPS, the GIC is responsible for routing the interrupt sources to either the root or guest interrupt 
interface. These changes are only applicable for the External Interrupt Controller (EIC) mode of the GIC. In non-EIC 
mode, the GIC operates as before by routing all interrupts on to a single interrupt interface for processing inside the 
GIC. Note that shadow register sets are not present in the P6600 core.

The chapter contains the following sections:

• Section 8.1 “General GIC Features”

• Section 8.2 “GIC Address Map Overview”

• Section 8.3 “GIC Programming”

• Section 8.4 “Virtualization Support”

• Section 8.5 “Shared Register Set”

• Section 8.6 “GIC Core-Local and Core-Other Register Set”

• Section 8.7 “GIC User-Mode Visible Section”

8.1 General GIC Features

To provide support for a multiprocessor environment, the GIC design includes the following features: 

• Accepts interrupts from up to 256 external sources. 

• Supports active-high, active-low, rising-edge triggered, falling-edge triggered, and dual-edge triggered interrupt 
signaling.

• Distributes/partitions the interrupt sources among the available cores. 

• Steers any interrupt source to any core interrupt input (Interrupt pin, NMI).



 

444 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

• Allows any core to interrupt any other core.

• Backward compatible with pre-defined MIPS Technologies interrupt modes (legacy, vectored, and EIC). 

• Scalable for both the number of interrupt sources as well as the number of cores in the system.

• Able to integrate interrupt messages from peripherals such as PCI-Express.

• Hardware assist features are configurable be software at run-time.

• Provides interval and watchdog timers.

8.2 GIC Address Map Overview

The P6600 Multiprocessing System can contain up to six cores. To avoid the large address space needed for core-spe-
cific register sets, an aliasing address scheme is used.

The GIC address space is accessed with uncached load/store commands. The physical address and the core number of 
the requester is supplied for each load/store command. The core number is used as an index to reference the appropri-
ate subset of the instantiated control registers. By using the core number information, the hardware writes/reads the 
correct subset of the control registers pertaining to that core. Software does not need to explicitly calculate the regis-
ter index for the core in question; it is done entirely by hardware.

In the P6600 Multiprocessing System, any core can access the registers of any other core by using the Core-Other 
address spaces. Software must write the Core-Other Addressing Register before accessing these address spaces. The 
value of this register is used by hardware to index the appropriate subset of the control registers. 

Two address “windows” are made available to the programmer:

• A window for the “Local” core (as specified by the core number information). 

• A second window for an “Other” core that allows a core to access the register set belonging to another core. The 
“Other” core is specified by first writing the Core-Other Addressing Register in the “local” core address space.

An additional section called the User-Mode Visible section is used to give quick user-mode read access to specific 
GIC registers. The use of this section is meant to avoid the overhead of system calls to read GIC resources, such as 
counter registers.

The address map of the GIC is shown in Table 8.1. 

As shown in the table above, the GIC address space is divided into four types:

Table 8.1 GIC Address Space 

Segment
Base 
Offset Addressing Method

Address 
Space Size

Virtual Address 
Space Type

Shared Section Offset 0x00000 Offset relative to GCR_GIC_Base 32 KB Kernel

Core-Local Section Offset 0x08000 Offset relative to GCR_GIC_Base + using 
core number as Index

16 KB Kernel

Core-Other Section Offset 0x0C000 Offset relative to GCR_GIC_Base + using 
Core-Other Addressing Register as Index

16 KB Kernel

User-Mode Visible Section Offset 0x10000 Offset relative to GCR_GIC_Base 64 KB User
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• A Shared section in which the external interrupt sources are registered, masked, and assigned to a particular core 
and interrupt pin. This section is used by all cores in the system. 

• A Core-Local section in which interrupts local to a core are registered, masked, and assigned to a particular inter-
rupt pin. If External Interrupt Controller Mode (EIC) mode is used for a particular core, the EIC encoder is 
instantiated here. 

• A Core-Other section in which the local core can access the Core-Local section of another core by which the 
interrupt can be registered, masked, and assigned to a particular interrupt pin of the other core. One core can 
setup the GIC for all cores in the system using this section.

• A User Mode Visible section that contains the GIC Hi/Lo counters accessible in user mode for quick user mode 
access. The use of this section is meant to avoid the overhead of system calls to read GIC resources, such as 
counter registers.

In the GIC, the Shared, Core-Local, and Core-Other sections are meant to be located in privileged system virtual 
address space, in which only kernel mode software can initialize and update the interrupt controller.

A separate 64 KB address space is allocated so that it may be mapped to User Mode virtual address space. Within this 
address space are aliases for GIC registers that are read so often that it makes sense to make them available to user-
mode programs without requiring a system call. The aliases for these registers are read-only. Currently, the only reg-
isters that are aliased into this space are the shared GIC_SH_CounterLo and GIC_SH_CounterHi registers. Refer to 
Section 8.7 “GIC User-Mode Visible Section” for more information. 

8.2.1 GIC Base Address

The GIC base address is a 17-bit value that is programmed into the GCR_CPC_BASE field of the GCR CPC Base reg-
ister located at offset address 0x0088 in the Global Control Block of the CM2 registers. Refer to the GCR_CPC_BASE 
Register in Chapter 8, CM2 Global Control Registers for more information on this register. 

8.2.2 Block Offsets Relative to the Base Address

The block offsets for each of the three blocks listed in Table 8.1 above are relative to a GIC base address described 
above and can be located anywhere in physical memory. To determine the physical address of each block listed in 
Table 8.2, the base address written to the GCR_GIC_BASE Register this value would be added to the GIC block offset 
ranges to derive the absolute physical address as shown in Table 8.2. Note that an example base address of 
0x1BDC_0 is used for these calculations. 

Table 8.2  Example Physical Address Calculation of the GIC Register Blocks 

Example Base 
Address
PA[39:15] GCR Block Offset Absolute Physical Address

Size 
(bytes) Description

0x00_1BDC_0 + 0x0000 - 0x7FFF = 0x00_1BDC_ 0000 - 
0x00_1BDC_7FFF

32 KB GIC Shared Control Block

0x00_1BDC_0 + 0x8000 - 0xBFFF = 0x00_1BDC_ 8000 - 
0x00_1BDC_BFFF

16 KB GIC Core-Local Control Block

0x00_1BDC_0 + 0xC000 - 0xFFFF = 0x00_1BDC_ C000 - 
0x00_1BDC_FFFF

16 KB GIC Core-Other Control Block

0x00_1BDC_0 + 0x10000 - 0x1FFFF = 0x00_1BDD_ 0000 - 
0x00_1BDD_FFFF

64 KB User-Mode Visible Block
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8.2.3 Register Offsets Relative to the Block Offsets

In addition to the block offsets, the register offsets provided in each register description of this chapter are relative to 
the block offsets shown in Table 8.1 above. To determine the physical address of each register, the base address pro-
grammed into the GCR_GIC_BASE register is added to the corresponding GIC block offset described above, plus the 
actual register offset to derive the absolute physical address as shown in Table 8.3.This table shows the physical 
address for the first few registers of the GIC Shared block. In this table an example base address of 0x00_1BDC_0 is 
used. 

This concept is described in Figure 8.1 below. In this figure an example base address of 0x00_1BDE_0 is used.

Table 8.3  Absolute Address of Individual GIC Shared Block Registers

MIPS Default 
Base

PA[39:15]
Global Register 

Block Offset
Global Register 

Offset
Absolute Physical 
Address (40-bit) Global Control Register

0x00_1BDC_0 + 0x0000 + 0x0000 = 0x00_1BDC_0000 GIC Config

0x00_1BDC_0 + 0x0000 + 0x0010 = 0x00_1BDC_0010 GIC CounterLo

0x00_1BDC_0 + 0x0000 + 0x0014 = 0x00_1BDC_0014 GIC CounterHi

0x00_1BDC_0 + 0x0000 + 0x0020 = 0x00_1BDC_0020 GIC Revision

0x00_1BDC_0 + 0x0000 + 0x0100 = 0x00_1BDC_0100 CPC Interrupt Polarity 0

... + ... + ... = ... ...
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Figure 8.1 GIC Register Addressing Scheme Using an Example Base Address of 0x00_1BDC_0 

0x00_1BDC_0000

0x00_1BDC_7FFF

39 15
GCR_GIC_BASE

0x00_1BDC_0

GCR_GIC_BASE Register
GIC Shared Block

+0x4000

+0x8000 (32 KBytes)

0x00_1BDC_8000

0x00_1BDC_BFFF

GIC Core-Local Block
(16 KBytes)

+0x4000

0x00_1BDC_C000

0x00_1BDC_FFFF

GIC Core-Other Block
(16 KBytes)

+0x10000

0x00_1BDD_0000

0x00_1BDD_FFFF

GIC User Mode Visible Block
(64 KBytes)
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8.3 GIC Programming

This section covers the programming for the following tasks.

• Setting the GIC Base Address and Enabling the GIC

• Configuration of interrupt sources:

• External interrupt source configuration: 

• Level Sensitivity, active high or active low

• Edge Sensitivity, dual or single edge (falling or Rising)

• Routing of Interrupt external interrupts to specific processors.

• Enabling or Disabling interrupts

• Inter-Processor Interrupts

• Local device interrupt configuration 

8.3.1 Setting the GIC Base Address and Enabling the GIC

As described in Section 8.2.1 “GIC Base Address”, the base address for the memory mapped registers of the GIC is 
set using the GIC_BASE_ADDR field of the GCR_GIC_BASE Register. This field is normally programmed by the 
boot code executing outside of the boot process.

To enable the GIC the GIC_EN bit must be set in this same register.

8.3.2 Enabling Virtualization Mode

The P6600 GIC provides Virtualization support as indicated by a logic 1 in the GIC_CONFIG.VZP bit. The GIC can be 
programmed by software to operate in either virtualized (GIC_CONFIG.VZE = 1) or non-virtualized (GIC_CONFIG.VZE = 
0) modes.

In the GIC non-virtualized mode, the following rules apply:

• Any registers, or any fields in the Shared and Core-Local sections that have been added for virtualization should 
be considered reserved and read-only.

• Any Core-Local state is maintained in the fully populated root context.

• The GIC interface to guest context in core (Guest Interrupt Bus) is always inactive (always 0) in either EIC or 
non-EIC modes.

• If the core is enabled for virtualization, all guest accesses must be ignored (loads return 0s, stores are dropped).

Refer to Section 8.4, "Virtualization Support" for more information on virtualization.

8.3.3 Configuring Interrupt Sources

The triggering of interrupts is configured through several registers in the GIC that are shared by all processors. All 
processors can access these registers but in practice these registers are usually programmed at boot time by processor 
0. There are three register groups that control the interrupt triggering configuration. 
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• Trigger type register group 

• Edge type register group 

• Polarity register group

Each interrupt source is represented by one bit in each register group. Each register in a group is 32 bits so each reg-
ister controls 32 interrupt sources. The first register in each group would control interrupts 0 - 31, the next 32 - 63 and 
so on. Since there can be 256 interrupt sources there could be 8 registers in each group. There are enough of these 
registers in each group to control the number of interrupt sources implemented. The number of interrupt sources is a 
fixed value configured at core build time. This number can be determined by reading the NUMINTERRUPTS field 
of the "GIC Configuration Register", GIC_SH_CONFIG. Refer to Section 8.5.3.1 “Global Config Register 
(GIC_SH_CONFIG — Offset 0x0000)” for more information.

Each of the interrupt sources can be of either positive (asserted high) or negative (asserted low) polarity. Similarly, 
any of these sources can be either level-sensitive, single-edge-sensitive, or dual-edge-sensitive. Through the polarity 
control registers (GIC_SH_POLx_y), the trigger type control registers (GIC_SH_TRIGx_y) and dual edge control regis-
ters (GIC_SH_DUALx_y), all of the sources are normalized to positive, level-sensitive signals. This is the interrupt type 
supported by the CPU interrupt inputs. 

For single-edged signaling, the Polarity register denotes which edge is used for setting the interrupt register and which 
edge is ignored. For double-edged signaling, both the rising and falling edges are used to set the interrupt register. 
These three registers work in conjunction with one another to define the characteristics of each specific interrupt in 
the system. Each bit of each register corresponds to an interrupt. So for a given bit, the corresponding interrupt char-
acteristics would be defined as shown in Table 8.4. The ‘n’ in the table entries denotes that it can be any bit of a given 
register, but must be the same bit of each register. 

8.3.3.1 Trigger Type Register Group

The trigger type register group is made up of shared "Global Interrupt Trigger Type Registers", GIC_SH_TRIG. The 
trigger type can be set to level or edge sensitive. Setting the source bit configures the source to be edge sensitive and 
clearing it configures it to be level sensitive. For example to set the interrupt source 32 to edge sensitive bit 0 of the 

Table 8.4 Selecting Interrupt Polarity, Edge Sensitivity, and Triggering

Polarity
(GIC_SH_POL[n])

Trigger
(GIC_SH_TRIG[n])

Single/Dual Edge
(GIC_SH_DUAL[n]) Description

0 0 x Interrupt is level sensitive and active low. In this case the 
contents of the GIC_SH_DUAL have no meaning 
because level triggering is enabled.

1 0 x Interrupt is level sensitive and active high. In this case 
the contents of the GIC_SH_DUAL have no meaning 
because level triggering is enabled.

0 1 0 Interrupt is single edge triggered on the falling edge of 
the signal.

1 1 0 Interrupt is single edge triggered on the rising edge of 
the signal.

x 1 1 Interrupt is dual edge triggered. In this case the contents 
of the GIC_SH_POL have no meaning because inter-
rupts occur on both the rising and falling edges of the 
signal.
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second GIC_SH_TRIG Register should be set. Refer to Section 8.5.3.8 “Global Interrupt Trigger Type Registers 
(GIC_SH_TRIGx_y — See Table 8.26 for Mapping)”, for more information on how to assign this parameter.

8.3.3.2 Edge Type Register Group

The edge type register group is made up of shared "Global Dual Edge Registers", GIC_SH_DUAL. This register 
group is used if the Trigger type described in the last section is set to edge sensitive and has no effect if the trigger 
type is level sensitive. The edge type can be either single or dual edge.   Setting the source bit configures the source to 
be dual edge and clearing it configures it to be single edge. For example, to set interrupt source 32 to dual edge sensi-
tive bit 0 of the second Global Dual Edge Registers should be set.

Refer to Section 8.5.3.9 “Global Interrupt Dual Edge Registers (GIC_SH_DUALx_y — See Table 8.28 for 
Mapping)” for more information on how to assign this parameters.

8.3.3.3 Polarity Type Register Group

The polarity register group is made up of shared "Global Interrupt Polarity Registers", GIC_SH_POL. This register 
group is used to determine the polarity sensitivity of the source. 

If the interrupt source type is level sensitive then setting the source bit configures the source to be active High, and 
clearing it configures it to be active low.

If the interrupt is single edge sensitive then setting the source bit configures the source to rising edge toggle and set-
ting clearing it configure it to be falling edge toggle.

This register group has no effect if the edge type was set to dual edge sensitive.

Refer to Section 8.5.3.7 “Global Interrupt Polarity Registers (GIC_SH_POLx_y — See Table 8.24 for Mapping)”for 
more information on how to assign this parameter.

8.3.4 Interrupt Routing

The routing of interrupts to a specific input on a specific processor is controlled by the setting of 2 registers.

• Global Interrupt Map to Processor register, GIC_SH_MAP_CORE — maps the interrupt to a processor.

• Global Interrupt Map to Pin Register, GIC_SH_MAP_PIN — maps interrupt to a specific signal on a processor.

There is one of each of these 32 bit registers for each external interrupt source. The mapping of external interrupt pins 
and the registers that control them is listed in Table 8.5. 

Table 8.5 Mapping of External Interrupts  

External 
Interrupt Offset Register Name

External 
Interrupt Offset Register Name

0 0x2000 GIC_SH_MAP0_CORE31:0 248 0x3F00 GIC_SH_MAP248_CORE31:0 

0x0500 GIC_SH_MAP0_PIN 0x08E0 GIC_SH_MAP248_PIN

1 0x2020 GIC_SH_MAP1_CORE31:0 249 0x3F20 GIC_SH_MAP249_CORE31:0 

0x0504 GIC_SH_MAP1_PIN 0x08E4 GIC_SH_MAP249_PIN

2 0x2040 GIC_SH_MAP2_CORE31:0 250 0x3F40 GIC_SH_MAP250_CORE31:0 

0x0508 GIC_SH_MAP2_PIN 0x08E8 GIC_SH_MAP250_PIN
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8.3.4.1 Mapping an Interrupt Source to a Processor

There is one shared "Global Interrupt Map to Core Register", GIC_SH_MAP_CORE for each interrupt source that 
maps that source to a processor. Bit 0 would map the interrupt source to processor 0; bit 1 would map the interrupt to 
processor 1 and so on. Refer to Section 8.5.3.16 “Global Interrupt Map to Core Registers 
(GIC_SH_MAPn_CORE31:0) — See Table 8.5 for Mapping)” for more information. 

8.3.4.2 Mapping and Interrupt Source to a Specific Processor Pin

There is one shared "Global Interrupt Map to Pin Register", GIC_SH_MAP_PIN for each external interrupt source 
that further maps that source to a specific signal on the processor. There are two bits that control the type of signals 
that can be assigned to the interrupt source. Refer to Section 8.5.3.15 “Global Interrupt Map to Pin Registers 
(GIC_SH_MAPx_y)” for more information.

• If set, the MAP_TO_PIN bit maps the external interrupt source to Interrupt Pending bits in the CP0 Cause regis-
ter of the local processor. The actual Interrupt Pending value is set in the MAP field of this register.

• Note that in EIC mode, the MAP Field of this register contains the encoded value of the number (0 -63). For 
example, a value of 0x20 asserts Interrupt 32 (decimal). For vectored interrupt mode, only values of 0x0 
through 0x5 should be used.

• If set, the MAP_TO_NMI bit maps the external interrupt source to the NMI bit in the CP0 Status register. This in 
essence causes the processor to soft boot using the boot exception vector as the start of the interrupt routine.

3 0x2060 GIC_SH_MAP3_CORE31:0 251 0x3F60 GIC_SH_MAP251_CORE31:0 

0x050C GIC_SH_MAP3_PIN 0x08EC GIC_SH_MAP251_PIN

4 0x2080 GIC_SH_MAP4_CORE31:0 252 0x3F80 GIC_SH_MAP252_CORE31:0 

0x0510 GIC_SH_MAP4_PIN 0x08F0 GIC_SH_MAP252_PIN

5 0x20A0 GIC_SH_MAP5_CORE31:0 253 0x3FA0 GIC_SH_MAP253_CORE31:0 

0x0514 GIC_SH_MAP5_PIN 0x08F4 GIC_SH_MAP253_PIN

6 0x20C0 GIC_SH_MAP6_CORE31:0 254 0x3FC0 GIC_SH_MAP254_CORE31:0 

0x0518 GIC_SH_MAP6_PIN 0x08F8 GIC_SH_MAP254_PIN

7 0x20E0 GIC_SH_MAP7_CORE31:0 255 0x3FE0 GIC_SH_MAP255_CORE31:0 

0x051C GIC_SH_MAP7_PIN 0x08FC GIC_SH_MAP255_PIN

8 - 247 0x2100 - 
0x3EE0

GIC_SH_MAP8_CORE31:0 
GIC_SH_MAP247_CORE31:0 

0x0520 - 
0x08DC

GIC_SH_MAP8_PIN - 
GIC_SH_MAP247_PIN

Table 8.5 Mapping of External Interrupts (continued) 

External 
Interrupt Offset Register Name

External 
Interrupt Offset Register Name
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8.3.5 Enabling, Disabling, and Polling Interrupts

The Enabling, Disabling and Polling of interrupts is configured through several registers in the GIC that are shared by 
all processors. 

There are 4 shared registers groups for Enabling, Disabling and Polling of interrupts.

• Enabling an interrupt using the "GIC Set Mask Registers", GIC_SH_SMASK

• Disabling an interrupt using the "GIC Reset Mask Registers", GIC_SH_RMASK

• Determining the Enable/Disable state of an interrupt state using "GIC Mask Register", GIC_SH_MASK

• Polling the interrupt active state using the "GIC Pending Register", GIC_PEND_MASK

Like the trigger registers, each interrupt source is represented by one bit in each register group. Each register in a 
group is 32 bits so each controls 32 interrupt sources. The first register in each group would control interrupts sources 
0 - 31, the next 32 - 63 and so on. Since there can be 256 interrupt sources there could be 8 registers in each group. 
There are enough of these registers in each group to control the number of interrupt sources implemented. The num-
ber of interrupt sources is a fixed value configured at core build time.  This number can be determined by reading the 
NUMINTERRUPTS field of the "GIC Configuration Register", GIC_SH_CONFIG. Refer to Section 8.5.3.1 “Global 
Config Register (GIC_SH_CONFIG — Offset 0x0000)” for more information. 

8.3.5.1 Enabling External Interrupts

The GIC Set Mask register group is used to enable external interrupts. It is made up of "GIC Set Mask Registers", 
GIC_SH_SMASK For synchronization purposes this is a write only register. Setting the source bit enables the inter-
rupt. Refer to Section 8.5.3.12 “Global Interrupt Set Mask Registers (GIC_SH_SMASKx_y — See Table 8.33 for 
Mapping)” for more information.

8.3.5.2 Disabling External Interrupts

The GIC Reset Mask register group is used to disable external interrupts. It is made up of "GIC reset Mask Regis-
ters", GIC_SH_RMASK. For synchronization purposes; this is a write only register. Setting the source bit disables 
the interrupt. Refer to Section 8.5.3.11 “Global Interrupt Reset Mask Registers (GIC_SH_RMASKx_y — See Table 
8.31 for Mapping)” for more information.

8.3.5.3 Determining the Enabled or Disabled Interrupt State

The GIC Mask register group is used to determine if an external interrupt is enabled. It is made up of GIC Mask Reg-
isters, GIC_SH_MASK. For synchronization purposes; this is a read only register. If a bit is set the corresponding 
interrupt source is enable. If it is clear the corresponding interrupt is disabled. Refer to Section 8.5.3.13 “Global 
Interrupt Mask Registers (GIC_SH_MASKx_y — See Table 8.35 for Mapping)” for more information.

8.3.5.4 Polling for an Active Interrupt

The GIC Pending register group is used to determine if a external interrupt is active. It is made up of GIC Pending 
Registers, GIC_PEND_MASK.  This is a read only register. If a bit is set the corresponding interrupt source is active. 
If it is clear the corresponding interrupt is inactive. Refer to Section 8.5.3.14 “Global Interrupt Pending Registers 
(GIC_SH_PENDx_y — See Table 8.37 for Mapping)” for more information.
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8.3.5.5 Programming Example

Incoming interrupts are registered in the Global Interrupt Pending registers (GIC_SH_PENDx_y). This is the register that 
software needs to probe to discern the source of the interrupt. The Global Interrupt Mask registers (GIC_SH_MASKx_y) 
allow software to temporarily disable any particular interrupt source. 

There are separate set (GIC_SH_SMASKx_y) and reset (GIC_SH_RMASKx_y) mask registers to set/clear individual inter-
rupts to avoid any read-modify-write hazards within the system (multiple cores reading/writing the mask register 
simultaneously). This mechanism is shown in Figure 8.2 for interrupts 31:0. For interrupts 64:32, a different set of 
registers is used. Similar for interrupts 95:64, and so on through interrupts 255:224.

When an interrupt occurs, the corresponding bit in the GIC_SH_PEND register is set by hardware. If the corresponding 
interrupt enable bit in the GIC_SH_MASK bit is set, the GIC delivers the interrupt to the appropriate core. The hard-
ware does this by using the GIC_SH_MAP_CORE register to send the interrupt to the appropriate core and the 
GIC_SH_MAP_PIN register to set the interrupt pins for that core.

In the following example: 

• External interrupt 8 is asserted

• All bits of the GIC_SH_SMASK register are set, enabling all 32 interrupts.

• The receiving core is #1, and the receiving interrupt is #15.

This example is shown in Figure 8.2 below.
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Figure 8.2 Masking and Mapping of Interrupts in the GIC  
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GIC_SH_WEDGE register used to do this.
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• The RW bit determines if the interrupt is being set (delivered) or cleared. Setting this bit delivers an interrupt and 
clearing the bit clears the interrupt.

• The Interrupt field should be set to the interrupt number to be set or cleared.

8.3.6.1 WEDGE Register Programming Example

Setting a bit in the Write Edge register is treated equivalently to having the edge detection logic see an active edge. 
Because the programming of the Write Edge register has a direct effect on the state of the internal Edge Detect regis-
ter, the Write Edge register can be used to bypass the edge detection logic. Thus, it does not matter whether the corre-
sponding interrupt is configured to be rising, falling, or dual edge sensitive. 

When core 0 wants to interrupt core 1, the number of the interrupt to be used is programmed into the 
GIC_SH_WEDGE31_0 register. The selected interrupt must be mapped to the target core (core1 in this example) 
using the GIC_SH_MAPi_CORE register). 

For example, assume core 0 wants to toggle interrupt 40. In this case, software writes a value of 0x28 into the 
GIC_SH_WEDGE31_0 register. Hardware then writes the value in the WEDGE register into the Edge Detect hard-
ware register, effectively bypassing the edge detection logic. Hardware determines that interrupt being toggled 
belongs to core 1, not core 0. The GIC routing logic then routes interrupt 40 onto the appropriate core 1 interrupt pins.

Figure 8.3 shows how the Write Edge register can be used to bypass the interrupt detection logic and assert interrupt 
directly. Setting a bit in the Write Edge register in turn sets the corresponding bit in the internal Edge Detect register, 
forcing an interrupt to be generated and allowing for inter-processor interrupts within the GIC.

Figure 8.3 Sending Inter-Processor Interrupts in the GIC 
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8.3.6.2 Inter-Processor Interrupt Code Example

Here is an example on how to set up interrupt sources 32 through 39 for inter-processor interrupts. First here is a table 
of what the #defines are set to.

// First load  GIC base address into the GCR and enable the GIC

li      a1, GCR_CONFIG_ADDR + GCR_GIC_BASE // load the address of the GIC Base Address register
li      a0, (GIC_P_BASE_ADDR | 1) // Physical address + enable
sw    a0, 0(a1) // Store the Physical address of the GIC and the enable

// bit to the GCR

// Configure the source pins for inter-processor interrupts

li       a1, GIC_BASE_ADDR // load GIC base address
li        a0, 0xff // load bits for  interrupts 32..39 lower 8 bits of 2nd  group)
sw     a0, GIC_SH_RMASK63_32(a1) // (disable  interrupts 32..39)
sw     a0, GIC_SH_TRIG63_32(a1) // (set source to be edge sensitive for interrupts 32..39)
sw     a0, GIC_SH_POL63_32(a1)        // (set Polarity to rising edge for interrupts32..39)
sw     a0, GIC_SH_SMASK63_32(a1)// (enable   interrupts 32..39) 

// Map interrupts to a processor

// The register offset into the GIC for the MAP TO CORE register is obtained by multiplying the 
// interrupt number by the spacing size (GIC_SH_MAP_SPACER) and adding the offset for the Global
//  Interrupt Map to Core Registers (GIC_SH_MAP0_CORE31_0).

li a0, 1            // set bit 0 processor 0

// Map Source 32 processor 0

sw a0,GIC_SH_MAP0_CORE31_0+(GIC_SH_MAP_SPACER * 32)(a1) 
sll a0, a0, 1 // set bit 1 for processor 1

// Source 33 to processor 1

Table 8.6 Setting Interrupt Sources 32 Through 39

#define Value Description

GIC_BASE_ADDR 0xBBDC0000 Virtual Base memory address of the GIC memory mapped registers

GIC_P_BASE_ADDR 0x1BDC0000 Physical Base address of the GIC memory mapped registers

GIC_SH_RMASK63_32 0x0304 Offset into the GIC registers for the GIC Reset Mask Register

GIC_SH_POL63_32 0x0104 Offset into the GIC registers for the GIC Reset Polarity  Register

GIC_SH_TRIG63_32 0x0184 Offset into the GIC registers for the GIC Trigger Register

GIC_SH_SMASK63_32 0x0384 Offset into the GIC registers for the GIC Set Mask Register

GCR_CONFIG_ADDR 0xBFBF8000 Base address of the Global Configuration Register

GCR_GIC_BASE 0x0080 Offset int the GCR of the GIC base Address

GIC_SH_MAP0_CORE31_0 0x2000 Offset into the GIC for first map register

GIC_SH_MAP_SPACER 0x20 Spacing between map registers
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sw a0,GIC_SH_MAP0_CORE31_0+(GIC_SH_MAP_SPACER * 33)(a1) 
sll a0, a0, 1 // set bit 2 for processor 2

// Source 34 to processor 2

sw a0,GIC_SH_MAP0_CORE31_0+(GIC_SH_MAP_SPACER * 34)(a1) 
sll a0, a0, 1 // set bit 3 for processor 3 or for CORE3

 // Source 35 to processor 3

sw a0,GIC_SH_MAP0_CORE31_0+(GIC_SH_MAP_SPACER * 35)(a1) 
sll a0, a0, 1 // set bit 4 for processor 4

// Source 36 to processor 4

sw a0,GIC_SH_MAP0_CORE31_0+(GIC_SH_MAP_SPACER * 36)(a1) 
sll a0, a0, 1 // set bit 5 for processor 5

// Source 37 to processor 5

sw a0,GIC_SH_MAP0_CORE31_0+(GIC_SH_MAP_SPACER * 37)(a1) 
sll a0, a0, 1 // set bit 6 for processor 6 

// Source 38 to processor 6

sw a0,GIC_SH_MAP0_CORE31_0+(GIC_SH_MAP_SPACER * 38)(a1) 
sll a0, a0, 1 // set bit 7 for processor 7

// Source 39 to processor 7

sw a0,GIC_SH_MAP0_CORE31_0+(GIC_SH_MAP_SPACER * 39)(a1) 

At this point the Map-to-Pin Registers could be used to map each interrupt source to Interrupt Pending bits in the CP0 
Cause register of a processor. The default values for the "Map to Pin" registers are the MAP_TO_PIN bit is set and 
the MAP field is cleared. This example does not change the default values therefore the interrupts are mapped to IP2, 
Hardware Interrupt 0.

8.3.6.3 Example of Sending an Inter-Processor Interrupt

The following is a C coding example of sending an inter-processor interrupt. First the #defines: 

void set_ipi(int cpu_num) {

// Add the enable bit, the first IPI number and the cpu number 
// and write it to the GIC_SH_WEDGE register

    GIC_SH_WEDGE = 0x80000000 + FIRST_IPI + cpu_num ; 

8.3.6.4 Example of Clearing an Inter-Processor Interrupt

Once received, the interrupt routine should do whatever action is intended for the interrupt and clear the interrupt by 
writing the interrupt number to the GIC_SH_WEDGE register before executing the ERET instruction. NOTE: only 
the interrupt number is set before the write so the R/W bit is cleared, indicating that the interrupt is to be cleared.

#define Value Description

GIC_SH_WEDGE *((volatile unsigned int*) (0xbbdc0280)) Address of the GIC_WEDGE_REGISTER.

FIRST_IPI 32 Source number for the first IPI.
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li      k0, (GIC_SH_WEDGE | GIC_BASE_ADDR)
mfc0    k1, C0_EBASE                // Get cp0 EBase
ext     k1, k1, 0, 10       // Extract CPUNum
addiu   k1, 0x20        // Offset to base of IPI interrupts.
sw      k1, 0(k0)       // Clear this IPI.

8.3.7 Local Device Interrupt Configuration

The GIC also controls how devices within the processor and the GIC are configured and mapped locally to the pro-
cessor.

There are 2 devices that are added as part of the GIC described in this section:

• GIC Interval Timer - a 64 bit timer that compares a local compare registers, GIC_CORE_CompareLo/Hi  of a 
processor with a global counter, GIC_SH_CounterLo/Hi in the GIC and activates an interrupt when they match.

• GIC Watchdog Timer - a 32 bit decrementing counter, GIC_CORE_WD_COUNT that can be used as liveliness 
signal for a processor.

8.3.7.1 GIC Interval Timer

The interval timer is similar to the CP0 Count/Compare timer within each processor. The difference is the GIC Coun-
terLo/Hi register is global to the MPS so all processors have the same time reference.

Both the interval count and interval compare values are 8 bytes wide and are made up of 2 (Lo/HI) registers . For each 
Lo register overflow the Hi register is incremented. If the Hi register overflows, both registers rollover to 0.

Counter Registers

The counter registers, GIC_SH_CounterLo/Hi are in the shared section of the GIC memory map. The counter must be 
stopped before it is set. This is done by setting the COUNTSTOP bit of the GIC_SH_CONFIG register (link to regis-
ter reference of GIC_SH_CONFIG). In practical use the counter is usually set by an OS at boot time by one proces-
sor. These counter registers are also available (read only) in user mode located at offset 0 of the User Mode Visible 
Section of the GIC. 

The COUNTBITS field of the GIC_SH_CONFIG register in Section 8.5.3.1, "Global Config Register 
(GIC_SH_CONFIG — Offset 0x0000)" is used to set up the width of the GIC_SH_CounterHi register. In the GIC 
design, this field is fixed at a value of 0x8, indicating a total counter size of 64-bits.

The shared counter registers are defined as follows:

• GIC_SH_CounterLo register in Section 8.5.3.2, "GIC CounterLo (GIC_SH_CounterLo — Offset 0x0010)". Used 
in conjunction with the GIC_SH_CounterHi register. Sets the lower 32-bits of the starting count value.

• GIC_SH_CounterHi register in Section 8.5.3.3, "GIC CounterHi (GIC_SH_CounterHi — Offset 0x0014)". Used 
in conjunction with the GIC_SH_CounterLo register. Sets the upper 32-bits of the starting count value.

Compare Registers

The compare registers, GIC_COREi_CompareLo/Hi are located in the local section of the GIC memory map making 
the count specific to each processor. These registers can be written at any time. When the count value equals the com-
pare value an Interval Timer interrupt is asserted. The interrupt is cleared (de-asserted) by writing to either 
GIC_COREi_CompareLo/Hi register. The compare registers are defined as follows:
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• GIC_COREi_CompareLo register in Section 8.6.4.4, "Compare Low Register (GCI_COREi_ComparLo — Offset 
0x00A0)". Used in conjunction with the GIC_COREi_CompareHi register to set the count value at which an inter-
nal interrupt is generated.

• GIC_COREi_CompareHi register in Section 8.6.4.5, "Core-Local CompareHi Register (GCI_COREi_ComparHi 
— Offset 0x00A4)". Used in conjunction with the GIC_COREi_CompareLo register to set the count value at 
which an internal interrupt is generated.

Determining the Counter Width

The counter used for GIC internal interrupt generation has a minimum width of 32 bits, meaning that all of the 
GIC_SH_CounterLo register is used. In the GIC design, the width of the GIC_SH_CounterHi register is also fixed at 32 
bits as indicated by a value of 0x8 in the 4-bit COUNTBITS field in the GIC_SH_CONFIG register. To derive the total 
width of the counter, the following formula isused:

32 + COUNTBITS x 4

Where:

‘32’ is the width of the GIC_SH_CounterLo register and ‘COUNTBITS’ is the value in the COUNTBITS field of the 
GIC_SH_CONFIG register.

Since the COUNTBITS field contains a fixed value of 0x8, the overall width of the counter would be:

32 + 8 x 4 = 64 bits

In the GIC design, the COUNTBITS field is fixed at a value of 0x8, indicating a total counter size of 64-bits. 

Counter Based Interrupt Example

In the example shown in Figure 8.4, the width of the counter is 64-bits, and the CompareLo/Hi value is 
0x1_FFFF_FFFF which corresponds to 8G clock cycles. When this count is reached, hardware generates an internal 
interrupt.
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Figure 8.4 Example of GIC Internal Counter-Based Interrupt Generation 

31 0

In the GIC_SH_CONFIG register,

Hardware Compare

hardware sets the value of 
COUNTBITS to 0x8 because the full

27 24
0x8

28

COUNTSTOP
This value is used to set the width of the
CounterHi register to 32 bits.

31 0

CounterLo

63 32

CounterHi

CounterLo and CounterHi
registers form a 64-bit counter.

Software writes 0x0000_0000 to both the
CounterLo and CounterHi registers to set
the initial count to zero.

31 031 0

Software programs the CompareLo register
register with a value of 0xFFFF_FFFF and the
CompareHi register with a value 0x0000_0001
for a value of 8G counts. 

Hardware compares the value in CompareLo/CompareHi
with the value in CounterLo/CounterHi. When these two
values are equal, hardware generates an internal interrupt.

After programming the CounterHi 
and CounterLo registers, software 
writes a 0 to the COUNTSTOP bit to 
restart the counter.

32-bits of CounterHi are implemented.

Software writes 0x1 to the COUNTSTOP
bit of the GIC_SH_CONFIG register to
stop the counter before programming the
CounterHi and CounterLo registers.

GIC_COREi_CompareLo GIC_COREi_CompareHi 

Hardware sets bit 1 of the
GIC_COREi_PEND register
for further processing.



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 461

8.3.7.2 GIC Watchdog Timer

Each core supports a Watchdog timer that is controlled by the following three registers.

• The "GIC Watchdog Timer Configuration Register", GIC_COREi_WD_CONFIG is local to each processor and 
reports state information and configures the characteristics of the timer.

• The "Watchdog Timer Initial Count Register", GIC_COREi_WD_INITIAL is local to each processor and is used 
to set the timer interval. 

• The "Watchdog Timer Count Register", GIC_COREi_WD_COUNT is a read only register local to each proces-
sor that contains the current value of the countdown.

GIC Watchdog Timer Configuration Register

The GIC Watchdog Timer Configuration register contains bits that control the function of the timer.

• Clearing the WAIT bit of GIC_COREi_WD_CONFIG register (default value) causes the counter stop counting 
when the processor is executing a wait instruction or is in a low power stats controlled by the Cluster Power Con-
troller. Setting this bit to 1 causes it to continue counting down in these states. Usually this bit is left unset.

• Clearing the Debug bit (default value) causes the counter to stop the count when the processor enters debug 
mode. When set, the count continues counting down. Usually this bit is left unset.

• The TYPE field in bits 3:1 of this register determines what happens when the timer reaches 0.

Clearing the WDEN bit disables the timer and when it is set it enables the timer. Writing WDEN with a 1 triggers a 
reloads the GIC_CORE_WD_COUNT register with the value in the GIC_COREi_WD_INITIAL register. Refer to 
Section 8.6.4.1, "Watchdog Timer Config Register (GCI_COREi_WD_CONFIG0 — Offset 0x0090)" for more 
information.

Table 8.7 GIC Watchdog Timer Modes

Encoding Mode Behavior 

0x2 One Trip An interrupt is asserted and the timer stops.

0x1 Second Countdown An interrupt is asserted and the timer reloads. If the timer expires for the second 
time before being reloaded again all processors in the MPS are reset. 
This mode provides a way to distinguish between a Software hang and a Hardware 
Hang. 
Usually the Watchdog Timer Interrupt is routed to NMI. This causes the processor to 
soft reboot. In this mode that is what happens when the timer expires the first time 
so if this was a software hang during the reboot the software should reload the 
Watchdog Timer thus avoiding the second expiration. If the processor itself does not 
respond to the interrupt then it is assumed to be a hardware issue so when the count 
expires the second time a reset signal is sent to all processors in the system.

0x3 Programmable 
Interval Timer

An interrupt is asserted, the initial count is reloaded and the time starts counting 
down again interrupting each time the counter reaches 0.
This mode provides a per processor interval timer. This is one mode where the inter-
rupt should not be routed to NMI. It should instead be routed to a normal interrupt 
where for example the interrupt could be used in a time slicing OS.
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Watchdog Timer Initial Count Register

The "Watchdog Timer Initial Count Register", GIC_COREi_WD_INITIAL is local to each processor and is used to 
set the timer interval. To start the counter for the first time the counter should be disabled by clearing the  WDEN bit 
in the  GIC_COREi_WD_CONFIG register and the countdown value loaded into this register and then the counter 
enabled by setting the WDEN bit. Refer to Section 8.6.4.3, "Watchdog Timer Initial Count Register 
(GIC_COREi_WD_INITIAL — Offset 0x0098)" for more information. 

Watchdog Timer Count Register

The "Watchdog Timer Count Register", GIC_CORE_WD_COUNT is a read only register local to each processor that 
contains the current value of the countdown. This register is reloaded with the value in the 
GIC_COREi_WD_INITIAL register each time the WDEN bit in the GIC_COREi_WD_CONFIG register is set. 
Refer to Section 8.6.4.2, "Watchdog Timer Count Register (GIC_COREi_WD_COUNT — Offset 0x0094)" for more 
information. 

Configuring the Watchdog Timer

Software can configure the WatchDog timer with a starting count value by programming the WatchDog Timer Initial 
Count register (GIC_COREi_WD_INITIAL) located at offset address 0x0098. Refer to Section 8.6.4.3 “Watchdog 
Timer Initial Count Register (GIC_COREi_WD_INITIAL — Offset 0x0098)” for more information.

Software can read the state of the count at any time by reading the WatchDog Timer Count register 
(GIC_COREi_WD_COUNT) located at offset address 0x0094. Refer to Section 8.6.4.2 “Watchdog Timer Count 
Register (GIC_COREi_WD_COUNT — Offset 0x0094)” for more information. 

Figure 8.5 shows the timer counter configuration process.

Figure 8.5 Local Watchdog Timer Interrupt Count Configuration 
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Watchdog Timer Masking and Mapping

Figure 8.5 above shows the process used to configure the Watchdog timer. Once a Watchdog timer interrupt is gener-
ated (output of Figure 8.5), hardware sets bit 0 of the Local Interrupt Pending register (GIC_COREi_PEND) at offset 
address 0x0004. Hardware then reads the state of bit 0 in the Local Interrupt Mask register (GIC_COREi_MASK) at offset 
address 0x0008 to determine whether the Watchdog timer interrupt has been masked. The GIC_COREi_MASK register 
is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register (GIC_COREi_SMASK) 
at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_RMASK) at offset address 0x000C. 
Software sets bit 0 of the SMASK register to enable the Watchdog timer interrupt, or it can set bit 0 of the RMASK reg-
ister to disable Watchdog timer interrupts. Note that when the WatchDog timer is programmed to generate a hardware 
reset, the reset cannot be masked by the Local Interrupt Mask register

Once hardware has determine the masking characteristics of the interrupt, it uses the Watchdog Timer Map-to-Pin regis-
ter at offset address 0x0040 to determine which SI_Int[5:0], or NMI pins the interrupt is driven onto. In non-EIC mode, 
bits 5:0 of this register are used to select one of 6 core interrupts. For example, if software programs this field with a 
value of 0x2, then the Watchdog timer interrupt is driven into SI_Int[2]. In non-EIC mode, only encodings 0 - 5 are 
valid. 

In EIC mode, the core encodes this field to support up to 64 interrupts. For example, if software programs this field 
with a value of 0x20, then the Watchdog timer interrupt corresponds to interrupt 33. This encoded value is then driven 
onto SI_Int[5:0]. 
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Figure 8.6 Watchdog Timer Interrupt Masking and Mapping in the GIC  
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If this bit is set by software, entering low power mode has no effect on the Watchdog timer counting process.

8.3.8 Local Interrupt Routing

8.3.8.1 Routability of Local Interrupts

Local interrupts (except for the Watchdog timer, GIC Interval Timer and software interrupts) can be hardwired to 
local pins when the core is configured or can be more flexible and left to software to route the local interrupts to local 
pins on the processor. The "Local Interrupt Control Register", GIC_COREi_CTL (link to register reference of 
GIC_COREi_CTL) reports the routable state of the local interrupts. If the bit for the particular interrupt is set then the 
interrupt is routable within the GIC. The following table describes the behavior if not set.

Bits 4:1 of the GIC_COREi_CTL register determines the routing of the following interrupts. In the P6600 GIC design, 
these bits are hard-wired to 1. Note that Software Interrupts from the core are routed internally by the CPU in vec-
tored interrupt mode, and are only routed through the GIC when the GIC is in EIC mode, regardless of the 
GIC_COREi_CTL register. 

8.3.8.2 Routing Local Interrupts

If a local interrupt is routable, it can be routed to a local signal of the local processor, much the same as an external 
interrupt.

There is a Local Interrupt Map to Pin Register (link to register reference of Local WatchDog Timer/Compare/CPU 
Timer/PerfCount/SWInt0-1 Map to Pin Registers) for each local interrupt source that further maps the local interrupt 
to a specific input on the processor. There are two bits, MAP_TO_PIN and MAP_TO_NMI that control the type of 
input that is assigned to the interrupt source. Only one of these bits can be set at any one time.

• If set, the MAP_TO_PIN bit maps the local interrupt source to Interrupt Pending bits in the CP0 Cause register of 
the processor. The actual Interrupt Pending bit is set in the MAP field of this register. The MAP Field of this reg-
ister contains the encoded value of the number (0 - 63). For example, a value of 0x20 asserts Interrupt 32 (deci-
mal). For vectored interrupt mode, only use values of 0x0 to 0x5.

• If set, the bit maps the local interrupt source to the NMI bit in the CP0 Status register. This in essence causes the 
processor to soft boot using the boot exception vector as the start of the interrupt routine.

Table 8.8 GIC_COREi_CTL Register Fields

Bit Field Name Behavior if cleared

FDC_ROUTABLE The CPU Fast Debug Channel Interrupt is hard wired to one of the SI_Int pins as described by the 
CPU's COP0 IntCtlI.PFDCI register field.

SWINT_ROUTABLE The CPU SW Interrupts are routed back to the CPU directly.

PERFCOUNT_ROUTABLE The CPU Performance Counter Interrupt is hard wired to one of SI_Int pins as described by the CPU's 
COP0 IntCtl.IPPCI register field.

TIMER_ROUTABLE The CPU Timer Interrupt is hard wired to one of the SI_Int pins, as described by the CPU's COP0 
IntCtl.IPTI register field
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Each of these interrupt types is described in the following subsections. Table 8.9 lists the registers and associated bits 
that would be programmed to facilitate each type of interrupt listed above. 

Table 8.9 Local Interrupt Masking and Mapping Register Usage Per Interrupt Type 

Interrupt Register Name Offset Bits Used Function

WatchDog GIC_COREi_PEND 0x0004 0 Set by hardware on a local WatchDog timer interrupt. 

GIC_COREi_MASK 0x0008 0 Set by hardware based on the state of bit 0 of the SMASK and 
RMASK registers. Used to determine whether the interrupt is 
processed or ignored.

GIC_COREi_RMASK 0x000C 0 Used by software to disable WatchDog timer interrupts.

GIC_COREi_SMASK 0x0010 0 Used by software to enable WatchDog timer interrupts.

GIC_COREi_WD_MAP 0x0040 31, 5:0 Used by software to map the WatchDog timer interrupt to one of 
the SI_Int[5:0] pins of the P6600 core.

Count and
Compare

GIC_COREi_PEND 0x0004 1 Set by hardware on a local Count/Compare interrupt. 

GIC_COREi_MASK 0x0008 1 Set by hardware based on the state of bit 1 of the SMASK and 
RMASK registers. Used to determine whether the interrupt is 
processed or ignored.

GIC_COREi_RMASK 0x000C 1 Used by software to disable Count/Compare interrupts.

GIC_COREi_SMASK 0x0010 1 Used by software to enable Count/Compare interrupts.

GIC_COREi_
COMPARE_MAP

0x044 31, 5:0 Used by software to map the Count/Compare interrupt to one of 
the SI_Int[5:0] pins of the P6600 core.

Timer GIC_COREi_PEND 0x0004 2 Set by hardware on a local timer interrupt. 

GIC_COREi_MASK 0x0008 2 Set by hardware based on the state of bit 2 of the SMASK and 
RMASK registers. Used to determine whether the interrupt is 
processed or ignored.

GIC_COREi_RMASK 0x000C 2 Used by software to disable timer interrupts.

GIC_COREi_SMASK 0x0010 2 Used by software to enable timer interrupts.

GIC_COREi_
TIMER_MAP

0x048 31, 5:0 Used by software to map the timer interrupt to one of the 
SI_Int[5:0] pins of the P6600 core.

Performance 
Counter

GIC_COREi_PEND 0x0004 3 Set by hardware on a performance counter interrupt.

GIC_COREi_MASK 0x0008 3 Set by hardware based on the state of bit 3 of the SMASK and 
RMASK registers. Used to determine whether the interrupt is 
processed or ignored.

GIC_COREi_RMASK 0x000C 3 Used by software to disable performance counter interrupts.

GIC_COREi_SMASK 0x0010 3 Used by software to enable performance counter interrupts.

GIC_COREi_
PERFCTR_MAP

0x0050 31, 5:0 Used by software to map the performance counter interrupt to 
one of the SI_Int[5:0] pins of the P6600 core.

Software 
Interrupt 0

GIC_COREi_PEND 0x0004 4 Set by hardware on a software interrupt 0 occurrence.

GIC_COREi_MASK 0x0008 4 Set by hardware based on the state of bit 4 of the SMASK and 
RMASK registers. Used to determine whether the interrupt is 
processed or ignored.

GIC_COREi_RMASK 0x000C 4 Used by software to disable software interrupt 0 interrupts.

GIC_COREi_SMASK 0x0010 4 Used by software to enable software interrupt 0 interrupts.

GIC_COREi_
SWInt0_MAP

0x0054 31, 5:0 Used by software to map software interrupt 0 to one of the 
SI_Int[5:0] pins of the P6600 core.
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Software 
Interrupt 1

GIC_COREi_PEND 0x0004 5 Set by hardware on a software interrupt 1 occurrence.

GIC_COREi_MASK 0x0008 5 Set by hardware based on the state of bit 5 of the SMASK and 
RMASK registers. Used to determine whether the interrupt is 
processed or ignored.

GIC_COREi_RMASK 0x000C 5 Used by software to disable software interrupt 1 interrupts.

GIC_COREi_SMASK 0x0010 5 Used by software to enable software interrupt 1 interrupts.

GIC_COREi_
SWInt1_MAP

0x0058 31, 5:0 Used by software to map software interrupt 1 to one of the 
SI_Int[5:0] pins of the P6600 core.

Fast Debug 
Channel

GIC_COREi_PEND 0x0004 6 Set by hardware on a Fast Debug Channel (FDC) interrupt.

GIC_COREi_MASK 0x0008 6 Set by hardware based on the state of bit 6 of the SMASK and 
RMASK registers. Used to determine whether the interrupt is 
processed or ignored.

GIC_COREi_RMASK 0x000C 6 Used by software to disable FDC interrupts.

GIC_COREi_SMASK 0x0010 6 Used by software to enable FDC interrupts.

GIC_COREi_FDC_MAP 0x004C 31, 5:0 Used by software to map the FDC interrupt to one of the 
SI_Int[5:0] pins of the P6600core.

Table 8.9 Local Interrupt Masking and Mapping Register Usage Per Interrupt Type (continued)

Interrupt Register Name Offset Bits Used Function
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The general overview of the local interrupt pending, masking, and mapping process is shown in Figure 8.7.

Figure 8.7 Local Interrupt Masking and Mapping in the GIC  

Each of the registers listed in Figure 8.7 above can be found in the following sections:

• Section 8.6.3.2 “Local Interrupt Pending Register (GIC_COREi_PEND — Offset 0x0004)”

• Section 8.6.3.3 “Local Interrupt Mask Register (GCI_COREi_MASK — Offset 0x0008)”

• Section 8.6.3.4 “Local Interrupt Reset Mask Register (GCI_COREi_RMASK — Offset 0x000C)”

• Section 8.6.3.5 “Local Interrupt Set Mask Register (GCI_COREi_SMASK — Offset 0x0010)”

• Section 8.6.3.6 “Local Map to Pin Registers (Offset 0x0040 - 0x0058 — See Table 8.48 for Mapping)”

8.3.8.3 Watchdog Timer Interrupts

For more information, refer to Section 8.3.7.2, "GIC Watchdog Timer".
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8.3.8.4 Count and Compare Interrupts

A count and compare interrupt occurs when the contents of the of GIC_COREi_CompareLo and GIC_COREi_CompareHi 
registers match the contents of GIC_SH_CounterLo and GIC_SH_CounterHi, the Count/Compare interrupt is triggered.

When a count and compare interrupt is generated, hardware sets bit 1of the Local Interrupt Pending register 
(GIC_COREi_PEND) at offset address 0x0004. Hardware then reads the state of bit 1 in the Local Interrupt Mask register 
(GIC_COREi_MASK) at offset address 0x0008 to determine whether the count and compare interrupt has been masked. 
The GIC_COREi_MASK register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register (GIC_COREi_SMASK) 
at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_RMASK) at offset address 0x000C. 
Software sets bit 1 of the SMASK register to enable the count and compare interrupt, or it can set bit 1 of the RMASK 
register to disable count and compare interrupts.

Once hardware has determined the masking characteristics of the interrupt, it uses the Count/Compare Map-to-Pin reg-
ister at offset address 0x0044 to determine which SI_Int[5:0] or NMI pins the interrupt is driven onto. In vectored inter-
rupt mode, bits 5:0 of this register are used to select one of 6 core interrupts. In this mode, only encodings 0 - 5 are 
valid. In EIC mode, the core encodes this field to support up to 63 interrupts. For example, if software programs this 
field with a value of 0x20, then the WatchDog timer interrupt corresponds to interrupt level 32. This encoded value is 
then driven onto SI_Int[5:0]. 

8.3.8.5 Timer Interrupts

When a timer interrupt is generated, hardware sets bit 2 of the Local Interrupt Pending register (GIC_COREi_PEND) at 
offset address 0x0004. Hardware then reads the state of bit 2 in the Local Interrupt Mask register (GIC_COREi_MASK) at 
offset address 0x0008 to determine whether the timer interrupt has been masked. The GIC_COREi_MASK register is a 
read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register (GIC_COREi_SMASK) 
at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_RMASK) at offset address 0x000C. 
Software sets bit 2 of the SMASK register to enable the timer interrupt, or it can set bit 2 of the RMASK register to dis-
able timer interrupts.

Once hardware has determine the masking characteristics of the interrupt, it uses the Timer Map-to-Pin register at offset 
address 0x0048 to determine which SI_Int[5:0] or NMI pins the interrupt is driven onto. In non-EIC mode, bits 5:0 of 
this register are used to select one of 6 core interrupts. In non-EIC mode, only encodings 0 - 5 are valid. In EIC mode, 
the core encodes this field to support up to 63 interrupts.

8.3.8.6 Performance Counter Interrupts

When a timer interrupt is generated, hardware sets bit 3 of the Local Interrupt Pending register (GIC_COREi_PEND) at 
offset address 0x0004. Hardware then reads the state of bit 3 in the Local Interrupt Mask register (GIC_COREi_MASK) at 
offset address 0x0008 to determine whether the performance counter interrupt has been masked. The 
GIC_COREi_MASK register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register (GIC_COREi_SMASK) 
at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_RMASK) at offset address 0x000C. 
Software sets bit 3 of the SMASK register to enable the performance counter interrupt, or it can set bit 3 of the RMASK 
register to disable timer interrupts.

Once hardware has determine the masking characteristics of the interrupt, it uses the Performance Counter Map-to-Pin 
register at offset address 0x0050 to determine which SI_Int[5:0] or NMI pins the interrupt is driven onto. In non-EIC 
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mode, bits 5:0 of this register are used to select one of 6 core interrupts. In non-EIC mode, only encodings 0 - 5 are 
valid. In EIC mode, the core encodes this field to support up to 63 interrupts.

8.3.8.7 Software Interrupts

Each core provides two software interrupts; 0 and 1. Software interrupts originate from the CPU and are only used by 
the GIC in EIC mode. In non-EIC mode they are routed internally within the CPU.

When software interrupt 0 is generated, hardware sets bit 4 of the Local Interrupt Pending register (GIC_COREi_PEND) 
at offset address 0x0004. Hardware then reads the state of bit 4 in the Local Interrupt Mask register (GIC_COREi_MASK) 
at offset address 0x0008 to determine whether the software interrupt has been masked. The GIC_COREi_MASK regis-
ter is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register (GIC_COREi_SMASK) 
at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_RMASK) at offset address 0x000C. 
Software sets bit 4 of the SMASK register to enable the software interrupt 0, or it can set bit 4 of the RMASK register to 
disable software interrupt 0.

Once hardware has determine the masking characteristics of the interrupt, it uses the Software Interrupt 0 Map-to-Pin 
register at offset address 0x0054 to determine which SI_Int[5:0] or NMI pins the interrupt is driven onto. In EIC mode, 
the core encodes this field to support up to 63 interrupts.

The sequence is the same for software interrupt 1, except that bit 5 of each register noted above is set instead of bit 4. 
In addition, software uses the Software Interrupt 1 Map-to-Pin register at offset address 0x0058 to determine which 
SI_Int[5:0] pin the interrupt is driven onto.

8.3.8.8 Fast Debug Channel Interrupts

When a Fast Debug Channel (FDC) interrupt is generated, hardware sets bit 6 of the Local Interrupt Pending register 
(GIC_COREi_PEND) at offset address 0x0004. Hardware then reads the state of bit 6 in the Local Interrupt Mask register 
(GIC_COREi_MASK) at offset address 0x0008 to determine whether the fast debug channel interrupt has been masked. 
The GIC_COREi_MASK register is a read-only register. 

Software can affect the state of this register using the write-only Local Interrupt Set Mask register (GIC_COREi_SMASK) 
at offset address 0x0010 and the Local Interrupt Reset Mask register (GIC_COREi_RMASK) at offset address 0x000C. 
Software sets bit 6 of the SMASK register to enable the fast debug channel interrupt, or it can set bit 6 of the RMASK 
register to disable fast debug channel interrupts.

Once hardware has determine the masking characteristics of the interrupt, it uses the Fast Debug Channel Map-to-Pin 
register at offset address 0x004C to determine which SI_Int[5:0] or NMI pins the interrupt is driven onto. In non-EIC 
mode, bits 5:0 of this register are used to select one of 6 core interrupts. In non-EIC mode, only encodings 0 - 5 are 
valid. In EIC mode, the P6600 core encodes this field to support up to 63 interrupts.

8.3.9 EIC Mode Setting

EIC mode is controlled through software by setting the EIC_MODE bit in the Local interrupt Control Register, 
GIC_COREi_CTL. Setting this bit enables EIC mode. This bit defaults to 0, vectored interrupt mode. Refer to 
Section 8.6.3.1 “Local Interrupt Control Register (GCI_COREi_CTL — Offset 0x0000)” for more information.

8.3.10 Enabling, Disabling, and Polling Local Interrupts

The Enabling, Disabling and Polling of local interrupts is configured through several registers in the GIC that are 
local to each processor.
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There are 4 registers for Enabling, Disabling and Polling of local interrupts.

• Enabling an interrupt using the "GIC Local Set Mask Registers", GIC_COREi_SMASK

• Disabling an interrupt using the "GIC Local Reset Mask Registers", GIC_COREi_RMASK

• Determining the Enable/Disable state of an interrupt state using "GIC Local Interrupt Mask Register", 
GIC_COREi_MASK

• Polling the interrupt active state using the "GIC Local Interrupt Pending Register", GIC_COREi_PEND

 

8.3.10.1 Enabling External Interrupts

The "GIC Local Set Mask Register", GIC_COREi_SMASK is used to enable individual local interrupts. For synchro-
nization purposes this is a write only register. Setting the bit enables the interrupt. The following table shows which 
field to set for each local interrupt. Refer to Section 8.6.3.5 “Local Interrupt Set Mask Register 
(GCI_COREi_SMASK — Offset 0x0010)” for more information. 

8.3.10.2 Disabling External Interrupts

The "GIC Local Reset Mask Register", GIC_COREi_RMASK is used to disable individual local interrupts.  For CPS 
synchronization purposes this is a write only register. Setting the bit disables the interrupt. The following table shows 
which field to set for each local interrupt. Refer to Section 8.6.3.4 “Local Interrupt Reset Mask Register 
(GCI_COREi_RMASK — Offset 0x000C)” for more information.

Table 8.10 Enabling External Interrupts

Field Name Interrupt Controlled

FDC_MASK_SET Fast Debug Channel

SWINT1_MASK_SET Software interrupt 1

SWINT2_MASK_SET Software interrupt 2

PERFCOUNT_MASK_SET Local Performance Counter

TIMER_MASK_SET CP0 Local Count/Compare Timer

COMPARE_MASK_SET GIC Local Count/Compare Timer

WD_MASK_SET Watchdog

Table 8.11 Disabling External Interrupts

Field Name Interrupt Controlled

FDC_RESET_MASK Fast Debug Channel

SWINT1_RESET_MASK Software interrupt 1

SWINT2_RESET_MASK Software interrupt 2

PERFCOUNT_RESET_MASK Local Performance Counter

TIMER_RESET_MASK CP0 Local Count/Compare Timer

COMPARE_RESET_MASK GIC Local Count/Compare Timer
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8.3.10.3 Determining the Enabled or Disabled Interrupt state

The "GIC Local Mask Register", GIC_COREi_MASK is used to determine if a local interrupt is enabled.  For CPS 
synchronization purposes this is a read only register. If a bit is set the corresponding interrupt source is enabled. If it 
is clear the corresponding interrupt is disabled. The following table shows which field corresponds to each local inter-
rupt. Refer to Section 8.6.3.3 “Local Interrupt Mask Register (GCI_COREi_MASK — Offset 0x0008)” for more 
information 

8.3.10.4 Polling for an Active Interrupt

The "GIC Pending Register", GIC_COREi_PEND is used to determine if a external interrupt is active. This is a read 
only register. If a bit is set the corresponding local interrupt is active. If it is clear the corresponding interrupt is inac-
tive. The following table shows which field corresponds to each local interrupt. Refer to Section 8.6.3.2 “Local 
Interrupt Pending Register (GIC_COREi_PEND — Offset 0x0004)” for more information 

WD_RESET_MASK Watchdog

Table 8.12 Determining the Enabled of Disabled Interrupt State

Field Name Interrupt Controlled

FDC_MASK Fast Debug Channel

SWINT1_MASK Software interrupt 1

SWINT2_MASK Software interrupt 2

PERFCOUNT_MASK Local Performance Counter

TIMER_MASK CP0 Local Count/Compare Timer

COMPARE_MASK GIC Local Count/Compare Timer

WD_MASK Watchdog

Table 8.13 Polling for an Active Interrupt

Field Name Interrupt Controlled

FDC_PEND Fast Debug Channel

SWINT1_PEND Software interrupt 1

SWINT2_PEND Software interrupt 2

PERFCOUNT_PEND Local Performance Counter

TIMER_PEND CP0 Local Count/Compare Timer

COMPARE_PEND GIC Local Count/Compare Timer

WD_PEND Watchdog

Table 8.11 Disabling External Interrupts

Field Name Interrupt Controlled
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8.3.11 Debug Interrupt Generation

The GIC of the P6600 Multiprocessing System allows software to globally assert a debug interrupt to all cores in the 
system. When the Send_DINT bit of the DINT Send to Group register (GIC_VB_DINT_SEND) in Section 8.5.3.17, 
"DINT Send to Group Register (GIC_VB_DINT_SEND Offset 0x6000)" is set, the EJ_DINT_GROUP signal of the 
GIC is asserted. Based on the state of this signal and the core-Local GIC_VL_DINT_PART registers, hardware asserts 
the EJ_DINT signal of each core in the system. This concept is shown in Figure 8.8.

Figure 8.8 Global EJTAG Debug Interrupt Generation in the GIC 
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8.4 Virtualization Support

As mentioned above, the P6600 MPS supports virtualization and the concept of guest and root modes. The following 
list shows some of the changes made to the GIC to support Virtualization.

The main changes to the GIC to support virtualization are summarized below and this functionality is only applicable 
to the EIC mode of the GIC.

• Incorporates logic required to route the guest external interrupts to the core. Each external interrupt source is 
assigned a GuestID for this purpose. The hypervisor is expected to program these fields prior to initializing inter-
rupts in the system.

• A qualification mechanism has been added for the root and guest access of the GIC registers. This makes sure 
only the registers associated with the intended guest context is being accessed.

• Count-Compare (CC) timer interrupts are supported by root and guest contexts.

• WatchDog (WD) timer interrupts are supported by root or guest contexts, but never simultaneously.

• Additional interrupt interface added per-core to send the interrupts targeted to the guest context.

• Interrupts targeted to the root context are sent on the existing interrupt interface. This root interrupt interface con-
tains a 4-bit bus that identifies the guest virtual machine to which the interrupt is targeted. 

• An input port added for the GIC to provide the core's resident GuestID. This resident GuestID gets used GIC 
logic to route the target guest interrupts to the core and also to qualify the guest accesses to GIC registers in 
Core-Local section.

• New register fields added to control the GIC operating in virtualized or non-virtualized mode.

• Addition of duplicate registers and interface pins to support routing of guest context's local interrupts through the 
GIC. These are for guest context's count/compare, timer, performance counter and software interrupts.

• Add support for generating NMI interrupts from guest interrupts sources under the control of root.

8.4.1 Routing of Guest External Source Interrupts

Each external interrupt source, or a logical group of external interrupt sources, is assigned a GuestID. This GuestID 
may be a maximum of 8-bits, but is set to 4 through a build time configuration parameter for initial set of cores. The 
per external interrupt source GuestID has been added as a new field to the shared section Global Interrupt Map to Pin 
registers.

The developer may choose to assign one GuestID to each external interrupt source. Alternatively, since the number of 
interrupt sources may be large (up to 256 interrupts), an implementation may choose to group external interrupt 
sources by GuestID, or provide an intermediate configuration such that some number of sources are each assigned a 
GuestID, while the remaining are grouped, and each group is assigned a GuestID. An example intermediate solution 
is one where the 1st 32 interrupt sources are individually assigned GuestIDs, while the remaining sources are divided 
up into groups of 8, each group with a GuestID. 

To facilitate the configuration of GuestID grouping, a 256 bits wide vector is provided which needs to be set at build 
time as per the required GuestID grouping scheme. This vector is 256 bits wide, which is the maximum number of 
external interrupt sources supported by the P6600 GIC. However, only the relevant lower indexed bits takes effect 
when the GIC is configured for less than 256 external interrupts. 
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Each bit in this vector represents whether or not a physical GuestID register exists ('1' in the bit) or not ('0' in the bit) 
for that bits corresponding external interrupt source. In the case where a physical GuestID register does not exist for 
an external interrupt source, that external interrupt source uses the GuestID value from whatever the next lower 
indexed external interrupt source which has a physical GuestID register. For example, in a 64-interrupt system where 
the 1st 32 interrupt sources are individually assigned GuestIDs and the remaining sources are divided up into groups 
of 8, the 256-bit GuestID grouping vector would be configured with the value shown below: 

Software can determine the build time configured GuestID grouping scheme by reading this 256-bit GuestID group-
ing vector via the registers described in Section 8.5.3.6, "ID Group Configuration Registers 
(GIC_SH_GID_CONFIG, Offsets 0x0080 - 0x009C)".

By convention, a GuestID of 0 specifies root, while a non-zero GuestID specifies a guest. In addition, each Core-
Local section in the GIC is aware of the GuestID resident in the physical core. These resident GuestIDs is brought 
into the GIC via the SI*_GID input ports and this is equal to the core cores GuestID register field.

The routing of external source interrupts to either of cores root or guest interrupt busses is illustrated in Figure 8.9 
below.

256'h00000000000000000000000000000000000000000000000001010101FFFFFFFF

One guest ID for group of 8 interrupts [39:32]
One guest ID for each of the first 32 interrupts [31:0]

One guest ID for group of 8 interrupts [47:40]
One guest ID for group of 8 interrupts [55:48]
One guest ID for group of 8 interrupts [63:56]
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Figure 8.9 External Source Interrupt Routing to the Cores Root or Guest Interrupt Bus

8.4.2 Qualification of Root or Guest Software Access to GIC registers

In general, only the root software (hypervisor) requires access to the GIC configuration registers. Such configuration 
registers include, but not limited to, are for the specification of each interrupt's type (e.g., polarity, edge/level etc), 
Core assignment, interrupt routing etc. However, the guest software may require access to a subset of GIC registers 
for reading interrupt pending information, masking and clearing interrupts etc. Since a subset of GIC registers are 
shared by multiple guests and root, any guest-specific reads/writes must be qualified to avoid effecting the interrupts 
that are not associated with the intended guest. 
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The below listed shared section registers need to be directly accessed by guest. In the list below uses n_m nomencla-
ture, 

where n_m = 31+32xi_32xi, and i = 0 to 7.

• GIC_SH_WEDGE - to cause Inter-Core interrupts and clear EDGE registered external interrupts.

• GIC_SH_PENDn_m - to determine which external interrupts are pending.

• GIC_SH_MASKn_m  - to determine which external interrupts are masked.

• GIC_SH_SMASKn_m  - to set mask bits for external interrupts.

• GIC_SH_RMASKn_m - to clear mask bits for external interrupts.

• GIC_SH_TRIGn_m - to allow guest to set EDGE for causing IPI to other cores.

• GIC_SH_POLn_m - there is currently no identified reason for guest access to this register, but it is safe to do so.

• GIC_SH_DUALn_m - there is currently no identified reason for guest access to this register, but it is safe to do 
so.

Apart from the WEDGE register, all of the above listed registers contains one bit per external interrupt source. Guest 
access to each of these per external interrupt source bits are qualified with a per-external interrupt source valid vector. 
On guest writes to the WEDGE register, the encoded interrupt number value gets decoded out to drive the per-exter-
nal interrupt source logic. Guest writes to the WEDGE register are qualified by gating this driving of per external 
interrupt source logic with the same per external interrupt source valid vector.

The guest context replicated Core-Local section registers may need to be directly accessed by guest software. Those 
registers are listed below. 

• GIC_COREi_PEND - for guest software to determine which local guest interrupts are pending.

• GIC_COREi_MASK - for guest software to determine which local guest interrupts are masked.

• GIC_COREi_SMASK - for guest software to set mask bits for local guest interrupts.

• GIC_COREi_RMASK - for guest software to clear mask bits for local guest interrupt.

• GIC_COREi_CompareLo/Hi - This allows the guest software to directly set its compare value after sampling its 
offsetted counter value. 

where i = 0 to 5, the max number of configured cores.

8.4.3 Guest Accesses to Core-Local Registers

The guest accesses to the above listed core-local registers need to be qualified within the GIC to protect against 
unwanted guest accesses. This is done by comparing the guest load/store associated OCP MConnID[GuestID] with 
the target cores resident GuestID. The target CORE number for this is derived by using the MReqInfo[VPENum] port 
of OCP bus for these register accesses.
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Figure 8.10 Root or Guest Access Flow into the GIC Registers
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8.4.4 Count-Compare (CC) Timer Interrupts

The Count-Compare (CC) timer interrupts can be generated independently for both root and guest contexts. They are 
routed to their relevant root or guest interrupt bus of the core. The Root and Guest processing is described in the fol-
lowing subsections.

8.4.4.1 Root Mode Count-Compare Timer Interrupts

The root context use of the Count-Compare (CC) timer interrupts remain the same as in the existing GIC by using its 
existing relevant registers. This CC timer interrupt generation flow for root context is illustrated in Figure 8.11.

Figure 8.11 Root Context Count-Compare Timer Interrupt Generation Flow
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8.4.4.2 Guest Mode Count-Compare Timer Interrupts

For guest context use of the Count-Compare (CC) timer interrupts, the global counter value that is common to root 
and all guests cannot be used. Therefore, a counter which is offset by an n-bit (set to 8 by default) value is used for 
each guest context. To specify this guest counter offset value, a GIC_COREi_COFFSET register is added to each 
Core-Local section and the root is expected to program this offset value register. In addition, the compare value regis-
ters are replicated for the guest context and these are added as GIC_COREi_CompareLo/Hi registers to each Core-
Local section. This allows guest and root contexts in each core to set compare independently. 

To facilitate this guest context interrupt routing, the Count-Compare register bits are replicated for guest context reg-
isters GIC_COREi_[PEND/MASK/SMASK/RMASK] and also the GIC_COREi_COMPARE_MAP map-to-pin reg-
ister replicated for guest context. 

This CC timer interrupt generation flow for guest context is illustrated in Figure 8.12.
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Figure 8.12 Guest Context Count-Compare Timer Interrupt Generation Flow
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access. Note the guest software is not allowed to write to GIC_SH_CounterLo/Hi registers and also cannot disable the 
counter by writing to the GIC_SH_CONFIGCOUNTSTOP field.

8.4.5 Watchdog (WD) Timer Interrupts

In the GIC, a single WatchDog timer is present for the root context. The root may allow the guest to utilize this single 
WatchDog timer by setting the newly added control bit GEN in the GIC_COREi_WD_CONFIG register. In virtualized 
mode (GIC_SH_CONFIGVZP = 1 & GIC_SH_CONFIGVZE = 1) if the root software sets GEN = 1, then the guest software 
is allowed to access the WatchDog timer related registers GIC_COREi_WD_[MAP/CONFIG/COUNT/INIIAL]. However, 
in non-virtualised mode (GIC_SH_CONFIGVZP = 1 & GIC_SH_CONFIGVZE = 0), this GEN control bit is a don't care and 
is not used to qualify any GIC register accesses.

Even when guest is allowed access to WatchDog timer with GEN = 1, there are further restrictions for guest accesses 
of certain WatchDog timer related register fields. These further restrictions are listed below,

• Guest has limited access to GIC_COREi_WD_CONFIG register:
- The WDRESET, WAIT and DEBUG fields are read-only 0 for guest.
- The guest can only set the TYPE field with values 0x0 and 0x2 and not the value of 0x1. Thus when guest writes 
this 3-bit field, the LSB is dropped and for guest reads, the LSB returns 0.

• Guest has limited access to GIC_COREi_WD_MAP register.
- The guest writes to MAP_TO_NMI field is further gated by GIC_SH_CONFIGGNMI field. 

When guest is allowed access to WatchDog timer, the guest may handle the generated WatchDog interrupts without 
root intervention. To facilitate this, the WatchDog related bits are replicated in GIC_COREi_[PEND/MASK/RMASK/
SMASK] registers for guest context and guest software is given direct access to them. 

The diagrams in following sub sections illustrate the flow for generating RIPL and NMI interrupts from WatchDog 
timer for root and guest contexts. 
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8.4.6 WatchDog Timer RIPL and NMI Generation

The following subsections discus the WatchDog timer generation for the RIPL and NMI interrupts for both root and 
guest mode.

8.4.6.1 Root Context WatchDog Timer RIPL Generation

Figure 8.13 shows the root context watch dog timer RIPL interrupt generation flow.

Figure 8.13 Root Context WatchDog Timer RIPL Generation Flow

GIC_COREi_WD_CONFIG
31 0

Root Software writes to this 
register to set

GEN = 0 to indicate root use of 
WD, WDSTART=0 to stop the 
WD timer and setup other fields 
as per the required mode of WD 

timer interrupt.

GIC_COREi_WD_INITIAL
31 0

GIC_COREi_WD_COUNT
31 0

GIC_COREi_WD_MAP
31 0

Root Software writes to this 
register to set the initial count 
value.

Root Software may read this 
register at any point to determine 
the instantaneous WD Timer 
Count value

Root Software writes to this 
register to set MAP_TO_PIN=1 
and setup the MAP field. 

After setting up initial count 
value, Root Software writes to 
WD_CONFIG register to set 
WDSTART=1 to load initial 
count and start the WD timer. 

Down Counter and 
decrement logic 

Compare logic for counter 
value equal to zero

If 
WD_CONFIG.TYPE=0x0 

or 0x2 and 
WD_MAP.MAP_TO_PIN=

1 and 
WD_CONFIG.GEN=0

Send the root WD interrupt IPL 
on the root interrupt bus SI_Int

Hardware sets the WDINTR 
status bit in WD_CONFIG 
register



 

484 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

8.4.6.2 Guest Context WatchDog Timer RIPL Generation

Figure 8.14 shows the guest context watch dog timer RIPL interrupt generation flow.

Figure 8.14 Guest Context WatchDog Timer RIPL Generation Flow
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8.4.6.3 Root Context WatchDog Timer NMI Interrupt Generation

Figure 8.15 shows the root context watch dog timer NMI interrupt generation flow.

Figure 8.15 Root Context WatchDog Timer NMI Generation Flow
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8.4.6.4 Guest Context WatchDog Timer NMI Interrupt Generation

Figure 8.16 shows the guest context watch dog timer NMI interrupt generation flow.

Figure 8.16 Guest Context WatchDog Timer NMI Interrupt Generation Flow
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8.5 Shared Register Set

This section describes the various registers in the Shared register set.

8.5.1 GIC Register Field Types

For each register described below, field descriptions include the read/write properties of the field, and the reset state 
of the field. For single bit fields, the name is truncated to a single character which is then shown outside brackets in 
the Fields|Name column. For the read/write properties of the field, the following notation is used: 

Table 8.14 CP0 Register Field Types 

Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware 
reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first 
read returns a predictable value. This should not be confused with the formal definition of UNDEFINED behav-
ior.

R A field that is either static or is updated only by hard-
ware.
If the Reset State of this field is either “0” or “Preset”, 
hardware initializes this field to zero or to the appropri-
ate state, respectively, on power up.
If the Reset State of this field is “Undefined”, hardware 
updates this field only under those conditions specified 
in the description of the field.

A field to which the value written by software is 
ignored by hardware. Software may write any value to 
this field without affecting hardware behavior. Software 
reads of this field return the last value updated by hard-
ware.
If the Reset State of this field is “Undefined,” software 
reads of this field result in an UNPREDICTABLE 
value except after a hardware update done under the 
conditions specified in the description of the field.

W A field that can be written by software but which can not be read by software.
Software reads of this field returns an UNDEFINED value.

0 A field that hardware does not update, and for which 
hardware can assume a zero value.

A field to which the value written by software must be 
zero. Software writes of non-zero values to this field 
may result in UNDEFINED behavior of the hardware. 
Software reads of this field return zero as long as all 
previous software writes are zero.
If the Reset State of this field is “Undefined,” software 
must write this field with zero before it is guaranteed to 
read as zero.
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8.5.2 Shared Section Register Map

The register map of the shared section is shown in Table 8.15. These registers are accessible by any core. For the base 
address of this block, see Table 8.1.

All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from unpopulated 
registers in the GCMP address space should return 0x0, and writes to those locations should be silently dropped with-
out generating any exceptions.

The addresses for the registers within the Shared Section of the GIC are calculated as follows:

SharedSection_Register_Physical_Address = 
GIC_baseaddress+SharedSection_baseoffset+Register_Offset

Table 8.15 Shared Section Register Map 

 Register Offset Name Type Description

0x0000 GIC Config Register 
(GIC_SH_CONFIG)

R Indicates the number of interrupts, number of 
cores, etc.

0x0010 GIC CounterLo 
(GIC_SH_CounterLo)

R/W Shared Global Counter.

0x0014 GIC CounterHi 
(GIC_SH_CounterHi)

R/W

0x0020 GIC Revision Register
(GIC_RevisionID)

R RevisionID of the GIC hardware.

0x0024 GIC Interrrupt[31:0] Availability Register
(GIC_SH_INT_AVAIL31_0)

R Indicates the availability of interrupts 0 - 31.

0x0028 GIC Interrrupt[63:32] Availability Register
(GIC_SH_INT_AVAIL63_32)

R Indicates the availability of interrupts 32 - 63.

0x002C GIC Interrrupt[95:64] Availability Register
(GIC_SH_INT_AVAIL95_64)

R Indicates the availability of interrupts 95 - 64.

0x0030 GIC Interrrupt[127:96] Availability Register
(GIC_SH_INT_AVAIL127_96)

R Indicates the availability of interrupts 96 - 127.

0x0034 GIC Interrrupt[159:128] Availability Register
(GIC_SH_INT_AVAIL159_128)

R Indicates the availability of interrupts 128 - 159.

0x0038 GIC Interrrupt[191:160] Availability Register
(GIC_SH_INT_AVAIL191_160)

R Indicates the availability of interrupts 160 - 191.

0x003C GIC Interrrupt[223:192] Availability Register
(GIC_SH_INT_AVAIL223_192)

R Indicates the availability of interrupts 192 - 223.

0x0040 GIC Interrrupt[255:224] Availability Register
(GIC_SH_INT_AVAIL255_224)

R Indicates the availability of interrupts 224 - 255.

0x0080 GIC Guest ID Group Configuration Register
(GIC_SH_GID_Config31_0)

R Indicates the availability existence of a physical 
GuestID register for external interrupts 0 - 31.

0x0084 GIC Guest ID Group Configuration Register
(GIC_SH_GID_Config63_32)

R Indicates the availability existence of a physical 
GuestID register for external interrupts 32 - 63.

0x0088 GIC Guest ID Group Configuration Register
(GIC_SH_GID_Config95_64)

R Indicates the availability existence of a physical 
GuestID register for external interrupts 95 - 64.
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0x008C GIC Guest ID Group Configuration Register
(GIC_SH_GID_Config127_96)

R Indicates the availability existence of a physical 
GuestID register for external interrupts 96 - 127.

