MII—PS

MIPS64® P6600 Multiprocessing System
Software User’s Guide

Document Number: MD01138
Revision 01.23
May 31, 2017

Public. This publication contains proprietary information which is subject to change without notice and is supplied
‘as is’, without any warranty of any kind.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

Chapter 1: Overview of the P6600 AFChItECTUIEccv it 23
L1 POO00 FRATUIEScoeeiiieiiieieett ettt ettt ettt ettt ettt e eb et sbe et sat e st s b e sas e b e ebsenteeanenneene 25
L1 T MIPS ATCRIEECIUTE ...ttt b bbbt b e b bbbt ettt ebeebeebesbeseenen 25
1.1.1.1: MIPS64™ Release 6 ATCRILECTUIEc.eeieriieiiiiiieie ettt ettt ettt te et esseenseeseensesneenseenean 25
1.1.1.2: MIPS® SIMD ATCHILECTUIEeeiviiiieieeiieieeiesteeeiettete et ettt eeeseeesaesseenaesseessesseensesseenseeseensesseensesseensennean 25
1.1.1.3: MIPS® ViITtUAIZATION.eeueeiieeieie ettt ettt ete ettt et eaesseesaesseensesseessenseenseeseensesssensesseensesssensennean 25
1.1.2: SYStEmM LeVel FEATUIESeeiviiieiiieiieiieiieie ettt ettt ettt et s re et e st e et e sbe et s e nseeseeseessesseeneesseensesseensesseensenseans 26
1.1.3: CPU COTe LEVEl FEALUIESeveiiiiiieiiiieeiieteitert ettt bbbttt ettt ebe ettt sbe e enen 26
1.2 POO00 CPU COTC......cniiieiiieiteie ettt ettt ettt ettt et e et e et sb et st et e nbe et e s et e b e e s enteeeeenneenee 27
1.2.1: InStruction FEtCh UNTt........ccioiiiiiiiiieiee ettt ettt st sb et ste e st e steeseesseeneesseensesseensesseensenseans 27
1.2.2: Instruction ISSUe Unit (TTU)ocuieiiiiiiiit ettt ettt st ae e e besse et e eseenseeseensesseessessaensennnens 28
1.2.3: Graduation Unit (GRU)c.ociiiiieiiiieiee ettt ettt ettt et esbeeseesaesseesseensesseensesseensesseensenseens 29
1.2.4: Level 1 INSrUCtION CACKECc.veitieiiiieieit ettt ettt ettt s e eae st e esaesseestesseessesseensesseensesseensesseensenseans 29
1.2.5: Level 1 Data CaChe.cc.oiuiiiiiiieieieietet ettt b ettt bbbt ettt ebeebeebe b saeenen 29
1.2.6: Memory Management Unit (IMIMU)c.cociiiriiiriieiieieieeieeee sttt sttt steeseessesseesseensesseenaesseensensaens 30
1.2.6.1: Instruction TLB (ITLB)....c.ccoiiieiieiieiiee ettt ettt re ettt beesa e s e eseensesseensessaesennean 30
1.2.6.2: Data TLB (DTLB) ...ttt bbbttt ettt eb e b b eaeenen 30
1.2.6.3: Variable Page Size TLB (VTLB) ...ccuiiiiiiicieie ettt ettt e e ssa e snaeseeneas 30
1.2.6.4: Fixed Page Size TLB (FTLB)coioiiiieieieeieie ettt sttt esae s eseensessaenseenees 31
1.2.6.5: Enhanced Virtual AdAIESScooiiiiiriiiieieieiet ettt et ettt eb e s sa s 31
1.2.6.6: ViIrtualization SUPPOTLccviiieriiiieiieeiesie ettt ettt ettt ete et eaesseeaesstessessaessessaensesssensesssensesseensesssensesses 31
1.2.7: EXCCULION PIPELINES ...eovviiieiiiiieiiieii ettt ettt ettt et s te e aessaesbeesaenseesaenseesaenseessensesnsesseessenseensesseensenseans 31
1.2.7.1: Arithmetic Lo@iC PIPEIINEooviiieiiiiiciieie ettt ettt sttt eeseesseesaessesseensessnensesnees 32
1.2.7.2: MUultiply/Divide PIPEIINEc.ccovieieiiiiieieiieiesie ettt ettt st et sbe b e ta e s e eseessessaessesseensesssensenneas 32
1.2.7.3: MEMOTY PIPEIINEG ...vviiiiiiiiiciiiit ettt st e st e sbeessesseesse s e enseessensesseensesssensenneas 32
1.2.7.4: Branch PIPELINE.........cccveiuiiiiiieiieiietiei ettt ettt e e b e sbessaesseeseensessaensesseensesssensenneas 33
1.2.7.5: Floating Point PIPELINES........ceeciiiiieiiitieierie ettt ettt et et aesseseaesbessaenseeseensesssensesseensesssensenseas 33
1.2.8: BUS INEITACE (BIU) ..oouiiiiiiiiiieie ettt ettt st ettt et e e e saesseesaenseesaeseeseesseensesseessesseessesaans 33
12,810 WITEE BUFTET ..ttt ettt ettt be e saenen 33
1.2.9: System Control CoproceSSOT (CPO).......cciiiiiieiieiieieeieetestt ettt ettt e etaebe e e esseessessesssessesssessesssessesssenseans 34
1.2.10: INterrupt HANAINGcc.ooviiiiiieiiciciectee sttt ettt et sttt et e e e b e etaesbeeseeseeseesesssesseesseseessesseessenseans 34
1.2.11: MOAES Of OPETALIONevvivieiiieeieie ettt sie et ettt et et esteeteessesseessessaessesseesseesaessesseesseassensesssesseessesenssesseessenseans 34
1.2.12: F1oAtiNg POINE UL ..ecuviiiiiiiiiieiesie ettt sttt ettt e ae et e saeesaesseesaesbeessesseeseesseessessesssesseessessesssessenssenseans 34
1.2.13: P6600 COre POWET MANAZEIMENLeeeiieniieiiieiie et eieeeite et esiteeteesteesabeenteeseteenseensaesnseeseessseenseesssesnseesnsesnseenns 35
1.2.13.1: Instruction-Controlled POwer Managementccoeveuirienierieesieneeiestieieeieeie et seeeseseeesesenensesnnas 35
1.2.14: EJTAG DEDUZ SUPPOTL...cutiiieiiieiieieetieie st este st te st etesteestestesstesseesaessessteseesaensesseensesseenseansesseensesseesesseensenseens 36
1.2.14.1: Fast Debug Channel...........ccveiiiiieiiiieiet ettt ettt ens et e s e eseensenseensesneeneas 36
L2014 21 PDRIACE ..ottt ettt ettt e e h ettt et ettt et eae ettt naeeanen 36

1.3: MUIHIPIOCESSING SYSTEIM.....uievietieiieiietieetieeiesteettesteetesteeseesseesteseeseeseesaesesseenseessanseassenseeseensesseensessseseessensenssenseensenseenes 37
1.3.1: Cluster POWer COntroller (CPC)ociiiieieiieiieie sttt ettt ettt sttt ae st esaesteensesteeneesseensesseensesseensenneans 37
130101 RESEE COMLIOL ...ttt b e bbb bttt et et et ebe et e ebeebeeaeeren 37
1.3.2: Coherence Manager 2 (CIM2)cccuieuieieeieieeiieie ettt ettt ettt ettt estesstessessaesease e sesssenseeseansesseensesseensesseensensaans 37
1.3.2.1: Request Unit (RQU)ooiiiieiieieieeeteeee ettt sttt ettt sseestesbeess e seessenseessenseeseensessnensenneas 38
1.3.2.2: Intervention Unit (IVU).....ciiieiieieieieeee ettt sr et sa e be s et e esseseeseenseennenseennas 38
1.3.2.3: System Memory Unit (SIMU)cc.ooiiiuieieiieiecieeiestt ettt sttt ettt tesseesseessesesseensesnsesseeneas 39
1.3.2.4: ReSponse Uit (RSU) ...cc.oiiiiiiieiieieiet ettt ettt ae et b et beeseenseessenseeseenseennenseenean 39
1.3.2.5: Transaction ROUING UNItccoviiieiiiiieieit ettt ettt beeseesseessenseesaenseenaesseennas 39
1.3.2.6: LeVEl 2 CACRE c..cuviiiiieeee ettt bbbttt ettt ettt 39
1.3.2.7: CM2 Configuration REZISTEIS.ccierierieriieiieeieetestteteete et etete st eaeseeaestaessesssenseeseesseessensesssensesssessesnees 40
1.3.2.8: Performance COUNTET UNL........cccieiiriieierieiieieeieie st eet et etesteeseeaeseessesbeesseseessenseeseesssensesseensesssessesnes 40
1.3.2.9: Coherence Manager PerfOrManceccuevuivieiiiieeiiciieiecieeteieee ettt ese e s e saeenees 40
1.3.3: I/O Coherence Unit (IOCU)coeciiiiieieiieiesieiteie ettt ettt ettt esaesseesaesbeesaesseesaeseessenseensesseensesseessesseensenseens 41
1.3.3.1: SOftWare I/O CORETEICEc..eiiuieiieiiiieeiietetet ettt ettt bbbt ettt be et be bt eaeeres 41