0x0090 GIC Guest ID Group Configuration Register
(GIC_SH_GID_Config159_128)

R Indicates the availability existence of a physical 
GuestID register for external interrupts 128 - 
159.

0x0094 GIC Guest ID Group Configuration Register
(GIC_SH_GID_Config191_160)

R Indicates the availability existence of a physical 
GuestID register for external interrupts 160 - 
191.

0x0098 GIC Guest ID Group Configuration Register
(GIC_SH_GID_Config223_192)

R Indicates the availability existence of a physical 
GuestID register for external interrupts 192 - 
223.

0x009C GIC Guest ID Group Configuration Register
(GIC_SH_GID_Config255_224)

R Indicates the availability existence of a physical 
GuestID register for external interrupts 224 - 
255.

0x0100 Global Interrupt Polarity Register0 
(GIC_SH_POL31_0)

R/W Polarity of the interrupt. 
For Level Type:
0x0 - Active Low
0x1 - Active High
For Single Edge Type:
0x0 - Falling Edge used to set edge register
0x1 - Rising Edge used to set edge register
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources. 

0x0104 Global Interrupt Polarity Register1 
(GIC_SH_POL63_32)

R/W

0x0108 Global Interrupt Polarity Register2 
(GIC_SH_POL95_64)

R/W

0x010c Global Interrupt Polarity Register3 
(GIC_SH_POL127_96)

R/W

0x0110 Global Interrupt Polarity Register4 
(GIC_SH_POL159_128)

R/W

0x0114 Global Interrupt Polarity Register5 
(GIC_SH_POL191_160)

R/W

0x0118 Global Interrupt Polarity Register6 
6(GIC_SH_POL223_192)

R/W

0x011c Global Interrupt Polarity Register7 
(GIC_SH_POL255_224)

R/W

Table 8.15 Shared Section Register Map (continued)

 Register Offset Name Type Description
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0x0180 Global Interrupt Trigger Type Register0 
(GIC_SH_TRIG31_0)

R/W Edge or Level triggered
0x0 - Level
0x1 - Edge
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources.

0x0184 Global Interrupt Trigger Type Register1 
(GIC_SH_TRIG63_32)

R/W

0x0188 Global Interrupt Trigger Type Register2 
(GIC_SH_TRIG95_64)

R/W

0x018c Global Interrupt Trigger Type Register3 
(GIC_SH_TRIG127_96)

R/W

0x0190 Global Interrupt Trigger Type Register4 
(GIC_SH_TRIG159_128)

R/W

0x0194 Global Interrupt Trigger Type Register5 
(GIC_SH_TRIG191_160)

R/W

0x0198 Global Interrupt Trigger Type Register6 
(GIC_SH_TRIG223_192)

R/W

0x019c Global Interrupt Trigger Type Register7 
(GIC_SH_TRIG255_224)

R/W

0x0200 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL31_0)

R/W Writing a 0x1 to any bit location sets the appro-
priate external interrupt source to be type dual-
edged.
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources.

0x0204 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL63_32)

R/W

0x0208 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL95_64)

R/W

0x020c Global Interrupt Dual Edge Register 
(GIC_SH_DUAL127_96)

R/W

0x0210 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL159_128)

R/W

0x0214 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL191_160)

R/W

0x0218 Global Interrupt Dual Edge Register 
(GIC_SH_DUAL223_192)

R/W

0x021c Global Interrupt Dual Edge Register 
(GIC_SH_DUAL255_224)

R/W

0x0280 Global Interrupt Write Edge Register 
(GIC_SH_WEDGE)

W Used for Interrupt Messages. Writes to this reg-
ister atomically set or clear a specified bit in the 
Edge Detect Register.

Table 8.15 Shared Section Register Map (continued)

 Register Offset Name Type Description
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0x0300 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK31_0)

W Writing a 0x1 to any bit location masks off (dis-
ables) that interrupt. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources.

0x0304 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK63_32)

W

0x0308 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK95_64)

W

0x030c Global Interrupt Reset Mask Register 
(GIC_SH_RMASK127_96)

W

0x0310 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK159_128)

W

0x0314 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK191_160)

W

0x0318 Global Interrupt Reset Mask Register 
(GIC_SH_RMASK223_192)

W

0x031c Global Interrupt Reset Mask Register 
(GIC_SH_RMASK255_224)

W

0x0380 Global Interrupt Set Mask Register
(GIC_SH_SMASK31_00)

W Writing a 0x1 to any bit location sets the mask 
(enables) for that interrupt. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources.

0x0384 Global Interrupt Set Mask Register
(GIC_SH_SMASK63_32)

W

0x0388 Global Interrupt Set Mask Register
(GIC_SH_SMASK95_64)

W

0x038c Global Interrupt Set Mask Register
(GIC_SH_SMASK127_96)

W

0x0390 Global Interrupt Set Mask Register
(GIC_SH_SMASK159_128)

W

0x0394 Global Interrupt Set Mask Register
(GIC_SH_SMASK191_160)

W

0x0398 Global Interrupt Set Mask Register
(GIC_SH_SMASK223_192)

W

0x039c Global Interrupt Set Mask Register
(GIC_SH_SMASK255_224)

W

Table 8.15 Shared Section Register Map (continued)

 Register Offset Name Type Description
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0x0400 Global Interrupt Mask Register 
(GIC_SH_MASK31_00)

R Shows the enabled global interrupts. If bit N is 
set, global interrupt N is enabled. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources.

0x0404 Global Interrupt Mask Register 
(GIC_SH_MASK63_32)

R

0x0408 Global Interrupt Mask Register 
(GIC_SH_MASK95_64)

R

0x040c Global Interrupt Mask Register 
(GIC_SH_MASK127_96)

R

0x0410 Global Interrupt Mask Register 
(GIC_SH_MASK159_128)

R

0x0414 Global Interrupt Mask Register 
(GIC_SH_MASK191_160)

R

0x0418 Global Interrupt Mask Register 
(GIC_SH_MASK223_192)

R

0x041c Global Interrupt Mask Register 
(GIC_SH_MASK255_224)

R

0x0480 Global Interrupt Pending Register 
(GIC_SH_PEND31_00)

R Shows the pending global interrupts before 
masking. If bit N is set, the global interrupt N is 
pending. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources.

0x0484 Global Interrupt Pending Register 
(GIC_SH_PEND63_32)

R

0x0488 Global Interrupt Pending Register 
(GIC_SH_PEND95_64)

R

0x048c Global Interrupt Pending Register 
(GIC_SH_PEND127_96)

R

0x0490 Global Interrupt Pending Register 
(GIC_SH_PEND159_128)

R

0x0494 Global Interrupt Pending Register 
(GIC_SH_PEND191_160)

R

0x0498 Global Interrupt Pending Register 
(GIC_SH_PEND223_192)

R

0x049c Global Interrupt Pending Register 
(GIC_SH_PEND255_224)

R

0x0500 Global Interrupt Map Src0 to Pin Register 
(GIC_SH_MAP0_PIN)

R/W Maps this interrupt source to a particular pin - 
within Int[5:0] or NMI.
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources.

0x0504 Global Interrupt Map Src1 to Pin Register 
(GIC_SH_MAP1_PIN)

R/W

0x0508 Global Interrupt Map Src2 to Pin Register 
(GIC_SH_MAP2_PIN)

R/W

... ... R/W

0x08fc Global Interrupt Map Src255 to Pin Register 
(GIC_SH_MAP255_PIN)

R/W

Table 8.15 Shared Section Register Map (continued)

 Register Offset Name Type Description
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8.5.3 Shared Section Register Descriptions

The physical address for the Shared Section registers is calculated as follows: 

GIC_BaseAddress + SharedSection_BaseAddress + RegisterOffset

8.5.3.1 Global Config Register (GIC_SH_CONFIG — Offset 0x0000)

Figure 8.17 Global Config Register Format  

0x2000 Global Interrupt Map Src0 to Core Register 
(GIC_SH_MAP0_CORE31_0)

R/W Assigns this interrupt source to a particular core. 
At IP configuration time, the appropriate num-
ber of these registers are instantiated to support 
the number of External Interrupt Sources and 
the number of cores.

0x2020 Global Interrupt Map Src1 to Core Register 
(GIC_SH_MAP1_CORE31_0)

R/W

0x2040 Global Interrupt Map Src2 to Core Register 
(GIC_SH_MAP2_CORE31_0)

R/W

..... .... R/W

0x3fe0 Global Interrupt Map Src255 to Core Register 
(GIC_SH_MAP255_CORE31_0)

R/W

0x6000 DINT Send to Group Register
(GIC_VB_DINT_SEND)

R/W Sends the DebugInterrupt to the specified core. 

All other offsets Reserved for future extensions Reserved for future extensions.

31 30 29 28 27 24 23 16 15 8 7 6 0

VZP VZE IRC COUNT
STOP COUNTBITS NUMINTERRUPTS IRGID 0 PVPES

Table 8.16 GIC Config Register Bit Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

VZP 31 This bit is set to 1 to indicate that the P6600 GIC supports 
virtualization.

R 1

VZE 30 Controls the GIC mode of operation.
1: VZ enabled. GIC operates in virtualized mode.
0: VZ disabled. GIC operates in non-virtualized mode.

R/W 0

IRC 29 Interrupt Read Control. Allows root software visibility 
into root and guest-specific interrupts.
0: Root accesses all register bits unqualified.
1: Root accesses only those register bits that are specific to 
GIC_VZ_CONFIG.IRGID. This may be root (IRGID = 
0), or guest (IRGID = nZ).

R/W 0

Table 8.15 Shared Section Register Map (continued)

 Register Offset Name Type Description
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COUNTSTOP 28 Setting this bit stops GIC_CounterHi and 
GIC_CounterLo. 
Used to freeze the shared counters when cores go into 
power-down or debug modes. 

R/W 0

COUNTBITS 27:24 Number of Implemented Bits in GIC_CounterHi. 
Total Number of Counter Bits = 32 + COUNTBITS*4, 
E.g.:
0x0: 32bits, GIC_CounterHi not implemented
0x1: 36bits, GIC_CounterHi width = 4 bits
0x2: 40bits, GIC_CounterHi width = 8 bits
...
0x7: 60bits, GIC_CounterHi width = 28 bits
0x8: 64bits, GIC_CounterHi width = 32 bits
0x9-0xF: Reserved

R 0x8

NUMINTERRUPTS 23:16 Number of External Interrupt Sources.

0x0: 8 External interrupt sources
0x1: 16 External interrupt sources
0x2: 24 External interrupt sources
0x3: 32 External interrupt sources
0x4: 40 External interrupt sources
.......
0x1E: 248 External interrupt sources
0x1F: 256 External interrupt sources

Value is fixed by customer at IP configuration time.

R IP Configuration 
Value

IRGID 15:8 Interrupt Read Guest ID. Specified GuestID for root read 
of the shared section registers. Field width matches that of 
GuestCtl0.GID. 

R/W 0

PVPES 6:0 Total number of cores in the system. Note that in the 
P6600 core, there is one VPE per core. 

0: 1 VPE (1 core) 

R IP Configuration 
Value

Table 8.16 GIC Config Register Bit Descriptions (continued)

Register Fields

Description
Read/
Write Reset StateName Bits
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8.5.3.2 GIC CounterLo (GIC_SH_CounterLo — Offset 0x0010)

Figure 8.18 GIC CounterLo Register Format   

8.5.3.3 GIC CounterHi (GIC_SH_CounterHi — Offset 0x0014) 

Figure 8.19 GIC CounterHi Register Format  

31 0

GIC_SH_CounterLo

Table 8.17 GIC CounterLo Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_CounterLo 31:0 Lower Half of an up-counter. 
When the counter reaches its maximum value, the counter 
rolls over to a value of 0x0.
The counter is running at an implementation-specific fre-
quency which is fixed, that is, not changing dynamically 
due to power management. It is recommended that this 
frequency be as close as possible to the highest clock fre-
quency of the CPU subsystem.
This counter is disabled by writing the COUNTSTOP bit 
in the GIC_SH_CONFIG register. 
This counter should only be written when 
GIC_SH_CONFIGCOUNTSTOP = 1; otherwise, the regis-
ters results after the write are unpredictable. 

R/W 0

31 0

GIC_SH_CounterHi

Table 8.18 GIC CounterHi Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_CounterHi 31:0 Upper Half of an up-counter. 
When the counter reaches its maximum value, the counter 
rolls over to a value of 0x0.
The counter is running at an implementation-specific fre-
quency which is fixed, that is, not changing dynamically 
due to power management. It is recommended that this 
frequency be as close as possible to the highest clock fre-
quency of the CPU subsystem.
This counter is disabled by writing the COUNTSTOP bit 
in the GIC_SH_CONFIG register. 
This counter should only be written when 
GIC_SH_CONFIGCOUNTSTOP = 1; otherwise, the register 
results after the write are unpredictable. 
Unimplemented bits ignore writes and return 0 when read. 

R/W 0
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8.5.3.4 GIC Revision Register (GIC_RevisionID — Offset 0x0020)

Figure 8.20 GIC Revision Register Format  

8.5.3.5 Interrupt Availability Registers (GIC_SH_INT_AVAIL — Offsets 0x0024 - 0x0040)

The GIC_SH_INT_AVAIL registers indicate which external interrupt sources are available to a guest based on the Gues-
tIDs assigned to external interrupt sources. If guest software is to program interrupts by writing to GIC_SH_WEDGE 
and GIC_SH_MAPi_PIN registers, it must first read these GIC_SH_INT_AVAIL registers to determine whether it owns 
the external interrupt source for which it intends to program for interrupts.

The list of guest interrupt availability registers is shown in Table 8.20. 

Figure 8.21 Interrupt Availability Register Format  

31 16 15 8 7 0

0 MAJOR_REV MINOR_REV

Table 8.19 GIC Revision Register Bit Descriptions  

Register Fields

Description
Read/
Write Reset StateName Bits

0 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R 0x0

MAJOR_REV 15:8 This field reflects the major revision of the GIC block. A major 
revision might reflect the changes from one product generation 
to another. 

R Preset

MINOR_REV 7:0 This field reflects the minor revision of the GIC block. A minor 
revision might reflect the changes from one release to another. 

R Preset

Table 8.20 Guest Interrupt Availability Register Mapping

Offset Acronym Register Name

0x0024 GIC_SH_INT_AVAIL31_0 Guest interrupt availability for external interrupts 31:0

0x0028 GIC_SH_INT_AVAIL63_32 Guest interrupt availability for external interrupts 63:32

0x002C GIC_SH_INT_AVAIL95_64 Guest interrupt availability for external interrupts 95:64

0x0030 GIC_SH_INT_AVAIL127_96 Guest interrupt availability for external interrupts 127:96

0x0034 GIC_SH_INT_AVAIL159_128 Guest interrupt availability for external interrupts 159:128

0x0038 GIC_SH_INT_AVAIL191_160 Guest interrupt availability for external interrupts 191:160

0x003C GIC_SH_INT_AVAIL223_192 Guest interrupt availability for external interrupts 223:191

0x0040 GIC_SH_INT_AVAIL255_224 Guest interrupt availability for external interrupts 255:192

31 0

GIC_SH_INT_AVAILx_y1

1. This format applies to all GIC_SH_INT_AVAIL registers. The x_y indicates the bit range based on Table 8.20 above. For example; 
x_y = 31:0
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8.5.3.6 ID Group Configuration Registers (GIC_SH_GID_CONFIG, Offsets 0x0080 - 0x009C)

The GIC_SH_GID_CONFIG registers provides the information for physical existence of the GIC_SH_MAPi_PINGID reg-
ister field for a corresponding indexed external interrupt source.

The list of ID configuration registers is shown in Table 8.22. 

Figure 8.22 ID Group Configuration Register Format  

Table 8.21 Guest Interrupt Availability Register Bit Descriptions  

Register Fields

Description
Read/
Write

Reset 
StateName Bits

GIC_SH_INT_AVAILx_y 31:0 Each bit in this register indicates if that corresponding external 
interrupt source is available for Guest software.

0: The interrupt source is not available to guest software.
1: The interrupt source is available to guest software.

R 0x0

Table 8.22 ID Group Configuration Register Mapping

Offset Acronym Register Name

0x0080 GIC_SH_GID_CONFIG31_0 Guest ID group configuration register for external interrupts 31:0

0x0084 GIC_SH_GID_CONFIG63_32 Guest ID group configuration register for external interrupts 63:32

0x0088 GIC_SH_GID_CONFIG95_64 Guest ID group configuration register for external interrupts 95:64

0x008C GIC_SH_GID_CONFIG127_96 Guest ID group configuration register for external interrupts 127:96

0x0090 GIC_SH_GID_CONFIG159_128 Guest ID group configuration register for external interrupts 159:128

0x0094 GIC_SH_GID_CONFIG191_160 Guest ID group configuration register for external interrupts 191:160

0x0098 GIC_SH_GID_CONFIG223_192 Guest ID group configuration register for external interrupts 223:191

0x009C GIC_SH_GID_CONFIG255_224 Guest ID group configuration register for external interrupts 255:192

31 0

GIC_SH_GID_CONFIGx_y1

1. This format applies to all GIC_SH_GID_CONFIG registers. The x_y indicates the bit range based on Table 8.20 above. For exam-
ple; x_y = 31:0
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8.5.3.7 Global Interrupt Polarity Registers (GIC_SH_POLx_y — See Table 8.24 for Mapping)

There are eight Global Interrupt Polarity registers to cover all 256 possible system interrupts. These registers work in 
conjunction with the eight Global Interrupt Trigger Type (GIC_SH_TRIGn) and Global Interrupt Dual Edge 
(GIC_SH_DUALn) registers to select the polarity, active high/low trigger, and single/dual edge for each of the 256 
interrupts. Refer to Section 8.3.3, "Configuring Interrupt Sources" for more information.

They are located at the following eight offsets.

In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_POL63_32 indicates that this register handles the polarity for interrupts 63:32.

Table 8.23  ID Group Configuration Register Bit Descriptions  

Register Fields

Description
Read/
Write

Reset 
StateName Bits

GIC_SH_GID_CONFIGx_y 31:0 Each bit in these registers provides the information for physical 
existence of the GIC_SH_MAPi_PIN.GID register field for a 
corresponding indexed external interrupt source. The physical 
existence of the GIC_SH_MAPi_PIN.GID register field is con-
figured through a build time configuration parameter. This field 
is encoded as follows:

1: Physical GIC_SH_MAPi_PIN.GID register field exists for 
corresponding indexed external interrupt source.
0: Physical GIC_SH_MAPi_PIN.GID register field does not 
exist for the corresponding indexed external interrupt source.

R 0x0

Table 8.24 Global Interrupt Polarity Register Mapping

Offset Acronym Register Name

0x0100 GIC_SH_POL31_0 Polarity selection for interrupt pins 31:0

0x0104 GIC_SH_POL63_32 Polarity selection for interrupt pins 63:32

0x0108 GIC_SH_POL95_64 Polarity selection for interrupt pins 95:64

0x010C GIC_SH_POL127_96 Polarity selection for interrupt pins 127:96

0x0110 GIC_SH_POL159_128 Polarity selection for interrupt pins 159:128

0x0114 GIC_SH_POL191_160 Polarity selection for interrupt pins 191:160

0x0118 GIC_SH_POL223_192 Polarity selection for interrupt pins 223:191

0x011C GIC_SH_POL255_224 Polarity selection for interrupt pins 255:192
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Figure 8.23 GIC Interrupt Polarity Register Format  

8.5.3.8 Global Interrupt Trigger Type Registers (GIC_SH_TRIGx_y — See Table 8.26 for Mapping)

There are eight Global Interrupt Trigger Type registers to cover all 256 possible system interrupts. These registers 
work in conjunction with the eight Global Interrupt Polarity (GIC_SH_POLn) and Global Interrupt Dual Edge 
(GIC_SH_DUALn) registers to select the polarity, active high/low trigger, and single/dual edge for each of the 256 
interrupts. Refer to Section 8.3.3, "Configuring Interrupt Sources" for more information.

They are located at the following eight offsets. 

In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_TRIG63_32 indicates that this register handles the trigger level for interrupts 63:32.

31 0

GIC_SH_POLx_y

Table 8.25 Global Interrupt Polarity Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_POLx_y 31:0 Each bit in this register represents an interrupt source. 
The state of the bit indicates the polarity of the interrupt.
If the interrupt type (as denoted by Global Interrupt Trigger 
Type and Global Interrupt Dual Edge registers) is Level trig-
gered, then each bit of this register is encoded as follows:

0: Active Low
1: Active High

If the interrupt is single-edge triggered, each bit of this regis-
ter is encoded as follows:

0: Falling edge denotes interrupt source has toggled
1: Rising edge denotes interrupt source has toggled

If the interrupt type is Dual-edge, this register is not used.

R/W 0

Table 8.26 Global Interrupt Trigger Type Register Mapping

Offset Acronym Register Name

0x0180 GIC_SH_TRIG31_0 Interrupt trigger selection for interrupt pins 31:0

0x0184 GIC_SH_TRIG63_32 Interrupt trigger selection for interrupt pins 63:32

0x0188 GIC_SH_TRIG95_64 Interrupt trigger selection for interrupt pins 95:64

0x018C GIC_SH_TRIG127_96 Interrupt trigger selection for interrupt pins 127:96

0x0190 GIC_SH_TRIG159_128 Interrupt trigger selection for interrupt pins 159:128

0x0194 GIC_SH_TRIG191_160 Interrupt trigger selection for interrupt pins 191:160

0x0198 GIC_SH_TRIG223_192 Interrupt trigger selection for interrupt pins 223:191

0x019C GIC_SH_TRIG255_224 Interrupt trigger selection for interrupt pins 255:192
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Figure 8.24 GIC Interrupt Trigger Type Register Format  

8.5.3.9 Global Interrupt Dual Edge Registers (GIC_SH_DUALx_y — See Table 8.28 for Mapping)

There are eight Global Interrupt Dual Edge registers to cover all 256 possible system interrupts. These registers work 
in conjunction with the eight Global Interrupt Polarity (GIC_SH_POLn) and Global Interrupt Trigger Type (GIC_SH_TRIGn) 
registers to select the polarity, active high/low trigger, and single/dual edge for each of the 256 interrupts. Refer to 
Section 8.3.3, "Configuring Interrupt Sources" for more information.

They are located at the following eight offsets. 

In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_DUAL63_32 indicates that this register handles the edge triggering for interrupts 63:32.

Figure 8.25 GIC Interrupt Dual Edge Register Format  

31 0

GIC_SH_TRIGx_y

Table 8.27 Global Interrupt Trigger Type Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_TRIGx_y 31:0 Each bit in this register represents an interrupt source.
The state of the bit indicates the nature of the interrupt sig-
naling.

0: Level
1: Edge (Single edge or dual-edge signaling denoted by 
Global Interrupt Dual Edge Register)

R/W 0

Table 8.28 Global Interrupt Dual Edge Register Mapping

Offset Acronym Register Name

0x0200 GIC_SH_DUAL31_0 Interrupt single/dual edge selection for interrupt pins 31:0

0x0204 GIC_SH_DUAL63_32 Interrupt single/dual edge selection for interrupt pins 63:32

0x0208 GIC_SH_DUAL95_64 Interrupt single/dual edge selection for interrupt pins 95:64

0x020C GIC_SH_DUAL127_96 Interrupt single/dual edge selection for interrupt pins 127:96

0x0210 GIC_SH_DUAL159_128 Interrupt single/dual edge selection for interrupt pins 159:128

0x0214 GIC_SH_DUAL191_160 Interrupt single/dual edge selection for interrupt pins 191:160

0x0218 GIC_SH_DUAL223_192 Interrupt single/dual edge selection for interrupt pins 223:191

0x021C GIC_SH_DUAL255_224 Interrupt single/dual edge selection for interrupt pins 255:192

31 0

GIC_SH_DUALx_y
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8.5.3.10 Global Interrupt Write Edge Register (GIC_SH_WEDGE Offset 0x0280)

This register is used to support interrupt messages. A write to this register automatically sets or clears one bit in the 
Edge Detect Register. Setting a bit in this register is equivalent to having the edge detection logic see an active edge. 
This bypasses the edge detection logic and thus it does not matter whether the corresponding interrupt is configured 
to be rising, falling, or dual edge sensitive. However, the behavior is undefined unless the equivalent bit in the Global 
Interrupt Trigger Type register is set to 0x1 indicating edge signaling.

Figure 8.26 GIC Interrupt Write Edge Register Format  

8.5.3.11 Global Interrupt Reset Mask Registers (GIC_SH_RMASKx_y — See Table 8.31 for Mapping)

There are eight Global Interrupt Reset Mask registers to cover all 256 possible system interrupts. These registers 
work in conjunction with the eight Global Interrupt Set Mask (GIC_SH_SMASKn) registers to enable and disable individ-
ual interrupts. Refer to Section 8.3.3, "Configuring Interrupt Sources" for more information.

These registers are located at the following eight offsets. 

Table 8.29 Global Dual Edge Register Bit Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_DUALx_y 31:0 Each bit in this register represents an interrupt source.
This register is only meaningful is the equivalent bit in the 
Global Interrupt Trigger Type register is set to 0x1, indicating 
edge-triggering, in which case each bit of this register is 
encoded as follows:

0: Single-edge
1: Dual-edge

R/W 0

31 30 0

RW INTERRUPT

Table 8.30 Global Interrupt Write Edge Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

RW 31 Controls whether this write is setting or clearing a bit in the Edge 
Detect Register. 
If this bit is set, the selected bit in the register is set. 
If this bit is cleared, the selected bit in the register is cleared.

W Undefined

Interrupt 30:0 This field is the encoded value of the interrupt that is being cleared 
or set. For example, a value of 0xB means interrupt 11 (decimal). 

W Undefined

Table 8.31 Global Interrupt Reset Mask Register Mapping

Offset Acronym Register Name

0x0300 GIC_SH_RMASK31_0 Interrupt reset mask for interrupt pins 31:0

0x0304 GIC_SH_RMASK63_32 Interrupt reset mask for interrupt pins 63:32
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In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_RMASK63_32 indicates that this register handles the reset mask for interrupts 63:32.

Figure 8.27 GIC Interrupt Reset Mask Register Format  

8.5.3.12 Global Interrupt Set Mask Registers (GIC_SH_SMASKx_y — See Table 8.33 for Mapping) 

There are eight Global Interrupt Set Mask registers to cover all 256 possible system interrupts. These registers work 
in conjunction with the eight Global Interrupt Reset Mask (GIC_SH_RMASKn) registers to enable and disable individual 
interrupts. Refer to Section 8.3.3, "Configuring Interrupt Sources" for more information.

These registers are located at the following eight offsets. 

0x0308 GIC_SH_RMASK95_64 Interrupt reset mask for interrupt pins 95:64

0x030C GIC_SH_RMASK127_96 Interrupt reset mask for interrupt pins 127:96

0x0310 GIC_SH_RMASK159_128 Interrupt reset mask for interrupt pins 159:128

0x0314 GIC_SH_RMASK191_160 Interrupt reset mask for interrupt pins 191:160

0x0318 GIC_SH_RMASK223_192 Interrupt reset mask for interrupt pins 223:191

0x031C GIC_SH_RMASK255_224 Interrupt reset mask for interrupt pins 255:192

31 0

GIC_SH_RMASKx_y

Table 8.32 Global Interrupt Reset Mask Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_RMASKx_y 31:0 Each bit in this register represents an interrupt source.
Writing this register with a 0x1 in any bit position(s) causes 
only the corresponding bit/interrupt(s) in the Global 
Interrupt Mask Register to be reset (value->0). This is used 
by software to temporarily disable interrupts.

W Undefined

Table 8.33 Global Interrupt Set Mask Register Mapping 

Offset Acronym Register Name

0x0380 GIC_SH_SMASK31_0 Interrupt set mask for interrupt pins 31:0

0x0384 GIC_SH_SMASK63_32 Interrupt set mask for interrupt pins 63:32

0x0388 GIC_SH_SMASK95_64 Interrupt set mask for interrupt pins 95:64

0x038C GIC_SH_SMASK127_96 Interrupt set mask for interrupt pins 127:96

0x0390 GIC_SH_SMASK159_128 Interrupt set mask for interrupt pins 159:128

0x0394 GIC_SH_SMASK191_160 Interrupt set mask for interrupt pins 191:160

0x0398 GIC_SH_SMASK223_192 Interrupt set mask for interrupt pins 223:191

Table 8.31 Global Interrupt Reset Mask Register Mapping

Offset Acronym Register Name
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In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_SMASK63_32 indicates that this register handles the set mask for interrupts 63:32.

Figure 8.28 GIC Interrupt Set Mask Register Format  

8.5.3.13 Global Interrupt Mask Registers (GIC_SH_MASKx_y — See Table 8.35 for Mapping)

There are eight Global Interrupt Reset Mask registers to cover all 256 possible system interrupts. These read-only 
registers are used to indicate when an external interrupt occurs. An individual interrupt bit is set when an interrupt 
occurs and the corresponding Global Interrupt Set Mask bit is set, thereby enabling the interrupt. Refer to Section 
8.5.3.12, "Global Interrupt Set Mask Registers (GIC_SH_SMASKx_y — See Table 8.33 for Mapping)" for more 
information.

These registers work in conjunction with the eight Global Interrupt Set Mask (GIC_SH_SMASKn) and Global Interrupt 
Reset Mask (GIC_SH_RMASKn) registers to manage and process interrupts. Refer to Section 8.3.3, "Configuring 
Interrupt Sources" for more information.

These registers are located at the following eight offsets.

0x039C GIC_SH_SMASK255_224 Interrupt set mask for interrupt pins 255:192

31 0

GIC_SH_SMASKx_y

Table 8.34 Global Set Mask Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_SMASKx_y 31:0 Each bit in this register represents an interrupt source.
Writing this register with a 0x1 in any bit position(s) causes 
only the corresponding bit/interrupt(s) in the Global 
Interrupt Mask Register to be set (value->0x1). This is used 
by software to enable interrupts.

W Undefined

Table 8.35 Global Interrupt Mask Register Mapping 

Offset Acronym Register Name

0x0400 GIC_SH_MASK31_0 Interrupt status for interrupt pins 31:0

0x0404 GIC_SH_MASK63_32 Interrupt status for interrupt pins 63:32

0x0408 GIC_SH_MASK95_64 Interrupt status for interrupt pins 95:64

0x040C GIC_SH_MASK127_96 Interrupt status for interrupt pins 127:96

0x0410 GIC_SH_MASK159_128 Interrupt status for interrupt pins 159:128

0x0414 GIC_SH_MASK191_160 Interrupt status for interrupt pins 191:160

0x0418 GIC_SH_MASK223_192 Interrupt status for interrupt pins 223:191

0x041C GIC_SH_MASK255_224 Interrupt status for interrupt pins 255:192

Table 8.33 Global Interrupt Set Mask Register Mapping (continued)

Offset Acronym Register Name
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In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_MASK63_32 indicates that this register handles the masking for interrupts 63:32.

Figure 8.29 GIC Interrupt Mask Register Format  

8.5.3.14 Global Interrupt Pending Registers (GIC_SH_PENDx_y — See Table 8.37 for Mapping)

There are eight Global Interrupt Pending registers to cover the pending status of all 256 possible system interrupts. 
These read-only registers are set by hardware when an external interrupt is pending. 

These registers work in conjunction with the eight Global Interrupt Set Mask (GIC_SH_SMASKn), Global Interrupt Reset 
Mask (GIC_SH_RMASKn), and Global Interrupt Mask (GIC_SH_MASKn) registers to manage and process interrupts. Refer 
to Section 8.3.3, "Configuring Interrupt Sources" for more information.

These registers are located at the following eight offsets.  

In the register below, the x_y nomenclature indicates the bit range covered by each register shown above. For exam-
ple, GIC_SH_PEND63_32 indicates that this register handles the interrupt pending status for interrupts 63:32.

Figure 8.30 GIC Interrupt Pending Register Format   

31 0

GIC_SH_MASKx_y

Table 8.36 Global Interrupt Mask Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_MASKx_y 31:0 Each bit in this register represents an interrupt source.
Reports which of the external interrupt sources are 
enabled. Used by software to determine which interrupt 
sources are currently enabled.

R 0x00000000

Table 8.37 Global Interrupt Pending Register Mapping

Offset Acronym Register Name

0x0480 GIC_SH_PEND31_0 Interrupt pending status for interrupt pins 31:0

0x0484 GIC_SH_PEND63_32 Interrupt pending status for interrupt pins 63:32

0x0488 GIC_SH_PEND95_64 Interrupt pending status for interrupt pins 95:64

0x048C GIC_SH_PEND127_96 Interrupt pending status for interrupt pins 127:96

0x0490 GIC_SH_PEND159_128 Interrupt pending status for interrupt pins 159:128

0x0494 GIC_SH_PEND191_160 Interrupt pending status for interrupt pins 191:160

0x0498 GIC_SH_PEND223_192 Interrupt pending status for interrupt pins 223:191

0x049C GIC_SH_PEND255_224 Interrupt pending status for interrupt pins 255:192

31 0

GIC_SH_PENDx_y
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8.5.3.15 Global Interrupt Map to Pin Registers (GIC_SH_MAPx_y)

There are up to 256 Global Interrupt Map-to-Pin registers in the GIC to cover the mapping of all 256 possible system 
interrupts. This corresponds to one register per external interrupt signal. The number of registers instantiated at build 
time depends on the number of external system interrupts. These are write-only registers. Software is not expected to 
change these registers frequently. Software is expected to keep a back-up copy of these registers in memory so that 
Read-Modify-Write hazards are avoided. 

Each interrupt pin can be mapped to one of three signal types: SI_Int[5:0] or SI_NMI. Bits 31:30 of this register are 
used to indicate to which signal type the interrupt is mapped. Only one of these bits can be set at any given time. Bits 
5:0 indicate the actual mapping for each external interrupt pin. For example, if bit 31 of this register is set, the exter-
nal interrupt is routed to the SI_Int[5:0] pins of the appropriate core . 

For the register offset addresses corresponding to each register, refer Table 8.5, "Mapping of External Interrupts"

Figure 8.31 GIC Interrupt Map to Pin Register Format    

Table 8.38 Global Interrupt Pending Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_PENDx_y 31:0 There are eight Interrupt Pending register that are used to 
indicate the pending status of all 256 possible interrupts in 
the system Each bit indicates which of the external inter-
rupt sources are asserted/pending before masking.

Used by software to find the external source that caused 
the CPU interrupt.

R Undefined

31 30 29 16 15 8 7 6 5 0

MAP_TO_PIN MAP_TO_NMI R GID R MAP

Table 8.39 Global Interrupt Map to Pin Register Bit Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

MAP_TO_PIN 31 If this bit is set, this interrupt source is mapped to a core interrupt pin 
(specified by the MAP field below). 
Only one of the MAP_TO_PIN or MAP_TO_NMI bits can be set at any 
one time.

RW 0x1

MAP_TO_NMI 30 If this bit is set, this interrupt source is mapped to NMI. 
Only one of the MAP_TO_PIN or MAP_TO_NMI, or MAP_TO_YQ bits 
can be set at any one time.

RW 0

Reserved 29:16 Read as 0x0. Writes ignored. Must be written with a value of 0x0. - 0
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GID 15:8 This field contains the Guest ID of the guest context to which this inter-
rupt is targeted. The Hypervisor is expected to program this field prior to 
initializing interrupts in the system. This field is set to zero if this inter-
rupt is to be assigned on the root interrupt bus of the core. 

To optimize for area, a group of external interrupt sources may share a 
common GID field value and thus the GID register field may not have a 
physical existence for the higher indexed external interrupt sources of the 
group. The physical existence of this register field is controlled via a 
build time parameter. In the case where a physical GID register field does 
not exist for an external interrupt source, that external interrupt source 
uses the GID field value from whatever the next lower indexed external 
interrupt source which has a physical GID register field. Software can 
determine the physical existence of this register field by reading the 
GuestID Group Config Registers. Any writes to a physically non-existing 
GID field is discarded and thus does not alter the group's GID. Any reads 
from a physically non-existing GID field returns the group's GID value.

R/W 4

MAP 5:0  When the MAP_TO_PIN bit is set, this field contains the encoded value 
of the core interrupts signals Int[62:0]. 

In EIC mode, this represents one less than the EIC interrupt level (e.g. a 
value of 0x20 represents interrupt level 21). 

For non-EIC mode, the value represents the CPU interrupt to be asserted 
(e.g. a value of 0x03 represents interrupt 3), and only values of 0 to 5 are 
legal.

When virtualization is supported in EIC mode, the root assigned inter-
rupts should be programmed with a higher RIPL than the guest assigned 
interrupts. This condition is only applicable to root and guest assigned 
interrupts which are programmed to route to the same core. (This descrip-
tion needs to be added on top of the existing description for the MAP 
field.)

RW 0

Table 8.39 Global Interrupt Map to Pin Register Bit Descriptions (continued)

Register Fields

Description
Read/
Write Reset StateName Bits
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8.5.3.16 Global Interrupt Map to Core Registers (GIC_SH_MAPn_CORE31:0) — See Table 8.5 for 
Mapping)

There are up to 512 Global Interrupt Map-to-Core registers in the GIC to cover the mapping of all 256 possible sys-
tem interrupts. This corresponds to two registers per external interrupt signal. However, the high-order register is not 
used in the P6600 core as described in Section 8.5.3.16, "Global Interrupt Map to Core Registers 
(GIC_SH_MAPn_CORE31:0) — See Table 8.5 for Mapping)".

The number of registers instantiated at build time depends on the number of external system interrupts. These are 
write-only registers. Software is not expected to change these registers frequently. Software is expected to keep a 
back-up copy of these registers in memory so that Read-Modify-Write hazards are avoided. 

For the register offset addresses corresponding to each register, refer Table 8.5, "Mapping of External Interrupts"

Figure 8.32 GIC Interrupt Map to Core31:0 Register Format  

31 0

GIC_SH_MAPi_COREn

Table 8.40 Global Interrupt Map to Core31:0 Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

GIC_SH_MAPi_COREn 31:0 Setting any bit in this register causes the interrupt source 
to be routed to the corresponding core. 
For all GIC_SH_MAPi_CORE registers, only one bit may 
be set at a time. That is, an interrupt source is routed to 
one and only one core.

W 0
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8.5.3.17 DINT Send to Group Register (GIC_VB_DINT_SEND Offset 0x6000)

This register allows software to assert the EJ_DINT_GROUP signal directly. Refer to Section 8.3.11 “Debug 
Interrupt Generation” for more information. 

Figure 8.33 DINT Send to Group Register Format  

See Chapter 14, “Multi-CPU Debug” on page 735 for more information about how this register is used.

31 1 0

R SEND_DINT

Table 8.41 DINT Send to Group Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

R [31:1] Read as Zero. Writes ignored. - 0x0

SEND_DINT [0] If this register field is written with a value of 0x1, the 
EJ_DINT_GROUP signal is asserted in a one-shot manner. 

W 0x0
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8.6 GIC Core-Local and Core-Other Register Set

8.6.1 Core-Local and Core-Other Register Maps

The Core-Local and Core-Other interrupt register maps are described in Table 8.42 below. For the base addresses of 
these blocks, see Table 8.1. Each core in the P6600 core contains a set of these registers.

The physical address for the registers within the Core-Local section are calculated as follows:

Core-Local_Register_Physical_Address = GIC_BaseAddress + Core-Local_BaseOffset + 
Register Offset

Similarly, for the Core-Other section:

Core-Other_Register_Physical_Address = GIC_BaseAddress + Core-Other_BaseOffset + 
Register Offset

All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from unpopulated 
registers in the GCMP address space returns 0x0, and writes to those locations is silently dropped without generating 
any exceptions. 

Table 8.42 Core-Local and Core-Other Register Maps 

Register Offset Name Type Description

0x0000 Local Interrupt Control Register 
(GIC_COREi_CTL)

R/W Enable EIC Mode.

0x0004 Local Interrupt Pending Register 
(GIC_COREi_PEND)

R Status of the local interrupts before masking.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

0x0008 Local Mask Register (GIC_COREi_MASK) R Mask bits, if set, enables the corresponding 
interrupts in the interrupt vector. 
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

0x000c Local Reset Mask Register 
(GIC_COREi_RMASK)

W Setting a bit in this register causes the corre-
sponding bits in the GIC_COREi_MASK reg-
ister to be cleared atomically with respect to 
other bits.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.
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0x0010 Local Set Mask Register 
(GIC_COREi_SMASK)

W Setting a bit in this register causes the corre-
sponding bits in the GIC_COREi_MASK reg-
ister to be set atomically with respect to other 
bits.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

0x0040 Local WatchDog Map-to-Pin Register 
(GIC_COREi_WD_MAP)

R/W This register is used to route the local Watch-
Dog interrupt to the desired core pin.

0x0044 Local GIC Counter/Compare Map-to-Pin 
Register
(GIC_COREi_COMPARE_MAP)

R/W This register is used to route the local GIC 
Compare/Count Interrupt to the desired core 
pin.
This is an optional register instantiated at IP 
configuration time.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

0x0048 Local CPU Timer Map-to-Pin Register 
(GIC_COREi_TIMER_MAP)

R/W This register is used to route the local CPU 
Timer interrupt to the desired core pin.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

0x004c Local CPU Fast Debug Channel Map-to-Pin 
Register (GIC_COREi_FDC_MAP)

R/W This register is used to route the local CPU 
Fast Debug Channel interrupt to the desired 
core pin.
This is an optional register instantiated at IP 
configuration time.

0x0050 Local Perf Counter Map-to-Pin Register 
(GIC_COREi_PERFCTR_MAP)

R/W This register is used to route the local Perfor-
mance Counter interrupt to the desired core 
pin.
This is an optional register instantiated at IP 
configuration time.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

Table 8.42 Core-Local and Core-Other Register Maps (continued)

Register Offset Name Type Description
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0x0054 Local SWInt0 Map-to-Pin Register
(GIC_COREi_SWInt0_MAP)

R/W This register is used to route the local SWInt0 
interrupt to the desired core pin. 
This is an optional register instantiated at IP 
configuration time.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

0x0058 Local SWInt1 Map-to-Pin Register
(GIC_COREi_SWInt1_MAP)

R/W This register is used to route the local SWInt1 
interrupt to the desired core pin. 
This is an optional register instantiated at IP 
configuration time.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

0x0080 Core-Other Addressing Register
(GIC_COREi_OTHER_ADDR)

R/W Sets the VPENum of the register that is 
accessed through the Core-Other address 
space. 

0x0088 Core-Local Identification Register
(GIC_COREi_IDENT)

R Indicates the Core number of the local Core.

0x0090 Programmable/Watchdog Timer0 Config Reg-
ister
(GIC_COREi_WD_CONFIG0)

R/W Local Programmable or Watchdog Timer0 
related registers. See register description for 
more details.

0x0094 Programmable/Watchdog Timer0 Count Reg-
ister 
(GIC_COREi_WD_COUNT0)

R

0x0098 Programmable/Watchdog Timer0 Initial 
Count Register 
(GIC_COREi_WD_INITIAL0)

R/W

0x00A0 CompareLo Register 
(GIC_COREi_CompareLo)

R/W Compare Register. See register description for 
more details.
Note that for each offset address, there are two 
copies of each register. One copy is for the 
root and the other copy is for the guest. Refer 
to Section 8.6.2, "Guest and Root Register 
Accesses" for more information.

0x00A4 CompareHi Register 
(GIC_COREi_CompareHi)

R

0x0200 Core-Local Counter Offset Register
(GIC_COREi_COFFSET)

R/W Stores the counter offset.

0x3000 Core-Local DINT Group Participate Register
(GIC_VL_DINT_PART
GIC_VO_DINT_PART)

R/W Controls whether this core pays attention to 
the DebugInt_GroupRequest register. 

0x3080 Core-Local DebugBreak Group Register
(GIC_VL_BRK_GROUP
GIC_VO_BRK_GROUP)

R/W Allows multiple Core to simultaneously enter 
Debug Mode. 

All Other Offsets RESERVED Reserved for Future Extensions.

Table 8.42 Core-Local and Core-Other Register Maps (continued)

Register Offset Name Type Description
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8.6.2 Guest and Root Register Accesses

As shown in the above table, the P6600 core supports both Root and Guest registers. When virtualization is enabled 
in the P6600 core, there are two copies of these registers at the same address offset. One copy is for the root and the 
other copy is for the guest. The root software can accesses the root copy and also the guest copy by setting the 
R2GEN field to ‘1’ in GIC_COREi_CTL register. Refer to Section 8.6.3.1, "Local Interrupt Control Register 
(GCI_COREi_CTL — Offset 0x0000)" for more information. The guest software cannot access the root copy and  
only the qualified guests may accesses the guest copy of this register. 

8.6.3 Core-Local and Core-Other Section Register Description

The following subsections describes the registers of the Core-Local and Core-Other sections. 

8.6.3.1 Local Interrupt Control Register (GCI_COREi_CTL — Offset 0x0000)

Figure 8.34 Local Interrupt Control Register Format  

31 7 6 5 4 1 0

R GNMI R2GEN R EIC_MODE

Table 8.43 Local Interrupt Control Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:7 Read as 0x0. Writes ignored. Must be written with a 
value of 0x0. 

R 0x0000_00

GNMI 6 This allows the root control over guest NMI. Applies to 
core-local guest NMI sources. The Guest NMI enable is 
encoded as follows:

0: Guest NMI disabled
1: Guest NMI enabled

R/W 0

R2GEN 5 This bit enables root R/W to duplicate guest registers at 
same address.
0: Root accesses root copy at address. 
1: Root accesses guest copy at address. 

R/W 0

RESERVED 4:1 Read as 0x0. Writes ignored. Must be written with a 
value of 0x0. 

R 0x0

EIC_MODE 0 Writing a 1 to this bit sets the local interrupt controller to 
EIC (External Interrupt Controller) mode. 

R/W 0
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8.6.3.2 Local Interrupt Pending Register (GIC_COREi_PEND — Offset 0x0004)

This register stores the local interrupt pending information before masking.

Figure 8.35 Local Interrupt Pending Register Format  

8.6.3.3 Local Interrupt Mask Register (GCI_COREi_MASK — Offset 0x0008)

This is a read-only register. Refer to Section 8.3.3, "Configuring Interrupt Sources" for more information.

Figure 8.36 Local Interrupt Mask Register Format  

31 7 6 5 4 3 2 1 0

R FDC
_PEND

SWINT1
_PEND

SWINT0
_PEND

PERFCOUNT
_PEND

TIMER
_PEND

COMPARE
_PEND

WD
_PEND

Table 8.44 Local Interrupt Pending Register Bit Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

R 31:7 Read as 0x0. Writes ignored. Must be written with a value 
of 0x0. 

0

FDC_PEND 6 Indicates the status of the local Fast Debug Channel inter-
rupt prior to masking.

R Undefined

SWINT1_PEND 5 Indicates the status of the local software interrupt 1 prior 
to masking.

R Undefined

SWINT0_PEND 4 Indicates the status of the local software interrupt 0 prior 
to masking.

R Undefined

PERFCOUNT_PEND 3 Indicates the status of the local Performance Counter 
interrupt prior to masking. 

R Undefined

TIMER_PEND 2 Indicates the status of the local CPU Timer interrupt prior 
to masking.

R Undefined

COMPARE_PEND 1 Indicates the status of the local Count/Compare interrupt 
prior to masking.

R Undefined

WD_PEND 0 Indicates the status of the local WatchDog interrupt prior 
to masking.

R Undefined

31 7 6 5 4 3 2 1 0

R FDC_
MASK

SWINT1_
MASK

SWINT0_
MASK

PERFCOUNT_
MASK

TIMER_
MASK

COMPARE_
MASK WQ_MASK

Table 8.45 Local Interrupt Mask Register Bit Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:7 Read as 0x0 R 0x0000_00

FDC_MASK 6 If this bit is set, the local Fast Debug Channel interrupt is 
enabled.

R 1

SWINT1_MASK 5 If this bit is set, the local software interrupt 1 is enabled. R 1
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8.6.3.4 Local Interrupt Reset Mask Register (GCI_COREi_RMASK — Offset 0x000C)

Figure 8.37 Local Interrupt Reset Mask Register Format  

SWINT0_MASK 4 If this bit is set, the local software interrupt 0 is enabled. R 1

PERFCNT_MASK 3 If this bit is set, the local Performance Counter Interrupt is 
enabled. 

R 1

TIMER_MASK 2 If this bit is set, the local CPU Timer Interrupt is enabled. R 1

COMPARE_MASK 1 If this bit is set, the local Count/Compare Interrupt is enabled. R 1

WQ_MASK 0 If this bit is set, the local WatchDog Interrupt is enabled. R 1

31 7 6 5 4 3 2 1 0

R FDC_
RMASK

SWINT1_
RMASK

SWINT0_
RMASK

PERFCOUNT_
RMASK

TIMER_
RMASK

COMPARE_
RMASK WQ_RMASK

Table 8.46 Local Interrupt Reset Mask Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:7 Writes ignored. Must be written with a value of 0x0. Undefined

FDC_RMASK 6 Writing a 0x1 to this bit disables the local Fast Debug 
Channel interrupt

W Undefined

SWINT1_RMASK 5 Writing a 0x1 to this bit disables the local software inter-
rupt (SWInt1).

W Undefined

SWINT0_RMASK 4 Writing a 0x1 to this bit disables the local software inter-
rupt (SWInt0). 

W Undefined

PERFCNT_RMASK 3 Writing a 0x1 to this bit disables the local Performance 
Counter Interrupt.

W Undefined

TIMER_RMASK 2 Writing a 0x1 to this bit disables the local Timer Interrupt. W Undefined

COMPARE_RMASK 1 Writing a 0x1 to this bit disables the local Count/Compare 
Interrupt.

W Undefined

WQ_RMASK 0 Writing a 0x1 to this bit disables the local WatchDog 
Timer Interrupt.

W Undefined

Table 8.45 Local Interrupt Mask Register Bit Descriptions (continued)

Register Fields

Description
Read/
Write Reset StateName Bits
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8.6.3.5 Local Interrupt Set Mask Register (GCI_COREi_SMASK — Offset 0x0010)

This is a write-only register. For more information, refer to Section 8.3.3, "Configuring Interrupt Sources".

Figure 8.38 Local Interrupt Set Mask Register Format  

8.6.3.6 Local Map to Pin Registers (Offset 0x0040 - 0x0058 — See Table 8.48 for Mapping)

This section includes the local map to pin registers described in Table 8.48. The bit assignments for each of these reg-
isters is identical. There is one register per instantiated core. The ‘i’ indicates a number between 1 and 6 6depending 
on the number of cores in the system.

31 7 6 5 4 3 2 1 0

R FDC
SMASK

SWINT1_
SMASK

SWINT0_
SMASK

PERFCOUNT_
SMASK

TIMER_
SMASK

COMPARE_
SMASK WQ_SMASK

Table 8.47 Local Interrupt Set Mask Register Bit Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:7 Writes ignored. Must be written with a value of 0x0. Undefined

FDC_SMASK 6 Writing a 0x1 to this bit sets the local Fast Debug Channel 
Interrupt

W Undefined

SWINT1_SMASK 5 Writing a 0x1 to this bit sets the local SWInt1 interrupt mask. W Undefined

SWINT0_SMASK 4 Writing a 0x1 to this bit sets the local SWInt0 interrupt mask. W Undefined

PERFCNT_SMASK 3 Writing a 0x1 to this bit sets the local performance counter 
interrupt mask.

W Undefined

TIMER_SMASK 2 Writing a 0x1 to this bit sets the local Timer Interrupt mask. W Undefined

COMPARE_SMASK 1 Writing a 0x1 to this bit sets the local GIC Count/Compare 
Interrupt mask.

W Undefined

WQ_SMASK 0 Writing a 0x1 to this bit sets the local WatchDog Timer Inter-
rupt mask.

W Undefined

Table 8.48 Local Map-to-Pin Register Mapping

Offset Acronym Register Name

0x0040 GIC_COREi_WD_MAP Local Watchdog Map-to-Pin register.

0x0044 GIC_COREi_COMPARE_MAP Local Counter/Compare Map-to-Pin register.

0x0048 GIC_COREi_TIMER_MAP Local Timer Map-to-Pin register.

0x004C GIC_COREi_FDC_MAP Local Fast Debug Channel Map-to-Pin register.

0x0050 GIC_COREi_PERFCTR_MAP Local Performance Counter Map-to-Pin register.

0x0054 GIC_COREi_SWInt0_MAP Local Software Interrupt 0 Map-to-Pin register.

0x0058 GIC_COREi_SWInt1_MAP Local Software Interrupt 1 Map-to-Pin register.
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Figure 8.39 Local Map-to-Pin Register Format  

8.6.3.7 Core-Other Addressing Register (GCI_COREi_OTHER_ADDR — Offset 0x0080)

This register must be written with the correct value before accessing the Core-Other address section.

Figure 8.40 Core-Other Addressing Register Format  

31 30 29 6 5 0

MAP_TO_PIN MAP_TO_NMI R MAP

Table 8.49 Local Map to Pin Register Bit Descriptions  

Register Fields

Description
Read/
Write Reset StateName Bits

MAP_TO_PIN 31 If this bit is set, this interrupt source is mapped to a core 
interrupt pin (specified by the MAP field below). 
Only one of the MAP_TO_PIN or MAP_TO_NMI bits can be 
set at any one time.

R/W 0x1 for Timer, PerfCount 
and SWIntx;
0x0 for WatchDog

MAP_TO_NMI 30 If this bit is set, this interrupt source is mapped to a core NMI 
interrupt pin of the root interface. 
Note the the root controls the generation of NMI interrupts 
from guest interrupt sources and thus the software access to 
this bit is gated by GIC_SH_CONFIG.GNMI field setting.

Only one of the MAP_TO_PIN or MAP_TO_NMI bits can be 
set at any one time.

R/W 0x1 for WatchDog; 0x0 for 
Others

R 29:6 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

0

MAP 5:0 When the MAP_TO_PIN bit is set, this field contains the 
encoded value of guest interrupts signals SI_Int[5:0] (for 
root), and SI_GInt[5:0] (for guest).

In EIC mode, this represents one less than the EIC interrupt 
level (e.g. a value of 0x20 represents interrupt level 21). 

For non-EIC mode, the value represents the CPU interrupt to 
be asserted (e.g. a value of 0x03 represents interrupt 3), and 
only values of 0 to 5 are legal. Also in non-EIC mode, the 
guest software is not allowed write accesses to this field.

W 0x5 for Timer, PerfCount, 
and Fast Debug Channel,

0x0 for all others

31 16 15 0

R VPENUM

Table 8.50 Core-Other Addressing Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

R 31:16 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0
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8.6.3.8 Core-Local Identification Register (GCI_COREi_IDENT — Offset 0x0088)

The aliased memory scheme is normally invisible to software when accessing GIC registers within the Core-Local 
Control Block. What actually happens is that an offset is used to make a subset of the GIC registers appear in the 
Core-Local addressing Window. 

This register reports the Core number that is used as the addressing offset for the Core-Local Control Block. 

Figure 8.41 Core-Local Addressing Register Format  

VPENUM 15:0 Number of the register set to be accessed in the Core-Other address 
space. Note that in the P6600 core, there is one VPE per core, hence 
a VPE and a core are the same thing.

R/W 0

31 0

CORENUM

Table 8.51 Core-Local Identification Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

CORENUM 31:0 This number is used as an index to the registers within the GIC 
when accessing the Core-local control block for this core. Note 
that in the P6600 core, there is one VPE per core, hence a VPE 
and a core are the same thing.

R -

Table 8.50 Core-Other Addressing Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits



 

518 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

8.6.4 Local Timer Register Descriptions

8.6.4.1 Watchdog Timer Config Register (GCI_COREi_WD_CONFIG0 — Offset 0x0090)

For more information on the usage of this register, refer to Section 8.3.7.2, "GIC Watchdog Timer".

Figure 8.42 Watchdog Timer Config Register Format  

31 9 8 7 6 5 4 3 1 0

R GEN WDRESET WDINTR WAIT DEBUG TYPE WDSTART

Table 8.52 Watchdog Timer Config Register Bit Descriptions 

Register Fields

Description
Read/
Write

Reset 
StateName Bits

R 31:9 Read as 0x0. Writes ignored. Must be written with a value of 
0x0. 

0

GEN 8 Guest Enable for WatchDog timer use. Only the Root has access 
to this bit and it allows the root to control the guest software 
access to WatchDog timer related registers 
(GIC_COREi_WD_[MAP/CONFIG/COUNT). This bit is 
encoded as follows:

0 : Guest software not allowed access to WatchDog timer related 
registers.
1 : Guest software allowed access to WatchDog timer related 
registers.

R/WC 0

WDRESET 7 Status bit which indicates that a Watchdog was responsible for 
resetting the P6600 MPS. A write of 0x1 to this bit of this regis-
ter automatically clears this bit. This bit needs to survive a 
watchdog triggered reset.

R/WC 0

WDINTR 6 Status bit which indicates that a Watchdog was responsible for 
generating this interrupt. A write of 0x1 to this bit automatically 
clears the bit. Typically this interrupt is routed to the NMI inter-
rupt input of the core, but could be routed to another interrupt as 
well.

R/WC Undefined

WAIT 5 Stop countdown if the core is in an implementation-defined low 
power mode (including the mode which is entered on a WAIT 
instruction).
0x0 - Stop countdown if core is in low power mode.
0x1 - Low power mode has no effect on countdown.

R/W 0

DEBUG 4 Stop countdown if the core is in debug mode.
0x0 - Stop countdown if core is in Debug Mode (CP0 
DEBUGDM bit is set).
0x1 - Debug Mode has no effect on countdown.

R/W 0
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8.6.4.2 Watchdog Timer Count Register (GIC_COREi_WD_COUNT — Offset 0x0094)

For more information on the usage of this register, refer to Section 8.3.8.3, "Watchdog Timer Interrupts".

Figure 8.43 Watchdog Timer Count Register Format  

TYPE 3:1 Interrupt type. There are three ways to setup the watchdog timer 
which are encoded into this field: 

0x0: WD One Trip Mode. Once the counter decrements to 0x0, it 
causes an interrupt, typically and NMI, and then stops. 
0x1: WD Second Countdown Mode. Once the counter decre-
ments to 0x0, the initial value is reloaded and the countdown 
continues. If on the second trip, the counter reaches 0x0, the 
SI_Reset signal is asserted to all cores in the system. 
3. Programmable Interrupt Timer (PIT) Mode. This asserts an 
interrupt, reloads, and keeps going.

R/W 0

WD_START 0 Watchdog timer start/stop. Setting this bit starts the Watchdog 
timer, while clearing the bit stops the timer.

0 - Stop the Watchdog timer
1 - Reload the initial count and start the Watchdog timer.

R/W 0

31 0

COUNT

Table 8.53 Watchdog Timer Count Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

COUNT 31:0 This read-only register indicates the state of the decrementing 
counter. The width of the counter is 32 bits.

R Undefined

Table 8.52 Watchdog Timer Config Register Bit Descriptions (continued)

Register Fields

Description
Read/
Write

Reset 
StateName Bits
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8.6.4.3 Watchdog Timer Initial Count Register (GIC_COREi_WD_INITIAL — Offset 0x0098)

For more information on the usage of this register, refer to Section 8.3.8.3, "Watchdog Timer Interrupts".

Figure 8.44 Watchdog Timer Initial Count Register Format  

8.6.4.4 Compare Low Register (GCI_COREi_ComparLo — Offset 0x00A0)

For more information on the usage of this register, refer to Section 8.3.8.3, "Watchdog Timer Interrupts".

Figure 8.45 CompareLo Register Format  

8.6.4.5 Core-Local CompareHi Register (GCI_COREi_ComparHi — Offset 0x00A4)

For more information on the usage of this register, refer to Section 8.3.8.3, "Watchdog Timer Interrupts".

Figure 8.46 Local CompareHi Register Format  

31 0

INIT

Table 8.54 Watchdog Timer Initial Count Register 

Register Fields

Description
Read/
Write Reset StateName Bits

INIT 31:0 Initial value to be loaded into the Watchdog counter. Needs to 
be done with the counter disabled; otherwise, the results are 
UNPREDICTABLE.

R/W Undefined

31 0

COMPARELO

Table 8.55  CompareLo Register Bit Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

COMPARELO 31:0 When the contents of GIC_COREi_CompareLo and 
GIC_COREi_CompareHi registers match the contents of 
GIC_SH_CounterLo and GIC_SH_CounterHi, the 
COREi_Compare interrupt is triggered. 
This registered interrupt can only be deasserted by writing either 
the GIC_COREi_CompareLo or GIC_COREi_CompareHi regis-
ters. 

R/W 0xFFFF_FFFF

31 0

COMPAREHI
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8.6.4.6 Local Counter Offset Register (GCI_COREi_COFFSET — Offset 0x0200)

Indicates the counter offset. The value in the Hi and Lo Counter registers must be offset by the value in the COFFSET 
field.

Figure 8.47 Local Counter Offset Register Format  

8.6.4.7 Core-Local DINT Group Participate Register (GIC_Vx_DINT_PART — Offset 0x3000)

When bit 0 of this register is set, the local core monitors the state of the DINT_Send_to_Group register in the Shared 
register set, as well as the EJ_DINT_IN pin for debug activity. Refer to Section 8.3.11, "Debug Interrupt Generation" 
for more information.

Figure 8.48 Core-Local EIC DINT Group Participate Register Format  

Table 8.56 Core-Local CompareHi Register 

Register Fields

Description
Read/
Write Reset StateName Bits

COMPAREHI 31:0 See description for GIC_COREi_CompareLo. The width of this 
register matches the width of GIC_SH_COUNTER.

R/W All instantiated 
bits = 0x1

31 8 7 0

Reserved COFFSET

Table 8.57 Local Counter Offset Register Bit Descriptions 

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:8 Reads as 0x0. Writes ignored. Must be written with a value of 
0x0.

R 0x0000_00

COFFSET 7:0 Counter Offset. Guest read of GIC_SH_CounterHi/Lo must be 
offset by this value. 

R/W 0x00

31 1 0

R DINT_GP

Table 8.58 Core-Local DINT Group Participate Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

RESERVED 31:1 Reads as 0x0. Writes ignored. Must be written with a value of 0x0. R 0x0
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See Chapter 14, “Multi-CPU Debug” on page 735 for more information about how this register is used.

8.6.4.8 Core-Local DebugBreak Group Register (GIC_Cx_BRK_GROUP — Offset 0x3080)

When the local core enters Debug Mode (denoted by the local EJTAG_TAP.DebugM bit being asserted), this register 
defines which other cores in the system subsequently also receives a Debug Interrupt. This allows multiple cores to be 
synchronized to a single software debugger by entering debug mode somewhat simultaneously.

Figure 8.49 Core-Local EIC DINT Group Participate Register Format  

See Chapter 14, “Multi-CPU Debug” on page 735 for more information about how this register is used.

DINT_GP 0 If this bit is set, the local core pays attention to the 
DINT_Send_to_Group register as well as the external EJ_DINT_IN 
signal pin. 
For this case, when the Send_DINT bit within the 
DINT _Send_to_Group register is asserted (or the external 
EJ_DINT_IN signal is asserted), the EJ_DINT or EJ_DINT_1 signal of 
the local core is asserted. 
If this bit is clear, the local core is not affected by the 
DINT_Send_to_Group register nor the external EJ_DINT_IN pin sig-
nal. 

R/W 0x1

31 0

JOIN_DB

Table 8.59 Core-Local DebugBreak Group Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits

JOIN_DB 31:0 Each bit in this register represents a core in the system. 
If the bit is set, the corresponding core has its EJ_DINT or 
EJ_DINT_1 signal asserted when the local core enters Debug Mode. 
If the bit is clear, the corresponding core is not affected when the core 
enters Debug Mode.
The bit which represents the local core cannot be used to disable 
Debug Mode for the local core. For example, if the local core is repre-
sented by bit i, clearing bit i does NOT disable Debug Mode for the 
local core. 

R/W All zeros

Table 8.58 Core-Local DINT Group Participate Register Bit Descriptions

Register Fields

Description
Read/
Write Reset StateName Bits
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8.7 GIC User-Mode Visible Section

The Shared, Core-local, and Core-other sections are meant to be located in privileged system virtual address space, in 
which only kernel mode software can initialize and update the interrupt controller.

A separate 64KB address space is allocated so that it may be mapped to user-mode virtual address space. Within this 
address space are aliases for GIC registers that are read so often that it makes sense to make them available to user-
mode programs without requiring a system call. The aliases for these registers are read-only. Currently, the only reg-
isters that are aliased into this space are the shared Counter registers. 

The addresses for the registers within the User-Mode Visible Section of the GIC are calculated as follows:

SharedSection_Register_Physical_Address = GIC_baseaddress + 
UMVisible_Section_baseoffset + Register_Offset

Table 8.60 User-Mode Visible Section Register Map

Register Offset Name Type Description

0x0000 GIC CounterLo
(GIC_SH_CounterLo)

R Read-only alias for GIC Shared CounterLo.

0x0004 GIC CounterHi
(GIC_SH_CounterHi)

R Read-only alias for GIC Shared CounterHi.

Any Other Offsets Reserved Reserved for future extensions.
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I/O Memory Management Unit

The I/O Memory Management Unit (IOMMU) consists of a software-visible Translation Lookaside Buffer (TLB) 
with a memory-mapped register-based data and command interface to access the TLB and configure the IOMMU. 
The IOMMU serves exactly the same purpose as the CPU MMU in the context of I/O devices. In a standard SOC 
implementation, the CPU MMU is a requirement for virtual memory support. The IOMMU, on the other hand, is 
optional as devices can also be initialized by kernel-mode device drivers.

In some applications, such as those that employ a GPU (Graphic Processing Unit), the graphics application may oper-
ate in its own virtual address space, thus requiring an MMU to translate to physical addresses. 

9.1 IOMMU Overview

The following subsections describe an overveiw of the IOMMU.

9.1.1 IOMMU and Virtualization

The P6600 Multiprocessing System implements the MIPS Virtualization Module, which requires a second level of 
translation due to the introduction of the additional level of privilege called Root. Guest addresses must also be trans-
lated through the Root’s MMU to gain access to system physical memory.

In the P6600 Multiprocessing System, the hypervisor-managed IOMMU would be programmed with guest physical 
to root physical address mappings, typically with large pages to minimize the number of guest exits to root. Use of 
large pages allows root to program once for the entire guest address space. Subsequently, guest can program any 
device with root intervention only required to arbitrate access to the shared resource.

9.1.2 IOMMU Address Translation

The P6600 core supports a software-managed IOMMU that is programmed by the hypervisor. The hypervisor initial-
izes the IOMMU with mappings for guest and/or root addresses. This configuration is expected to be sufficient for 
most applications, but more importantly is the minimum requirement for virtualization. It is assumed that the memory 
mapping requirements for a guest in this scenario are static - no capability exists to service a translation miss in the 
IOMMU and then restart a device request.

9.1.3 Overview of MIPS IOMMU Software Interface

The P6600 IOMMU provides the following feature set:

1. Native 32-bit addressing support (MIPS32 Module).

2. Hypervisor programmable CSRs (Control and Status Registers) to access the IOMMU TLB and Device Table.

3. Hypervisor programmable CSRs (Control and Status Registers) to configure the IOMMU.
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4. Hypervisor privileged commands for IOMMU TLB and Device Table management.

5. Error monitoring, logging and interrupt signaling capability.

6. Optional support for a I/O Page Table to translate device originated guest physical or root virtual addresses to 
system physical memory.

9.1.4 IOMMU Programming Model

In the P6600 Multiprocessing System, the hypervisor actively manages the IOMMU as a shared resource since multi-
ple active guests are supported and are context-switching in and out of guest mode, since the IOMMU TLB capacity 
may be limited for the multi-guest workload.

For the case where the IOMMU needs to be managed in a demand-based manner, the guest OS may execute a hyper-
call prior to device access in order to initialize the IOMMU with the appropriate mappings. In general, the hypercall 
need not be executed for every device access. The guest OS may request the hypervisor to program the IOMMU for a 
large range of guest physical addresses with large pages instead of prior to every device access.

9.2 IOMMU Virtual Memory Management

The Virtualization Module in the P6600 Multiprocessing System translates from Guest Virtual Address (GVA) to a 
Guest Physical Address (GPA) to a Root Physical Address (RPA) through a two step process. The RPA represents 
system physical memory. The GVA to GPA translation is done by the guest OS Page Table, while the GPA to RPA 
translation is done by the Page Table managed by hypervisor for the guest.

9.2.1 IOMMU Address Translation

A device may be programmed by Root or Guest privileged software. The latter is possible only if Hypervisor maps 
guest access through the CPU root MMU. The IOMMU explicitly distinguishes between root and guest device 
addresses through a combination of the Device Table and Segmentation Control Hypervisor programmed state.

The Segmentation Control registers are used to define the address spaces. The Device Table is used to provide root-
level control for the various steps of address translation in the IOMMU.

9.2.1.1 IOMMU Guest Address Translation

The IOMMU assumes that a guest programmed device always sources a Guest Physical Address (GPA) to the 
IOMMU. A guest programmed device can never bypass the IOMMU TLB. Any device request looks up the Device 
Table to determine the GuestID associated with the device. 

Subsequently, the IOMMU TLB must be accessed to obtain the corresponding RPA allocated to that guest for the 
GPA. Segmentation Control only applies to RVA and not GPA as guest addresses are always mapped through the 
IOMMU TLB.

9.2.1.2 IOMMU Root Address Translation

Root programmed device addresses require at most one step of address translation, to translate Root Virtual Address 
(RVA) to the Root Physical Address (RPA), though it is possible for hypervisor-programmed devices to bypass the 
IOMMU TLB using an RVA that decodes to an unmapped address segment of the Root Segmentation Control.

Any device request must be checked by a lookup of the Device Table. If the hypervisor has programmed the device 
with the RVA that decodes to a mapped segment of Root Segmentation Control, then an additional translation step 
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through the IOMMU TLB is required to convert the RVA to RPA. If the Hypervisor has programmed the device with 
an RVA that decodes to an unmapped segment of Root Segmentation Control, then the IOMMU TLB is bypassed.

9.2.2 IOMMU Block-Level Address Translation Flow

Figure 3.1 shows the IOMMU block-level flow for address translation. The Device Table, Error Queue and IOMMU 
TLB. The registers used to control Segmentation are described in Section 9.3.6.6 through Section 9.3.6.8 below. Seg-
mentation Control is further defined in the Enhanced Virtual Address (EVA) section in Chapter 3 of this manual.

Figure 9.1 IOMMU Address Translation

9.3 IOMMU Software Interface

The software interface supports commands for writing, reading, probing and invalidating the IOMMU TLB. In addi-
tion, the interface also allows for writing and reading the internal Device Table. The Device Table is required for all 
IOMMU configurations.

All TLB commands are mapped to a common Command register. The commands are encoded in the data of a store to 
the Command register. This format is followed as the TLB commands require the setup of multiple data registers 
prior to execution of a command. All Device Table accesses are loads (read) or stores (writes) executed with Device 
Table address are described in Section 9.3.1, "Device Table".

9.3.1 Device Table

The Hypervisor-managed Device Table supplies device-specific information required to enable IOMMU processing 
for a guest or root programmed DMA device.

Device
Table

Root
SegCtl

CPU

I/O Subsystem

IOMMU
Table

GPA -> RPA
RVA -> RPA

Guest 

Error
QueueCPU

Unmapped

Memory

Hit

Miss

Access

Root Access



 

528 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

In the IOMMU, a device request first causes a lookup of the Device Table which provides a GuestID. If the GuestID 
is non-zero, then the device address and GuestID are used to lookup the IOMMU TLB. If the GuestID field of the 
Device Table entry is zero, then Segmentation Control must be used to determine whether the root-programmed 
device address is mapped or unmapped. If mapped, then device address and GuestID are used to lookup the IOMMU 
TLB. If unmapped, then the IOMMU TLB is bypassed.

A load or store to the Device Table requires that the index be initialized before execution of the load or store to read 
or write the Device Table, respectively. In the case the width of the Device Table entry exceeds the width of the load 
or the store data, then a field in the Index will be used to index a 32-bit aligned word of the entry. 

Table 9.1 Device Table Entry Format 

Bit Position Acronym Field Name Description R/W Reset State

31:15 R Reserved Reserved field. Write as zero, returns zero when read. R Undefined

14 P Prefetch If the P bit is set, a read request may cause hardware to 
prefetch data from the address stream into the cache, provid-
ing the request is allowed to allocate. The allocate permission 
is determined by the transaction itself, or the AR field. Other-
wise, prefetching is disallowed.

R/W Undefined

13 AW Allocatate Write A write transaction may allocate the data of the specified size 
to the cache. 

R/W Undefined

12 AR Allocate Read A read transaction may allocate the data of the specified size 
to the cache. 

R/W Undefined

11 SE Sticky Error The Sticky Error (SE) bit is set by hardware when ERT = 1 
and an error for the device is encountered. When software 
writes to this bit, it is cleared by hardware.

R Undefined

10 ERT Error Tagging If the ERT bit is set, any transaction related to a device results 
in an error, and all subsequent transactions must be serviced 
as if they had errors also.

Error Tagging ends when the device table entry is rewritten to 
re-initialize the device. This may be a read-modify- write 
without change in content, i.e., a dummy write. The likely 
application of ERT is for devices that do not support error 
recovery.

R/W Undefined

9 ERD Error Reporting 
Disabled

Error reporting is disabled for the device. Software may set 
the bit to prevent reporting any further errors from the device, 
specifically within an interrupt handler that was invoked for 
an error from that device. This bit is encoded as follows:

0: Error reporting is enabled
1: Error reporting is disabled

R/W Undefined

8 V Valid The entry is valid. Software must initialize and mark as valid 
or invalid all device table entries which are logically accessi-
ble before use. 

An invalid Device Table entry causes an error. A DeviceID 
out-of-range of the table also causes an error.

R/W Undefined



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 529

9.3.2 TLB Commands

The IOMMU supports the following TLB commands. 

1. Write. Both Index and Random writes of the TLB are supported. EntryLo0, EntryLo1, EntryHi and PageMask data 
registers must be written before the write command itself is executed. The indexed write always supports 
EntryHiEHINV for invalidation on a per-entry basis. The Index must also be initialized prior to any indexed TLB 
write. In addition, software must initialize the Wired register to indicate the range of TLB entries that are consid-
ered wired and thus cannot be written to by a random TLB write. The Wired register is typically initialized once 
by software. Refer to Chapter 2 of this manual for more information on the Wired register. 

If the value of Index exceeds the number of TLB entries on a TLBWI, then the write is dropped, and an error 
may be logged providing error logging is enabled. The error encoding table is described below.

2. Read. EntryLo0, EntryLo1, EntryHi and PageMask data registers are loaded with the contents of a TLB entry at 
Index on execution of a read command. A read of the EntryLo0, EntryLo1, EntryHi and PageMask registers return 
the data to General Purpose Registers (GPRs).

3. Probe. This command determines whether there is an entry that matches the contents of the EntryHi and 
PageMask registers. These registers must be written before the probe command is executed. If there is a match, 
Index register is written with matching index. Otherwise the probe-fail bit is set in Index. Read of the Index sub-
sequently returns data to the GPRs.

4. Invalidate. Execution of the invalidate command invalidates any entry that matches EntryHiGuestID. The defini-
tion of the IOMMU TLB Invalidate command differs from the core TLB Invalidate in that the core command 
invalidates any entry for a guest process (ASID specific), while the IOMMU invalidates any entry for a guest.

5. Invalidate Flush. Execution of the invalidate flush command invalidates all entries in the IOMMU TLB. The 
definition of the IOMMU TLB Invalidate Flush command differs from the core TLB Invalidate Flush command 
in that the core invalidates any entry for a guest, while the IOMMU invalidate command invalidates all IOMMU 
TLB entries.

There is no command to invalidate by DeviceID. This is because the Hypervisor TLB mappings for a guest are glob-
ally applicable to the guest across all devices. If a device switches guest ownership, then it must refer to another 
guest’s mappings. If a device retains guest ownership, but is reprogrammed for the guest, then the device guest phys-
ical address must also be reprogrammed, but it will refer to the same or new guest mappings.

9.3.3 Device Table Commands

The IOMMU supports the following Device Table commands. 

1. Write. Execution of a store with Device Table address causes a write of the store’s data to the Device Table at 
entry specified by the Index register. This register must be initialized before execution of the store. If the value of 
the Index field exceeds the number of Device Table entries on a write to the Device Table, then the write is 
dropped and an error may be logged providing error logging is enabled.

7:0 GID GuestID Guest associated with device. GuestID is used to lookup the 
TLB. The GuestID determines whether device access is guest 
or root owned.

R/W Undefined

Table 9.1 Device Table Entry Format (continued)

Bit Position Acronym Field Name Description R/W Reset State
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2. Read. Execution of a load with Device Table address causes a read of an entry indexed by the Index register. This 
register must be initialized before execution of the store. Contents of the Device Table entry are returned to the 
appropriate GPR specified by the load.

9.3.4 TLB Command Format

To execute a command, software must write the Command data register with a legal value defined in Table 9.2 below. 
Each of the TLB related commands has a counterpart of the same name in the baseline instruction set.

Figure 9.2 TLB Command Register Format   

9.3.5 TLB Command to CP0 Register Relationship

When a TLB command is executed, the following IOMMU registers are updated as shown in Table 9.3. 

31 5 4 0

0 CMD

Table 9.2 Field Descriptions for PageMask Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 31:5 Ignored on write; returns zero on read. R 0

CMD 4:0 Command field. This field is encoded as follows:

00000: TLBWI — TLB Write Indexed
00001: TLBWR — TLB Write Random
00010: TLBR — TLB Read
00011: TLBP — TLB Probe
00100: TLBINV — TLB Invalidate
00101: TLBINVF — TLB Invalidate Flush
00110 - 11111: Reserved

R/W Undefined

Table 9.3 TLB Command to IOMMU Register Relationship

TLB Command Preceeding IOMMU Register Write Following IOMMU Register Read
Number of Data 

Accesses

TLBWI EntryLo0, EntryLo1, EntryHi, PageMask, 
Index

None 5

TLBWR EntryLo0, EntryLo1, EntryHi, PageMask None 4

TLBR Index EntryLo0, EntryLo1, EntryHi, PageMask 3

TLBP EntryHi Index 2

TLBINV EntryHi None 1

TLBINVF None None 0
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9.3.6 IOMMU Register Interface

As shown in the above table, the following IOMMU registers are used during the execution of TLB commands. The 
IOMMU registers are accessed using an offset that is relative to the IOCU base addresss located in the IOCU. The 
IOCU Base Address register stores the base address of the IOMMU registers when the device is in 32-bit address mode, 
and also stores the lower 32-bits of address when the device is in 40-bit address mode. When XPA is enabled, the 
IOCU Base Address Upper register is used to store the upper bits of the base address. Refer to Chapter 11, Section 
11.4.4.4 for more information on the IOCU Base Address register, and Section 11.4.4.5 for more information on the 
IOCU Base Address Upper register.

Table 9.4 lists the control and status registers in the IOMMU. Note that these registers have the same names as their 
CP0 counterparts and perform basically the same functions, but they are contained within the IOMMU and are 
accessed using the offset addresses shown below. 

9.3.6.1 IOMMU EntryLo0 and EntryLo1 (Offsets 0x000, 0x004, 0x008, 0x00C)

The IOMMU EntryLo0/EntryLo1 registers are similar in format to their CP0 counterparts with a few exceptions. The 
IOMMU supports the Read Inhibit (RI) function (bit 31), but does not support the Execute Inhibit (XI) function (bit 
30). In the IOMMU EntryLo0/EntryLo1 registers this bit is reserved.

These registers have been expanded to 64-bits in the P6600 Multiprocessing System. The full PFN is located at the 
following bits:

• PFN[35:12] stored in EntryLo0/EntryLo1 bits 29:6

• PFN[39:36] stored in EntryLo0/EntryLo1 bits 35:32

Table 9.4 IOMMU Control and Status Registers 

IOMMU Register 
Acronym Full Name Offset Address

ENTRYLO0 EntryLo0 0x000

ENTRYLO1 EntryLo1 0x008

ENTRYHI EntryHi 0x010

INDEX Index 0x018

WIRED Wired 0x020

PAGEMASK PageMask 0x028

TCFG TLB Configuration 0x48

GCFG Global Configuration 0x50

ESR0 Error Status Register 0 0x58

ESR1 Error Status Register 1 0x60

COMMAND Command 0x68

DVT Device Table 0x70
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Figure 9.3 IOMMU EntryLo0 and EntryLo1 Register Format  

63 36 35 32

U PFNX

31 30 29 6 5 3 2 1 0

RI 0 PFN C D V G

Table 9.5 Field Descriptions for the IOMMU EntryLo0 and EntryLo1 Registers

Name Bit(s) Description
Read/ 
Write Reset State

U 63:36 The upper 28 bits of the PFNX are not used. They cannot be written by software 
and will return 0 on reads.

R Undefined

PFNX 35:32 Page Frame Number Extension. This field is concatenated with the PFN field to 
form the full page frame number corresponding to the physical address, thereby 
providing up to 40 bits of physical address.

Note that the IOMMU does not support 1 KB pages.

R/W Undefined

RI 31 Read Inhibit. If this bit is set in a TLB entry, any attempt to read data on the vir-
tual page causes either a TLB Invalid or a TLBRI exception, even if the V 
(Valid) bit is set. The RI bit is writable only if the RIE bit of the PageGrain reg-
ister is set. For more information, refer to the PageGrain register in Chapter 2 of 
this manual.

If the RIE bit of the PageGrain register is not set, the RI bit of Entry 0 and 
Entry 1 are set to zero on any write to the register, regardless of the value writ-
ten.

R/W Undefined

0 30 Reserved. Must be written as zero. Reads are undefined. R 0

PFN 29:6 The "Physical Frame Number" represents the physical frame number. Bits 35:12 
of the physical address are stored in bits 29:6 of this field. Bits 39:36 of the 
physical address are stored in the PFNX field in bits 35:32 of this register. This 
value is appended to the upper bits of the PFN to create the extended address.

R/W Undefined

C 5:3 Coherency attribute of the page. See Table 9.6. R/W Undefined

D 2 The "Dirty" flag. Indicates that the page has been written, and/or is writable. If 
this bit is a one, stores to the page are permitted. If this bit is a zero, stores to the 
page cause a TLB Modified exception.

Software can use this bit to track pages that have been written to. When a page 
is first mapped, this bit should be cleared. It is set on the first write that causes 
an exception. 

R/W Undefined

V 1 The “Valid” flag. Indicates that the TLB entry, and thus the virtual page map-
ping, are valid. If this bit is a set, accesses to the page are permitted. If this bit is 
a zero, accesses to the page cause a TLB Invalid exception.

This bit can be used to make just one of a pair of pages valid. 

R/W Undefined

G 0 The “Global” bit. On a TLB write, the logical AND of the G bits in both the 
Entry 0 and Entry 1 registers become the G bit in the TLB entry. If the TLB 
entry G bit is a one, then the ASID comparisons are ignored during TLB 
matches. On a read from a TLB entry, the G bits of both Entry 0 and Entry 1 
reflect the state of the TLB G bit.

R/W Undefined
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9.3.6.2 IOMMU EntryHi Register (Offsets 0x010 and 0x014)

Like the EntryLo0/EntryLo1 registers, the IOMMU EntryHi register is also expanded to 64-bits. Bits 39:32 comprise the 
VPNU field and are used to store bits 39:32 of the virtual address. Bits 31:13 of the address are stored in bits 31:13 of 
the register. 

Bit 10 of the EntryHi register (EHINV) is used to allow a TLB index write command to also invalidate an entry if the 
bit is set prior to the write.

Bits 7:0 of this register comprise the GuestID field. Each guest’s entry must be made unique by tagging with a Gues-
tID. Devices belonging to a guest (or root) can share a common entry. In other words, a guest’s mappings are global-
ized across all devices owned by the guest.

Figure 9.4 EntryHi Register Format    

Table 9.6 Cache Coherency Attributes Encoding of the C Field

C[5:3] Name Cache Coherency Attribute

0 — Reserved

1 — Reserved

2 UC Uncached, non-coherent

3 WB Cacheable, non-coherent, write-back, write allocate

4 CWBE Cacheable, coherent, write-back, write-allocate, read misses request Exclusive

5 CWB Cacheable, coherent, write-back, write-allocate, read misses request Shared

6 — Reserved

7 UCA Uncached Accelerated, non-coherent

63 40 39 32

0 VPNU

31 13 12 11 10 9 8 7 0

VPN2 0 EHINV 0 GID

Table 9.7 Field Descriptions for EntryHi Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 63:40 Fill bits. Write as zero. Ignored on reads. R 0

VPNU 39:32 Upper 8 bits of the virtual page number in 40-bit address mode. R/W Undefined
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9.3.6.3 IOMMU Index Register (Offset 0x018)

The IOMMU Index register is required to index into the TLB on an indexed write or read. Index is also used to index 
the Device Table. This register is used as the TLB index when reading or writing the TLB with TLBR/TLBWI/
TLBINV/TLBINVF respectively.  It is also set by a TLB probe (TLBP) instruction to return the location of an 
address match in the TLB.

During execution of a TLBR instruction, the Index field that was previously written by software or by a TLBP 
instruction is used to indicate the TLB entry to be read. Hardware then uses this information to perform the read oper-
ation.

During execution of a TLBWI, TLBINV, or TLBINVF instruction, the Index field that was previously written by soft-
ware or by a TLBP instruction is used to indicate the TLB entry to be written or invalidated. Hardware then uses this 
information to perform the respective write or invalidate operation.

Prior to executing a TLBP instruction, the VPN to be searched should have been written to the VPN2 field in the 
EntryHi register. During the TLBP instruction, hardware searches the TLB array for a match to the VPN stored in the 
EntryHi register. If a match is found, hardware writes the index into the Index field of this register. 

The P bit of this register is set by hardware to indicate that a match was not found. If this bit is not set, software can 
then read the corresponding index from this register.

In the P6600 IOMMU, the VTLB is 64 dual entries, and the Index field is 6 bits wide. This is shown in Figure 9.5 
below. 

VPN2 31:13 EntryHiVPN2 is the virtual address to be matched on a TLBP. This field 
consists of VA31:13 of the virtual address (virtual page number / 2). It is 
also the virtual address to be written into the TLB on a TLBWI and 
TLBWR, and the destination of the virtual address on a TLBR. 

On a TLB-related exception, the VPN2 field is automatically set to the 
virtual address that was being translated when the exception occurred. 

This field is written by software before a TLBP or TLBWI and written 
by hardware in all other cases.

R/W Undefined

0 12:11 Reserved. Write as zero. Ignored on reads. R 0

EHINV 10 TLBWI invalidate enable. When this bit is set, the TLBWI instruction 
acts as a TLB invalidate operation, setting the hardware valid bit associ-
ated with the TLB entry to the invalid state. When this bit is set, the 
PageMask and EntryLo0/EntryLo1 registers do not need to be valid. Only 
the Index register is required to be valid.

This bit is ignored on a TLBWR instruction. 

R/W Undefined

0 9:8 Reserved. Write as zero. Ignored on reads. R 0

GID 7:0 GuestID. Each guest’s entry must be made unique by tagging it with a 
GuestID.

Devices belonging to a guest (or root) can share a common entry. In other 
words, a guest’s mappings are globalized across all devices owned by the 
guest.

R/W Undefined

Table 9.7 Field Descriptions for EntryHi Register (continued)

Name Bit(s) Description
Read/ 
Write Reset State
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The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the IOMMU Index register.

Figure 9.5 IOMMU Index Register Format   

9.3.6.4 IOMMU Wired Register (Offset 0x020)

The Wired register in the IOMMU is a read/write register that specifies the boundary between the wired and random 
entries in the TLB. Wired entries are fixed, non-replaceable entries that cannot be overwritten by a TLBWR instruc-
tion. Wired entries can be overwritten by a TLBWI instruction.

Note that wired entries in the TLB must be contiguous and start from 0. For example, if the Wired field of this register 
contains a value of 5, this indicates that entries 4, 3, 2, 1, and 0 of the TLB are wired. The Wired register is reset to 
zero by a Reset exception.

The operation of the processor is undefined if a value greater than or equal to the number of VTLB entries is written 
to the Wired register. Wired can be set to a non-zero value to prevent the random replacement of up to 63 TLB pages.

Figure 9.6 Wired Register Format  

31 30 6 5 0

P 0 Index
(TLB only)

Table 9.8 Field Descriptions for Index Register

Name Bit(s) Description
Read/ 
Write Reset State

P 31 Probe Failure. This bit is automatically set when a TLBP search of the TLB 
fails to find a matching entry. 

R Undefined

0 30:6 Must be written as zero; returns zero on reads. 0 0

Index 5:0 An index into the TLB used for TLBR, TLBWI, TLBINV and 
TLBINVF instructions. This field is set by the TLBP instruction when it finds 
a matching entry. The maximum number in this field is 64 entries, or 0x3F.

R/W Undefined

31 6 5 0

0 Wired

Table 9.9 Field Descriptions for Wired Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 31:6 Ignored on write; returns zero on read. R 0
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9.3.6.5 IOMMU PageMask Register (Offset 0x028)

The PageMask register in the IOMMU is required to define the page size of a TLB entry. PageMask is used by TLB 
write, read and probe commands.

It is recommended that the IOMMU support page sizes no smaller than 1 MB. In general, the Hypervisor uses large 
pages to map guest physical addresses. It is however left to the specific implementation of the IOMMU to determine 
what the smallest page size is. Software can determine which sizes are implemented by first writing the encoding for 
a page-size to PageMask and then reading back. If the read returns zeroes, then the page-size is not implemented.

Figure 9.7 PageMask Register Format   

Wired 5:0 Defines the number of wired dual entries in the TLB. 
A value of 0 in this field indicates that no VTLB entries are hard wired. 

This field is encoded as follows:

0x00: 0 TLB entries are hardwired
0x01: 1 TLB entry is hardwired
0x02: 2 TLB entries are hardwired

......

0x3F: 63 TLB entries are hardwired

R/W 0

63 33 32 13 12 0

0 Mask 0

Table 9.10 Field Descriptions for PageMask Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 63:33 Ignored on write; returns zero on read. R 0

Mask 32:13 The mask field is a bit mask in which a logic “1” indicates that the correspond-
ing bit of the virtual address should not participate in the TLB match. Note that 
only a restricted range of PageMask values are legal (i.e., with "1"s filling the 
PageMaskMask field from low bits upward, two at a time).
Maximum page size is 4 GB. The legal values for this field are shown in Table 
9.11 below.

R/W Undefined

0 12:0 Ignored on write; returns zero on read. R 0

Table 9.11 PageMask Register Values

PageMask Register Value Size of Each Output Page

0x0000_0000_0000.6000 16 Kbytes

0x0000_0000_0001.E000 64 Kbytes

0x0000_0000_0007.E000 256 Kbytes

0x0000_0000_001F.E000 1 Mbyte

Table 9.9 Field Descriptions for Wired Register 

Name Bit(s) Description
Read/ 
Write Reset State
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9.3.6.6 IOMMU Segmentation Control 0 Register (Offset 0x030)

The SegCtl0 register in the IOMMU works in conjunction with the SegCtl1 and SegCtl2 registers to allow for configura-
tion of the I/O memory segmentation system when the P6600 core is in EVA mode. If the device is in the normal 64-
bit mode, these registers are not used.

Figure 9.8 shows the format of the SegCtl0 Register.

Figure 9.8 IOMMU SegCtl0 Register Format   

0x0000_0000_007F.E000 4 Mbytes

0x0000_0000_01FF.E000 16 Mbytes

0x0000_0000_07FF.E000 64 Mbytes

0x0000_0000_1FFF.E000 256 Mbytes

0x0000_0000_7FFF.E000 1 Gbytes

0x0000_0001_FFFF.E000 4 Gbytes

31 25 24 23 22 20 19 18 16 15 9 8 7 6 4 3 2 0

CFG1_PA 0 CFG1_AM CFG1_EU CFG1_C CFG 0_PA 0 CFG0_AM CFG0_EU CFG0_C

Table 9.12 IOMMU SegCtl0 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

CFG1_PA 31:25 Physical address bits 31:29 for segment 1. For use when 
unmapped. Bits 27:25 correspond to physical address bits 31:29. 
Bits 31:28 are reserved for future expansion. 

R/W Configuration 
Dependent

0 24:23 Reserved. RO 0

CFG1_AM 22:20 Configuration 1 access control mode. See Table 9.15 for encoding. R/W Configuration 
Dependent

CFG1_EU 19 Error condition behavior. Configuration segment 1 becomes 
unmapped and uncached when StatusERL = 1.

R/W Configuration 
Dependent

CFG1_C 18:16 Cache coherency attribute for segment 1. The encoding of the 
CFG1_C field is the same as the C field of the EntryLo0/EntryLo1 
registers described in Section 9.6.

R/W Configuration 
Dependent

CFG0_PA 15:9 Physical address bits 31:29 for segment 0. For use when 
unmapped. Bits 11:9 correspond to physical address bits 31:29 for 
segment 0. Bits 15:12 are reserved for future expansion. 

R/W Configuration 
Dependent

0 8:7 Reserved. RO 0

CFG0_AM 6:4 Configuration 0 access control mode. See Table 9.15 for encoding. R/W Configuration 
Dependent

CFG0_EU 3 Error condition behavior. R/W Configuration 
Dependent

Table 9.11 PageMask Register Values

PageMask Register Value Size of Each Output Page
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9.3.6.7 IOMMU Segmentation Control 1 Register (Offset 0x038)

The SegCtl1 register works in conjunction with the SegCtl0 and SegCtl2 registers to allow for configuration of the mem-
ory segmentation system when the P6600 core is in 32-bit EVA mode. If the device is in the normal 64-bit mode, 
these registers are not used.. 

Segmentation Control allows address-specific behaviors defined by the Privileged Resource Architecture to be modi-
fied or disabled. Figure 9.9 shows the format of the SegCtl1 Register.

Figure 9.9 IOMMU SegCtl1 Register Format   

CFG0_C 2:0 Cache coherency attribute for segment 0. The encoding of the 
CFG0_C field is the same as the C field of the EntryLo0/EntryLo1 
registers described in Section 9.6.

R/W Configuration 
Dependent

31 25 24 23 22 20 19 18 16 15 9 8 7 6 4 3 2 0

CFG3_PA 0 CFG3_AM CFG3_EU CFG3_C CFG2_PA 0 CFG2_AM CFG2_EU CFG2_C

Table 9.13 IOMMU SegCtl1 Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

CFG3_PA 31:25 Physical address bits 31:29 for segment 3. For use when 
unmapped. Bits 27:25 correspond to physical address bits 31:29. 
Bits 31:28 are reserved for future expansion. 

R/W Configuration 
Dependent

0 24:23 Reserved. Must be written as zeros; returns zeros on reads. RO 0

CFG3_AM 22:20 Configuration 3 access control mode. See Table 9.15 for encoding. R/W Configuration 
Dependent

CFG3_EU 19 Error condition behavior. R/W Configuration 
Dependent

CFG3_C 18:16 Cache coherency attribute for segment 3, for use when unmapped. R/W Configuration 
Dependent

CFG2_PA 15:9 Physical address bits 31:29 for segment 2. For use when 
unmapped. Bits 11:9 correspond to physical address bits 31:29 for 
segment 0. Bits 15:12 are reserved for future expansion. 

R/W Configuration 
Dependent

0 8:7 Reserved. Must be written as zeros; returns zeros on reads. RO 0

CFG2_AM 6:4 Configuration 2 access control mode. See Table 9.15 for encoding. R/W Configuration 
Dependent

CFG2_EU 3 Error condition behavior. R/W Configuration 
Dependent

CFG2_C 2:0 Cache coherency attribute for segment 2, for use when unmapped. R/W Configuration 
Dependent

Table 9.12 IOMMU SegCtl0 Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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9.3.6.8 IOMMU Segmentation Control 2 Register (Offset 0x040)

The SegCtl2 register works in conjunction with the SegCtl0 and SegCtl1 registers to allow for configuration of the mem-
ory segmentation system when the P6600 core is in 32-bit EVA mode. If the device is in the normal 64-bit mode, 
these registers are not used. 

Segmentation Control allows address-specific behaviors defined by the Privileged Resource Architecture to be modi-
fied or disabled. Figure 9.10 shows the format of the SegCtl2 Register. 

Figure 9.10 IOMMU SegCtl2 Register Format   
31 25 24 23 22 20 19 18 16 15 9 8 7 6 4 3 2 0

CFG5_PA 0 CFG5_AM CFG5_EU CFG5_C CFG4_PA 0 CFG4_AM CFG4_EU CFG4_C

Table 9.14 IOMMU SegCtl2 Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

CFG5_PA 31:25 Physical address bits 31:29 for segment 5. For use when 
unmapped. Bits 27:25 correspond to physical address bits 31:29. 
Bits 31:28 are reserved for future expansion.

Note that for this field, bit 25 is ignored since CFG5 is mapped to a 
1 GByte boundary.

R/W Configuration 
Dependent

0 24:23 Reserved. RO

CFG5_AM 22:20 Configuration 5 access control mode. See Table 9.15 for encoding. R/W Configuration 
Dependent

CFG5_EU 19 Error condition behavior. R/W Configuration 
Dependent

CFG5_C 18:16 Cache coherency attribute for segment 5. The encoding of the 
CFG5_C field is the same as the C field of the EntryLo0/EntryLo1 
registers described in Section 9.6. 

R/W Configuration 
Dependent

CFG4_PA 15:9 Physical address bits 31:29 for segment 4. For use when 
unmapped. Bits 11:9 correspond to physical address bits 31:29 for 
segment 0. Bits 15:12 are reserved for future expansion.

Note that for this field, bit 9 is ignored since CFG4 is mapped to a 
1 GByte boundary.

R/W Configuration 
Dependent

0 8:7 Reserved. RO

CFG4_AM 6:4 Configuration 4 access control mode. See Table 9.15 for encoding. R/W Configuration 
Dependent

CFG4_EU 3 Error condition behavior. R/W Configuration 
Dependent

CFG4_C 2:0 Cache coherency attribute for segment 4. The encoding of the 
CFG4_C field is the same as the C field of the EntryLo0/EntryLo1 
registers described in Section 9.6. 

R/W Configuration 
Dependent
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Table 9.15 describes the access control modes specifiable in the CFGAM fields. 

9.3.6.9 IOMMU TLB Configuration Register (Offset 0x048)

The TLB Configuration register (TCFG) determines the number of entries in the VTLB. 

Figure 9.11 TLB Configuration Register Format   

Table 9.15 Segment Configuration Access Control Modes 

Mode

Action when referenced from Operating 
Mode

DescriptionUser mode
Supervisor 

mode
Kernel 
mode

UK 000 Address 
Error

Address Error Unmapped Kernel-only unmapped region
e.g. kseg0, kseg1

MK 001 Address 
Error

Address Error Mapped Kernel-only mapped region

e.g. kseg3

MSK 010 Address 
Error

Mapped Mapped Supervisor and kernel mapped region

e.g. ksseg, sseg

MUSK 011 Mapped Mapped Mapped User, supervisor and kernel mapped region

e.g. useg, kuseg, suseg

MUSUK 100 Mapped Mapped Unmapped Used to implement a fully-mapped flat address 
space in user and supervisor modes, with unmapped 
regions which appear in kernel mode.

USK 101 Address 
Error

Unmapped Unmapped Supervisor and kernel unmapped region

e.g. sseg in a fixed mapping TLB.

- 110 Undefined Undefined Undefined Reserved

UUSK 111 Unmapped Unmapped Unmapped Unrestricted unmapped region

31 10 9 1 0

0 VSIZE TT

Table 9.16 Field Descriptions for TLB Configuration Register 

Name Bit(s) Description
Read/ 
Write Reset State

0 31:10 Ignored on write; returns zero on read. R 0

VSIZE 9:1 In the IOMMU, the TLB size is fixed at 64 entries R/W 0x3F

TT 0 Indicates the TLB type supported. In the P6600 IOMMU, this bit is always 0 to 
indicate that the VTLB is supported. 

R/W 0
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9.3.6.10 IOMMU Global Configuration Register (Offset 0x050)

The IOMMU Global Configuration register (GCFG) is used to configure the global functionality of the IOMMU.

Figure 9.12 IOMMU Global Configuration Register Format   

31 22 21 6 5 4 3 2 1 0

DVNUM 0 IDLE VZEN ELPA LPA IE PW TT

Table 9.17 Field Descriptions for IOMMU Global Configuration Register 

Name Bit(s) Description
Read/ 
Write Reset State

DVNUM 31:22 The DVNUM field indicates the number of entries in the Device Table. In the 
IOMMU, the maximum number of Device Table entries is 64.

R/W 0x3F

0 21:6 Ignored on write; returns zero on read. R 0

IDLE 6 This bit is set hardware to indicate that the IOMMU has no traffic and no out-
standing response.

R 1

VZEN 5 Virtualization enabled. This bit is set to indicate that IOMMU virtualization is 
enabled. This bit is independent of the virtualization enable bit in the CP0 regis-
ters used to enable or disable virtualization in the core.

0: Virtualization disabled
1: Virtualization enabled

R/W 0

ELPA 4 Enable Large Physical Address. Setting this bit enables support for large physi-
cal addresses and is encoded as follows:

0: Large physical address support is disabled.
1: Large physical address support is enabled.

If this bit is set, the following changes occur:

The PFNX field of the EntryLo0/EntryLo1 registers is writeable and concate-
nated with the PFN field to form the full page frame number.

R/W 0

LPA 3 Large Physical Address support implemented. Hardware sets this bit to indicate 
that large physical address support is implemented. This bit is encoded as fol-
lows:

0: Large physical address support is not implemented.
1: Large physical address support is implemented.

If this bit is set, the PFNX field of the EntryLo0/EntryLo1 registers are expanded 
to 64-bits.

R 1

IE 2 Interrupt Enable. When this bit is set, errors cause interrupts. Otherwise inter-
rupts are disabled. This enable applies to all errors, regardless of device origin.

The IOMMU continues to capture errors even if interrupts are disabled.

R/W 0

PW 1 PageWalker implemented. This bit is always 0 to indicate that hardware page 
walker support is not implemented in the IOMMU.

R 0

EN 0 IOMMU enable. This bit enables the IOMMU and is encoded as follows:

0: IOMMU is disabled and all device requests bypass the IOMMU.
1: IOMMU is enabled and all device addresses are translated by the IOMMU.

R/W 0
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9.3.6.11 IOMMU Error Status Register 0 (Offset 0x050)

The IOMMU Error Status registers provide information about the oldest error detected in the IOMMU for which an 
interrupt has been signaled to the CPU. Error status is reported through two registers, Error Status 0 (ESR0) and Error 
Status 1 (ESR1).

Error Status 0 stores the oldest error. Software cannot read any other errors in the queue. The number of entries in the 
error queue is implementation defined but should not exceed 16.

On detection of error, the IOMMU returns an error response to the I/O subsystem, providing the error is due to a read 
or non-posted write. A posted write will never deliver an error response to the I/O subsystem. While ESR0 remains 
valid, the read pointer of the error queue cannot be advanced until the software handler clears the valid bit (V) of 
ESR0. 

In the interrupt handler, software may disable error reporting for the device by writing to the device’s Device Table 
entry. The action of clearing the Device entry should clear any errors from the Error Queue (except for the head) 
belonging to that device. Prior to clearing ESR0 valid, the handler should reprogram the device, and the IOMMU spe-
cifically for the device. Once the valid bit in ESR0 is clear, software may restart the device.



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 543

Table 9.18 IOMMU Status Register 0 Format   

Table 9.20 shows the encoding of the ATYPE field (bits 8:7) described above

31 24 23 16 15 12 11 10 9 8 7 6 5 2 1 0

DID SIZE ECNT ERM 0 ATYPE 0 ETYPE OV V

Table 9.19 IOMMU Status Register 0 Descriptions

Bit 
Position Field Description R/W

 Reset 
State

31:24 DID Device ID for which error was reported. R Undefined

23:16 SIZE Encoded size of DMA request in bytes. Where 8-bits is not sufficient, the value must 
be saturated to 28-1.

R Undefined

15:12 ECNT Number of errors in error queue, excluding the error at the head of the queue. The total 
number of errors is thus ECNT+1 if valid in ESR0 is 1, otherwise it is 0.

R Undefined

11 ERM Hardware sets this bit to indicate that the entry has been used to merge subsequent 
errors for a device. The criteria for merging is a match on Device-ID and Error-Type.

R Undefined

10:9 0 Reserved. Written as zero. Reads are undefined. R 0

8:7 ATYPE Type of Device Address. Only relevant to TLB errors. Refer to Table 4.9. The Root 
Physical Address (RPA) is never logged as it is unmapped and thus would not cause 
TLB related errors.

R Undefined

6 0 Reserved. Written as zero. Reads are undefined. R 0

5:2 ETYPE Type of Error related to the Device Request. Refer to Table 4.10. Device requests that 
bypass IOMMU TLB do not generate TLB errors.

R Undefined

1 OV Error output queue has overflowed. Errors are not written to queue when overflow bit 
is set. Overflow bit is cleared when the V bit of this register is cleared.

R 0

0 V This bit is set by hardware to indicate that an error has been reported to core. The Error 
handler writes a 0 to clear this bit once it processes the source of the error. This allows 
hardware to read the next error from the error queue and signal the CPU with an inter-
rupt. This bit is only set by hardware and cleared by software. If software attempts to 
set this bit, the write is ignored.

R/W0 0

Table 9.20 ESR0 Register ATYPE Field Encoding

Encoding Description

00 Device address is a GPA. This is the case if a GuestID read 
from Device Table is non-zero for DeviceID of the request.

01 Device address is a mapped RVA. This is the case if GuestID
read from Device Table is zero but the decode of SegCtl 
indicates the access is mapped.

10 - 11 Reserved
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Table 9.21 shows the encoding of the ETYPE field (bits 5:2) described above. All encodings not shown are reserved. 

9.3.6.12 IOMMU Error Status Register 1 (Offset 0x060)

The IOMMU Error Status registers provide information about the oldest error detected in the IOMMU for which an 
interrupt has been signaled to the CPU. Error status is reported through two registers, Error Status 0 (ESR0) and Error 
Status 1 (ESR1). Error Status 1 stores the address corresponding to the device which caused the error.

Table 9.21 ESR0 Register ATYPE Field Encoding

Encoding Description

IOMMU TLB Errors

0000 Refill error. There is no TLB entry that matches the device request.

0001 Read-Inhibit error. Device makes read request but TLB entry RI = 1.

0010 Dirty error. Device makes write request but TLB entry D = 0.

0011 Invalid error. Device address matches TLB entry but TLB entry V = 0.

0100 TLB Page-crossing error. This error is logged if an access crosses a page 
boundary i.e., the access is not contained in a single page.

0101 - 0111 Reserved.

Device Table Access Errors

1000 Device Table entry is invalid.

1001 Device request’s DeviceID is out-of-range of Device Table.

1100 - 1011 Reserved.

Programming Errors

1100 Index exceeds GCFG[DVNUM] on store to memory-mapped DVT.

1101 Index exceeds number of TLB entries on write to TLB.

1110 - 1111 Reserved.



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 545

Table 9.22 IOMMU Status Register 1 Format   

9.3.6.13 Command Register (Offset 0x068)

The Command register is described in Section 9.3.4, "TLB Command Format". A list of associated TLB commands if 
provided in Section 9.3.2, "TLB Commands".

9.3.6.14 Device Table Register (Offset 0x070)

The Command register is described in Section 9.3.1, "Device Table".

63 40 39 32 31 0

0 EADDRX EADDR

Table 9.23 IOMMU Status Register 1 Descriptions

Bit 
Position Field Description R/W

 Reset 
State

63:40 0 Reserved. Written as zero. Reads are undefined. R 0

39:32 EADDRX An extension of EADDR to support up to 40-bits of physical address. The upper 32-
bits of this register are used only when GCFG.LPA = 1, which is always the case in the 
P6600. If GCFG.ELPA = 0, indicating that Large Physical Address support is disabled, 
then this field is read as 0.

R Undefined

31:0 EADDR 32-bit device address related to error. EADDR may be a GPA or RVA. The type of 
address is determined from the ESR0.ATYPE field. Unused bits must be zeroed prior 
to write.

R Undefined
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Virtualization

The Virtualization Module defines a set of new instructions, registers, and machine states to the P6600 core to mange 
the efficient implementation of virtualized systems. The Virtualization Module is designed to enable full virtualiza-
tion of operating systems. The Virtualization Module allows for the execution of guest Operating Systems in a fully 
virtualized environment. 

10.1 Elements of Virtualization

The Virtualization Module defines the following elements which are related to virtualization:

• Guest Operating Mode

• Partial CP0 register set (or context) for Guest Mode use

• Registers for Guest Mode control

• Guest interrupt system

• Two-level address translation

• Detection of Virtualization Features

The Virtualization Module provides a separate Coprocessor 0 register set (or context) for guest mode operation, 
which is physically separate from, and a subset of the Root Coprocessor 0 context. The presence of the virtualization 
module is indicated by the CP0 Config3.VZ bit. Refer to Chapter 2 of this manual for more information.

10.2 Introduction to the Hypervisor

Virtualization is enabled by software. The key element is a control program known as a Virtual Machine Monitor 
(VMM) or ‘Hypervisor’. The Hypervisor is in full control of machine resources at all times. When an operating sys-
tem (OS) kernel is run within a virtual machine (VM), it becomes a ‘guest’ of the Hypervisor. All operations per-
formed by a guest must be explicitly permitted by the Hypervisor. To ensure that it remains in control, the Hypervisor 
always runs at a higher level of privilege than a guest operating system kernel. The hypervisor is responsible for man-
aging access to sensitive resources, maintaining the expected behavior for each VM, and sharing resources between 
multiple VMs.

In a traditional operating system, the kernel (or ‘supervisor’) typically runs at a higher level of privilege than user 
applications. The kernel provides a protected virtual-memory environment for each user application, inter-process 
communications, and I/O device sharing. The hypervisor performs the same basic functions in a virtualized system - 
except that the Hypervisor’s clients are full operating systems rather than user applications.

The virtual machine execution environment created and managed by the Hypervisor consists of the full Instruction 
Set Architecture, including all Privileged Resource Architecture facilities, plus any device-specific or board-specific 
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peripherals and associated registers. It appears to each guest operating system as if it is running on a real machine 
with full and exclusive control.

The Virtualization Module enables full virtualization, and is intended to allow VM scheduling to take place while 
meeting real-time requirements, and to minimize costs of context switching between VMs. 

In virtualization, the guest operating system operates in unprivileged mode. All privileged operations attempted by 
the guest will trap back to the Hypervisor, which executes in the privileged mode. The Hypervisor emulates all guest 
privileged operations, keeps track of the guest view of privileged state, and ensures that the system behaves as 
expected by the guest. Full address translation allows an unmodified guest kernel to execute from its original location 
in memory, and allows the hypervisor to manage address translation to match the expectations of the guest kernel. 

A Segmentation Control system is available for use by the Virtualization Module. This is a programmable memory 
segmentation system defined to support remapping (and therefore virtualization) of the existing fixed segment mem-
ory model. 

10.3 Root and Guest Operating Modes

The virtualization module contains a operating modes for one Root and multiple Guests. The non-guest operating 
mode is known as root mode. The pre-existing kernel, user and supervisor operating modes can be referred to as 
root-kernel, root-user and root-supervisor respectively, to distinguish them from their guest-mode equivalents.

Guest mode consists of new operating modes guest-kernel, guest-user and guest-supervisor modes. The guest mode 
allows the separation between kernel, user and supervisor modes to be retained for a guest operating system running 
within a virtual machine. The guest-kernel mode can handle interrupts and exceptions, and manage virtual memory 
for guest-user mode processes. 

The separation between root mode and the limited-privilege guest mode allows root mode software to be in full con-
trol of the machine at all times even when a guest is running. Backward compatibility is retained for existing software 
running in root mode.

The GuestCtl0 register contains the GM (Guest Mode) bit. This bit is used along with root-mode exception and error 
status bits (StatusEXL, StatusERL) and the Debug Mode bit (DebugDM) to determine whether the processor is operating in 
guest mode or root mode..

Figure 10.1 shows the state transitions between operating modes.
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Figure 10.1 State Transitions Between Operating Modes 

10.3.1 Enabling Guest Mode Translations

The Virtualization Module in the P6600 core provides a separate CP0 register set and MMU for guest-mode execu-
tion. In guest mode when guest segmentation and translation are enabled (GuestCtl0AT = 3), two levels of address 
translation are performed as described above. 

10.3.2 MMU Considerations

For the TLB-based guest MMU, MIPS recommends that the number of entries be equal to the number of entries in 
the root-context TLB used for Guest mappings. The page sizes used in the root-mode TLB must be carefully consid-
ered to allow sufficient control for root-mode software, while maximizing the number of guest-mode TLB entries 
which are mapped through each root-mode TLB entry. Larger root TLB pages will likely result in better performance.

Both the guest and root MMU’s can be active at the same time. MIPS recommends that the Root TLB maintain an 
adequate amount of reserved TLB entries for its own use to avoid cascading TLB evictions (thrashing).

Note that the TLBP/TLBGP differentiate between guest and root entries respectively. Software should use the results 
of TLBP/TLBGP to selectively read entries. The root TLBR instruction is used exclusively for logical Root TLB 
reads, while root TLBGR is used exclusively for logical Guest TLB reads.

Figure 10.2 shows the outline of address translation in the Virtualization Module.
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Figure 10.2 Outline of Address Translation

Guest mode segmentation controls and the guest mode MMU have no effect on the root mode address space.

10.3.3 Guest ID

The ‘GuestID’ field (GuestCtl1ID or GuestCtl1RID ) represents a unique identifier for Root and all Guest Virtual Address 
spaces. Each Guest’s address space is identified by a unique non-zero GuestID. The GuestID value zero is reserved 
for Root address space. The GuestCtl1 CP0 register is unique in the Root register space and inaccessible in guest 
mode. GuestID is an optimization, designed to minimize TLB invalidation overhead on a virtual machine context 
switch and simplify Root access to Guest TLB entries. 

The P6600 core implements a 16-bit Guest ID. This allows the Root TLB to distinguish between Root and Guest 
Entries, and flush either set of mappings in entirety with the TLBINVF instruction. 
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10.3.4 Address Translation Pseudocode

The pseudocode below describes the complete address translation process for the P6600 Virtualization Module. Seg-
mentation, TLB lookups, hardware TLB refill and second-level address translation are invoked below. The process is 
described in top-down order - subsequent sections describe the subroutines called. 

/* Inputs
* vAddr - Virtual Address
* IorD - Access type - INSTRUCTION or DATA
* LorS - Access type - LOAD or STORE
* pLevel - Privilege level - USER, SUPER, KERNEL
* 
* Outputs
* pAddr - physical address
* CCA - cache attribute (valid when mapped)
* 
* Exceptions: See called functions
* Called from guest or root context.
*/

subroutine AddressTranslation(vAddr, IorD, LorS, pLevel)

// Initialization.
// GuestID is only applicable if GuestCtl0RAD=0. Otherwise GuestID
// is ignored (not applicable) in process of address translation.
GuestID ignored

if (IsGuestMode()) then
// This is a Guest Address translation
// step 1: Guest Virtual -> Guest Physical Address translation
if (GuestCtl0RAD=0)

GuestID  GuestCtl1ID
endif
(mapped, addr, CCA)  AddressDecode(vAddr, pLevel)
if (ConfigMT=1 or ConfigMT=4) then // TLB type MMU

if (mapped) then
asid  Guest.EntryHiASID
(addr, CCA)  Guest.TLBLookup(asid, GuestID, addr, IorD, LorS)

endif
endif
if (exception)

Guest Exception 
// TLB exceptions may include Refill, Invalid, Execute-Inhibit for 
// Instruction, Refill, Invalid, Modified, Read-Inhibit for Data.
// Guest segment map related exceptions may include Address Error

endif

// step 2: Guest Physical -> Root Physical Address translation
// if GuestCtl0RAD=0, then guest entry ASID is global in Root TLB.
// H/W must set G=1 for guest entry for TLBWI and TLBWR.
asid  Root.EntryHiASID
pAddr  Root.TLBLookup(asid, GuestID, addr, IorD, LorS)
if (exception)

Root Exception 
// This is a Root exception initiated in guest context
// This includes all TLB exceptions. 
// Segment map Address Error exception not included, as guest does not
// lookup root segment map.
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endif

else 
// This is a Root Address translation
// Root Virtual -> Root Physical Address translation
// If GuestCtl0DRG=1,GuestCtl1RID is non-zero,Root.StatusEXL,ERL=0,
// and DebugDM=0, then all root kernel data accesses are mapped and root
// SegCtl is ignored.H/W must set G=1 as if the access were for guest.
drg_valid (GuestCtl0DRG=1 and Root.StatusKSU=00 and Root.StatusEXL=0 and 
Root.StatusERL=0 and DebugDM=0 and GuestCtl1RID!=0 and !Instruction)
if (drg_valid) then

mapped 
addr vAddr

else
(mapped, addr, CCA)  AddressDecode(vAddr, pLevel)

endif
if (!mapped) then

pAddr  addr
else if (GuestCtl0RAD=0)

if (Instruction or (!drg_valid))
GuestID  0

else 
GuestID  GuestCtl1RID

endif 
endif

asid  Root.EntryHiASID
(pAddr, CCA)  Root.TLBLookup(asid, GuestID, addr, IorD, LorS)

endif
endif
if (exception)

Root Exception
// Includes all TLB and Segment related exceptions in Root context.
// If drg_valid, and access is not by root-kernel,then an Address Error
// exception is caused.

endif

return (pAddr,CCA)
end

subroutine AddressDecode(vAddr, pLevel) :
# Determine whether address is mapped
# - if unmapped, obtain physical address and cache attribute
if (Config3SC) then

// optional Segmentation Control based address decode
(mapped, addr, CCA)  SegmentLookup(vAddr, pLevel)

else
(mapped, addr, CCA)  LegacyDecode (pLevel)

endif
return (mapped, addr, CCA)

endsub
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10.3.5 Address Translation for the Root and Guest Processes

In virtualization, there are two basic elements, a Root process, which stores the kernel or user software, and multiple 
Guest processes, which typically consists of user-level applications. 

In the Root process, there is one level of address translation:

• 48-bit Root virtual address (RVA) --> 32- or 40-bit Root physical address (RPA)

In the Guest processes, there are two levels of address translation that occur in the following order:

• 48-bit Guest virtual address (GVA) --> 32- or 40-bit Guest physical address (GPA)

• 32- or 40-bit Guest physical address (GPA) --> 32- or 40-bit Root physical address (RPA)

Figure 10.3 shows an overview of the multi-level PA translation process.

Figure 10.3 Overview of Address Translation Process 

10.3.6 Enabling Guest Mode Translations

The Virtualization Module in the P6600 core provides a separate CP0 register set and MMU for guest-mode execu-
tion. In guest mode when guest segmentation and translation are enabled (GuestCtl0AT = 3), two levels of address 
translation are performed as described above. 

10.4 Software Detection of Virtualization

Software can determine if the Virtualization Module is implemented by checking the state of the VZ bit in the Config3 
CP0 register. If Virtualization is supported (Config3VZ = 1), and GuestID is supported, then explicit invalid TLB entry 
support (EHINV) is required in order for a Guest to be able to detect invalid entries in the Guest TLB. 
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Figure 10.4 Config3 Register Format  

10.5 CP0 Structure in Root and Guest Mode

In the P6600 core, Coprocessor 0 (CP0) contains system control registers and can be accessed only by privileged 
instructions. The presence of virtualization in the P6600 core means that a subset of the Coprocessor 0 register set are 
physically replicated for use by the Guest Operating System. 

During guest mode execution, both the guest Coprocessor 0 and the root Coprocessor 0 are active. The presence of 
two simultaneously active Coprocessor 0 contexts is fundamental to the operation of the Virtualization Module. The 
presence of these two sets of Coprocessor 0 (CP0) registers allows for an immediate switch between guest and root 
modes without requiring a context switch to/from memory. Simultaneously accesses to the guest and root Coproces-
sor 0 registers allows guest-kernel privileged code accesses to execute with the minimum hypervisor intervention, 
and ensures that key root-mode machine systems such as timekeeping, address translation and external interrupt han-
dling continue to operate without major changes during guest execution.

Table 10.2 describes the how the various CP0 register fields are used to enter or exit an operating mode.  

31 30 29 28 27 26 25 24 23 22 16

VZ 0

Table 10.1 Field Descriptions for Config3 Register 

Name Bit(s) Description
Read/ 
Write Reset State

VZ 23 Virtualization Module implemented. This bit indicates whether the Virtualiza-
tion Module is implemented. This bit is always 1 for the P6600 core.

0: Virtualization module not implemented
1: Virtualization module is implemented

R 1

Table 10.2 Guest, Root and Debug Modes 

Root Guest

ModeDebugDM StatusERL StatusEXL StatusKSU GuestCtl0GM StatusERL StatusEXL StatusKSU

1 Don’t care Debug

0 1 Don’t care Root-Kernel

0 1 Don’t care

0 00 0 Don’t care

01 Root-Supervisor

10 Root-User

Don’t care 1 1 Don’t care Guest-Kernel

0 1 Don’t care

0 00

01 Guest-Supervisor

10 Guest-User

Don’t care 11 UNPREDICTABLE
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10.5.1 Root Mode Operation

Root mode operation uses one set of Coprocessor 0 registers and Guest mode operation the other. The software visi-
ble state is the contents of these registers and any state which is accessed via these registers, such as TLB entries and 
Segmentation Control configurations. 

For a Hypervisor to save, restore or switch context from one guest to another, it is the entire software visible state 
which must be saved and restored, not solely the replicated registers themselves, but also the physical resources 
which are shared between Root and Guest, such as the GPRs, FPRs and Hi/Lo registers.

The following subroutine can be used to test whether processor is in root-mode.
subroutine IsRootMode() :

if (
(GuestCtl0GM=0) or
((GuestCtl0GM=1) and not ((Root.DebugDM=0) and
(Root.StatusERL=0) and (Root.StatusEXL=0))
) then
return(true)

else
return(false)

endif
endsub

10.5.2 Guest Mode Operation

In guest mode, all guest operations are first tested against the guest CP0 context, and then against the root CP0 con-
text. An ‘operation’ is any process which can trigger an exception. This includes address translation, instruction 
fetches, memory accesses for data, instruction validity checks, coprocessor accesses and breakpoints.

Guest mode software has no access to the root Coprocessor 0. Root mode software can access the guest Coprocessor 
0, and if required can emulate guest-mode accesses to disabled or unimplemented features within guest Coprocessor 
0. The guest Coprocessor 0 is partially populated - only a subset of the complete root Coprocessor 0 is implemented.

The recommended method of entering Guest mode is by executing an ERET instruction when Root.GuestCtl0GM=1, 
Root.StatusEXL=1, Root.StatusERL=0 and Root.DebugDM=0.

Guest mode operation is determined as follows. This subroutine can be used to test whether processor is in guest-
mode.

subroutine IsGuestMode() :
if (GuestCtl0GM=1) and (Root.DebugDM=0) and

(Root.StatusERL=0) and (Root.StatusEXL=0) then
return(true)

else
return(false)

endif
endsub

10.5.3 Debug Mode

For processors that implement EJTAG, the processor is operating in debug privileged execution mode (Debug Mode) 
when Root.DebugDM=1. If the processor is running in Debug Mode, it has full access to all resources that are available 
to Root Kernel Mode operation.
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Debug Mode, Root Mode and Guest Mode are mutually exclusive. At any given time, the processor can only be in 
one of the three modes. Note that Debug mode operates in the Root context, while Guest mode operates in its own 
unique context.

10.6 Exception Handling in Root and Guest Mode

Exceptions are handled in the mode whose context triggered the exception. An exception triggered by the guest CP0 
context will be handled in guest mode. An exception triggered by the root CP0 context is handled in root mode.

Figure 10.5 shows the how exceptions are handled in each of the operating modes (supervisor modes are omitted for 
clarity). 

Figure 10.5 Exception Handling in Root and Guest Mode 

In Figure 10.5, an operation executed in guest-user mode must travel through the root kernel to complete the opera-
tion. 

The first layer to be crossed is the guest CP0 context (controlled by guest-kernel mode software). All exception and 
translation rules defined by the guest CP0 context are applied, and resulting exceptions are taken in guest mode by the 
guest kernel handler. 

If the operation does not trigger a guest-context exception, the next layer to be crossed is the root CP0 context (con-
trolled by root-kernel mode software). All exception and translation rules defined by the root CP0 context are applied, 
and resulting exceptions taken in root mode by the root kernel handler as shown.

For example, an access to Coprocessor 1 (the Floating Point Unit) must first be permitted by the guest context 
StatusCU1 bit, and then by the root context StatusCU1 bit. 
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Table 10.3 specifies the association of GuestID with TLB instructions. For supporting information, refer to Section 
10.7.

10.6.1 Root and Guest Shared TLB Operation

The P6600 core shares a common physical TLB amongst root and guest. The P6600 core contains a TLB structure 
that incorporates a VTLB (Variable page size TLB) and FTLB (Fixed page size TLB). As such, the VTLB must 
accommodate wired entries for both root and guest in a shared structure.

10.6.1.1 Root and Guest Access to the Shared TLB

In a shared TLB implementation, the root index increases from the bottom of the physical TLB while the guest index 
increases from the top of the physical TLB. This is to avoid overlap of root and guest wired entries. On the other 
hand, the root and guest indices to the FTLB grow from the bottom of the FTLB. Both guest and root TLB operations 
must interpret the TLB index accordingly. 

10.6.1.2 Wired Register Management

The Root allocates the appropriate number of wired entries to itself, and then writes the guest Config1 and Config4 
related fields to set the available VTLB entries for guest. Since the entries allocated for guest use also includes non 
wired entries shared by both root and guest, root software must be careful not to allocate all remaining non root-wired 

Table 10.3 GuestID Use by TLB Instructions 

TLB Operation

GuestID 
(GuestCtl1ID/GuestCtl1RID)

TLBGINV GuestCtl1RID

TLBGINVF GuestCtl1RID

TLBGP GuestCtl1RID

TLBGR GuestCtl1RID

TLBGWI GuestCtl1RID

TLBGWR GuestCtl1RID

TLBINV if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBINVF if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBP if RootMode then GuestCtl1RID 

else GuestCtl1ID

TLBR if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBWI if RootMode then GuestCtl1RID 
else GuestCtl1ID

TLBWR if RootMode then GuestCtl1RID 
else GuestCtl1ID
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entries to the guest. This prevents the guest from populating all remaining non root-wired entries with its own guest-
wired entries, leaving no entries for non root-wired entries.

Root software should not change guest MMU configuration while the guest is in operation, as is the case for any 
guest configuration that is read-only to guest but writeable by root.

10.6.1.3 CP0 Register Allocation

The Virtualization Module provides a partial set of CP0 registers for use by the guest. This is known as the guest con-
text. When in guest mode, the behavior of the machine is controlled by the combination of the guest CP0 context and 
the root CP0 context. When in root mode, the behavior of the machine is controlled entirely by the root CP0 context.

The guest CP0 context consists of a base set plus optional features. Access to features within the guest CP0 context is 
controlled from root mode. The Guest.Config0 through Guest.Config5 registers determine which features are active dur-
ing guest mode execution. The GuestCtl0 register controls whether a guest access to a privileged feature triggers an 
exception.

10.6.1.4 CP0 Register Access

Guest CP0 registers can be accessed from root mode by using the root-only MFGC0 and MTGC0 instructions. Guest 
TLB contents can be accessed by using the root-only TLBGP, TLBGR, TLBGWI and TLBGWR instructions.

10.6.1.5 CP0 Register Initialization and Control

Root context software (hypervisor) is required to manage the initial state of writable Guest context registers. On 
power-up, the initial state defaults to the hardware reset state. On a Guest context save and restore, the hypervisor is 
required to preserve and re-initialize the Guest state. For virtual boot of a Guest, the hypervisor is required to initial-
ize the Guest state equivalent to the hardware reset state. The Root may deconfigure one or more guest CP0 registers 
by writing to the guest configuration registers.

The Virtualization Module requires that scratch registers KScratch1 and KScratch2 are present in the root context. This 
ensures that hypervisor exception handlers have an adequate number of scratch registers to save and restore all gen-
eral purpose registers in use by the guest.

10.6.2 New CP0 Registers

Coprocessor 0 registers have been added by the Virtualization Module to control the guest context. Table 10.4 
describes CP0 registers introduced by the Virtualization Module. Refer to Chapter 2 of this manual for more informa-
tion. 

Table 10.4 CP0 Registers Introduced by the Virtualization Module 

Register 
Number Sel Register Name Description

12 6 GuestCtl0 Controls guest mode behavior. 

10 4 GuestCtl1 Guest ID

10 5 GuestCtl2 Virtual Interrupts

11 4 GuestCtl0Ext Extension to GuestCtl0

12 7 GTOffset Offset for guest timer value
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10.6.3 Guest CP0 Register Accesses Using Instructions

Guest CP0 registers can be accessed from root mode by using the root-only MFGC0 and MTGC0 instructions. 

10.6.4 Guest CP0 Register Initialization and Control

Root context software (hypervisor) manages the initial state of writable Guest context registers. On power-up, the ini-
tial state defaults to the hardware reset state. On a Guest context save and restore, the hypervisor is required to pre-
serve and re-initialize the Guest state. For virtual boot of a Guest, the hypervisor is required to initialize the Guest 
state equivalent to the hardware reset state. The Root may deconfigure one or more guest CP0 registers by writing to 
the guest configuration registers.

The Virtualization Module requires that scratch registers KScratch1 and KScratch2 are present in the root context. This 
ensures that hypervisor exception handlers have an adequate number of scratch registers to save and restore all gen-
eral purpose registers in use by the guest.

10.6.5 CP0 Registers in the Guest Context

When a CP0 register is defined in the guest context, it is used to control guest execution. Fields in the GuestCtl0 regis-
ter can be used to cause Guest Privileged Sensitive Instruction exceptions when an access from guest mode is 
attempted. This allows hypervisor software to control the value of a register in the guest CP0 context (thus controlling 
guest-mode execution) while denying guest-kernel access to the register.

Attempting modification of certain fields in guest context CP0 registers triggers a Guest Software Field Change 
exception. In a similar manner, the Guest Hardware Field Change exception is triggered when a hardware initiated 
change to Guest CP0 registers occurs. These mechanisms are used to support Root recognition of Guest initiated 
changes to guest context CP0 registers. 

Table 10.5 lists the CP0 registers that can be accessed by the Guest under the conditions shown. 

Table 10.5 CP0 Registers in Guest CP0 Context 

Register 
Number Sel Register Name

Available to Guest-Kernel 
software when

Guest Privileged Sensitive 
Instruction Exception when
Root.GuestCtl0CP0 = 0, or

0 0 Index Guest.ConfigMT = 1 or 
Guest.ConfigMT = 4

GuestCtl0ExtMG = 1

1 0 Random

2 0 EntryLo0

3 0 EntryLo1

4 0 Context

4 1 ContextConfig Guest.Config3SM = 1 or 
Guest.Config3CTXTC = 1

4 2 UserLocal Guest.Config3ULRI = 1 GuestCtl0ExtOG = 1

4 3 XContextConfig
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5 0 PageMask Guest.ConfigMT = 1 or 
Guest.ConfigMT = 4

GuestCtl0ExtMG = 1

5 1 PageGrain GuestCtl0AT = 1

5 2 SegCtl0 Guest.Config3SC = 1

5 3 SegCtl1

5 4 SegCtl2

5 5 PWBase Guest.Config3PW =1

5 6 PWField

5 7 PWSize

6 0 Wired Guest.ConfigMT = 1 or 
Guest.ConfigMT = 4

6 6 PWCtl Guest.Config3PW =1

7 0 HWREna Guest.ConfigAR> = 1 GuestCtl0ExtOG = 1

8 0 BadVAddr Always GuestCtl0ExtBG = 1

8 1 BadInstr Guest.Config3BI = 1 GuestCtl0ExtBG = 1

8 2 BadInstrP Guest.Config3BP = 1 GuestCtl0ExtBG = 1

9 0 Count Always GuestCtl0GT = 0

10 0 EntryHi Guest.ConfigMT = 1 or 
Guest.ConfigMT = 4

GuestCtl0ExtMG = 1

11 0 Compare Always GuestCtl0GT = 0

12 0 Status Always -

12 1 IntCtl Guest.ConfigAR> = 1 -

12 2 SRSCtl  Guest.ConfigAR >=1 Always

13 0 Cause Always -

14 0 EPC Always -

15 0 PRid - Always

15 1 EBase Guest.ConfigAR> = 1 -

15 2 CDMMBase Guest.Config3CDMM = 1 Always

15 3 CMGCRBase Guest.Config3CMGCR = 1

16 0 Config Always On write access when GuestCtl0CF = 0.

16 1 Config1 Guest.ConfigM = 1

16 2 Config2 Guest.Config1M = 1

16 3 Config3 Guest.Config2M = 1

16 4 Config4 Guest.Config3M = 1

16 5 Config5 Guest.Config4M = 1

Table 10.5 CP0 Registers in Guest CP0 Context (continued)

Register 
Number Sel Register Name

Available to Guest-Kernel 
software when

Guest Privileged Sensitive 
Instruction Exception when
Root.GuestCtl0CP0 = 0, or
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10.6.6 Guest Config Register Fields

The Guest.Config0-5 registers control the behavior of architecture features during guest execution. The guest context is 
a subset of the root context. In addition, the guest context can only include features available in the root context. Root 
mode software can determine whether programmable features are available in the guest context by attempting to 
write values to Guest.Config fields.

17 0 LLAddr GuestCtl0ExtOG = 1

17 1 MAAR Guest.Config5MRP = 1 Always

17 2 MAARI Guest.Config5MRP = 1 Always

18 0 WatchLo Guest.Config1WR = 1 Conditional

19 0 WatchHi Guest.Config1WR = 1

20 0 XContext

23 0 Debug Guest.Config1EP = 1 Always

24 0 DEPC Guest.Config1EP = 1

25 0-n PerfCnt Guest.Config1PC = 1 Conditional, refer to Section 10.9.4

26 0 ErrCtl - Always

27 0 CacheErr

28 0 ITagLo

28 1 IDataLo

28 2 DTagLo

28 3 DDataLo

28 4 L2/3TagLo

28 5 L2/3DataLo

29 0 ITagHi

29 1 IDataHi

29 5 L2/3DataHi

30 0 ErrorEPC Always -

31 2 KScratch1 Always
Defined by Guest.Config4KScrExist

GuestCtl0ExtOG=1

31 3 KScratch2

31 4 KScratch3

31 5 KScratch4

31 6 KScratch5

31 7 KScratch6

Table 10.5 CP0 Registers in Guest CP0 Context (continued)

Register 
Number Sel Register Name

Available to Guest-Kernel 
software when

Guest Privileged Sensitive 
Instruction Exception when
Root.GuestCtl0CP0 = 0, or
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Table 10.6 lists Guest.Config register fields which can be written from root mode 

1. Root must be able to write guest MMU size related fields in Config1 and Config4 if a TLB is shared between root and 
guest.

10.6.7 Read-Only Guest Context Fields Writeable from Root

The Guest context CP0 registers include fields that are read only and dynamically set by hardware. Corresponding 
fields in the guest context can be written from root mode, but remain read-only to the guest.

Table 10.7 lists fields which are read-only to the guest and writable from root mode.

Table 10.6 Guest CP0 Read-only Config Fields Writable from Root Mode

Register Field Purpose

Config MT MMU Type

Config1 MMU Size - 1 Number of entries in (guest) MMU

Config1 PC Performance Counter registers implemented

Config1 WR Watch registers implemented

Config1 FP FPU implemented

Config3 MSAP MSA (MIPS SIMD Architecture) implemented

Config3 CTXTC ContextConfig etc. implemented

Config3 LPA 40-bit PA is implemented

Table 10.7 Guest CP0 Read-only Fields Writable from Root Mode

Register Field Purpose

Index P Root restore of P in guest context.

Context BadVPN2 Virtual Page Number from the address causing last exception.

BadVAddr BadVAddr Address causing last exception

Cause BD Last exception occurred in a delay slot

Cause TI Timer interrupt is pending

Cause CE Coprocessor number for coprocessor unusable exception

Cause FDCI Fast Debug Channel interrupt is pending

Cause IP7..2 Non-EIC interrupt pending bits. Write to Cause[7:2] is Optional if 
GuestCtl2 implemented.

Cause RIPL EIC interrupt pending level. Optional if GuestCtl2 implemented.

Cause ExcCode Exception code, from last exception

EBase CPUNum CPU number in multi-core system

Status SR Soft Reset. Root write is Optional.1

Status NMI Non Maskable Interrupt. Root write is Optional. 1

BadInstr BadInstr Faulting Instruction Word. Optional in base architecture.

BadInstrP BadInstrP Prior Branch Instruction. Optional in base architecture.

Wired Limit Allow root to set guest Wired Limit field. (Release 6)
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1 Root writes of 1 to Guest.StatusSR or Guest.StatusNMI will not directly cause an interrupt in the guest. Root software may set 
EPC to the guest’s reset vector and ERET back to the guest such that to the guest it appears as if an NMI or SR had occurred. 
This feature is useful for resetting a guest that might be hung or otherwise unresponsive.

10.7 New CP0 Instructions

The Virtualization Module introduces new instructions for root mode access to the guest CP0 context, and for a guest 
to make a call into root mode - a ‘hypervisor call’.

Table 10.8 describes CP0 instructions introduced by the Virtualization Module.

Table 10.8 CP0 Instructions Introduced by the Virtualization Module

Instruction Description

HYPCALL Hypercall - call to root mode.

DMFGC0 Double Move from Guest CP0

DMTGC0 Double Move to Guest CP0

MFGC0 Move from Guest CP0

MTGC0 Move to Guest CP0

TLBGINV Guest TLB Invalidate

TLBGINVF Guest TLB Invalidate Flush

TLBGP Probe Guest TLB

TLBGR Read Guest TLB

TLBGWI Write Guest TLB

TLBGWR Write Random to Guest TLB
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10.8 Virtualization Exceptions

Normal execution of instructions can be interrupted when an exception occurs. Such events can be generated as a by-
product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a 
load instruction), by an illegal attempt to use a privileged instruction (e.g. MTC0 from user mode), or by an event not 
directly related to instruction execution (e.g., an external interrupt). 

When an exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted 
instruction stream, enters Exception or Error mode, and starts a software exception handler. The saved state and the 
address of the software exception handler are a function of both the type of exception, and the current state of the pro-
cessor.

10.8.1 Overview of Exception Handling in Root and Guest Mode

Exceptions are handled in the mode whose context triggered the exception. An exception triggered by the guest CP0 
context will be handled in guest mode. An exception triggered by the root CP0 context is handled in root mode.

Figure 10.6 shows the how exceptions are handled in each of the operating modes (supervisor modes are omitted for 
clarity). 

Figure 10.6 Exception Handling in Root and Guest Mode 

In Figure 10.6, an operation executed in guest-user mode must travel through the root kernel to complete the opera-
tion. 

The first layer to be crossed is the guest CP0 context (controlled by guest-kernel mode software). All exception and 
translation rules defined by the guest CP0 context are applied, and resulting exceptions are taken in guest mode by the 
guest kernel handler. 

If the operation does not trigger a guest-context exception, the next layer to be crossed is the root CP0 context (con-
trolled by root-kernel mode software). All exception and translation rules defined by the root CP0 context are applied, 
and resulting exceptions taken in root mode by the root kernel handler as shown.

guest-user

guest-kernel root-kernel

Guest CP0

guest-kernel handler root-kernel handler

Complete

root-user

operationexception?
Root CP0
exception?

N N

Y Y

Operation starting point
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For example, an access to Coprocessor 1 (the Floating Point Unit) must first be permitted by the guest context 
StatusCU1 bit, and then by the root context StatusCU1 bit. However, access of guest to Coprocessor 0 is not qualified by 
root context StatusCU0 as Coprocessor 0 state is not shared with root. 

10.8.2 Exceptions in Guest Mode

The Virtualization Module retains the exception-processing methodology of the base microMIPS architecture, and 
adds additional rules for processing of exception conditions detected during guest-mode execution.

The ‘onion model’ requires that every guest-mode operation be checked first against the guest CP0 context, and then 
against the root CP0 context. Exceptions resulting from the guest CP0 context can be handled entirely within guest 
mode without root-mode intervention. Exceptions resulting from the root-mode CP0 context (including GuestCtl0 per-
missions) require a root mode (hypervisor) handler.

During guest mode execution, the mode in which an exception is taken is determined by the following:

• Guest-mode operations must first be permitted by guest-mode CP0 context and then by root mode CP0 context

• This includes all operations for which exceptions can be generated - memory accesses, coprocessor 
accesses, breakpoints and so forth.

• Exceptions are always taken in the mode whose CP0 state triggered the exception

• When architecture features in the guest context are present and enabled by the Guest.Config registers, excep-
tions triggered by those features are taken in guest mode.

• Exceptions resulting from control bits set in the Root.GuestCtl0 register, and exceptions resulting from 
address translation of guest memory accesses through the root-mode TLB are taken in root mode.

Asynchronous exceptions such as Reset, NMI, Memory Error, Cache Error are taken in root mode. External inter-
rupts are received by the root CP0 context, and if enabled are taken in root mode. If an interrupt is not enabled in root 
mode and is bypassed to the guest CP0 context, and is enabled in the guest CP0 context, the interrupt is taken in guest 
mode.

When an exception is detected during guest mode execution, any required mode switch is performed after the excep-
tion is detected and before any machine state is saved. This allows machine state to be saved to either the root or guest 
contexts, and allows the exception to be handled in the proper mode. See also Section 10.8.3.

# Booleans, indicating source of exception:
# root_async - Asynchronous root context exception
# root_sync - Synchronous exception triggered by root context
# guest_async - Asynchronous exception triggered by guest context
# guest_sync - Synchronous exception triggered by guest context
#
# Exceptions directed to root context set Root.Status.ERL or Root.Status.EXL,
# meaning that the processor executes the handler in root mode.

# Ordering of exception conditions
if (root_async) then

ctx Root
elsif (guest_async) then

ctx Guest
elsif (guest_sync) then

ctx Guest
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elsif (root_sync) then
ctx Root

else
ctx null

endif

if (ctx) then
# Defined by MIPS Privileged Resource Architecture
ctx.GeneralExceptionProcessing()

endif

10.8.3 Faulting Address for Exceptions from Guest Mode

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions.

• Address error

• TLB Refill

• TLB Invalid

• TLB Modified

• TLB Execute Inhibit

• TLB Read Inhibit

10.8.4 Guest Initiated Root TLB Exception

When an exception is triggered as a result of a root TLB access during guest-mode execution, the handler will be exe-
cuted in root mode, and exception state is stored into root CP0 registers. The registers affected are GuestCtl0, 
Root.EPC, Root.BadVAddr, Root.EntryHi, Root.Cause and Root.ContextBadVPN2.

The faulting address value stored into Root.BadVAddr and Root.ContextBadVPN2 is ideally the Guest Physical Address 
(GPA) presented to the root TLB by the guest context.

Whether the GPA can be provided is implementation dependent. If a GVA is mapped by the Guest MMU, yet the 
GPA is not available for write to root context, then GuestCtl0GExcCode must indicate this. In a specific e.g., guest TLB 
refill exception will always set GPA in GuestCtl0GExcCode, while TLB modified/invalid/execute-inhibit/read-inhibit 
exceptions may set GVA due to implementation limitations.

The GPA presented to the root TLB is the result of translation through the guest context Segmentation Control if 
implemented, and through the guest TLB if in a mapped region of memory. The value stored in Root.BadVAddr and 
Root.ContextBadVPN2 is the Guest Physical Address being accessed by the guest.

This process ensures that after an exception, both Root.BadVAddr and Root.ContextBadVPN2 refer to a virtual address 
which is immediately usable by a root-mode handler, irrespective of whether the exception was triggered by root-
mode or guest-mode execution.
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10.8.5 Exception Priority

Table 10.9 lists all possible exceptions, and the relative priority of each, highest to lowest. The table also lists new 
exception conditions introduced by the Virtualization Module, and defines whether a switch to root mode is required 
before handling each exception. 

Table 10.9 Priority of Exceptions 

Exception Description Type
Taken in 

mode

Reset The Cold Reset signal was asserted to the processor Asynchronous 
Reset

Root

Soft Reset The Reset signal was asserted to the processor

Debug Single Step An EJTAG Single Step occurred. Prioritized above other excep-
tions, including asynchronous exceptions, so that one can single-
step into interrupt (or other asynchronous) handlers.

Synchronous 
Debug

Root

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous 
Debug

Root

Imprecise Debug Data 
Break

An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt 
(NMI)

The NMI signal was asserted to the processor. Asynchronous Root

Machine Check Root, or Root TLB related. 
This can only occur as part of a guest (second step) address transla-
tion, root address translation, and root TLB operation (write, 
probe) whether for guest or root TLB. It is recommended that the 
Machine-Check be synchronous. A TLB instruction must cause a 
synchronous Machine Check. 

Asynchronous 
or Synchronous

Root

An internal inconsistency was detected by the processor. Root

Guest TLB related. 
This can only occur as part of a guest address translation (first 
step), and guest TLB operation (write, probe). It is recommended 
that the Machine-Check be synchronous. A TLB instruction must 
cause a synchronous Machine Check.

Guest

Interrupt A root enabled interrupt occurred. Asynchronous Root

Deferred Watch A Root watch exception, deferred because EXL was one when the 
exception was detected, was asserted after EXL went to zero. A 
deferred root watch exception may occur in guest mode in which 
case it is prioritized higher than a simultaneous occuring guest 
interrupt.

Asynchronous Root

Interrupt A guest enabled interrupt occurred. Asynchronous Guest

Deferred Watch A Guest watch exception, deferred because Guest EXL was one 
when the exception was detected, was asserted after EXL went to 
zero.

Asynchronous Guest

Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized 
above instruction fetch exceptions to allow break on illegal 
instruction addresses.

Synchronous 
Debug

Root
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Watch - Instruction fetch A root context watch address match was detected on an instruction 
fetch. Prioritized above instruction fetch exceptions to allow watch 
on illegal instruction addresses. 

Synchronous Root

A guest-context watch address match was detected on an instruc-
tion fetch. Prioritized above instruction fetch exceptions to allow 
watch on illegal instruction addresses. 

Guest

Address Error - Instruc-
tion fetch

A non-word-aligned address was loaded into PC. Synchronous Current

TLB Refill - Instruction 
fetch

A Guest TLB miss occurred on an instruction fetch Synchronous Guest

A Root TLB miss occurred on an instruction fetch.
This can occur due to a Root or Guest translation.

Root

TLB Invalid - Instruction 
fetch

The valid bit was zero in the guest context TLB entry mapping the 
address referenced by an instruction fetch.

Synchronous Guest

The valid bit was zero in the Root TLB entry mapping the address 
referenced by an instruction fetch.
This can occur due to a Root or Guest translation.

Root

TLB Execute-inhibit An instruction fetch matched a valid Guest TLB entry which had 
the XI bit set.

Synchronous Guest

An instruction fetch matched a valid Root TLB entry which had 
the XI bit set.
This can occur due to a Root or Guest translation.

Root

Cache Error - Instruction 
fetch

A cache error occurred on an instruction fetch. Synchronous 
or 

Asynchronous

Root

Bus Error - Instruction 
fetch

A bus error occurred on an instruction fetch.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous 
Debug

Root

Guest Reserved Instruc-
tion Redirect

A guest-mode instruction will trigger a Reserved Instruction 
Exception. When GuestCtl0RI=1, this root-mode exception is 
raised before the guest-mode exception can be taken. Reserved 
Instruction Exception processing otherwise follow standard rules 
of prioritization within a given context - Reserved Instruction 
Redirect is taken as a side-effect of this processing.

Synchronous 
Hypervisor

Root

Table 10.9 Priority of Exceptions (continued)

Exception Description Type
Taken in 

mode
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Instruction Validity 
Exceptions

An instruction could not be completed because it was not allowed 
access to the required resources, or was illegal: Coprocessor Unus-
able,Reserved Instruction, MSA disabled. If  exceptions occur on 
the same instruction, the Coprocessor Unusable, MSA disabled 
Exception take priority over the Reserved Instruction Exception.

Synchronous Current

Coprocessor unusable - guest. Access to a coprocessor was permit-
ted by the Guest.StatusCU1-2 bits, but denied by Root.StatusCU1-2 
bits.
MSA disabled - guest. Access to the MSA unit was permitted by 
Guest.Config5MSAEn, but denied by Root.Config5MSAEn.

Root

Machine Check Root TLB related. 
This can only occur as part of a Guest or Root address translation, 
or a TLBP/TLBWI/TLBGP/TLBGWI executed in root-mode.

Synchronous Root

Guest TLB related. 
This can only occur as part of a Guest address translation, or a 
TLBP/TLBWI executed in guest-mode

Guest

An internal inconsistency was detected by the processor. Root

Guest Privileged Sensi-
tive Instruction Exception

An instruction executing in guest-mode could not be completed 
because it was denied access to the required resources by the 
Root.GuestCtl0 register.

Synchronous 
Hypervisor

Root

Hypercall A HYPCALL hypercall instruction was executed. Synchronous 
Hypervisor

Root

Guest Software Field-
Change

During guest execution, a software initiated change to certain CP0 
register fields occured.

Synchronous 
Hypervisor

Root

Guest Hardware Field-
Change

During guest execution, a hardware initiated set of StatusEXL/TS 

occurred.

Synchronous 
Hypervisor

Root

Execution Exception An instruction-based exception occurred: Integer overflow, trap, 
system call, breakpoint, floating point, coprocessor 2 exception.

Synchronous Current

Precise Debug Data Break A precise EJTAG data break on load/store (address match only) or 
a data break on store (address+data match) condition was asserted. 
Prioritized above data fetch exceptions to allow break on illegal 
data addresses.

Synchronous 
Debug

Root

Watch - Data access A root context watch address match was detected on the address 
referenced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses. 

Synchronous Root

A guest context watch address match was detected on the address 
referenced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses.

Guest

Address error - Data 
access

An unaligned address, or an address that was inaccessible in the 
current processor mode was referenced, by a load or store instruc-
tion

Synchronous Current

Table 10.9 Priority of Exceptions (continued)

Exception Description Type
Taken in 

mode
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The “Type” column of Table 10.9 describes the type of exception. Table 10.10 explains the characteristics of each 
exception type. 

TLB Refill - Data access A guest TLB miss occurred on a data access Synchronous Guest

A root TLB miss occurred on a data access.
This can occur due to a Root or Guest translation.

Root

TLB Invalid - Data access On a data access, a matching guest TLB entry was found, but the 
valid (V) bit was zero.

Synchronous Guest

On a data access, a matching root TLB entry was found, but the 
valid (V) bit was zero.
This can occur due to a Root or Guest translation.

Root

TLB Read-Inhibit On a data read access, a matching guest TLB entry was found, and 
the RI bit was set.

Synchronous Guest

On a data read access, a matching root TLB entry was found, and 
the RI bit was set.
This can occur due to a Root or Guest translation.

Root

TLB Modified - Data 
access

The dirty bit was zero in the guest TLB entry mapping the address 
referenced by a store instruction

Synchronous Guest

The dirty bit was zero in the root TLB entry mapping the address 
referenced by a store instruction.
This can occur due to a Root or Guest translation.

Root

Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
or

Asynchronous

Root

Bus Error - Data access A bus error occurred on a load or store data reference

Precise Debug Data Break A precise EJTAG data break on load (address+data match only) 
condition was asserted. Prioritized last because all aspects of the 
data fetch must complete in order to do data match.

Synchronous 
Debug

Root

Table 10.10 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution. 
These exceptions always have the highest priority to guarantee that the processor can 
always be placed in a runnable state. These exceptions always require a switch to root 
mode.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execu-
tion. These exceptions have very high priority with respect to other exceptions because 
of the desire to enter Debug Mode, even in the presence of other exceptions, both asyn-
chronous and synchronous. These exceptions always require a switch to root mode.

Table 10.9 Priority of Exceptions (continued)

Exception Description Type
Taken in 

mode
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10.8.6 Exception Vector Locations

Exception vector locations are as defined in the base architecture. 

The vector location is determined from the values of EBase, StatusEXL, StatusBEV, IntCtlVS and Config3VEIC obtained from 
the context in which the exception will be handled.

The General Exception entry point is used for new hypervisor exceptions Guest Privileged Sensitive Instruction, 
Guest Reserved Instruction Redirect, Guest Software Field Change, Guest Hardware Field Change and Hypercall.

10.8.7 Synchronous and Synchronous Hypervisor Exceptions

During guest mode execution, control can be returned to root mode at any time. When an exception condition is 
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any 
exception state is saved. As a result, exception state in the guest CP0 context is not affected.

The switch to root mode is achieved by setting Root.StatusEXL=1 or Root.StatusERL=1 (as appropriate) before any 
other state is saved. This ensures that all exception state is stored into root CP0 context, regardless of whether the pro-
cessor was executing in root or guest mode at the point where the exception was detected.

Refer to the Exceptions chapter for more information on these exceptions.

10.8.8 Guest Exception Code in Root Context

In the case of a guest exception which causes a guest exit to root, hardware must supply the appropriate value for 
Root.CauseExcCode and GuestCtl0GExcCode, as described in the pseudo-code below.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execu-
tion. These exceptions are shown with higher priority than synchronous exceptions 
mainly for notational convenience. If one thinks of asynchronous exceptions as occur-
ring between instructions, they are either the lowest priority relative to the previous 
instruction, or the highest priority relative to the next instruction. The ordering of the 
table above considers them in the second way. These exceptions always require a 
switch to root mode.

Synchronous Debug Denotes an EJTAG debug exception that occurs as a result of instruction execution, 
and is reported precisely with respect to the instruction that caused the exception. 
These exceptions are prioritized above other synchronous exceptions to allow entry to 
Debug Mode, even in the presence of other exceptions. These exceptions always 
require a switch to root mode.

Synchronous Hypervi-
sor

Denotes an exception that occurs as a result of guest-mode instruction execution which 
requires hypervisor intervention. It is reported precisely with respect to the instruction 
that caused the exception. These exceptions always require a switch to root mode.

Synchronous Denotes any other exception that occurs as a result of instruction execution, and is 
reported precisely with respect to the instruction that caused the exception. These 
exceptions tend to be prioritized below other types of exceptions, but there is a relative 
priority of synchronous exceptions with each other. In some cases, these exceptions 
can be handled without switching modes.

Table 10.10 Exception Type Characteristics

Exception Type Characteristics
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if guest exception is (GPSI or GSFC or GHFC or HC or GRR or IMP) then
Root.CauseExcCode “GE”
Root.GuestCtl0GExcCode “GPSI” or “GSFC” or “GHFC” or “HC” or “GRR” or “IMP”

elseif guest exception is (Root TLB-Refill or TLB-Invalid)
Root.CauseExcCode “TLBS” or “TLBL”
# loading of GPA for both TLB-Refill and TLB-Invalid is recommended.
Root.GuestCtl0GExcCode “GPA”

elseif guest exception is (Root TLB-Execute_Inhibit or TLB-Read_Inhibit)
if (Root.PageGrainIEC = 0) then

Root.CauseExcCode “TLBL”
Root.GuestCtl0GExcCode “GPA” or GVA”

elseif (TLB Execute-Inhibit)
Root.CauseExcCode “TLBXI”
Root.GuestCtl0GExcCode “GVA” or “GPA”

else
Root.CauseExcCode “TLBRI”
Root.GuestCtl0GExcCode “GVA” or “GPA”

endif
elseif guest exception is (TLB Modified)

Root.CauseExcCode “MOD”
Root.GuestCtl0GExcCode “GVA” or “GPA”

else
Root.CauseExcCode baseline “ExcCode”
Root.GuestCtl0GExcCode “UNDEFINED”

endif

10.9 Interrupts

The Virtualization Module provides a virtualized interrupt system for the guest.

The root context interrupt system is always active, even during guest mode execution. An interrupt source enabled in 
the root context will always result in a root-mode interrupt. Guests cannot disable root mode interrupts.

Standard interrupt rules are used by both root and guest contexts to determine when an interrupt should be taken. An 
interrupt enabled in the root context is taken in root mode. An interrupt masked by root and enabled in the guest con-
text is taken in guest mode. Root interrupts take priority over guest interrupts.

Figure 10.7 shows the how virtualized interrupts are managed in the P6600 core. 
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Figure 10.7 Interrupt Handling in the Virtualization Module l

The Guest.CauseRIPL/IP field is the source of guest interrupts. The behavior of this field is controlled from the root con-
text. Two methods can be used to trigger guest interrupts - a root-mode write to the Guest.Cause register, or direct 
assignment of real interrupt signal to the guest interrupt system. Interrupt sources are combined such that both meth-
ods can be used.

Timers and related interrupts are available in both guest and root contexts.

The set of pending interrupts seen by the guest context is the combination (logical OR) of:

• External interrupts passed through from the root context, enabled by GuestCtl0PIP if implemented.

• Interrupts generated within the guest context (e.g., Timer interrupts, Software interrupts)

• Root asserted interrupts, set by software write to GuestCtl2VIP field in non-EIC mode, or hardware capture of a 
guest interrupt in GuestCtl2GRIPL in EIC mode.

Software should enable direct interrupt assignment only when root and guest agree on the interpretation of interrupt 
pending/enable fields in the Status and Cause registers. Direct assignment is appropriate if both Root and Guest use 
EIC mode, or if both use non-EIC mode. Root can track changes to the guest interrupt system status using the field-
change exceptions which result from guest initiated changes to fields StatusBEV, CauseIV or IntCtlVS.

Root must assign interrupts to Guest with caution. For example, in non-EIC mode, if an interrupt pin (HW[5:0]) is 
shared by multiple interrupt sources, then enabling direct guest visibility (in Guest CauseIP[n] via GuestCtl0PIP[n]=1) 
will cause all the interrupt sources on that pin to be visible to the Guest, possibly removing Root intervention capabil-
ity. If Root Software needs to guarantee Root intervention capability on an interrupt then that interrupt should not be 
directly visible to Guest.

In non-EIC mode, the guest timer interrupt is always applied to the interrupt source indicated by the Guest.IntCtlIPTI 
field and is not affected by the GuestCtl0PIP field. Similarly, Guest software interrupts are not affected by the 
GuestCtl0PIP field, and are always applied to the interrupt source indicated by Guest.IntCtlIPPCI

A virtualization-based external interrupt delivery system, whether EIC or non-EIC provides the following capabili-
ties:

IRQ?

Guest handler

Y No action

NPendingIRQ?

Root handler

Y

No action

N
Pending Pass?

N

Y

Root can assert IRQ by
write to pending field

Root

Guest

Timer, Timer,
etc. etc.

External
Sources



 

574 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

1. Root assignment of External Interrupt.

Hardware delivers interrupt to root context, with root-mode servicing of external interrupt.

2. Guest assignment of External Interrupt with Root Intervention.

Hardware delivers interrupt to root context, with root-mode hand-off to guest by writing to GuestCtl2vIP, fol-
lowed by guest servicing of external interrupt.

If root requires visibility into guest interrupts, then root should use this method to deliver interrupts to guest.

3. Guest assignment of External Interrupt without Root Intervention.

Hardware delivers interrupt to guest context without root intervention, followed by guest servicing of external 
interrupt. The interrupt is not visible to root as root has made the choice to assign to guest.

A MIPS enabled virtualized external interrupt delivery system also provides support for Virtual Interrupts. Root can 
simulate a guest interrupt by writing 1 to GuestCtl2vIP. It can subsequently clear the interrupt by writing 0 to 
GuestCtl2vIP. 

Virtual Interrupt capability can be used to support guest virtual drivers. Root will inject an interrupt into guest con-
text. Guest will field the interrupt, and in so doing cause a trap to Root, either by device activity or protected memory 
access. Root may then clear the interrupt by writing to guest CauseIP set earlier. 

10.9.1 External Interrupts

10.9.1.1 Non-EIC Interrupt Handling

This section provides a detailed description of non-EIC handling in a recommended implementation. The term HW is 
used to represent an external interrupt source. HW is alternatively referred to as IRQ in other sections of the Module. 
HW is a set of interrupt pins common to both root and guest context. 

Whether an external interrupt is visible to guest context or root context is dependent on GuestCtl0PIP (Pending Inter-
rupt Passthrough). If GuestCtl0PIP[n] =1, then HW[n] is visible to guest context through Guest.CauseIP[n+2], other-
wise it is visible to root context through Root.CauseIP[n+2].

If GuestCtl0PIP[n]=0, but Root needs to transfer the external interrupt to Guest, then it must write to a software visible 
register, GuestCtl2vIP[n] (Interrupt Pending, Virtual). This method is also used by Root to inject a virtual interrupt 
into guest context. It is also a convenient way for Root to save and restore interrupt state of a Guest, if an interrupt 
had been injected by Root, but needs to be preserved across context switches. In the absence of GuestCtl2vIP, Root 
would need to derive the equivalent of vIP by reading Guest.CauseIP which may be problematic since other interrupts 
could also be present.

GuestCtl2vIP, Guest.CauseIP and Root.CauseIP handling is described below in relation to GuestCtl2vIP and 
GuestCtl0PIP. The application of GuestCtl2HC is discussed below.