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 3

Table of Contents

1.3.4: Global INterrupt COMEIOIIEToiuiiiiitieieeie ettt ettt ettt et e e e st e eeeeeeete et e seeeneeeseeneesseenaenseans 42
1.3.5: Global Configuration RegiSters (GCR)ccuiiiiiiiiieieeiee ettt ettt et ee e e e sreenaenneens 42
1.3.5.1: Inter-CPU DebUZ BIEaKS.......eoiiiiieiiiiieiiee ettt ettt sttt ese et s e ae s e e e eneenneenean 42

LI T A 1Y A O0) 113 (o) B 2T 1 £ SRS 42

1.4 CLOCKING OPLIOMSvteueiiieiieetieutieteeteettesteettete s et estesseenee et e emeeeseenseeseemseeseemseeseemseeseemseaseenseeseenseameenseaseenseemeenseeseenseeneenseenes 43
1.5: Design FOr Test (DET) FEATUIESc..eeuieiiieiiieieetiete ettt ettt ettt ettt et e s et e st e sseeeesseesesseenseeseenseeseenseeneenseenes 43
1.6: CONTIZUIALION OPTIONS ..veeutitieitietieteeteeteetierte et e e etteteeteesteeseenseeseenseeseenseeseenseeseanseeseanseeseensesseenseaseenseeneenseensenneenseeseenes 43
(OF P o =T g O W (=0] =] ST 45
2.1: CPO REGISIET SUIMIMATYveeutitieiieetieeieieetesteette it eetesteeseesteeseesseeseenseassenseeseensenssenseeseenseeseansesssessesssensesnsenseensenseensenseenes 45
2.1.1: CPO Registers Grouped DY FUNCHONccviriiiieieiieieciieiese ettt ettt sttt et saeeseessesseesseensesseensesseensansnens 45
2.1.2: CPO Registers Grouped DY NUIMDETccveviiiiiiieiiieieitieieie ettt sttt ettt sae et esesseeseensesseenaesseensensnens 49
2.2: CPO Re@ISEr DESCIIPLIONSvivieniietieniieiieieetteteeite e eteesteeseesteeseessesseensesseensenseessesseensenseessensesnsessesssenseansensenssenseensenseenes 52
2.2.1: CPU Configuration and Status REGISTETS.cueiuieieriieiieiieieeieteetteie st estesteetesteeteeseeseeeseessesseessesseesesseessensaens 52
2.2.1.1: Device Configuration — Config (CPO Register 16, Select 0)......c.oovvrveririerieieiieieiieieee e 52

2.2.1.2: Device Configuration 1 — Configl (CPO Register 16, Select 1).......cccevivieiiinierieieiieiereeeee e 54

2.2.1.3: Device Configuration 2 — Config2 (CP0 Register 16, Select 2).......cceverieriirieriieieiieiere e 57

2.2.1.4: Device Configuration 3 — Config3 (CPO Register 16, Select 3).......ccevirieriieieiieieiieiee e 58

2.2.1.5: Device Configuration 4 — Config4 (CPO Register 16, Select 4).......cccevvvirriieierieieiieiee e 60

2.2.1.6: Device Configuration 5 — Config5 (CPO Register 16, Select 5)....c.ccvvvirieriirieriieieiieiee e 62

2.2.1.7: Device Configuration 6 — Config6 (CP0O Register 16, Select 6)ccevvvieiiirieriieieiieiere e 64

2.2.1.8: Device Configuration 7 — Config7 (CPO Register 16, Select 7)....c..ccevirierierieriieiieiieieree e 67

2.2.1.9: Processor ID — PRId (CPO Register 15, SElect 0)....ccveeieriiiieniiiieiiiieie ettt 71
2.2.1.10: Exception Base Address — EBase (CPO Register 15, Select 1)cccevirvierieierieieiieieeeeeee e 71
2.2.1.11: Status (CPO RegiSter 12, SEIECt 0).....iiiiiiieiieiieiieiieieeieeie ettt sttt ettt e s e eseesesnseseeneas 73
2.2.1.12: Interrupt Control — IntCtl (CPO Register 12, SEIect 1)ocvvivieviiriiieeiieiesiieierieeeieee e 76

2.2.2: TLB Management REGISTEISc.cecuiruiiieriieieiteeieite ettt ette ittt et eae st e ssestaesbeeseesseessesseeseessesseensesseessesseessensaens 79
2.2.2.1: Index (CPO Register 0, SEIECt 0)ccvevieiirieieiieiesie ettt ettt ste e sr e st esbeesaesseeseeseessaensessaensesssenseanees 79

2.2.2.2: EntryLo0 - EntryLol (CPO Registers 2 and 3, Select 0)ccceeievvirieiierieieniieienieeiereeeesee e 80

2.2.2.3: EntryHi (CPO Register 10, SEIECt 0).....ceeiieriiriieiieiieieeieiieterte ettt sttt eee s saaessesseeaesnsessesnnes 82

2.2.2.4: Context (CPO Re@iSter 4, SEIECT 0)....cuiivirrieiieiieiieiecieeieeiesttestesteeteseeessesseesbeesaebeeseessessaesesseensesnsessenneas 84

2.2.2.5: Context Configuration — ContextConfig (CPO Register 4, Select 1).....cccccovvievierieciinieienieieneeienie e 85

2.2.2.6: XContext Register (CPO Register 20, SEIECt 0).....ccveriieieriiiieieieieieiieie sttt sre e eae e enees 86

2.2.2.7: XContext Configuration — XContextConfig (CP0 Register 4, Select 3)......ccoovrvierierierieeieierieieseennen 87

2.2.2.8: PageMask (CPO Re@ister 5, SEIECt 0)....cuiirieiiiriiiiieieiiieieiieie ettt sttt sae s e esaesseensesseeneas 88

2.2.2.9: Page Granularity — PageGrain (CP0O Register 5, Select 1) ..ccvievieriiiiiiiiiieeie et 89
2.2.2.10: Wired (CPO RegiSter 6, SEIECE 0).....ieiuiiiiiieriiiiiieeieeit ettt eiee ettt e e st eaeestae e beesaeesebeesseessseesseesnseenseenns 91
2.2.2.11: Bad Virtual Address — BadVAddr (CPO Register 8, Select 0)ceevvierieriiienieeieeie e 91
2.2.2.12: PWBase Register (CPO Re@iSter 5, SEIECT 5) .uviiriiiiiiiiieieeiie ettt et ettt eveesteesaeenaee e 92
2.2.2.13: PWField Register (CPO RegiSter 5, SEIECt 0)ccviiiiiiiieieeiie ittt ettt s saeesaee e 93
2.2.2.14: PWSize Register (CPO RegiSter 5, SELECE 7) .ovviiiieeiieiieeie ettt ettt et see e eveesaeesaeenree e 95
2.2.2.15: PWCtl Register (CPO ReiSter 6, SEIECT 6) ...ccviiiieeiieiieeieeiie ettt ettt et see e see e esbeesaeensee e 97