GuestCtl2vIP Handling:
if (MTC0[GuestCtl2vIP[n]]=1)

GuestCtl2vIP[n] 1

else if ((Deassertion of HW[n] and GuestCtl2HC[n]) or (MTC0[GuestCtl2vIP[n]]=0))

GuestCtl2vIP[n] 0

endif
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Guest.CauseIP Handling:

Guest.CauseIP[n+2] = ((HW[n] and GuestCtl0PIP[n]) or GuestCtl2vIP[n])

Root.CauseIP Handling:

Root.CauseIP[n+2] 

= (HW[n] and !(GuestCtl0PIP[n] or (GuestCtl2vIP[n] and GuestCtl2HC[n])))

GuestCtl2HC is provided to control how GuestCtl2vIP is reset. If a bit of GuestCtl2HC is 1, then the deassertion of 
related external interrupt will always cause associated GuestCtl2vIP to be cleared. If a bit of GuestCtl2HC is 0 then the 
deassertion of HW[n] will not cause GuestCtl2vIP to be cleared. In this case, it is the responsibility of root software to 
clear by writing 0 to GuestCtl2vIP [n] .

In summary, interrupt injection in guest context serves two purposes - root assignment of external interrupts and 
injection of virtual interrupts to Guest. GuestCtl2HC provides the means to root software to distinguish between the 
two. Root software can use this facility to transfer an external interrupt HW[n] for guest servicing. In this scenario, 
GuestCtl2HC[n]=1 and the assertion of GuestCtl2vIP [n] will cause corresponding Root.CauseIP[n+2] to be cleared, 
thus transparently affecting the transfer. Otherwise, Root would have to disable interrupts for that specific source by 
clearing Root.StatusIM[n]. On the other hand, Root can use this capability to inject interrupts into Guest context for 
guest virtual device drivers, as an e.g.. In this case, GuestCtl2HC[n]=0, the assumption is that there is no external 
interrupt tied to the injected interrupt, and thus assertion of GuestCtl2vIP [n] should not cause Root.CauseIP[n+2] to be 
cleared. Guest.CauseIP[n+2] is asserted in both cases described.

Virtual interrupt handling is an option that can be detected by the presence of GuestCtl2. Hardware clear capability is 
also an option, even if virtual interrupts are supported. This capability exists if the field is writeable or preset to 1.

10.9.1.2 EIC Interrupt Handling

In EIC mode, the external interrupt controller (EIC) is responsible for combining internal and external sources into a 
single interrupt-priority level, which appears in the CauseRIPL field. 

When an implementation makes EIC mode available (as indicated by Guest.Config3VEIC=1), two interrupt priority-
level signals must be generated within the EIC - one for the root context (affecting Root.CauseRIPL), and one for the 
guest context (affecting Guest.CauseRIPL). The root and guest timer interrupt signals are combined in an implementa-
tion-dependent way with external inputs to produce the root and guest interrupt priority levels.

In addition to RIPL, the interrupt Vector (offset or number), and EICSS will also be sent on each of the root and guest 
interrupt buses. The Vector from the EIC is either utilized by hardware as is, or derived from the EIC input. A Gues-
tID accompanies only the root bus, providing GuestID is supported in the implementation. This is because the EIC 
can also send an interrupt for guest on the root interrupt bus. Thus the GuestID for the root interrupt bus may be non-
zero. The GuestID for a guest interrupt taken in root mode must be registered in GuestCtl1EID. The guest associated 
with the guest bus is by default equal to GuestCtl1ID .

In the architecture as defined, the type of vector a virtualized core can accept from the EIC is fixed - it is either a vec-
tor number or offset but never both. This is because currently there is no capability to distinguish between the two 
types, intentionally so. It is recommended that a typical virtualized EIC source a vector number to the core.

The EIC should assign interrupts to root and guest interrupt buses as per the following rules:

• Root interrupts must always be taken in root context and thus be presented on root interrupt bus by the EIC.
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• If a guest interrupt requires root intervention, then it must be presented on the root interrupt bus by the EIC. 
And interrupt for a non-resident guest must always be sent on the root interrupt bus. An interrupt for the res-
ident guest may also be sent on the root interrupt bus.

A guest interrupt while the processor is in root mode can cause an interrupt immediately unless masked by 
Root.StatusIPL. Hardware should not stall the interrupt until the processor enters guest mode.

• Only an interrupt for a resident guest can be sent on the guest interrupt bus. If software programs the EIC to 
send an interrupt for a non-resident guest on the guest interrupt bus, then an implementation of the core is 
not required to respond to this interrupt. .

To allow the EIC to distinguish between resident and non-resident guests, the core must send GuestCtl1ID to the EIC. 
An implementation must account for the delay between when the GuestCtl1ID changes and when it is visible to the 
EIC to avoid a spurious interrupt for a non-resident guest from being sent on the guest interrupt bus. 

The processor and EIC are required to implement a protocol to avoid the above mentioned race. On a guest context 
switch, root software must first write 0 to GuestCtl1ID. This is equivalent to a STOP command for the EIC. EIC will 
recognize this as a stall and will not send interrupts to guest context by setting the requested interrupt priority level to 
0 on the guest interrupt bus to the core. Root software can then save and restore guest context, followed by a write of 
new GuestID to GuestCtl1ID . Once the write is complete, root software can enable guest mode operation. If an EIC 
implementation and root software follow this recommendation, then this prevents loss of an interrupt posted to the 
guest interrupt bus while root is switching guest context. An interrupt for the formerly active guest will now be posted 
on the root interrupt bus.

An EIC mode interrupt is generated in either guest or root context whenever hardware detects a change in RIPL on 
the respective interrupt buses from the EIC. It is possible for an EIC implementation to have active interrupts on both 
bus. In this case the root interrupt is always higher priority then the guest interrupt.

For the case of an interrupt in root context, two different interrupt vectors are used, one for root, the other for guest. 
Hardware is able to distinguish between the two by checking the GuestID on the root interrupt bus. The following 
pseudo-code describes how hardware generates the interrupt vector, depending on whether the EIC provides a vector 
offset (vectorOffset) or vector number (vectorNumber).

EIC_mode Config3.VEIC=1 && IntCtl.VS!=0 && Cause.IV=1 && Status.BEV=0
if EIC_mode 

if (EIC provides vectorNumber) 
if  (GuestID=0) 

vectorOffset  0x200 + (EIC_vectorNumber x (IntCtl.VS || 0b00000))
else //GuestID is non-zero

vectorOffset 0x200
endif

else // EIC provides vectorOffset
if  (GuestID=0) 

// EIC provides an offset relative to 0x200
vectorOffset EIC_vectorOffset 

else //GuestID is non-zero
vectorOffset 0x200

endif
endif

endif

If the interrupt is for guest, then the handler must compare GuestCtl1EID to GuestCtl1ID. If they are not equal, then 
interrupt is for non-resident guest, and interrupt servicing may either continue in root or guest context. If interrupt 
servicing is to continue in guest context, then the handler must first save the resident guest architected state (CP0, 
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GPRs etc) following by a restore of the new guest’s context. The root ERET instruction causes a transfer to guest 
mode (when GuestCtl0GM=1), followed by a guest interrupt providing GuestCtl2GRIPL is non-zero.

If GuestCtl1EID and GuestCtl1ID are equal, then save and restore is not needed. Interrupt servicing may either 
continue in root or guest context. If the interrupt is to be serviced in guest context, then the root ERET instruction 
causes a change to guest mode (when GuestCtl0GM=1), following by a guest interrupt providing GuestCtl2GRIPL is 
non-zero. 

As described above, for any change in GuestCtl1ID, root software must first insert a STOP command on interface to 
EIC by writing 0 to GuestCtl1ID. Once quiescent, root software may execute whatever software sequence it needs to. 
This is followed by a write of new GuestID to GuestCtl1ID, then the root ERET instruction. There may be some 
arbitrary delay between write of GuestID and ERET instruction where EIC can respond with an interrupt on guest 
bus, but hardware will not trigger an interrupt because processor is in root mode.

A root interrupt must use Root.SRSCtlEICSS. Otherwise, hardware forces use of Root.SRSCtlESS if the interrupt on the 
root interrupt bus is for any guest. 

The guest interrupt in the scenario where the interrupt is transferred from root context after having been received on 
the root interrupt bus is caused when the processor enters guest mode and hardware detects that GuestCtl2GRIPL is 
non-zero.

Once in guest mode, the guest interrupt handler completes with an ERET instruction. The guest will continue 
execution from its EPC, and not transfer back to root mode even if there was a change in guest context. If a return to 
root mode is required, then the HYPERCALL instruction must be used. 

The root CP0 register, GuestCtl2, where the root interrupt bus Vector, EICSS and RIPL. Storage in root CP0 state is 
required because in a typical EIC-based implementation, an acknowlegement is returned to the EIC when the 
interrupt is triggered. If an interrupt for the guest is initially triggered in root context, then the use of these fields will 
not occur until the root ERET instruction is executed to effect a change to guest mode. In the meanwhile, another root 
interrupt can occur which can overwrite the fields on the bus. Saving the fields as root CP0 register allows for nesting 
of these fields, and thus supports nesting of interrupts.

Hardware optimizes the transfer of GuestCtl2GRIPL and GuestCtl2EICSS into guest CP0 context on guest entry. 
Hardware will write GuestCtl2GRIPL to Guest.CauseRIPL, and GuestCtl2EICSS to Guest.SRSCtlEICSS providing 

GuestCtl2GRIPL is non-zero. Root software thus has the option of preventing hardware transfer by clearing 
GuestCtl2GRIPL before guest entry. 

In the case where root injects an interrupt into guest context after the interrupt was received on the root interrupt bus, 
hardware must ensure that two acknowledgements are not returned to the EIC as this may cause a loss of an interrupt. 
In the case where an interrupt is received on the root interrupt bus, hardware must always send an acknowledgement 
on the root interrupt bus. But in the case where the interrupt was injected into guest context by root, hardware should 
not send an acknowledgement on the guest interrupt bus as the interrupt was not received on this bus. Hardware can 
determine this because GuestCtl2GRIPL would be a non-zero value for the case of root injection.

Access to COP1 FPR and COP2 may be protected setting Root.StatusCU[2:1] appropriately. If access is disabled in 
root context, then it is also disabled in guest and will cause the appropriate exception (Coprocessor Unusable in root 
context). Hi/Lo registers are not protected by any means, and must be saved/restored if necessary.
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10.9.2 Derivation of Guest.CauseIP/RIPL

The interrupt pending value seen by the guest is calculated as shown below. The result value can be read by the guest 
(and the root) from the Guest.CauseRIPL / IP field and is the value used to determine whether a guest interrupt will be 
taken. Note that the value returned from Guest.CauseRIPL / IP on a read is generated from the value originally written by 
the root and from the status of directly assigned external interrupts. Hence the value written by the root may not be 
equal to the value read back.

# Returns:
# Non-EIC IP7..0. 
# EIC - (RIPL << 2) + IP1..0

subroutine GuestInterruptPending() :

if ((Guest.Config3VEIC = 1) and
(Guest.IntCtlVS != 0) and
(Guest.CauseIV = 1) and
(Guest.StatusBEV = 0)) then
# Guest in EIC mode
# - GuestCtl0PIP does not apply in EIC mode.
# - EIC must include guest interrupt sources in the EICGuestLevel signal
# - This includes Guest’s TI, IP1, IP0 and PCI if implemented.

- FDCI is only visible in root context.
# - GuestCtl2 required in EIC mode.
if (EICGuestLevel > GuestCtl2GRIPL)

irq EICGuestLevel
else 

irq GuestCtl2GRIPL
# h/w must clear if GuestCtl2GRIPL is source of interrupt.
GuestCtl2GRIPL 

endif
# Guest.CauseIP[1:0] is incorporated in EIC.
# State of Guest.CauseIP[1:0] is however preserved.
r irq << 2) OR Guest.CauseIP[1:0]

else
# Guest in non-EIC mode
# - External interrupts factored in if guest passthrough enabled.
# - Internal interrupts applied here, if implemented
# - Includes support for guest interrupt injection by root.
irq[7:2]  HW[5:0]
if (GuestCtl0PT=0)

# All interrupts processed first by root.
if (GuestCtl0G2=1)

# root software injects interrupts.
r  GuestCtl2vIP[5:0]

else
# if GuestCtl2vIP is not supported, then root writes Guest.Cause.IP
# to inject interrupt in guest context. H/W captures the write in a
# shadow register called Root_HW_VIP.
r  Root_HW_VIP[5:0]

endif
else

# Guest interrupt passthrough supported.
if (GuestCtl0G2=1)

r  Root.GuestCtl2vIP[5:0] OR (irq[7:2] AND Root.GuestCtl0PIP[5:0])
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else
r  Root_HW_VIP[5:0] OR (irq[7:2] AND Root.GuestCtl0PIP[5:0])

endif
endif
r  r << 2
r  r OR (GuestTimerInterrupt << Guest.IntCtlIPTI)
r  r OR (PCIEvent << Guest.IntCtlIPPCI)
r  r OR Guest.CauseIP[1:0]

endif

return(r)
endsub

The value returned by GuestInterruptPending() will subsequently be qualified by Guest StatusIM in non-EIC mode or 
Guest StatusIPL in EIC mode, as per the base architecture.

Fields in Guest Config registers indicate which interrupt options are available to the guest.

10.9.3 Timer Interrupts

Root may inject a timer interrupt in guest context by setting Guest CauseTI and indirectly Guest CauseIP[IPTI]. This may 
happen under the scenario where a guest has been switched out, but its virtual timer, maintained by root, is triggered. 
Root would set Guest CauseTI before entering guest mode for the guest. Guest would take a timer interrupt, clear 
Guest Compare, which would then clear Guest CauseTI. As per baseline MIPS architecture, a write to Compare will 
clear CauseTI.

Root maintaining a virtual timer for a guest is recommended if there are multiple guests in operation. Otherwise, if 
there is only one guest, but the processor is in root mode, then a match on Guest Count and Guest Compare is allowed 
in an implementation to set Guest CauseTI and Guest CauseIP[IPTI]. Once Root transitions to guest mode, then guest 
timer interrupt can be signaled in guest mode.

Root Injection of Guest TI:

if (MTGC0[Guest.CauseTI]=1)

 Root.Guest.CauseTI 1

else if ((MTC0[Guest.Compare]))

 Root.Guest.CauseTI 0

endif

where Root.Guest.CauseTI is a hardware shadow copy of Guest.CauseTI that is set when Guest.CauseTI is written by 
Root.

Guest.CauseIP[IPTI] = Root.Guest.CauseTI or “Other External and Internal interrupts”.

where “Other External and Internal interrupts” is defined in Section 10.9.2.

10.9.4 Performance Counter Interrupts

The presence of performance counter registers in Guest context is indicated by Guest.Config1.PC. This bit is read-
only to Guest, but writable by Root. 
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If Guest Config1.PC=0, the performance counters are unimplemented in the guest context and are treated as architec-
ture reserved.

If Guest Config1.PC=1, the performance counters are virtually shared by root and guest contexts.

If virtually shared, the encodings of Root PerfCtrl.EC as 0 or 1 cause a GPSI exception to be raised on Guest access 
to a performance counter register. Root software may choose to configure performance counters for legal Guest 
access by encoding PerfCtrl.EC as 2 or 3. The EC field is not visible to the guest. It returns zero on guest read. 

M bit in PerfCtrl is read-only in both root and guest context. It is 1 for PerfCtl 0-2 and 0 for PerfCtl 3.

PerfCtrl use of Status register K, S, U and EXL fields is taken from the current Root and Guest context. 

10.10 Floating Point Unit (Coprocessor 1) 

The guest and root contexts share the Floating Point Unit. The floating point unit is available to the guest context 
when Guest.Config1FP = 1.

During guest mode execution, access to the floating point unit is controlled by the StatusCU1 bits from both the root 
and guest contexts. The coprocessor enable bit Guest.StatusCU1 is checked first. If access is not granted, a coprocessor 
unusable exception is taken in guest mode.

The Root.StatusCU1 bit is checked next. If access is not granted by the Root.StatusCU1 bit, a coprocessor unusable excep-
tion is taken in root mode.

10.11 MSA (MIPS SIMD Architecture)

The guest and root contexts share the MSA module, if it is implemented. The MSA module is available to the guest 
context when Guest.Config5MSAEn=1.

During guest mode execution, access to the MSA module is controlled by the Config5MSAEn bits from both the root and 
guest contexts. Guest.Config5MSAEn is checked first. If access is not granted, a MSA disabled exception is taken in 
guest mode.

The Root.Config5MSAEn bit is checked next. If access is not granted by Root.Config5MSAEn, a MSA disabled exception is 
taken in root mode.

Table 10.11 Performance Counter Interrupts

Guest. Config1PC Root. PerfCntEC[1:0]

Root mfgc0/mtgc0 
Access Perf[n] Guest mfc0/mtc0 Access Perf[n]

0 -- Write is dropped. Read returns 0. If GstCtl0Ext.OG = 1 || GstCtl0.CP0 = 
0 then GPSI, else writes are dropped 

and reads return 0

1 00 | 01 Allowed
EC returns 0 on read

GPSI

1 10 | 11 Allowed
EC returns 0 on read

If GstCtl0Ext.CP0 = 1 then GPSI, else 
access allowed. EC returns 0 on read.
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10.12 Guest Mode and Debug Features

The Virtualization Module provides full access to Debug facilities implemented through the EJTAG interface. When 
the processor is running in Debug privileged execution mode, it has full access to all resources that are available in 
the Root context. 

As per Table 10.2, The Debug privileged execution mode exists in the root context. A processor supporting virtual-
ization operates in two contexts, Root and Guest. Within Guest, there are three privileged execution modes; kernel, 
supervisor and user, and in Root context, there are four; kernel, supervisor, user and debug.

Table 10.12 lists debug features and their application to the Virtualization Module.

10.13 Watchpoint Debug Support

Root and Guest Watchpoint debug support is provided by Coprocessor 0 WatchHi and WatchLo register pairs. These 
registers are present in Root if Config1.WR=1 and in Guest if Guest.Config1.WR=1. Guest Config1 is read-only to 
guest but writable by root.

Guest Config1.WR=0, then watch registers are unimplemented in the guest context.

Guest Config1.WR=1, then watch registers are virtually shared between root and guest context.

Table 10.12 Debug Features and Application to Virtualization Module

Feature Description

Debug mode Guest mode is mutually exclusive with Debug mode. When in Debug mode (DebugDM=1), the processor 
is not in guest mode.

When the processor is running in Debug mode, it has full access to all resources that are available to 
Root-Kernel mode operation.

Debug Segment (dseg) When the processor is running in Debug mode, the memory map is determined by the root context. Mem-
ory mappings are unchanged from the EJTAG specification. 

Access to guest CP0 context Debug tools access general purpose registers (GPRs) and coprocessor registers by executing instructions 
in the processor pipeline. 

Access to the guest CP0 context must use the Virtualization Module instructions provided to transfer data 
between the root and guest contexts - MTGC0 and MFGC0.

Accesses to the guest TLB must use the instructions provided to initiate guest TLB operations from the 
root context - TLBGP, TLBGR, TLBGWI, TLBGWR. These operations are used to transfer data between 
the guest TLB and the guest CP0 context. When accessing the guest TLB in debug mode, a two-step pro-
cess is required - to transfer data to/from the guest CP0 context and guest TLB, and to transfer data to/
from the root CP0 context and guest CP0 context.

Hardware Breakpoints When implemented, hardware breakpoints are part of the root context. The root context remains active 
during guest mode execution, allowing hardware breakpoints to be used to debug guest software.

Exceptions resulting from hardware breakpoints are of type Synchronous Debug or Asynchronous 
Debug. In both cases, the exceptions are handled in Debug mode.

Watch registers Support for use of watchpoint from the Guest is optionally provided. 
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If watch registers are virtually shared between root and guest, root software may choose to assign a subset or all 
watch registers to guest. This is configured through Root watchHi.WM field. WM field is for root context only. They 
are reserved and read as 0 for the Guest WatchHi register. 

The P6600 does not support root watch GPA, a write of 1 to Root WatchHi.WM[1:0] will write 0 into this field. A 
write of 3 to Root WatchHi.WM[1:0] writes a value of 2 into this field.

The M bit in the WatchHi register is read-only in both root and guest context. It is 1 for Watch register pairs 0-2 and 0 
for watch register pair 3. 

Guest watch is enabled strictly in guest mode as defined by the equation:

(Root.GuestCtl0GM = 1 and Root.StatusEXL = 0 and Root.StatusERL = 0 and Root.DebugDM = 0)

There is no facility for Guest to watch addresses related to Root intervention events. That is, events occurring when 
the following equation is true: 

(Root.GuestCtl0GM = 1 and (Root.StatusEXL = 1 or Root.StatusERL = 1 or Root.DebugDM = 1))

Table 10.13 Watch Debug Control

Guest. 
Config1WR

Root. 
WatchHiWM[1:0] Function

Root mfgc0/mtgc0 
Access 

WatchHi[n]
Guest mfc0/mtc0 

Access WatchHi[n]

Root 
Exception on 

Match

Guest 
Exception on 

Match

0 -- Root Watch 
RVA

Write is dropped. 
Read returns 0.

If GstCtl0Ext.OG = 1 
|| GstCtl0.CP0=0 then 
GPSI, else writes are 

dropped and reads 
return 0

Watch exception No

1 00 Root Watch 
RVA

Allowed
WM returns 0 on read

GPSI Watch exception No

1 10 Guest Watch 
GVA

Allowed
WM returns 0 on read

Allowed
WM returns 0 on read

No Watch exception
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Floating-Point Unit

This chapter describes the optional MIPS64® Floating-Point Unit (FPU) and contains the following sections:

• Section 11.1, "Features Overview"

• Section 11.2 “IEEE Standard 754”

• Section 11.3 “Enabling the Floating-Point Coprocessor”

• Section 11.4 “Enabling MSA”

• Section 11.5 “Architectural Overview”

• Section 11.6 “MIPS SIMD Architecture”

• Section 11.7 “Data Formats”

• Section 11.8 “Mapping of Scalar Floating-Point Registers to MSA Vector Registers”

• Section 11.9 “Floating-Point General Registers”

• Section 11.10 “Floating-Point Control Registers”

• Section 11.11 “MSA Control Registers”

• Section 11.12 “Floating Point and MSA Exceptions”

• Section 11.13 “Floating Point Instruction Overview”

• Section 11.14 “MSA Instruction Descriptions”

• Section 11.15 “Alphabetical Listing of Floating Point Instructions”

• Section 11.16 “Alphabetical Listing of MSA SIMD Instructions”
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11.1 Features Overview

The P6600 core features an optional IEEE 754 compliant 3rd generation Floating Point Unit (FPU3) with SIMD.1

The FPU contains thirty-two, 128-bit vector registers shared between SIMD and FPU instructions. Single precision 
floating point instructions use the lower 32 bits of the 128 bit register. Double precision floating point instructions use 
the lower 64 bits of the 128 bit register. SIMD instructions use the entire 128 bit register interpreted as multiple vector 
elements; 16 x 8-bit, 8 x 16-bit, 4 x 32-bit, and 2 x 64 bit vector elements.

Some of the features of the P6600 core FPU include:

• Supports scalar FPU and MSA SIMD instructions.

• 32 128-bit vector registers. FPU instructions zero the upper 64 bits of the 128 bit MSA register.

• Supports FR = 1 mode only.

SIMD instructions enable:

• Efficient vector parallel arithmetic operations on integer, fixed-point and floating-point data.

• Operations on absolute value operands.

• Rounding and saturation options available.

• Full precision multiply and multiply-add.

• Conversions between integer, floating-point, and fixed-point data.

• Complete set of vector-level compare and branch instructions with no condition flag.

• Vector (1D) and array (2D) shuffle operations.

• Typed load and store instructions for endian-independent operation.

The FPU plus SIMD can be fully synthesized and operates at the same clock speed as the CPU. The IIU can issue up 
to two instructions per cycle to the FPU.

The FPU contains two execution pipelines for floating point and SIMD instruction execution. These pipelines operate 
in parallel with the integer core and do not stall when the integer pipeline stalls. This allows long-running FPU/SIMD 
operations such as divide or square root, to be partially masked by system stall and/or other integer unit instructions.

An out-of-order scheduler in the FPU issues instructions to the two execution units. The exception model is ‘precise’ 
at all times.

The FPU supports fused multiply-adds as defined by the IEEE Standard for Floating-Point Arithmetic 754TM-2008. 
The FPU is optimized for SIMD performance. Most FPU and SIMD instructions have one cycle throughput. All 
floating point denormalized input operands and results are fully supported in hardware. 

11.2 IEEE Standard 754

The IEEE Standard 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, is referred to in this chapter as 
“IEEE Standard 754”. IEEE Standard 754 defines the following:

1. Requires separate MIPS license.



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 585

• Floating-point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

IEEE Standard 754 does not define specific processing resources nor does it define an instruction set.

11.3 Enabling the Floating-Point Coprocessor

Coprocessor 1 is enabled by setting the CU1 bit in the CP0 Status register. When this bit is cleared, Coprocessor 1 is 
disabled, and any attempt to execute a floating-point instruction causes a Coprocessor Unusable exception.

11.4 Enabling MSA

The presence of the MIPS SIMD architecture (MSA) implementation is indicated by the state of the Config3.MSAP 
bit (CP0 Register 16, Select 3, bit 28) at reset. The MSAP bit is fixed by the hardware implementation and is read-
only for the software. Software can determine if MSA is implemented by checking if the MSAP bit is set. Any 
attempt to execute MSA instructions causes a Reserved Instruction Exception if the MSAP bit is not set. Note that 
this bit is always set in the P6600 core.

The Config5.MSAEn bit (CP0 Register 16, Select 5, bit 27) is used to enable access to the MSA instructions and the 
MSA vector registers. Executing a MSA instruction when MSAEn bit is not set causes a MSA Disabled Exception 
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11.5 Architectural Overview

Figure 11.1 shows a block diagram of the P6600 floating point unit. 

Figure 11.1 Floating Point Unit Block Diagram 

The blocks shown in Figure 11.1 are described in the following subsections.

11.5.1 Credits

The FPU uses a tagged interface to communicate with the integer core. Credits are sent to the core if resources are 
available. If the core has credits it can dispatch instructions to the FPU. The number and allocation of credits is a 
hardware function and is transparent to software.

The P6600 FPU allows up to 2 instructions to be dispatched per cycle. Each instruction is dispatched with a CID 
(Coprocessor ID) that is used to identify all subsequent interface transactions.

11.5.2 Coprocessor ID

The Coprocessor ID (CID) unit is responsible for mapping an incoming data for loads or move-to-FPU instructions 
with coprocessor ID to an entry in the shelf unit described in Section 11.5.9 “Shelf Unit”.

There are two integer-to-floating point ports that contain the following features:

• A 128-bit SIMD load uses both 64-bit ports; both having the same coprocessor ID.

• An FP load hit/miss return uses a single 64-bit port, with one coprocessor ID.

• A bonded FP load hit/miss return uses both 64-bit ports, with different coprocessor IDs.

• A GPR register to FPU uses a single 64-bit port, with one coprocessor ID.

The Coprocessor ID block is responsible for determining if the transaction is GPR data or load data. A GPR transac-
tion wakes up just that instruction and writes to only the lower 32 bits of the instruction shelf unit. A load transaction 
wakes up all load consumers and writes all 128 bits into the shelf unit.

Decode/
Rename 

Credits

(Reorder Buffer / Issue Queue / Working Register File)

Retire Unit
FP Registers

Arch Registers

Exception
Handler

To integer unit
From integer unit

EXES

EXEL

Shelf Unit

Unit

Coprocessor ID

From integer unit

Issue Unit
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11.5.3 Decode / Rename Unit

Dispatched instructions are decoded and registered in the Decode/Rename unit. 

If the exception information can be determined at decode, then it is written to the shelves along with the rest of the 
decoded instruction. The Decode portion of the unit determines where the instruction executes, which sources are 
required, and which results are produced.

This Renamer starts source discovery for each dispatched instruction. Each of three source registers is compared 
across all shelf entries to see if that source is in the architecture register file or whether it should be read from a shelf. 
This rename step takes two clock cycles.

Each instruction has up to three operands and one result. Nominally, the sources are FPR registers, however the 
sources can also be mapped to a control register, and GPR data from the integer core. For each source, the operand 
parameters are compared against the result parameters of all in-flight instructions to determine whether that operand 
is produced by an in-flight instruction. 

It is also possible that an instruction may be dependent upon an older instruction in the same dispatch clock cycle. 
Therefore, the rename unit also looks for dependencies across all concurrently dispatched instructions. If an older 
dependency is found, this dependency has higher priority than any matches found in the shelves.

11.5.4 Issue Unit

The Issue unit (ISU) determines the next instruction to issue to each of the two execution units; the short pipe (EXES) 
or the long pipe (EXEL). There is one ISU unit dedicated to each execution unit. The ISU is responsible for reading 
sources from either the architecture register file, the shelf entries, or from the bypass network.

The issue unit selects the oldest eligible instruction to issue, then looks up all instruction sources.

An instruction is eligible to issue if that instruction has all of the operands ready and all of the necessary execution 
resources available. If the instruction has immediate data, then the immediate was sign-replicated up to 11 bits and 
placed into the shelf during decode. In the Issue unit the immediate data is further sign-replicated up to the element 
size of the opcode and then replicated across all elements.

11.5.5 Execution Units

The P6600 FPU contains two execution units, one for short operations (EXES) and one for long operations (EXEL).

11.5.5.1 Short Operations

The short data path contains an integer add unit, logical unit, and div unit. The integer add unit and the logical unit 
each have 2-cycle latency outputs. One divide instruction can be issued to the div unit at a time. That divide will be 
worked on iteratively. Until the divide is done no other divide instructions can be issued. Two 64-bit data path mod-
ules are instantiated for 128 bit SIMD. Below is the diagram of how they are wired.

The short execution unit (EXES) executes the following instructions:

• All instructions that are sent back to the integer unit, including stores, move-from, and branches

• Control register moves (CTC1, CFC1, etc.)

• All integer add instructions
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• All integer divide instructions

• Most 2-source logical operands.

• Floating point compares

– min/max

– fclass

– abs, neg, mov

– seleqz, selnez

Results from both execution pipelines are registered and written back to the shelf associated with the instruction. 
Additionally, exception information in the shelf is updated.

11.5.5.2 Long Operations

The long execution unit (EXEL) implements the following operations:

• Integer/fixed-point multiply

• FP adds, converts, multipliess, and divide-square roots

• All integer and fixed point multiply ops

• Logical operations with 3 sources

Results from the execution pipelines are registered and written back to the shelf associated with the instruction. Addi-
tionally, exception information in the shelf is updated.

11.5.6 Retire Unit

The retire units (RTU) commit data from the shelves to architectural state (ARF and FCSR) and deallocate the shelf 
entries. The P6600 core contains two Retire unit and therefore can retire two instructions per cycle. Retirement occurs 
in order. An instruction cannot retire until it is both graduated in the integer core and completed in the FPU.

The retire unit updates the architectural state and deallocates shelf entries. The architectural state update consists of:

• Write the instruction results from the shelf to the architectural registers.

• If the instruction is a CTC1, writes to the floating point control register.

• If the instruction is an arithmetic FP opcode, update the FP cause and flags fields in the floating point control reg-
isters.

• If the instruction is a CTCMSA, write to the MSA control registers.

• If the instruction an arithmetic MSA opcode, update the MSA cause and flags fields in the MSA control regis-
ters. 

Retirement is strictly in-order. Retirement is implemented with a configurable number of identical retire units. If there 
are no hazards multiple instructions can retire per cycle, one from each retire unit.
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Each Retire unit has a counter to point to the next shelf to retire in that unit. The count increments by the number of 
Retire units. With two Retire units one retires even shelves and the other retires odd shelves. 

In order to make sure that there are no hazards, each retire unit broadcasts information about which shelf they are 
going to retire next to all other retire units. A retire unit stalls under any of the following conditions:

• There is an older instruction in the Retire unit that is not ready to retire

• There is a hazard with respect to an older instruction in another Retire unit

11.5.7 Architectural Register File

The FPU architectural register file supports five read ports. Three read ports are used by the long execution unit 
(EXEL) which supports three-source operations. Two read ports are used by the short exection unit (EXES).

11.5.8 Exception Handling

In the P6600 core exceptions are processed for every instruction as quickly as possible in order to speed up gradua-
tion and retirement in order to recycle resources for new instructions. The two EXCS modules can send exceptions 
from up to two instructions per cycle. One EXCS module manages exceptions across the even shelves and the other 
EXCS manages exceptions across the odd shelves. Exceptions from the FPU are tagged with the CID associated with 
the instruction.

11.5.9 Shelf Unit

The shelf is a unified re-order buffer, issue queue and working register file. The shelf unit is responsible for keeping 
track of the state of each instruction in the instruction stream, including selection, execution, and retirement of 
instructions.

11.6 MIPS SIMD Architecture

The MIPS® SIMD Architecture (MSA) module adds a set of more than 150 new instructions to the MIPS architec-
ture that allow efficient parallel processing of vector operations. These instructions operate on 32 vector registers of 
8-, 16-, 32-, and 64-bit integer, 16-and 32-bit fixed- point, or 32- and 64-bit floating-point data elements. In the P6600 
core, MSA implements 128-bit wide vector registers shared with the 64-bit wide floating-point unit (FPU) registers.

The MSA provides increased system flexibility by incorporating a software-programmable solution for handling 
emerging codecs or other functions not covered by the dedicated hardware in the device. Rather than focusing on nar-
rowly defined instructions that must have optimized code written manually in assembly language in order to be uti-
lized, the MSA is designed to accelerate compute-intensive applications in conjunction with leveraging generic 
compiler support. Applications such as data mining, feature extraction in video, image and video processing, human-
computer interaction, and others, have some built-in data parallelism that lends itself well to SIMD.

The SIMD instructions are easy to support within high-level languages such as C or OpenCL, enabling fast and sim-
ple development of new code, as well as leverage of existing code.

The MSA floating-point implementation is compliant with the IEEE Standard for Floating-Point Arithmetic 754TM-
2008. All standard operations are provided for 32-bit and 64-bit floating-point data. 16-bit floating-point storage for-
mat is supported through conversion instructions to/from 32-bit floating-point data.
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11.6.1 MSA Vector Registers

The MSA operates on thirty-two 128-bit wide vector registers. If both MSA and the scalar floating-point unit (FPU) 
are present, the 128-bit MSA vector registers extend and share the 64-bit FPU registers. 

MSA vector registers have four data formats: byte (8-bit), halfword (16-bit), word (32-bit), doubleword (64-bit). Cor-
responding to the associated data format, a vector register consists of a number of elements indexed from 0 to n, 
where the least significant bit of the 0th element is the vector register bit 0 and the most significant bit of the nth ele-
ment is the vector register bit 127.

When both the FPU and the MSA are present, the floating-point registers are mapped on the corresponding MSA vec-
tor registers as the 0th elements.

11.6.2 Layout of MSA Registers 

Figure 11.2 through Figure 11.21 show the vector register layout for elements of all four data formats, where [n] 
refers to the nth vector element and, MSB and LSB stand for the element’s Most Significant and Least Significant 
Byte.

Figure 11.2 MSA Vector Register Byte Elements

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

Figure 11.3 MSA Vector Register Halfword Elements

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0

[7] [6] [5] [4] [3] [2] [1] [0]

MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB

Figure 11.4 MSA Vector Register Word Elements

127 96 95 64 63 32 31 0

[3] [2] [1] [0]

MSB LSB MSB LSB MSB LSB MSB LSB

Figure 11.5 MSA Vector Register Doubleword Elements

127 64 63 0

[1] [0]

MSB LSB MSB LSB
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MSA vectors are stored in memory starting from the 0th element at the lowest byte address. The byte order of each 
element follows the big- or little-endian convention of the system configuration.

11.6.3 MSA GNU Compiler Support

The GNU C Compiler (GCC) support for SIMD operations is based on a number of standard pattern names used for 
code generation. Ideally, the instruction set should implement as many of these operations as possible. In the process 
of MSA instruction selection and definition, supporting the standard GCC SIMD patterns was one of the most impor-
tant objectives. Most of these patterns translate directly in single MSA instructions.

Another aspect related to efficient vector code compilation for SIMD architectures is the interoperability between the 
C language arrays (of scalar data types) and the native vector data types. To support seamless mixing of scalar and 
vector data types operations, the MSA provides a rich set of typed data transfer instructions.

11.6.3.1 MSA ABI

The O32 ABIs have been extended to allow efficient use of the vector registers and instructions defined by MSA. The 
MSA ABI extensions are compatible with the base ABIs in the sense that existing binaries run unchanged on systems 
supporting MSA. In other words, there are no incompatibilities between the base O32 ABI and the corresponding 
MSA extended ABI. 

In particular, MSA ABI extensions;

• Do not change the base ABI data types layout / alignment

• Do not introduce new callee-saved (aka saved) registers

• Preserve the call-clobbered (aka temporary) or callee-saved (aka saved) status of the aliased floating-point regis-
ters. 

However, vector data types are considered part of the MSA ABI by default and passed / returned by value without 
any MSA flags results in a compiler warning.

11.6.3.2 ABI Requirements

To be compatible with the MSA hardware, an ABI extension for MSA must support 32 64-bit floating point registers 
and a stack frame aligned to the size of the vector registers. The O32 FR1 ABI permits use of 64-bit floating point 
registers.

It is possible to adjust the stack alignment at run time using an existing compiler mechanism called dynamic stack 
realignment. Any ABI that does not meet the MSA stack alignment will therefore use dynamic stack re-alignment. 
For example, the 16-byte stack alignment of N32 and N64 ABIs is enough for MSA’s 128-bit vector registers. How-
ever, the O32 ABI must perform dynamic stack re-alignment in this case. 

11.6.3.3 Command Line Options and Function Attributes

Compiling for MSA (using the MSA defined instructions and vector registers) is enabled by the -mmsa command line 
option. A function compiled for MSA is referred to as a MSA function.

By default, the -mmsa option enables a faster calling convention for those functions passing vectors by value. This is 
achieved by using the vector registers for passing MSA vectors by value and returning MSA vector values.
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A second MSA-related command line argument, -msimd-abi=none, can be used to disable the parameter passing/
returning values in the vector registers. With -msimd-abi=none, all vector data types follow the calling conventions of 
the base ABI.

The use of vector types passed by value without the -mmsa option results in an ABI warning stating that a non-default 
ABI will be emitted. This warning can be disabled by explicitly passing the -msimd-abi=none option.  It is illegal to 
use the -msimd-abi=msa option without -mmsa.

The functionality enabled by the command line option -mmsa can be disabled using -mno-msa. The SIMD ABI can 
be controlled by varying the value given to the -msimd-abi option. In particular, two SIMD ABIs are defined:

• none - Use the base calling convention

• msa  - Use the MSA calling convention (default)

Equivalently, the same functionality could be enabled/disabled at the function level using __attribute__() as shown 
below. 

• -mmsa           __attribute__((msa))

• -mno-msa        __attribute__((no_msa))

• -msimd-abi=none __attribute__((simd_abi_none))

• -msimd-abi=msa  __attribute__((simd_abi_msa))

For convenience, pre-processor symbols are defined for each option as follows:

• -mmsa           __MSA__

• -mno-msa        __NO_MSA__

• -msimd-abi=none __SIMD_ABI_NONE___

• -msimd-abi=msa  __SIMD_ABI_MSA__

11.6.3.4 Vector and Floating-Point Register Usage for -mmsa and -msimd-abi=msa

The MSA vector registers are temporary, and all live vector registers must be saved before calling a function. This 
ensures MSA functions can call any other function and compatibility with future MSA extensions.

The first 8 vector parameters are passed via vector registers w4 to w11 and vector results are returned via vector reg-
ister w0. Floating-point registers are passed and returned as specified by the particular ABI.

For functions with variable arguments, no vector registers are used to pass vector parameters. This falls back to the 
original variable argument passing scheme from the particular ABI.

Note that compilers need to preserve the aliased callee-saved floating-point registers as specified by the O32 FR1, 
N32, and N64 ABIs: even f20, f22, ..., f30 for O32 FR1 and N32, and f24, f25, ..., f30, f31 for N64. For example, if 
the vector register w30 is used, the aliased floating point register f30 has to be preserved under all ABIs.

11.6.3.5 Inter-calling Between MSA and non-MSA Functions

A function that takes a MSA vector by value as a parameter or returns a MSA vector by value and is compiled with -
mmsa can be called only by functions compiled with -mmsa.
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Any function compiled with -msimd-abi=none can be called by non-MSA functions, i.e. a functions compiled under 
the base ABI with MSA disabled.

11.6.3.6 MSA GNU Options and Directives

The MSA is supported by the GNU toolchain starting with GAS (GNU Assembler) 2.22.51 and GCC 4.7.3. The com-
mand line options and assembly directives to enable/disable MSA are shown in Table 11.1.

The GCC options -mfp64 and -mhard-float enforce the compatibility of the calling conventions of MSA and 
FPU, based on the fact that in the current release, MSA vector registers are shared with the 64-bit wide floating-point 
unit (FPU) registers.

The GCC integer and floating-point vector data types with generic MSA operation support are listed in Table 11.2 
and Table 11.3. 

Table 11.1 MSA GNU Options and Directives

GAS GCC

Enable Disable Enable Disable

Command Line Options -mmsa -mno-msa -mmsa -mfp64 -mhard-float -mno-msa

Assembly Directives .set msa .set nomsa

Table 11.2 GCC Integer Vector Data Types Supported in MSA

Vector Data Type C Definition

Vector of signed bytes typedef signed char wi8_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of unsigned bytes typedef unsigned char wu8_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of signed halfwords typedef short wi16_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of unsigned halfwords typedef unsigned short wu16_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of signed words typedef int wi32_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of unsigned words typedef unsigned int wu32_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of signed doublewords typedef long long wi64_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of unsigned double-
words

typedef unsigned long long wu64_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));
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MSA instructions are available to the C/C++ programmer either by the inline assembly __asm__ directive, by 
msa_mnemonic() intrinsics, or when using most of the C/C++ operators on vector data types. The list of sup-
ported vector C/C++ operators include: +, -, *, /, %, ^, |, &, <<, >>, ==, !=, <, <=, >, >=, ~. 

For example, adding or comparing two single-precision floating-point vectors, as in:

wi32_t t;
wf32_t a, b, c;

a = b + c;
t = b < c;

compiles directly in MSA word floating-point add and compare instructions:

fadd.w $w3,$w0,$w1 # a is in $w3, b in $w0, c in $w1
fclt.w $w4,$w0,$w1 # t is in $w4

Regarding the vector parameter passing conventions, MSA registers are all caller-saved, i.e. temporary registers are 
not preserved between function calls. The first eight vector parameters are passed in vector registers W4 to W11. 
When compiled for the MSA, the stack pointer is always aligned to 16 bytes.

11.7 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE Standard 754.

• The signed integers provided by the CPU architecture.

• The fixed-point Q15 and Q31 types for MSA.

11.7.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

• A 32-bit single-precision floating point (type S)

• A 64-bit double-precision floating point (type D)

The floating-point data types represent numeric values as well as the following special entities:

• Two infinities,  and 

Table 11.3 GCC Floating-Point Vector Data Types Supported in MSA

Vector Data Type C Definition

Vector of single precision 
floating-point values

typedef float wf32_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));

Vector of double precision 
floating-point values

typedef double wf64_t __attribute__ ((vector_size(16)))
__attribute__ ((aligned(16)));
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• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

– s = 0 or 1

– E = any integer between E_min and E_max, inclusive

– bi = 0 or 1 (the high bit, b0, is to the left of the binary point)

– p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes 
are listed in Table 11.4. 

Layouts of these three fields are shown in Figures 11.6 and 11.7 below. The fields are:

• 1-bit sign, s

• Biased exponent, e = E + bias

• Binary fraction, f=.b1 b2..bp-1 (the b0 bit is hidden; it is not recorded)

Figure 11.6 Single-Precision Floating-Point Format (S) 

Figure 11.7 Double-Precision Floating-Point Format (D) 

Table 11.4 Parameters of Floating-Point Data Types 

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

Magnitude of smallest normalized representable number 1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction
1 8 23

63 62 52 51 0

S Exponent Fraction
1 11 52
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Values are encoded in the specified format using the unbiased exponent, fraction, and sign values listed in Table 11.5. 
The high-order bit of the Fraction field, identified as b1, is also important for NaNs.

11.7.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are 
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number 
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be 
less than E_min, then the representation is denormalized, the encoded number has an exponent of E_min – 1, and the 
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

11.7.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not trap IEEE exception condi-
tions, a computation that encounters any of these conditions proceeds without trapping but generates a result 
indicating that an exceptional condition arose during the computation. To permit this case, each floating-point format 

Table 11.5 Value of Single or Double Floating-Point Data Type Encoding 

Unbiased E f s b1 Value V Type of Value

Typical Single 

Bit Pattern1

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either value 
(NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in a class of poten-
tial values that represent these special values.

Typical Double

Bit Pattern1

E_max + 1  0 1 SNaN Signaling NaN
(FCSRNAN2008 = 0) 0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN
(FCSRNAN2008 = 0) 0x7fbfffff 0x7ff7ffff ffffffff

E_max + 1  0 0 SNaN Signaling NaN
(FCSRNAN2008 = 1) 0x7fbfffff 0x7ff7ffff ffffffff

1 QNaN Quiet NaN
(FCSRNAN2008 = 1) 0x7fffffff 0x7fffffff ffffffff

E_max +1 0 1  Minus infinity 0xff800000 0xfff00000 00000000

0  Plus infinity 0x7f800000 0x7ff00000 00000000

E_max
    to 

E_min

1 - (2E)(1.f) Negative normalized number 0x80800000

 through
0xff7fffff

0x80100000 00000000

through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number 0x00800000

 through
0x7f7fffff

0x00100000 00000000

       through
0x7fefffff ffffffff

E_min -1  0 1 - (2E_min)(0.f) Negative denormalized number 0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized number 0x007fffff 0x000fffff ffffffff

E_min -1 0 1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 Positive zero 0x00000000 0x00000000 00000000
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defines representations (listed in the table above) for plus infinity (), minus infinity (), quiet non-numbers 
(QNaN), and signaling non-numbers (SNaN).

11.7.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format; it represents a magnitude 
overflow during a computation. A correctly signed  is generated as the default result in division by zero operations 
and some cases of overflow as described in Section 11.12.2 “Exception Conditions”.

Once created as a default result,  can become an operand in a subsequent operation. The infinities are interpreted 
such that - < (every finite number) < +. Arithmetic with  is the limiting case of real arithmetic with operands of 
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on  is regarded as exact, and exception 
conditions do not arise. The out-of-range indication represented by  is propagated through subsequent computa-
tions. For some cases, there is no meaningful limiting case in real arithmetic for operands of . These cases raise the 
Invalid Operation exception condition as described in Section 11.12.2.1 “Invalid Operation Exception”.

11.7.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in 
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid 
Operation exception is the implementor’s option.” The MIPS architecture makes the formatted operand move instruc-
tions non-arithmetic; they do not signal IEEE 754 exceptions.

11.7.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data and results. Propaga-
tion of the diagnostic information requires information contained in a QNaN to be preserved through arithmetic oper-
ations and floating-point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is 
one2 of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point 
compare instruction, C.cond.fmt.).

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not 
enabled), a new QNaN value is created. Table 11.6 shows the QNaN value generated when no input operand QNaN 
value can be copied. The values listed for the fixed-point formats are the values supplied to satisfy IEEE Standard 

2. In case of one or more QNaN operands, a QNaN is propagated from one of the operands according to the following priority: 
1: fs, 2: ft, 3: fr.
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754 when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architec-
ture that detects or makes use of these “integer QNaN” values. 

11.7.2 Signed Integer Formats

The FPU instruction set provides the following signed integer data types:

• A 32-bit Word fixed point (type W), shown in Figure 11.8.

• A 64-bit Longword fixed point (type L), shown in Figure 11.9.

The fixed-point values are held in 2’s complement format, which is used for signed integers in the CPU. Unsigned 
fixed-point data types are not provided by the architecture; application software can synthesize computations for 
unsigned integers from the existing instructions and data types.

Figure 11.8 Word Fixed-Point Format (W)

Figure 11.9 Longword Fixed-Point Format (L) 

Only doing FPU, not FPU + MSA. FPU ISA supports 4 formats: S (32-bit single), D (32-bit single), W, L.

11.7.3 MSA Data Types

MSA instructions have 2- or 3-register, immediate, or element operands. One of the destination data format abbrevia-
tions shown in Table 11.7 is appended to the instruction name. Note that the data format abbreviation is the same 

Table 11.6 Value Supplied When a New Quiet NaN is Created

Format

QNaN value
(FCSRNAN2008 = 1)

Single floating point 0x7FC0_0000

Double floating point 0x7FF8_0000_0000_0000

Word fixed point 0x7FFF_FFFF (value when converting any FP number too big to represent as 
a 32-bit positive integer)
0x0000_0000 (value when converting any FP NaN)
0x8000_0000 (value when converting any FP number too small to represent 
as a 32-bit negative integer)

Longword fixed point 0x7FFF_FFFF_FFFF_FFFF (value when converting any FP number too big to 
represent as a 64-bit positive integer)
0x0000_0000 (value when converting any FP NaN)
0x8000_0000 (value when converting any FP number too small to represent 
as a 64-bit negative integer)

31 0

Integer

63 0

Integer
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regardless of the instruction’s assumed data type. For example, all integer, fixed-point, and floating-point instructions 
operating on 32-bit elements use the same word (.W in Table 11.7) data format. 

11.7.4 MSA Vector Element Selection

MSA instructions select the nth element in the vector register ws (ws[n] in assembly language) based on the data for-
mat df. Valid element index values for various data formats and vector register sizes are shown in Table 11.8. 

11.7.5 Examples

Assume that vector registers W1 and W2 are initialized to the word values shown in Figure 11.10, Figure 11.11, and 
that general-purpose register R2 is initialized as shown in Figure 11.12. 

Table 11.7 Data Format Abbreviations

Data Format Abbreviation

Byte, 8-bit .B

Halfword16-bit .H

Word, 32-bit .W

Doubleword, 64-bit .D

Vector .V

Table 11.8 Valid Element Index Values

Data Format Element Index

Byte n = 0, …, 15

Halfword n = 0, …, 7

Word n = 0, …, 3

Doubleword n = 0, 1

Figure 11.10 Source Vector W1 Values

127 64 63 0

a b c d



 

600 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Regular MSA instructions operate element-by-element with identical source, target, and destination data types. 
Figure 11.13 through Figure 11.16 have the resulting values of destination vectors W4, W5, W6, and W7 after exe-
cuting the following sequence of word additions and move instructions:

addv.w $w5,$w1,$w2
fill.w $w6,$2
addvi.w $w7,$w1,17
splati.w $w8,$w2[2]

   

Other MSA instructions operate on adjacent odd/even source elements, generating results on data formats twice as 
wide. The signed doubleword dot product DOTP_S is such an instruction (see Figure 11.17):

dotp_s.d $w9,$w1,$w2

Figure 11.11 Source Vector W2 Values

127 64 63 0

A B C D

Figure 11.12 Source GPR 2 Value

31 0

E

Figure 11.13 Destination Vector W5 Value for ADDV.W Instruction

127 64 63 0

a + A b + B c + C d + D

Figure 11.14 Destination Vector W6 Value for FILL.W Instruction

127 64 63 0

E E E E

Figure 11.15 Destination Vector W7 Value for ADDVI.W Instruction

127 64 63 0

a + 17 b + 17 c + 17 d + 17

Figure 11.16 Destination Vector W8 Value for SPLAT.W Instruction

127 64 63 0

B B B B
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Note that the actual instruction specifies .D (doubleword) as the destination’s data format. The data format of the 
source operands is inferred as being also signed and half the width, i.e. word, in this case.

11.8 Mapping of Scalar Floating-Point Registers to MSA Vector Registers

The scalar floating-point unit (FPU) registers are mapped on the MSA vector registers. To facilitate register data shar-
ing between scalar floating-point instructions and vector instructions, the FPU is required to use 64-bit floating-point 
registers operating in 64-bit mode. 

More specifically, MSA instructions cannot be executed while the FPU (Coprocessor 1) is usable and operates in 32-
bit mode. i.e. bit StatusCU1 (CP Register 12, Select 0, bit 29) is set. Note that StatusFR (CP Register 12, Select 0, bit 
26) is always set in the P6600 core.

When StatusFR is set, the read and write operations for the FPU/MSA mapped floating-point registers are defined as 
follows:

• A read operation from the floating-point register r, where r = 0, …, 31, returns the value of the element with 
index 0 in the vector register r. The element’s format is word for 32-bit (single precision floating-point) read or 
double for 64-bit (double precision floating-point) read.

• A 32-bit read operation from the high part of the floating-point register r, where r = 0, …, 31, returns the value of 
the word element with index 1 in the vector register r. 

• A write operation of value V to the floating-point register r, where r = 0, …, 31, writes V to the element with 
index 0 in the vector register r and writes 0 to all remaining elements. Figure 11-18 and Figure 11-19 show the 
vector register r after writing a 32-bit (single precision floating-point) and a 64-bit (double precision floating-
point) value V to the floating-point register r.

• A 32-bit write operation of value V to the high part of the floating-point register r, where r = 0, …, 31, writes V to 
the word element with index 1 in the vector register r, preserves word element 0, and writes 0 to all remaining 
elements. Figure 11-20 shows the vector register r after writing a 32-bit value V to the floating-point register r.

Changing the StatusFR value renders all floating-point and vector registers UNPREDICTABLE.

Figure 11.17 Destination Vector W9 Value for DOTP_S Instruction

127 64 63 0

a * A + b * B c * C + d * D

Figure 11-18 FPU Word Write Effect on the MSA Vector Register (StatusFR set)

127 96 95 64 63 32 31 0

0 0 0 Word value V

Figure 11-19 FPU Doubleword Write Effect on the MSA Vector Register (StatusFR set)

127 64 63 0

0 Doubleword value V
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11.9 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers (FPRs). The FPU is a 64-bit 
FPU. As such, the FR bit in the CP0 Status register is always 1. This selects the 64-bit register model, which defines 
thirty-two 64-bit registers with all formats supported in a register.

11.9.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register (FPR) that holds the 
value. Operands that are only 32 bits wide (W and S formats) use only half the space in an FPR.

Figures 11.21 and 11.22 show the FPR organization and the way that operand data is stored in them.

Figure 11.21 Single Floating-Point or Word Fixed-Point Operand in an FPR 

Figure 11.22 Double Floating-Point or Longword Fixed-Point Operand in an FPR 

11.9.2 Formats of Values Used in Floating Point Registers 

Unlike the CPU, the FPU neither interprets the binary encoding of source operands nor produces a binary encoding of 
results for every operation. The value held in a floating-point operand register (FPR) has a format, or type, and it can 
be used only by instructions that operate on that format. The format of a value is either uninterpreted, unknown, or 
one of the valid numeric formats: single or double floating point, and word or long fixed point.

The value in an FPR is always set when a value is written to the register as follows:

• When a data transfer instruction writes binary data into an FPR (a load), the FPR receives a binary value that is 
uninterpreted.

• A computational or FP register move instruction that produces a result of type fmt puts a value of type fmt into 
the result register.

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of format 
fmt, the binary contents are interpreted as an encoded value in format fmt, and the value in the FPR changes to a value 
of format fmt. The binary contents cannot be reinterpreted in a different format.

Figure 11-20 FPU High Word Write Effect on the MSA Vector Register (StatusFR set)

127 96 95 64 63 32 31 0

0 0 Word value V Unchanged

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword
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11.9.3 Binary Data Transfers (32-Bit and 64-Bit)

The data transfer instructions move words and doublewords between the FPU FPRs and the remainder of the system. 
The operations of the word and doubleword load and move-to instructions are shown in Figure 11.23 and Figure 
11.24, respectively. 

The store and move-from instructions operate in reverse, reading data from the location that the corresponding load 
or move-to instruction had written.

Figure 11.23 FPU Word Load and Move-to Operations 

Figure 11.24 FPU Doubleword Load and Move-to Operations 

Reg 0

Reg 1

63 0
FR BIT = 1 FR BIT = 0

Reg 0

Reg 1

Reg 0

Reg 1

Initial value 1

Initial value 2

Undefined/Unused Data word (0)

Initial value 2

Undefined/Unused

Undefined/Unused

Data word (0)

Data word (4)

63 0

63 0

63 0

63 0

63 0

Reg 0

Reg 2

Reg 0

Reg 2

Reg 0

Reg 2

Undefined/Unused Data word (0)

Initial value 2

Data word (4) Data word (0)

Initial value 2

Initial value 1

Initial value 2

LWC1 f0, 0(r0) / MTC1 f0,r0

LWC1 f1, 4(r0) / MTC1 f1,r4

Reg 0

Reg 1

63 0

FR BIT = 1 FR BIT = 0

Initial value 1

Initial value 2

Data doubleword (0)

63 0

63 0

63 0

Reg 0

Reg 2

LDC1 f0, 0(r0) 

LDC1 f1, 8(r0)

Reg 0

Reg 1

Reg 0

Reg 1

Initial value 1

Initial value 2

Reg 0

Reg 2 Initial value 2

Data doubleword (0)

Data doubleword (8)

63 0

(Illegal when FR BIT = 0)

Data doubleword (0)
Initial value 2
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11.10 Floating-Point Control Registers

The FPU Control Registers (FCRs) identify and control the FPU. The five FPU control registers are 32 bits wide: 
FIR, FCCR, FEXR, FENR, FCSR. Three of these registers, FCCR, FEXR, and FENR, select subsets of the floating-
point Control/Status register, the FCSR. These registers are also denoted Coprocessor 1 (CP1) control registers.

CP1 control registers are summarized in Table 11.9 and are described individually in the following subsections of this 
chapter. Each register’s description includes the read/write properties and the reset state of each field. 

Table 11.10 defines the notation used for the read/write properties of the register bit fields. 

Table 11.9 Coprocessor 1 Register Summary

Register Number Register Name Function

0 FIR Floating-Point Implementation register. Contains information that identifies 
the FPU.

1 UFR User Floating-Point register mode control. The UFR register allows user 
mode to clear StatusFR by executing a CTC1 to UFR with GPR[0] as 
input, and read StatusFR. by executing a CFC1 to UFR. 

4 UNFR User negated FP register mode control. The UNFR register allows user-
mode to set StatusFR by executing a CTC1 to UNFR with GPR[0] as 
input. CTC1 to UNFR with any other input register is required to pro-
duce a Reserved Instruction Exception. User-mode software can deter-
mine presence of this feature from FIRUFRP. 

25 FCCR Floating-Point Condition Codes register. 

26 FEXR Floating-Point Exceptions register.

28 FENR Floating-Point Enables register.

31 FCSR Floating-Point Control and Status register.

Table 11.10 Read/Write Properties

Read/Write 
Notation Hardware Interpretation Software Interpretation

R/W All bits in this field are readable and writable by software and potentially by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by hardware 
reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value before the first read 
returns a predictable value. This definition should not be confused with the formal definition of UNDEFINED behav-
ior.

R This field is either static or is updated only by hardware.
If the Reset State of this field is either “0” or “Preset”, 
hardware initializes this field to zero or to the appropriate 
state, respectively, on powerup.
If the Reset State of this field is “Undefined”, hardware 
updates this field only under those conditions specified in 
the description of the field.

A field to which the value written by software is ignored 
by hardware. Software may write any value to this field 
without affecting hardware behavior. Software reads of 
this field return the last value updated by hardware.
If the Reset State of this field is “Undefined,” software 
reads of this field result in an UNPREDICTABLE value 
except after a hardware update done under the conditions 
specified in the description of the field.
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11.10.1 Floating-Point Implementation Register (FIR, CP1 Control Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying 
the capabilities of the FPU, the Floating-Point processor identification, and the revision level of the FPU. Figure 
11.25 shows the format of the FIR; Table 11.11 describes the FIR bit fields.

Figure 11.25 FIR Format  

 

0 Hardware does not update this field. Hardware can assume 
a zero value.

The value software writes to this field must be zero. Soft-
ware writes of non-zero values to this field might result in 
UNDEFINED behavior of the hardware. Software reads 
of this field return zero as long as all previous software 
writes are zero.
If the Reset State of this field is “Undefined,” software 
must write this field with zero before it is guaranteed to 
read as zero.

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 8 7 0

0 FPRE UFRP 0 Has2008 F64 L W 3D PS D S ProcessorID Revision

Table 11.11 FIR Register Bit Descriptions 

Fields

Description
Read / 
Write

Reset 
StateName Bits

0 31:29 Reserved. R 0

FPRE 29 User-mode access of FRE is supported. This bit is encoded as follows:

0: Support for emulation of StatusFR=0 handling on a 64-bit FPU with 
StatusFR=1 only is not available.
1: Support for emulation of StatusFR=0 handling on a 64-bit FPU with 
StatusFR=1 only is available.

This bit is always ‘1’ in the P6600 core. As such, the Config5UFE and 
Config5FRE bits are available, along with CFC1/CTC1, to allow user access 
to FRE.

Note that this emulation facility is only available if an FPU is present 
(Config1FP=1) and the FPU is 64-bit (FIRF64=1).
Note that in the P6600 FPU, the user can set StatusFR=0, but instead of 
implementing FR=0 mode, the core takes an exception for any instruction 
that would produce a different result between FR=0 and FR=1 mode. 

R 1

UFRP 28 User mode FR switching. This bit is always 0 as User Mode FR switching 
is not supported in the P6600 core.

R 0

0 27:24 Reserved. R 0

Table 11.10 Read/Write Properties

Read/Write 
Notation Hardware Interpretation Software Interpretation
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Has2008 23 Indicates that one or more IEEE-754-2008 features are implemented. This 
bit is always set in P6600 to indicate that the ABS2008 and NAN2008 bits 
within the FCSR register exist. For more information, refer to Section 
11.10.4 “Floating-Point Control and Status Register (FCSR, CP1 Control 
Register 31)”.

R 1

F64 22 Indicates that this is a 64-bit FPU:
• 0: Not a 64-bit FPU
• 1: A 64-bit FPU.
This bit is always 1 to indicate that this is a 64-bit FPU.

R 1

L 21 Indicates that the long fixed point (L) data type and instructions are imple-
mented:
• 0: Long type not implemented
• 1: Long implemented
This bit is always 1 to indicate that long fixed point data types are imple-
mented.

R 1

W 20 Indicates that the word fixed point (W) data type and instructions are 
implemented:
• 0: Word type not implemented
• 1: Word implemented
This bit is always 1 to indicate that word fixed point data types are imple-
mented.

R 1

3D 19 Indicates if the MIPS-3D ASE is implemented.
• 0: MIPS-3D not implemented
• 1: MIPS-3D implemented
This bit is always 0 in the P6600 core to indicate that the MIPS-3D ASE is 
not implemented.

R 0

PS 18 Indicates that the paired-single (PS) floating-point data type and instruc-
tions are implemented:
• 0: PS floating-point not implemented
• 1: PS floating-point implemented
This bit is always 0 to indicate that paired-single floating-point data types 
are not implemented in the P6600 core.

R 0

D 17 Indicates that the double-precision (D) floating-point data type and instruc-
tions are implemented:
• 0: D floating-point not implemented
• 1: D floating-point implemented
This bit is always 1 to indicate that double-precision floating-point data 
types are implemented.

R 1

S 16 Indicates that the single-precision (S) floating-point data type and instruc-
tions are implemented:
• 0: S floating-point not implemented
• 1: S floating-point implemented
This bit is always 1 to indicate that single-precision floating-point data 
types are implemented.

R 1

Processor ID 15:8 Identifies the floating-point processor. R

Revision 7:0 Specifies the revision number of the FPU. This field allows software to dis-
tinguish between different revisions of the same floating-point processor 
type.

R Hardwired

Table 11.11 FIR Register Bit Descriptions (continued)

Fields

Description
Read / 
Write

Reset 
StateName Bits
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11.10.2 Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields that 
also appear in the FCSR. Figure 11.26 shows the format of the FEXR; Table 11.12 describes the FEXR bit fields.

Figure 11.26 FEXR Format  

11.10.3 Floating-Point Enables Register (FENR, CP1 Control Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields 
that also appear in the FCSR. Figure 11.27 shows the format of the FENR; Table 11.13 describes the FENR bit fields.

Figure 11.27 FENR Format   

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Cause 0 Flags 0

E V Z O U I V Z O U I

Table 11.12 FEXR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:18 These bits must be written as zeros; they return zeros on 
reads.

0 0

Cause 17:12 Cause bits. Refer to the description of this field in Section 
11.10.4, "Floating-Point Control and Status Register 
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 11:7 These bits must be written as zeros; they return zeros on 
reads.

0 0

Flags 6:2 Flag bits. Refer to the description of this field in Section 
11.10.4, "Floating-Point Control and Status Register 
(FCSR, CP1 Control Register 31)".

R/W Undefined

0 1:0 These bits must be written as zeros; they return zeros on 
reads.

0 0

31 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Enables 0 FS RM

V Z O U I

Table 11.13 FENR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:12 These bits must be written as zeros; they return zeros on 
reads.

0 0

Enables 11:7 Enable bits. Refer to the description of this field in Section 
11.10.4, "Floating-Point Control and Status Register 
(FCSR, CP1 Control Register 31)".

R/W Undefined
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11.10.4 Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)

The 32-bit Floating-Point Control and Status Register (FCSR) controls the operation of the FPU and shows the fol-
lowing status information:

• Selects the default rounding mode for FPU arithmetic operations

• Selectively enables traps of FPU exception conditions

• Controls some denormalized number handling options

• Reports any IEEE exceptions that arose during the most recently executed instruction

• Reports any IEEE exceptions that cumulatively arose in completed instructions

• Indicates the condition code result of FP compare instructions

Access to the FCSR is not privileged; it can be read or written by any program that has access to the FPU (via the 
coprocessor enables in the Status register). Figure 11.28 shows the format of the FCSR; Table 11.14 describes the 
FCSR bit fields.

Figure 11.28 FCSR Format  

 

0 6:3 These bits must be written as zeros; they return zeros on 
reads.

0 0

FS 2 Flush to Zero bit. Refer to the description of this field in 
Section 11.10.4, "Floating-Point Control and Status 
Register (FCSR, CP1 Control Register 31)".

R/W Undefined

RM 1:0 Rounding mode. Refer to the description of this field in 
Section 11.10.4, "Floating-Point Control and Status 
Register (FCSR, CP1 Control Register 31)".

R/W Undefined

31 25 24 23 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FS 0
ABS
2008

NAN
2008 Cause Enables Flags RM

0 U 0 1 1 E V Z O U I V Z O U I V Z O U I

Table 11.14 FCSR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit

0 31:25 These bits must be written as zeros; they return zeros on reads. 0 0

Table 11.13 FENR Bit Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits
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FS 24 Flush to Zero (FS). The FS bit controls the handling of denor-
malized operands and is encoded as follows:

0: IEEE-compliant mode. Input subnormal values and tiny non-
zero results are not altered.
1: Regular embedded applications. When this bit is set, subnor-
mal results are flushed to zero. In the P6600, every input sub-
normal value is replaced with zero of the same sign.

Refer to Section 11.10.5 “Operation of the FS Bit” for more 
details on this bit.

R/W Undefined

0 23:20 These bits must be written as zeros; they return zeros on reads. 0 0

ABS2008 19 ABS.fmt & NEG.fmt instructions compliant with IEEE Stan-
dard 754-2008. The IEEE 754-2008 standard requires that the 
ABS and NEG functions accept QNAN inputs without trap-
ping. This bit is always set in the P6600 core to indicate sup-
port for the IEEE 754-2008 standard.

0: ABS & NEG trap for QNAN input
1: ABS & NEG accept QNAN input without trapping. IEEE 
754-2008 behavior.

RO 1

NAN2008 18 Quiet and signaling NaN encodings recommended by the IEEE 
Standard 754-2008, i.e. a quiet NaN is encoded with the first bit 
of the fraction being 1 and a signaling NaN is encoded with the 
first bit of the fraction field being 0.

In the P6600 core, this bit is always set to indicate support for 
the IEEE Standard 754-2008 encoding.

0: MIPS NaN encoding
1: IEEE 754-2008 NaN encoding

RO 1

Cause 17:12 Cause bits. These bits indicate the exception conditions that 
arise during execution of an FPU arithmetic instruction. A bit is 
set to 1 when the corresponding exception condition arises dur-
ing the execution of an instruction; otherwise, it is cleared to 0. 
By reading the registers, the exception condition caused by the 
preceding FPU arithmetic instruction can be determined.
Refer to Table 11.15 for the meaning of each cause bit.

R/W Undefined

Enables 11:7 Enable bits. These bits control whether or not a trap is taken 
when an IEEE exception condition occurs for any of the five 
conditions. The trap occurs when both an enable bit and its cor-
responding cause bit are set either during an FPU arithmetic 
operation or by moving a value to the FCSR or one of its alter-
native representations. Note that Cause bit E (CauseE) has no 
corresponding enable bit; the MIPS architecture defines non-
IEEE Unimplemented Operation exceptions as always enabled.
Refer to Table 11.15 for the meaning of each enable bit.

R/W Undefined

Table 11.14 FCSR Bit Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bit
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Flags 6:2 Flag bits. This field shows any exception conditions that have 
occurred for completed instructions since the flag was last reset 
by software. 
When an FPU arithmetic operation raises an IEEE exception 
condition that does not result in a Floating-Point Exception (the 
enable bit was off), the corresponding bit(s) in the Flags field 
are set, while the others remain unchanged. Arithmetic opera-
tions that result in a Floating-Point Exception (the enable bit 
was on) do not update the Flags field.
Hardware never resets this field; software must explicitly reset 
this field.
Refer to Table 11.15 for the meaning of each flag bit.

R/W Undefined

RM 1:0 Rounding mode. This field indicates the rounding mode used 
for most floating-point operations (some operations use a spe-
cific rounding mode).
Refer to Table 11.16 for the encoding of this field.

R/W Undefined

Table 11.15 Cause, Enable, and Flag Field Definitions

Bit Name Bit Meaning

E Unimplemented Operation.
This bit exists only in the Cause field.

V Invalid Operation. 
The Invalid Operation Exception is signaled if and only if there is no usefully definable result. In 
these cases the operands are invalid for the operation to be performed. 
Under default exception handling, i.e. when the Invalid Operation Exception is not enabled, the 
default floating-point result is a quiet NaN (see Table 11.19).

Z Divide by Zero. 
The Divide by Zero Exception is signaled if and only if an exact infinite result is defined for an 
operation on finite operands. 
Under default exception handling, i.e. when the Divide by Zero Exception is not enabled, the 
default result is an infinity correctly signed according to the operation (see Table 11.19).

O Overflow. 
The Overflow Exception is signaled if and only if the destination format’s largest finite number is 
exceeded in magnitude by what would have been the rounded floating-point result were the expo-
nent range unbounded. 
Under default exception handling, i.e. when the Overflow Exception is not enabled, the over-
flowed rounded result is delivered to the destination. In addition, the Inexact bit in the Cause field 
is set (see Table 11.19).

Table 11.14 FCSR Bit Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bit
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11.10.5 Operation of the FS Bit

Some floating point instructions might not handle subnormal input operands or compute tiny non-zero results. Such 
instructions may signal the Unimplemented Operation Exception and let the software emulation finalize the opera-
tion. If software emulation is not needed or desired, FS bit could be set to replace every tiny non-zero result and sub-
normal input operand with zero of the same sign.

The FS bit changes the behavior of the Unimplemented Operation Exception. All the other floating pointexceptions 
are signaled according to the new values of the operands or the results. In addition, when FS bit is set:

• Tiny non-zero results are detected before rounding1. Flushing of tiny non-zero results causes Inexact and Under-
flow Exceptions to be signaled for all instructions except the approximate reciprocals.

• Flushing of subnormal input operands in all instructions except comparisons causes Inexact Exception to be sig-
naled.

U Underflow.
If enabled, the Underflow Exception is signaled when a tiny non-zero result is detected after 
rounding regardless of whether the rounded result is exact or inexact.
Under default exception handling, i.e. when the Underflow Exception is not enabled, the rounded 
result is delivered to the destination (see Table 11.19) and:
• If the rounded result is inexact, the Inexact bit in the Cause field is set. 
• If the rounded result is exact, no bit in the Flags field is set. Such an underflow condition has no 

observable effect under default handling.

I Inexact.
Unless stated otherwise, if the rounded result of an operation is inexact -- that is, it differs from 
what would have been computed were both exponent range and precision unbounded -- then the 
Inexact Exception is be signaled. 
Under default exception handling, i.e. when the Inexact Exception is not enabled, the rounded 
result is delivered to the destination (see Table 11.19).

Table 11.16 Rounding Modes Definitions

RM Field 
Encoding Meaning

0 Round to nearest / ties to even.
Rounds the result to the nearest representable value. When two representable values are equally 
near, the result is rounded to the value whose least significant bit is zero (that is, even)

1 Round toward zero.
Rounds the result to the value closest to but not greater in magnitude than the result.

2 Round towards positive / plus infinity.
Rounds the result to the value closest to but not less than the result.

3 Round towards negative / minus infinity.
Rounds the result to the value closest to but not greater than the result.

Table 11.15 Cause, Enable, and Flag Field Definitions

Bit Name Bit Meaning
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• For floating-point comparisons, the Inexact Exception is not signaled when subnormal input operands are 
flushed. 

11.11 MSA Control Registers

The control registers are used to record and manage the MSA state and resources. Two dedicated instructions are pro-
vided for this purpose: CFCMSA (Copy From Control MSA register) and CTCMSA (Copy To Control MSA regis-
ter). The only information residing outside the MSA control registers is the implementation bit Config3MSAP and the 
enable bit Config5MSAEn discussed in Section 11.4 “Enabling MSA”.

The P6600 core implements the following two MSA control registers. 

• Section 11.11.1 “MSA Implementation Register (MSAIR, MSA Control Register 0)”

• Section 11.11.2 “MSA Control and Status Register (MSACSR, MSA Control Register 1)”

11.11.1 MSA Implementation Register (MSAIR, MSA Control Register 0)

The MSA Implementation Register (MSAIR) is a 32-bit read-only register that contains information specifying the 
identification of MSA. Figure 11.29 shows the format of the MSAIR; Table 11.17 describes the MSAIR fields.

The software can read the MSAIR using the CFCMSA (Copy From Control MSA register) instruction.

Figure 11.29 MSAIR Register Format   

11.11.2 MSA Control and Status Register (MSACSR, MSA Control Register 1)

The MSA Control and Status Register (MSACSR) is a 32-bit read/write register that controls the operation of the 
MSA unit. Figure 11-30 shows the format of the MSACSR; Table 11.18 describes the MSACSR fields.

31 17 16 15 8 7 0

0 WRP ProcessorID Revision

Table 11.17 MSAIR Register Field Descriptions 

Fields

Description
Read/
Write Reset StateName Bits

0 31:17 Reserved for future use; reads as zero and must be written as 
zero.

R 0

WRP 16 Vector Registers Partitioning.
Allows for multi-threaded implementations with fewer than 32 
physical vector registers per hardware thread context.
This bit is always 0 in the P6600 core since multi-threading is 
not supported.

R 0

ProcID 15:8 Processor ID number. R Preset

Rev 7:0 Revision number. R Preset
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The software can read and write the MSACSR using the CFCMSA and CTCMSA (Copy From and To Control MSA 
register) instructions. 

The Floating Point Control and Status Register (FCSR, CP1 Control Register 31) and MSA Control and Status Regis-
ter (MSACSR) are closely related in their purpose. However, each serves a different functional unit and can exist inde-
pendently of the other.

Figure 11-30 MSACSR Register Format

31 25 24 23 22 21 20 19 18 17 12 11 7 6 2 1 0

0
00000000 FS 0 Impl 0 NX Cause Enables Flags RM

E V Z O U I V Z O U I V Z O U I

Table 11.18 MSACSR Register Field Descriptions 

Fields

Description
Read/
Write Reset StateName Bits

0 31:25 Reserved for future use; reads as zero and must be written as 
zero.

R0 0

FS 24 Flush to zero. If not implemented, reads as zero and writes are 
ignored. Every input subnormal value and tiny non-zero result is 
replaced with zero of the same sign. This bit is encoded as fol-
lows:

0: Input subnormal values and tiny non-zero results are not 
altered. Unimplemented Operation Exception may be signaled 
as needed. 
1: Replace every input subnormal value and tiny non-zero result 
with zero of the same sign. No Unimplemented Operation 
Exception is signaled.

R/W 0

0 23 Reserved for future use; reads as zero and must be written as 
zero.

R0 0

Impl 22:21 Available to control implementation dependent features. R/W Undefined

0 20:19 Reserved for future use; reads as zero and must be written as 
zero.

R0 0
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NX 18 Non-trapping floating point exception mode.
In normal exception mode, the destination register is not written 
and the floating point exceptions set the Cause bits and trap.
In non-trapping exception mode, the operations which would 
normally signal floating point exceptions do not write the Cause 
bits and do not trap. 

All the destination register’s elements are set either to the calcu-
lated results or, if the operation would normally signal an excep-
tion, to signaling NaN values with the least significant 6 bits 
recording the specific exception type detected for that element in 
the same format as the Cause field. The Flags bits are updated 
for all floating-point operation with an IEEE exception condition 
that does not result in a MSA floating point exception (i.e., the 
Enable bit is off). This bit is encoded as follows:

0: Normal exception mode
1: Non-trapping exception mode

R/W 0

Cause 17:12 Cause bits. 
These bits indicate the IEEE exception conditions that arise dur-
ing the execution of all operations in a vector floating-point 
instruction. A bit is set to 1 if the corresponding exception con-
dition arises during the execution of any operation in the vector 
floating-point instruction and is set to 0 otherwise. 

The exception conditions caused by the preceding vector float-
ing-point instruction can be determined by reading the Cause 
field.For a definition of each bit in the Cause field, refer to Table 
14.16, "Cause, Enable, and Flag Field Definitions".

R/W Undefined

Enable 11:7 Enable bits. 
These bits control whether or not a exception is taken when an 
IEEE exception condition arises for any of the five conditions. 
The exception is taken when both an Enable bit and the corre-
sponding Cause bit are set either during the execution of any 
operation in vector floating-point instruction or by moving a 
value to MSACSR or one of its alternative representations. 

Note that Cause bit E (Unimplemented Operation) has no corre-
sponding Enable bit; the non-IEEE Unimplemented Operation 
Exception is defined by MIPS as always enabled.
For a definition of each bit in the Enable field, refer to Table 
14.16, "Cause, Enable, and Flag Field Definitions". 

R/W Undefined

Table 11.18 MSACSR Register Field Descriptions 

Fields

Description
Read/
Write Reset StateName Bits
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Flags 6:2 Flag bits. 
This field shows any exception conditions that have occurred for 
all operations in the vector floating-point instructions completed 
since the flag was last reset by software. When a floating-point 
operation raises an IEEE exception condition that does not result 
in a MSA floating point exception (i.e., the Enable bit is off), the 
corresponding bit(s) in the Flags field are set, while the others 
remain unchanged. 

Arithmetic operations that result in a floating point exception 
(i.e., the Enable bit is on) do not update the Flags bits.This field 
is never reset by hardware and must be explicitly reset by soft-
ware.
For a definition of each bit in the Flags field, refer to Table 
14.16, "Cause, Enable, and Flag Field Definitions". 

R/W Undefined

RM 1:0 Rounding Mode. 
This field indicates the rounding mode used for most floating 
point operations (some operations use a specific rounding 
mode).
For a definition of each bit in the RM field, refer to Table 14.17, 
"Rounding Modes Definitions".

R/W 0

Table 11.18 MSACSR Register Field Descriptions 

Fields

Description
Read/
Write Reset StateName Bits
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11.12 Floating Point and MSA Exceptions

FPU exceptions are implemented in the MIPS FPU/MSA architecture with the Cause, Enables, and Flags fields of the 
FCSR/MSACSR. The flag bits implement IEEE exception status flags, and the cause and enable bits control exception 
trapping. Each field has a bit for each of the five IEEE exception conditions. The Cause field has an additional excep-
tion bit, Unimplemented Operation, used to trap for software emulation assistance. If an exception type is enabled 
through the Enables field of the FCSR/MSACSR, then the FPU is operating in precise exception mode for this type of 
exception.

11.12.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap or any following instruction can 
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction 
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The cause bits are written during each floating-point 
arithmetic operation to show any exception conditions that arise during the operation. A cause bit is set to 1 if its cor-
responding exception condition arises; otherwise, it is cleared to 0.

A floating-point trap is generated any time both a cause bit and its corresponding enable bit are set. This case occurs 
either during the execution of a floating-point operation or when moving a value into the FCSR/MSACSR. There is no 
enable bit for Unimplemented Operations; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating-point operations are reported in the 
Cause field. Before returning from a floating-point interrupt or exception, or before setting cause bits with a move to 
the FCSR, software first must clear the enabled cause bits by executing a move to the FCSR/MSACSR to prevent the 
trap from being erroneously retaken.

If a floating-point operation sets only non-enabled cause bits, no trap occurs and the default result defined by IEEE 
Standard 754 is stored. When a floating-point operation does not trap, the program can monitor the exception condi-
tions by reading the Cause field.

The Flags field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions 
that trap do not update the flag bits. The flag bits are set to 1 if the corresponding IEEE exception is raised, otherwise 
the bits are unchanged. There is no flag bit for the MIPS Unimplemented Operation exception. The flag bits are never 
cleared as a side effect of floating-point operations, but they can be set or cleared by moving a new value into the 
FCSR.

11.12.2 Exception Conditions

The subsections below describe the following five exception conditions defined by IEEE Standard 754: 

• Section 11.12.2.1 “Invalid Operation Exception”

• Section 11.12.2.2 “Division By Zero Exception”

• Section 11.12.2.3 “Underflow Exception”

• Section 11.12.2.4 “Overflow Exception”

• Section 11.12.2.5 “Inexact Exception”

• Section 11.12.2.6 “Unimplemented Operation Exception” 
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11.12.2.1 Invalid Operation Exception 

An Invalid Operation exception is signaled when one or both of the operands are invalid for the operation to be per-
formed. When the exception condition occurs without a precise trap, the result is a quiet NaN. 

The following operations are invalid:

• One or both operands are a signaling NaN (except for the non-arithmetic MOV.fmt, MOVT.fmt, MOVF.fmt, 
MOVN.fmt, and MOVZ.fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as () + () or () - ().

• Multiplication: 0  , with any signs.

• Division: 0/0 or , with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating-point number to a fixed-point format when either an overflow or an operand value of 
infinity or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value.

11.12.2.2 Division By Zero Exception

The divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a finite nonzero 
number. When no precise trap occurs, the result is a correctly signed infinity. Divisions (0/0 and /0) do not cause the 
Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (/0) is a correctly 
signed infinity.

11.12.2.3 Underflow Exception 

Two related events contribute to underflow:

• Tininess: The creation of a tiny, nonzero result between 2E_min which, because it is tiny, might cause some other 
exception later such as overflow on division. IEEE Standard 754 allows choices in detecting tininess events. The 
MIPS architecture specifies that tininess be detected after rounding, when a nonzero result computed as though 
the exponent range were unbounded would lie strictly between 2E_min.

• Loss of accuracy: The extraordinary loss of accuracy occurs during the approximation of such tiny numbers by 
denormalized numbers. IEEE Standard 754 allows choices in detecting loss of accuracy events. The MIPS archi-
tecture specifies that loss of accuracy be detected as inexact result, when the delivered result differs from what 
would have been computed if both the exponent range and precision were unbounded.

The way that an underflow is signaled depends on whether or not underflow traps are enabled: 

• When an underflow trap is not enabled, underflow is signaled only when both tininess and loss of accuracy have 
been detected. The delivered result might be zero, denormalized, or ±2E_min. 

• When an underflow trap is enabled (through the FCSR/MSACSR Enables field), underflow is signaled when tini-
ness is detected regardless of loss of accuracy.

11.12.2.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating-point result (if the exponent range is 
unbounded) is larger than the destination format’s largest finite number.
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When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

11.12.2.5 Inexact Exception

An Inexact exception is signaled when one of the following occurs:

• The rounded result of an operation is not exact.

• The rounded result of an operation overflows without an overflow trap.

• When a denormal operand is flushed to zero.

11.12.2.6 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides software emulation support. 
This exception is not IEEE-compliant and is used to signal a need for software emulation of an instruction. Normally 
an IEEE arithmetic operation can cause only one exception condition; the only case in which two exceptions can 
occur at the same time are Inexact With Overflow and Inexact With Underflow.

The MIPS architecture is designed so that a combination of hardware and software can implement the architecture. 
Operations not fully supported in hardware cause an Unimplemented Operation exception, allowing software to per-
form the operation.

There is no enable bit for this condition; it always causes a trap (but the condition is effectively masked for all opera-
tions when FS=1). After the appropriate emulation or other operation is done in a software exception handler, the 
original instruction stream can be continued.

An Unimplemented Operation exception is taken in the following situations:

• when denormalized operands or tiny results are encountered for instructions not supporting denormal numbers 
and where such are not handled by the FS bit.

11.12.3 Floating Point Exceptions

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. IEEE Standard 
754 specifies the result to be delivered in case no trap is taken. The FPU supplies these results whenever the excep-
tion condition does not result in a trap. The default action taken depends on the type of exception condition and, in the 
case of the Overflow and Underflow, the current rounding mode. Table 11.19 summarizes the default results.

11.12.3.1 MSA Non-Trapping Exceptions

MSA provides a non-trapping exception mode (bit NX) that enables determining which element in the MSA vector 
caused the floating point exception.

In normal operation mode, floating point exceptions are signaled if at least one vector element causes an exception 
enabled by the Enable bit-field. There is no precise indication in this case on which elements are at fault and the cor-
responding exception causes. The exception handling routine should set the non-trapping exception mode bit NX and 
re-execute the MSA floating point instruction. All elements which would normally signal an exception according to 
the Enable bit-field are set to signaling NaN values, where the least significant 6 bits have the same format as the 
Cause field (see Figure 11-31, Table 11.15) to record the specific exception or exceptions detected for that element. 
The other elements will be set to the calculated results based on their operands.
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Figure 11-31 Output Format for Faulting Elements when NX is Set  

When the non-trapping exception mode bit NX is set, no floating point exception will be taken, not even the always 
enabled Unimplemented Operation Exception. Note that by setting the NX bit, the MSACSR Enable bitfield is not 
changed and is still used to generate the appropriate default results. Regardless of the NX value, if a floating point 
exception is not enabled, i.e. the corresponding MSACSR Enable bit is 0, the floating point result is a default value as 
shown in Table 11.19.

11.12.3.2 Floating Point Exception Defaults

Table 11.19 shows each type of MSA floating point exception and the corresponding default value. 

… 6 5 4 3 2 1 0

Signaling NaN Bits Cause

E V Z O U I

Table 11.19 Default Values for Floating Point Exceptions 

Exception Rounding Mode
Default Value, 

Disabled Exception
Default Value, 

Enabled Exception, and NX set

Invalid
Operation

The default value is either the default quiet 
NaN (see Table 11.20), or one of the signaling 
NaN operands propagated as a quiet NaN. 

The default signaling NaN (see Table 
11.20) of the format shown in Figure 11-31 
with Cause V bit set. 

Divide by 
Zero

The default value is the properly signed infin-
ity.

The default signaling NaN (see Table 
11.20) of the format shown in Figure 11-31 
with Cause Z bit set.

Underflow The default value is the rounded result based 
on the rounding mode.

The default signaling NaN (see Table 
11.20) of the format shown in Figure 11-31 
with Cause U bit set.

Inexact The default value is the rounded result based 
on the rounding mode. If caused by an over-
flow without the overflow exception enabled, 
the default value is the overflowed result.

The default signaling NaN (see Table 
11.20) of the format shown in Figure 11-31 
with Cause I bit set.

Overflow The default value depends on the rounding 
mode, as shown below.

The default signaling NaN (see Table 
11.20) of the format shown in Figure 11-31 
with Cause O bit set.

Round to nearest An infinity with the sign of the overflow 
value.

Round toward zero The format’s largest finite number with the 
sign of the overflow value.

Round towards
positive

For positive overflow values, positive infinity. 
For negative overflow values, the format’s 
smallest negative finite number.

Round towards
negative

For positive overflow values, the format’s 
largest finite number. For negative overflow 
values, minus infinity.



 

620 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

11.12.3.3 MSACSR Cause Register Update Pseudocode

The pseudocode below shows the process of updating the MSACSR Cause bits and setting the destination’s value. 
This process is invoked element-by-element for all elements the instruction operates on. It is assumed MSACSR 
Cause bits are all cleared before executing the instruction. The MSACSR Flags bits are updated after all the elements 
have been processed and MSACSR Cause contains no enabled exceptions. If there are enabled exceptions in MSACSR 
Cause, a MSA floating-point exception will be signaled and the MSACSR flags are not updated. The pseudocode 
below describes the MSACSR Flags update and exception signaling condition.

For instructions with non floating-point results, the pseudocode the apply unchanged and both the format in Figure 
11-31 and the default values from Table 11.19 are preserved for enabled exceptions when NX bit is set. For disabled 
exceptions, the default values are explicitly documented case-by-case in the instruction’s description section.

MSACSRCause Update Pseudocode

Input
c: current element exception(s) E, V, Z, O, U, I bitfield

(bit E is 0x20, O is 0x04, U is 0x02, and I is 0x01)
d: default value to be used in case of a disabled exception
e: signaling NaN value to be used in case of NX set, i.e. a non-trapping

exception
r: result value if the operation completed without an exception

Output
v: value to be written to destination element
Updated MSACSRCause

enable  MSACSREnable | E /* Unimplemented (E) is always enabled */

/* Set Inexact (I) when Overflow (O) is not enabled (see Table 11.15) */
if (c & O)  0 and (enable & O) = 0 then

c  c | I
endif

/* Clear Exact Underflow when Underflow (U) is not enabled (see Table 11.15) */
if (c & U)  0 and (enable & U) = 0 and (c & I) = 0 then

c  c ^ U
endif

cause  c & enable

if cause = 0 then

Table 11.20 Default NaN Encodings

Format Quiet NaN Signaling NaN

16-bit 0x7E00 0x7CNN1

1. All signaling NaN values have the format shown in Figure 11-31. Byte 0xNN has at least one bit set showing the reason 
for generating the signaling NaN value.

32-bit 0x7FC0 0000 0x7F80 00NN

64-bit 0x7FF8 0000 0000 0000 0x7FF0 0000 0000 00NN
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/* No enabled exceptions, update the MSACSR Cause with all current exceptions */
MSACSRCause  MSACSRCause | c

if c = 0 then
/* Operation completed successfully, destination gets the result */
v  r

else
/* Current exceptions are not enabled, destination

gets the default value for disabled exceptions case */
v  d

endif
else

/* Current exceptions are enabled */
if MSACSRNX = 0 then

/* Exceptions will trap, update MSACSR Cause with all current exceptions,
destination is not written */

MSACSRCause  MSACSRCause | c
else

/* No trap on exceptions, element not recorded in MSACSR Cause,
destination gets the signaling NaN value for non-trapping exception */

v  ((e >> 6) << 6) | c
endif

endif

MSACSRFlags Update and Exception Signaling Pseudocode

if (MSACSRCause & (MSACSREnable | E)) = 0 then /* Unimplemented (bit E 0x20)
 is always enabled */

/* No enabled exceptions, update the MSACSR Flags with all exceptions */
MSACSRFlags  MSACSRFlags | MSACSRCause

else
/* Trap on the exceptions recorded in MSACSR Cause, 

MSACSR Flags are not updated */
SignalException(MSAFPE, MSACSRCause)
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11.13 Floating Point Instruction Overview

The functional groups into which the FPU instructions are divided are described in the following subsections:

• Section 11.13.1 “Data Transfer Instructions”

• Section 11.13.2 “Arithmetic Instructions”

• Section 11.13.3 “Conversion Instructions”

• Section 11.13.4 “Coprocessor 1 Branch Instructions”

• Section 11.13.5 “Miscellaneous Instructions”

11.13.1 Data Transfer Instructions

The FPU has two separate register sets: floating point coprocessor general registers (FPRs) and floating point copro-
cessor control registers (FCRs). The FPU has a load/store architecture; all computations are done on data held in 
coprocessor general registers. The control registers are used to control FPU operation. Data is transferred between 
registers and the rest of the system with dedicated load, store, and move instructions. The transferred data is treated as 
unformatted binary data; no format conversions are performed, and therefore no IEEE floating-point exceptions can 
occur.

Table 11.21 lists the supported transfer operations.

11.13.1.1 Data Alignment in Loads, Stores, and Moves

The P6600 core supports misaligned loads and stores as well as bonded loads and stores. Regardless of byte ordering 
(the endianness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian 
machine, this is the most-significant byte; for a little-endian machine, this is the least-significant byte.

11.13.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the 
FPU only, there are load and store instructions using register+register addressing.

Tables 11.22 and 11.23 list the FPU data transfer instructions. 

Table 11.21 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general register  Memory Word/doubleword load/store

FPU general register  CPU general register Word/Doubleword move

FPU control register  CPU general register Word move

Table 11.22 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LWC1 Load Word to Floating Point

SDC1 Store Doubleword to Floating Point

SWC1 Store Word to Floating Point
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11.13.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating-point arithmetic operations 
meet IEEE Standard 754 for accuracy—a result is identical to an infinite-precision result that has been rounded to the 
specified format using the current rounding mode. The rounded result differs from the exact result by less than one 
Unit in the Least-significant Place (ULP).

Table 11.24 lists the FPU IEEE compliant arithmetic operations.

There are four iterative FP instructions. Table 11.25 lists the FPU-approximate arithmetic operations. 

The result of DIV, SQRT,RECIP are accurate as IEEE specification. The result of RSQRT differs from reciprocal 
square root by no more than one ULP.

Table 11.23 FPU Move To and From Instructions

Mnemonic Instruction

CFC1 Move Control Word From Floating Point

CTC1 Move Control Word To Floating Point

MFC1 Move Word From Floating Point

MTC1 Move Word To Floating Point

Table 11.24 FPU IEEE Arithmetic Operations

Mnemonic Instruction

CLASS.fmt Floating-Point Class Mask

CMP.cond.fmt Floating-Point Conditional Compare

MADDF.fmt Floating-Point Fused Multiply-Add

MAX.fmt Floating-Point argument with Maximum Absolute Value

MAX_A.fmt Floating-Point argument with Minimum Absolute Value

MIN.fmt Floating-Point Maximum

MIN_A.fmt Floating-Point Minimum

MSUBF.fmt Floating-Point Fused Multiply-Subtract

Table 11.25 FPU-Approximate Arithmetic Operations

Mnemonic Instruction

DIV.fmt Floating-Point Divide

RECIP.fmt Floating-Point Reciprocal Approximation

RSQRT.fmt Floating-Point Reciprocal Square Root Approximation

SQRT.fmt Floating-Point Square Root Approximation
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11.13.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts 
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding 
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

Table 11.26 and Table 11.27 list the FPU conversion instructions according to their rounding mode.  

11.13.4 Coprocessor 1 Branch Instructions

The P6600 MIPSR6 core contains two new branch instruction that branch on coprocessor 1 based on the state of the 
FPU and FPR register bits. These instructions are shown in Table 11.28 list the formatted operand-value move 
instructions.  

11.13.5 Miscellaneous Instructions

The MIPS64 architecture defines various miscellaneous instructions that conditionally move one CPU general regis-
ter to another, based on an FPU condition code.

Table 11.26 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction

CVT.D.fmt Floating-Point Convert to Double Floating Point 

CVT.L.fmt Floating-Point Convert to Long Fixed Point 

CVT.S.fmt Floating-Point Convert to Single Floating Point 

CVT.W.fmt Floating-Point Convert to Word Fixed Point 

RINT.fmt Scalar Floating-Point Round to Integral Floating Point Value

Table 11.27 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction

CEIL.L.fmt Floating-Point Ceiling to Long Fixed Point 

CEIL.W.fmt Floating-Point Ceiling to Word Fixed Point 

FLOOR.L.fmt Floating-Point Floor to Long Fixed Point 

FLOOR.W.fmt Floating-Point Floor to Word Fixed Point 

ROUND.L.fmt Floating-Point Round to Long Fixed Point 

ROUND.W.fmt Floating-Point Round to Word Fixed Point 

TRUNC.L.fmt Floating-Point Truncate to Long Fixed Point 

TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point 

Table 11.28 Coprocessor 1 Branch Instructions

Mnemonic Instruction

BC1EQZ Branch if Coprocessor 1 (FPU) register bit 1 is equal to zero.

BC1NQZ Branch if Coprocessor 1 (FPU) register bit 1 is NOT equal to zero.
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Table 11.29 lists these miscellaneous instructions. 

11.14 MSA Instruction Descriptions

The MSA implements simple, homogeneous instructions with explicit functionality. There are no mixed general pur-
pose and vector register operations except for data movement. This simplifies the hardware implementation, and 
allows for faster and independent execution of scalar and vector instructions.

In the MSA, complex operations that can be implemented by a sequence of two or three existing instructions are not 
implemented as single instructions. This could increase the code size to some extent, but greatly benefits the execu-
tion speed. For example, MSA has no instructions for horizontal arithmetic operations between all elements in the 
same vector register because these are complex operations easily implemented with few additional element shuffle 
instructions.

Most MSA instructions operate vector-element-by-vector-element in a typical SIMD manner. Few instructions han-
dle the operands as bit vectors, because the elements don’t make sense (e.g., bitwise logical operations). For certain 
instructions, the source operand could be a scalar immediate value or a vector element selected by an immediate 
index. The scalar value is being replicated for all vector elements.

The MSA instruction set implements the following categories of instructions: arithmetic, bitwise, floating-point arith-
metic, floating-point compare, floating-point conversions, fixed-point multiplication, branch and compare, load/store, 
element move, and element shuffle. 

Each instruction category is briefly described in the following subsections.

11.14.1 Arithmetic Instructions

Arithmetic instructions (Table 11.30) include additions and subtractions combined with saturation and absolute value 
operations. There is also a dedicated saturation instruction for arbitrary clamping at any bit position. Average comput-
ing instructions are provided for full precision (i.e. no wrap-around on overflow) add and shift with or without round-
ing. Minimum and maximum value selection instructions work on signed, unsigned, and absolute values.

Addition, subtraction, minimum, and maximum instructions also take a small, 5-bit constant value to operate across 
all elements.

Multiply, multiply-add/sub, divide, and remainder (modulo) are defined with operands and results of the same size 
ranging from bytes to doublewords. A set of dot product instructions perform partitioned multiplication with reduc-
tion: essentially a multiply-add or sub on adjacent elements, with the full-precision result double the size (see the 
example Figure 11.17). 

Bitwise instructions (Table 11.31) include logical (e.g., AND, OR, NOR, and XOR) operations and shifts. All operate 
on two vector registers or on a vector register and an immediate constant. More complex logical instructions do selec-

Table 11.29 Miscellaneous Floating Point Select Instructions

Mnemonic Instruction

SEL.fmt Select Floating Point Values with FPR Condition

SELEQZ.fmt Select Floating Point Values or Zero with FPR Condition

SELNEZ.fmt Select Floating Point Values or Not Zero with FPR Condition
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tive bit copy from two source vectors to the destination. Leading zero/one bit counting and population counting (all 
one bits) instructions are available as well. 

Table 11.30 MSA Arithmetic Instructions 

Mnemonic Compiler Intrinsics C Expression Instruction Description

ADDV wi8_t msa_addv(wi8_t, wi8_t )
wi16_t msa_addv(wi16_t, wi16_t)
wi32_t msa_addv(wi32_t, wi32_t)
wi64_t msa_addv(wi64_t, wi64_t)

a + b Add

ADDVI wi8_t msa_addvi(wi8_t, unsigned char)
wi16_t msa_addvi(wi16_t, unsigned char)
wi32_t msa_addvi(wi32_t, unsigned char)
wi64_t msa_addvi(wi64_t, unsigned char)

a + b Add Immediate

ADD_A wi8_t msa_add_a(wi8_t, wi8_t)
wi16_t msa_add_a(wi16_t, wi16_t)
wi32_t msa_add_a(wi32_t, wi32_t)
wi64_t msa_add_a(wi64_t, wi64_t)

Add Absolute Values

ADDS_A wi8_t msa_adds_a(wi8_t, wi8_t)
wi16_t msa_adds_a(wi16_t, wi16_t)
wi32_t msa_adds_a(wi32_t, wi32_t)
wi64_t msa_adds_a(wi64_t, wi64_t)

Saturated Add Absolute 
Values

ADDS_S wi8_t msa_adds_s(wi8_t, wi8_t)
wi16_t msa_adds_s(wi16_t, wi16_t)
wi32_t msa_adds_s(wi32_t, wi32_t)
wi64_t msa_adds_s(wi64_t, wi64_t)

Signed Saturated Add

ADDS_U wu8_t msa_adds_u(wu8_t, wu8_t)
wu16_t msa_adds_u(wu16_t, wu16_t)
wu32_t msa_adds_u(wu32_t, wu32_t)
wu64_t msa_adds_u(wu64_t, wu64_t)

Unsigned Saturated Add

HADD_S wi16_t msa_hadd_s(wi8_t, wi8_t)
wi32_t msa_hadd_s(wi16_t, wi16_t)
wi64_t msa_hadd_s(wi32_t, wi32_t)

Signed Horizontal Add

HADD_U wu16_t msa_hadd_u(wu8_t, wu8_t)
wu32_t msa_hadd_u(wu16_t, wu16_t)
wu64_t msa_hadd_u(wu32_t, wu32_t)

Unsigned Horizontal Add

ASUB_S wi8_t msa_asub_s(wi8_t, wi8_t)
wi16_t msa_asub_s(wi16_t, wi16_t)
wi32_t msa_asub_s(wi32_t, wi32_t)
wi64_t msa_asub_s(wi64_t, wi64_t)

Absolute Value of Signed 
Subtract

ASUB_U wu8_t msa_asub_u(wu8_t, wu8_t)
wu16_t msa_asub_u(wu16_t, wu16_t)
wu32_t msa_asub_u(wu32_t, wu32_t)
wu64_t msa_asub_u(wu64_t, wu64_t)

Absolute Value of Unsigned 
Subtract

AVE_S wi8_t msa_ave_s(wi8_t, wi8_t)
wi16_t msa_ave_s(wi16_t, wi16_t)
wi32_t msa_ave_s(wi32_t, wi32_t)
wi64_t msa_ave_s(wi64_t, wi64_t)

(a + b) / 2 Signed Average
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AVE_U wu8_t msa_ave_u(wu8_t, wu8_t)
wu16_t msa_ave_u(wu16_t, wu16_t)
wu32_t msa_ave_u(wu32_t, wu32_t)
wu64_t msa_ave_u(wu64_t, wu64_t)

(a + b) / 2 Unsigned Average

AVER_S wi8_t msa_aver_s(wi8_t, wi8_t)
wi16_t msa_aver_s(wi16_t, wi16_t)
wi32_t msa_aver_s(wi32_t, wi32_t)
wi64_t msa_aver_s(wi64_t, wi64_t)

(a + b + 1) / 2 Signed Average with 
Rounding

AVER_U wu8_t msa_aver_u(wu8_t, wu8_t)
wu16_t msa_aver_u(wu16_t, wu16_t)
wu32_t msa_aver_u(wu32_t, wu32_t)
wu64_t msa_aver_u(wu64_t, wu64_t)

(a + b + 1) / 2 Unsigned Average with 
Rounding

DOTP_S wi16_t msa_dotp_s(wi8_t, wi8_t)
wi32_t msa_dotp_s(wi16_t, wi16_t)
wi64_t msa_dotp_s(wi32_t, wi32_t)

Signed Dot Product

DOTP_U wu16_t msa_dotp_u(wu8_t, wu8_t)
wu32_t msa_dotp_u(wu16_t, wu16_t)
wu64_t msa_dotp_u(wu32_t, wu32_t)

Unsigned Dot Product

DPADD_S wi16_t msa_dpadd_s(wi16_t, wi8_t, wi8_t)
wi32_t msa_dpadd_s(wi32_t, wi16_t, wi16_t)
wi64_t msa_dpadd_s(wi64_t, wi32_t, wi32_t)

Signed Dot Product Add

DPADD_U wu16_t msa_dpadd_u(wu16_t, wu8_t, wu8_t)
wu32_t msa_dpadd_u(wu32_t, wu16_t, wu16_t)
wu64_t msa_dpadd_u(wu64_t, wu32_t, wu32_t)

Unsigned Dot Product Add

DPSUB_S wi16_t msa_dpsub_s(wi16_t, wi8_t, wi8_t)
wi32_t msa_dpsub_s(wi32_t, wi16_t, wi16_t)
wi64_t msa_dpsub_s(wi64_t, wi32_t, wi32_t)

Signed Dot Product Sub-
tract

DPSUB_U wi16_t msa_dpsub_u(wi16_t, wu8_t, wu8_t)
wi32_t msa_dpsub_u(wi32_t, wu16_t, wu16_t)
wi64_t msa_dpsub_u(wi64_t, wu32_t, wu32_t)

Unsigned Dot Product Sub-
tract

DIV_S wi8_t msa_div_s(wi8_t, wi8_t)
wi16_t msa_div_s(wi16_t, wi16_t)
wi32_t msa_div_s(wi32_t, wi32_t)
wi64_t msa_div_s(wi64_t, wi64_t)

a / b Signed Divide

DIV_U wu8_t msa_div_u(wu8_t, wu8_t)
wu16_t msa_div_u(wu16_t, wu16_t)
wu32_t msa_div_u(wu32_t, wu32_t)
wu64_t msa_div_u(wu64_t, wu64_t)

a / b Unsigned Divide

MADDV wi8_t msa_maddv(wi8_t, wi8_t, wi8_t)
wi16_t msa_maddv(wi16_t, wi16_t, wi16_t)
wi32_t msa_maddv(wi32_t, wi32_t, wi32_t)
wi64_t msa_maddv(wi64_t, wi64_t, wi64_t)

a + b * c Multiply-Add

Table 11.30 MSA Arithmetic Instructions (continued)

Mnemonic Compiler Intrinsics C Expression Instruction Description
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MAX_A wi8_t msa_max_a(wi8_t, wi8_t)
wi16_t msa_max_a(wi16_t, wi16_t)
wi32_t msa_max_a(wi32_t, wi32_t)
wi64_t msa_max_a(wi64_t, wi64_t)

Maximum of Absolute Val-
ues

MIN_A wi8_t msa_min_a(wi8_t, wi8_t)
wi16_t msa_min_a(wi16_t, wi16_t)
wi32_t msa_min_a(wi32_t, wi32_t)
wi64_t msa_min_a(wi64_t, wi64_t)

Minimum of Absolute Val-
ues

MAX_S wi8_t msa_max_s(wi8_t, wi8_t)
wi16_t msa_max_s(wi16_t, wi16_t)
wi32_t msa_max_s(wi32_t, wi32_t)
wi64_t msa_max_s(wi64_t, wi64_t)

a > b ? a : b Signed Maximum

MAXI_S wi8_t msa_maxi_s(wi8_t, char)
wi16_t msa_maxi_s(wi16_t, char)
wi32_t msa_maxi_s(wi32_t, char)
wi64_t msa_maxi_s(wi64_t, char)

a > b ? a : b Signed Immediate Maxi-
mum

MAX_U wi8_t msa_max_u(wi8_t, wi8_t)
wi16_t msa_max_u(wi16_t, wi16_t)
wi32_t msa_max_u(wi32_t, wi32_t)
wi64_t msa_max_u(wi64_t, wi64_t)

a > b ? a : b Unsigned Maximum

MAXI_U wu8_t msa_maxi_u(wu8_t, unsigned char)
wu16_t msa_maxi_u(wu16_t, unsigned char)
wu32_t msa_maxi_u(wu32_t, unsigned char)
wu64_t msa_maxi_u(wu64_t, unsigned char)

a > b ? a : b Unsigned Immediate Maxi-
mum

MIN_S wi8_t msa_min_s(wi8_t, wi8_t)
wi16_t msa_min_s(wi16_t, wi16_t)
wi32_t msa_min_s(wi32_t, wi32_t)
wi64_t msa_min_s(wi64_t, wi64_t)

a < b ? a : b Signed Maximum

MINI_S wi8_t msa_mini_s(wi8_t, char)
wi16_t msa_mini_s(wi16_t, char)
wi32_t msa_mini_s(wi32_t, char)
wi64_t msa_mini_s(wi64_t, char)

a < b ? a : b Signed Immediate Maxi-
mum

MIN_U wu8_t msa_min_u(wu8_t, wu8_t)
wu16_t msa_min_u(wu16_t, wu16_t)
wu32_t msa_min_u(wu32_t, wu32_t)
wu64_t msa_min_u(wu64_t, wu64_t)

a < b ? a : b Unsigned Maximum

MINI_U wu8_t msa_mini_u(wu8_t, unsigned char)
wu16_t msa_mini_u(wu16_t, unsigned char)
wu32_t msa_mini_u(wu32_t, unsigned char)
wu64_t msa_mini_u(wu64_t, unsigned char)

a < b ? a : b Unsigned Immediate Maxi-
mum

MSUBV wi8_t msa_msubv(wi8_t, wi8_t, wi8_t)
wi16_t msa_msubv(wi16_t, wi16_t, wi16_t)
wi32_t msa_msubv(wi32_t, wi32_t, wi32_t)
wi64_t msa_msubv(wi64_t, wi64_t, wi64_t)

a - b * c Multiply-Subtract

Table 11.30 MSA Arithmetic Instructions (continued)

Mnemonic Compiler Intrinsics C Expression Instruction Description
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MULV wi8_t msa_mulv(wi8_t, wi8_t)
wi16_t msa_mulv(wi16_t, wi16_t)
wi32_t msa_mulv(wi32_t, wi32_t)
wi64_t msa_mulv(wi64_t, wi64_t)

a * b Multiply

MOD_S wi8_t msa_mod_s(wi8_t, wi8_t)
wi16_t msa_mod_s(wi16_t, wi16_t)
wi32_t msa_mod_s(wi32_t, wi32_t)
wi64_t msa_mod_s(wi64_t, wi64_t)

a % b Signed Remainder (Mod-
ulo)

MOD_U wu8_t msa_mod_u(wu8_t, wu8_t)
wu16_t msa_mod_u(wu16_t, wu16_t)
wu32_t msa_mod_u(wu32_t, wu32_t)
wu64_t msa_mod_u(wu64_t, wu64_t)

a % b Unsigned Remainder (Mod-
ulo)

SAT_S wi8_t msa_sat_s(wi8_t, unsigned char)
wi16_t msa_sat_s(wi16_t, unsigned char)
wi32_t msa_sat_s(wi32_t, unsigned char)
wi64_t msa_sat_s(wi64_t, unsigned char)

Signed Saturate

SAT_U wu8_t msa_sat_u(wu8_t, unsigned char)
wu16_t msa_sat_u(wu16_t, unsigned char)
wu32_t msa_sat_u(wu32_t, unsigned char)
wu64_t msa_sat_u(wu64_t, unsigned char)

Unsigned Saturate

SUBS_S wi8_t msa_subs_s(wi8_t, wi8_t)
wi16_t msa_subs_s(wi16_t, wi16_t)
wi32_t msa_subs_s(wi32_t, wi32_t)
wi64_t msa_subs_s(wi64_t, wi64_t)

Signed Saturated Subtract

SUBS_U wu8_t msa_subs_u(wu8_t, wu8_t)
wu16_t msa_subs_u(wu16_t, wu16_t)
wu32_t msa_subs_u(wu32_t, wu32_t)
wu64_t msa_subs_u(wu64_t, wu64_t)

Unsigned Saturated Sub-
tract

HSUB_S wi16_t msa_hsub_s(wi8_t, wi8_t)
wi32_t msa_hsub_s(wi16_t, wi16_t)
wi64_t msa_hsub_s(wi32_t, wi32_t)

Signed Horizontal Subtract

HSUB_U wi16_t msa_hsub_u(wu8_t, wu8_t)
wi32_t msa_hsub_u(wu16_t, wu16_t)
wi64_t msa_hsub_u(wu32_t, wu32_t)

Unsigned Horizontal Sub-
tract

SUBSUU_S wi8_t msa_subsuu_s(wu8_t, wu8_t)
wi16_t msa_subsuu_s(wu16_t, wu16_t)
wi32_t msa_subsuu_s(wu32_t, wu32_t)
wi64_t msa_subsuu_s(wu64_t, wu64_t)

Signed Saturated Unsigned 
Subtract (both arguments 
are unsigned, the result is 
signed)

SUBSUS_U wu8_t msa_subsus_u(wu8_t, wi8_t)
wu16_t msa_subsus_u(wu16_t, wi16_t)
wu32_t msa_subsus_u(wu32_t, wi32_t)
wu64_t msa_subsus_u(wu64_t, wi64_t)

Unsigned Saturated Signed 
Subtract from Unsigned (the 
first argument is unsigned, 
the second is signed, and the 
result is unsigned)

Table 11.30 MSA Arithmetic Instructions (continued)

Mnemonic Compiler Intrinsics C Expression Instruction Description
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SUBV wi8_t msa_subv(wi8_t, wi8_t)
wi16_t msa_subv(wi16_t, wi16_t)
wi32_t msa_subv(wi32_t, wi32_t)
wi64_t msa_subv(wi64_t, wi64_t)

a - b Subtract

SUBVI wi8_t msa_subvi(wi8_t, unsigned char)
wi16_t msa_subvi(wi16_t, unsigned char)
wi32_t msa_subvi(wi32_t, unsigned char)
wi64_t msa_subvi(wi64_t, unsigned char)

a - b Subtract Immediate

Table 11.31 MSA Bitwise Instructions 

Mnemonic Compiler Intrinsics Instruction Description

AND wu8_t msa_and(wu8_t, wu8_t) Logical And

ANDI wu8_t msa_andi(wu8_t, unsigned char) Logical And Immediate

BCLR wu8_t msa_bclr(wu8_t, wu8_t)
wu16_t msa_bclr(wu16_t, wu16_t)
wu32_t msa_bclr(wu32_t, wu32_t)
wu64_t msa_bclr(wu64_t, wu64_t)

Bit Clear

BCLRI wu8_t msa_bclri(wu8_t, unsigned char)
wu16_t msa_bclri(wu16_t, unsigned char)
wu32_t msa_bclri(wu32_t, unsigned char)
wu64_t msa_bclri(wu64_t, unsigned char)

Bit Clear Immediate

BINSL wu8_t msa_binsl(wu8_t, wu8_t, wu8_t)
wu16_t msa_binsl(wu16_t, wu16_t, wu16_t)
wu32_t msa_binsl(wu32_t, wu32_t, wu32_t)
wu64_t msa_binsl(wu64_t, wu64_t, wu64_t)

Bit Insert Left 

BINSLI wu8_t msa_binsli(wu8_t, wu8_t, unsigned char)
wu16_t msa_binsli(wu16_t, wu16_t, unsigned char)
wu32_t msa_binsli(wu32_t, wu32_t, unsigned char)
wu64_t msa_binsli(wu64_t, wu64_t, unsigned char)

Bit Insert Left Immediate

BINSR wu8_t msa_binsr(wu8_t, wu8_t, wu8_t)
wu16_t msa_binsr(wu16_t, wu16_t, wu16_t)
wu32_t msa_binsr(wu32_t, wu32_t, wu32_t)
wu64_t msa_binsr(wu64_t, wu64_t, wu64_t)

Bit Insert Right

BINSRI wu8_t msa_binsri(wu8_t, wu8_t, unsigned char)
wu16_t msa_binsri(wu16_t, wu16_t, unsigned char)
wu32_t msa_binsri(wu32_t, wu32_t, unsigned char)
wu64_t msa_binsri(wu64_t, wu64_t, unsigned char)

Bit Insert Right Immediate

BMNZ wu8_t msa_bmnz(wu8_t, wu8_t, wu8_t) Bit Move If Not Zero

BMNZI wu8_t msa_bmnzi(wu8_t, wu8_t, unsigned char) Bit Move If Not Zero Immediate

BMZ wu8_tmsa_bmz(wu8_t, wu8_t, wu8_t) Bit Move If Zero

BMZI wu8_t msa_bmzi(wu8_t, wu8_t, unsigned char) Bit Move If Zero Immediate

Table 11.30 MSA Arithmetic Instructions (continued)

Mnemonic Compiler Intrinsics C Expression Instruction Description
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BNEG wu8_t msa_bneg(wu8_t, wu8_t)
wu16_t msa_bneg(wu16_t, wu16_t)
wu32_t msa_bneg(wu32_t, wu32_t)
wu64_t msa_bneg(wu64_t, wu64_t)

Bit Negate

BNEGI wu8_t msa_bnegi(wu8_t, unsigned char)
wu16_t msa_bnegi(wu16_t, unsigned char)
wu32_t msa_bnegi(wu32_t, unsigned char)
wu64_t msa_bnegi(wu64_t, unsigned char)

Bit Negate Immediate

BSEL wu8_t msa_bsel(wu8_t, wu8_t, wu8_t) Bit Select

BSELI wu8_t msa_bseli(wu8_t, wu8_t, unsigned char) Bit Select Immediate

BSET wu8_t msa_bset(wu8_t, wu8_t)
wu16_t msa_bset(wu16_t, wu16_t)
wu32_t msa_bset(wu32_t, wu32_t)
wu64_t msa_bset(wu64_t, wu64_t)

Bit Set

BSETI wu8_t msa_bseti(wu8_t, unsigned char)
wu16_t msa_bseti(wu16_t, unsigned char)
wu32_t msa_bseti(wu32_t, unsigned char)
wu64_t msa_bseti(wu64_t, unsigned char)

Bit Set Immediate

NLOC wi8_t msa_nloc(wi8_t)
wi16_t msa_nloc(wi16_t)
wi32_t msa_nloc(wi32_t)
wi64_t msa_nloc(wi64_t)

Leading One Bits Count

NLZC wi8_t msa_nlzc(wi8_t)
wi16_t msa_nlzc(wi16_t)
wi32_t msa_nlzc(wi32_t)
wi64_t msa_nlzc(wi64_t)

Leading Zero Bits Count

NOR wu8_t msa_nor(wu8_t, wu8_t) Logical Negated Or

NORI wu8_t msa_nori(wu8_t, unsigned char) Logical Negated Or Immediate

PCNT wi8_t msa_pcnt(wi8_t)
wi16_t msa_pcnt(wi16_t)
wi32_t msa_pcnt(wi32_t)
wi64_t msa_pcnt(wi64_t)

Population (Bits Set to 1) Count

OR wu8_t msa_or(wu8_t, wu8_t) Logical Or

ORI wu8_t msa_ori(wu8_t, unsigned char) Logical Or Immediate

XOR wu8_t msa_xor(wu8_t, wu8_t) Logical Or

XORI wu8_t msa_xori(wu8_t, unsigned char) Logical Or Immediate

SLL wi8_t msa_sll(wi8_t, wi8_t)
wi16_t msa_sll(wi16_t, wi16_t)
wi32_t msa_sll(wi32_t, wi32_t)
wi64_t msa_sll(wi64_t, wi64_t)

Shift Left

Table 11.31 MSA Bitwise Instructions (continued)

Mnemonic Compiler Intrinsics Instruction Description
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11.14.2 MSA Floating-Point Instructions

The MSA floating-point implementation is compliant with the IEEE Standard for Floating-Point Arithmetic 754TM-
2008. The floating-point arithmetic operations implemented by dedicated instructions are: addition/subtract, multi-
ply/divide, fused multiply add/sub, base 2 exponentiation and integer logarithm, max/min including for absolute val-
ues, and integer rounding (Table 11.32). 

SLLI wi8_t msa_slli(wi8_t, unsigned char)
wi16_t msa_slli(wi16_t, unsigned char)
wi32_t msa_slli(wi32_t, unsigned char)
wi64_t msa_slli(wi64_t, unsigned char)

Shift Left Immediate

SRA wi8_t msa_sra(wi8_t, wi8_t)
wi16_t msa_sra(wi16_t, wi16_t)
wi32_t msa_sra(wi32_t, wi32_t)
wi64_t msa_sra(wi64_t, wi64_t)

Shift Right Arithmetic

SRAI wi8_t msa_srai(wi8_t, unsigned char)
wi16_t msa_srai(wi16_t, unsigned char)
wi32_t msa_srai(wi32_t, unsigned char)
wi64_t msa_srai(wi64_t, unsigned char)

Shift Right Arithmetic Immediate

SRAR wi8_t msa_srar(wi8_t, wi8_t)
wi16_t msa_srar(wi16_t, wi16_t)
wi32_t msa_srar(wi32_t, wi32_t)
wi64_t msa_srar(wi64_t, wi64_t)

Shift Right Arithmetic with Rounding

SRARI wi8_t msa_srari(wi8_t, unsigned char)
wi16_t msa_srari(wi16_t, unsigned char)
wi32_t msa_srari(wi32_t, unsigned char)
wi64_t msa_srari(wi64_t, unsigned char)

Shift Right Arithmetic with Rounding 
Immediate

SRL wi8_t msa_srl(wi8_t, wi8_t)
wi16_t msa_srl(wi16_t, wi16_t)
wi32_t msa_srl(wi32_t, wi32_t)
wi64_t msa_srl(wi64_t, wi64_t)

Shift Right

SRLI wi8_t msa_srli(wi8_t, unsigned char)
wi16_t msa_srli(wi16_t, unsigned char)
wi32_t msa_srli(wi32_t, unsigned char)
wi64_t msa_srli(wi64_t, unsigned char)

Shift Right Immediate

SRLR wi8_t msa_srlr(wi8_t, wi8_t)
wi16_t msa_srlr(wi16_t, wi16_t)
wi32_t msa_srlr(wi32_t, wi32_t)
wi64_t msa_srlr(wi64_t, wi64_t)

Shift Right with Rounding

SRLRI wi8_t msa_srlri(wi8_t, unsigned char)
wi16_t msa_srlri(wi16_t, unsigned char)
wi32_t msa_srlri(wi32_t, unsigned char)
wi64_t msa_srlri(wi64_t, unsigned char)

Shift Right with Rounding Immediate

Table 11.31 MSA Bitwise Instructions (continued)

Mnemonic Compiler Intrinsics Instruction Description
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The floating-point compare instructions (Table 11.33) are similar with the integer comparisons: all set destination bits 
to zero (false) or one (true). The floating-point specific unordered relations are supported by dedicated quiet compare 
unordered instructions and a complete set of signaling compare instructions.

Format conversion instructions (Table 11.34) cover single (32-bit) to/from double-precision (64-bit) and single to/
from 16-bit floating-point format. Integer and fixed-point conversions are also supported.

In the case of a floating-point exception, each faulting vector element is precisely identified without the need for soft-
ware emulation for all vector elements. 

Table 11.32 MSA Floating-Point Arithmetic Instructions 

Mnemonic Compiler Intrinsics Instruction Description

FADD wf32_t msa_fadd(wf32_t, wf32_t)
wf64_t msa_fadd(wf64_t, wf64_t)

Floating-Point Addition

FDIV wf32_t msa_fdiv(wf32_t, wf32_t)
wf64_t msa_fdiv(wf64_t, wf64_t)

Floating-Point Division

FEXP2 wf32_t msa_fexp2(wf32_t, wi32_t)
wf64_t msa_fexp2(wf64_t, wi64_t)

Floating-Point Base 2 Exponentiation

FLOG2 wf32_t msa_flog2(wf32_t)
wf64_t msa_flog2(wf64_t)

Floating-Point Base 2 Logarithm

FMADD wf32_t msa_fmadd(wf32_t, wf32_t, wf32_t)
wf64_t msa_fmadd(wf64_t, wf64_t, wf64_t)

Floating-Point Fused Multiply-Add

FMSUB wf32_t msa_fmsub(wf32_t, wf32_t, wf32_t)
wf64_t msa_fmsub(wf64_t, wf64_t, wf64_t)

Floating-Point Fused Multiply-Subtract

FMAX wf32_t msa_fmax(wf32_t, wf32_t)
wf64_t msa_fmax(wf64_t, wf64_t)

Floating-Point Maximum

FMIN wf32_t msa_fmin(wf32_t, wf32_t)
wf64_t msa_fmin(wf64_t, wf64_t)

Floating-Point Minimum

FMAX_A wf32_t msa_fmax_a(wf32_t, wf32_t)
wf64_t msa_fmax_a(wf64_t, wf64_t)

Floating-Point Maximum of Absolute Values

FMIN_A wf32_t msa_fmin_a(wf32_t, wf32_t)
wf64_t msa_fmin_a(wf64_t, wf64_t)

Floating-Point Minimum of Absolute Values

FMUL wf32_t msa_fmul(wf32_t, wf32_t)
wf64_t msa_fmul(wf64_t, wf64_t)

Floating-Point Multiplication

FRCP wf32_t msa_frcp(wf32_t)
wf64_t msa_frcp(wf64_t)

Approximate Floating-Point Reciprocal

FRINT wf32_t msa_frint(wf32_t)
wf64_t msa_frint(wf64_t)

Floating-Point Round to Integer

FRSQRT wf32_t msa_frsqrt(wf32_t)
wf64_t msa_frsqrt(wf64_t)

Approximate Floating-Point Reciprocal of 
Square Root

FSQRT wf32_t msa_fsqrt(wf32_t)
wf64_t msa_fsqrt(wf64_t)

Floating-Point Square Root

FSUB wf32_t msa_fsub(wf32_t, wf32_t)
wf64_t msa_fsub(wf64_t, wf64_t)

Floating-Point Subtraction
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Table 11.33 MSA Floating-Point Compare Instructions 

Mnemonic Compiler Intrinsics Instruction Description

FCLASS wi32_t msa_fclass(wf32_t)
wi64_t msa_fclass(wf64_t)

Floating-Point Class Mask

FCAF wi32_t msa_fcaf(wf32_t, wf32_t)
wi64_t msa_fcaf(wf64_t, wf64_t)

Floating-Point Quiet Compare Always False

FCUN wi32_t msa_fcun(wf32_t, wf32_t)
wi64_t msa_fcun(wf64_t, wf64_t)

Floating-Point Quiet Compare Unordered

FCOR wi32_t msa_fcor(wf32_t, wf32_t)
wi64_t msa_fcor(wf64_t, wf64_t)

Floating-Point Quiet Compare Ordered

FCEQ wi32_t msa_fceq(wf32_t, wf32_t)
wi64_t msa_fceq(wf64_t, wf64_t)

Floating-Point Quiet Compare Equal

FCUNE wi32_t msa_fcune(wf32_t, wf32_t)
wi64_t msa_fcune(wf64_t, wf64_t)

Floating-Point Quiet Compare Unordered or 
Not Equal

FCUEQ wi32_t msa_fcueq(wf32_t, wf32_t)
wi64_t msa_fcueq(wf64_t, wf64_t)

Floating-Point Quiet Compare Unordered or 
Equal

FCNE wi32_t msa_fcne(wf32_t, wf32_t)
wi64_t msa_fcne(wf64_t, wf64_t)

Floating-Point Quiet Compare Not Equal

FCLT wi32_t msa_fclt(wf32_t, wf32_t)
wi64_t msa_fclt(wf64_t, wf64_t)

Floating-Point Quiet Compare Less Than

FCULT wi32_t msa_fcult(wf32_t, wf32_t)
wi64_t msa_fcult(wf64_t, wf64_t)

Floating-Point Quiet Compare Unordered or 
Less Than

FCLE wi32_t msa_fcle(wf32_t, wf32_t)
wi64_t msa_fcle(wf64_t, wf64_t)

Floating-Point Quiet Compare Less Than or 
Equal

FCULE wi32_t msa_fcule(wf32_t, wf32_t)
wi64_t msa_fcule(wf64_t, wf64_t)

Floating-Point Quiet Compare Unordered or 
Less Than or Equal

FSAF wi32_t msa_fsaf(wf32_t, wf32_t)
wi64_t msa_fsaf(wf64_t, wf64_t)

Floating-Point Signaling Compare Always False

FSUN wi32_t msa_fsun(wf32_t, wf32_t)
wi64_t msa_fsun(wf64_t, wf64_t)

Floating-Point Signaling Compare Unordered

FSOR wi32_t msa_fsor(wf32_t, wf32_t)
wi64_t msa_fsor(wf64_t, wf64_t)

Floating-Point Signaling Compare Ordered

FSEQ wi32_t msa_fseq(wf32_t, wf32_t)
wi64_t msa_fseq(wf64_t, wf64_t)

Floating-Point Signaling Compare Equal

FSUNE wi32_t msa_fsune(wf32_t, wf32_t)
wi64_t msa_fsune(wf64_t, wf64_t)

Floating-Point Signaling Compare Unordered or 
Not Equal

FSUEQ wi32_t msa_fsueq(wf32_t, wf32_t)
wi64_t msa_fsueq(wf64_t, wf64_t)

Floating-Point Signaling Compare Unordered or 
Equal

FSNE wi32_t msa_fsne(wf32_t, wf32_t)
wi64_t msa_fsne(wf64_t, wf64_t)

Floating-Point Signaling Compare Not Equal
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FSLT wi32_t msa_fslt(wf32_t, wf32_t)
wi64_t msa_fslt(wf64_t, wf64_t)

Floating-Point Signaling Compare Less Than

FSULT wi32_t msa_fsult(wf32_t, wf32_t)
wi64_t msa_fsult(wf64_t, wf64_t)

Floating-Point Signaling Compare Unordered or 
Less Than

FSLE wi32_t msa_fsle(wf32_t, wf32_t)
wi64_t msa_fsle(wf64_t, wf64_t)

Floating-Point Signaling Compare Less Than or 
Equal

FSULE wi32_t msa_fsule(wf32_t, wf32_t)
wi64_t msa_fsule(wf64_t, wf64_t)

Floating-Point Signaling Compare Unordered or 
Less Than or Equal

Table 11.34 MSA Floating-Point Conversion Instructions 

Mnemonic Compiler Intrinsics Instruction Description

FEXDO wi16_t msa_fexdo(wf32_t, wf32_t)
wf32_t msa_fexdo(wf64_t, wf64_t)

Floating-Point Down-Convert Interchange For-
mat

FEXUPL wf64_t msa_fexupl(wf32_t)
wf32_t msa_fexupl(wi16_t)

Left-Half Floating-Point Up-Convert Inter-
change Format

FEXUPR wf64_t msa_fexupr(wf32_t)
wf32_t msa_fexupr(wi16_t)

Right-Half Floating-Point Up-Convert Inter-
change Format

FFINT_S wf32_t msa_ffint_s(wi32_t)
wf64_t msa_ffint_s(wi64_t)

Floating-Point Convert from Signed Integer

FFINT_U wf32_t msa_ffint_u(wu32_t)
wf64_t msa_ffint_u(wu64_t)

Floating-Point Convert from Unsigned Integer

FFQL wf32_t msa_ffql(wi16_t)
wf64_t msa_ffql(wi32_t)

Left-Half Floating-Point Convert from Fixed-
Point

FFQR wf32_t msa_ffqr(wi16_t)
wf64_t msa_ffqr(wi32_t)

Right-Half Floating-Point Convert from Fixed-
Point

FTINT_S wi32_t msa_ftint_s(wf32_t)
wi64_t msa_ftint_s(wf64_t)

Floating-Point Round and Convert to Signed 
Integer

FTINT_U wu32_t msa_ftint_u(wf32_t)
wu64_t msa_ftint_u(wf64_t)

Floating-Point Round and Convert to Unsigned 
Integer

FTRUNC_S wi32_t msa_ftrunc_s(wf32_t)
wi64_t msa_ftrunc_s(wf64_t)

Floating-Point Truncate and Convert to Signed 
Integer

FTRUNC_U wu32_t msa_ftrunc_u(wf32_t)
wu64_t msa_ftrunc_u(wf64_t)

Floating-Point Truncate and Convert to 
Unsigned Integer

FTQ wi16_t msa_ftq(wf32_t, wf32_t)
wi32_t msa_ftq(wf64_t, wf64_t)

Floating-Point Round and Convert to Fixed-
Point

Table 11.33 MSA Floating-Point Compare Instructions (continued)

Mnemonic Compiler Intrinsics Instruction Description
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11.14.3 Fixed-Point Multiplication Instructions

The fixed-point data formats are Q15 and Q31, i.e. one sign bit and 15 or 31 fractional bits, representing values in the 
(-1, 1) interval. While the fixed-point add/sub is the regular 2’s complement add/sub with saturation, the multiplica-
tion operation requires scaling (left shift) with saturation. 

The MSA has dedicated fixed-point multiplication instructions (Table 11.35) with optional rounding. 

11.14.4 Branch and Compare Instructions

Branch and compare instructions (Table 11.36) are based on truth values: zero for false and non-zero for true. There 
are no dedicated condition flags.

The compare instructions set the destination element to the truth value of the compare operation for the corresponding 
source elements. All compare instructions accept a small, 5-bit constant as the second compare operand across all 
vector elements.

Both branch-on-false and branch-on-true condition instructions are provided, because the vector under test contains 
multiple truth values that cannot be negated by simply changing the compare operator. As such, there is a pair of 
branch-on-false (zero) instructions that test if at least one element is zero or if all elements are zero, and a pair of 
branch-on-true (not zero) instructions that test if all elements are not zero, or if at least one element is not zero. 

Table 11.35 MSA Fixed-Point Instructions 

Mnemonic Compiler Intrinsic Instruction Description

MADD_Q wi16_t msa_madd_q(wi16_t, wi16_t, wi16_t)
wi32_t msa_madd_q(wi32_t, wi32_t, wi32_t)

Fixed-Point Multiply and Add

MADDR_Q wi16_t msa_maddr_q(wi16_t, wi16_t, wi16_t)
wi32_t msa_maddr_q(wi32_t, wi32_t, wi32_t)

Fixed-Point Multiply and Add with Rounding

MSUB_Q wi16_t msa_msub_q(wi16_t, wi16_t, wi16_t)
wi32_t msa_msub_q(wi32_t, wi32_t, wi32_t)

Fixed-Point Multiply and Subtract

MSUBR_Q wi16_t msa_msubr_q(wi16_t, wi16_t, wi16_t)
wi32_t msa_msubr_q(wi32_t, wi32_t, wi32_t)

Fixed-Point Multiply and Subtract with Round-
ing

MUL_Q wi16_t msa_mul_q(wi16_t, wi16_t)
wi32_t msa_mul_q(wi32_t, wi32_t)

Fixed-Point Multiply

MULR_Q wi16_t msa_mulr_q(wi16_t, wi16_t)
wi32_t msa_mulr_q(wi32_t, wi32_t)

Fixed-Point Multiply with Rounding

Table 11.36 MSA Branch and Compare Instructions 

Mnemonic Compiler Intrinsic Instruction Description

BNZ Branch If Not Zero

BZ Branch If Zero
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CEQ wi8_t msa_ceq(wi8_t, wi8_t)
wi16_t msa_ceq(wi16_t, wi16_t)
wi32_t msa_ceq(wi32_t, wi32_t)
wi64_t msa_ceq(wi64_t, wi64_t)

Compare Equal

CEQI wi8_t msa_ceqi(wi8_t, char)
wi16_t msa_ceqi(wi16_t, char)
wi32_t msa_ceqi(wi32_t, char)
wi64_t msa_ceqi(wi64_t, char)

Compare Equal Immediate

CLE_S wi8_t msa_cle_s(wi8_t, wi8_t)
wi16_t msa_cle_s(wi16_t, wi16_t)
wi32_t msa_cle_s(wi32_t, wi32_t)
wi64_t msa_cle_s(wi64_t, wi64_t)

Compare Less-Than-or-Equal Signed and 
Unsigned

CLEI_S wi8_t msa_clei_s(wi8_t, char)
wi16_t msa_clei_s(wi16_t, char)
wi32_t msa_clei_s(wi32_t, char)
wi64_t msa_clei_s(wi64_t, char)

Compare Less-Than-or-Equal Signed and 
Unsigned Immediate

CLE_U wi8_t msa_cle_u(wu8_t, wu8_t)
wi16_t msa_cle_u(wu16_t, wu16_t)
wi32_t msa_cle_u(wu32_t, wu32_t)
wi64_t msa_cle_u(wu64_t, wu64_t)

Compare Less-Than-or-Equal Signed and 
Unsigned

CLEI_U wi8_t msa_clei_u(wu8_t, unsigned char)
wi16_t msa_clei_u(wu16_t, unsigned char)
wi32_t msa_clei_u(wu32_t, unsigned char)
wi64_t msa_clei_u(wu64_t, unsigned char)

Compare Less-Than-or-Equal Signed and 
Unsigned Immediate

CLT_S wi8_t msa_clt_s(wi8_t, wi8_t)
wi16_t msa_clt_s(wi16_t, wi16_t)
wi32_t msa_clt_s(wi32_t, wi32_t)
wi64_t msa_clt_s(wi64_t, wi64_t)

Compare Less-Than Signed and Unsigned

CLTI_S wi8_t msa_clti_s(wi8_t, char)
wi16_t msa_clti_s(wi16_t, char)
wi32_t msa_clti_s(wi32_t, char)
wi64_t msa_clti_s(wi64_t, char)

Compare Less-Than Signed and Unsigned 
Immediate

CLT_U wi8_t msa_clt_u(wu8_t, wu8_t)
wi16_t msa_clt_u(wu16_t, wu16_t)
wi32_t msa_clt_u(wu32_t, wu32_t)
wi64_t msa_clt_u(wu64_t, wu64_t)

Compare Less-Than Signed and Unsigned

CLTI_U wi8_t msa_clti_u(wu8_t, unsigned char)
wi16_t msa_clti_u(wu16_t, unsigned char)
wi32_t msa_clti_u(wu32_t, unsigned char)
wi64_t msa_clti_u(wu64_t, unsigned char)

Compare Less-Than Signed and Unsigned 
Immediate

Table 11.36 MSA Branch and Compare Instructions (continued)

Mnemonic Compiler Intrinsic Instruction Description
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11.14.5 Load/Store and Element Move Instructions

The MSA is very flexible and consistent regarding data transfers between the vector registers and the general-purpose 
registers (GPRs) or memory. Data transfer instructions (Table 11.37) include vector memory load/store and element 
move instructions such as vector element data copy to GPR, all vector elements fill with GPR or immediate data, and 
insert GPR data to a specific element. The load/store instructions do not require 128-bit (16-byte) memory address 
alignment.

All data transfer instructions are typed, i.e., the data format is explicitly specified. This is particularly important for 
the vector load/store instructions, because it allows any halfword, word, or doubleword data to make the round-trip 
between GPRs, memory, and vector registers without any need for endian related byte swaps. 

For example, a store halfword (source) vector register will write the eight halfword values to memory, which then can 
be loaded as halfwords one-by-one in GPRs, which then can be transferred one-by-one to another (destination) vector 
register. The source vector register from which the halfword values were initiated is identical to the destination vector 
register, regardless of the endian memory mode. 

Table 11.37 MSA Load/Store and Move Instructions 

Mnemonic Compiler Intrinsics Instruction Description

CFCMSA int msa_cfcmsa(unsigned char) Copy from MSA Control Register

CTCMSA void msa_ctcmsa(unsigned char, int) Copy to MSA Control Register

LD wi8_t msa_ld(wi8_t*, int)
wi16_t msa_ld(wi16_t*, int)
wi32_t msa_ld(wi32_t*, int)
wi64_t msa_ld(wi64_t*, int)
wf32_t msa_ld(wf32_t*, int)
wf64_t msa_ld(wf64_t*, int)

Load Vector

LDI wi8_t msa_ldi(short)
wi16_t msa_ldi(short)
wi32_t msa_ldi(short)
wi64_t msa_ldi(short)

Load Immediate

MOVE wi8_t msa_move(wi8_t)
wi16_t msa_move(wi16_t)
wi32_t msa_move(wi32_t)
wi64_t msa_move(wi64_t)
wf32_t msa_move(wf32_t)
wf64_t msa_move(wf64_t)

Vector to Vector Move

SPLAT wi8_t msa_splat(wi8_t, int)
wi16_t msa_splat(wi16_t, int)
wi32_t msa_splat(wi32_t, int)
wi64_t msa_splat(wi64_t, int)

Replicate Vector Element

SPLATI wi8_t msa_splati(wi8_t, unsigned char)
wi16_t msa_splati(wi16_t, unsigned char)
wi32_t msa_splati(wi32_t, unsigned char)
wi64_t msa_splati(wi64_t, unsigned char)

Replicate Vector Element

FILL wi8_t msa_fill(int)
wi16_t msa_fill(int)
wi32_t msa_fill(int)
wi64_t msa_fill(int)

Fill Vector from GPR
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11.14.6 Element Permute Instructions

Vector elements can be shuffled based on either a pre-defined pattern or an arbitrary mapping function. Pre-defined 
patterns are more efficient because no prior set-up is required. Mapping functions provide the most general shuffling, 
but could take an extra vector register to specify where each source element will be put in the destination vector.

The MSA has both generic mapping and pre-defined pattern-shuffle instructions (Table 11.38). Pre-defined pattern 
instructions interleave odd or even elements from two source vectors, or pack all odd or all even elements from two 
source vectors into the upper half and the lower half of a destination vector. 

Note that the architecture independent GCC __builtin_shuffle() is intentionally semantically compatible 
with the MSA VSHF instruction.

A second class of predefined patterns are geometrical in nature: the two source vectors seen as byte arrays (of one line 
by eight columns, two lines by four columns, or four lines by two columns) are horizontally concatenated. The desti-

INSERT wi8_t msa_insert(wi8_t, unsigned char, int)
wi16_t msa_insert(wi16_t, unsigned char, int)
wi32_t msa_insert(wi32_t, unsigned char, int)
wi64_t msa_insert(wi64_t, unsigned char, int)

Insert GPR and Vector element 0 to Vector 
Element

INSVE wi8_t msa_insve(wi8_t, unsigned char, wi8_t)
wi16_t msa_insve(wi16_t, unsigned char, wi16_t)
wi32_t msa_insve(wi32_t, unsigned char, wi32_t)
wi64_t msa_insve(wi64_t, unsigned char, wi64_t)

Insert GPR and Vector element 0 to Vector 
Element

COPY_S int msa_copy_s(wi8_t, unsigned char)
int msa_copy_s(wi16_t, unsigned char)
int msa_copy_s(wi32_t, unsigned char)
int msa_copy_s(wi64_t, unsigned char)

Copy element to GPR Signed and 
Unsigned

COPY_U int msa_copy_u(wi8_t, unsigned char)
int msa_copy_u(wi16_t, unsigned char)
int msa_copy_u(wi32_t, unsigned char)
int msa_copy_u(wi64_t, unsigned char)

Copy element to GPR Signed and 
Unsigned

ST void msa_st(wi8_t*, int)
void msa_st(wi16_t*, int)
void msa_st(wi32_t*, int)
void msa_st(wi64_t*, int)
void msa_st(wf32_t*, int)
void msa_st(wf64_t*, int)

Store Vector

Table 11.37 MSA Load/Store and Move Instructions (continued)

Mnemonic Compiler Intrinsics Instruction Description
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nation is a byte array selected by a sliding window of similar shape (array of one by eight, two by four, or four by 
two) over the concatenation of the source arrays. 

Table 11.38 MSA Element Permute Instructions 

Mnemonic Compiler Intrinsics Instruction Description

ILVEV wi8_t msa_ilvev(wi8_t, wi8_t)
wi16_t msa_ilvev(wi16_t, wi16_t)
wi32_t msa_ilvev(wi32_t, wi32_t)
wi64_t msa_ilvev(wi64_t, wi64_t)

Interleave Even

ILVOD wi8_t msa_ilvod(wi8_t, wi8_t)
wi16_t msa_ilvod(wi16_t, wi16_t)
wi32_t msa_ilvod(wi32_t, wi32_t)
wi64_t msa_ilvod(wi64_t, wi64_t)

Interleave Odd

ILVL wi8_t msa_ilvl(wi8_t, wi8_t)
wi16_t msa_ilvl(wi16_t, wi16_t)
wi32_t msa_ilvl(wi32_t, wi32_t)
wi64_t msa_ilvl(wi64_t, wi64_t)

Interleave Left

ILVR wi8_t msa_ilvr(wi8_t, wi8_t)
wi16_t msa_ilvr(wi16_t, wi16_t)
wi32_t msa_ilvr(wi32_t, wi32_t)
wi64_t msa_ilvr(wi64_t, wi64_t)

Interleave Right

PCKEV wi8_t msa_pckev(wi8_t, wi8_t)
wi16_t msa_pckev(wi16_t, wi16_t)
wi32_t msa_pckev(wi32_t, wi32_t)
wi64_t msa_pckev(wi64_t, wi64_t)

Pack Even Elements

PCKOD wi8_t msa_pckod(wi8_t, wi8_t)
wi16_t msa_pckod(wi16_t, wi16_t)
wi32_t msa_pckod(wi32_t, wi32_t)
wi64_t msa_pckod(wi64_t, wi64_t)

Pack Odd Elements

SHF wi8_t msa_shf(wi8_t, unsigned char)
wi16_t msa_shf(wi16_t, unsigned char)
wi32_t msa_shf(wi32_t, unsigned char)

Set Shuffle

SLD wi8_t msa_sld(wi8_t, wi8_t, int)
wi16_t msa_sld(wi16_t, wi16_t, int)
wi32_t msa_sld(wi32_t, wi32_t, int)
wi64_t msa_sld(wi64_t, wi64_t, int)

Element Slide

SLDI wi8_t msa_sldi(wi8_t, wi8_t, unsigned char)
wi16_t msa_sldi(wi16_t, wi16_t, unsigned char)
wi32_t msa_sldi(wi32_t, wi32_t, unsigned char)
wi64_t msa_sldi(wi64_t, wi64_t, unsigned char)

Element Slide Immediate

VSHF wi8_t msa_vshf(wi8_t, wi8_t, wi8_t)
wi16_t msa_vshf(wi16_t, wi16_t, wi16_t)
wi32_t msa_vshf(wi32_t, wi32_t, wi32_t)
wi64_t msa_vshf(wi64_t, wi64_t, wi64_t)

Vector shuffle
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11.15 Alphabetical Listing of Floating Point Instructions

Table 11.39 shows an alphabetical listing of the floating point unit instruction set, along with the associated instruc-
tion group. For the definition of each instruction, refer to Table 11.22 through Table 11.38 above. 

Table 11.39 Alphabetical Listing of FPU Instructions 

Instruction Name Instruction Group

ABS.fmt Move

ADD.fmt Arithmetic

BC1EQZ Conditional Branch

BC1NEZ Conditional Branch

CLASS.fmt Arithmetic

CMP.cond.fmt Arithmetic

CEIL.L.fmt Conversion

CEIL.W.fmt Conversion

CFC1 Move

CTC1 Move

CVT.D.fmt Conversion

CVT.L.fmt Conversion

CVT.S.fmt Conversion

CVT.W.fmt Conversion

DIV.fmt Arithmetic

FLOOR.L.fmt Conversion

FLOOR.W.fmt Conversion

LDC1 Load/Store

LWC1 Load/Store

MADDF.fmt Fused Multiply-Add

MAX.fmt Arithmetic

MAX_A.fmt Arithmetic

MSUBF.fmt Fused Multiply-Subtract

MFC1 Move

MFHC1 Move

MIN.fmt Arithmetic

MIN_A.fmt Arithmetic

MSUB.fmt Multiply-Accumulate

MTC1 Move

MUL.fmt Arithmetic

RECIP.fmt Arithmetic

RINT.fmt Conversion

ROUND.L.fmt Conversion
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11.16 Alphabetical Listing of MSA SIMD Instructions

Table 11.40 shows an alphabetical listing of the MSA SIMD instruction set, along with the associated instruction 
group. For the definition of each instruction, refer to Table 11.30 through Table 11.38 above. 

ROUND.W.fmt Conversion

RSQRT.fmt Arithmetic

SDC1 Load/Store

SELEQZ.fmt Arithmetic

SELNEZ.fmt Arithmetic

SQRT.fmt Arithmetic

SUB.fmt Arithmetic

SWC1 Load/Store

TRUNC.L.fmt Conversion

TRUNC.W.fmt Conversion

Table 11.40 Alphabetical Listing of MSA Instructions 

Instruction Name Instruction Group

ADD_A Arithmetic

ADDS_A Arithmetic

ADDS_S Arithmetic

ADDS_U Arithmetic

ADDV Arithmetic

ADDVI Arithmetic

AND Bitwise

ANDI Bitwise

ASUB_S Arithmetic

ASUB_U Arithmetic

AVE_S Arithmetic

AVE_U Arithmetic

AVER_S Arithmetic

AVER_U Arithmetic

BCLR Bitwise

BCLRI Bitwise

BINSL Bitwise

BINSLI Bitwise

BINSR Bitwise

BINSRI Bitwise

Table 11.39 Alphabetical Listing of FPU Instructions (continued)

Instruction Name Instruction Group
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BMZ Bitwise

BMZI Bitwise

BNEG Bitwise

BNEGI Bitwise

BNZ Branch and Compare

BSEL Bitwise

BSELI Bitwise

BSET Bitwise

BSETI Bitwise

BZ Branch and Compare

CEQ Branch and Compare

CEQI Branch and Compare

CFCMSA Load / Store and Move

CLE_S Branch and Compare

CLEI_S Branch and Compare

CLE_U Branch and Compare

CLEI_U Branch and Compare

CLT_S Branch and Compare

CLTI_S Branch and Compare

CLT_U Branch and Compare

CLTI_U Branch and Compare

COPY_S Load / Store and Move

COPY_U Load / Store and Move

CTCMSA Load / Store and Move

DIV_S Arithmetic

DIV_U Arithmetic

DOTP_S Arithmetic

DOTP_U Arithmetic

DPADD_S Arithmetic

DPADD_U Arithmetic

DPSUB_S Arithmetic

DPSUB_U Arithmetic

FADD Floating Point Arithmetic

FCLASS Floating Point Compare

FCAF Floating Point Compare

FCUN Floating Point Compare

FCOR Floating Point Compare

Table 11.40 Alphabetical Listing of MSA Instructions (continued)

Instruction Name Instruction Group
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FCEQ Floating Point Compare

FCUNE Floating Point Compare

FCUEQ Floating Point Compare

FCNE Floating Point Compare

FCLT Floating Point Compare

FCULT Floating Point Compare

FCLE Floating Point Compare

FCULE Floating Point Compare

FDIV Floating Point Arithmetic

FEXDO Floaint Point Conversion

FEXP2 Floating Point Arithmetic

FEXUPL Floaint Point Conversion

FEXUPR Floaint Point Conversion

FFINT_S Floaint Point Conversion

FFINT_U Floaint Point Conversion

FFQL Floaint Point Conversion

FFQR Floaint Point Conversion

FILL Load / Store and Move

FLOG2 Floating Point Arithmetic

FMADD Floating Point Arithmetic

FMSUB Floating Point Arithmetic

FMAX Floating Point Arithmetic

FMIN Floating Point Arithmetic

FMAX_A Floating Point Arithmetic

FMIN_A Floating Point Arithmetic

FMUL Floating Point Arithmetic

FRCP Floating Point Arithmetic

FRINT Floating Point Arithmetic

FRSQRT Floating Point Arithmetic

FSAF Floating Point Compare

FSEQ Floating Point Compare

FSLE Floating Point Compare

FSLT Floating Point Compare

FSNE Floating Point Compare

FSOR Floating Point Compare

FSUEQ Floating Point Compare

FSUB Floating Point Arithmetic

Table 11.40 Alphabetical Listing of MSA Instructions (continued)

Instruction Name Instruction Group
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FSULE Floating Point Compare

FSULT Floating Point Compare

FSUN Floating Point Compare

FSUNE Floating Point Compare

FTINT_S Floaint Point Conversion

FTINT_U Floaint Point Conversion

FTRUNC_S Floaint Point Conversion

FTRUNC_U Floaint Point Conversion

FTQ Floaint Point Conversion

HADD_S Arithmetic

HADD_U Arithmetic

HSUB_S Arithmetic

HSUB_U Arithmetic

ILVEV Element Permute

ILVOD Element Permute

ILVL Element Permute

ILVR Element Permute

INSERT Load / Store and Move

INSVE Load / Store and Move

LD Load / Store and Move

LDI Load / Store and Move

MADD_Q Fixed Point

MADDR_Q Fixed Point

MADDV Arithmetic

MAX_A Arithmetic

MAX_S Arithmetic

MAX_U Arithmetic

MAXI_S Arithmetic

MAXI_U Arithmetic

MIN_A Arithmetic

MIN_S Arithmetic

MIN_U Arithmetic

MINI_S Arithmetic

MINI_U Arithmetic

MOD_S Arithmetic

MOD_U Arithmetic

MOVE Load / Store and Move

Table 11.40 Alphabetical Listing of MSA Instructions (continued)

Instruction Name Instruction Group
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MSUB_Q Fixed Point

MSUBR_Q Fixed Point

MSUBV Arithmetic

MUL_Q Fixed Point

MULR_Q Fixed Point

MULV Arithmetic

NLOC Bitwise

NLZC Bitwise

NOR Bitwise

NORI Bitwise

PCKEV Element Permute

PCKOD Element Permute

PCNT Bitwise

OR Bitwise

ORI Bitwise

SAT_S Arithmetic

SAT_U Arithmetic

SHF Element Permute

SLD Element Permute

SLDI Element Permute

SLL Bitwise

SLLI Bitwise

SPLAT Load / Store and Move

SPLATI Load / Store and Move

SRA Bitwise

SRAI Bitwise

SRAR Bitwise

SRARI Bitwise

SRL Bitwise

SRLI Bitwise

SRLR Bitwise

SRLRI Bitwise

ST Load / Store and Move

SUB_S Arithmetic

SUB_U Arithmetic

SUBSUS_U Arithmetic

SUBSUU_U Arithmetic

Table 11.40 Alphabetical Listing of MSA Instructions (continued)

Instruction Name Instruction Group
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SUBV Arithmetic

SUBVI Arithmetic

VSHF Element Permute

Table 11.40 Alphabetical Listing of MSA Instructions (continued)

Instruction Name Instruction Group
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Hardware and Software Initialization

A P6600 core contains only a minimal amount of hardware initialization and relies on software to fully initialize the 
device.

This chapter contains the following sections:

• Section 12.1 “Hardware-Initialized Processor State”

• Section 12.2 “Software-Initialized Processor State”

12.1 Hardware-Initialized Processor State

The P6600 core is not fully initialized by hardware reset. Only a minimal subset of the processor state is cleared. This 
is enough to bring the core up while running in unmapped and uncached code space. All other processor state can 
then be initialized by software. Unlike previous MIPS processors, there is no distinction between cold and warm 
resets (or hard and soft resets). SI_Reset is used for both power-up reset and soft reset.

12.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0:

• Wired - cleared to 0 on Reset

• StatusBEV - set to 1 on Reset

• StatusTS - cleared to 0 on Reset

• StatusNMI - cleared to 0 on Reset

• StatusERL - set to 1 on Reset

• StatusRP - cleared to 0 on Reset

• CDMMBaseEN - cleared to 0 on Reset

• WatchLoI,R,W - cleared to 0 on Reset

• Config fields related to static inputs - set to input value by Reset

• ConfigK0 - set to 010 (uncached) on Reset

• ConfigKU - set to 010 (uncached) on Reset



 

650 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

• ConfigK23 - set to 010 (uncached) on Reset

• DebugDM - cleared to 0 on Reset (unless EJTAGBOOT option is used to boot into Debug Mode, as described in 
Chapter 13, “EJTAG Debug Support”. 

• DebugLSNM - cleared to 0 on Reset

• DebugIBusEP - cleared to 0 on Reset

• DebugDBusEP - cleared to 0 on Reset

• DebugIEXI - cleared to 0 on Reset

• DebugSSt - cleared to 0 on Reset

12.1.2 TLB Initialization 

Each TLB entry has a “hidden” state bit, which is set by Reset and is cleared when the TLB entry is written. This bit 
disables matches and prevents “TLB Shutdown” conditions from being generated by the power-up values in the TLB 
array (when two or more TLB entries match a single address). This bit is not visible to software.

12.1.3 Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a Reset excep-
tion is taken. 

12.1.4 Static Configuration Inputs

All static configuration inputs (for example, those defining the bus mode and cache size) should only be changed dur-
ing Reset.

12.1.5 Fetch Address

Upon Reset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0x0000_BFC0_0000 (PA 
0x00_1FC0_0000). This address is in kseg1, which is unmapped and uncached, so that the TLB and caches do not 
require hardware initialization.

12.2 Software-Initialized Processor State

Software is required to initialize parts of the device, as described below.

12.2.1 Register File

The register file powers up in an unknown state with the exception of r0, which is always 0. Initializing the rest of the 
register file is not required for proper operation. Good code will generally not read a register before writing to it, but 
the boot code can initialize the register file for added safety.
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12.2.2 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache 
arrays should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function). 
This can be a long process, especially because the instruction cache initialization must run in an uncached address 
region.

12.2.3 Coprocessor 0 State

Miscellaneous COP0 states need to be initialized before exiting the boot code. There are various exceptions which are 
blocked by ERL = 1 or EXL = 1, and which are not cleared by Reset. These can be cleared to avoid taking spurious 
exceptions when leaving the boot code.

• Cause: WP (Watch Pending), and SW0 and SW1 (Software Interrupts) should be cleared.

• Config: K0 should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing kseg0.

• Count: Should be set to a known value if timer interrupts are used.

• Compare: Should be set to a known value if timer interrupts are used. Note that the write to Compare will also 
clear any pending timer interrupts, so Count should be set before Compare to avoid any unexpected interrupts.

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should 
be masked off after reading these registers.
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12.3 System Boot-up

After the system is reset and released, all cores configured in hardware to power up will execute their boot sequence. 
Typically, CPU0 powers up, while all other CPUs are configured to remain powered down. Alternatively, all CPUs 
can be hardware configured to remain powered down to be awakened through a hardware signal connected to SOC-
specific logic.

After system reset, all caches are in an unknown state and must be initialized. It is advisable for core0 to initialize the 
L2 cache prior to powering up the other cores, but this is not required if other synchronization methods are utilized. 
For L1 caches, this is expected to be done using IndexStTag ops running on the same CPU. Prior to the data cache 
being initialized, processing an intervention would cause unpredictable results, potentially corrupting main memory 
with random data. Thus, the system starts with all of the cores outside the coherence domain until explicitly enabled 
by software. 

Core0:
Initialize cop0 state
Initialize L2 Cache
Initialize GCR state
Startup other cores if needed
CoreN:
Initialize L1 Caches
Enable Coherence
Switch to coherent CCA
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EJTAG Debug Support 

The EJTAG block provides a system debug facility for the device. The EJTAG functions are not normally controlled 
by the end user, but rather are controlled by a debugger. This chapter is meant to be read in conjunction with the 
MIPS EJTAG Specification that was included as part of the release.

An EJTAG debug block is present in all cores available from MIPS Technologies, Inc. It contains support for things 
like hardware and software breakpoints, hardware single-step, and a JTAG based debug TAP for debug probe connec-
tion.

This chapter is used for debug of the P6600 core. For more information on the debugging of the Multiprocessing Sys-
tem, including the CM2 and CPC, refer to the next chapter entitled “Multi-CPU Debug”

This chapter contains the following sections:

• Section 13.1 “Overview”

• Section 13.2 “Trace Funnel and Trace Types”

• Section 13.3 “Detecting Debug Mode”

• Section 13.4 “Ways of Entering Debug Mode”

• Section 13.5 “Exiting Debug Mode”

• Section 13.6 “EJTAG and PDTrace Revisions”

• Section 13.7 “Connection Options”

• Section 13.8 “Hardware Breakpoints”

• Section 13.9 “Debug Vector Addressing”

• Section 13.10 “Test Access Port (TAP)”

• Section 13.11 “PDTrace”

• Section 13.12 “PDtrace Cycle-by-Cycle Behavior”

• Section 13.13 “PC Sampling”

• Section 13.14 “EJTAG Registers”

• Section 13.15 “Fast Debug Channel”

• Section 13.16 “TCB Trigger Logic”
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13.1 Overview

The EJTAG debug logic in the P6600 core is compliant with EJTAG Specification 6.0 and includes:

1. Standard core debug features

2. Optional hardware breakpoints

3. Standard Test Access Port (TAP) for a dedicated connection to a debug host

4. Optional PDtrace capability for program counter/data address/data value trace to On-chip memory or to Trace 
probe

EJTAG debug resources are often controlled via high level debugger commands. The following is a brief overview of 
some EJTAG features.

• PCSAMPLE: A feature allowing for non-intrusive reading of recently completed instruction addresses. The 
PCSAMPLE TAP instruction selects the TAP data register “PCSAMPLE” which contains an execution address 
and a flag indicating whether or not a new instruction has completed since the last read of the PCSAMPLE TAP 
data register.

• EJTAG TAP: The optional JTAG TAP associated with an EJTAG debug block used for communications with an 
EJTAG probe and debugger.

• ECR (EJTAG Control Register): This register is used mostly by probe developers and can only be accessed via a 
probe.

• DCR (Debug Control Register): This register is located in the drseg memory segment and can only be accessed 
in Debug mode. 

• DINT (Debug Interrupt): an interrupt which causes a debug exception and entry into debug mode.

• DRSEG (Debug Register Segment): A memory overlay, present only while executing in debug mode, that allows 
access to registers controlling various EJTAG debug features.

• DMSEG (Debug Memory Segment): A memory overlay, present only while in debug mode and ECR.ProbEn is 
set, that an EJTAG probe emulates by satisfying processor accesses (fetches, loads, and stores.) The emulation is 
carried out via TAP data registers CONTROL, ADDRESS, and DATA.

• Single-Step: A debug setting that results in a debug exception after execution of a single12 non-debug mode 
instruction has completed.

• Hardware Breakpoint: A hardware resource capable of detecting execution or data access at virtual addresses.

• Software Breakpoint: The instruction “sdbbp” which causes a debug exception on execution. Debuggers will 
temporarily replace an instruction of your program with this instruction on setting a breakpoint in writeable 
memory.
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13.2 Trace Funnel and Trace Types

The P6600 Multiprocessing System implements a trace funnel that is used to communicate with the debug probe via 
the probe interface block. The trace funnel can accept trace information from either the CM2, the core, or the MIPS 
system trace. 