2.2.3: EXCePtion CONIOl REGISLEISviiuiiiiieiieeiieiiie et eite st ettt e et e st e ebeesteeesteestaeenseenseesnseesseessseeseesseesnseensnennsean 100
2.2.3.1: Cause (CPO Register 13, SEIECt 0)......couiriiiiriiiieieeiieitieieteet ettt sttt st 100

2.2.3.2: Exception Program Counter — EPC (CPO Register 14, Select 0)cocvvveriieieriieieiieieseeieieeiesie s 104

2.2.3.3: Error Exception Program Counter — ErrorEPC (CP0 Register 30, Select 0)cooovvevveriiveniiiieieennnns 104

2.2.3.4: BadInstr Register (CPO Re@iSter 8, SEIECT 1) ..ouiiiiriieiiiieieciieieeieeie ettt eanens 105

2.2.3.5: BadInstrP Register (CPO Re@ister 8, SEIECt 2)cviiiiiiiiiieiiiiieieieeiesie ettt se e eneens 106

2.2.4: TIMET REEISEIS .. viuveeiieitieiitietieittetteste et este et este et esbeeseesseeseessesseesseessesseessesseessassesseesseessesseessesseessensaesseseesseseenns 106
2.2.4.1: Count (CPO Re@iSter 9, SCIECT 0)...c.viitieiieiieiieieiieieeete ettt ste e ste e eteessesreebeeeeessesseesesseessesseessenseens 107

2.2.4.2: Compare (CPO RegiSter 11, SEIECt 0).....iiiiriieiiiieieriieieeieeie sttt ete s ere e sreeaesseesseesaens 107

2.2.5: Cache Management REISEIS.cueviiieiiiiieieitietieste et ettt ste et e eteebeeteesseetsessesseesseeseesseesaesseessessaesseseessensennes 108
2.2.5.1: Level 1 Instruction Cache Tag Low — ITagLo (CPO Register 28, Select 0).......ccevvvevierieveriiiieniiennnns 108

4 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

2.2.5.2: Level 1 Instruction Cache Tag High — ITagHi (CPO Register 29, Select 0)ccocvveeniiieeneiiereenene 110
2.2.5.3: Level 1 Instruction Cache Data Low — IDatalo (CPO Register 28, Select 1)......ccccevveririenenieiinnenne 111
2.2.5.4: Level 1 Instruction Cache Data High — IDataHi (CP0 Register 29, Select 1).......ccccecovrvievinieneiiennne 111
2.2.5.5: Level 1 Data Cache Tag Low — DTagLo (CP0 Register 28, Select 2).......cevivieeiiecienieee e 112
2.2.5.6: Level 1 Data Cache Data Low — DDatalLo (CP0 Register 28, Select 3)ccoooverinieienieiiiieeieeee 115
2.2.5.7: Level 2/3 Cache Tag Low — L23TagLo (CPO Register 28, Select 4)......cccevverieierieieneeieeseee e 116
2.2.5.8: Level 2/3 Cache Data Low — L23DatalLo (CPO Register 28, Select 5)cceceiieierinieneieeesieeeeiene 117
2.2.5.9: Level 2/3 Cache Data High — L23DataHi (CPO Register 29, Select 5)....c.covveiirieiiniieniiieecieeeee 118
2.2.5.10: ErrCtl (CPO Register 26, SELECt 0).....couiiieiieeieiieieeie oottt sttt te e eneesseenseeneens 118
2.2.5.11: Cache Error — CacheErr (CP0O Register 27, Select 0)ooiiieieiieieiiieieeiecie e 120
2.2.6: ShadoW CONIOl REGISTEIScuviiuieiieiieie ettt ettt ettt ettt et e s ae et e es e e eesaeeseeseeneeneeeneenneenes 121
2.2.6.1: SRSCtl Register (CPO Register 12, SEIECt 2)ciuiruiriiriiiiiiieieieiieiietrieetese ettt 121
2.2.7: Performance Monitoring REZISEEISoiuiiierieiieieeie ettt et ettt e sre e e st e e seeeneeneenes 123
2.2.7.1: Performance Counter Control 0 - 3 — PerfCtl0-3 (CPO Register 25, Select 0, 2,4, 6)..ccccevvveeveveeenene 123
2.2.7.2: Performance Counter 0 - 3 — PerfCnt0-3 (CPO Register 25, Select 1, 3,5, 7) weoveeieveeieienieeceeene 132
S D 1<) o P gl Y 4] <) RSP ST 132
2.2.8.1: Debug (CPO Register 23, SEIECt 0)....c..eiiiriririirtirierieieieteteieete ettt ettt st sttt et 132
2.2.8.2: Debug Exception Program Counter — DEPC (CPO0 Register 24, Select 0)........ccccoeverevieniecnenencnnens 135
2.2.8.3: Debug Save — DESAVE (CPO Register 31, Select 0)cceouiiririnirinineneneeieneeeeeeeeieeneeve e 136
2.2.8.4: Watch Low 0 - 3 — WatchLo00-3 (CPO Register 18, Select 0-3).......cccooiririnininineneieieieeeeeeeeneens 136
2.2.8.5: Watch High 0 - 3 — WatchHi0-3 (CPO Register 19, Select 0-3).......cccccvviiirininieninineneneieieeeceeens 137
2.2.9: PDTTACE REZISTETSeueiiiiiiiitiitieterte sttt sttt ettt et s h e bbbttt et eaeebeebeebesaesaen 138
2.2.9.1: Trace Control Register — TraceControl (CPO Register 23, Select 1)......cocevirinverienenieiiieeiieencnens 138
2.2.9.2: Trace Control 2 Register — TraceControl2 (CP0 Register 23, Select 2)......c.ccoevererenenenieieienecnnens 140
2.2.9.3: Trace Control 3 Register — TraceControl3 (CP0 Register 24, Select 2)......c..cocevvererenenenieieienecnnens 142
2.2.9.4: User Trace Data 1 Register — UserTraceDatal (CPO Register 23, Select 3)......cccccevevvevirvieicnincencnnns 143
2.2.9.5: User Trace Data 2 Register — UserDataTrace2 (CPO Register 24, Select 3)......cccccevevevirvinicnincencnnens 144
2.2.9.6: Trace Instruction Breakpoint Condition Register — TraceIBPC (CPO Register 23, Select 4).............. 144
2.2.9.7: Trace Data Breakpoint Condition Register — TraceDBPC (CP0O Register 23, Select 5)c.cccecevuennen 145
2.2.10: User Mode SUPPOTt REZISTEISeiuieiiriieiieiieiieierie ettt ettt e st eseessesseesaeesaeseeseenseessenseenes 147
2.2.10.1: Hardware Enable — HWREna (CP0 Register 7, Select 0)cccoiieiiiieiieieieeieeeee e 147
2.2.10.2: UserLocal (CPO RegiSter 4, SEIECT 2)ecuieiieiieiieieeeie ettt ettt eneeeneens 148
2.2.10.3: LLAddr Register (CPO Register 17, SElect 0)ccverieiiiiiieieeeieee st 149
2.2.11: Kernel Mode Support REGISTETS.eeuiiieieiiieieiti ettt sttt ettt eee st e seeeseensesseesaeensenseeneeeeeeneenneenes 150
2.2.12: MemOry MapPed REGISTETS. ... ccueiuieiieiteieeit ettt ettt ettt e sttt st ese e b e e st e ene e st eneesaesaeeseenseeneeneeeneeneenes 152
2.2.12.1: Common Device Memory Map Base Address — CDMMBase (CP0 Register 15, Select 2).............. 152
2.2.12.2: Coherency Manager Global Configuration Register Base Address — CMGCRBase
(CPO REGISLEr 15, SCIECE 3). et euieiieieieieie ettt ettt ettt et ettt ettt et e et e st eae e eeesee e e eneeseesseensenseensesseeneeseenes 153
2.2.13: Virtualization REGISTEISeiuiiiiiieieit ettt ettt st ettt e e st e e s et s e e eesaeeseeseeneeneeeneenneenes 153
2.2.13.1: GuestCtl0 Register (CPO Register 12, SEIECt 0) ...cuiruiiiiiiieiiiieeieeiiee sttt 154
2.2.13.2: GuestCtl1 Register (CP0O Register 10, SEIeCt 4)cceviiriiiiiiiiiiiiirieeneneseseteseeeee et 158
2.2.13.3: GuestCtI2 Register (CP0O Register 10, SEIECt 5) ...cc.eouiriiriiiiiiieiniiiiieencseseeetereeeee et 159
2.2.13.4: GuestCtl0OExt Register (CPO Register 11, SEIect 4)c.coviiiiiiriiiiiriiincneseeenieneeeeeeeeeeee e 161
2.2.13.5: GTOfAfset Register (CPO Re@ister 12, SEIECt 7) ..ovevviruiriiriiiiiiieiieieirteese ettt 163
2.2.14: Memory Accessibility Attribute REGISTETSccuieiiriieiieiieie ettt st ne s 164
2.2.14.1: Memory Accessibility Attribute Register (CPO Register 17, Select 1)cocovirenenencneneieinincnns 165
2.2.14.2: Memory Accessibility Attribute Register Index (CPO Register 17, Select 2)cccooeveveveenvnencnnns 168
2.2.15: Memory Segmentation REZISIETS.......c.ceiriiirieiiieiiiiiiteitest ettt ettt ettt ettt ebe et et sae e 169
Chapter 3: Memory Management UNT...........ccooieiieiiiir et e et ste e te e ae e e neesneenree s 171
3.1t INETOAUCTION ...ttt etttk b ettt et b et b et eb et b et b et b et ebe e 171
3.2: Memory Management Unit ATCHITECIUIESccieiiriieieieieerteeeeie sttt ettt et esaesreeeesbeessesseesaebeessesseeseensesseensenes 172
3.2.1: Instruction TLB (ITLB)iciiiiiieiecieei ittt ettt ettt ettt teeseeeseesaesaeesaesseesaesseeseensesssensesseessesneas 172