The trace funnel and its connections are shown in Figure 13.1. Refer to Section 13.2.1 “Trace Types” for more infor-
mation on the types of traces shown.

Figure 13.1 Trace Connections in the MIPS Debug Architecture

13.2.1 Trace Types

The P6600 Multiprocessing System supports the following trace types:

1. CM2 Trace

2. System Trace

3. Core Trace

CM2 Trace — The CM2 has its own trace and also manages the trace funnel. The functionality of CM2 trace and the 
registers used to control it are described in the CM2 chapter. Refer to the Coherency Manager chapter of this manual 
for more information.

MIPS System Trace — The MIPS System trace is a new feature to the P6600 core and allows the SoC designer to 
place signals from their non-probe SoC logic directly into the trace funnel for PDTrace to capture. The logic and reg-
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isters that controls System Trace are handled by the CM2. Refer to Section 3.6.2 of the P6600 Hardware User’s Man-
ual for more information on MIPS System Trace. 

Core Trace — Core trace allows CPU signals to be traced and routed to the trace funnel for processing. The function-
ality of core trace and the registers used to control it are described throughout this chapter.

13.2.2 EJTAG TAP Interface

Every TAP register access (also referred to as a “scan”) is a read-before-write operation. A TAP register access cap-
tures (reads) a register value from the target and then that value is serially shifted out to the tool as a new value is 
simultaneously shifted in. After all of the bits of the register have been shifted the input value is updated (written.)

There are two main paths through an EJTAG TAP state machine. One provides access to the single, 5-bit instruction 
register and the other provides access to the currently selected data register(s). Every TAP instruction access should 
result in the 5 bit binary value “00001” being read. Most EJTAG TAP instructions’ sole purpose is to select which 
data register is accessed during a data scan. EJTAG TAP instructions not intended to select specific TAP data regis-
ters will select the BYPASS data register.

In a multi-device target system, the term “scan chain” is used to describe the serial (daisy-chained) set of TAPS which 
are read/written in a single scan.

13.2.3 EJTAGBOOT vs NORMALBOOT

The EJTAGBOOT TAP instruction modifies the reset value of the ECR.ProbTrap, ECR.ProbEn, and ECR.EjtagBrk, 
thereby changing device reset behavior. Subsequent warm resets result in a debug exception after release from reset. 
Any EJTAG TAP reset will clear the EJTAGBOOT indication as will sending a NORMALBOOT TAP instruction.

13.3 Detecting Debug Mode

The DM bit of the CP0 Debug register (CP0 Register 23, Select 0) indicates if the processor is operating in debug 
mode. If this bit is set, the processor is operating in debug mode. This bit is set on any debug exception and is cleared 
by executing a DERET instruction. Refer to Chapter 2, CP0 Registers, for more information on the Debug register.

This bit is available to both probe and non-probe related configurations and can be read at any time. The user does not 
need to be in Debug mode in order to read this bit. This bit, along with the associated fields in this register, can be 
used by software to determine the conditions under which Debug mode was entered. 

13.4 Ways of Entering Debug Mode

There are five ways to enter Debug mode. Each of these ways can be entered from either software, or from a debug 
probe. All of these ways cause the DM bit in the CP0 Debug register to be set.

1. EJTAG Debug Single Step

2. EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by setting the EJTAGBrk bit 
in the ECR register.

3. EJTAG debug hardware data breakpoint match

4. EJTAG debug hardware instruction breakpoint match
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5. EJTAG Breakpoint (execution of SDBBP instruction)

13.4.1 EJTAG Debug Single Step

To enter Debug single step mode, the core must implement the single step mode. This can be determined by reading 
the NoSST bit (9) of the CP0 Debug register. If this bit is zero, the debug single step feature is implemented in the core. 
In the P6600 core, this bit is always zero to indicate that the single step feature is implemented by the core.

Single step mode can be enabled or disabled by writing to the SST bit (8) of the CP0 Debug register. If the SST bit is set, 
the single step function is available once the core enters debug mode using any of the ways listed above. For imple-
mentation that include a probe, the common way is to generate the EJTAG DINT signal, which causes a debug inter-
rupt to the core. For non-probe implementations, software can set the EJTAGBRK bit. Both of these methods are 
described in the following subsection.

13.4.2 EJTAG Debug Interrupt

The EJTAG DINT signal is an implementation dependent feature. The DINTsup bit (24) in the Implementation register 
indicates whether the DINT signal is supported. This bit is written by the EJ_DINTsup signal at reset. This is a com-
mon way for probe or logic analyzer implementations to enter debug mode. Refer to Section 
13.14.4.5 “Implementation Register” for more information.

Software can enter debug mode by setting the EJTAGbrk bit (12) or the EJTAG Control register. Setting this bit to 1 
causes a debug exception to the processor, unless the CPU was in debug mode or another debug exception occurred. 
When the debug exception occurs, the processor core clock is restarted if the CPU was in low power mode. This bit is 
cleared by hardware when the debug exception is taken. Refer to Section 13.14.4.6 “EJTAG Control Register” for 
more information. 

13.4.3 EJTAG Hardware Data Breakpoint Match

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to 
the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set 
based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and the 
load/store value. Refer to Section 13.8 “Hardware Breakpoints” for more information and a list of registers used to 
set up a data breakpoint. 

13.4.4 EJTAG Hardware Instruction Breakpoint Match

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address used by the instruc-
tion fetch unit. Instruction breaks can also be made on the ASID value used by the MMU. Finally, a mask can be 
applied to the virtual address to set breakpoints on a range of instructions. Instruction breakpoints compare the virtual 
address of the executed instructions (PC) and the ASID with the registers for each instruction breakpoint including 
masking of address and ASID. When an instruction breakpoint matches, a trigger is generated and a debug exception 
is optionally signalled. An internal bit in the instruction breakpoint registers is set to indicate that the match occurred.

Refer to Section 13.8 “Hardware Breakpoints” for more information and a list of register used to set up an instruction 
breakpoint. 
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13.4.5 EJTAG Software Breakpoint

Software can execute a software debug breakpoint using the SDBBP instruction. When this instruction is executed, 
the debugger temporarily replaces the program instruction with the SDBBP instruction when setting a breakpoint in 
memory.

13.5 Exiting Debug Mode

As described above, there are five basic ways to enter debug mode. Once in debug mode, the mode can only be exited 
in one of three ways:

• Execution of a Debug Exception Return (DERET) instruction.

• Reset the core

• Power cycle the core

During normal operation, exceptions are taken by the core and processed. Once the exception processing is complete, 
software executes an Exception Return (ERET) instruction. When in debug mode, software executes a Debug Excep-
tion Return (DERET) instruction. This causes the core to exit debug mode and return to previous mode as determined 
by the programmer (normal, kernel, supervisor, etc.).

Note that for a DERET instruction to be executed, the core must be in a state where it is fetching instructions. If for 
any reason the instruction stream has been halted and cannot resume, then the DERET instruction cannot be executed. 
In this case, the only other options are resetting the core, or cycling the power to the P6600 core.

13.6 EJTAG and PDTrace Revisions

This chapter is intended to be used in conjunction with the EJTAG specification (MIPS document number MD00047) 
and the MIPS PDTrace specification (MIPS document number MD00439). These documents contain information for 
multiple types of MIPS cores, so the EJTAG and PDTrace versions of the core in question must be known in order to 
use these documents.

• EJTAG version with probe: When using the MIPS Debug facility with a debug probe, the EJTAG version used 
in the P6600 core can be determined by reading the EJTAGver field in bits 31:29 of the Implementation register. 
This is a TAP controller register that is only accessible through an EJTAG probe. The P6600 core implements 
EJTAG revision 6.0. Refer to Section 13.14.4.5 “Implementation Register” for more information. Note that the 
probe can read either the Implementation register of the CP0 Debug register described below to determine the 
EJTAG revision number.

• EJTAG version without probe: When using the MIPS Debug facility without a debug probe, the EJTAG version 
used in the P6600 core can be determined by reading the EJTAGver field in bits 17:15 of the CP0 Debug register 
located at CP0 register 23, select 0. The P6600 core implements EJTAG revision 6.0. Refer to Chapter 2 of this 
manual for more information on the CP0 Debug register. Note that the kernel can only read the CP0 Debug regis-
ter to determine the EJTAG version and does not have access to the EJTAG Implementation register described 
above. 

• PDTrace version with probe: When using the MIPS Debug facility with a debug probe, the PDTrace version 
used in the P6600 core can be determined by reading the REV field in bits 3:0 of the Trace Buffer Configuration 
(TCBCONFIG) register located in the EJTAG TAP controller. Refer to the Section 13.14.10.7 “TCBCONFIG 
Register (Reg 0)” for more information on this register. The current revision is 3.0 as noted by the default value. 
Note that this register can only be read when an EJTAG probe is connected to the device.
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• PDTrace version without probe: When using the MIPS Debug facility without a debug probe, the PDTrace ver-
sion used in the P6600 core can be determined by reading the REV field in bits 3:0 of the Trace Buffer 
Configuration (TCBCONFIG) register at offset 0x3028 in DRSEG. 

However, since a probe is not attached in this case, the core must be in Debug mode in order to read this register. 
Debug mode can be entered in any of the ways described in Section 13.4 “Ways of Entering Debug Mode”. 
Refer to the Section 13.14.10.7 “TCBCONFIG Register (Reg 0)” for more information on this register. 

It should be noted that the Device Identification register located in Section 13.14.4.4 on page 703 contains version and 
part number information. This register is only accessible when an EJTAG probe is attached, but does not provide 
EJTAG or PDTrace revision information. This register is used to by the manufacturer for their own device identifica-
tion purposes and should not be used in an attempt to determine the EJTAG or PDTrace revisions.

13.7 Connection Options

The EJTAG debug port of the P6600 core can be accessed either via a TAP (five JTAG pins), or the EJTAG debug 
block through the CP0 Debug register, the DCR, and drseg space. If the TAP is used, no ROM monitor is required and 
there is no interference with the customers code. If there is no TAP, then the user must write their own ROM monitor.

There are two ways to connect to access the EJTAG debug facility:

• Software via the General Control Registers (GCR)

• Debug probe via the EJTAG Test Access Port (TAP)

The DCR (Debug Control Register) can be used to access the EJTAG debug port via software. This register is located 
in the drseg memory segment and can only be accessed in Debug mode. This register can be accessed by anyone that 
enters Debug mode and does not require that a probe be attached. 

Access via software would mostly be performed during normal operation. As described in Section 13.4 “Ways of 
Entering Debug Mode” above, the CP0 Debug register (CP0 Register 23, Select 0) indicates whether or not the device 
is in Debug mode and the cause as to how it got there. Bit 30 of this register indicates if the core has entered Debug 
mode. If the core is not in Debug mode, the other bits have no meaning. If the core is in Debug mode, the other bits 
are used to provide additional information about how the device got into Debug mode. For example, setting a soft-
ware breakpoint allows thc core to enter Debug mode. 

The ECR (EJTAG Control Register) is used mostly by probe developers and can only be accessed via a probe. Refer 
to Section 13.14.4.6 “EJTAG Control Register” for more information.

13.8 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area. Data breakpoints can be set to cause 
a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many 
aspects, and are thus described in parallel in the following. The term hardware is not applied to breakpoint, unless 
required to distinguish it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the P6600 core; Instruction breakpoints and Data 
breakpoints.

A core may be configured with the following breakpoint options:
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• Four instruction breakpoints

• Two data breakpoints

13.8.1 Instruction Breakpoints

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address used by the instruc-
tion fetch unit. Instruction breaks can also be made on the ASID value used by the TLB-based MMU. Finally, a mask 
can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the registers 
for each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a 
trigger is generated and a debug exception is optionally signalled. An internal bit in the instruction breakpoint regis-
ters is set to indicate that the match occurred.

13.8.2 Data Breakpoints

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to 
the Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set 
based on the value of the load/store operation. Finally, masks can be applied to both the virtual address and the 
load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data 
breakpoint including masking or qualification on the transaction properties. When a data breakpoint matches, a trig-
ger is generated and a debug exception is optionally signalled. An internal bit in the data breakpoint registers is set to 
indicate that the match occurred.

13.8.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpoints in general is shown in Table 13.1. 

Up to four instruction breakpoints are available and are numbered 0 to 3 for registers and breakpoints, and the number 
is indicated by n. The registers for each breakpoint are shown in Table 13.2. 

Table 13.1 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description

IBS Instruction Breakpoint Status

Table 13.2 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description

IBAn Instruction Breakpoint Address n

IBMn Instruction Breakpoint Address Mask n

IBASIDn Instruction Breakpoint ASID n

IBCn Instruction Breakpoint Control n
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13.8.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shown in Table 13.3. 

Up to two data breakpoints are available and are numbered 0 and 1 for registers and breakpoints, and the number is 
indicated by n. The registers for each breakpoint are shown in Table 13.4. 

13.8.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, as described in this section. Breakpoints only match for instructions executed in non-debug mode, never on 
instructions executed in debug mode.

The match of an enabled breakpoint always generates a trigger indication and can also generate a debug exception. 
The BE and/or TE bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

13.8.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction 
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch. 
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are 
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC), which can be masked at the bit 
level, The match can also include an optional compare of the ASID value.

The registers for each instruction breakpoint contain the values and mask used in the compare, and the equation that 
determines the match is shown below in C-like notation.

IB_match = 
( ! IBCnASIDuse || ( ASID == IBASIDnASID ) ) &&
( <all 1’s> == ( IBMnIBM | ~ ( PC ^ IBAnIBA ) &&

Table 13.3 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

Table 13.4 Overview of Registers for Each Data Breakpoint

Register Mnemonic Register Name and Description

DBAn Data Breakpoint Address n

DBMn Data Breakpoint Address Mask n

DBASIDn Data Breakpoint ASID n

DBCn Data Breakpoint Control n

DBCSn Data Breakpoint Control SIMD n

DBVn Data Breakpoint Value n

DBVSn Data Breakpoint Value SIMD n
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( (IBMnISAM | ~(ISAMode ^ IBAnISA))) )

The match indication for instruction breakpoints is always precise, i.e., indicated on the instruction causing the 
IB_match to be true.

13.8.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including coprocessor loads/stores and transactions causing an address error on 
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of 
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or 
destination address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data 
value of a transaction. The registers for each data breakpoint contain the values and mask used in the compare, and 
the equation that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match = 
( ( ( TYPE == load ) && ! DBCnNoLB ) ||

( ( TYPE == store ) && ! DBCnNoSB ) ) &&
DB_addr_match && ( DB_no_value_compare || DB_value_match )

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), the 
ASID value, and the accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is 
accessed, and BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown 
below.

DB_addr_match =
( ! DBCnASIDuse || ( ASID == DBASIDnASID ) ) &&
( <all 1’s> == ( DBMnDBM | ~ ( ADDR ^ DBAnDBA ) ) ) &&
( <all 0’s> != ( ~ BAI & BYTELANE ) )

The size of DBCnBAI and BYTELANE is 8 bits. They are 8 bits to allow for data value matching on doubleword float-
ing point loads and stores. For non-doubleword loads and stores, only the lower 4 bits will be used.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE as 
described above) accessed by the transaction, and the contents of breakpoint registers. The 
DB_no_value_compare is shown below.

DB_no_value_compare = 
( <all 1’s> == ( DBCnBLM | DBCnBAI | ~ BYTELANE ) )

The size of DBCnBLM, DBCnBAI and BYTELANE is 8 bits.

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus 
(DATA) is compared and masked with the registers for the data breakpoint. The endianess is not considered in these 
match equations for value, as the compare uses the data bus value directly, thus debug software is responsible for 
setup of the breakpoint corresponding with endianess.

DB_value_match = 
( ( DATA[7:0] == DBVnDBV[7:0] ) || !BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0] ) &&
( ( DATA[15:8] == DBVnDBV[15:8] ) || !BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1] ) &&
( ( DATA[23:16] == DBVnDBV[23:16] ) || !BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2] )&&
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( ( DATA[31:24] == DBVnDBV[31:24] ) || !BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3] )&&
( ( DATA[39:32] == DBVnDBV[39:32] ) || !BYTELANE[4] || DBCnBLM[4] || DBCnBAI[4] )&&
( ( DATA[47:40] == DBVnDBV[47:40] ) || !BYTELANE[5] || DBCnBLM[5] || DBCnBAI[5] )&&
( ( DATA[55:48] == DBVnDBV[55:48] ) || !BYTELANE[6] || DBCnBLM[6] || DBCnBAI[6] )&&
( ( DATA[63:56] == DBVnDBV[63:56] ) || !BYTELANE[7] || DBCnBLM[7] || DBCnBAI[7] ))

The match for a data breakpoint without value compare is always precise, since the match expression is fully evalu-
ated at the time the load/store instruction is executed. A true DB_match can thereby be indicated on the very same 
instruction causing the DB_match to be true. The match for data breakpoints with value compare is always impre-
cise.

13.8.5.3 Misaligned SIMD Load/Store Data Handling

Misaligned SIMD load/store data requires a pair of breakpoint register sets to support the breakpointing on mis-
aligned 128-bit wide data. This example assumes that an even numbered register set, labelled n, and an adjacent odd 
register set labelled n+1 have been initialized for this purpose. It is assumed that the SIMD load/store is processed as 
two separate 128-bit aligned requests, such that the even register set applies to access with the lower address, while 
the odd register set applies to the access with the upper address. A single request is assumed to be 128-bit aligned, 
though the address is aligned to the bytes sourced for the load/store.

Software must take into account the endianness of the access while programming the pair. The pseudo-code and thus 
implementation itself need not differentiate based on endianness.

// Even Register Set Breakpoint Handling Pseudo-Code:

DB_match_even =
(!DBCnTCuse || ( TC == DBCnTC ) ) &&
( ( ( TYPE == load ) && ! DBCnNoLB ) || ( ( TYPE == store ) && ! DBCnNoSB ) ) &&
DB_addr_match_even && ( DB_no_value_compare_even || DB_value_match_even)

DB_addr_match_even =
( ! DBCnASIDuse || ( ASID == DBASIDnASID ) ) &&
( ! DBASIDnUGID || ( GuestID == DBASIDnGuestID ) ) &&
( ( DBMnDBM | ~ ( ADDR ^ DBAnDBA ) ) == ~0 ) &&
( ( ~ DBCnBAI & BYTELANE ) != 0 )

DB_no_value_compare_even =
( ( DBCnBLM | DBCnBAI | ~ BYTELANE ) == ~0 )

// Bytes 15:0 on data-bus are checked for match with even register set. Value
// match is extended with new DBCS and DBVS registers of even set.

DB_value_match_even =
DBCnIVM ^
( ( DATA[7:0] == DBVnDBV[7:0] ) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0] ) &&
( ( DATA[15:8] == DBVnDBV[15:8] ) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1] ) &&

......

( ( DATA[63:56] == DBVnDBV[63:56] ) || ! BYTELANE[7] || DBCnBLM[7] || DBCnBAI[7] ) &&
( ( DATA[71:64] == DBVSnDBV[71:64] ) || ! BYTELANE[8] || DBCSnBLM[8] || DBCSnBAI[8] )

&&
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......

( ( DATA[127:120] == DBVSnDBV[127:120] ) || ! BYTELANE[15] || DBCSnBLM[15] ||
DBCSnBAI[15] )

// Odd Register Set Breakpoint Handling Pseudo-Code:

DB_match_odd =
(!DBCn+1TCuse || ( TC == DBCn+1TC ) ) &&
( ( ( TYPE == load ) && ! DBCn+1NoLB ) || ( ( TYPE == store ) && ! DBCn+1NoSB ) ) &&
DB_addr_match_odd && ( DB_no_value_compare_odd || DB_value_match_odd )

DB_addr_match_odd =
( ! DBCn+1ASIDuse || ( ASID == DBASIDn+1ASID ) ) &&
( ! DBASIDn+1UGID || ( GuestID == DBASIDn+1GuestID ) ) &&
( ( DBMn+1DBM | ~ ( ADDR ^ DBAn+1DBA ) ) == ~0 ) &&
( ( ~ DBCn+1BAI & BYTELANE ) != 0 )

DB_no_value_compare_odd =
( ( DBCn+1BLM | DBCn+1BAI | ~ BYTELANE ) == ~0 )

// Bytes 15:0 on data-bus are checked for match with odd register set. Value
// match is extended with new DBCS and DBVS registers of odd set.

DB_value_match_odd =
DBCnIVM ^
( ( DATA[7:0] == DBVn+1DBV[7:0] ) || ! BYTELANE[0] || DBCn+1BLM[0] || DBCn+1BAI[0] ) &&
( ( DATA[15:8] == DBVn+1DBV[15:8] ) || ! BYTELANE[1] || DBCn+1BLM[1] || DBCn+1BAI[1] )

&&

......
( ( DATA[63:56] == DBVn+1DBV[63:56] ) || ! BYTELANE[7] || DBCn+1BLM[7] || DBCn+1BAI[7])
( ( DATA[71:64] == DBVSn+1DBV[71:64] ) || ! BYTELANE[8] || DBCSn+1BLM[8] ||
DBCSn+1BAI[8] ) &&

......
( ( DATA[127:120] == DBVSn+1DBV[127:120] ) || ! BYTELANE[15] || DBCSn+1BLM[15] ||
DBCSn+1BAI[15] )

// Merging Odd and Even pseudo-code results:
// The equation assumes the matches are detected at different times, but
// are synchronized at some point, such as at graduation of the instruction.
// The pseudo-function IsMisAlignedAccess() functions as follows :
// 1: The address is not aligned to the type. E.g., a word load is not
// word-aligned, a SIMD load is not 16-byte aligned.
// 0: The address is aligned to the type. E.g., a word load is word-aligned, a
// SIMD load is 16-byte aligned.
if (DBCnGM=1 && IsMisAlignedAccess())then

DB_match = DB_match_even && DB_match_odd
else

// The register sets are independent and thus any may source match
DB_match = DB_match_even || DB_match_odd
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13.8.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as 
described below.

13.8.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by the BE bit in the IBCn register, then a debug instruction break exception occurs if the 
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the 
debug exception.

The debug instruction break exception is always precise, so the DEPC register and the DBD bit in the Debug register 
point to the instruction that caused the IB_match equation to be true. 

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load 
or store by that instruction occur. Thus a debug exception from a data breakpoint cannot occur for instructions receiv-
ing a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the 
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction; 
otherwise the debug instruction break exception reoccurs.

13.8.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match condi-
tion is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug exception. 
A matching data breakpoint generates either a precise or imprecise debug exception.

Debug Data Break Load/Store Exception as a Precise Debug Exception

A precise debug data break exception occurs when a data breakpoint without value compare indicates a match. In this 
case the DEPC register and DBD bit in the Debug register points to the instruction that caused the DB_match equation 
to be true. 

The instruction causing the debug data break exception does not update any registers due to the instruction, and the 
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, 
is not allowed to complete the load. 

The result of this is that the load or store instruction causing the debug data break exception appears as not executed.
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If both data breakpoints without and with data value compare would match the same transaction and generate a debug 
exception, then the rules shown in Table 13.5 apply with respect to updating the BS[n] bits. 

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction 
is re-executed. Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise 
the debug data break exception will reoccur.

Debug Data Break Load/Store Exception as a Imprecise Debug Exception

An Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match. 
Imprecise matches are generated when data value compare is used. In this case, the DEPC register and DBD bit in the 
Debug register point to an instruction later in the execution flow rather than at the load/store instruction that caused 
the DB_match equation to be true.

The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always updates the destina-
tion register and completes the access to the external memory system. Therefore this load/store instruction is not 
re-executed on return from the debug handler, because the DEPC register and DBD bit do not point to that instruction.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding 
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break Load/Store Imprecise 
exception is generated only for the first one that matches. Both the first and succeeding matches cause corresponding 
BS bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated for succeeding matches, because the 
processor is already in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first 
match (for example, due to a precise debug exception), then all matches cause the corresponding BS bits and 
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is already in Debug Mode.

The SYNC instruction, followed by appropriate spacing must be executed before the BS bits and DDBLImpr/DDBSImpr 
bits are accessed for read or write. This delay ensures that these bits are fully updated.

Any BS bit set prior to the match and debug exception remains set, because only debug software can clear the BS bits.

Table 13.5 Rules for Update of BS Bits on Data Breakpoint Exceptions

Instruction

Breakpoints that Match
Update of BS Bits for Matching Data 

Breakpoints

Without Value 
Compare With Value Compare

Without Value 
Compare With Value Compare

Load/Store One or more None BS bits set for all (No matching break-
points)

Load One or more One or more BS bits set for all Unchanged BS bits since 
load of data value does 

not occur so match of the 
breakpoint cannot be 

determined

Load None One or more (No matching break-
points)

BS bits set for all

Store One or more One or more BS bits set for all BS bits set for all

Store None One or more (No matching break-
points)

BS bits set for all
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13.8.7 Breakpoint used as Triggerpoint

When an enabled instruction or data breakpoint matches, the corresponding bit in the IBS.BS or DBS.BS field is set. 
These fields are externalized on the SI_Ibs and SI_Dbs core outputs, respectively. These outputs are intended to be 
used to trigger external devices such as logic analyzers. Furthermore, breakpoint matches can also be used to start or 
stop PDtrace. See Section 13.11.8 “Enabling PDtrace” for details.

If the breakpoints are to be used only as trigger events, the signalling of the debug exception can be suppressed by 
clearing the IBCn/DBCn.BE field and setting the IBCn/DBCn.TE field. 

13.9 Debug Vector Addressing

The debug vector address size is managed by the Debug Vector Address register as described in Section 
13.14.1.2 “DebugVectorAddr Register”. The Debug Vector Address register is a read/write register containing the base 
address of the debug exception vectors in bits 31:7, and a WG bit that determines whether the bits 31:30 of this field 
are a fixed value, or are programmable.

Bits 31:12 of the DebugVectorAddress register are concatenated with zeros to form the base of the debug exception vec-
tor. The exception vector base address comes from the fixed defaults for any EJTAG Debug exception. The reset state 
of bits 31:12 of the DebugVectorAddress register initialize the exception base register to 0xFC00.0480.

The size of the DebugVectorAddr field depends on the state of the WG bit. At reset, the WG bit is cleared by default. In 
this case, the DebugVectorAddr field is comprised of bits 29:7. Bits 31:30 of the DebugVectorAddr Register are not write-
able and are forced to a value of 2'b10 by hardware so that the debug exception handler will be executed from the 
kseg0/kseg1 segments.

When the WG bit is set, bits 31:30 of the DebugVectorAddr field become writeable and are used to relocate the 
DebugVectorAddr field to other segments after they have been setup using the SegCtl0 through SegCtl2 registers. Note 
that if the WG bit is set by software (allowing bits 31:30 to become part of the DebugVectorAddr field) and then 
cleared, bits 31:30 can no longer be written by software and the state of these bits remains unchanged for any writes 
after WG was cleared. Therefore, it is the responsibility of software to write a value of 2'b10 to bits 31:30 of the 
DebugVectorAddr register prior to clearing the WG bit if it wants to ensure that future debug exceptions will be exe-
cuted from the kseg0 or kseg1 segments.

Note that the WG bit is different from the CV bit in the SegCtl0 register. Although their functions are similar, the CV 
bit applies only to cache error exceptions, whereas the WG bit applies to all exceptions. 

If the value of the exception base register is to be changed, this must be done with StatusBEV equal to 1. The operation 
of the processor is UNDEFINED if the exception base field is written with a different value when StatusBEV is 0.

Table 13.6 shows the different debug exception vector locations that are possible.

Table 13.6 Debug Exception Vectors 

ECRProbTrap DCRRdVec Config5K SI_UseExceptionBase
Cache 
Error? Debug Exception Vector

1 x x x x 0xFFFF_FFFF_FF20_0200

0 1 0 x 0 0xFFFF_FFFF || 2’b10 || DebugVectorAddr[29:0]

0 1 1 x 0 0xFFFF_FFFF || DebugVectorAddr[31:0]

0 1 0 x 1 0xFFFF_FFFF || 3’b101 || DebugVectorAddr[28:0]

0 1 1 x 1 0xFFFF_FFFF || DebugVectorAddr[31:0]
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As shown in the table above, if the ECRProbeTrap bit (14) is set in the EJTAG Control register, then all other bits or sig-
nals that determine the location of the debug vector address have no meaning and the location of the debug exception 
vector default to 0xFFFF_FFFF_FF20_0200. Note that the ECRProbeEn bit (15) must be set in order for this bit to have 
meaning.

13.10 Test Access Port (TAP)

The TAP is used only when a probe is connected to the P6600 core. 

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible 
with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is 
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

• Support for both ROM based debugger and debugging both through TAP.

13.10.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

0 0 0 1 0 0xFFFF_FFFF || 2’b10 || SI_ExceptionBase[29:12] 
|| 0x480

0 0 1 1 0 0xFFFF_FFFF || SI_ExceptionBase[31:12] || 0x480

0 0 0 1 1 0xFFFF_FFFF || 3’b101 || 
SI_ExceptionBase[28:12] || 0x480

0 0 1 1 1 0xFFFF_FFFF || SI_ExceptionBase[31:12] || 0x480

0 0 x 0 x 0xFFFF_FFFF_BFC0_0480

Table 13.7 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data registers. The TCK clock is 
independent of the processor clock, so the EJTAG probe can drive TCK independently of the 
processor clock frequency.
The core signal for this is called EJ_TCK

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is sam-
pled on the rising edge of TCK.
The core signal for this is called EJ_TMS

Table 13.6 Debug Exception Vectors (continued)

ECRProbTrap DCRRdVec Config5K SI_UseExceptionBase
Cache 
Error? Debug Exception Vector
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13.10.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs deter-
mine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small control-
ler, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 13.2. The TAP 
uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on the falling 
edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is 
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the 
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register 
scan or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 13.2.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers, 
the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruction 
register, the Capture-IR state is used to capture status information into the Instruction register. 

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follows the 
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause 
state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting of data through either the 
Data or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From 
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the 
Run-Test/Idle state via the Exit2 and Update states. 

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold 
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not 
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the 
shadow latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data registers on the rising 
edge of the TCK clock, depending on the TAP controller state.
The core signal for this is called EJ_TDI

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the TDO pin on the falling 
edge of the TCK clock. When no data is shifted out, the TDO is 3-stated.
The core signal for this is called EJ_TDO with output enable controlled by EJ_TDOzstate.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the TAP controller and 
instruction in the TAP module, independent of the processor logic. The processor is not reset 
by the assertion of TRST_N.
The core signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this signal at power-on 
and then leave it high, in case the signal is not available as a pin on the chip. If available on 
the chip, then it must be low on the board when the EJTAG debug features are unused by the 
probe.

Table 13.7 EJTAG Interface Pins(continued)

Pin Type Description
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Figure 13.2 TAP Controller State Diagram 

13.10.2.1 Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state 
when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is forced into the 
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state as long as 
TMS is HIGH.

13.10.2.2 Run-Test/Idle State

The controller enters the Run-Test/Idle state between scan operations. The controller remains in this state as long as 
TMS is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot 
change when the TAP controller is in this state. 

When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select_DR state.

13.10.2.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state. A 
HIGH on TMS causes the controller to transition to the Select_IR state. The instruction cannot change while the TAP 
controller is in this state. 

13.10.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A 
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HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while 
the TAP controller is in this state. 

13.10.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the 
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions 
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction cannot 
change while the TAP controller is in this state. 

13.10.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one 
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The 
instruction cannot change while the TAP controller is in this state. 

13.10.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A HIGH 
on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The instruc-
tion cannot change while the TAP controller is in this state. 

13.10.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the 
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state. 
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS 
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in 
this state. 

13.10.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow 
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state. 

13.10.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge of 
the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on 
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP 
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain 
their previous state.

13.10.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of 
TCK. The data registers selected by the current instruction retain their previous state. 
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If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS 
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in 
this state. 

13.10.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the Shift_IR 
state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

13.10.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition to 
the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP controller is 
in this state and the instruction register retains its previous state.

13.10.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the 
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the 
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot 
change while the TAP controller is in this state. 

13.10.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW 
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A 
HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The 
instruction cannot change while the TAP controller is in this state. 

13.10.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on 
TMS causes the controller to transition to the Select_DR_Scan state.

13.10.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the 
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between 
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been 
decoded; the unused instructions default to the BYPASS instruction. 

Table 13.8 Implemented EJTAG Instructions 

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register
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13.10.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register 
to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the 
IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

13.10.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification 
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not 
interfere with the operation of the processor. Also, access to the Identification Register is immediately available, via a 
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional 
TRST_N pin.

13.10.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

13.10.3.4 ADDRESS Instruction

This instruction is used to select the 64-bit Address register to be connected between TDI and TDO. The EJTAG Probe 
shifts 64 bits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

13.10.3.5 DATA Instruction

This instruction is used to select the 64-bit Data register to be connected between TDI and TDO. The EJTAG Probe 
shifts 64 bits of TDI data into the Data register and shifts out the captured data via the TDO pin.

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block

0x11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x13 TCBCONTROLC Selects the TCBTCONTROLC register in the Trace Control Block

0x14 PCSAMPLE Selects the PCSAMPLE register

0x15 TCBCONTROLD Selects the TCBTCONTROLD register in the Trace Control Block

0x16 TCBCONTROLE Selects the TCBTCONTROLE register in the Trace Control Block

0x17 FDC Select Fast Debug Channel

0x1F BYPASS Bypass mode

Table 13.8 Implemented EJTAG Instructions (continued)

Value Instruction Function
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13.10.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG 
Probe shifts 32 bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bits via 
TDO.

13.10.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control register 
(ECR) between TDI and TDO. It can be used in particular to minimize the overhead in switching the instruction in the 
instruction register. The first bit shifted out is bit 0 of the ECR.

Figure 13.3 Concatenation of the EJTAG Address, Data and Control Registers

13.10.3.8 EJTAGBOOT Instruction

EJTAGBOOT provides a means to enter debug mode just after a reset, without fetching or executing any instructions 
from the normal memory area. This can be used for download of code to a system which has no code in ROM.

When the EJTAGBOOT instruction is given and the Update-IR state is left, the EJTAGBOOT indication will become 
active. When EJTAGBOOT is active, a core reset will set the ProbTrap, ProbEn and EjtagBrk bits in the EJTAG Con-
trol register to 1. This will cause a debug exception that is serviced by the probe immediately after reset is deasserted. 

This EJTAGBOOT indication is effective until a NORMALBOOT instruction is given, TRST_N is asserted or a rising 
edge of TCK occurs when the TAP controller is in Test-Logic-Reset state.

The Bypass register is selected when the EJTAGBOOT instruction is given.

13.10.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and the Update-IR state is left, then the EJTAGBOOT indication will 
be cleared. When NORMALBOOT is active (EJTAGBOOT is not active), a core reset will set the ProbTrap, ProbEn 
and EjtagBrk bits in the EJTAG Control register to 0. 

The Bypass register is selected when the NORMALBOOT instruction is given.

13.10.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 13.4.

Figure 13.4 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

Address 0
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EJTAG Control 0 TDO
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TDI Data TDOFastdata0
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The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the 
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A 
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies 
the legal range of dmseg addresses (0xFFFF.FFFF.FF20.0000 - 0xFFFF.FFFF.FF20.000F) that can be used for 
uploads and downloads. The Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient 
completion of pending Fastdata area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download 
accesses are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to see 
if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used). Down-
loads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will shift out 
the data being stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFFFF.FFFF.FF20.0000 to 
0xFFFF.FFFF.FF20.000F). 

Table 13.9 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between 
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 64-bit dou-
ble-word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

Table 13.9 Operation of the FASTDATA Access 

Probe 
Operation

Address 
Match 
Check

PrAcc in 
the Control 

Register

LSB 
(SPrAcc) 
Shifted In

Action in 
the Data 
Register

PrAcc 
Changes to

Lsb Shifted 
Out

Data 
Shifted Out

Download 
using FAST-
DATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data

0 x none unchanged 0 invalid

Upload using 
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid
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13.10.3.11 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

13.10.3.12 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

13.10.3.13 TCBCONTROLC Instruction

This instruction is used to select the TCBCONTROLC register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

13.10.3.14 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only 
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass 
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of 
the TCBDATA register is dependent on the specific TCB register.

13.10.3.15 PCSAMPLE Instruction

This instruction is used to select the PCSAMPLE register to be connected between TDI and TDO. This register is 
always implemented.

13.10.3.16 TCBCONTROLD Instruction

This instruction is used to select the TCBCONTROLD register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

13.10.3.17 TCBCONTROLE Instruction

This instruction is used to select the TCBCONTROLE register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

13.10.3.18 FDC Instruction

This instruction is used to select the Fast Debug Channel register to be connected between TDI and TDO. This register 
is always implemented.

13.10.4 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby 
the TAP module can operate like a slave unit connected to the on-chip bus. The core can then execute code taken 
from the EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs 
in a serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without 
occupying the memory.
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Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range 
from 0xFFFF.FFFF.FF20.0000 to 0xFFFF.FFFF.FF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode 
(DM=1). In addition the LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from 
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a reset.

13.10.4.1 Fetch/Load and Store From/To the EJTAG Probe Through dmseg

1. The internal hardware latches the requested address into the Address register (in case of the Debug exception: 
0xFF20.0200). 

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc 
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and 
can be shifted out. 

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the Address register and shifts out the requested address.

6. The EJTAG Probe selects the Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to 
the processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction. 
This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For 
this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The 
store address must be in the range: 0xFFFF_FFFF_FF20.0000 to 0xFFFF_FFFF_FF2F.FFFF, the ProbEn bit must be 
set and the processor has to be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the Address register

2. The internal hardware latches the data to be written into the Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size
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4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc 
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and 
can be shifted out. 

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the Address register and shifts out the requested address.

7. The EJTAG Probe selects the Data register and shifts out the data that was written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to 
the processor that the write access is finished.

9. The EJTAG Probe writes the data to the appropriate address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

13.11 PDTrace

PDTrace enables the ability to trace program flow, load/store addresses and load/store data. Several run-time options 
exist for the level of information which is traced, including tracing only when in specific processor modes (e.g., User-
Mode or KernelMode).

There are two primary blocks involved in the PDtrace solution. The pipeline specific part of PDtrace is called the 
PDtrace module. It extracts the trace information from the processor pipeline, and presents it to a pipeline-indepen-
dent module called the Trace Control Block (TCB). While working closely together, the two parts of PDtrace are con-
trolled separately by software. Figure 13.5 shows an overview of the PDtrace modules within the core.

Figure 13.5 MIPS® Trace Modules in the P6600™ Core 

To some extent, the two modules both provide similar trace control features, but the access to these features is quite 
different. The PDtrace controls can only be reached through access to CP0 registers. In general, the PDtrace control 
registers select what information is captured for tracing.The TCB controls can be reached through EJTAG TAP 
access or through load/store access to registers mapped in drseg space. The TCB registers control what is traced 
through the PDtrace™ Interface.
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Before describing the PDtrace implemented in the P6600 core, some common terminology and basic features are 
explained. The remaining sections of this chapter will then provide a more thorough explanation.

13.11.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these modes. 
The terminology is then used elsewhere in the document.

DebugMode  (DebugDM = 1)
ExceptionMode  (not DebugMode) and ((StatusEXL = 1) or (StatusERL = 1))
KernelMode  (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#00)
SupervisorMode  (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#01)
UserMode  (not (DebugMode or ExceptionMode)) and (StatusKSU = 2#10)

13.11.2 Software Versus Hardware Control

In some of the specifications and in this text, the terms “software control” and “hardware control” are used to refer to 
the method for how trace is controlled. Software control is when the CP0 register TraceControl is used to select the 
modes to trace, etc. Hardware control is when the EJTAG register TCBCONTROLA in the TCB, via the PDtrace inter-
face, is used to select the trace modes. The TraceControlTS bit determines whether software or hardware control is 
active.

13.11.3 Trace Information

The main object of trace is to show the exact program flow from a specific program execution or just a small window 
of the execution. In PDtrace this is done by providing the minimal cycle-by-cycle information necessary on the 
PDtrace™ interface for trace regeneration software to reproduce the trace. The following is a summary of the type of 
information traced:

• Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag. 
The PC is implicitly pointing to the next instruction.

• Load instructions are indicated with a load-flag.

• Store instructions are indicated with a store-flag1.

• Taken branches are indicated with a branch-taken-flag on the target instruction.

• New PC information for a branch is only traced if the branch target is unpredictable from the static program 
image.

• When branch targets are unpredictable, only the delta value from current PC is traced, if it is dynamically 
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC value is 
traced.

• When a completing instruction is executed in a different processor mode from the previous one, the new pro-
cessor mode is traced.

• The first instruction is always traced as a branch target, with processor mode and full PC.

• Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and 
full PC.

1. A SC (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.
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All the instruction flags above are combined into one 4-bit value to minimize the bit information to trace.

The target address is statically predictable for all branch and all jump-immediate instructions. If the branch is taken, 
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which 
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also 
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc. 

Trace regeneration software is required to know the static program image in memory, in order to reproduce the 
dynamic flow with the above information. Only the virtual value of the PC is used. Physical memory location will 
typically differ.

It is possible to turn on PC delta/full information for all branches, but this should not normally be necessary. As a 
safety check for trace regeneration software, a periodic synchronization with a full PC is sent. The period of this syn-
chronization is cycle based and programmable.

13.11.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written. 
When enabled, the following information is optionally added to the trace.

• When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the 
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced to 
compress the information which must be sent.

• When store-address tracing is on, the full store address of the first store instruction is traced (indicated by the 
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

• When load-data tracing is on, the full load data read by each load instruction is traced (indicated by the 
load-flag). Only actual read bytes are traced.

• When store-data tracing is on, the full store data written by each store instruction is traced (indicated by the 
store-flag). Only written bytes are traced.

Note that the P6600 core does not support full data tracing of 128 bit load/stores. In case of 128 bit data, only the 
lower 64 bits are traced together with an additional information for the regeneration software, informing about the 
missing upper 64 bits. For more details please refer to MIPS PDTrace specification (MIPS document number 
MD00439) Section 4.1.4.1 and Appendix F.10.

After each synchronization instruction, the first load address and the first store address following this are both traced 
with the full address if load/store address tracing is enabled.

13.11.5 Programmable Processor Trace Mode Options

To enable tracing, a global Trace On signal must be set. When trace is on, it is possible to enable tracing in any com-
bination of the processor modes described in Section 13.11.1 “Processor Modes”. In addition to this, trace can be 
turned on globally for all processes, or only for specific processes by tracing only specific masked values of the ASID 
found in EntryHiASID. Tracing can also be qualified with GuestID for VZ systems.

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn 
them all on. Another trigger point can disable this override again.
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13.11.6 Programmable Trace Information Options

The processor mode changes are always traced:

• On the first instruction.

• On any synchronization instruction.

• When the mode changes and either the previous or the current processor mode is selected for trace.

The amount of extra information traced is programmable to include:

• PC information only.

• PC and cross product of load/store address/data

• Performance counter values, if the optional performance counter trace is enabled.

If the full internal state of the processor is known prior to trace start, PC and load data are the only information 
needed to recreate all register values on an instruction by instruction basis.

13.11.6.1 User Data Trace

Two special CP0 registers, UserTraceData1 and UserTraceData2, can generate a data trace. When either of these regis-
ters is written, and the global Trace On is set, then the 32-bit data written is put in the trace as special User Data infor-
mation. Since writing these registers is performed via an MTC0 operation, only one register is updated in any given 
cycle. Thus in the same cycle, only one of the UserTraceData registers is traced. However in back to back cycles, the 
tracing of the two registers can alternate, and is handled correctly.

Remark: The User Data is sent even if the processor is operating in an un-traced processor mode.

13.11.7 Enable Trace to Probe On-Chip Memory

When trace is On, based on the options listed in Section 13.11.5 “Programmable Processor Trace Mode Options”, 
the trace information is continuously sent on the PDtrace™ interface to the TCB. The TCB must be enabled to trans-
mit the trace information to the Trace funnel by having the TCBCONTROLBEN bit set. It is possible to enable and dis-
able the TCB in a number of ways:

• Set/clear the TCBCONTROLBEN bit via an EJTAG TAP operation.

• Initialize a TCB trigger to set/clear the TCBCONTROLBEN bit.

• Use the drseg mapping of TCBCONTROLB to clear TCBCONTROLBEN via a store to drseg space.

13.11.8 Enabling PDtrace

As there are several ways to enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This 
section should help clarify the enabling of trace.

13.11.8.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints 

Hardware instruction/data simple breakpoints in the P6600 core can be used as triggers to start/stop trace. When used 
for this, the breakpoints need not also generate a debug exception, but are capable of only generating an internal trig-
ger to the trace logic. This is done by only setting the TE bit and not the BE bit in the Breakpoint Control register. 
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Please see Section 13.14.2.5 “Instruction Breakpoint Control n (IBCn) Register” and Section 13.14.3.5 “Data 
Breakpoint Control n (DBCn) Register” for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace action 
when a trigger happens. When a breakpoint is enabled as a trigger (TE = 1), it can be selected to be either a start or a 
stop trigger to the trace logic. 

13.11.8.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits in the 
control register are used instead of the input enable signals from the TCB. The TraceControlTS bit controls whether 
hardware (via the TCB), or software (via the TraceControl register) controls tracing functionality.

Trace is turned on when the following expression evaluates true:

(
(

(TraceControlTS and TraceControlOn) or 
((not TraceControlTS) and TCBCONTROLAOn)

)
and 
(MatchEnable or TriggerEnable of FilterDataTrace)

)

where,

MatchEnable  
( 

TraceControlTS 
and
TraceControlG or

(((TraceControlASID xor EntryHiASID) and (not TraceControlASIDM)) = 0) and
((TraceCOntrol3GV) or ((TraceControl3GuestID xor EffectiveGuestID = 0) and
(TraceControl3GV = 1)))

)
and
(

(TraceControlU and UserMode) or 
(TraceControlS and SupervisorMode) or 
(TraceControlK and KernelMode) or 
(TraceControlE and ExceptionMode) or 
(TraceControlD and DebugMode)

)
)
or
(

(not TraceControlTS)
and
(TCBCONTROLAG or (TCBCONTROLAASID = EntryHiASID))
and
(TCBCONTROLEGV or (TCBCONTROLEGUESTID = EntryHiASID))
and
(

(TCBCONTROLAU and UserMode) or
(TCBCONTROLAS and SupervisorMode) or
(TCBCONTROLAK and KernelMode) or 
(TCBCONTROLAE and ExceptionMode) or
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(TCBCONTROLADM and DebugMode)
)

)

and where, 

TriggerEnable  
(

DBCiTE and
DBSBS[i] and 
TraceBPCDE and 
(TraceBPCDBPOn[i] = 1)

)        
or
(

IBCiTE and
IBSBS[i] and 
TraceBPCIE and 
(TraceBPCIBPOn[i] = 1)

)

and where, 

FilterDataTrace <- TraceControl3FDT and 
(Load_Address_Matches_Hardware_Breakpoint_Address or 
Store_AddresS_Matches_Hardware_Breakpoint_Address) 

As seen in the expression above, trace can be turned on only if the master switch TraceControlOn or TCBCONTROLAOn 
is first asserted.

Once this is asserted, there are three ways to turn on tracing. The first way, the MatchEnable expression, uses the 
input enable signals from the TCB or the bits in the TraceControl register. This tracing is done over general program 
areas. For example, all of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, the TriggerEnable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG is implemented, and hardware breakpoints can be set, then using this method 
enables finer grain tracing control. It is possible to send a trigger signal that turns on tracing at a particular instruction. 
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

The third way to enable tracing is in Filtered Data Trace Mode. When this mode is enabled, data load and store 
addresses are compared to the hardware data breakpoint address, if the addresses match, the data value associated 
with that match along with the address are traced out. 

The easiest way to unconditionally turn on trace is to assert either hardware or software tracing and the corresponding 
trace on signal with other enables. For example, with TraceControlTS = 0, i.e., hardware controlled tracing, assert 
TCBCONTROLAOn, TCBCONTROLAG, and all the other signals in the second part of expression MatchEnable. To only 
trace when a particular process with a known ASID is executing, assert TCBCONTROLAOn, the correct 
TCBCONTROLAASID value, and all of TCBCONTROLAU, TCBCONTROLAK, TCBCONTROLAE, and TCBCONTROLADM. (If 
it is known that the particular process is a user-level process, then it would be sufficient to only assert 
TCBCONTROLAU for example). When using the EJTAG hardware triggers to turn trace on and off, it is best if 
TCBCONTROLAOn is asserted and all the other processor mode selection bits in TCBCONTROLA are turned off. This 
would be the least confusing way to control tracing with the trigger signals. Tracing can be controlled via software 
with the TraceControl register in a similar manner.
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13.11.8.3  Turning Off PDtrace™ Trace

Trace is turned off when the following expression evaluates true:

(
(TraceControlTS and (not TraceControlOn))) or
((not TraceControlTS) and (not TCBCONTROLAOn))

)
or
(

(not MatchEnable) and
(not TriggerEnable) and
(not FilterDataTraceActive)and
TriggerDisable

)

where,

TriggerDisable  
(

DBCiTE and
DBSBS[i] and 
TraceBPCDE and 
(TraceBPCDBPOn[i] = 0)

)        
or
(

IBCiTE and
IBSBS[i] and 
TraceBPCIE and 
(TraceBPCIBPOn[i] = 0)

)

Tracing can be unconditionally turned off by de-asserting the TraceControlOn bit or the TCBCONTROLAOn signal. When 
either of these are asserted, tracing can be turned off if all of the enables are de-asserted, irrespective of the TraceCon-
trolG bit (TCBCONTROLAG) and TraceControlASID (TCBCONTROLAASID) values. EJTAG hardware breakpoints can be 
used to trigger trace off as well. Note that if simultaneous triggers are generated, and even one of them turns on trac-
ing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on. This condition is 
reflected in presence of the “(not TriggerEnable)” term in the expression above.

13.12 PDtrace Cycle-by-Cycle Behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the 
real-time behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

13.12.1 FIFO Logic in PDtrace and TCB Modules

Both the PDtrace module and the TCB module contain a fifo. This might seem like extra overhead, but there are good 
reasons for this. The vast majority of the information compression happens in the PDtrace module. Any data informa-
tion, like PC and load/store address values (delta or full), load/store data and processor mode changes, are sent on two 
32-bit data busses to the TCB on the internal PDtrace™ interface. When an instruction requires more than 2x32 bits 
of information to be traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock 
cycles.
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In the TCB, the on-chip trace memory is defined as a 128-bit wide synchronous memory running at core-clock speed. 
In this case the FIFO is not needed. For off-chip trace through the Trace Probe, the FIFO comes into play, because 
only a limited number of pins (16) exist. Also the speed of the Trace Probe interface can be different (either faster or 
slower) from that of the P6600 core. So for off-chip tracing, a specific TCB TW FIFO is needed.

13.12.2 Handling of FIFO Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 2x32-bit data 
interface is needed, it is possible for the PDtrace FIFO to overflow from time to time. There are two ways to handle 
this case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by back-stalling the core until the FIFO has enough empty slots to accept new trace data.

The PDtrace fifo option is controlled by either the TraceControlIO or the TCBCONTROLAIO bit, depending on the set-
ting of TraceControlTS bit.

The first option is free of any cycle-by-cycle change whether trace is turned on or not. This is achieved at the cost of 
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is 
traced as if it was the start of the trace (processor mode and full PC are traced). This guarantees that only the 
un-traced fifo information is lost.

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved 
by back-stalling the core pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trace 
information from a new instruction. This option can obviously change the real-time behavior of the core when tracing 
is turned on.

If PC trace information is the only thing enabled (in TraceControl2MODE or TCBCONTROLCMODE, depending on the set-
ting of TraceControlTS), and Trace of all branches is turned off (via TraceControlTB or TCBCONTROLATB, depending on 
the setting of TraceControlTS), then the fifo is unlikely to overflow very often, if at all. This is of course very dependent 
on the code executed, and the frequency of exception handler jumps, but with this setting there is very little informa-
tion overhead.

13.12.3 Handling of FIFO Overflow in the TCB

The TCB also holds a FIFO, used to buffer the TW’s which are sent off-chip through the Trace Probe. The data width 
of the probe is 16 pins and the speed of these data pins can range from core-clock speed to 1/10th of the core clock 
speed (the trace probe clock always runs at a double data rate multiple to the core-clock). See Section 
13.12.3.1 “Probe Width and Clock-ratio Settings” for a description of probe width and clock-ratio options. The com-
bination between the probe width and the data speed allows for different data rates through the trace probe. The high 
extreme is not likely to be supported in any implementation, but the low one might be.

The data rate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maxi-
mum produce two 64-bit trace words per core-clock cycle. This is true for any selection of trace mode in 
TraceControl2MODE or TCBCONTROLCMODE. The PDtrace module will guarantee the limited amount of data. If the 
TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB fifo can possibly over-
flow. Similar to the PDtrace module FIFO, this can be handled in two ways:

1. Allow the overflow to happen, and thereby lose some information from the trace data.
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2. Prevent the overflow by asserting a stall-signal back to the core (PDI_StallSending). This will in turn stall the core 
pipeline.

As a practical matter, the amount of data to the TCB can be minimized by only tracing PC information and excluding 
any cycle accurate information. This is explained in Section 13.12.2 “Handling of FIFO Overflow in the PDtrace 
Module” and below in Section 13.12.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data 
rate of 8-bits per core-clock cycle is usually sufficient. No guarantees can be given here, however, as heavy interrupt 
activity can increase the number of unpredictable jumps considerably.

13.12.3.1 Probe Width and Clock-ratio Settings

Note: the registers called out in this section are located in the Coherence Manager TAP described in Chapter 15, 
Multi-CPU Debug. All of these fields are reserved in the P6600 core TAP registers.

The actual number of data pins (16) is defined by the TAP TCBCONFIGPW field. Furthermore, the frequency of the 
Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) is a double data rate clock. 
This means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace clock is 
running at clock ratio of 1:2 (one half) of core clock, the data output registers are running a core-clock frequency. The 
clock ratio is set in the TAPTCBCONTROLBCR field. The legal range for the clock ratio is defined in TAP 
TCBCONFIGCRMax and TAP TCBCONFIGCRMin (both values inclusive). If the TAPTCBCONTROLBCR bit is set to an 
unsupported value, the result is UNPREDICABLE. 

The maximum possible value for TAP TCBCONFIGCRMax field is 1:2 (TR_CLK is running at one second of the  
core-clock). The minimum possible value for TAP TCBCONFIGCRMin field is 1:20 (TR_CLK is running at one 
twentieth of the core-clock).

13.12.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each 
instruction in the trace. This information is added to the trace, when the TCBCONTROLBCA bit is set. The overhead on 
the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the likeli-
hood of the TCB FIFO overflowing.

13.13 PC Sampling

The PC sampling feature enables sampling of the PC value periodically. This information can be used for statistical 
profiling of the program akin to gprof. This information is also very useful for detecting hot-spots in the code. 

In PC sampling, the PC is sampled periodically and sent to the TAP register. Note that although the PC sampling 
function can be used both with and without a probe, if a probe is not connected, the sampled information cannot be 
read out since the TAP registers can only be read when a probe is connected. Therefore, MIPS recommends using the 
PC sampling capability only when a probe is connected.

The presence or absence of the PC Sampling feature is available in the Debug Control register as bit 9 (PCS).The 
sampled PC values are written into a TAP register. The old value in the TAP register is overwritten by a new value 
even if this register has not be read out by the debug probe. The sample rate is specified in a manner similar to the 
PDtrace synchronization period, with three bits. These bits in the Debug Control register are 8:6 and called PCSR (PC 
Sample Rate). These three bits take the value 25 to 212 similar to SyncPeriod. Note that the processor samples PC 
even when it is asleep, that is, in a WAIT state. This permits an analysis of the amount of time spent by a processor in 



 

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 687

WAIT state which may be used for example to revert to a low power mode during the non-execution phase of a 
real-time application.

The sampled values includes a new data bit, the PC, the ASID of the sampled PC as well as the Enhanced Virtual 
Address (EVA) K/U bit. Figure 13.6 shows the format of the sampled values in the TAP register PCsample. The new 
data bit is used by the probe to determine if the PCsample register data just read out is new or already been read and 
must be discarded. 

Figure 13.6 TAP Register PCsample Format 

T he sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the 
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

13.13.1 PC Sampling in Wait State

When the processor is in a WAIT state to save power for example, an external agent might want to know how long it 
stays in the WAIT state. But counting cycles to update the PC sample value is a waste of power. Hence, when in a 
WAIT state, the processor must simply switch the New bit to 1 every time it is set to 0 by the probe hardware. Hence, 
the external agent or probe reading the PC value will detect a WAIT instruction for as long as the processor remains 
in the WAIT state. When the processor leaves the WAIT state, then counting is resumed as before.

13.14 EJTAG Registers

The following subsections describe the EJTAG register interface.

13.14.1 General Purpose Control and Status

The following register provide general control and status information for EJTAG.

13.14.1.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues and is always pro-
vided with the P6600 core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug soft-
ware is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to 
the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit, 
and a pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of some sources for reset. The P6600 core does not distin-
guish between soft and hard reset, but typically only soft reset sources in the system would be maskable and hard 
sources such as the reset switch would not be. The soft reset masking should only be applied to a soft reset source if 
that source can be efficiently masked in the system, thus resulting in no reset at all. If that is not possible, then that 
soft reset source should not be masked, since a partial soft reset may cause the system to fail or hang. There is no 
automatic indication of whether the SRE is effective, so the user must consult system documentation.

49 42 41 40 33 32 1 0

R K/U ASID PC New
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The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the 
debug software that the probe will service dmseg accesses. The reset value in the table below takes effect on any CPU 
reset.

Figure 13.7 Debug Control Register Format   

63 32

0

31 30 29 28 27 26 25 24 23 22 21 19 18 17 16

0 ENM 0 PCIM PCno 
ASID DASQ DASe DAS 0 FDC 

Impl
Data 
Brk Inst Brk

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

IVM DVM 0 RD Vec CBT PCS PCR PCSe IntE NMIE NMI
pend SRstE Prob En

Table 13.10 Debug Control Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

0 63:30 Must be written as zeros; return zeros on reads. 0 0

ENM 29 Endianess in which the processor is running in kernel and Debug 
Mode. This bit is encoded as follows:

0: Little Endian
1: Bit Endian

R Preset

0 28:27 Must be written as zeros; return zeros on reads. 0 0

PCIM 26 Configure PC Sampling to capture all executed addresses or only 
those that miss the instruction cache
This feature is not supported and this bit will read as 0. This bit is 
encoded as follows:

0: All PC’s captured.
1: Capture only PC’s that miss in the cache.

R 0

PCnoASID 25 Controls whether the PCSAMPLE scan chain includes or omits the 
ASID field
ASID is always included so this bit will read as 0. This bit is 
encoded as follows:

0: ASID included in PCSAMPLE scan
1: ASID omitted from PCSAMPLE scan

R 0

DASQ 24 Qualifies Data Address Sampling using a data breakpoint.
Data address sampling is not supported so this bit will read as 0. 
This bit is encoded as follows:

0: All data addresses are sampled
1: Sample matches of data breakpoint 0

R 0
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DASe 23 Enables Data Address Sampling
Data address sampling is not supported so this bit will read as 0. 
This bit is encoded as follows:

0: Data Address sampling disabled.
1: Data Address sampling enabled.

R 0

DAS 22 Indicates if the Data Address Sampling feature is implemented.
Data address sampling is not supported so this bit will read as 0. 
This bit is encoded as follows:

0: No DA Sampling implemented
1: DA Sampling implemented

R 0

0 21:19 Must be written as zeros; return zeros on reads. 0 0

FDCImpl 18 Indicates if the fast debug channel is implemented. This bit is 
encoded as follows:

0: No fast debug channel implemented
1: Fast debug channel implemented

R 1

DataBrk 17 Indicates if data hardware breakpoint is implemented. This bit is 
encoded as follows:

0: No data hardware breakpoint implemented
1: Data hardware breakpoint implemented

R Preset

InstBrk 16 Indicates if instruction hardware breakpoint is implemented. This 
bit is encoded as follows:

0: No instruction hardware breakpoint implemented
1: Instruction hardware breakpoint implemented

R Preset

IVM 15 Indicates if inverted data value match on data hardware break-
points is implemented. This bit is encoded as follows:

0: No inverted data value match on data hardware breakpoints 
implemented
1: Inverted data value match on data hardware breakpoints imple-
mented

R 0

DVM 14 Indicates if a data value store on a data value breakpoint match is 
implemented. This bit is encoded as follows:

0: No data value store on a data value breakpoint match imple-
mented
1: Data value store on a data value breakpoint match implemented

R 0

0 13:12 Must be written as zeros; return zeros on reads. 0 0

RDVec 11 Enables relocation of the debug exception vector. The value in the 
DebugVectorAddr register is used for EJTAG exceptions when 
ProbTrap = 0,and RDVec = 1.

R/W 0

Table 13.10 Debug Control Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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CBT 10 Indicates if complex breakpoint block is implemented. This bit is 
encoded as follows:

0: No complex breakpoint block implemented
1: Complex breakpoint block implemented

R 0

PCS 9 Indicates if the PC Sampling feature is implemented. This bit is 
encoded as follows:

0: No PC Sampling implemented
1: PC Sampling implemented

R 1

PCR 8:6 PC Sampling rate. Values 0 to 7 map to values 25 to 212 cycles, 
respectively. That is, a PC sample is written out every 32, 64, 128, 
256, 512, 1024, 2048, or 4096 cycles respectively. The external 
probe or software is allowed to set this value to the desired sample 
rate.

R/W 7

PCSe 5 If the PC sampling feature is implemented, then indicates whether 
PC sampling is initiated or not. That is, a value of 0 indicates that 
PC sampling is not enabled and when the bit value is 1, then PC 
sampling is enabled and the counters are operational.

R/W 0

IntE 4 Hardware and software interrupt enable for Non-Debug Mode, in 
conjunction with other disable mechanisms. This bit is encoded as 
follows:

0: Interrupt disabled
1: Interrupt enabled depending on other enabling mechanisms

R/W 1

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug Mode. This 
bit is encoded as follows:

0: NMI disabled
1: NMI enabled

R/W 1

NMIpend 2 Indication for pending NMI. This bit is encoded as follows:

0: No NMI pending
1: NMI pending

R 0

SRstE 1 Controls soft reset enable. This bit is encoded as follows:

0: Soft reset masked for soft reset sources dependent on implemen-
tation
1: Soft reset is fully enabled.

R/W 1

ProbEn 0 Indicates value of the ProbEn value in the ECR register. This bit is 
encoded as follows:

0: No access should occur to the dmseg segment
1: Probe services accesses to the dmseg segment

Bit is read-only (R) and reads as zero if not implemented.

R Same value as 
ProbEn in 

ECR

Table 13.10 Debug Control Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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13.14.1.2 DebugVectorAddr Register

This register allows an alternate debug exception vector address to be specified, which can enable placing a debug 
monitor program into RAM for much faster execution than the default ROM address. This register is memory 
mapped at an offset of 0x00020 within the DRSEG memory segment.

Figure 13.8 shows the register format and Table 13.11 describes the fields in this register.

Figure 13.8 DebugVectorAddr Register Format 

13.14.2 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and 
are used to set up the instruction breakpoints. All registers are in drseg with addresses as shown in Table 13.12. 

31 7 6 5 0

DebugVectorAddr WG 0

Table 13.11 DebugVectorAddr Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DebugVectorAddr 31 Programmable Debug Exception Vector Address. 
Note that bits 31:30 have default values of 1 and 0 respectively and 
can only be written when the WG bit is set. If the WG bit is cleared, 
these bits are read-only and retain their previous values. These two 
bits can be written whenever the WG bit is set, regardless of the state 
of Config5K.

R/W 1

30 R/W 0

29:7 R/W 0x7f8009
(corresponds to 

0xbfc00480)

WG 6 Write gate. 

When the WG bit is set, the DebugVectorAddr field is expanded to 
include bits 31:30 to facilitate programmable memory segmentation 
controlled by the SegCtl0 through SegCtl2 registers.

When the WG bit is cleared, bits 31:30 of this register are not write-
able and remain unchanged from the last time that WG was cleared.

R/W Externally Set

0 5:0 Ignored on write, returns zero on read. R 0

Table 13.12 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register 

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 IBA0 Instruction Breakpoint Address 0

0x1108 IBM0 Instruction Breakpoint Address Mask 0

0x1110 IBASID0 Instruction Breakpoint ASID 0

0x1118 IBC0 Instruction Breakpoint Control 0

0x1200 IBA1 Instruction Breakpoint Address 1

0x1208 IBM1 Instruction Breakpoint Address Mask 1
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13.14.2.1 Instruction Breakpoint Status (IBS) Register

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction 
breakpoints. The ASID applies to all the instruction breakpoints. 

Figure 13.9 IBS Register Format 

0x1210 IBASID1 Instruction Breakpoint ASID 1

0x1218 IBC1 Instruction Breakpoint Control 1

0x1300 IBA2 Instruction Breakpoint Address 2

0x1308 IBM2 Instruction Breakpoint Address Mask 2

0x1310 IBASID2 Instruction Breakpoint ASID 2

0x1318 IBC2 Instruction Breakpoint Control 2

0x1400 IBA3 Instruction Breakpoint Address 3

0x1408 IBM3 Instruction Breakpoint Address Mask 3

0x1410 IBASID3 Instruction Breakpoint ASID 3

0x1418 IBC3 Instruction Breakpoint Control 3

63 31 30 29 28 27 24 23 4 3 0

Res ASIDsup Res BCN Res BS

Table 13.13 IBS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

Res 63:31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Hardware and software interrupt enable for Non-Debug Mode, in conjunc-
tion with other disable mechanisms. This bit is encoded as follows:

0: ASID compare not supported
1: ASID compare supported (IBASIDn register implemented)

R 1

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 2 or 4

Res 23:4 Must be written as zero; returns zero on read. R 0

BS 3:0 Break status for breakpoint n is at BS[n], with n from 0 to 3. The bit is set 
to 1 when the corresponding breakpoint is enabled and the condition has 
matched. If only two instruction breakpoints are implemented, bits 2 and 3 
must be written as zero and will return zero on read.

R/W Undefined

Table 13.12 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register 

Mnemonic Register Name and Description
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13.14.2.2 Instruction Breakpoint Address n (IBAn) Register

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint 
n, where n = breakpoint 0 - 3.

Figure 13.10 IBAn Register Format 

13.14.2.3 Instruction Breakpoint Address Mask n (IBMn) Register

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n, where n = breakpoint 0 - 3.

Figure 13.11 IBMn Register Format 

13.14.2.4 Instruction Breakpoint ASID n (IBASIDn) Register

This register is used to define an ASID value to be used in the match expression, where n = breakpoint 0 - 3.

Figure 13.12 IBASIDn Register Format   

63 0

IBA

Table 13.14 IBAn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

IBA 63:0 Instruction breakpoint address for condition. R/W Undefined

63 0

IBMn

Table 13.15 IBMn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

IBMn 63:0 Instruction breakpoint address mask for condition. This bit is encoded as 
follows:

0: Corresponding address bit not masked
1: Corresponding address bit masked

R/W Undefined

63 32 31 24 23 22 8 7 0

R GUESTID UGID R ASID
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13.14.2.5 Instruction Breakpoint Control n (IBCn) Register

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n, where n = break-
point 0 - 3.

Figure 13.13 IBCn Register Format  

Table 13.16 IBASIDn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

R 63:32 Must be written as zero; returns zero on read. R 0

GUESTID 31:24 Indicates the GuestID.

GuestID value used for match comparison. If GuestCtl0.G1 = 1, then the 
active width of this register field matches the number of writable bits of 
GuestCtl1.ID. 

If GuestCtl0.G1 = 0, then only the right-most bit of this register field is 
writable and the rest of the bits in this field are read-only as zero. A value 
of zero is used to select Root-mode execution. 

R/W Undefined

UGID 23 Use GuestID field. If this bit is set, a match only happens when the Gues-
tID field within this register matches the GuestID of the memory request 
and the device is executing in GuestMode 

(GuestCtl0.GM = 1 & Root.Status.EXL = 0 & Root.Status.ERL = 0 & 
Root.Debug.DM = 0). 

If this bit is clear, the GuestID field of this register is not used for match 
calculation. If this bit is set, the GuestID field is used for the match calcu-
lation. 

Probe Software can determine if this feature is software configurable by 
writing and reading back this bit.

R/W Undefined

R 19:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for compare. R/W Undefined

63 24 23 22 3 2 1 0

R ASIDuse R TE R BE

Table 13.17 IBCn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

R 63:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for instruction breakpoint n: This bit is 
encoded as follows:

0: Don’t use ASID value in compare.
1: User ASID value in compare.

R/W Undefined
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13.14.3 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used 
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 13.18. 

13.14.3.1 Data Breakpoint Status (DBS) Register

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.

The ASIDsup field indicates whether ASID compares are supported. 

R 22:3 Must be written as zero; returns zero on read. R 0

TE 2 Trigger-only Enable. This field is ignored when BE is set. When BE is 
cleared and TE is set, instruction breakpoint n is enabled, but will not sig-
nal a debug exception.

R/W 0

R 1 Must be written as zero; returns zero on read. R 0

BE 0 Breakpoint Enable. When set, instruction breakpoint n is enabled and will 
signal a debug exception when its condition matches.

R/W 0

Table 13.18 Addresses for Data Breakpoint Registers

Offset in drseg
Register 

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 DBA0 Data Breakpoint Address 0

0x2108 DBM0 Data Breakpoint Address Mask 0

0x2110 DBASID0 Data Breakpoint ASID 0

0x2118 DBC0 Data Breakpoint Control 0

0x2120 DBV0 Data Breakpoint Value 0

0x2138 DBCS0 Data Breakpoint Control SIMD 0

0x2140 DBVS0 Data Breakpoint Value SIMD 0

0x2200 DBA1 Data Breakpoint Address 1

0x2208 DBM1 Data Breakpoint Address Mask 1

0x2210 DBASID1 Data Breakpoint ASID 1

0x2218 DBC1 Data Breakpoint Control 1

0x2220 DBV1 Data Breakpoint Value 1

0x2238 DBCS1 Data Breakpoint Control SIMD 1

0x2240 DBVS1 Data Breakpoint Value SIMD 1

Table 13.17 IBCn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits
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Figure 13.14 DBS Register Format   

13.14.3.2 Data Breakpoint Address n (DBAn) Register

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n, where n = 
breakpoint 0 - 1.

Figure 13.15 DBAn Register Format  

63 32

R

31 30 29 28 27 24 23 2 1 0

R ASID NoSVmatch NoLVmatch BCN R BS

Table 13.19 DBS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

R 63:31 Must be written as zero; returns zero on read. R 0

ASID 30 Indicates that ASID compares are supported in data breakpoints.
This bit is encoded as follows:

0: Don’t use ASID value in compare
1: Use ASID value in compare

R 1

NoSVmatch 29 Indicates if a value compare on a store is supported in data break-
points. This bit is encoded as follows: 

0: Data value and address in condition on store
1: Address compare only in condition on store

R 0

NoLVmatch 28 Indicates if a value compare on a load is supported in data break-
points. This bit is encoded as follows: 

0: Data value and address in condition on store
1: Address compare only in condition on store

R 0

BCN 27:24 Number of data breakpoints implemented. R 2

R 23:2 Must be written as zero; returns zero on read. R 0

BS 1:0 Break status for breakpoint n is at BS[n], with n from 0 to 1. The bit 
is set to 1 when the condition for the corresponding breakpoint has 
matched and the condition has matched. If only one data breakpoint 
is implemented, bit 1 must be written as 0 and will return 0 on reads.

R/W0 Undefined

63 0

DBA
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13.14.3.3 Data Breakpoint Address Mask n (DBMn) Register

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition for 
data breakpoint n, where n = breakpoint 0 - 1.

Figure 13.16 DBMn Register Format 

13.14.3.4 Data Breakpoint ASID n (DBASIDn) Register

This register is used to define an ASID value to be used in the match expression. For this register, n = breakpoint 0 - 
1.

Figure 13.17 DBASIDn Register Format   

Table 13.20 DBAn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DBA 63:0 Data breakpoint address for condition. R/W Undefined

63 0

DBM

Table 13.21 DBMn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DBM 63:0 Data breakpoint address mask for condition. This bit is encoded as 
follows:

0: Corresponding address bit is compared
1: Corresponding address bit is masked

R/W Undefined

63 32 31 24 23 22 8 7 0

R GUESTID UGID R ASID

Table 13.22 DBASIDn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

R 63:32 Must be written as zero; returns zero on read. R 0
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13.14.3.5 Data Breakpoint Control n (DBCn) Register

The Data Breakpoint Control SIMD n (DBCn) register controls the setup of data breakpoint n, where n = breakpoint 0 
- 1.

Figure 13.18 DBCn Register Format    

GUESTID 31:24 Indicates the GuestID.

GuestID value used for match comparison. If GuestCtl0.G1 = 1, then the 
active width of this register field matches the number of writable bits of 
GuestCtl1.ID. 

If GuestCtl0.G1 = 0, then only the right-most bit of this register field is 
writable and the rest of the bits in this field are read-only as zero. A value 
of zero is used to select Root-mode execution. 

R/W Undefined

UGID 23 Use GuestID field. If this bit is set, a match only happens when the Gues-
tID field within this register matches the GuestID of the memory request 
and the device is executing in GuestMode 

(GuestCtl0.GM = 1 & Root.Status.EXL = 0 & Root.Status.ERL = 0 & 
Root.Debug.DM = 0). 

If this bit is clear, the GuestID field of this register is not used for match 
calculation. If this bit is set, the GuestID field is used for the match calcu-
lation. 

Probe Software can determine if this feature is software configurable by 
writing and reading back this bit.

R/W Undefined

Res 19:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compare. R/W Undefined

63 36 35 34 32

R GM 0

31 24 23 22 21 14 13 12 11 4 3 2 1 0

R ASIDuse R BAI NoSB NoLB BLM R TE R BE

Table 13.23 DBCn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

R 63:36 Must be written as zero; returns zero on read. R 0

Table 13.22 DBASIDn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)
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GM 35 Ganged Mode. An even and odd numerically adjacent breakpoint 
register set are ganged together to form a memory-aligned break-
point on misaligned data. In contrast aligned 32-bit data only 
requires one 32-bit breakpoint register set.

GM is only set by software in the even register control, and hard-
ware will infer the odd register in pair is ganged with it. This feature 
allows some breakpoint register sets to be ganged, others not. This 
bit is encoded as follows:

0: Ganged Mode is not implemented. All breakpoint register sets are 
independent.
1: Ganged mode is implemented

R/W 0

R 34:32 Must be written as zero; returns zero on read. R 0

R 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n. This bit is 
encoded as follows

0: Don’t use ASID value in compare
1: Use ASID value in compare

R/W Undefined

R 22 Must be written as zero; returns zero on read. R 0

BAI 21:14 Byte access ignore controls ignore of access to a specific byte. 
BAI[0] ignores access to byte at bits [7:0] of the data bus, BAI[1] 
ignores access to byte at bits [15:8], etc. 

This bit is encoded as follows:

0: Condition depends on access to corresponding byte
1: Access for corresponding byte is ignored

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is fulfilled on a store trans-
action. This bit is encoded as follows:

0: Condition may be fulfilled on store transaction
1: Condition is never fulfilled on store transaction

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is fulfilled on a load trans-
action. This bit is encoded as follows:

0: Condition may be fulfilled on load transaction
1: Condition is never fulfilled on load transaction

R/W Undefined

BLM 11:4 Byte lane mask for value compare on data breakpoint. BLM[0] 
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits 
[15:8], etc.

This bit is encoded as follows:

0: Compare corresponding byte lane
1: Mask corresponding byte lane

R/W Undefined

R 3 Must be written as zero; returns zero on reads. R 0

Table 13.23 DBCn Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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13.14.3.6 Data Breakpoint Control SIMD n (DBCSn) Register

The Data Breakpoint Control SIMD n (DBCSn) register controls the setup of SIMD data breakpoint n, where n = 
breakpoint 0 - 1. In the P6600 core, this register is used to data that is larger than 64 bits.

Figure 13.19 DBCSn Register Format   

TE 2 Trigger-only Enable. This field is ignored when BE is set. When BE 
is cleared and TE is set, data breakpoint n is enabled, but will not 
signal a debug exception.

R/W 0

R 1 Must be written as zero; returns zero on reads. R 0

BE 0 Breakpoint Enable. When set, data breakpoint n is enabled and will 
signal a debug exception when its condition matches.

R/W 0

63 40 39 32 31 8 7 0

R BAI[15:8] R BLM[15:8]

Table 13.24 DBCSn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

R 63:40 Must be written as zero; returns zero on read. R 0

BAI[15:8] 39:32 Byte access ignore. Each bit of this field determines whether a 
match occurs on an access to a specific byte of the database.

(BAI[8] controls matching for data bus bits 71:64; BAI[9] controls 
matching for data bus bits 79:72, etc. with the polarity of each bit, as 
follows: 

0: Condition depends on access to corresponding byte
1: Access for corresponding byte is ignored

R/W Undefined

R 31:8 Must be written as zero; returns zero on read. R 0

BLM[15:8] 7:0 Byte lane mask for value compare on data breakpoint. 
BAI[8] controls matching for data bus bits 71:64; BAI[9] controls 
matching for data bus bits 79:72, etc. Each bit of this field is 
encoded as follows:

0: Compare corresponding byte lane
1: Mask corresponding byte lane

R/W Undefined

Table 13.23 DBCn Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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13.14.3.7 Data Breakpoint Value n (DBVn) Register

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n, where n = 
breakpoint 0 - 1.

Figure 13.20 DBVn Register Format 

13.14.3.8 Data Breakpoint Value SIMD n (DBVSn) Register

The Data Breakpoint Value SIMD n (DBVSn) register has the value used in the condition for data breakpoint n. It is 
located at drseg segment offsets 0x2140 (DVBS0) and 0x2240 (DVBS1). It is only required for 128-bit MSA (MIPS 
SIMD Architecture) data breakpoints. For break-pointing on 128-bit data, both DBVn and DBVSn are required for a 
total of 16 mask bits for 128-bits.

Figure 13.21 DBVSn Register Format 

13.14.3.9 Misaligned Load/Store Breakpoint Support

In the P6600 core, the breakpoint facility must have the ability to support misalignment of SIMD load/stores. Though 
each register set n allows for support up to 128-bits, two such register sets must be ganged together to support break-
pointing on misaligned 128-bit data, which can span two successive 128-bit data bus transactions. 

For this purpose, the ganged-mode has been introduced (see the DBC.GM bit above). Numerically adjacent even and 
odd register sets are paired, where the even breakpoint set applies to the access at the lower address, while the odd 
breakpoint set maps to the access at the upper address.

63 0

DBV

Table 13.25 DBVn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DBV 63:0 Data breakpoint value for condition. R/W Undefined

63 0

DBVS

Table 13.26 DBVSn Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

DBVS 63:0 Data breakpoint data value for condition. 
Debug software must adjust for endianess when programming this 
field.

R/W Undefined
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To enable breakpoint on SIMD load/stores, DBCnGM bit must be set to 1. All registers in either set are ganged 
together as indicated. In ganged mode, each register set of the pair may be considered independent for byte, 
half-word, word and doubleword load/stores. As an example, if two register sets are configured to breakpoint on 
128-bit data that is aligned on a 64-bit boundary, then two 64-bit loads may breakpoint on either half of the data 
enabled in DBC and DBCS of each set. Thus, a set of ganged register sets may support break-points on a single 
SIMD load/store, or multiple non-SIMD load/stores simultaneously.

13.14.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

13.14.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruc-
tion register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The 
shift register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruc-
tion register scan operations, the TAP controls the register to capture status information and shift data from TDI to 
TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the 
TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is 
set to 000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device 
ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register 
scan operation. A list of the implemented instructions are listed in Table 13.8.

13.14.4.2 Data Registers Overview

The EJTAG uses several data registers that are arranged in parallel from the primary TDI input to the primary TDO 
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data 
register scan operation. During a data register scan operation, the addressed scan register receives TAP control signals 
to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the out-
put of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the write 
bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

• Address Register

• Data Register

• FastData Register

13.14.4.3 Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit scan 
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not 
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to 
satisfy the IEEE 1149.1 Bypass instruction requirement. 
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13.14.4.4 Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 13.27 shows the bit assignments defined for the read-only Device 
Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out of the 
ID register after being selected. The register is selected when the Instruction register is loaded with the IDCODE 
instruction. Note that this register contains only device manufacturer information and should not be used in an 
attempt to determine the EJTAG or PDTrace revisions of the device.

Figure 13.22 Device Identification Register Format 

13.14.4.5 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values 
are set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE 
instruction. The EJTAG probe uses this TAP register to determine the EJTAG version of the device. Software has no 
access to this register and must use the CP0 Debug register to determine the EJTAG version.

Figure 13.23 Implementation Register Format 

31 28 27 12 11 1 0

Version PartNumber ManufID R

Table 13.27 Device Identification Register

Fields

Description
Read / 
Write Reset StateName Bit(s)

Version  31:28 Version (4 bits)
This field identifies the version number of the processor 
derivative.

 R EJ_Version[3:0]

PartNumber  27:12 Part Number (16 bits)
This field identifies the part number of the processor 
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A. 

 R EJ_ManufID[10:0]

R  0 reserved R 1

31 29 28 25 24 23 21 20 17 16 15 14 13 11 10 1 0

EJTAGver reserved DINTsup ASIDsize reserved MIPS16 0 NoDMA TYPE TYPEINFO 32/64

Table 13.28 Implementation Register Descriptions 

Fields

Description
Read / 
Write Reset StateName Bit(s)

EJTAGver 31:29 Indicates EJTAG version 6.0. R 6

reserved 28:25 Reserved. Must be written as zeros; returns zeros on reads. R 0
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DINTsup 24 DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is supported. This bit 
is encoded as follows:

0: DINT signal from the probe is not supported.
1: Probe can use DINT signal to make debug interrupt.

R EJ_DINTsup

ASIDsize 23:21 Size of ASID field in implementation. This bit is encoded as follows:

0: No ASID
1: Reserved
2: 8-bit ASID
3: Reserved

R 2

R 20:17 Reserved R 0

MIPS16 16 Indicates whether MIPS16 is implemented. This bit is encoded as fol-
lows:

0: No MIPS16 support
1: MIPS16 implemented

R 1

R 15 Reserved. Must be written as zeros; returns zeros on reads. R 0

NoDMA 14 R 1

TYPE  13:11 Indicates what type of entity is associated with this TAP
and whether the TypeInfo field exists. This field is encoded as 
follows:

000: TYPEINFO field not implemented. Legacy value.
001: This TAP is attached to a CPU and the TYPEINFO field reflects 
EBaseCPUNUM.
010: This TAP is attached to a Trace-Master and the TypeInfo field is not 
used.
011 - 111: Reserved

R 1

TYPEINFO  10:1 Identifier information specific to the type of entity associated
with this TAP. The attached entity is specified by the TYPE field. This 
field is encoded as follows: 

CPU: Reflects EBaseCPUNUM of the associated CPU.
Others: Reserved.

R 1

32/64 0 32/64 bit processor. This bit is always ‘1’ in the P6600 core.

0: 32-bit processor
1: 64-bit processor

R 1

Table 13.28 Implementation Register Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)
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13.14.4.6 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the 
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by 
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0 
or written to 0. This is in order to ensure proper handling of processor accesses.

The value used for reset indicated in the table below takes effect on CPU resets, but not on TAP controller resets (e.g. 
TRST_N). TCK clock is not required when the CPU reset occurs, but the bits are still updated to the reset value when 
the TCK is supplied. The first 5 TCK clocks after CPU reset may result in reset of the bits, due to synchronization 
between clock domains.

Figure 13.24 EJTAG Control Register Format 

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz R Doze Halt PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res EjtagBrk R DM R

Table 13.29 EJTAG Control Register Descriptions 

Fields

Description
Read / 
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a CPU reset has occurred:

0: No reset occurred since bit last cleared.
1: Reset occurred since but last cleared.

The Rocc bit will remain set to 1 as long as reset is applied. 
This bit must be cleared by the probe to acknowledge that the inci-
dent was detected.
The EJTAG Control register is not updated in the Update-DR state 
unless Rocc is 0 or written to 0, in order to ensure proper handling of 
processor access following reset.

R/W 1

Psz[1:0] 30:29 Processor Access Transfer Size
These bits are used in combination with the lower two address bits 
of the Address register to determine the size of a processor access 
transaction. The bits are only valid when processor access is pend-
ing. This field is encoded as follows:

00: Byte
01: Halfword
10: Word
11: Doubleword 

R Undefined

R 28:23 Reserved. Write as zero. Returns zero on reads. R 0
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Doze 22 Doze state
The Doze bit indicates any type of low-power mode. The value is 
sampled in the Capture-DR state of the TAP controller:

0: CPU not in low power mode.
1: CPU is in low power mode.

Doze includes the Reduced Power (RP) and WAIT power-reduction 
modes.

R 0

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is running or 
stopped. The value is sampled in the Capture-DR state of the TAP 
controller:

0: Internal system clock is running.
1: Internal system clock is stopped.

R 0

PerRst 20 Peripheral Reset 
When the bit is set to 1, it is only guaranteed that the peripheral reset 
has occurred in the system when the read value of this bit is also 1. 
This is to ensure that the setting from the TCK clock domain takes 
effect in the CPU clock domain and in peripherals.
When the bit is written to 0, it must also be read as 0 before it is 
guaranteed that the indication is also cleared in the CPU clock 
domain.
This bit controls the EJ_PerRst signal on the core.

R/W 0

PRnW 19 Processor Access Read and Write
This bit indicates if the pending processor access is for a read or 
write transaction, and the bit is only valid while PrAcc is set:

0: Read transaction.
1: Write transaction.

R Undefined

PrAcc 18 Processor Access (PA)
Read value of this bit indicates if a Processor Access (PA) to the 
EJTAG memory is pending:

0: No pending processor access.
1: Pending processor access.

The probe’s software must clear this bit to 0 to indicate the end of 
the processor access. A write of 1 is ignored.

A pending Processor Access is cleared when Rocc is set, but another 
PA may occur just after the reset if a debug exception occurs. 
Finishing a Processor Access is not accepted while the Rocc bit is 
set. This is to avoid a Processor Access occurring after the reset is 
finished because of an indication of a Processor Access that 
occurred before the reset.
The FASTDATA access can clear this bit.

R/W0 0

R 17 Reserved. Write as zero. Returns zero on reads. R 0

Table 13.29 EJTAG Control Register Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)
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PrRst 16 Processor Reset. 
When the bit is set to 1, then it is only guaranteed that this setting 
has taken effect in the system when the read value of this bit is also 
1. This is to ensure that the setting from the TCK clock domain gets 
effect in the CPU clock domain, and in peripherals.
When the bit is written to 0, then the bit must also be read as 0 
before it is guaranteed that the indication is cleared in the CPU clock 
domain also.
This bit controls the EJ_PrRst signal. If the signal is used in the sys-
tem, then it must be ensured that both the processor and all devices 
required for a reset are properly reset. Otherwise the system may fail 
or hang. The bit resets itself, since the EJTAG Control register is 
reset by a reset.

R/W 0

ProbEn 15 Probe Enable
This bit indicates to the CPU if the EJTAG memory is handled by 
the probe so processor accesses are answered:

0: Probe does not handle EJTAG memory transactions.
1: Probe does handle EJTAG memory transactions.

It is an error by the software controlling the probe if it sets the Prob-
Trap bit to 1, but resets the ProbEn to 0. The operation of the proces-
sor is UNDEFINED in this case.

The ProbEn bit is reflected as a read-only bit in the ProbEn bit, bit 0, 
in the Debug Control Register (DCR).

The read value indicates the effective value in the DCR, due to syn-
chronization issues between TCK and CPU clock domains; however, 
it is ensured that change of the ProbEn prior to setting the EjtagBrk 
bit will have effect for the debug handler executed due to the debug 
exception.

The reset value of the bit depends on whether the EJTAGBOOT 
indication is given or not:

No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1
from

EJTAGBOOT

Table 13.29 EJTAG Control Register Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)
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ProbTrap 14 Probe Trap 
This bit controls the location of the debug exception vector. This bit 
is encoded as follows:

0: In normal memory. Vector is located as described in Section 
13.14.1.2 “DebugVectorAddr Register”
1: In EJTAG memory at 0xFFFF.FFFF.FF20.0200 in dmseg

Valid setting of the ProbTrap bit depends on the setting of the Pro-
bEn bit, see comment under ProbEn bit.

The ProbTrap should not be set to 1 unless the ProbEn bit is also set 
to 1 to indicate that the EJTAG memory may be accessed.

The read value indicates the effective value to the CPU, due to syn-
chronization issues between TCK and CPU clock domains; however, 
it is ensured that change of the ProbTrap bit prior to setting the 
EjtagBrk bit will have effect for the EjtagBrk.

The reset value of the bit depends on whether the EJTAGBOOT 
indication is given or not:

R/W 0 or 1
from

EJTAGBOOT

R 13 Reserved. Write as zero. Returns zero on reads. R 0

EjtagBrk 12 EJTAG Break
Setting this bit to 1 causes a debug exception to the processor, unless 
the CPU was in debug mode or another debug exception occurred.
When the debug exception occurs, the processor core clock is 
restarted if the CPU was in low power mode. This bit is cleared by 
hardware when the debug exception is taken.
The reset value of the bit depends on whether the EJTAGBOOT 
indication is given or not:

0: No EJTAGBOOT indication given.
1: EJTAGBOOT indication given.

R/W 0 or 1
from

EJTAGBOOT

R 11:4 Reserved. Write as zero. Returns zero on reads. R 0

DM 3 Debug Mode
This bit indicates the debug or non-debug mode:

0: Processor is in non-debug mode.
1: Processor is in debug mode.

The bit is sampled in the Capture-DR state of the TAP controller. 
This bit is the equivalent debug mode indicator from the TAP inter-
face.

R 0

R 2:0 Reserved. Write as zero. Returns zero on reads. R 0

Table 13.29 EJTAG Control Register Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)
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13.14.5 Processor Access Registers

13.14.5.1 Processor Access Address Register

The Address register is used to provide the address of the processor access in the dmseg, and the register is only valid 
when a processor access is pending. The length of the Address register is 32 bits, and this register is selected by shift-
ing in the ADDRESS instruction. 

13.14.5.2 Processor Access Data Register

The Data register is used to provide data value to and from a processor access. The length of the Data register is 64 
bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from 
this register is only valid when a processor access write is pending. The register is used to provide the data value for a 
processor access read due to a CPU load or fetch from the dmseg. The register will be updated with a new value when 
a processor access write is pending. 

The Data register is 64 bits wide. Data alignment is not used for this register, so the value in the Data register matches 
data on the internal bus. The unused bytes for a processor access write are undefined, and for a Data register read, 0 
(zero) must be shifted in for the unused bytes.

The organization of bytes in the Data register depends on the endianess of the core, as shown in Figure 13.25. The 
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

Figure 13.25 Endian Formats for the Data Register

The size of the transaction and thus the number of bytes available/required for the Data register is determined by the 
Psz field in the ECR.

13.14.6 Fastdata Registers

13.14.6.1 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit 
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether 

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.



 

710 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata 
access was successful or not (if completion was requested). 

Figure 13.26 Fastdata Register Format  

13.14.7 FDC TAP Register

The FDC TAP instruction performs a 38 bit bidirectional transfer of the FDC TAP register. The register format is 
shown in Figure 13.27 and the fields are described in Figure 13.31

Figure 13.27 FDC TAP Register Format 

31 1 0

R SPrAcc

Table 13.30 Fastdata Register Field Description

Fields

Description
Read / 
Write

Power-up 
StateName Bits

R 31:1 Reserved. Write as zero. Returns zero on reads. R 0

SPrAcc 0 Shifting in a zero value requests completion of the Fastdata access. 
The PrAcc bit in the EJTAG Control register is overwritten with 
zero when the access succeeds. (The access succeeds if PrAcc is 
one and the operation address is in the legal dmseg Fastdata area.) 
When successful, a one is shifted out. Shifting out a zero indicates 
a Fastdata access failure.
Shifting in a one does not complete the Fastdata access and the 
PrAcc bit is unchanged. Shifting out a one indicates that the access 
would have been successful if allowed to complete and a zero indi-
cates the access would not have successfully completed.

R/W Undefined

37 36 35 32 31 0

In Probe Data 
Accept

Data In 
Valid

ChannelID Data
Out Receive 

Buffer Full
Data Out 

Valid

Table 13.31 FDC TAP Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits

Probe Data 
Accept

37 Indicates to core that the probe is accepting the data that 
was scanned out.

W Undefined

Data In Valid 36 Indicates to core that the probe is sending new data to the 
receive FIFO.

W Undefined

Receive Buf-
fer Full

37 Indicates to probe that the receive buffer is full and the 
core will not accept the data being scanned in. Analagous 
to ProbeDataAccept, but opposite polarity

R 0
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13.14.8 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU access to FDC is via loads and stores to the FDC 
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration 
and status information, as well as access to the transmit and receive FIFOs. The registers and their respective offsets 
are shown in Table 13.32

13.14.8.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

This is the general CDMM Access Control and Status register which defines the device type and size and controls 
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself is only acces-
sible in kernel mode. Figure 13.28 has the format of an Access Control and Status register (shown as a 64-bit regis-
ter), and Table 13.33 describes the register fields.

Figure 13.28 FDC Access Control and Status Register

Data Out 
Valid

36 Indicates to probe that the core is sending new data from 
the transmit FIFO

R 0

ChannelID 35:32 Channel number associated with the data being scanned in 
or out. This field can be used to indicate the type of data 
that is being sent and allow independent communication 
channels

Scanning in a value with ChannelID=0xd and Data In 
Valid = 0 will generate a receive interrupt. This can be 
used when the probe has completed sending data to the 
core.

R/W Undefined

Data 31:0 Data value being scanned in or out R/W Undefined

Table 13.32 FDC Register Mapping

Offset in CDMM 
device block

Register 
Mnemonic Register Name and Description

0x0 FDACSR FDC Access Control and Status Register

0x8 FDCFG FDC Configuration Register

0x10 FDSTAT FDC Status Register

0x18 FDRX FDC Receive Register

0x20 + 0x8* n FDTXn FDC Transmit Register n (0 n  15)

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0

R DevID R DevSize DevRev R Uw Ur Sw Sr

Table 13.31 FDC TAP Register Field Descriptions

Fields

Description
Read / 
Write

Reset 
StateName Bits
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13.14.8.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 13.29 has the format of the FDC Configuration register, and Table 13.34 describes the register fields.

Figure 13.29 FDC Configuration Register

Table 13.33 FDC Access Control and Status Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

R 63:32 Reserved. Write as zero. Returns zero on reads. R 0

DevType 31:24 This field specifies the type of device. R DevType

R 23:22 Reserved. Write as zero. Returns zero on reads. R 0

DevSize 21:16 This field specifies the number of extra 64-byte blocks allocated to 
this device. The value 0x2 indicates that this device uses 2 extra, or 3 
total blocks.

R 0x2

DevRev 15:12 This field specifies the revision number of the device. The value 0x0 
indicates that this is the initial version of FDC

R 0x0

R 11:4 Reserved. Write as zero. Returns zero on reads. R 0

Uw 3 This bit indicates if user-mode write access to this device is enabled. 
A value of 1 indicates that access is enabled. A value of 0 indicates 
that access is disabled. An attempt to write to the device while in 
user mode with access disabled is ignored.

R/W 0

Ur 2 This bit indicates if user-mode read access to this device is enabled. 
A value of 1 indicates that access is enabled. A value of 0 indicates 
that access is disabled. An attempt to read from the device while in 
user mode with access disabled will return 0 and not change any 
state.

R/W 0

Sw 1 This bit indicates if supervisor-mode write access to this device is 
enabled. A value of 1 indicates that access is enabled. A value of 0 
indicates that access is disabled. An attempt to write to the device 
while in supervisor mode with access disabled is ignored.

R/W 0

Sr 0 This bit indicates if supervisor-mode read access to this device is 
enabled. A value of 1 indicates that access is enabled. A value of 0 
indicates that access is disabled. An attempt to read from the device 
while in supervisor mode with access disabled will return 0 and not 
change any state..

R/W 0

31 20 19 18 17 16 15 8 7 0

R Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize

Table 13.34 FDC Configuration Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

R 31:20 Reserved for future use. Read as zeros, must be written as zeros. R 0
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13.14.8.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 13.30 has the format of 
the FDC Status register, and Table 13.35 describes the register fields.

Figure 13.30 FDC Status Register

TxIntThresh 19:18 Controls whether transmit interrupts are enabled and the state of the 
TxFIFO needed to generate an interrupt. This field is encoded as fol-
lows:

00: Transmit interrupt disabled
01: Empty
10: Not full
11: Almost empty. Either 0 or 1 entries in use. Refer to 
Section 13.15.2 for more information.

R/W 0

RxIntThresh 17:16 Controls whether receive interrupts are enabled and the state of the 
RxFIFO needed to generate an interrupt. This field is encoded as fol-
lows: 

00: Receive interrupt disabled
01: Full
10: Not empty
11: Almost full. Either 0 or 1 entry free.

R/W 0

TxFIFOSize 15:8 This field holds the total number of entries in the transmit FIFO. R Preset

RxFIFOSize 7:0 This field holds the total number of entries in the receive FIFO. R Preset

31 24 23 16 15 8 7 4 3 2 1 0

Tx_Count Rx_Count 0 RxChan RxE RxF TxE TxF

Table 13.35 FDC Status Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

Tx_Count 31:24 This optional field is not implemented and will read as 0 R 0

Rx_Count 23:16 This optional field is not implemented and will read as 0 R 0

0 15:8 Reserved. Must be written as zeros and read as zeros. R 0

RxChan 7:4 This field indicates the channel number used by the top item in the 
receive FIFO. This field is only valid if RxE=0.

R Undefined

RxE 3 If RxE is set, the receive FIFO is empty. If RxE is not set, the FIFO is 
not empty.

R 1

RxF 2 If RxF is set, the receive FIFO is full. If RxF is not set, the FIFO is 
not full.

R 0

TxE 1 If TxE is set, the transmit FIFO is empty. If TxE is not set, the FIFO 
is not empty.

R 1

Table 13.34 FDC Configuration Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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13.14.8.4 FDC Receive (FDRX) Register (Offset 0x18)

This register exposes the top entry in the receive FIFO. A read from this register returns the top item in the FIFO and 
removes it from the FIFO itself. The result of a write to this register is UNDEFINED. The result of a read when the 
FIFO is empty is also UNDEFINED so software must check the FDSTATRxE flag prior to reading. Figure 13.31 has 
the format of the FDC Receive register, and Table 13.36 describes the register fields.

Figure 13.31 FDC Receive Register

13.14.8.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers all access the bottom entry in the transmit FIFO. The different addresses are used to generate 
a 4b channel identifier that is attached to the data value. This allows software to track different event types without 
needing to reserve a portion of the 32b data as a tag. A write to one of these registers results in a write to the transmit 
FIFO of the data value and channel ID corresponding to the register being written. Reads from these registers are 
UNDEFINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software 
running on the core must check the FDSTATTxF flag to ensure that there is space for the write. Figure 13.32 has the for-
mat of the FDC Transmit register, and Table 13.37 describes the register fields.

Figure 13.32 FDC Transmit Register

TxF 0 If TxF is set, the transmit FIFO is full. If TxF is not set, the FIFO is 
not full.

R 0

31 0

RxData

Table 13.36 FDC Receive Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

RxData 31:0 This register holds the top entry in the receive FIFO R Undefined

31 0

TxData

Table 13.37 FDC Transmit Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

TxData 31:0 This register holds the bottom entry in the transmit FIFO W, 
Undefined 
value on 

read

Undefined

Table 13.35 FDC Status Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits
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13.14.9 PDtrace™ Registers (Software Control)

The CP0 registers associated with PDtrace are listed in Table 13.39. Refer to Chapter 2, CP0 registers, for more infor-
mation on these registers. 

13.14.10 Trace Control Block (TCB) Registers (Hardware Control)

The TCB registers used to control its operation are listed in Table 13.40 and Table 13.41. These registers are accessed 
via the EJTAG TAP interface, or by software through mapping to drseg memory space.  

Table 13.38 FDTXn Address Decode

Addr Chan Addr Chan Addr Chan Addr Chan

0x20 0x0 0x40 0x4 0x60 0x8 0x80 0xc

0x28 0x1 0x48 0x5 0x68 0x9 0x88 0xd

0x30 0x2 0x50 0x6 0x70 0xa 0x90 0xe

0x38 0x3 0x58 0x7 0x78 0xb 0x98 0xf

Table 13.39 A List of Coprocessor 0 Trace Registers

Register Number Sel Register Name

23 1 TraceControl

23 2 TraceControl2

24 2 TraceControl3

23 3 UserTraceData1

24 3 UserTraceData2

Table 13.40 TCB EJTAG Registers 

EJTAG 
Register Name Description Implemented

0x10 TCBCONTROLA Control register in the TCB mainly used for controlling the trace input 
signals to the core on the PDtrace interface. See Section 
13.14.10.1 “TCBCONTROLA Register”.

Yes

0x11 TCBCONTROLB Control register in the TCB that is mainly used to specify what to do with 
the trace information. The REG [25:21] field in this register specifies the 
number of the TCB internal register accessed by the TCBDATA register. 
See Section 13.14.10.2 “TCBCONTROLB Register”.

Yes

0x12 TCBDATA This is used to access registers specified by the REG field in the 
TCBCONTROLB register. See Section 13.14.10.3 “TCBDATA 
Register”.

Yes

0x14 TCBCONTROLC Control Register in the TCB used to control and hold tracing information. 
See Section 13.14.10.4 “TCBCONTROLC Register”.

Yes

0x13 TCBCONTROLD Control Register in the TCB used to control and hold tracing information. 
See Section 13.14.10.5 “TCBCONTROLD Register”.

Yes
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13.14.10.1 TCBCONTROLA Register

The TCB is responsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the 
core’s tracing logic. Most of the control is done using the TCBCONTROLA register.

The TCBCONTROLA register is written by an EJTAG TAP controller instruction, TCBCONTROLA (0x10). This reg-
ister is also mapped to offset 0x3000 in drseg.

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 13.41.

Figure 13.33 TCBCONTROLA Register Format 

0x16 TCBCONTROLE Control Register in the TCB used to control tracing for the performance 
counter tracing feature. See Section 13.14.10.6 “TCBCONTROLE 
Register”.

Yes

31 30 29 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

SyPExt 0 VModes ADW SyP TB IO D E S K U ASID G TFCR TLSM TIM On

Table 13.41 TCBCONTROLA Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

SyPExt 31:30 These two bits used to be Implementation specific until PDtrace spec 
revision 06.00 when it reverts to architecturally defined bits to extend 
the SyP (sync period) field for implementations that need higher num-
bers of cycles between synchronization events.

The value of SyP is extended by assuming that these two bits are juxta-
posed to the left of the three bits of SyP (SyPExt.SyP). When only SyP 
was used to specify the synchronization period, the value was 2x, where 
x was computed from SyP by adding 5 to the actual value represented 
by the bits. A similar formula is applied to the 5 bits just obtained by the 
juxtaposition of SyPExt and SyP. Sync period values greater than 231 
are UNPREDICTABLE. 

Since the value of 11010 represents the value of 31 (with +5), all values 
greater than 11010 are UNPREDICTABLE.
Note that with these new bits, a sync period range of 25 to 231 cycles can 
now be obtained.

R/W 0

0 29:26 Reserved. Must be written as zero; returns zero on read. R 0

VModes 25:24 This field specifies the subset of tracing that is supported by the proces-
sor. This field is encoded as follows:

01: PC and load and store address tracing only

All other values are invalid.

R 10

Table 13.40 TCB EJTAG Registers (continued)

EJTAG 
Register Name Description Implemented
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ADW 23 PDO_AD bus width.
0: The width is 16 bits.
1: The width is 32 bits.

R 1

SyP 22:20 Used to indicate the synchronization period.
The period (in cycles) between which the periodic synchronization 
information is to be sent is defined as shown below.

000: 25

001: 26

010: 27

011: 28

100: 29

101: 210

110: 211

111: 212

This field defines the value on the PDI_SyncPeriod signal.

R/W 000

TB 19 Trace All Branches. When set to one, this field indicates that the core 
must trace either full or incremental PC values for all branches. When 
set to zero, only the unpredictable branches are traced.

R/W Undefined

IO 18 Inhibit Overflow. This bit is used to indicate to the core trace logic that 
slow but complete tracing is desired. Hence, the core tracing logic must 
not allow a FIFO overflow and discard trace data. This is achieved by 
stalling the pipeline when the FIFO is nearly full so that no trace records 
are ever lost.

R/W Undefined

D 17 When set to one, this enables tracing in Debug mode, i.e., when the DM 
bit is one in the Debug register. For trace to be enabled in Debug mode, 
the On bit must be one, and either the G bit must be one, or the current 
process must match the ASID field in this register.
When set to zero, trace is disabled in Debug mode, irrespective of other 
bits.

R/W Undefined

E 16 This controls when tracing is enabled. When set, tracing is enabled 
when either of the EXL or ERL bits in the Status register is one, pro-
vided that the On bit (bit 0) is also set, and either the G bit is set, or the 
current process ASID matches the ASID field in this register.

Note that if TraceControl3GV is set, the GuestID of instruction execu-
tion must match the TraceControl3GuestID register field for tracing to 
be enabled. 

R/W Undefined

S 15 When set, this enables tracing when the core is in Supervisor mode as 
defined in the MIPS32 or MIPS64 architecture specification. This is 
provided the On bit (bit 0) is also set, and either the G bit is set, or the 
current process ASID matches the ASID field in this register.

Note that if TraceControl3.GV is set, the GuestID of instruction execu-
tion must match the TraceControl3.GuestID register field for tracing to 
be enabled. 

R/W Undefined

Table 13.41 TCBCONTROLA Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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13.14.10.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). This register generally controls what to do with 
the trace information received. This register is also mapped to offset 0x3008 in drseg.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 13.42.

K 14 When set, this enables tracing when the On bit is set and the core is in 
Kernel mode. Unlike the usual definition of Kernel Mode, this bit 
enables tracing only when the ERL and EXL bits in the Status register 
are zero. This is provided the On bit (bit 0) is also set, and either the G 
bit is set, or the current process ASID matches the ASID field in this 
register.

Noe that if TraceControl3.GV is set, the GuestID of instruction execu-
tion must match the TraceControl3.GuestID register field for tracing to 
be enabled. 

R/W Undefined

U 13 When set, this enables tracing when the core is in User mode as defined 
in the MIPS32 or MIPS64 architecture specification. This is provided 
the On bit (bit 0) is also set, and either the G bit is set, or the current 
process ASID matches the ASID field in this register.

Noe that if TraceControl3.GV is set, the GuestID of instruction execu-
tion must match the TraceControl3.GuestID register field for tracing to 
be enabled. 

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G bit is one, 
this field is ignored.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all processes, 
provided that other enabling functions (like U, S, etc.,) are also true.

R/W Undefined

TFCR 3 When set, this indicates to the PDtrace interface that complete informa-
tion about instruction if it can be a function call or return should be 
traced. It also indicates to the TCB that the optional Fcr bit must be 
traced in the appropriate trace formats

R/W Undefined

TLSM 2 When set, this indicates to the PDtrace interface that complete informa-
tion about Load and Store data cache miss should be traced. It also indi-
cates to the TCB that the optional LSm bit must be traced in the 
appropriate trace formats.

R/W Undefined

TIM 1 When set, this indicates to the PDtrace interface that complete informa-
tion about instruction cache miss should be traced. It also indicates to 
the TCB that the optional Im bit must be traced in the appropriate trace 
formats.

R/W Undefined

On 0 This is the global trace enable switch to the core. When zero, tracing 
from the core is always disabled, unless enabled by core internal soft-
ware override.
When set to one, tracing is enabled whenever the other enabling func-
tions are also true.

R/W 0

Table 13.41 TCBCONTROLA Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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Figure 13.34 TCBCONTROLB Register Format 

 

31 30 28 27 26 25 21 20 19 18 17 16 12 11 10 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR 0 TRPAD FDT 0 TLSIF 0 0 CA 0 EN

Table 13.42 TCBCONTROLB Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

WE 31 Write Enable. 
Only when set to 1 will the other bits be written in TCBCONTROLB.
This bit will always read 0.

R 0

0 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWSrc-
Width

27:26 Used to indicate the number of bits used in the source field of the Trace Word, 
this is a configuration option of the core that cannot be modified by software.
00 - zero source field width
01 - two bit source field width
10 - four bit source field width
11 - reserved for future use
This field can only be 10 for the P6600 core.

R 10

REG 25:21 Register select: This field select the registers accessible through the TCBDATA 
register. Legal values are shown in Table 13.41.

R/W 0

WR 20 Write Registers: When set, the register selected by REG field is read and writ-
ten when TCBDATA is accessed. Otherwise the selected register is only read.

R/W 0

0 19 Reserved. Must be written as zero; returns zero on read. R 0

TRPAD 18 Trace RAM access disable bit, disables program software access to the 
on-chip trace RAM using load/store instructions. If probe access is not pro-
vided in the implementation, then this register bit must be tied to zero value to 
allow software to control access.

R/W 0

FDT 17 Filtered Data Trace Mode enable. 
When the bit is 0, this mode is disabled. 
When set to 1, this mode is enabled.

R/W 0

0 16:12 Reserved. Must be written as zero; returns zero on read. R 0

TLSIF 11 When set, this indicates to the TCB that information about Load and Store 
data cache miss, instruction cache miss, and function call are to be taken from 
the PDtrace interface and trace them out in the appropriate trace formats as the 
three optional bits LSm, Im, and Fcr.

R/W 0

0 10:7 Reserved. Must be written as zero; returns zero on read. R 0

TWSrcVal 6:3 These bits are used to indicate the value of the TW source field that will be 
traced if TWSrcWidth indicates a source bit field width of 2 or 4 bits. Note 
that if the field is 2 bits, then only bits 4:3 of this field will be used in the TW.

R Preset

CA 2 Cycle accurate trace. 
When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and remove bit zero 
from all transmitted TF’s. 
The stall information included/excluded is:
• TF6 formats with TCBcode 0001 and 0101.
• All TF1 formats.

R/W 0
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13.14.10.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field; see Table 13.40. 
Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the 
TCBCONTROLBWR bit is set. For read-only registers, TCBCONTROLBWR is a don’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 13.43. The width of TCBDATA 
is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

Figure 13.35 TCBDATA Register Format 

13.14.10.4 TCBCONTROLC Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLC, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger) can therefore manipulate the trace output by 
writing to this register.

The TCBCONTROLC register is written by the EJTAG TAP controller instruction, TCBCONTROLC (0x13). This reg-
ister is also mapped to offset 0x3010 in drseg. 

The format of the TCBCONTROLC register is shown below, and the fields are described in Table 13.44.

OfC 1 This bit is always set to 1, indicating that the trace is sent to off-core coher-
ency manager funnel.

R 1

EN 0 Enable trace.
This is the master enable for trace to be generated from the TCB. This bit can 
be set or cleared, either by writing this register or from a start/stop trigger.
When set to 1, Trace Words are generated and sent to the trace funnel.
When set to 0, trace information is ignored. A potential TF6-stop (from a stop 
trigger) is generated as the last information, the TCB pipe-line is flushed, and 
trace output is stopped.

R/W 0

31(63) 0

Data

Table 13.43 TCBDATA Register Field Descriptions 

Fields

Description Read/Write Reset StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the 
TCBCONTROLBREG field

Only writable if 
TCBCONTROLBWR is 

set

0

Table 13.42 TCBCONTROLB Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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Figure 13.36 TCBCONTROLC Register Format 

13.14.10.5 TCBCONTROLD Register

The TCB includes a control register, TCBCONTROLD, whose values are used to enable tracing of the Coherence 
Manager. External software (i.e., debugger) can therefore manipulate the trace output by writing to this register. Each 
of the cores in the system has this register, and the Core_CM_En field is considered from each of the cores.

The TCBCONTROLD register is written by an EJTAG TAP controller instruction, TCBCONTROLD (0x14). This register 
is also mapped to offset 0x3018 in drseg. The format of the TCBCONTROLD register is shown below, and the fields are 
described in Table 13.45.

31 30 29 28 27 23 22 0

Res NumDO Mode R

Table 13.44 TCBCONTROLC Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

Res 31:30 Reserved for future use. Must be written as zero; returns zero on read. 0 0

NumDO 29:28 Specifies the number of bits needed by this implementation to specify 
the DataOrder:
10 - Six bits

R 10

R 27:26 Reserved for future use. Must be written as zero; returns zero on read. R/W 0

Mode 25:23 When tracing is turned on, this signal specifies what information is to 
be traced by the core. It uses 5 bits, where each bit turns on a tracing of 
a specific tracing mode. This field is encoded as follows:

Bit 23: If set, trace the program counter (PC)
Bit 24: If set, trace the load address.
Bit 25: If set, trace the store address.

If the corresponding bit is 0, then the Trace Value shown above is not 
traced by the processor.

R/W 0

R 22:0 Reserved for future use. Must be written as zero; returns zero on read. R/W 0
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Figure 13.37 TCBCONTROLD Register Format   

13.14.10.6 TCBCONTROLE Register

The trace output from the processor on the PDtrace interface can be controlled by the trace input signals to the proces-
sor from the TCB. The TCB uses a control register, TCBCONTROLE, whose values are used to change the signal val-
ues on the PDtrace input interface. External software (i.e., debugger), can therefore manipulate the trace output by 
writing the TCBCONTROLE register.

The TCBCONTROLE register is written by an EJTAG TAP controller instruction, TCBCONTROLE (0x16).This register 
is also mapped to offset 0x3020 in drseg.

The format of the TCBCONTROLE register is shown below, and the fields are described in Table 13.46.

Figure 13.38 TCBCONTROLE Register Format 

31 2 1 0

0 Core_CM_En 0

Table 13.45 TCBCONTROLD Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:2 Reserved. Must be written as zero; returns zero on read. R 0

Core_CM_En 1 Core_CM_Enable: The CM looks at this bit coming from each of the 
cores. Allows cores other than the master to enable tracing if other con-
ditions are met.

R/W 0

0 0 Reserved. Must be written as zero; returns zero on read. R 0

31 26 25 24 23 22 21 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 UPR 0 MSA GV GuestID 0 ADWB ADWU TdIDLE 0 PecOvf PeCFCR PeCBP PeCSync PeCE PeC

Table 13.46 TCBCONTROLE Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

0 31:26 Reserved for future use. Must be written as zero; returns zero on 
read.

0 0

UPR 25 Indicates that for 128-bit load/stores, only the lower 64 bits are 
traced and the lack of upper 64 bits is indicated by an additional 
bit in TF4. 

Example situations are MSA if tracing of 128-bit MSA load/store 
is not implemented (see bit TCBCONTROLE.MSA) and bonded 
2x64-bit instructions.

R 1

0 24 Reserved for future use. Must be written as zero; returns zero on 
read.

0 0
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MSA 23 MSA Load/Store Data Trace. This bit is encoded as follows.

0 - MSA load/store data trace not implemented
1 - MSA load/store data trace implemented

R 1

GV 22 Enable trace for all GuestIDs or only 1 GuestID.

0 - trace enabled for all Guests
1 - trace enabled only for Guest specified by TCBContro- 
lE.GuestID

R 0

GuestID 21:14 The GuestID field to match when tracing. If GuestCtl0.G1 = 1, 
then the active width of the register field matches the number of 
writeable bits of GuestCtl1.ID and the rest of the bits of th is field 
are read-only as zero.

If GuestCtl0.G1 = 0, then only the right-most bit of this register 
field is writeable and the rest of the bits of this field are read-only 
as zero.

A value of zero is used to select Root-mode execution.

R/W Undefined

0 13 Reserved for future use. Must be written as zero; returns zero on 
read.

R 0

ADWB 12:11 Number of bits used to encode ADW field in TF3/TF4:

0 - no ADW field in TF3/TF4
1 - 1 bit TF3/TF4.ADW field is present.
2 - 2 bit TF3/TF4.ADW field is present.
3 - 3 bit TF3/TF4.ADW field is present.

R Preset

ADWU 10:9 Units of ADW width specifier entry in TF3/TF4. When ADWB 
is zero, there is no ADW field in TF3/ TF4, and ADWU gives the 
size of the AD field. 

When the ADWB and ADWU fields are both zero, 
TCBCONTROLA.ADW gives the size of the AD field.

R Preset

TrIdle 8 Trace Unit Idle. This bit indicates if the trace hardware is cur-
rently idle (not processing any data). This can be useful when 
switching control of trace from hardware to software and 
vice-versa. The bit is read-only and updated by the trace hard-
ware.

R 1

0 7:6 Reserved for future use; Must be written as zero; returns zero on 
read. (Hint to architect, Reserved for future expansion of perfor-
mance counter trace events).

R 0

PeCOvf 5 Trace performance counters when one of the performance coun-
ters overflows its count value. Enabled when set to 1.

R/W 0

PeCFCR 4 Trace performance counters on function call/return or on an 
exception handler entry. Enabled when set to 1.

R/W 0

PeCBP 3 Trace performance counters on hardware breakpoint match trig-
ger. Enabled when set to 1.

R/W 0

Table 13.46 TCBCONTROLE Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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The following registers are accessed by the TCBCONTROLBREG field.

13.14.10.7 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the 
TCBCONFIG register is shown below, and the fields are described in Table 13.47. This register is also accessible at off-
set 0x3028 in DRSEG.

Figure 13.39 TCBCONFIG Register Format 

PeCSync 2 Trace performance counters on synchronization counter expira-
tion. Enabled when set to 1.

R/W 0

PeCE 1 Performance counter tracing enable. When set to 0, the tracing 
out of performance counter values as specified is disabled. To 
enable, this bit must be set to 1.

Config 
Option

0

PeC 0 Specifies whether or not Performance Control Tracing is imple-
mented. This bit is always set to 1 in the P6600 core.

R 1

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN 0 OfT REV

Table 13.47 TCBCONFIG Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revision, 
TCBCONFIG1 does not exist and this bit always reads zero.

R 0

0 30:25 Reserved. Must be written as zero; returns zero on read. R 0

TRIG 24:21 Number of triggers implemented. This also indicates the number of 
TCBTRIGx registers that exist.

R Preset
Legal values are 0 - 8

SZ 20:17 On-chip trace memory size. In the P6600 core, this field is not used 
since the trace memory is stored inside the Coherency Manager.

R Undefined

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the CPU clock to the 
off-chip trace memory interface clock. The clock-ratio encoding is 
shown in Table 13.48.
This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the CPU clock to the
off-chip trace memory interface clock.The clock-ratio encoding is
shown in Table 13.48.
This bit is reserved if off-chip trace option is not implemented.

R Preset

Table 13.46 TCBCONTROLE Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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13.14.10.8 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGx, where x is a single digit number 
from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger registers implemented is defined in the 
TCBCONFIGTRIG field. An unimplemented register will read all zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger is fired, and the action to be taken when the trigger 
occurs. Please also read Section 13.16 “TCB Trigger Logic”, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 13.49. These registers are 
also accessible at offset 0x3200-0x3238 in DRSEG.

PW 10:9 ProbeWidth: Number of bits available on the off-chip trace interface
data pins. The number of data pins is encoded as shown in the table. 
This field is encoded as follows:

00 - 01: Reserved
10: 16 bits
11: Reserved

R 10

PiN 8:6 Pipe number.
Indicates the number of execution pipelines.

R 0

0 5 Reserved. Must be written as zero; returns zero on read. R 0

OfT 4 When set, this bit indicates that off-chip trace interface is present. 
This bit is preset based on the selected option when the TCB is 
implemented, and on the existence of a PIB module.

R Preset

REV 3:0 Revision of TCB. R 0x9

Table 13.48 Clock Ratio Encoding of the CR Field

Encoding of CR Field Trace Clock:Core Clock Ratio

3’b000  1:20 

3’b001  1:16

3’b010  1:12

3’b011  1:10

3’b100  1:2

3’b101  1:4

3’b110  1:6

3’b111  1:8

Table 13.47 TCBCONFIG Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateName Bits
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Figure 13.40 TCBTRIGx Register Format 

31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Trace 0 CHTro PDTro 0 DM CHTri PDTri Type FO TR

Table 13.49 TCBTRIGx Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

TCBinfo 31:24 This field is to be used in a possible TF6 trace format when this trig-
ger fires.

R/W 0

Trace 23 When set, generate TF6 trace information when this trigger fires. 
Use TCBinfo field for the TCBinfo of TF6 and use Type field for the 
two MSB of the TCBtype of TF6. The two LSB of TCBtype are 00.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the 
TF6 format was ever suppressed by a simultaneous trigger. If so, the 
read value will be 0. If the write value was 0, the read value is 
always 0. This special read value is valid until the TCBTRIGx regis-
ter is written.

R/W 0

0 22:16 Reserved. Must be written as zero; returns zero on read. R 0

CHTro 15 When set, generate a single cycle strobe on TC_ChipTrigOut when 
this trigger fires.

R/W 0

PDTro 14 When set, generate a single cycle strobe on TC_ProbeTrigOut when 
this trigger fires.

R/W 0

0 13:7 Reserved. Must be written as zero; returns zero on read. R 0

DM 6 When set, this Trigger will fire when a rising edge on the Debug 
mode indication from the core is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this 
source was ever the cause of a trigger action (even if the action was 
suppressed). If so the read value will be 1. If the write value was 0 
the read value is always 0. This special read value is valid until the 
TCBTRIGx register is written.

R/W 0

CHTri 5 When set, this Trigger will fire when a rising edge on 
TC_ChipTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this 
source was ever the cause of a trigger action (even if the action was 
suppressed). If so the read value will be 1. If the write value was 0 
the read value is always 0. This special read value is valid until the 
TCBTRIGx register is written.

R/W 0
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PDTri 4 When set, this Trigger will fire when a rising edge on 
TC_ProbeTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this 
source was ever the cause of a trigger action (even if the action was 
suppressed). If so the read value will be 1. If the write value was 0 
the read value is always 0. This special read value is valid until the 
TCBTRIGx register is written.

R/W 0

Type 3:2 Trigger Type: The Type indicates the action to take when this trigger 
fires. The encoding below shows the Type values and the Trigger 
action.

00: Trigger start; trigger start-point of trace.
01: Trigger end; trigger end-point of trace.
10: No effect
11: Trigger info; no action trigger, only for trace information.

The actual action is to set or clear the TCBCONTROLBEN bit. A 
Start trigger will set TCBCONTROLBEN, a End trigger will clear 
TCBCONTROLBEN.
If Trace is set, then a TF6 format is added to the trace words. For 
Start and Info triggers this is done before any other TF’s in that same 
cycle. For End triggers, the TF6 format is added after any other TF’s 
in that same cycle.
If the TCBCONTROLBTM field is implemented it must be set to 
Trace-To mode (00), for the Type field to control on-chip trace fill.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the 
trigger action was ever suppressed. If so the read value will be 11. If 
the write value was 11 the read value is always 11. This special read 
value is valid until the TCBTRIGx register is written.

R/W 0

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is 
de-asserted. When de-asserted this trigger will fire each time one of 
the trigger sources indicates trigger.

R/W 0

TR 0 Trigger happened. When set, this trigger fired since the TR bit was 
last written 0.
This bit is used to inspect whether the trigger fired since this bit was 
last written zero.
When set, all the trigger source bits (bit 4 to 13) will change their 
read value to indicate if the particular bit was the source to fire this 
trigger. Only enabled trigger sources can set the read value, but more 
than one is possible.
Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a 
higher priority trigger.

R/W0 0

Table 13.49 TCBTRIGx Register Field Descriptions (continued)

Fields

Description
Read / 
Write Reset StateNames Bits
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13.14.11 Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAP controller enters/is in Test-Logic-Reset state.

2. EJ_TRST_N input is asserted low.

13.15 Fast Debug Channel

The Fast Debug Channel (FDC) mechanism provides an efficient means to transfer data between the core and an 
external device using the EJTAG TAP pins. The FDC was created to allow for faster communication between the core 
and the probe. In previous generation MIPS processors, whenever the core wanted to communicate with the probe, 
the core would be halted and data send to the probe because the probe had no way to read the core. The FDC provides 
a mechanism using FIFO’s, whereby the probe can read the core without requiring that the core be halted. These 
FIFO’s provide a cross boundary between the core and the EJTAG regions of the P6600 core. 

In the FDC, when the probe wishes to read and FDC register, the core gets an interrupt from the probe requesting this 
information. The core then places the requested information into the FIFO and continues operation. The core places 
information in the top of the FIFO, and the probe reads information from the bottom of the FIFO. The data contains 
information such as transmit versus receive, status of the operation, etc.

The external device would typically be an EJTAG probe and that is the term used here, but it could be something else. 
FDC utilizes two First In First Out (FIFO) structures to buffer data between thecore and probe. The probe uses the 
FDC TAP instruction to access these FIFOs, while the core itself accesses them using memory accesses. To transfer 
data out of the core, the core writes one or more pieces of data to the transmit FIFO. At this time, the core can resume 
doing other work. An external probe would examine the status of the transmit FIFO periodically. If there is data to be 
read, the probe starts to receive data from the FIFO, one entry at a time. When all data from the FIFO has been 
drained, the probe goes back to waiting for more data. The core can either choose to be informed of the empty trans-
mit FIFO via an interrupt, or it can choose to periodically check the status. Receiving data works in a similar manner 
- the probe writes to the receive FIFO. At that time, the core is either interrupted, or finds out via polling a status bit. 
The core can then do load accesses to the receive FIFO and receive data being sent to it by the probe. The TAP trans-
fer is bidirectional - a single shift can be pulling transmit data and putting receive data at the same time. 

The primary advantage of FDC over normal processor accesses or fastdata accesses is that it does not require the core 
to be blocked when the probe is reading or writing to the data transfer FIFOs. This significantly reduces the core 
overhead and makes the data transfer far less intrusive to the code executing on the core.

The FDC memory mapped registers are located in the common device memory map (CDMM) region. FDC has a 
device ID of 0xFD.

13.15.1 Common Device Memory Map

Software on the core accesses FDC through memory mapped registers. These memory mapped registers are located 
within the Common Device Memory Map (CDMM). The CDMM is a region of physical address space that is 
reserved for mapping IO device configuration registers within a MIPS processor. The base address and enabling of 
this region is controlled by the CDMMBase CP0 register.
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13.15.2 Fast Debug Channel Interrupt

The FDC block can generate an interrupt to inform software of incoming data being available or space being avail-
able in the outgoing FIFO. This interrupt is handled similarly to the timer or performance counter interrupts. The 
CauseFDCI bit indicates that the interrupt is pending. The interrupt is also sent to the core outputs SI_FDCI[_1] where it 
is combined with one of the SI_Int pins. For non-EIC mode, the SI_IPFDCI input indicates which interrupt pin is has 
been combined with and this information is reflected in the IntCtlIPFDCI field. Note that this interrupt is a regular inter-
rupt and not a debug interrupt.

The FDC Configuration Register (see Section 13.14.8.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”) 
includes fields for enabling and setting the threshold for generating each interrupt. Receive and transmit interrupt 
thresholds are specified independently, but transmit/receive interrrupts are ORed together to form a single interrupt 
per core.

The following interrupt thresholds are supported: 

• Interrupts Disabled: No interrupt will be generated and software must poll the status registers to determine if 
incoming data is available or if there is space for outgoing data.

• Minimum core Overhead: This setting minimizes the core overhead by not generating an interrupt until the 
receive FIFO (RxFIFO) is completely full or the transmit FIFO (TxFIFO) is completely empty.

• Minimum latency: To have the core take data as soon as it is available, the receive interrupt can be fired when-
ever the RxFIFO is not empty. There is a complimentary TxFIFO not full setting although that may not be quite 
as useful.

• Maximum bandwidth: When configured for minimum core overhead, bandwidth between the probe and core can 
be wasted if the core does not service the interrupt before the next transfer occurs. To reduce the chances of this 
happening, the interrupt threshold can be set to almost full or almost empty to generate an interrupt earlier. This 
setting causes receive interrupts to be generated when there are 0 or 1 unused RxFIFO entries. Transmit inter-
rupts are generated when there are 0 or 1 used TxFIFO entries.

13.15.3 Core FDC Buffers

Figure 13.41 shows the general organization of the transmit and receive buffers on the P6600 core. 
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Figure 13.41 Fast Debug Channel Buffer Organization

One particular thing to note is the asynchronous crossings between the EJ_TCK and SI_ClkIn clock domains. This 
crossing is handled with a handshaked interface that safely transfers data between the domains. Two data registers are 
included in this interface, one in the source domain and one in the destination domain. The control logic actively 
manages these registers so that they can be used as FIFO entries. The fact that one FIFO entry is in the EJ_TCK clock 
domain is normally transparent, but it can create some unexpected behavior:

• TxFIFO availability: Data is first written into the SI_Clk FIFO entries, then it will move into the EJ_TCK FIFO 
entry. But, it takes several EJ_TCK cycles to complete the handshake and move the data. EJ_TCK is generally 
much slower than SI_ClkIn and may even be stopped (although that would be uncommon when this feature is in 
use). This can result in there not being space for new data, even though there are only N-1 data values queued up. 
To prevent the loss of data, the FDSTATTxF bit is set when all of the SI_ClkIn FIFO entries are full. Software writ-
ing to the FIFO should always check the FDSTATTxF bit prior to attempting a write and should not make any 
assumptions about being able to arbitrarily use all entries. ie. software seeing the FDSTATFxE bit set should not 
assume that it can write FDCFGTxCnt data words without checking for full.

• TxFIFO Almost Empty Interrupt: As transmit data moves from SI_ClkIn to EJ_TCK, both of the flops will tempo-
rarily look full. This makes it difficult to determine when just 1 FIFO entry is in use. To enable a simpler condi-
tion, the almost empty TxInterrupt condition is set when all of the SI_ClkIn FIFO entries are empty. When this 
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condition is met, there will be 0 or 1 valid entries. However, the interrupt will not be asserted when there is only 
one valid entry if it is an SI_ClkIn entry

• The RxFIFO has similar characteristics but these are even less visible to software since SI_ClkIn must be running 
to access the FDC registers.

13.15.4 Sleep mode

FDC data transfers do not prevent the core from entering sleep mode and will proceed normally in sleep mode. The 
FDC block monitors the TAP interface signals with a free-running clock. When new receive data is available or trans-
mit data can be sent, the gated clock will be enabled for a few cycles to transfer the data and then allowed to stop 
again. If FDC interrupts are enabled, transferring data may cause an interrupt to be generated which can wake the 
core up.

13.16 TCB Trigger Logic

The TCB is optionally implemented with trigger unit. If this is the case, then the TCBCONFIGTRIG field is non-zero. 
This section will explain some of the issues around triggers in the TCB.

13.16.1 TCB Trace Enabling

The TCB must be enabled in order to produce a trace to the trace funnel, when trace information is sent on the 
PDtrace interface. The main switch for this is the TCBCONTROLBEN bit. When set, the TCB will send trace informa-
tion to the trace funnel. The TCB can optionally include trigger logic, which can control the TCBCONTROLBEN bit.

13.16.2 Tracing a Reset Exception

Tracing a reset exception is possible. However, the TraceControlTS bit is reset to 0 at core reset, so all the trace control 
must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace fifo and the entire TCB are reset 
based on an EJTAG reset. It is thus possible to set up the trace modes, etc., using the TAP controller, and then reset 
the core.

13.16.3 Trigger Units Overview

TCB trigger logic features three main parts:

1. A common Trigger Source detection unit.

2. 1 to 8 separate Trigger Control units.

3. A common Trigger Action unit.

Figure 13.42 show the functional overview of the trigger flow in the TCB.
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Figure 13.42 TCB Trigger Processing Overview

13.16.4 Trigger Source Unit

The TCB has three trigger sources:

1. Chip-level trigger input (TC_ChipTrigIn).

2. Probe trigger input (TR_TRIGIN).

3. Debug Mode (DM) entry indication from the core.

The input triggers are all rising-edge triggers, and the Trigger Source Units convert the edge into a single cycle strobe 
to the Trigger Control Units.
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13.16.5 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them has its own Trigger Control Register (TCBTRIGx, 
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger 
Sources as possible trigger event and they can fire one or more of the Trigger Actions. This is all defined in the Trig-
ger Control register TCBTRIGx (see Section 13.14.10.8 “TCBTRIGx Register (Reg 16-23)”).

13.16.6 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut).

2. Probe trigger output (TR_TRIGOUT).

3. Trace information. Put programmable information (TF6) into the trace stream from the TCB.

4. Start or End control of the TCBCONTROLBEN bit.

The basic function of the trigger actions is explained in Section 13.14.10.8 “TCBTRIGx Register (Reg 16-23)”. 
Please also read the next Section 13.16.7 “Simultaneous Triggers”.

13.16.7 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them, 
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ed.

13.16.7.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes precedence 
over the higher numbered units. The x in TCBTRIGx registers defines the number. The oldest trigger takes precedence 
over everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

• Trigger Start and End (TCBTRIGxType field set to 00 or 10), which will assert/de-assert the TCBCONTROLBEN bit. 

• Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxTR bit is set when the trigger fires. This is so even if a trigger action is suppressed 
by a higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGxFO bit is set), then the sup-
pressed trigger action will not happen until after TCBTRIGxTR is written 0.

If a Trigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxTR bit is set, for 
the TCBTRIGxTrace field will be 0 for suppressed TF6 trace information actions. The read value in the TCBTRIGxType 
field for suppressed Start/End triggers will be 11. This indication of a suppressed action is sticky. If any of the two 
actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxFO bit is zero), then the read values 
in Trace and/or Type are set to indicate any suppressed action.
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13.16.7.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ed together to produce the 
final trigger. One or more expected trigger strobes on i.e. TC_ChipTrigOut can thus disappear. External logic should 
not rely on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.
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Multi-CPU Debug

This section describes the debug features of the P6600 Multiprocessing System. The following sections are included 
in this chapter:

• Section 14.1 “CM Performance Counters”

• Section 14.2 “Debug Mode Triggering”

• Section 14.3 “PDTrace Software Architecture”

14.1 CM Performance Counters

14.1.1 CM Performance Counter Functionality

Performance characteristics of the CM can be measured via the CM performance counters. Two sets of identical pro-
grammable 32-bit performance counters in addition to a 32-bit cycle counter are implemented. The counters are con-
trolled and accessed via GCR registers described in Chapter 6, “Coherence Manager” on page 325. This section 
describes the operation of those registers. 

The counters are started by writing a 1 to the P0_CountOn, P1_CountOn and Cycl_Cnt_CountOn bits in the CM 
Performance Counter Control Register. Each counter can be reset to 0, and the corresponding overflow bit (P0_Overflow, 
P1_Overflow, Cyc_Cnt_Overflow) is reset to 0 prior to the start of counting by writing a 1 to the P0_Reset, P1_Reset and 
Cycl_Cnt_Reset bits in the same access that sets the corresponding start bits. This functionality allows all three coun-
ters to be reset and started with a single GCR write. 

The CM Performance Counter Control Register also controls how a counter overflow is handled. If the Perf_Ovf_Stop bit 
is set to 1, then all CM Performance counters will stop when one of the counters (including the Cycle Counter) 
reaches its maximum value of 0xFFFFFFFF. If instead the Perf_Ovf_Stop bit is set to 0, when a counter overflows, it 
rolls over and continues counting from 0. 

If the Perf_Int_En bit is set to 1, an interrupt is generated when one of the counters (including the cycle counter) 
reaches its maximum value of 0xFFFFFFFF. The CM asserts the CM_PCInt signal which generates an interrupt only if 
the System Integrator has connected CM_PCInt to one bit of SI_CMInt. 

When a performance counter overflows, the corresponding bit is automatically set in the CM Performance Counter 
Overflow Status Register. A status bit is cleared by writing a 1 to it. 

The event to be counted by each performance counter is designated by the event number set in the Event_Sel_0 and 
Event_Sel_1 fields of the CM Performance Counter Event Selection Register. The events corresponding to the event num-
bers are listed and described in Table 14.1. Each event is further specified by the CM Performance Counter Qualifier 
Register. The meaning of the CM Performance Counter Qualifier Register is different for each event. The column labeled 
“Qualifier” in Table 14.1 shows the qualifiers that can be specified for each event. For example, the qualifiers for the 
Request_Count event (Event 0) are the request port, CCA, Burst Length, Command, and Target. The details of the 
qualifiers for the Request_Count event are defined in Table 14.2.
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The qualifiers for some events are composed of several groups. A performance counter will increment if the specified 
event occurs and the qualifier criteria is matched in all groups. For example, assume the Event_Sel_0 field in the CM 
Performance Counter Event Selection Register is set to 0 (Request_Count). This event occurs when the CM serializes a 
request. However, the performance counter for this event will only count if the request meets the criteria programmed 
in all 5 groups in the Request Qualifier (see Table 14.2):

The port that issued the request has the corresponding Request Port qualifier bit 
set to 1 

AND 
The Cacheability attribute (CCA) for the request has the corresponding CCA 
qualifier bit set to 1

AND
The Burst Length of the request (in dwords) has the corresponding qualifier bit set 
to 1

AND 
The OCP MCmd Type for the request has the corresponding Request Command qualifier 
bit set to 1

AND
The target of the request has the corresponding Target qualifier bit set to 1

Multiple bits within a qualification group may be set. In this case, the OR of all bits set within the group. For exam-
ple, by setting the request port qualifier for Port 0 and Port 1, then a request will be counted if it originated from Port 
0 or Port 1.

A qualifier group can be set to “don’t care” by setting all bits within the group to 1. For example, to have performance 
counter 0 count all requests from port 1, program the CM Performance Counter Event Selection Register and CM 
Performance Counter Qualifier 0 Register as follows:

Set Event_Sel_0 to 0 (Request_Count)
Set Request Port Qualifer bit to 1 for Port 1
Set Requeset Port Qualifier bits to 0 for all other Ports
Set all other qualifer bits to 1 (causing the CCA, Burst Length, Command and Target 
to be ignored)

The two counters can be programmed to count a different event or the same event with different qualifiers. For exam-
ple, to measure the ratio of requests from Port 1 vs. all Ports, set program Counter 0 to count requests from Port 1 (see 
previous example) and program Counter 1 to count all request from all Ports by setting Event_Sel_1 to 0 
(Request_Count) and set all bits in the CM Performance Counter Qualifier 1 Register to 1. 

The cycle counter can be used to calculate the average rates of specified events. Continuing the above example, 
assuming the cycle counter is reset, started, and stopped simultaneously with the two performance counters, then the 
rate of requests from port 1 and all ports can be easily computed (value of each performance counter / value in cycle 
counter).

14.1.2 Performance Counter Usage Models

There are several model for using the CM performance counters. This sections discusses 3 possible models:

• Periodic Sampling - take many measurement samples of specific duration

• Stop and Interrupt when counter overflows - counters run until one overflows, then interrupt CPU

• Large count capability - enables unrestricted sample periods
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One model for making performance measurements is for the software to set up and gather samples for a set period of 
time. The code sequence could follow the following steps:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters

Perf_Int_En = 0 (no interrupt on overflow)
Perf_Ovf_Stop = 0(no stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1

Wait for some relatively small period of time (i.e., 2 seconds)
Write CM Performance Counter Control Register to stop counters

P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
If more events, go to start (or if measuring same counter go to step 2 instead)

A second CM performance counter usage model involves setting up the counters to stop and interrupt on overflow. 
This runs the counters until one of the counters (usually the cycle counter) reaches the 32-bit limit. An example of 
such a code sequence is:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters

Perf_Int_En = 1 (interrupt on overflow)
Perf_Ovf_Stop = 1(stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1

When interrupt occurs:
Read CM Performance Counter Status Register
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
Write CM Performance Counter Control Register to reset counters

(clears status register and interrupt)
P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1

If more events, go to start (or if measuring same counter go to step 2 instead)

If larger counts than can fit into the 32-bit counters are required, the counters can be set up to interrupt, but not stop, 
on overflow. Memory variables can then count the number of overflows, as shown below:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters

Perf_Int_En = 1 (interrupt on overflow)
Perf_Ovf_Stop = 0 (do not stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1

When interrupt occurs:
<status>=Read CM Performance Counter Status Register
Increment <overflow_count>[counter] for each counter with <status> = 1
Write <status> to CM Performance Counter Status Register to clear interrupt
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When run limit is reached then :
Write CM Performance Counter Control Register to stop counters

P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
Write CM Performance Counter Control Register to reset counters

(clears status register and interrupt)
P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1

If more events, go to start (or if measuring same counter go to step 2 instead)

In the above model, the final counts are calculated for each counter by multiplying <overflow_count>[counter] 
by 4G and adding the final values in the performance counter register.
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14.1.3 CM Performance Counter Event Types and Qualifiers

This section describes the Performance Counter Event Types and associated qualifiers.

Table 14.1 CM Performance Counter Event Types

Event # Related Events Use Qualifiers Description/Comments

0 Request_Count Measuring Load Request Port
Request CCA
Request Cmd
Request Length
Request Target
See Table 14.2

Can be used in conjunction with a cycle count to 
determine number of requests received in a given 
period of time. 

1 Coh_Req_Resp Track coherent 
requests or responses, 
and measure sharing

Intervention State
Speculation
Intervention Cmd
Store Conditional
See Table 14.3

Gives a count of the specified coherent request 
and response types. 

2 L2_WR_Data_Util L2 Write Data Bus 
Usage

Accept State
See Table 14.4

Counts number of cycles the L2/Memory write 
data bus is occupied. The qualifier determines if 
stall cycles are counted or not.

3 L2_Cmd_Util L2 Command Bus 
Usage

Accept State
See Table 14.4

Counts number of cycles the L2/Memory com-
mand data bus is occupied. The qualifier deter-
mines if stall cycles are counted or not.

4 L2_RD_Data_Util L2 Read Data Bus 
Usage

L2 Data Width
See Table 14.5

Counts number of cycles the L2/Memory read 
data bus is occupied. Qualifier determines if 64-
bit cycles, 256-bit cycles, or both are counted.

5 Sharing_Miss Sharing Frequency Request Source Port 
Data Source Port
See Table 14.6

Counts source of data for coherent read requests 
only (i.e., CohReadShare, CohReadDiscard, 
CohReadOwn, and CohReadAlways).

Useful to determine how many cache misses were 
satisfied by other processors. 

6 RSU_Util RSU Usage Port to measure
Response Type
See Table 14.7

Counts number of d-words on the processor/iocu 
read data bus. A counter can only measure one 
port at a time. The port number is specified as the 
qualifier.

8 L2_Util L2 Pipeline Usage L2 Pipeline starts
See Table 14.8

Counts starts into the TA stage of the L2 pipeline.

9 L2_Hit L2 Hit/Miss Usage Hit/Miss Type
Source Port
See Table 14.9

Counts different types of L2 Cache Hits and 
Misses, crossed with Source Port ID.

16 IOCU_Request IOCU Request Transaction ID
I/O Parking
CM Transaction Cnt
BurstLength
L2 allocation
Posted
Cacheability
Request Type
See Table 14.10

Counts requests receive by the IOCU.
The CM receives a sideband signal, 
SI_CMP_IOC_PerfInfo from the IOCU as 
described in Table 14.10.
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17 IOCU1_Request 2nd IOCU Request Transaction ID
I/O Parking
CM Transaction Cnt
BurstLength
L2 allocation
Posted
Cacheability
Request Type
See Table 14.10

Counts requests receive by the 2nd IOCU.
The CM receives a sideband signal, 
SI_CMP_IOC1_PerfInfo from the 2nd IOCU as 
described in Table 14.10.

Table 14.2 CM Performance Counter Request Count Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31

Request Port

Port 7 Request originated from port 7

30 Port 6 Request originated from port 6

29 Port 5 Request originated from port 5

28 Port 4 Request originated from port 4

27 Port 3 Request originated from port 3

26 Port 2 Request originated from port 2

25 Port 1 Request originated from port 1

24 Port 0 Request originated from port 0

23

Request CCA1

WT Request had Write Through Cacheability Attribute

22 UC/UCA Request had Uncached Cacheability Attribute

21 WB Request had Cached (non-coherent) Attribute

20 CWBE Request had Coherent (Exclusive) Attribute

19 CWB Request had Coherent (Shared) Attribute

18

Burst Length2

(# of dwords)

1 DWord

Request was for 1 DWord of data
Note: This counts the burst length as seen by the Coherent Man-
ager. Requests from the I/O Subsystem may be longer, but the 
IOCU may break these into multiple smaller requests.

17 2 DWords Request was for 2 DWords of data
See Note for 1 DWord.

16 4 DWords Request was for 4 dwords of data
See Note for 1 DWord

Table 14.1 CM Performance Counter Event Types(continued)

Event # Related Events Use Qualifiers Description/Comments
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15

Request Command

Legacy WR

Request is a legacy Write command. This is used for all non-
coherent writes. Note: When a processor is in coherent mode, L1 
cache writebacks are always considered coherent, so they result in 
a cohWriteBack command, not a WR command.

14 Legacy RD Request is a legacy Read command. This is used for all non-coher-
ent reads, including code fetches.

13 CohReadShare
CohReadShareAlways

Request is a coherent read share generated by the processor on a 
load that misses its L1 cache.
Currently CohReadShareAlways is unused.

12 CohReadOwn Request is a coherent read own generated by the processor on a 
store that misses its L1 cache.

11 CohReadDiscard Request is a coherent read discard generated by the IOCU for 
coherent requests.

10 CohUpgrade Request is a coherent upgrade request generated by the the proces-
sor on a store that hits a shared line in its L1 cache.

9 CohWriiteBack
Request is coherent writeback generated by the processor when 
evicting a line from the L1 cache. The line may have been 
installed in the cache from a coherent or non-coherent transaction. 

8 CohWriteInval 
(Partial Line)

Request is a coherent write invalidate (not a full line of data) gen-
erated by the IOCU. 

7 CohWriteInval 
(Full Line)

Request is a coherent write invalidate (full line of data) generated 
by the IOCU. 

6 CohInvalidate Request is an invalidate request from a processor executing a 
PREF Prepare for Store or a CACHE Hit Invalidate.

5 CohCopyBack Request from a processor executing a CACHE hit writeback 

4 CohCopyBackInv Request from a processor executing a CACHE hit CACHE Write-
BackInvalidate

3 CohCompletionSync Request is from a processor executing a SYNC instruction

2

Target

Memory Request targets memory (coherent or non-coherent)

1 GCR/GIC/CPC Request targets the Interrupt controller or Global Control Regis-
ters

0 MMIO Request targets Memory Mapped I/O space

1. CCA qualifier group is ignored on non-coherent cache-ops
2. Burst Length only used when Request Command is Legacy Read, Legacy Write, CohReadDiscard or CohWriteInval.

Table 14.3 CM Performance Counter Coherent Request/Response Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:25 Reserved

Table 14.2 CM Performance Counter Request Count Qualifier(continued)

Bit Qualifier Group Qualifier Value Description/Comments
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24

Intervention State

Exclusive
with data

A processor has an exclusive copy in its L1 cache and returned 
data (all commands except CohInvalidate)

23 Exclusive
with no data

A processor has an exclusive copy in its L1 cache but no data 
was returned (occurs on a CohInvalidate)

22 Modified
with data

A processor has a modified copy in its L1 cache and returned 
data (all commands except CohInvalidate)

21 Modified
with no data

A processor has a modified copy in its L1 cache but no data 
was returned (occurs on a CohInvalidate)

20 Shared One or more processors have a shared copy in its L1 cache

19 Invalid No processor has a copy of the data in its L1 cache

18

Speculation

Speculate

Request was a CohReadShare, CohReadOwn, CohReadDiscard 
or CohReadAlways and the CM issued a speculative read 
request to L2/Memory. This qualifier group is ignored when the 
request is not one of the commands listed above.

17 No Speculate

Request was a CohReadShare, CohReadOwn, CohReadDiscard 
or CohReadAlways and the CM did not issue a speculative read 
request to L2/Memory. This qualifier group is ignored when the 
request is not one of the commands listed above.

16

Intervention Cmd

Reserved Currently a don’t care.

15 Reserved Currently a don’t care.

14 CohReadShare
Request is a coherent read share generated by the processor on 
a load that misses its L1 cache.

13 CohReadShareAlways Currently CohReadShareAlways is unused.

12 CohReadOwn Request is a coherent read own generated by the processor on a 
store that misses its L1 cache.

Table 14.3 CM Performance Counter Coherent Request/Response Qualifier(continued)

Bit Qualifier Group Qualifier Value Description/Comments
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11

Intervention Cmd 
(cont.)

CohReadDiscard Request is a coherent read discard generated by the IOCU for 
coherent requests.

10 CohUpgrade
(OK Response)

Request is a coherent upgrade request generated by the proces-
sor on a store that hits a shared line in its L1 cache. There is no 
intervening request to the same line so an OK response is 
given.

9 CohUpgrade
(Data Response)

Request is a coherent upgrade request generated by the proces-
sor on a store that hits a shared line in its L1 cache. There is an 
intervening request to the same line so a data response is given.

8 CohWriteBack

Request is coherent writeback generated by the processor when 
evicting a line from the L1 cache. The line may have been 
installed in the cache from a coherent or non-coherent transac-
tion. 

7 CohWriteInval 
(Partial Line)

Request is a coherent write invalidate (not a full line of data) 
generated by the IOCU. 

6 CohWriteInval 
(Full Line)

Request is a coherent write invalidate (full line of data) gener-
ated by the IOCU. 

5 CohInvalidate Request is an invalidate request from a processor executing a 
PREF Prepare for Store or a CACHE Hit Invalidate.

4 CohCopyBack Request from a processor executing a CACHE hit writeback 

3 CohCopyBackInv Request from a processor executing a CACHE hit CACHE 
WriteBackInvalidate

2

Store Conditional
(only used when cmd is 
CohUpgrade or CohRe-

adOwn)

Not due to a Store Condi-
tional

CohUpgrade or CohReadOwn is not due to a store conditional 
instruction. This qualifier group is ignored when the command 
is not a CohUpgrade or CohReadOwn.

1 Store Conditional that 
was not Cancelled

CohUpgrade or CohReadOwn is due a store conditional 
instruction and the intervention was not cancelled.
This qualifier group is ignored when the command is not a 
CohUpgrade or CohReadOwn.

0 Store Conditional that 
was Cancelled

CohUpgrade or CohReadOwn is due a store conditional 
instruction and the intervention was cancelled due to livelock 
avoidance scheme. This qualifier group is ignored when the 
command is not a CohUpgrade or CohReadOwn.

Table 14.4 CM Performance Counter Accept State Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:1 Reserved

0 Accept State Count_Stalls

Setting this value to 0 for the L2_WR_Data_Util or 
L2_Cmd_Util events cause a count of cycles when a data 
word or command is accepted by the L2/Memory. 

Setting this value to 1 for L2_WR_Data_Util or 
L2_Cmd_Util cause a count of cycles when a data word or 
command is valid on the bus, i.e., the count includes cycles 
where the command or data bus is stalled.

Table 14.3 CM Performance Counter Coherent Request/Response Qualifier(continued)

Bit Qualifier Group Qualifier Value Description/Comments
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Table 14.5 CM Performance Counter L2 Data Width Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:2 Reserved

1
L2 Data Width

256 Counts cycles where the L2/Memory returns data in 256-bit 
mode

0 64 Counts cycles where the L2/Memory returns data in 64-bit 
mode

Table 14.6 CM Performance Counter CM Data Source Qualifier

31:15 Reserved

14

Request Port

7 Request originated from port 7

13 6 Request originated from port 6

12 5 Request originated from port 5

11 4 Request originated from port 4

10 3 Request originated from port 3

9 2 Request originated from port 2

8 1 Request originated from port 1

7 0 Request originated from port 0

6

Response Port

5 Data returned by processor connected to port 5

5 4 Data returned by processor connected to port 4

4 3 Data returned by processor connected to port 3

3 2 Data returned by processor connected to port 2

2 1 Data returned by processor connected to port 1

1 0 Data returned by processor connected to port 0

0 L2/Mem Data returned by L2/Memory

Table 14.7 CM Performance Counter CM Port Response Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:6 Reserved

5

Response Type

Read Data Response Response was a dword of data.

4 Write Acknowledge 
Response

Response was a write acknowledge (DVA response for a 
write).

3 OK Response Response was an OK response (due to a CohUpgrade).

2:0
Port Number

Port to measure Encoded value of port number to measure. For example, 
a value of 2 will only count responses on response port 
2.
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Table 14.8 L2 Utilization Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:6 Reserved

5

Pipeline Start Type

L2 Pipeline start was stalled Any type of pipeline request start (new, replay,refill) was 
refused due to a stall (ram or global stall)

4 L2 Pipeline start is taken Use to calculate L2 utilization
Any type of pipeline request start (new, replay,refill)

3 New request waiting for 
Sync to clear

A new request is waiting to be dispatched to the L2 until 
a preceeding Sync has guaranteed ordering

2 New L2 request stalled New request to the L2 was not accepted due to a stall 
(ram or global stall)

1 New L2 request denied New request to the L2 was not accepted due to replay, 
refill, or a stall.

0 New L2 request started Use to calculate L2 bandwidth

Table 14.9 L2 Hit Qualifier 

Bit Qualifier Group Qualifier Value Description/Comments

31:20 Reserved

19 Allocation
(for Write or Read 

misses only)

Line allocated A miss caused an allocation by the L2. This occurs either for a full line 
write miss or a read miss, depending on the L2 allocation policy.

18 Line not allocated A miss did not cause an allocation by the L2.

17

Hit/Miss Type
(these are mutially 

exclusive)

Other Index L2 cacheop or Fetch&Lock.

16 Non-index cache-op hit Non-index L2 cacheop hit the L2 cache.

15 Non-index cache-op miss Non-index L2 cacheop missed the L2 cache.

14 Full line write hit Full line write hit the L2 cache.

13 Partial line write hit Partial line write hit the L2 cache. The line will be read, merged with 
the original write data, and replayed to complete the write.

12 Full line write miss Full line write missed the L2 cache. Either allocates or writes through 
to memory depending on the L2 allocation policy.

11 Partial line write miss Partial line write missed the L2 cache. Writes through to memory 
regardless of the L2 allocation policy.

10 Read into CRQ Read matched a pending L2 miss. Data is returned when the pending 
line is refilled. It is not a Read hit or a Read miss.

9 Read hit Read hit the L2 cache.

8 Read miss Read missed the L2 cache. Either allocates or reads through to mem-
ory, depending on the L2 allocation policy.
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7

Source Port

7 Request originated from port 7

6 6 Request originated from port 6

5 5 Request originated from port 5

4 4 Request originated from port 4

3 3 Request originated from port 3

2 2 Request originated from port 2

1 1 Request originated from port 1

0 0 Request originated from port 0

Table 14.10 IOCU Performance Counter Request Count Qualifier 

Bit Qualifier Group Qualifier Value Description/Comments

31 Reserved

30:27

Transaction ID

TID Value of IC_MTagID to match when the All_TID qualifier bit is 
set to 0. This field is unused when All_TID is 1.

26 All_TID
If 1 then the all values of IC_MTagID will match. If 0 then only 
transactions with IC_MTagID equal to the TID specified above 
will match.

25

I/O Parking

Start and Stop Parking Request will start and stop I/O Parking.

24 Stop Parking Request will stop I/O parking (but not start it).

23 Start Parking Request will start I/O Parking (but not stop it).

22 No parking Request will not start or stop I/O parking.

21

CM Transaction Count

5 CM Transactions Request resulted in 5 CM transactions.

20 4 CM Transactions Request resulted in 4 CM transactions.

19 3 CM Transactions Request resulted in 3 CM transactions.

18 2 CM Transactions Request resulted in 2 CM transactions.

17 1 CM Transaction Request resulted in 1 CM transaction.

16

BurstLength

13-16 IC_MBurstLength is 13, 14, 15, or 16 dwords.

15 9-12 IC_MBurstLength is 9, 10, 11, or 12 dwords.

14 5-8 IC_MBurstLength is 5, 6, 7, or 8 dwords.

13 4 IC_MBurstLength is 4 dwords.

12 3 IC_MBurstLength is 3 dwords.

11 2 IC_MBurstLength is 2 dwords.

10 1 IC_MBurstLength is 1 dword.

Table 14.9 L2 Hit Qualifier (continued)

Bit Qualifier Group Qualifier Value Description/Comments
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14.2 Debug Mode Triggering

This section describes the how to control the cores when entering debug mode. 

14.2.1 Selecting CPUs to Enter Debug Mode

The P6600 Multiprocessing System contains a set of registers and logic that controls when the P6600 cores enter 
Debug mode. The logic allows software to:

• Specify which P6600 core enters debug mode on assertion of the EJ_DINT_IN signal (generally asserted by a 
debug probe).

• Force one or more P6600 cores to enter debug mode by writing to the DINT Send to Group Register.

14.2.2 Debug Mode Groups and Cross Triggering

The P6600 Multiprocessing System (MPS) allows software to define debug mode groups so that when one P6600 
core enters debug mode, all other cores within the group also enter debug mode. 

Software creates debug mode groups by writing to each core’s Core-Local DebugBreak Group Register. Each bit in the 
Join_DebugM field of the Core-Local DebugBreak Group Register represents a core in the system. If the bit is set, the cor-
responding core will enter debug mode. If the bit is clear, the corresponding core is not affected by Debug Mode.

Only the positive edge of a core’s EJ<cpu>_DebugM signal can cause the other CPUs to also enter the Debug Mode as 
a group. When there is no positive edge on the DebugM signals, the Join_DebugM fields in the DebugBrk_Group regis-
ters can be written without causing spurious glitches on the EJ<cpu>_DINT signals.

9

L2 Allocation

L2 Allocation with Pre-
pare for Store

Request will cause an L2 allocation and the request is a write with 
L2 Prepare For Store. This bit will never cause a match for read 
requests.

8 L2 Allocation without 
Prepare for Store

Request will cause an L2 allocation and the request is either a read 
or a write with L2 Prepare For Store not asserted.

7 No L2 Allocation Request will not cause an L2 allocation.

6
Posted

Non-posted Write Write is non-posted. Not used on reads.

5 Posted Write Write is posted. Not used on reads.

4

Cacheability

Uncached Request is uncached.

3 Cached Request is Cached, non-coherent.

2 Coherent Request is Coherent.

1
Request Type

Read Request is a read.

0 Write Request is a write.

Table 14.10 IOCU Performance Counter Request Count Qualifier (continued)

Bit Qualifier Group Qualifier Value Description/Comments
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14.2.3 Debug Cross Trigger Facility and Power Management

Due to power management of P6600 Multiprocessing System components, CPUs might not be powered or clocked 
when receiving a DINT via the debug cross trigger facility. However, the power controller observes all DINT events 
and will start up domains as requested. Depending on the programming of the power controller and time constants of 
the physical design, a delay between DINT event and a target CPU participating in the debug session might occur. To 
inquire about the current power status of a CPU, the debug handler can poll the power controller status registers. Gen-
erally, an EJTAG debug probe attached and recognized by the system will shorten the wake-up delay, while debug 
events without debug probe attachment might show more wake-up latency.

14.3 PDTrace Software Architecture

The P6600 MPS enables debug trace information from the P6600 cores, the Coherence Manager, and a System Trace 
Interface to be streamed off chip or stored in on-chip RAM. As shown in Figure 14.1, each P6600 core produces a 
128-bit debug trace stream describing its program and data flow. The CM produces a 64-bit stream describing the 
flow of transactions within the CM. If a System Trace Interface is part of the build, it captures a 128-bit stream 
describing activity supplied externally by the System. 

The Trace Funnel muxes the CPU, CM, and System Trace streams into a single debug trace stream which is either 
stored in an on-chip buffer or passed onto a Probe Interface Block (PIB). A PIB is the on-chip link between the Trace 
Funnel and debug probe interface, and may include functionality such as time multiplexing the 128-bit TCtrace data 
onto a narrower, slower probe interface. 
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Figure 14.1 PD Trace Architecture

The TCtrace stream consists of 64-bit trace words (TW). Each trace word trace is packed with one or more Trace For-
mats (TF). There are many trace format types produced by CPUs and the CM. The CPU TFs allow tracing of infor-
mation such as the program counter, load/store addresses, and load/address data values. The CM TFs produce 
information such as the serialization order of requests and the results of L1 cache interventions. 

The trace output of each CPU can be controlled by a set of EJTAG accessible registers located in the Trace Control 
Block (TCB) associated with that CPU. 

14.3.1 CM Trace Functionality

This section describes the configuration and functionality of the CM debug trace. 

14.3.1.1 CM Trace Configuration and Control

The CM Trace is controlled by the CM TCBCONTROLD Register as defined in Section “TCBCONTROLD Register”. 
The enabling of the CM’s Trace is determined by two fields in this register along with a field in each of the core’s 
TCBCONTROLD register. Figure 14.11 shows that there are two ways to enable CM Trace. First, CM Trace can be 
enabled independent of the Cores’ state by setting both CM_EN and Global_CM_En in the CM’s TCBCONTROLD Reg-
ister. Alternatively, by setting CM_EN and clearing Global_CM_En, the CM will only trace if at least one other core is 
tracing, i.e., Core_CM_En in at least one core’s TCBCONTROLD register is set to 1. A core’s Core_CM_En bit may be 
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asserted/deasserted based on debug triggers as defined in The MIPS64® P6600™ Processor Core Family Software 
User’s Manual. The value of each core’s Core_CM_En bit is communicated to the CM on the TC<core>_Trace_CM_En 
signal.

14.3.1.2 System Trace Interface Configuration and Control

The System Trace Interface stream is generated and controlled by external logic. The CM has control output pins to 
support design of this logic. There are 2 specific control outputs and one 32-bit user-defined output. These outputs 
and the trace data/contol pins associated with the trace stream are shown in Table 14.12. All the signals are timed rel-
ative to the SI_CMClk. 