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 5

Table of Contents

3.2.2: Data TLB (DTLB) ...cuiiuiitietieteiteieteiet ettt ettt ettt et et et et e st esteteesesseesensessansesseseeseeseeseasesseasansensensanseneeneeneeseesenns 173
3.2.3: Variable Page Size TLB (VTLB) ..ottt ettt ettt et enee e e e saeeneas 173
3.2.4: Fixed Page Siz€ TLB (FTLB).....coitiieiiiieieeeeee ettt ettt e et et e et e e e st e eseeneeaeeneeneeenean 173

3.3: MMU CONfigUration OPIONSccueerieruieeerieeiesteetteteeetesteeseeteeseeseeeseesseaseesesseesseaseenseaseanseaseaseensesseensenseensenseensenseenes 175
3.3.1: FTLB Enabled/DiSabledcceiiiiiieiieiieieie ettt ettt st e ae st es et eeseenseeneeeeeneeneeenean 175
332 IMIIMIU TP ettt ettt sttt st e b e e bt e bt e s bt e et e bt st e et e sh bt e eh b e eab e e bt e et e e bt e st e enbeenaee s 176
3.3.3: MMU SiZe and OTZAniZAtIONccueiuieiiitieieeeeeieeteete st estesteeee e esee et eseeseeseesseeseensesseanseeseanseeneenseeneensesneensesnean 176
3.3.3.1: Determining VTLB S1ZE.........oiiiieiiiiieieeieee ettt ettt e e eae et et s e eeneeneenneenes 176

3.3.3.2: FTLB ParamEters.....cccueeiuiiiiieeiieiieeiie ettt ettt ettt st et et e sbe e eate st e s s be e bt e bt e sbeeesbeebeesaneenbeenaeean 176

3.4: Overview of Virtual-to-Physical Address Translationccooceeieiiiiiiieeseeeee e 177
3.4.1: Operating and Addressing MOGESccoirererieiiiitiietne ettt ettt sttt ettt 178
3.4.1.1: OPETating IMOGES ...c.veviiiieiiieieteteeet ettt ettt ettt sttt ettt et ettt et et ebe et ebe b b 178

3.4.2: Address Translation in 64-Dit MOAEooeeriiiieieiiee ettt ettt et e s e tesneeseeenean 179
3.4.3: Address Translation in 32-Dit MOA@cc.oiuiiiiiieiiiieie ettt et e e enee e e eneeenean 180
3.4.4: Address Translation FLOWcc.ooiiiiiioiie ettt sttt et e st e e e st ent e e st eseeneeneesneenneenean 180

3.5: Relationship of TLB Entries and CPO REZISTETS.......c.cceriruiriririiiiieicieiciiei ettt ettt s 182
3.5.1: TLB TaZ ENETY ettt ettt e et et e b e bt e bt ea bt e bt e ehbe st e e s abeeabeesbaeenbeennee s 183

3.5 110 VPNZ FIEIA ittt ettt ettt ettt e et e s e st e st st et e eseeseesessesbessensesseseeneeseesennenns 183

3.5.1.2: ASTD FREIA.c.uitiiiieieieieete ettt ettt ettt b e et et e sb e st e st ese et e ese e s e s e be s essesbensentesseseeneeseese b nne 183

3.5.1.3: PageMask FIIA ..cc.oouiriiiiiiiiieic ettt b 184

3.5.1.4: GIODAL (G) Bituuiouieiiiiieiieiieie ettt ettt ettt ettt teebe et eb e b e s es s e s s esseseesessesbessensesseseeneeneeseenenee 184

3.5.2: TLB DAt ENIY ..ooiiiiiiiiit ettt ettt et ettt e bt e s it e et e bt e eate e bt eeabeenbeesabeenbeenanean 184
3.5.2.1: Page Frame NUmber (PFIN)coiiiiiiiiiin ettt st e 185

3.5.2.2: Flag Fields (C, D, V, RL and XI)cooiiiiieiieieieeee ettt ne e 185

3.5.3: Address Translation EXAMPIEScc.coeririiiiiiiiiiiiiieeesse ettt e 185

3.6: Indexing the VTLB and FTLBccooiiiiiiiiiiiiinesetect ettt sttt ettt ettt sae st b e 187
3.7: Hardware Page Table WalKETc.cccveriiiieiieieie ettt ettt et e e ene et et e e esteensenseeneeseeneenseenee 188
3.7.1: Multi-Level Page Table SUPPOTLc..couerieiiiiiiiiieitietertenetet ettt bttt 189
3.7.2: PTE and Directory Entry FOTMAL..........cooriiiiiiiiiiiiienccct ettt s 192
3.7.3: Hardware Page Table WalKing PrOCESS.cceeieiiiiiriieiieiisiieie ettt sttt sttt este st esseeneesesneenseeneas 195

3.8: HardWiring VTLB ENEIICSocviiiiiieieiieieeieteit ettt sttt ettt et e et esseest e seentesseensenseesaesseensenseeseenseeneansennes 201
3.9: FTLB Parity EITOTS .. .ccuiiuiiiieiecie ettt ettt ettt e sttt e st et e st e es e st esee et e eneesseeneeeseensesseenaesseensenseensaseensenseenes 201
3.10: FTLB Hashing Scheme and the TLBWI INSIUCHON ...c..eiveiiiiieiieieiceeieie ettt seene 202
3.11: TLB EXCEPtion HandIiNg............cceiieiiiiiieiesiieieeit ettt ettt ettt et sttt este s st eseesseenaesseensesseenaesseessenseeseenseeseansenns 205
3.11.1: Overview of TLB Exception Handling REISLEIS........cceeiiriieieriieierieie sttt 206

N O O B R 03 4 1) A 7 4 1) SRS 206
3.11.1.2: ConteXtCONTIZ REGISIEI ... ecuieiiiiieie ettt ettt ettt ettt e sae et ess e seeneenseeneenseenes 206

N O G O 27 Ve AN [L S 4]) TSSO 207

3.11.2: TLB EXCeption FIOW EXAMPIES........ccueiieiiriieiiiiiiecie ettt sttt e st ssaesseenseeseensesneensesneas 207
3.11.2.1: Single Level Table CONfIGUIAtIONc.evuiiieiieieiiieie ettt ettt et eaesseesaenseesaenseeseenseens 207
3.11.2.2: Dual Level Table Configuration.............c.eceiierieiiesiesiesie et eeeeetesaeseessesseesseenaesseesseseessenseesseseenes 210

3.12: Exception Base Address REIOCATIONcouieieriiiieiiiieiie ettt ettt et sae e sse e saeenseseesaenseensenseens 213
3.13: AdAress EITOT DEIECTIONecueruiiiiiiiieiieitittet ettt ettt ettt be st et st et eat e st ebeebe et e nbenaen 214
3.13.1: Instruction Address Errors in 64-Dit MOAEcccccvevieiriiirinininienctcicteese ettt e 214
3.13.2: Instruction Address Errors in 32-bit M@ceiiuiiiiiieieiieie et 214
3.13.3: Data Address Errors in 64-bit MOAE........ccueiiiiiiiieie ettt ettt ene e e e seeeneas 215
3.13.4: Data Address Errors in 32-bit MOAe........couiiiiiiieiieie ettt e e enean 215
3.14: VTLB and FTLB INItAZATION «.....eoiiiiieiiiiieieie ettt st ettt ettt e bt eneeeaesseenaesaeensenseeneenseeneeneenes 215
3.14.1: TLB InitialiZation SEQUEIICEccueeietiriietieiieieetiete et e st e st ete st etesteesee st eseesseeseeseeseeaseeseanseeneenseeneenseeneenseenean 215
3.14.2: TLB INitialiZation COAeEcccuiiuieieiiieieiieie ettt ettt st e st e e st et eese et e eseenteeneeseeneenseeneenseenean 216
3.15: TLB DUPCAE ENEIIESveeiiiieeieie ettt ettt ettt ettt ettt et b e esteese et e eneesseeseenseeneeneesseenseaseensesseensenseenes 217
I LY (T (T o) il @ o3 110§ TSP 217
3.16.1: MemOTY AdAIeSS SPACE ACCESS. . cuueeiauieriereerteeierteetesteeteteeneesteeteaseenseeseeseaseenseaseesseeseanseeneenseeneensesneensesnean 217

6 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

T T T N S0 G 2 USSR 217

T T R G = 3 1 OSSOSO 218

T T R R U G 2 TSSOSO 218

T TR 1 & 5 11 [T [OOSR 218
3.16.2.1: Mapping 64-bit Address Space for 32-bit AddresSingcccveruerieiirierieeee e 219
3.16.2.2: Virtual Memory Segments in 32-Dit MOA@........cueiiriiiiiriieeit et 220
3.16.2.3: 32-DIt USCT IMOGC......uiiviiiiieiieeiie ettt ettt ettt e et e et e e eaeebeestaeebeesseesebeesaessseeassassseeseessseessaesseeas 221
3.16.2.4: 32-Dit SUPETVISOT IMOAEieuiiiieiiieiiee ettt ettt ettt et e e et e et e e s seent e seeneesseeneenneenes 222
3.16.2.5: 32-DIt KeINEl MOMEc.eviiiiiiiieiieee ettt ettt et te et e e abeesaaeeabeessbeenseessseenbaesaeenseas 224

O TR B I o8 T (o T (<P 226
3.16.3: 64-BIt IMOGA@.....veeieiiieetieieete et ettt ettt ettt st e sttt e st et e et e sse s esbes s ent e st et e e Rt st ekt beese et et e s et enbeneeneeneeneenene 228
3.16.3.1: Virtual Memory Segments in 64-bit MOdE..........ccoeiririiriiieniiiiiiincneeeceee e e 229
3.16.3.2: 64-DIt USCT IMOGC......oiitiiiiiieiieeiie ettt ettt et s e et e e bt e e taeebeestbeesaesseseebeeseessseesssassseeseessseensaesseaas 231
3.16.3.3: 64-bit SUPETVISOT MOGEc.veuiimiiiiiiiiiiciteiteie ettt sttt ettt sttt sttt ettt et sbe e e 231
3.16.3.4: 64-Dit KerNEl MOMEvveiiieiiieiieiie ettt ettt te et e eve e te e eabeesteeeaaeesbeenseeseseesaesneeasens 232
3.16.3.5: 64-Dit DEDUZ MOAEC.......ooieiieiieie ettt ettt et e st e e st en e ens e seeneeeseeneeaeenes 234
3.16.3.6: 64-bit XKPhys Address SEZIMENT.....c..ccceciiiiiiiririitinierte sttt sttt et 236
3.17: TLB INSTIUCEIONS 1euvviiivieiieetteeteeeite et eetteeteeteeetseeteeeteeesbeasseesseesseassssesseesssaasssenssassseessssesseessseasseessseenseessessaseessessseas 238
(OF oY o] =T g S O To] -1 SO 239
4.1: CaChE CONTIGUIATIONS.eeuvitieiiietieteett et eite st etesteette e et e st est e st eseeeseessesseensesseessesseensenseansanssensesseensesseensesasensesseensenseans 239
4.1.1: CaCheability AIITDULESetieeieii ittt ettt ettt et st et e et eabe et e e s e eseense e st e seeseenseeneesseessenseeseenseensenseenes 240
4.2: L1 INSIIUCHION CACKHEcouiitiitiititiiieit ittt sttt e h e bbbttt s b et ettt et eb s bt ebeebeebeabesbe b enen 241
4.2.1: L1 Instruction Cache Virtual ALASING........ccceiieieriieieiieierie ettt st ss s e sae e sbeeseenseeseeseenes 242
4.2.2: L1 Instruction Cache Precode Bitscocooeiiiiiiiiiiiiiniee ettt 242
4.2.3: L1 InStruction CaChe PArityc.ccuiiiiiiiieiiieieeiieiesc ettt ettt e esseesaesseeaesaeessessaensenseensenseenes 242
4.2.4: L1 Instruction Cache Replacement POLICYccoccuiruieiiiriiiiiiiieiecieeieetee ettt 243
4.2.5: L1 Instruction Cache Line LOCKINGcceiieiiiieiieii ettt s eesbe e se e nseeneenseens 243
4.2.6: L1 Instruction Cache Memory CONErence ISSUCSccerueriiiieriieiirie ettt ettt sse e sseenne s ens 244
4.2.7: Software [-Cache Coherence (JVM, Self-modifying Code)........coecuerieiirieiinieieeeeieceeie e 244
4.2.8: L1 Instruction Software Cache ManagemeEntceceeuerieeieniieierieeiesieeetesie e sseeaessessaesseessesseessenseessessennes 244
4.2.9: L1 Instruction Cache CPO Register INterfaceccvevuiiieiiiiiiiieicieeeee et 246
4.2.9.1: Configl Register (CPO register 16, SEIECt 1) ..ocuiiiiiiiriieieiieieiiee sttt 246
4.2.9.2: CacheErr Register (CPO register 27, SEIect 0)ooveiiriieiiieieiieieieetere ettt 246
4.2.9.3: L1 Instruction Cache TaglLo Register (CPO register 28, Select 0)c.cccvevvererrierieieiieieeeeiere e 246
4.2.9.4: L1 Instruction Cache TagHi Register (CPO register 29, Select 0)......cceveevieriienieniiiiienieeieeiee e 247
4.2.9.5: L1 Instruction Cache DatalLo Register (CPO register 28, Select 1)......ccovveriviriieniieniieieeieeieeee e 247
4.2.9.6: L1 Instruction Cache DataHi Register (CPO register 29, Select 1)c.ovvveriiiriienieniieieeieeieeiee e 247
4.2.10: L1 Instruction Cache INTtIaliZAtIONovueiieiiiriiiieiieicrc ettt sttt 247
4.2.10.1: L1 Instruction Cache Initialization ROULINEcceeiiiriiiiiiiiniiiiencieceeeee e 247
4.2.10.2: L1 Instruction Cache Initialization Routine DetailS...........cccceeieviriiniiiiniiiineiececeecceee e 248
4.2.11: Cache Management When Writing Instructions - the “SYNCI” INStruction............cceeeveeevierveeieenieesveenneennns 250
4.3 L1 DAta CACKE ...ttt et h e a e bt h e bt et a e bt he et bt e e n e e bttt ebe ettt e e saean 251
4.3.1: L1 Data Cache ViIrtual ATTASINGceveerieriieiieeieeiieeteesiee st esiee ettt eteesaeeteesaeesseessaessseeseessseenseesseesnseesseesnses 252
4.3.2: L1 Data CaChe Parityc.cccvieiuieiieeiiesieeeie ettt ettt e et s e st e st e esbeesaessaeesseenseessseenseessseeseenseeenseenseennses 253
4.3.3: L1 Data Cache Replacement POIICYcc.cocieriiieiiiiie ettt ettt ettt et eteesebeesseesnaeenseenseesans 253
4.3.4: L1 Data Cache Line LOCKING......c.ccoiiiiiiiiiieiiieiectiecte ettt ettt st ete et s veesbeeseaeenbeenseessbeenseenseesnseenseesnses 254
4.3.5: L1 Data Cache Memory Coherence PrOtOCOL.........cc.uiiriiiiieiiieiieeieeieeste ettt eenas 254
4.3.6: L1 Data Cache INTHAIZATIONoo.eiiiitiiiiiieiceesee ettt sttt sttt et ebe e neee 254
4.3.6.1: L1 Data Cache Initialization ROUINEcc.cooiiiiiiiiieiiiee e 255
4.3.6.2: L1 Data Cache Initialization Routine Details............occeiieiiiiiiiiiiniieineceeee e 255
4.3.7: Data Cache CPO RegiSter INEITACEcecvieiiieiieiieiie ettt ettt e et et eessb e e sseesneeennaesneeennes 258
4.3.7.1: Configl Register (CPO regisSter 16, SEIECt 1) ..oeivviiiiriiiiiriiiieiieeiesieeie sttt eneens 258