Table 14.11 CM Trace Enable

CM TCBCONTROLD Reg Cores’ TCBCONTROLD Reg
CM PDTrace Enabled/Disabled

CM_EN Global_CM_En Core_CM_En

0 x x Disabled

1 1 x Enabled

1 0 All 0 Disabled

1 0 not All 0 Enabled

Table 14.12 System Trace Interface Stream and Control Pins

Signal Direction/Type Usage

SI_TC_Sys_Data[127:0] CM stream input

System Trace stream data for 128-bit stream
SI_TC_Sys_Data[71:68] must contain a Source Port ID
and SI_TC_Sys_Data[7:4] must contain a Source Port ID.
Legal values of either Source Port ID are: 4’hc or 4’hd.
All other bits are completely user defined

SI_TC_Sys_Valid[1:0] CM stream input

System Trace stream valid bits for upper and lower streams
Bit 1 qualifies SI_TC_Sys_Data[127:64]
Bit 0 qualifies SI_TC_Sys_Data[63:0]
A value of 2’b10 is illegal

SI_TC_Sys_Stall CM stream output System Trace stream flow control.

SI_TC_Sys_Enable CM control output

System Trace control advisory, driven from the CM 
TCBCONTROLDST_En. Its purpose is to advise the external logic of 
the state of this control bit. If desired, external logic can stop generation 
of the stream if this output is a zero, and allow generation of the stream 
if it is a 1. However, external logic may choose to continue sending 
stream data after de-assertion until it has flushed all its collected stream 
data.

SI_TC_Sys_AnyCore_Enabled CM control output System Trace control advisory that at least one core is enabled to trace, 
derived from Cores’ TCBCONTROLD register.

SI_TC_Sys_CM_Enabled CM control output System Trace control advisory that the CM2 is enabled to trace, derived 
from CM2’s TCBCONTROLD register.

SI_TC_Sys_UserCtl[31:0] CM control output

User defined control advisory bits, from TCBSYS.
Bit 31 is a 1 when the Trace Funnel was configured with the System 
Trace present and is a 0 when the System Trace is not present. Bits 
[30:0] are completely user defined output values.
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In addition to the System Trace Interface pins, there are internal control register bits that impact operation of the Sys-
tem Trace stream. Assertion of CM TCBCONTROLBSTCE allows the System Trace funnel port to capture stream data; 
de-assertion of this bit causes the Trace Funnel to stop capturing the System Trace stream from within the Trace Fun-
nel in case the external logic is problematic. In addition, de-assertion of CM TCBCONTROLBEN stops capture of all the 
streams (Cores, CM, System).

Thus the System Trace stream is enabled to capture the System Trace stream when these controls are asserted: CM 
TCBCONTROLBSTCE and CM TCBCONTROLBEN. The control outputs SI_TC_Sys_Enable and 
SI_TC_Sys_UserCtl[31:0] are available to the external logic to further control generation of the System Trace stream 
by allowing or disallowing assertion of the SI_TC_Sys_Valid[1:0] inputs. If any trace stream is being generated with-
out enabling that stream to capture, then that stream is not captured and the data is dropped.

14.3.1.3 Trace Funnel Enable

When trace on the System, CM and/or Cores is enabled then trace information is continuously sent to the Trace Fun-
nel. However, the trace funnel will only send the trace information to the trace probe or to the on-chip trace memory 
if it is enabled by setting the CM TCBCONTROLBEN bit. The Trace Funnel can be subsequently disabled by clearing 
the CM TCBCONTROLBEN bit. See “TCBCONTROLB Register Field Descriptions” on page 762 for more informa-
tion.

14.3.1.4 CM Trace Formats

Trace information is captured at two points within the CM:

• Information about requests is captured by the Request Unit (RQU) after serialization, thus providing a view 
of the global order of requests.

• Information about L1 interventions is captured by the Intervention Unit (IVU) after all intervention 
responses have been received. This provides information about the state of the cache line in all L1 caches for 
coherent requests.

The type and amount of content in each Trace Format created by the CM depends on the source of the packet (RQU 
or IVU) and the configuration (TLev, AE, P<port>_Ctl control bits). Refer to The PDtrace™ Interface and Trace 
Control Block Specification for the detailed description of the CM Trace Formats.

14.3.1.5 CM / CPU Core Trace Correlation

In the P6600 core, trace information is provided from each of the cores as well as the Coherence Manager. In order to 
correlate transactions from the CM to the instruction stream, an identifier is used in both the core and CM traces.

The CM trace includes the core ID and CosID for each request. The CosID changes relatively slowly - it is generally 
incremented after PCSync in the core or if an overflow is detected in the CM. Typically several requests in a row will 
use the same CosID value, and the intermediate correlation is enabled by the requests appearing in the same order in 
the CM and core traces. Because of this, and the fact that the CosID is traced as a part of the instruction completion 
record, correlating instructions to CM transactions is possible only when PC tracing is enabled for all TCs executing 
on the core.

The PDtrace™ Interface and Trace Control Block Specification includes a more detailed description of the correla-
tion process.
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14.3.2 Controlling Trace in a Multi-CPU Multiprocessing System

The P6600 MPS enables debug trace information from the P6600 cores and the Coherence Manager to be streamed 
off chip or stored in on-chip RAM. As shown in Figure 14.1, each P6600 core produces a 64-bit debug trace stream 
describing its program and data flow. The CM produces a stream describing the flow of transactions within the CM2. 
The Trace Funnel muxes the CPU and CM trace streams into a single debug trace stream which is either stored in an 
on-chip buffer or passed onto a Probe Interface Block (PIB). A PIB is the on-chip link between the Trace Funnel and 
debug probe interface, and may include functionality such as time multiplexing the 64-bit TCtrace data onto a nar-
rower, slower probe interface. 

Since the P6600 core streams PDTrace data directly to the trace funnel, the core TCB system is configured as if only 
off-chip trace is present. Core TCB register bits which refer to control of on-chip trace resources will behave as it on-
chip trace is not implemented.

The CM has its own set of TCBControl registers. It is designated as the ‘master’ which controls trace functionality 
for the CM, the on-chip trace buffer, and the PIB interface. In addition to the CM2 as trace master, the GCR block 
itself can function as the trace master in the P6600 core. This is done through memory mapped CM_GCR global con-
trol registers. 

14.3.3 EJTAG Debug Support in the P6600 Coherence Manager

The EJTAG debug logic in the Coherence Manager is compliant with EJTAG Specification 6.0 and includes:

1. Standard Test Access Port (TAP) for a dedicated connection to a debug host

2. Optional PDtrace capability for program counter/data address/data value trace to On-chip memory or to Trace 
probe

The following sub-sections describe the TAP and EJTAG operation and registers.

14.3.3.1 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compatible 
with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

Table 14.13 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data registers. The TCK clock is 
independent of the CM clock, so the EJTAG probe can drive TCK independently of the CM 
clock frequency.
The CM signal for this is called EJ_TCK
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Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs deter-
mine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small control-
ler, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 14.2. The TAP 
uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes on the falling 
edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is 
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the Test-Logic-
Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register scan or a 
data register scan can be issued to transition the TAP through the appropriate states shown in Figure 14.2.

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the pro-
tocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers, 
the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruction 
register, the Capture-IR state is used to capture status information into the Instruction register. 

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follows the 
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause 
state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting of data through either the 
Data or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From 
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the Run-
Test/Idle state via the Exit2 and Update states. 

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test operation. TMS is sam-
pled on the rising edge of TCK.
The CM signal for this is called EJ_TMS

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data registers on the rising 
edge of the TCK clock, depending on the TAP controller state.
The CM signal for this is called EJ_TDI

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the TDO pin on the falling 
edge of the TCK clock. When no data is shifted out, the TDO is 3-stated.
The CM signal for this is called EJ_TDO with output enable controlled by EJ_TDOzstate.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the TAP controller and 
instruction in the TAP module, independent of the main CM logic. The CM’s transaction pro-
cessing logic is not reset by the assertion of TRST_N.
The CM signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this signal at power-on 
and then leave it high, in case the signal is not available as a pin on the chip. If available on 
the chip, then it must be low on the board when the EJTAG debug features are unused by the 
probe.

Table 14.13 EJTAG Interface Pins(continued)

Pin Type Description
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Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold 
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not 
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the 
shadow latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

Figure 14.2 TAP Controller State Diagram

Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state 
when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is forced into the 
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state as long as 
TMS is HIGH.

Run-Test/Idle State

The controller enters the Run-Test/Idle state between scan operations. The controller remains in this state as long as 
TMS is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot 
change when the TAP controller is in this state. 

When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select_DR state.

Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state. A 
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HIGH on TMS causes the controller to transition to the Select_IR state. The instruction cannot change while the TAP 
controller is in this state. 

Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A 
HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while 
the TAP controller is in this state. 

Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the 
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions 
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction cannot 
change while the TAP controller is in this state. 

Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one 
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The 
instruction cannot change while the TAP controller is in this state. 

Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A HIGH 
on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The instruc-
tion cannot change while the TAP controller is in this state. 

Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the 
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state. 
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS 
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in 
this state. 

Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow 
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state. 

Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge of 
the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on 
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP 
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controller is in this state and all shift register stages in the test data registers selected by the current instruction retain 
their previous state.

Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of 
TCK. The data registers selected by the current instruction retain their previous state. 

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS 
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in 
this state. 

Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the Shift_IR 
state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the ris-
ing edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transition to 
the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP controller is 
in this state and the instruction register retains its previous state.

Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the 
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the 
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot 
change while the TAP controller is in this state. 

Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled LOW 
at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of data. A 
HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning process. The 
instruction cannot change while the TAP controller is in this state. 

Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on 
TMS causes the controller to transition to the Select_DR_Scan state.

14.3.3.2 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the 
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between 
TDI and TDO during data register scanning.
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The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been 
decoded; the unused instructions default to the BYPASS instruction. 

BYPASS Instruction

The required BYPASS instruction selects the Bypass register to be connected between TDI and TDO. The BYPASS 
instruction allows serial data to be transferred through the CM from TDI to TDO without affecting its operation. The 
bit code of this instruction is defined to be all ones by the IEEE 1149.1 standard. Any unused instruction is defaulted 
to the BYPASS instruction.

IDCODE Instruction

The IDCODE instruction selects the Device Identification (ID) register to be connected between TDI and TDO. The 
Device ID register is a 32-bit shift register containing information regarding the IC manufacturer, device type, and 
version code. Accessing the Identification Register does not interfere with the operation of the CM. Also, access to 
the Identification Register is immediately available, via a TAP data scan operation, after power-up when the TAP has 
been reset with on-chip power-on or through the optional TRST_N pin.

IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

Table 14.14 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register.

0x03 IMPCODE Select Implementation register.

0x08 Reserved Instructions using this code select bypass register.

0x09 Reserved Instructions using this code select bypass register.

0x0A CONTROL Select EJTAG Control register.

0x0B Reserved Instructions using this code select bypass register.

0x0C Reserved Instructions using this code select bypass register.

0x0D Reserved Instructions using this code select bypass register.

0x0E Reserved Instructions using this code select bypass register.

0x10 Reserved Instructions using this code select bypass register.

0x11 TCBCONTROLB Selects the TCBCONTROLB register in the Trace Control Block.

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block.

0x13 Reserved Instructions using this code select bypass register.

0x14 Reserved Instructions using this code select bypass register.

0x15 TCBCONTROLD Selects the TCBCONTROLD register in the Trace Control Block.

0x16 TCBCONTROLE Selects the TCBCONTROLE register in the Trace Control Block.

0x17 Reserved Instructions using this code select bypass register.

0x1F BYPASS Bypass register.
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CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG 
Probe shifts 32 bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bits via 
TDO.

TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only 
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass 
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of 
the TCBDATA register is dependent on the specific TCB register.

TCBCONTROLD Instruction

This instruction is used to select the TCBCONTROLD register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

TCBCONTROLE Instruction

This instruction is used to select the TCBCONTROLE register to be connected between TDI and TDO. This register is 
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the 
Bypass register.

14.3.3.3 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruc-
tion register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The 
shift register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruc-
tion register scan operations, the TAP controls the register to capture status information and shift data from TDI to 
TDO. Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the 
TDO occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is 
set to 000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device 
ID register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register 
scan operation. A list of the implemented instructions are listed in Table 14.14.

14.3.3.4 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary TDO 
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data 
register scan operation. During a data register scan operation, the addressed scan register receives TAP control signals 
to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the out-
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put of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the write 
bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit scan 
path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not 
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to 
satisfy the IEEE 1149.1 Bypass instruction requirement. 

Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 14.15 shows the bit assignments defined for the read-only Device 
Identification Register, and inputs to the CM determine the value of these bits. These bits can be scanned out of the ID 
register after being selected. The register is selected when the Instruction register is loaded with the IDCODE instruc-
tion.

Figure 14.3 Device Identification Register Format 

Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values 
are set by inputs to the CM2. The register is selected when the Instruction register is loaded with the IMPCODE 
instruction.

31 28 27 12 11 1 0

Version PartNumber ManufID R

Table 14.15 Device Identification Register

Fields

Description
Read / 
Write Reset StateName Bit(s)

Version  31:28 Version (4 bits)
This field identifies the version number of the CM.

 R EJ_Version[3:0]

PartNumber  27:12 Part Number (16 bits)
This field identifies the part number of the CM.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer iden-
tity code shall be a compressed form of the JEDEC Publi-
cations 106-A. 

 R EJ_ManufID[10:0]

R  0 reserved R 1
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Figure 14.4 Implementation Register Format 

EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the 
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by 
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0 
or written to 0. 

The value used for reset indicated in the table below takes effect on CM2 resets, but not on TAP controller resets by 
e.g. TRST_N. TCK clock is not required when the CM2 reset occurs, but the bits are still updated to the reset value 
when the TCK is applied. The first 5 TCK clocks after CM2 resets may result in reset of the bits, due to synchroniza-
tion between clock domains.

Figure 14.5 EJTAG Control Register Format 

31 29 28 14 13 11 10 1 0

EJTAGver reserved Type TypeInfo r

Table 14.16 Implementation Register Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

EJTAGver 31:29 Indicates EJTAG Version 6.0. R 6

reserved 28:14 reserved R 0

Type 13:10 Type of Entity associated with this TAP.
2: TAP is attached to a Trace-Master. TypeInfo field is not used.

R 2

TypeInfo 10:1 Identifier Information.
Unused because this TAP is connected to a Trace-Master as indi-
cated by the Type field.

R 0

reserved 0 reserved R 0

31 28 23 22 21 20 0

Rocc Reserved Doze Halt Reserved

Table 14.17 EJTAG Control Register Descriptions

Fields

Description
Read / 
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a CM reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.
The Rocc bit will keep the 1 value as long as reset is applied. 
This bit must be cleared by the probe, to acknowledge that the inci-
dent was detected.
The EJTAG Control register is not updated in the Update-DR state 
unless Rocc is 0, or written to 0. This is in order to ensure proper 
handling of processor access.

R/W 1
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14.3.3.5 CM2 Trace Control Block (TCB) Registers

The TCB registers used to control its operation are listed in Table 14.18 and Table 14.19. These registers, except for 
TCBDATA, are accessed via the EJTAG TAP interface as well as by the P6600 core via memory-mapped accesses to 
the Global Debug Control Block in the CM GCRs. TCBDATA can only be accessed via the EJTAG TAP interface. 
Note that the TCB registers are implemented only if PDTrace is selected at build time.  

Res 30:23 Reserved R 0

Doze 22 Tied to 0. R 0

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is running or 
stopped. The value is sampled in the Capture-DR state of the TAP 
controller:
0: Internal CM clock is running
1: Internal CM clock is stopped

R 0

Res 20:0 Reserved R 0

Table 14.18 TCB EJTAG Registers

EJTAG 
Register

Memory-
Mapped 

Address* Name Description

0x11 0x0008 TCBCONTROLB Control register in the TCB that is mainly used to specify what to do with the trace 
information. The REG [25:21] field in this register specifies the number of the 
TCB internal register accessed by the TCBDATA register. A list of all the registers 
that can be accessed by the TCBDATA register is shown in Table 14.19. See 
Section “TCBCONTROLB Register”.

0x15 0x0010 TCBCONTROLD Control register in the TCB used to control tracing from the Coherence Manager 
Section “TCBCONTROLD Register”

0x16 0x0020 TCBCONTROLE Control Register in the TCB used to control tracing for the performance counter 
tracing feature. See Section “TCBCONTROLE Register”.

Table 14.19 Registers Selected by TCBCONTROLBREG

TCBCONTROLBREG 

Field

Memory 
Mapped 

Address*  Name Reference Notes

0 0x0028 TCBCONFIG Section “TCBCONFIG Register (Reg 0)”

4 0x0200/0x0208** TCBTW Section “TCBTW Register (Reg 4)” These registers have 
no function if on-
chip memory does 

not exist.

5 0x0108 TCBRDP Section “TCBRDP Register (Reg 5)”

6 0x0110 TCBWRP Section “TCBWRP Register (Reg 6)”

7 0x0118 TCBSTP Section “TCBSTP Register (Reg 7)”

17-29 reserved

30 0x0040 TCBSYS Section “TCBSYS Register (Reg 30)”

Table 14.17 EJTAG Control Register Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bit(s)
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* Memory-Mapped Address relative to the Global Debug Block in the CM GCRs.
** Memory-Mapped Access for TCBTW is split into two 32-bit registers: TCBTW_LO (address 0x0200) accesses TCBTW[31:0]. 

TCBTW_HI (address 0x0208) accesses TCBTW[63:32]

TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (EJTAG Register 0x11). This register generally controls 
what to do with the trace information received. This register is also mapped to offset 0x0008 in the Global Debug 
Block of the CM GCRs. 

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 14.20.

Figure 14.6 TCBCONTROLB Register Format 

31 TCBBYPASS

31 30 28 27 26 25 21 20 19 18 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 TWSrcWidth REG WR STCE TRPAD 0 RM TR BF TM 0 CR Cal 0 CA OfC EN

Table 14.20 TCBCONTROLB Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

WE 31 Write Enable. 
Only when set to 1 will the other bits be written in TCBCONTROLB.
This bit will always read 0.

R 0

Reserved 30:28 Reserved. Must be written as zero; returns zero on read. R 0

TWSrc-
Width

27:26 Used to indicate the number of bits used in the source field of the Trace Word. 
The value for the CM is always 0b10 indicationg a four bit source field width.

R 10

REG 25:21 Register select: This field select the registers accessible through the TCBDATA 
register. Legal values are shown in Table 14.19. 
Note: Although this field can be written via memory-mapped GCR or EJTAG 
accesses, the TCBDATA register is only accessible via EJTAG access.

R/W 0

WR 20 Write Registers: When set, the register selected by REG field is read and writ-
ten when TCBDATA is accessed. Otherwise the selected register is only read. 
Note: Although this field can be written via memory-mapped GCR or EJTAG 
accesses, the TCBDATA register is only accessible via EJTAG access.

R/W 0

STCE 19 System Trace capture enable. When asserted, the System Trace port of the 
Funnel is enabled to capture System Trace stream data. When not asserted,
System Trace stream data is not captured regardless of SI_TC_Sys_Valid[1:0] 
input pin state.

R/W 0

Table 14.19 Registers Selected by TCBCONTROLBREG(continued)

TCBCONTROLBREG 

Field

Memory 
Mapped 

Address*  Name Reference Notes
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TRPAD 18 Trace RAM access disable bit. When set to 1 core reads and writes to the on-
chip trace RAM using GCR accesses are inhibited. If TRPAD is set, memory-
mapped writes to the GCR_DB_TCBTW_LO and GCR_DB_TCBTW_HI 
registers have no effect, and memory-mapped reads from 
GCR_DB_TCBTW_LO and GCR_DB_TCBTW_HI do not access the Trace 
RAM and 0 is returned. 
Also, when TRPAD is set, then memory-mapped writes to all CM TCB regis-
ters listed in Table 14.19 are inhibited.

R/W 0

Reserved 17 Reserved. Must be written as zero; returns zero on read. R 0

RM 16 Read on-chip trace memory.
When written to 1, the read address-pointer of the on-chip memory in register 
TCBRDP is set to the value held in TCBSTP.
Subsequent access to the TCBTW register (through the TCBDATA register), 
will automatically increment the read pointer in register TCBRDP after each 
read.
When the write pointer is reached, this bit is automatically reset to 0, and the 
TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is reset by setting the 
TR bit or by reading the last Trace word in TCBTW.
This bit has no function if on-chip memory is not implemented.

R/W1 0

TR 15 Trace memory reset.
Trace memory reset.
When written to one, the address pointers for the on-chip trace memory 
TCBSTP, TCBRDP and TCBWRP are reset to zero. Also the RM and BF bits 
are reset to 0.
This bit is automatically reset back to 0, when the reset specified above is 
completed.

R/W1 0

BF 14 Buffer Full indicator that the TCB uses to communicate to external software in 
the situation that the on-chip trace memory is being deployed in the trace-
from and trace-to mode. 
This bit is cleared when writing 1 to the TR bit.
This bit has no function if on-chip memory is not implemented.

R 0

Table 14.20 TCBCONTROLB Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits



 

764 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

TM 13:12 Trace Mode. This field determines how the trace memory is filled when using 
the simple-break control in the PDtrace interface to start or stop trace. 

In Trace-To mode, the on-chip trace memory is filled, continuously wrapping 
around and overwriting older Trace Words, as long as there is trace data com-
ing from the core.
In Trace-From mode, the on-chip trace memory is filled from the point that the 
core starts tracing until the on-chip trace memory is full.
In both cases, de-asserting the EN bit in this register will also stop fill to the 
trace memory.
If a TCBTRIGx trigger control register is used to start/stop tracing, then this 
field should be set to Trace-To mode.
These bits have no function if on-chip memory is not implemented.

R/W 0

Reserved 11 Reserved. Must be written as zero; returns zero on read. R 0

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the core clock to the 
off-chip trace memory interface clock. The clock-ratio encoding is shown in 
Table 14.21.
Note: As the Probe interface works in double data rate (DDR) mode, a 1:2 
ratio indicates one data packet sent per core clock rising edge.
These bits have no function if off-chip memory is not implemented.

R/W 1002

Table 14.20 TCBCONTROLB Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

TM Trace Mode

00 Trace-To
01 Trace-From
10 Reserved
11 Reserved
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The Probe Interface Block (PIB) has been an available component with many previous MIPS cores, including the 
P6600 core. The P6600 core architecture brings two significant changes to the PIB. First, the PIB is now instantiated 
in mips_css. Second, this new version of the PIB, referred to as PIB2, provides additional clock ratios. 

Cal 7 Calibrate off-chip trace interface.
If set to one, the off-chip trace pins will produce the following pattern in con-
secutive trace clock cycles. If more than 4 data pins exist, the pattern is repli-
cated for each set of 4 pins. The pattern repeats from top to bottom until the 
Cal bit is de-asserted. 

Note: The clock source of the TCB and PIB must be running.
These bits have no function if off-chip memory is not implemented.

R/W 0

Reserved 6:2 Reserved. Must be written as zero; returns zero on read. R 0

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA pins.
If set to 0, trace info is sent to on-chip memory.
This bit is read only if a single memory option exists (either off-chip or on-
chip only). 

R/W Preset

EN 0 Funnel Trace Enable. When this bit is set, the trace funnels accepts trace infor-
mation from the CM and/or cores and writes the information to off-chip or on-
chip memory. 
When this bit is cleared, the trace funnel drops all new trace information from 
the CM and/or cores . The trace information already accepted by the trace fun-
nel is sent to the off-chip or on-chip memory, but new trace information is 
dropped and not written out.

R/W 0

Table 14.20 TCBCONTROLB Register Field Descriptions(continued)

Fields

Description
Read / 
Write Reset StateName Bits

Calibrations pattern
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The PIB2 provides available TR_CLK to processor clock ratios of 1:2, 1:4, 1:6, 1:8, 1:10, 1:12, 1:16, and 1:20.  The 
PIB1 supplied by MIPS has only the ratios 1:2, 1:4, 1:6, and 1:8.  The PIB1 architecture also has provision for clock 
multiples, 1:1, 2:1, 4:1, and 8:1, but these are not supported in PIB2.

The PIB2 reports the minimum CR (TC_CRMin) as 3’b111 and maximum (TC_CRMax) as 3’b000 as shown in the 
table below.  This is how software identifies a PIB2 as opposed to PIB.

TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field; see Table 14.19. 
Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the 
TCBCONTROLBWR bit is set. For read-only registers, TCBCONTROLBWR is a don’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 14.22. The width of TCBDATA 
is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

Figure 14.7 TCBDATA Register Format 

TCBCONTROLD Register

The TCB includes a second control register, TCBCONTROLD (EJTAG Register 0x14), whose values are used to 
control the tracing functions of the Coherence Manager. External software (i.e., debugger) can therefore manipulate 
the trace output by writing to this register. This register is also mapped to offset 0x0010 in the Global Debug Block of 
the CM GCRs. 

The format of the TCBCONTROLD register is shown below, and the fields are described in Table 14.8

Table 14.21 Clock Ratio Encoding of the CR field

TC_ClockRatio TR_CLK : gclk

3’b000  1:20 

3’b001  1:16

3’b010  1:12

3’b011  1:10

3’b100  1:2

3’b101  1:4

3’b110  1:6

3’b111  1:8

31(63) 0

Data

Table 14.22 TCBDATA Register Field Descriptions 

Fields

Description Read/Write Reset StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the 
TCBCONTROLBREG field

Only writable if 
TCBCONTROLBWR is 

set

0
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Figure 14.8 TCBCONTROLD Register Format  

31 26 25 24 23 22 21 20 19 18 17 16 15 12 9 8 6 5 4 3 2 1 0

Reserved P4_Ctl P3_Ctl P2_Ctl P1_Ctl P0_Ctl Reserved TWSrcVal WB ST_En IO TLev AE Global_CM_En CM_EN

Table 14.23  TCBCONTROLD Register Definitions

Fields

Description
Read / 
Write

Reset 
StateName Bits

Reserved 31:30 Reserved for future use. Must be written as 0. R 0

P6_Ctl 29:28 Implementation specific finer grained control over tracing Port 6 traffic 
at the CM. See Table 14.24.

R/W 0

P5_Ctl 27:26 Implementation specific finer grained control over tracing Port 5 traffic 
at the CM. See Table 14.24.

R/W 0

P4_Ctl 25:24 Implementation specific finer grained control over tracing Port 4 traffic 
at the CM. See Table 14.24.

R/W 0

P3_Ctl 23:22 Implementation specific finer grained control over tracing Port 3 traffic 
at the CM. See Table 14.24.

R/W 0

P2_Ctl 21:20 Implementation specific finer grained control over tracing Port 2 traffic 
at the CM. See Table 14.24.

R/W 0

P1_Ctl 19:18 Implementation specific finer grained control over tracing Port 1 traffic 
at the CM. See Table 14.24.

R/W 0

P0_Ctl 17:16 Implementation specific finer grained control over tracing Port 0 traffic 
at the CM. See Table 14.24.

R/W 0

Reserved 15:12 Reserved for future use. Must be written as 0 and read as 0. R 0

TWSrcVal 11:8 The source ID of the CM. R/W 0

WB 7 When this bit is set, Coherent Writeback requests are traced. If this bit is 
not set, all Coherent Writeback requests are suppressed from the CM 
trace stream.

R/W 0

ST_En 6 System Trace Enable. Driven to the CM ouput pin SI_TC_Sys_Enable. 
External logic can use this output to control generation of the System 
Trace stream.

R/W 0

IO 5 Inhibit Overflow on CM FIFO full condition. When set to 1 the CM 
never drops trace words, but instead will stall the request and/or inter-
vention processing until forward progress can be made.
When set to 0 the CM will drop trace words when the trace word FIFO 
overflows.

R/W 0

TLev 4:3 This defines the current trace level being used by CM tracing R/W 0

AE 2 When set to 1, address tracing is always enabled for the CM. This 
affects trace output from the serialization unit of the CM. When set to 0, 
address tracing may be enabled through the implementation specific 
P[x]_Ctl bits.

R/W 0

Encoding Meaning

00 No Timing Information
01 Include Stall Times, Causes
10 Reserved
11 Reserved
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The TCBCONTROLD.AE bit enables addresses to be supplied when any request is serialized. This is not typically 
required because addresses issued from processor CPUs can be inferred from the CPU PDTrace stream.

The TCBCONTROLB.TLev bit controls the amount of information to be included the CM trace. Setting TLev to 1 may 
be useful when debugging performance problems.

The TCBCONTROL.IO bit determines the action taken by the CM with its internal trace buffers overflow. If the IO bit 
is 0 then trace information is lost when the trace buffer overflows. In this case, the CM temporarily stops producing 
trace messages, waits until the trace buffer becomes empty, performs a trace resynchronization with the CPUs and 
then starts producing new trace words. 

However, if TCBCONTROL.IO bit is 1 then trace information is never lost, but the system performance may be 
impacted when the trace buffer becomes full and the additional trace words are required. In this case, the CM stalls 
the processing of requests and/or L1 intervention responses until a trace buffer becomes available.

The TCBCONTROL.WB determines if L1 writebacks are traced or not. L1 writebacks are not software visible and do 
not appear in the CPU PDTrace, so typically writebacks are not traced in the CM (WB set to 0).

The value in the TCBCONTROLD.TWSrcVal field appears in all trace words produced by the CM, thus tagging the trace 
word as coming from the CM. A unique value must be programmed in this field and TCBCONTROLB.TWSrcVal for all 
cores. 

The five P<port>_Ctl fields in TCBCONTROLD give the ability to control the amount of trace information provided for 
requests received on the specified port. As shown in Table 14.24, requests from a given CM request port can be 
traced normally, always traced with addresses, or not traced. Typically, the CM request ports connected to CPUs will 
be traced normally (P0_Ctl, P1_Ctl, P3_Ctl, P4_Ctl set to 0) because the address is traced by the CPU itself. How-

Global_CM_En 1 Each CPU core can enable or disable CM tracing using this bit. This bit 
is not routed through the master core, but is individually controlled by 
each core. Setting this bit can enable tracing from the CM even if trac-
ing is being controlled through software, if all other enabling functions 
are true.

R/W 0

CM_EN 0 This is the master trace enable switch to the CM. When zero, tracing 
from the CM is always disabled. When set to one, tracing is enabled if 
other enabling functions are true.

R/W 0

Table 14.23  TCBCONTROLD Register Definitions

Fields

Description
Read / 
Write

Reset 
StateName Bits

Table 14.24 P<port>_Ctl Trace Control Field

Value Meaning

2’b00 Tracing Enabled, No Address Tracing, assuming AE = 0

2’b01 Tracing Enabled, Address Tracing Enabled, independent of AE

2’b10 Reserved

2’b11 Tracing Disabled
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ever, requests from the IOCU are only traced by the CM and therefore should have their addresses traced by the CM 
(P4_Ctl should be set to 2). 

TCBCONTROLE Register

The TCBCONTROLE register is used top control tracing functions of the Coherence Manager performance counters. 
The TCBCONTROLE register is written by an EJTAG TAP controller instruction, TCBCONTROLE (0x16). This register 
is also mapped to offset 0x0020 in the Global Debug Block of the CM GCRs. The format of the TCBCONTROLE reg-
ister is shown below, and the fields are described in Table 14.25.

Figure 14.9 TCBCONTROLE Register Format 

TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. This register is also 
mapped to offset 0x0028 in the Global Debug Block of the CM GCRs. The format of the TCBCONFIG register is 
shown below, and the field is described in Table 14.26.

Figure 14.10 TCBCONFIG Register Format 

31 9 8 7 1 0

0 TdIDLE Res PeC

Table 14.25 TCBCONTROLE Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

0 31:9 Reserved for future use. Must be written as zero; returns 
zero on read.

0 0

TrIdle 8 Trace Unit Idle. This bit indicates if the trace hardware is 
currently idle (not processing any data). This can be useful 
when switching control of trace from hardware to software 
and vice versa. The bit is read-only and updated by the 
trace hardware. 
TrIdle is set when the all cores and the CM have disabled 
PDTrace and the trace funnels has written all outstanding 
trace information to the off-chip or on-chip memory.

R 1

0 7:1 Reserved for future use; Must be written as zero; returns 
zero on read. (Hint to architect, Reserved for future expan-
sion of performance counter trace events).

0 0

PeC 0 Performance counter tracing is not implemented. R 0

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 0 SZ CRMax CRMin PW PiN OnT OfT REV
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Table 14.26 TCBCONFIG Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revision, 
TCBCONFIG1 does not exist and this bit always reads zero.

R 0

0 30:21 Reserved. Must be written as zero; returns zero on read. R 0

SZ 20:17 On-chip trace memory size. This field holds the encoded size of the 
on-chip trace memory.
The size in bytes is given by 2(SZ+8), implying that the minimum 
size is 256 bytes and the largest is 8Mb.
This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the core clock to the off-
chip trace memory interface clock. The clock-ratio encoding is 
shown in Table 14.21.
This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the core clock to the off-
chip trace memory interface clock.The clock-ratio encoding is 
shown in Table 14.21.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PW 10:9 Probe Width: Number of bits available on the off-chip trace interface 
TR_DATA pins. The number of TR_DATA pins is encoded, as 
shown in the table. 

This field is preset based on input signals to the TCB and the actual 
capability of the TCB. 
This bit is reserved if off-chip trace option is not implemented.

R Preset

PiN 8:6 Pipe number.
Indicates the number of execution pipelines.

R 0

OnT 5 When set, this bit indicates that on-chip trace memory is present. 
This bit is preset based on the selected option when the TCB is 
implemented.

R Preset

OfT 4 When set, this bit indicates that off-chip trace interface is present. 
This bit is preset based on the selected option when the TCB is 
implemented, and on the existence of a PIB module (TC_PibPresent 
asserted).

R Preset

REV 3:0 Trace control buffer revision. Refer to the Release Notes for the 
most current PDTrace revision.

R 0x9

PW Number of bits used on TR_DATA

00 4 bits
01 8 bits
10 16 bits
11 reserved
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TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the one pointed to 
by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register increments to the next 
TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment wraps back 
to address zero.

This register is also mapped to offset 0x0200 (lower 32 bits) and 0x0208 (upper 32 bits) in the Global Debug Block of 
the CM GCRs.

The format of the TCBTW register is shown below, and the field is described in Table 14.27.

Figure 14.11 TCBTW Register Format 

TCBRDP Register (Reg 5)

The TCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the 
TCBTW register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of TCBSTP.

This register is also mapped to offset 0x0108 in the Global Debug Block of the CM GCRs.

The format of the TCBRDP register is shown below, and the field is described in Table 14.28. The value of n depends 
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 14.12 TCBRDP Register Format 

TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new TW 
for on-chip trace will be written.

63 0

Data

Table 14.27 TCBTW Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 63:0 Trace Word R/W 0

31 n+1 n 0

Address

Table 14.28 TCBRDP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0
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This register is also mapped to offset 0x0110 in the Global Debug Block of the CM GCRs.

The format of the TCBWRP register is shown below, and the fields are described in Table 14.29. The value of n 
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always 
zero.

Figure 14.13 TCBWRP Register Format 

TCBSTP Register (Reg 7)

The TCBSTP register is the start pointer register. This pointer is used to determine when all entries in the trace buffer 
have been filled (when TCBWRP has the same value as TCBSTP ). This pointer is reset to zero when the 
TCBCONTROLBTR bit is written to 1. If a continuous trace to on-chip memory wraps around the on-chip memory, 
TSBSTP will have the same value as TCBWRP.

This register is also mapped to offset 0x0118 in the Global Debug Block of the CM GCRs.

The format of the TCBSTP register is shown below, and the fields are described in Table 14.30. The value of n 
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always 
zero.

Figure 14.14 TCBSTP Register Format 

TCBSYS Register (Reg 30)

The TCBSYS register contents are driven to the SI_TC_Sys_UserCtl[31:0] output signals. This register is also mapped 
to offset 0x0040 in the Global Debug Block of the CM GCRs. Thus, any change to this register will be reflected in 
these output signals. The format of the TCBSYS register is shown below, and the fields are described in Table 14.31.

31 n+1 n 0

Address

Table 14.29 TCBWRP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Address

Table 14.30 TCBSTP Register Field Descriptions 

Fields

Description
Read / 
Write Reset StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0
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Figure 14.15 TCBSYS Register Format 

Register Reset State

Reset state for all register fields is entered when either of the following occur:

1. TAP controller enters/is in Test-Logic-Reset state.

2. EJ_TRST_N input is asserted low.

14.3.4 MIPS Trace Capability

There are several build-time options for trace support within the P6600 Multiprocessing System (MPS):

1. No trace logic included.

2. Trace logic to support an on-chip trace memory (embedded within the MPS). 

3. Trace logic to support an off-chip trace probe (with off-chip trace memory).

4. Combination of options 2 and 3.

14.3.5 Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM

PDtrace can be controlled entirely through software and the on-chip trace memory can be accessed directly by soft-
ware using load and store instructions. 

14.3.6 On-Chip Trace Buffer Usage

In order to direct trace data to the on-chip buffer instead of the off-chip interface, the OfC bit in the TCBControlB 
register of the trace master must be cleared. Once this is done, the trace funnel will combine trace data it receives 
from the CM and CPUs and write it to the on-chip memory. Tracing can be enabled or disabled on a per CM/CPU 
basis by setting or clearing the EN bits in the corresponding TCBControlB registers.

To initialize the on-chip trace buffer, the TR bit of the TCBControlB register of the trace master is set by software. 
This will initialize TCBRDP, TCBWRP and TCBSTP pointers to zero. These pointers do not have to explicitly writ-
ten by software for initialization, the reset function that is caused by setting the TR bit is sufficient. 

31 30 0

STA UsrCtl

Table 14.31 TCBSYS Register Field Descriptions

Fields

Description
Read / 
Write Reset StateName Bits

STA 31 System Trace Available. Set to 1 if the System Trace Interface is 
present. Otherwise it is set to 0.

R present: 1
not present: 0

UsrCtl 30:0 User-defined Control. R/W 0
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When it is desired to read out the Trace Words from the on-chip buffer, software first sets the RM bit.within TCBCon-
trolB. This will load the TCBRDP register with the value held in the TCBSTP register. The TraceWord pointed by 
TCBRDP can be then read out through the TCBTW register. The read will automatically update the TCBRDP value 
to point to the next newer entry. A subsequent read from TCBTW register will thus read out the next newer Trace-
Word. Software does not have to explicitly update the TCBRDP register. 

If the TM field of TCBControlB register is set to Trace-From mode, the trace-buffer contents stop being updated 
when the trace-buffer is full (when TCBWRP points to the same entry as TCBSTP). This event is denoted by the BF 
bit of TCBControlB register. The BF bit can be polled by software to decide when to read out the trace buffer con-
tents. 

For production testing, such as stuck-at testing of memory cells within the trace buffer, the TCBRDP and TCBWRP 
registers can be explicitly written by software to write and read specific entries within the trace buffer. As previously 
stated, for normal usage these pointer registers do not have to be explicitly written by software. 
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Instruction Latencies and Repeat Rates

This chapter provides the instructions latency and repeat rates for the following instruction types.

• Section 15.1 “Definition of Terms”

• Section 15.2 “MTC0 Instruction Considerations”

• Section 15.3 “Compact Branch Handling”

• Section 15.4 “Integer Instruction Latencies and Repeat Rates”

• Section 15.5 “Floating Point Instruction Latencies and Repeat Rates”

• Section 15.6 “MSA Instruction Latencies and Repeat Rates”

15.1 Definition of Terms

The terms latency and repeat rate are defined as follows:

Latency is defined as the minimum time between when an instruction issues, and the time that a subsequent depen-
dent instruction may issue. For example, and ADD instruction has a latency of 1 cycle. Consider the following code 
sequence:

ADD r3, r1, r2
ADD r5, r4, r3

In this example the second ADD instruction is dependent on the value placed into r3 by the first ADD instruction. It 
may issue one cycle after the first ADD instruction issues.

Repeat rate is measured as the minimum issue interval time between independent instructions. For example, a MUL 
instruction has a latency of 4 cycles and a repeat rate of 1 cycle. Consider the following code sequence:

MUL r4, r1, r2
MUH r5, r1, r2

The MUL instruction multiplies the r1 and r2 values and places the lower half of the result into r4. The MUH instruc-
tion multiples the r1 and r2 values and places the upper half of the result into r5. In this case the MUH can issue one 
cycle after the MUL instruction issues.
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15.2 MTC0 Instruction Considerations

Any MTC0 instruction which can potentially change the operating mode (kernel, supervisor, user) or context (mem-
ory mapping) should be executed in the delay slot of a JALR.HB instruction to avoid hazards. Instructions following 
JALR.HB-MTC0 pair will thus be fetched and executed in the new mode. If the mode-changing MTC0 instruction is 
not placed in delay slot of JALR.HB instruction, it is not guaranteed that the following instruction will be fetched and 
executed in the new mode or context.

Execution of the MTC0 instruction can change the following register bits:

Status.ERL: Changes the mapping of KUSeg memory segment. If the program is being executed in the KUSeg seg-
ment, and the MTC0 instruction that modifies the value of the ERL bit is not placed in the delay slot of a JALR.HB 
instruction, the instructions following the MTC0 instruction may be fetched from a different memory region. 

Status.ERL, Status.EXL, Status.KSU: Changes the mode of operation. If the MTC0 instruction that modified the 
mode is not placed in the delay slot of JALR.HB instruction, the instructions following the MTC0 instruction may be 
fetched in kernel mode but executed in the new mode.

Status.KX, Status.SX, Status.UX: These bits determines the access privilege to 64-bit memory segments. If the pro-
gram is being executed in a 64-bit segment and the MTC0 instruction that modified the value of these bits is not 
placed in the delay slot of JALR.HB instruction, the instructions following the MTC0 instruction may be fetched 
incorrectly. 

15.3 Compact Branch Handling

Back-to-back compact branches in static code space are optimized in the P6600 for the following cases:

• BALC followed by any conditional compact branch

• BALC followed by BALC

The rest of the combinations of compact branches on the same cache-line may cause instruction fetch stall and related 
performance impact.
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15.4 Integer Instruction Latencies and Repeat Rates

The following table shows the latency and repeat rates for integer instructions. Note that while the P6600 does have 
two ALU’s, they are not identical. As such, certain instructions can only be executed in either ALU1 or ALU2. The 
ALU in which the instruction can be executed is shown in the Unit Type column.

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates 

Instruction Definition Latency
Repeat 
Rate Unit Type

Number 
of Units

New in 
R6

ADD Add word 1 1 ALU1/ALU2 2

ADDIU Add immediate unsigned word 1 1 ALU1/ALU2 2

ADDIUPC Add immediate to PC (unsigned, non-trapping) 2 1 ALU2 1 Y

ADDU Add unsigned word 1 1 ALU1/ALU2 2

ALIGN Concatenate two GPRs, and extract a contiguous subset at 
a byte position. Operates on 32-bit words with a 2-bit byte 
position field.

2 1 ALU2 1 Y

ALUIPC Aligned add upper immediate to PC 2 1 ALU2 1 Y

AND Bitwise logical AND operation 1 1 ALU1 1

ANDI Bitwise logical AND immediate with a constant 1 1 ALU1/ALU2 2

AUI Add upper immediate 1 1 ALU2 1 Y

AUIPC Add upper immediate to PC 2 1 ALU2 1 Y

B Unconditional branch n/a 1 CTI 1

BAL Branch and link 2 1 CTI 1

BALC Branch and link compact 2 1 CTI 1 Y

BC Branch compact n/a 1 CTI 1 Y

BC1EQZ Branch if coprocessor 1 equal to zero n/a 1 CTI 1

BC1NEZ Branch if coprocessor 1 not equal to zero n/a 1 CTI 1

BEQ Branch on equal. n/a 1 CTI 1

BEQC Compact branch if GPR values are equal. n/a 1 CTI 1 Y

BEQZALC Compact branch-and-link if GPR rt is equal to zero. 2 1 CTI 1 Y

BEQZC Compact branch if GPR rs is equal to zero. n/a 1 CTI 1 Y

BGEC Compact branch if GPR rs is greater than or equal to GPR 
rt.

n/a 1 CTI 1 Y

BGEUC Compact branch if GPR rs is greater than or equal to GPR 
rt, unsigned.

n/a 1 CTI 1 Y

BGEZ Branch on greater than or equal to zero. n/a 1 CTI 1

BGEZALC Compact branch-and-link if GPR rt is greater than or equal 
to zero.

2 1 CTI 1 Y

BGEZC Compact branch if GPR rt is greater than or equal to zero. n/a 1 CTI 1 Y

BGTC Compact branch if GPR rt is greater than GPR rs (alias for 
BLTC). Assembly idiom with operands reversed.

n/a 1 CTI 1 Y
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BGTUC Compact branch if GPR rt is greater than GPR rs, unsigned 
(alias for BLTUC). Assembly idiom with operands 
reversed.

n/a 1 CTI 1 Y

BGTZ Branch on greater than zero. n/a 1 CTI 1

BGTZC Compact branch if GPR rt is greater than zero. n/a 1 CTI 1 Y

BGTZALC Compact branch-and-link if GPR rt is greater than zero. 2 1 CTI 1 Y

BITSWAP Swaps (reverses) bits in each byte. Operates on all 4 bytes 
of a 32-bit GPR. See DBITSWAP instruction.

2 1 ALU2 1 Y

BLEC Compact branch if GPR rt is less than or equal to GPR rs 
(alias for BGEC). Assembly idiom with operands reversed.

n/a 1 CTI 1 Y

BLEUC Compact branch if GPR rt is less than or equal to GPR rt, 
unsigned (alias for BGEUC). Assembly idiom with oper-
ands reversed.

n/a 1 CTI 1 Y

BLEZ Branch on less than or equal to zero. n/a 1 CTI 1

BLEZALC Compact branch-and-link if GPR rt is less than or equal to 
zero.

2 1 CTI 1 Y

BLEZC Compact branch if GPR rt is less than or equal to zero. n/a 1 CTI 1 Y

BLTC Compact branch if GPR rs is less than GPR rt. n/a 1 CTI 1 Y

BLTUC Compact branch if GPR rs is less than GPR rt, unsigned. n/a 1 CTI 1 Y

BLTZ Branch on less than zero. n/a 1 CTI 1

BLTZALC Compact branch-and-link if GPR rt is less than zero. 2 1 CTI 1 Y

BLTZC Compact branch if GPR rt is less than zero. n/a 1 CTI 1 Y

BNE Branch on not equal. n/a 1 CTI 1

BNEC Compact branch if GPR value are not equal. n/a 1 CTI 1 Y

BNEZALC Compact branch-and-link if GPR rt is not equal to zero. 2 1 CTI 1 Y

BNEZC Compact branch if GPR rs is not equal to zero. n/a 1 CTI 1 Y

BOVC Branch on overflow, compact. n/a 1 CTI 1 Y

BNVC Branch on no overflow, compact. n/a 1 CTI 1 Y

BREAK Breakpoint. To cause a breakpoint exception. 0 n/a -- --

CACHE Perform a cache operation specified by the opcode. n/a 1 LSU 1

CFC1 Move control word from floating point 4 1 CTI/LSU 1

CLO Count number of leading ones in a word. 2 1 ALU2 1

CLZ Count number of leading zeros in a word. 2 1 ALU2 1

CTC1 Move control word to floating point. 5 1 CTI/LSU 1

DADD Doubleword add. Add two 64-bit integers. Trap on over-
flow.

1 1 ALU1/ALU2 2

DADDIU Doubleword add immediate unsigned. Add a constant to a 
64-bit integer.

1 1 ALU1/ALU2 2

DADDU Doubleword add unsigned. Add two 64-bit integers 1 1 ALU1/ALU2 2

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates (continued)

Instruction Definition Latency
Repeat 
Rate Unit Type

Number 
of Units

New in 
R6
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DAHI Doubleword add higher immediate 1 1 ALU2 1 Y

DALIGN Concatenate two GPRs, and extract a contiguous subset at 
a byte position. Operates on 64-bit doublewords with a 3-
bit byte position field.

2 1 ALU2 1 Y

DATI Doubleword add top immediate 1 1 ALU2 1 Y

DAUI Doubleword add upper immediate 1 1 ALU2 1 Y

DBITSWAP Swaps (reverses) bits in each byte. Operates on all 8 bytes 
of a 64-bit GPR. See BITSWAP instruction.

2 1 ALU2 1 Y

DCLO Count leading ones in doubleword. 2 1 ALU2 1

DCLZ Count leading zeros in doubleword. 2 1 ALU2 1

DDIV
DMOD

Divide 64-bit integers signed.
Modulo 64-bit doublewords signed
Divide the operands in GPR rs and GPR ft, and place the 
result into GPR rd. See the DIV instruction.

5 5 MDU 1 Y

DDIVU
DMODU

Divide 64-bit unsigned integers.
Modulo doublewords unsigned
Divide the unsigned 64-bit operands in GPR rs and GPR rt, 
and place the result into GPR rd. See the DIVU instruction.

5 5 MDU 1 Y

DERET Return from debug exception. 0 n/a CTI 1

DEXT Doubleword extract bit field. 2 1 ALU2 1

DEXTM Doubleword extract bit field middle. 2 1 ALU2 1

DEXTU Doubleword extract bit field upper. 2 1 ALU2 1

DI Disable interrupts. Return the previous value of the CP0 
Status register and disable interrupts.

0 n/a -- --

DINS Doubleword insert bit field. Merge a right-justified bit field 
from the GPR rs field into the specified GPR rt field.

2 1 ALU2 1

DINSM Doubleword insert bit field middle. 2 1 ALU2 1

DINSU Doubleword insert bit field upper. 2 1 ALU2 1

DIV
MOD

Divide 32-bit integers signed.
Modulo words signed
Divide the operands in GPR rs and GPR ft, and place the 
result into GPR rd.

5 5 MDU 1 Y

DIVU
MODU

Divide 32-bit unsigned integers.
Modulo words unsigned
Divide the unsigned 32-bit operands in GPR rs and GPR rt, 
and place the result into GPR rd. See the DDIVU instruc-
tion.

5 5 MDU 1 Y

DLSA Doubleword load scaled address. Add two values from reg-
isters rs and rt. See LSA instruction. 

2 1 ALU2 1 Y

DMFC0 Doubleword move from CP0 to GPR. 4 1 LSU 1

DMFC1 Doubleword move from FPR to GPR. 4 1 LSU 1

DMTC0 Doubleword move from GPR to CP0. n/a 1 LSU 1

DMTC1 Doubleword move from GPR to FPR. n/a 1 LSU 1

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates (continued)

Instruction Definition Latency
Repeat 
Rate Unit Type

Number 
of Units

New in 
R6
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DMUH Multiply doublewords signed, high doubleword. Performs 
a signed 64-bit integer multiplication and places the high 
64 bits of the result in the destination register.

4 1 MDU 1 Y

DMUL Multiply doublewords signed, low doubleword. Performs a 
signed 64-bit integer multiplication and places the low 64 
bits of the result in the destination register.

4 1 MDU 1 Y

DMUHU Multiply doublewords unsigned, high doubleword. Per-
forms an unsigned 64-bit integer multiplication and places 
the high 64 bits of the result in the destination register.

4 1 MDU 1 Y

DMULU Multiply doublewords unsigned, low doubleword. Per-
forms an unsigned 64-bit integer multiplication and places 
the low 64 bits of the result in the destination register.

4 1 MDU 1 Y

DROTR Doubleword rotate right. Logical rotate right of a double-
word by a fixed amount — 0 - 31 bits.

1 1 ALU1/ALU2 2

DROTR32 Doubleword rotate right plus 32. Logical rotate right of a 
doubleword by a fixed amount — 32 - 63 bits.

1 1 ALU1/ALU2 2

DROTRV Doubleword rotate right variable. Logical rotate right of a 
doubleword by a variable number of bits.

1 1 ALU1/ALU2 2

DSBH Doubleword swap bytes within halfwords. Swap the bytes 
within each halfword of GPR rt and store into GPR rd.

2 1 ALU2 1

DSHD Doubleword swap halfwords within doublewords. Swap 
the halfwords within each doubleword of GPR rt and store 
into GPR rd.

2 1 ALU2 1

DSLL Doubleword shift left logical. Logical left-shift of a dou-
bleword by a fixed amount — 0 - 31 bits.

1 1 ALU1/ALU2 2

DSLL32 Doubleword shift left logical plus 32. Logical left-shift of a 
doubleword by a fixed amount — 32 - 63 bits.

1 1 ALU1/ALU2 2

DSLLV Doubleword shift left logical variable. Logical left-shift of 
a doubleword by a variable number of bits.

1 1 ALU1/ALU2 2

DSRA Doubleword right shift arithmetic. Arithmetic right-shift of 
a doubleword by a fixed amount — 0 - 31 bits.

1 1 ALU1/ALU2 2

DSRA32 Doubleword right shift arithmetic plus 32. Arithmetic 
right-shift of a doubleword by a fixed amount — 32 - 63 
bits.

1 1 ALU1/ALU2 2

DSRAV Doubleword shift right arithmetic variable. Arithmetic 
right-shift of a doubleword by a variable number of bits.

1 1 ALU1/ALU2 2

DSRL Doubleword shift right logical. Logical right-shift of a dou-
bleword by a fixed amount — 0 - 31 bits.

1 1 ALU1/ALU2 2

DSRL32 Doubleword shift right logical plus 32. Logical right-shift 
of a doubleword by a fixed amount — 32 - 63 bits.

1 1 ALU1/ALU2 2

DSRLV Doubleword shift right logical variable. Logical right-shift 
of a doubleword by a variable number of bits.

1 1 ALU1/ALU2 2

DSUB Doubleword subtract. Subtract 64-bit integers. Trap on 
overflow.

1 1 ALU1/ALU2 2

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates (continued)

Instruction Definition Latency
Repeat 
Rate Unit Type

Number 
of Units

New in 
R6
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DSUBU Doubleword subtract unsigned. Subtract unsigned 64-bit 
integers. Trap on overflow.

1 1 ALU1/ALU2 2

DVP Disable virtual processor. Disable all virtual processors in a 
core except the one that issued the instruction.

0 n/a -- -- Y

EHB Execute hazard barrier. Stop instruction execute until all 
execution hazards have been cleared.

0 n/a -- --

EI Enable interrupts. Return the previous state of the CP0 Sta-
tus register and enable interrupts.

0 n/a -- --

ERET Exception return. Return from interrupt, exception, or error 
trap.

4 n/a LSU 1

ERETNC Exception return no clear. Return from interrupt, excep-
tion, or error trap without clearing the LL bit.

4 n/a LSU 1

EVP Enable virtual processor. Enable all virtual processors in a 
core except the one that issued the instruction.

0 n/a -- -- Y

EXT Extract bit field. Extract a bit field from GPR rx and store it 
right-justified into GPT rt.

2 1 ALU2 1

INS Insert bit field. Merge a right-justified bit field from GPR 
rs into a specified field in GPR rt.

2 1 ALU2 1

J Jump. Branch within the current 256 MByte region. n/a 1 CTI 1

JAL Jump and link. Execute a procedure call within the current 
256 MByte region.

2 1 CTI 1

JALR Jump and link register. Execute a procedure call to an 
instruction address in a register.

2 1 CTI 1

JALR.HB Jump and link register with hazard barrier. Execute a pro-
cedure call to an instruction address in a register and clear 
all execution and instruction hazards.

n/a 1 CTI 1

JIALC Jump indexed and link, compact. The jump target is 
formed by sign extending the offset field of the instruction 
and adding it to the contents of GPR rt. 

n/a 1 CTI 1 Y

JIC Jump indexed, compact. The branch target is formed by 
sign extending the offset field of the instruction and adding 
it to the contents of GPR rt.

n/a 1 CTI 1 Y

JR Jump register. Execute a branch to an instruction address in 
a register.

n/a 1 CTI 1

JR.HB Jump register with hazard barrier. Execute a a branch to an 
instruction address in a register and clear all execution and 
instruction hazards.

n/a n/a CTI 1

LB Load byte from memory as a signed value. 4 1 LSU 1

LBU Load byte from memory as an unsigned value. 4 1 LSU 1

LD Load doubleword from memory. 4 1 LSU 1

LDC1 Load doubleword from memory to an FPR. 10 1 LSU 1

LDPC Load doubleword PC-relative. Load a doubleword from 
memory using a PC-relative address.

4 1 LSU 1 Y

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates (continued)

Instruction Definition Latency
Repeat 
Rate Unit Type

Number 
of Units

New in 
R6
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LH Load halfword from memory as a signed value. 4 1 LSU 1

LHU Load halfword from memory as an unsigned value. 4 1 LSU 1

LL Load linked word. Load a word from memory for an 
atomic read-modify-write.

4 1 LSU 1

LLD Load linked doubleword. Load a doubleword from mem-
ory for an atomic read-modify-write.

4 1 LSU 1

LSA Load scaled address. Add two values from registers rs and 
rt. See DLSA instruction.

2 1 ALU2 1 Y

LUI Load upper immediate. Load a constant into the upper half 
of a word.

1 1 ALU1 1

LW Load word from memory as a signed value. 4 1 LSU 1

LWC1 Load word from memory to an FPR. 10 1 LSU 1

LWPC Load word PC relative. Load a word from memory as a 
signed value using a PC-relative address.

4 1 LSU 1 Y

LWU Load word from memory as an unsigned value. 4 1 LSU 1

LWUPC Load word unsigned PC relative. Load a word from mem-
ory as an unsigned value using a PC-relative address.

4 1 LSU 1 Y

MFC0 Move from CP0. Move the contents of a CP0 register to a 
general register.

4 1 LSU 1

MFC1 Copy a word from an FPR to a GPR. 7 1 LSU 1

MFHC0 Move from high CP0. Move the contents of the upper 32 
bits of a CP0 register, extended by 32-bits, to a general reg-
ister.

4 1 LSU 1

MFHC1 Copy word from high half of an FPR to a GPR. 7 1 LSU 1

MTCO Move to CP0. Move the contents of the upper 32 bits of a 
general register to a CP0 register.

n/a 1 LSU 1

MTC1 Move word from a GPR to an FPR. n/a 1 LSU 1

MTHC0 Move to high CP0. Move the contents of the upper 32 bits 
of a CP0 register, extended by 32-bits, to a general register.

5 1 LSU 1

MTHC1 Copy word from a GPR to the high half of an FPR. 5 1 LSU 1

MUH Multiply words signed, high word. Performs a signed 32-
bit integer multiplication and places the high 32 bits of the 
result in the destination register.

3 1 MDU 1 Y

MUHU Multiply words unsigned, high word. Performs an 
unsigned 32-bit integer multiplication and places the high 
32 bits of the result in the destination register.

3 1 MDU 1 Y

MUL Multiply words signed, low word. Performs a signed 32-bit 
integer multiplication and places the low 32 bits of the 
result in the destination register.

3 1 MDU 1 Y

MULU Multiply words unsigned, low word. Performs an unsigned 
32-bit integer multiplication and places the low 32 bits of 
the result in the destination register.

3 1 MDU 1 Y

NAL No-op and link. Used to read the PC. 2 1 CTI 1

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates (continued)

Instruction Definition Latency
Repeat 
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New in 
R6
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NOP No operation. 0 n/a ALU1/ALU2 2

NOR NOT OR. Bitwise logical NOT OR. 1 1 ALU1 1

OR OR operation. Bitwise logical OR. 1 1 ALU1 1

ORI OR immediate. Bitwise logical or with a constant. 1 1 ALU1/ALU2 2

PAUSE Pause. Wait for the LL bit to clear. n/a 1 LSU 1

PREF Prefetch. Move data between memory and cache. 4 1 LSU 1

RDHWR Read hardware register. Move the contents of a hardware 
register to a general purpose register (GPR) if that opera-
tion is enabled by privileged software.

4 1 LSU 1

RDPGPR Read GPR from previous shadow set. Move the contents of 
a GPR from the previous shadow set to a current GPR.

1 1 ALU 1

ROTR Rotate word right. Logical right-rotate of a word by a fixed 
number of bits.

1 1 ALU1/ALU2 2

ROTRV Rotate word right variable. Logical right-rotate of a word 
by a variable number of bits.

1 1 ALU1/ALU2 2

SB Store byte. Store a byte to memory. n/a 1 LSU 1

SC Store conditional word. Store a word to memory to com-
plete an atomic read-modify-write.

4 1 LSU 1

SCD Store conditional doubleword. Store a doubleword to mem-
ory to complete an atomic read-modify-write.

4 1 LSU 1

SD Store a doubleword to memory. n/a 1 LSU 1

SDBBP Software debug break point. Cause a debug breakpoint 
exception.

0 n/a -- --

SDC1 Store doubleword from FPR to memory  1 LSU 1

SEB Sign-extend byte. Sign-extend the least significant byte of 
GPR rt and store the value into GPR rd.

1 1 ALU1/ALU2 2

SEH Sign-extend halfword. Sign-extend the least significant 
halfword of GPR rt and store the value into GPR rd.

1 1 ALU1/ALU2 2

SELEQZ Select integer GPR value or zero. Condition true only if all 
bits in GPR rt are zero.

2 1 ALU2 1 Y

SELNEZ Select integer GPR value or non-zero. Condition true only 
if any bit in GPR rt is non-zero.

2 1 ALU2 1 Y

SH Store halfword to memory. n/a 1 LSU 1

SIGRIE Signal reserved instruction exception. n/a n/a -- -- Y

SLL Shift word left logical by a fixed number of bits. 1 1 ALU1/ALU2 2

SLLV Shift word left logical by a variable number of bits. 1 1 ALU1/ALU2 2

SLT Set on less than. Record the result of a less-than compari-
son.

1 1 ALU1/ALU2 2

SLTI Set on less than immediate. Record the result of a less-than 
comparison with a constant.

1 1 ALU1 1

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates (continued)
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SLTIU Set on less than immediate unsigned. Record the result of 
an unsigned less-than comparison with a constant.

1 1 ALU1 1

SLTU Set on less than unsigned. Record the result of a less-than 
comparison.

1 1 ALU1/ALU2 2

SRA Shift word right arithmetic. Execute an arithmetic right-
shift of a word by a fixed number of bits.

1 1 ALU1/ALU2 2

SRAV Shift word right arithmetic variable. Execute an arithmetic 
right-shift of a word by a variable number of bits.

1 1 ALU1/ALU2 2

SRL Shift word right logical. Execute a logical right-shift of a 
word by a fixed number of bits.

1 1 ALU1/ALU2 2

SRLV Shift word right logical variable. Execute a logical right-
shift of a word by a variable number of bits.

1 1 ALU1/ALU2 2

SSNOP Superscalar no-operation. Break superscalar issue. 0 n/a -- --

SUB Subtract 32-bit integers. Trap on overflow. 1 1 ALU1 1

SUBU Subtract unsigned 32-bit integers. 1 1 ALU1/ALU2 2

SW Store word to memory. n/a 1 LSU 1

SWC1 Store word from FPR to memory  1 LSU 1

SYNC Synchronize shared memory. Order loads and stores for 
shared memory.

n/a 1 LSU 1

SYNCI Synchronize caches to make instruction writes effective. n/a 1 LSU 1

SYSCALL System call. Cause a system call exception. n/a n/a -- --

TEQ Trap if equal. Compare GPR’s and do a conditional trap if 
equal.

n/a 1 ALU2 1

TGE Trap if greater or equal. Compare GPR’s and do a condi-
tional trap on greater or equal condition.

n/a 1 ALU2 1

TGEU Trap if greater or equal unsigned. n/a 1 ALU2 1

TLBINV TLB invalidate. Invalidates TLB entry based on ASID and 
index match.

n/a 1 LSU 1

TLBINVF TLB invalidate flush. n/a 1 LSU 1

TLBP TLB probe. Find a matching TLB entry. n/a 1 LSU 1

TLBR TLB read. Read an entry from the TLB. n/a 1 LSU 1

TLBWI TLB write indexed. Write or invalidate a TLB entry 
indexed by the CP0 Index register.

n/a 1 LSU 1

TLBWR TLB write random. Write a TLB entry indexed by an 
implementation-defined location.

n/a 1 LSU 1

TLT Trap if less than. Compare GPR’s and trap on condition. n/a 1 ALU2 1

TLTU Trap if less than unsigned. Compare GPR’s and trap on 
condition. 

n/a 1 ALU2 1

TNE Trap if not equal. Compare GPR’s and trap on condition. n/a 1 ALU2 1

WAIT Wait for event. Enter standby mode. 0 n/a -- --

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates (continued)
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WRPGPR Write to GPR in previous shadow set. Move the contents of 
a current GPR to a GPR in the previous shadow set.

2 1 ALU2 1

WSBH Word swap bytes within halfwords. Swap the bytes within 
each halfword of GPR rt and store the value into GPR rd.

2 1 ALU2 1

XOR Exclusive OR. 1 1 ALU1 1

XORI Exclusive OR immediate. 1 1 ALU1/ALU2 2

Table 15.1 P6600 Integer Instructions — Latency and Repeat Rates (continued)
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15.5 Floating Point Instruction Latencies and Repeat Rates

The following table shows the latencies and repeat rates for the floating point unit (FPU) instructions. 

Table 15.2 Floating Point Latencies and Repeat Rates

Instruction Definition Latency Repeat Rate

ABS.fmt Floating point absolute value 2 1

ADD.fmt Floating point add 4 1

CEIL.L.fmt Fixed point ceiling convert to long fixed point 4 1

CEIL.W.fmt Fixed point ceiling convert to word fixed point 4 1

CLASS.fmt Scalar floating point class mask 2 1

CMP.cond.fmt Fixed point compare setting mask 2 1

CVT.D.fmt Fixed point convert to double floating point 4 1

CVT.L.fmt Fixed point convert to long fixed point 4 1

CVT.S.fmt Fixed point convert to single floating point 4 1

CVT.W.fmt Fixed point convert to word fixed point 4 1

DIV.fmt Floating point divide variable variable

FLOOR.L.fmt Fixed point floor convert to long fixed point 4 1

FLOOR.W.fmt Fixed point floor convert to word fixed point 4 1

MADDF.fmt Floating point fused multiply add1 4, 8 1

MAX.fmt Scalar floating point maximum value 2 1

MAXA.fmt Scalar floating point maximum value with input argu-
ments

2 1

MIN.fmt Scalar floating point minimum value 2 1

MINA.fmt Scalar floating point minimum value with input argu-
ments

2 1

MSUBF.fmt Floating point fused multiply subtract1 4, 8 1

MUL.fmt Floating point multiply 5 1

NEG.fmt Floating point negate 2 1

RECIP.fmt Floating point reciprocal variable variable

RINT.fmt Scalar floating point round to integral floating point 
value

4 1

ROUND.L.fmt Floating point round to long fixed point 4 1

ROUND.W.fmt Floating point round to word fixed point 4 1

RSQRT.fmt Floating point reciprocal square root variable variable

SEL.fmt Select floating point values with 2 1

SELEQZ.fmt Select floating point with conditions equal to zero 2 1

SELNEZ.fmt Select floating point with conditions not equal to zero 2 1

SQRT.fmt Floating point square root variable variable

SUB.fmt Floating point subtract 4 1

TRUNC.L.fmt Floating point truncate to long fixed point 4 1
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TRUNC.W.fmt Floating point truncate to word fixed point 4 1

1. 4 = latency to another MADDF add or subtract operand, 8 = latency to another MADDF multiply operand.

Table 15.2 Floating Point Latencies and Repeat Rates

Instruction Definition Latency Repeat Rate



 

788 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

15.6 MSA Instruction Latencies and Repeat Rates

The following table shows the latency and repeat rates for the MIPS SIMD Architecture (MSA) instructions. 

Table 15.3  MSA Instruction Latencies and Repeat Rates 

Instruction Definition Latency Repeat Rate

ADD_A.df Vector add absolute values 2 1

ADDS_A.df Vector saturated add of absolute values 2 1

ADDS_S.df Vector saturated add of signed values 2 1

ADDS_U.df Vector saturated add of unsigned values 2 1

ADDV.df Vector add 2 1

ADDVI.df Immediate add 2 1

AND.V Vector and 2 1

ANDI.B Immediate and 2 1

ASUB_S.df Vector absolute values of signed subtract 2 1

ASUB_U.df Vector absolute values of unsigned subtract 2 1

AVE_S.df Vector signed average 2 1

AVE_U.df Vector unsigned average 2 1

AVER_S.df Vector signed average rounded 2 1

AVER_U.df Vector unsigned average rounded 2 1

BCLR.df Vector bit clear 2 1

BCLRI.df Immediate bit clear 2 1

BINSRI.df Immediate bit insert right 2 1

BINSL.df Vector bit insert left 2 1

BINSLI.df Immediate bit insert left 2 1

BINSR.df Vector bit insert right 2 1

BMNZ.V Vector move if not zero 2 1

BMNZI.B Immediate move if not zero 2 1

BMZ.V Vector move if zero 2 1

BMZI.B Immediate move if zero 2 1

BNZ.df Branch if all elements are non zero 2 1

BNZ.V Branch if any element non zero 2 1

BNEG.df Vector selected bit position negate 2 1

BNEGI.df Immediate bit negate 2 1

BSEL.V Vector bit select 2 1

BSELI.B Immediate bit select 2 1

BSET.df Vector bit set 2 1

BSETI.df Immediate bit set 2 1

BZ.df Branch if any element zero 2 1

BZ.V Branch if all elements zero 2 1
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CEQ.df Vector compare equal 2 1

CEQI.df Immediate compare equal 2 1

CFCMSA GPR copy from MSA control register n/a 1

CTCMSA GPR copy to MSA control register n/a 1

CLE_S.df Vector compare signed less than or equal 2 1

CLE_U.df Vector compare unsigned less than or equal 2 1

CLEI_S.df Immediate compare signed less than or equal 2 1

CLEI_U.df Immediate compare unsigned less than or equal 2 1

CLT_S.df Vector compare signed less than 2 1

CLT_U.df Vector compare unsigned less than 2 1

CLTI_S.df Immediate compare signed less than or equal 2 1

CLTI_U.df Immediate compare unsigned less than or equal 2 1

COPY_S.df Element move to GPR signed n/a 1

COPY_U.df Element move to GPR unsigned n/a 1

DIV_S.df Vector signed divide. See MOD_S instruction variable variable

DIV_U.df Vector unsigned divide. See MOD_U instruction variable variable

DOTP_S.df Vector signed dot product 5 1

DOTP_U.df Vector unsigned dot product 5 1

DPADD_S.df Vector signed dot product and add 5 1

DPADD_U.df Vector unsigned dot product and add 5 1

DPSUB_S.df Vector signed dot product and subtract 5 1

DPSUB_U.df Vector unsigned dot product and subtract 5 1

FADD.df Vector FP add 4 1

FCAF.df Vector FP compare always false 2 1

FCEQ.df Vector FP compare equal 2 1

FCLASS.df Vector FP class mask, record class (0, inf, qNaN, etc) of 
data

2 1

FCLE.df Vector FP compare less than equal 2 1

FCLT.df Vector FP compare less than 2 1

FCOR.df Vector FP compare not equal 2 1

FCNE.df Vector FP compare not equal 2 1

FCUEQ.df Vector FP compare not equal 2 1

FCULE.df Vector FP compare greater than 2 1

FCULT.df Vector FP compare greater than equal 2 1

FCUN.df Vector FP compare unordered 2 1

FCUNE.df Vector FP compare not equal 2 1

FDIV.df Vector FP divide variable variable

FEXDO.df Vector FP down convert 4 1

Table 15.3  MSA Instruction Latencies and Repeat Rates (continued)

Instruction Definition Latency Repeat Rate
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FEXP2.df Vector FP base 2 exponentiation ws is float df, wt is integer 
of size df

5 1

FEXUPL.df Vector FP up convert left 4 1

FEXUPR.df Vector FP up convert right 4 1

FFINT_S.df Vector FP convert from signed integer 4 1

FFINT_U.df Vector FP convert from unsigned integer 4 1

FFQL.df Vector FP convert from fixed point left 4 1

FFQR.df Vector FP convert from fixed point right 4 1

FILL.df Replicate and move from GPR 2 1

FLOG2.df Vector FP base 2 exponentiation ws is float df, wt is integer 
of size df

2 1

FMADD.df Vector multiply add 4, 8 1

FMSUB.df Vector multiply subtract 4, 8 1

FMAX.df Vector FP maximum 2 1

FMAX_A.df Vector FP maximum on absolute value 2 1

FMIN.df Vector FP minimum 2 1

FMIN_A.df Vector FP minimum on absolute value 2 1

FMUL.df Vector FP multiply 5 1

FRCP.df Vector FP reciprocal variable variable

FRINT.df Vector FP round to integer value but retain float format 4 1

FRSQRT.df Vector FP reciprocal-square root variable variable

FSAF.df Vector FP signaling equal 2 1

FSEQ.df Vector FP signaling equal 2 1

FSLE.df Vector FP signaling less than equal 2 1

FSLT.df Vector FP signaling less than 2 1

FSNE.df Vector FP signaling not equal 2 1

FSOR.df Vector FP compare not equal 2 1

FSQRT.df Vector FP square root variable variable

FSUB.df Vector FP sub 4 1

FSUEQ.df Vector FP signaling not equal 2 1

FSULE.df Vector FP signaling greater than 2 1

FSULT.df Vector FP signaling greater than equal 2 1

FSUN.df Vector FP signaling equal 2 1

FSUNE.df Vector FP compare not equal 2 1

FTINT_S.df Vector FP convert to signed integer 4 1

FTINT_U.df Vector FP convert to unsigned integer 4 1

FTQ.df Vector FP to fixed point 4 1

FTRUNC_S.df Vector FP convert to signed integer 4 1

Table 15.3  MSA Instruction Latencies and Repeat Rates (continued)

Instruction Definition Latency Repeat Rate
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FTRUNC_U.df Vector FP convert to unsigned integer 4 1

HADD_S.df Vector signed horizontal add 2 1

HADD_U.df Vector unsigned horizontal add 2 1

HSUB_S.df Vector signed horizontal sub 2 1

HSUB_U.df Vector unsigned horizontal sub 2 1

ILVEV.df Vector interleave even 2 1

ILVL.df Vector interleave left 2 1

ILVOD.df Vector interleave odd 2 1

ILVR.df Vector interleave right 2 1

INSERT.df Move from GPR n/a 1

INSVE.df Move from element 2 1

LD.df Vector load 10 1

LDI.df Immediate load elements 2 1

MADD_Q.df Vector fixed point madd 5 1

MADDR_Q.df Vector fixed point multiply rounded and add 5 1

MADDV.df Vector multiply add 5 1

MAX_A.df Vector maximum of absolute value 2 1

MAX_S.df Vector signed maximum 2 1

MAX_U.df Vector unsigned maximum 2 1

MAXI_S.df Immediate signed maximum 2 1

MAXI_U.df Intermediate signed maximum 2 1

MIN_A.df Vector min of absolute value 2 1

MIN_S.df Vector signed minimum 2 1

MIN_U.df Vector unsigned minimum 2 1

MINI_S.df Immediate signed minimum 2 1

MINI_U.df Immediate unsigned minimum 2 1

MOD_S.df Vector signed remainder. See DIV_S instruction. variable variable

MOD_U.df Vector unsigned remainder. See DIV_U instruction. variable variable

MOVE.V Vector move 2 1

MSUB_Q.df Vector fixed point msub 5 1

MSUBR_Q.df Vector fixed point multiply rounded and subtracted 5 1

MSUBV.df Vector multiply subtract 5 1

MUL_Q.df Vector fixed point multiply 5 1

MULR_Q.df Vector fixed point multiply rounded 5 1

MULV.df Vector multiply 5 1

NLOC.df Vector number of leading ones counted 2 1

NLZC.df Vector number of leading zeros counted 2 1

Table 15.3  MSA Instruction Latencies and Repeat Rates (continued)

Instruction Definition Latency Repeat Rate
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NOR.V Vector NOR 2 1

NORI.B Immediate NOR 2 1

OR.V Vector OR 2 1

ORI.B Immediate OR 2 1

PCKEV.df Vector pack even 2 1

PCKOD.df Vector pack odd 2 1

PCNT.df Vector number of bits set 3 1

SAT_S Immediate signed saturate to width 3 1

SAT_U Immediate unsigned saturate to width 3 1

SHF.df Immediate set shuffle 2 1

SLD.df Element slide 2 1

SLDI.df Element slide 2 1

SLL.df Vector shift left 2 1

SLLI.df Immediate shift left 2 1

SPLAT.df Element replicate 2 1

SPLATI.df Element replicate 2 1

SRA.df Vector shift right arithmetic 2 1

SRAI.df Immediate shift right arithmetic 2 1

SRAR.df Vector shift right arithmetic rounded 2 1

SRARI.df Immediate shift right arithmetic rounded 2 1

SRL.df Vector shift right logical 2 1

SRLI.df Immediate shift right logical 2 1

SRLR.df Vector shift right logical rounded 2 1

SRLRI.df Immediate shift right logical rounded 2 1

ST.df Vector store 3 1

SUBS_S.df Vector signed saturated subtract of signed values 2 1

SUBS_U.df Vector unsigned saturated subtract of unsigned values 2 1

SUBSUS_U.df Vector unsigned saturated subtract of signed values 2 1

SUBSUU_S.df Vector signed saturated subtract of unsigned values 2 1

SUBV.df Vector subtract 2 1

SUBVI.df Immediate signed saturated subtract of unsigned values 2 1

VSHF.df Vector shuffle 2 1

XOR.V Vector XOR 2 1

XORI.B Immediate XOR 2 1

Table 15.3  MSA Instruction Latencies and Repeat Rates (continued)

Instruction Definition Latency Repeat Rate
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Implementation-specific Instructions

This chapter describes the architectural definition for the following implementation-specific instructions in the P6600 
Multiprocessing System. 

• CACHE: Cache Operation

• PREF: Prefetch 

• SYNC: Synchronize Shared Memory

For the actual instruction definition and opcode information, refer to Volume II: MIPS64 Architecture for Program-
mer’s Manual included in the document suite. The following table lists the elements of each instruction and how they 
are specifically handled by the P6600 core. 

Table 16.1 Implementation Specific Instruction Behavior in the P6600 Core 

Instruction Parameter Function

CACHE op field, bits 17:16 Encoding 2’b10. No support for tertiary cache. If this encoding appears in the op 
field in bits 17:16, it is ignored by the core.

op field, bits 20:18 Encoding 3’b011. This implementation specific encoding is not implemented by 
the P6600 core and is treated as a no-operation (NOP).

Encoding 3’b111. Fetch and Lock. Depends on the type of cache being accessed:

L1 instruction: This encoding is not supported and is treated as a no-operation 
(NOP). 
L1 data: This encoding is not supported and is treated as a no-operation (NOP). 
L2 cache: This encoding is supported and is sent to the Coherency Manager (CM3) 
when the encoding appears. 
L3 cache: This encoding is ignored and is treated as a no-operation (NOP).

Encoding 3’b110. Data Cache Hit Writeback:
Encoding 3’b101. Data Cache Hit Writeback Invalidate:

L1 data: HitWB or HitWBInv cache operations write back the cache line, irrespec-
tive of the state of the lock bit. Software should not rely on the state of the lock bit 
after the cache operation. 
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PREF hint field, bits 20:16 Encoding 5’b00000 - 5’b00111 (0 - 7 decimal). These hint field encodings are 
treated as described in the PREF instruction in Volume II: MIPS64 Architeccture 
for Programmer’s.

Encoding 5’b01000 - 5’b01111 (8 - 15 decimal). These hint field encodings per-
form the same function as hints 0 - 7 respectively, but operate on the L2 cache. As 
such, they are sent to the CM3 by the core. Refer to Volume II: MIPS64 Architec-
ture for Programmer’s manual for the definition of hints 0 - 7 decimal.

Encoding 5’b10000 - 5’b10111 (16 - 23 decimal). These hint field encodings are 
not supported by the P6600 core as the L3 cache is not supported. Each of these 
encoded values are ignored and treated as a no-operation (NOP).

Encoding 5’b11000 - 5’b11111 (24 - 32 decimal). These hint field encodings are 
not supported by the P6600 core and cause a Reserved Instruction exception to be 
taken. 

SYNC stype field, bits 10:6 Encoding 0x0, 0x4, and 0x10 - 0x13. The P6600 core supports the standard man-
datory SYNC encoding (0x0), as well as all of the optional SYNC encodings:

0x4 - SYNC_WMB/SYNC4
0x10 - SYNC_MB/SYNC16
0x11 - SYNC_ACQUIRE/SYNC17
0x12 - SYNC_RELEASE/SYNC18
0x13 - SYNC-RMB/SYNC19

For more information on these encodings, refer to Table 6.6 in the SYNC instruc-
tion definition in Volume II: MIPS64 Architecture for Programmer’s.

Encoding 0x1 - 0x3, and 0x5 - 0xF. These implementation specific encoded values 
are not supported by the P6600 core and default to encoding 0x0 (SYNC).

Encoding 0x14 - 0x1F. These encoded values are reserved by the P6600 core and 
default to encoding 0x0 (SYNC).

Table 16.1 Implementation Specific Instruction Behavior in the P6600 Core (continued)

Instruction Parameter Function
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