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 7

Table of Contents

4.4:

4.5:

4.6:

4.3.7.2: CacheErr Register (CPO register 27, SELeCt 0)c.eeiuieieiiiieie ettt 258
4.3.7.3: L1 Data Cache TagLo Register (CPO register 28, SEleCt 2)ceeruiiierieieieeieie e 258
4.3.7.4: L1 Data Cache DataLo Register (CPO register 28, Select 3).......cccereiirieiinieiieieecee e 259
L1 Instruction and Data Cache SOftWare TESINGccveierieieieiierie ettt ettt e e nee e enes 259
4.4.1: L1 Instruction Cache TaZ ATITAYcceiuieiiiiieieiieieett et steeee st e te st e et et e et eseeeseesseeneeaseeneesaeeseenseeneenseeneenseenes 259
4.4.2: L1 Instruction Cache Data ATTAYc.cccieiiiiieieieeieie ettt ettt ettt eesae st e nne e esaeeneeseenes 259
4.4.3: L1 Instruction Cache Way SEIeCt ATITAYccuieieriieieriieienie ettt ettt ee st esee st e eesaeeseenseeneesaeeneenneenes 260
L S B W D 1 B O ol s 1S I TN o) TSRS R 260
4.4.5: Duplicate Data Cache Tag ATTAYcceeieiieieeieiei ettt ettt ettt ettt eee e esee st enee st eneesaeeneenseeneesseeneeneenes 260
4.4.6: L1 Data Cache Data ATTAYccceeruieierieiieeieeieite ettt et ete et e e st eeesteeee s st esseseeneesseeneenseeeesseesseseeneenseeneeseenes 260
4.4.7: L1 Data Cache Way SEIECt AITAYcceeviririeieiieiieiieiieiertest ettt ettt ettt st ettt e et ettt eaeebesae e 260
4.4.8: L1 Data Cache DIrty Bit ATTAYccocererieriirieieiieiititeetente sttt ettt sttt ettt ebe bt st sae s 260
L2 CACRE ...ttt h b ettt es et st bttt bt eanen 261
4.5.1: L2 Cache General FEAtUIES.........co.iruiriiieieiieiiitiriestetet ettt sttt st ettt ebe ettt sae s 261
4.5.2: OCP INLEITACE ...ttt ettt ettt sttt ettt a e a e bt s bt b e b st et et eseebeebeebesaenaen 262
4.5.3: L2 Replacement POLICYcoouiiiiiiiieieeiet ettt ettt ettt e ae e e ne et esbeesee s e eneeeeeneenneenes 263
I Sl I N (T 8 (o) T o) £ TSP 263
4.5.5: Write-Through vs. WITte-BaCKcceririiiiiiiiiiiieer ettt ettt sae st s 263
4.5.6: Cacheable vs. Uncacheable vs. Uncached Accelerated...........coeoieieieiiiiiiiininiiinicenieceeeeeceeeie e 263
4577 CACKE ATTASES ...ttt ettt et ettt ettt ettt h e ettt et eh et bbbttt be bt eanen 263
4.5.8: PerfOrmance COUNLETSc.couerteuteuteuiriirtietentest ettt ettt sttt sttt et et e eae e bt sbe et eb e st et ese e st estebeeutebeeneebeebenbe st eanen 263
4.5.97 SIEEP MOAES.....ceeeititeteee ettt et b bttt et et h e bt e ettt eb e a bbbt b bt nen 264
4.5.9.1: Sleep Mode Using the WAIT INStIUCLIONcueviiiiiiiiiitinienietetee ettt 264
4.5.9.2: Internal Dynamic SIEep MOE........coueruiiiiiiiiiiriieeeeee ettt ettt et st 264
4.5.10: BYPASS MOMEC ...ttt sttt h bt b ettt eh e h et eb et b et e s 264
4.5.11: Reduced L2 Hit LatNCY ..c..eoveiiuieiieiieiietieieitcrteteeste ettt sttt ettt ettt sttt et es ettt ne s 265
I B 9 o) 11 A) 1 Lo TSRS 265
4.5.13: L2 Cache INItIAlIZATIONeoueruiititiiiieieiieteeice sttt ettt sttt ettt et ettt eb et ebe bttt be e ennes 266
4.5.13.1: init_12u Cache Initialization ROUINE..........cceiiiiiieeieiieieee et s 266
4.5.13.2: init_12¢ Cache Initialization ROULING..........ccoiiiiiiiieiieieeeet et eeeas 267
4.5.13.3: init_L2u Initialization Routine DEtailsccuerieiriiieierieieii e e 267
4.5.13.4: init_L2c Initialization RoOUting Detailsccoerieiriiieiiiieieiee e 268
4.5.14: L2 Cache CPO INEITACEcoviuiiiiiiiiieieeec ettt 269
4.5.14.1: Config2 Register (CPO re@ister 16, SCIECt 2) ..ccuiiiiriieiiriiiiesieeieieeie sttt s eneens 269
4.5.14.2: Error Control Register (CPO register 26, SEleCt 0).......c.ovieririeriiiieieeiieieeeeie et eieens 269
4.5.14.3: Cache Error Register (CPO register 27, SEIEct 0)ccceeririrerierieieieieieeneeieeenteseeeee et 270
4.5.14.4: L23TagLo Register (CPO register 28, SCIECt 4)vivuieiiiiiieieeeeiee et e 270
4.5.14.5: L23DataHi Register(CPO register 29, Select 5) / L23Datalo Register(CPO register 28, Select 5)270
4.5.15: L2 CaAChE OPEIATIONS ...euveutieuietieieeetteeesteetesteeite it eetaeteeseesaeeaeeseeeseeaseeseenseassenseemeesseemeenseeneesseessenseeneeseeneenseenes 270
4.5.15.1: Bus Transaction EQUIVAIENCEccuoiuiiiiiiiieieiieiece ettt et eneens 271
4.5.15.2: Details 0f CaChe-0PS...cuieeiiiieiieiieieeiee ettt ettt s et et e b e eae et e entetesneeneenneenteeneens 272
T B TR N 7 s o 13 1 5 TSP SSSRS 273
4.5.15.4: L2 Cache Fetch and LOCK.......c..ccuciiiiiriiiiiieicieireteese ettt ettt et 274
4.5.16: L2 Cache Error ManagemeNt..........ccueiueiierierieiieeieeieeteeee st eee st et e st eae et eseeteeneesseeneensesneesaeensenseeneesseensenneenes 274
4.5.16.17 PaTTLY SUPPOIT ...ueiitieiieitieieitiei ettt ettt e et et e bt et e bt eae e st es e eseeneesseemaesseessenseenseaseeneenseeneensesneenseaneensenneans 274
4.5.16.2: Tag, Data, and WS A1ray FOIMAL.........cccoviriiriiiiiiieiiieiieieceeeese ettt 275
4.5.16.3: Cache Parity Error HANAIINEc..ccoeoiiiiiiiiiiiiiiieeseccee ettt 275
4.5.16.4: Multiple Uncorrectable EITOTS........cccoiiiiiiiiiiiiicrenc ettt 275
4.5.16.5: BUS Err0r HANAIING.....c.eeoiieiiiii ettt e ene e enee e sneensesneensenneans 276
The CACHE INSIUCTION ...ututiiiiiiiiietietertert ettt ettt ettt ettt ettt et et bt bt besbesb e bt st et eaneseebeeneebesuesaeas 277
4.6.1: Decoding the Type of Cache OPErationcccoueieieieiririniniietesentetet ettt ettt sttt ereeresae e 277
4.6.2: CACHE INStruction OPCOAEScovirtiriiiiiieitiiieiiniinesttst ettt ettt ettt st sa et ettt et bttt ess et ebeeseebesuesaeas 277
4.6.3: Way Selection RAM ENCOGINGcc.oouiriiiiiiiiiiiiniinirticeee ettt ettt sttt bbb s 277

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

Chapter 5: EXCeptions and INTEITUDLSocviieie ittt ettt ettt e b ste e e e e saesne s 279
512 EXCOPHON CONAILIONSeiutieiieiiieeieieeteie st ettt ettt et e steeatesteeetessesae e seeseenseeseesseeseensenseensesseensessaensesseenseseensenseensenseenes 279
5.2: TLB Read Inhibit and Execute Inhibit EXCEPLIONSceeviiiiiiieiesiieie ettt sttt nse s 280
5.3: FTLB Parity EXCEPIION ...cuvieuiiiietieie ettt sttt ettt et ettt et e ste et e steesaenseesteseeseenseeseenseeseensessaensesseensesannsenseensenseenes 280
547 EXCOPUOMN PIIOTILY ...vevieuieiieiieii ettt sttt ettt ettt ettt et e e st e stesae e aeesees s e st esseeseenseeseensesseensesseensesseenseseensenseensenseenes 280
5.5: EXCEPHON VECTOT LLOCAIONS......cviiiieieeiieieeiieiiete ettt ste sttt sttt e ste et esteess e teestesseesseeseeneesseensesseensesseensenseensenseenseseenes 282
5.6: General EXCEPLION PrOCESSINGc.ccviviiiiieieietieiesteete st etesteetesteestesteess e seestesseeneesseensesseensesseensesseensensannsenseensensennes 287
5.7: Debug EXCEPION PrOCESSINGcvivuiiiiiiieiesiieieste ettt ete ettt ste et e s tessaes b eeseesseeseenseeseensesseensesseensesseessensennsenseensensennes 288
5.8: EXCOPHON DESCIIPLIONSuviviiiiieeieieeieeiesitete et et e steettestesetesteeseessesseessesseessenseeseesseessensesneesseensesseensesseensenseensenseensensennes 290

5.8.1: Reset EXCOPHION (RESEL)....icuiiiiiieiiiieiieiieie ettt sttt ettt ettt et et et e sseestesesseenseeseenseeseenseeseensesaeensennean 290
5.8.2: Debug Single Step EXCEPLION (DSS) ..cuviiiiiiieieiieieie ettt ettt esae st e seesaesesneesseennas 291
5.8.3: Debug Interrupt EXception (DINT)ccuiiiiiieieieiee ettt sttt ena et saeesaeeneas 292
5.8.4: Non-Maskable Interrupt (NIMI) EXCEPTIONccvieiiiiieieiieiieiieie ettt sttt sse s s sneenseenees 292
5.8.5: Machine Check EXCOPLIONccueiiiiiieiiiiieiesit ettt ettt ettt aesseesse e e essessaenseesaenseeseensesseensesseensenseas 293
5.8.6: Interrupt EXCEPHION (IN) ...ooviiiiiiieieiiieiieiieieeie ettt ettt et s e ss e e sa e bessae s e esaenseeseenseeseensesseensesneas 294
5.8.7: Debug Instruction Break EXception (DIB)cccooiiiiriieiiiieiesiteeese ettt 294
5.8.8: Watch Exception — Instruction Fetch or Data Access (WATCH)c.ooiiiiiiiiieeceeceeeeeee e 294
5.8.9: Address Error Exception — Instruction Fetch/Data Access (AAEL/AAES)cccoovvieiieieieeeeec e 295
5.8.10: TLB Refill Exception — Instruction Fetch or Data Access (TLBL/TLBS) ...cccoovvievieieciieieieieeee e 296
5.8.11: TLB Refill and XTLB Refill Exceptions — Instruction Fetch or Data Access (TLBL/TLBS)........c..cc...... 296
5.8.12: TLB Invalid Exception — Instruction Fetch or Data Access (TLBINV).....c.ocoviiviieniiieieieeeeee e 298
5.8.13: TLB Execute-Inhibit Exception (TLBXI)ccooiiieiiiieiieieieeteeeeee ettt ere e sseeaesnees 298
5.8.14: TLB Read-Inhibit Exception (TLBRI)cccooiiiiiiiiieiecieieceee ettt snees 299
5.8.15: FTLB Parity EXCOPLION ...c..iiuiiiiitieiietieiiietieie ettt ettt sttt et esteesaeseesaesseessesseessenseessesseessesseensesseensesseensesseas 300
5.8.16: Cache Error Exception (ICache Error/DCache EIror).........ccueoieieiiiiieriieieniiciese et 301
5.8.17: Bus Error Exception — Instruction Fetch or Data Access (IBE)......c.ccccoviiiiiieiinieiecieeeeeeeee e 301
5.8.18: Debug Software Breakpoint EXCeption (DBP)ccieiirieiiiiiieiieeieieeeeee ettt s 301
5.8.19: Execution Exception — SyStem Call (SYS)ccvieieriiiiieriiiierieiierieetieie et esteeteesaeseesaesseeaessaesessesseessesseessesnees 302
5.8.20: Execution Exception — Breakpoint (BP).......ocveoviciirieiiieieiieiesie ettt sse e sneenaesneas 302
5.8.21: Execution Exception — Coprocessor Unusable (CPU)......ccvieieriieieniiiienieeieieeiesie et ese e sae e 302
5.8.22: Execution Exception — Reserved Instruction (RI)c.occceciieieriiiieniiiieseeeeeeeie e 303
5.8.23: Execution Exception — Floating Point Exception (FPE)ccccviviiiiiiiiiiiicieeceecee e 303
5.8.24: Execution Exception — Integer OVErfloW (OV)......cccveivieieiieieriieieie ettt sreeaesse e saeesaesneas 303
5.8.25: Execution EXCePtion — TTAP (TT) ..uieiiiiieiiriieieiiiiecie ettt st sa e ta et essesseesaesseessesaeeneenneas 304
5.8.26: Debug Data Break Exception (DDBL/DDBS)ccuiiiiriiiiiieiiieieeieeeee ettt ae s snaesaeenees 304
5.8.27: TLB Modified Exception (TLB MOG)ccccoiiieiiiiiiieiieiesiieiesie ettt ettt ss et ssaesseesaesaeesaesneas 304
5.9: Synchronous and Synchronous Hypervisor EXCEPHIONScc.eviiiieriiiieiiieiieieeieetese et eeeesae e sse e esse e sseeseesseseas 305
5.9.1: Guest Privileged Sensitive INStruction EXCEPHIONccviiieiiriieiieiieiecieeie sttt sre e seeereesae e esaesneas 305
5.9.2: Guest Software Field Change EXCEPHIONcc.ieieiiiieieiieieeiieie ettt ettt st esteeteesseeneenseeneesseeneas 307
5.9.3: Guest Hardware Field Change EXCEPiON.coccueiiieieiieieiieieett ettt enae s s enaeenees 308
5.9.4: Guest Reserved InStruction REITECTcoueiiriiiiiriiiiiiieeeceieeese ettt 309
5.9.5: HYPErcall EXCEPLIONeeuiiiieiiiiieie ettt ettt ettt sttt e st e s e teeseesseesaesseenaenseessenseeseenseeseensesseesennnan 310
5.10: Exception Handling and Servicing FIOWCRAITS.coiiiiiiiiieieeieceeet ettt 310
T B U115 4 g0 o1 OO USTOPRRRPSROT 316
S.T1.1: INEEITUPE MOAES ..ottt ettt ettt ettt et be st et eete e s e st e e s e st essesseensenseenseesaenseeseenseeseenseeseensesneensennean 316
5.11.1.1: Interrupt Compatibility MOGE.eiueeiieieieiierie ettt st naesseensenseenes 317
S5.11.1.2: Vectored INterrupt MOAEcveiviiieiiieieieieeieetet ettt sae et sseeaesseensenseessesseenseseenes 319
5.11.1.3: External Interrupt Controller MOde..........coviiiriiiieiieiecieeiee ettt ens 320
5.11.2: Generation of Exception Vector Offsets for Vectored INterrupts.......c.ocveevevievierieiienieiereeieseeiese e 322
5.11.3: Global INterrupt CONLIOLIETeouiiiieiieiieie ettt ettt et e s e e e sseesseesaenseeseenseeseensesnnenseennan 323

Chapter 6: CONEIENCE IMANAGETo ittt et ettt et e s tesbe et e eneesaeneeseeeneeneeneennenneas 325
0.17 CIM2 FEALUIES ...ttt ettt ettt sttt h et b e et s h e ee et e et b e e bt e bt et sheea b e nb e et sbeeeb e bt et e st e eneebeeae 325

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 9

Table of Contents

10

6.2: Coherence Manager AdAIESS IMADco.eeuiiuieieie ettt ettt ettt ettt e et se et e et e steene e st eneesaeeseenseeseenseeseenseeseenes 326
6.2.1: Block Offsets Relative to the Base AdAIessc.cccveieiiiiirininininiiicieeeteee ettt 326
6.2.2: Register Offsets Relative to the BIOCK OffSEtscc.eiiiiieiiiieie e e 327

6.37 CIM2 PIOGIAMIMINGeveeuieieenieeteeiee st eteeteeete st ee e et esee et eneesaeeseeeeeae e seeseen s eeseanseeseeneeeseeneeeaeenseeseensesseenseseensenseenseseenes 329
6.3.1: 40-bit Physical Address SUPPOIToouieiiiiiie ettt ettt e st e ee st e e s bt ense et e enseeseeeseeneenseeneeneeenean 329
6.3.2: L2 €Cache PrefetCher ...c..c.eoiiiiiiiiiiiiee ettt st 331
6.3.3: Verifying Overall System COnfigUIation.ccueruiiiereeieiieieie ettt see st e et ee st eeesseeneesneas 332
6.3.4: Requestor Access t0 GCR REGISTEIS.ocuuiiuiiieiiiiee ettt st e et e e s e nae e seeeneas 332
6.3.5: CM2 INLEITACE POTTS ...c.viiiieiieiiiiiitietieter ettt ettt sttt ettt ettt sae b b ee 332
6.3.6: Setting the CM2 Register BIock Base AddIessooueiuieieiiieiiiieeeee e s 333
6.3.7: AdAIEsS REGIOMNSc.veiuiiiieieieieieet ettt ettt ettt et e et e e st e et e et e eneesae e s e eseenseeseenseeseanseeseenseeneensesneenseenean 333

6.3.7.1: FIX@d-S1Z8 REZIOMNSeeeieiieieieiie ittt ettt ettt et et e st e e et e saeeseensenseeneenseeneeneenes 334
6.3.7.2: Variable-Size REZIOMScueuiiriiiiiitirterere ettt ettt sttt sbe b e 334
6.3.7.3: Address REZION PriOTITIESeeuvietieieeiieieeiieie sttt ettt et ae et e sae et esseeneesseenseseeneenseeneenneenes 335
6.3.7.4: Defining the Base Address Location and Size for Each Regionccccccocvinininiciiencneiiiicicncnen 335
6.3.7.5: Defining the Target DEVICEccuerieiiriieieie ettt ettt ettt et sae et e ese e e s seentenseeneesseeneenneenes 337
6.3.7.6: Setting the Cache Coherency Attributes for Region Memory Transfers...........ccocevvereneneiccncncncnnenn 337
6.3.7.7: Issue Request Protocol and Region Maskingccccvevuirieniiiiiiiiiiiiincnceeseceeeeeee e e 337
6.3.7.8: OVerlapping REZIOMScouiriiiiiiiiiieieititent ettt ettt ettt sttt et et eae e 338
6.3.8: Address Map Programming EXamPpPle........cc.couiriiiiiiiiiiiiiiincccee et 339
0.3.9: CoTE-LOCAI GRS ...ttt ettt ettt a bbbt sttt ettt a ettt e bt bbb st aenee 342
6.3.10: COTE-Other GRSiutiiiiiiiieiieiteieet ettt ettt b et be e sttt et et e ettt et ettt e bt s be b saenne e 342
6.3.11: Accessing Another Cores CM2 GCR REZISIETSceueruiriiririineniiniiieieteitetente ettt ettt 342
6.3.12: CONETENCY DOMAINS. ¢..c.tititeiinieiieiteit ettt ettt ettt ettt b e ettt et e b e eb e bbb b et st ettt e bttt ebesaesae b e 343
6.3.13: L2-Only SYNC OPETALION ...c..eviiiriititeteteitett ettt ettt sttt ettt ettt ettt be bttt est e st ebesbesae st et et et ebeeaeeaenae 345
6.3.14: Handling of Addresses Not Mapped to a Defined REZIONcocoviiiiiiiiiiiiiiinieeceeecceeee 346
6.3.15: Setting the Cache Coherency Attributes for Default Memory Transfersc..cccecveeererienienenenencnecenenenn 346
6.3.16: In-Flight L1 and L2 Cache OPerationsceeveruieienierieiesiieiesteeiesteeeesteseesesseesesseessesseensesseensesseensesses 347
6.3.17: MIPS SYSEEIM TTACEeoutieiieiiieiie ettt ettt ettt et et ettt e et e bt e it e ss b e e satesabeebeesabeeabeesaneenbeenaeeas 348
0.3.18: EITOT PIOCESSINE. ... i iuiitiiiieitietietietie et ettt ettt ettt et este et et et e teesee st eseesseensenseessenseenseeseanseeseenseeseensesseansesnean 348
0.3.18.1: EITOr Codes 1 = 15 oottt sttt 350
0.3.18.2: EITOT Codes 16 = 23 ..ottt ettt 351
0.3.18.31 EITOT COAES 24 = 20 ...ttt ettt ettt ettt 353
6.3.19: Custom GCR IMPIEMENTATIONeeuvieiiiiiieiieieeiieieeiesiesteteette e et e steeseetesseesseeseessesseeseeseenseeseenseeseensesneensesnean 354
6.3.20: AHrIDULE-ONLY REZIONSooiiiiieiiiieiieiete ettt ettt et e st e et e ae st e saeeseeseenseeseenseeneensesneesennean 355

6.4: Global Control BLOCKc.ciiiiiiieiiiciiciee ettt 356
6.4.1: Global Control BIOCK Address MaAPc.eeiuieieiiiieie ettt ettt te et ense st eseeneensesaeensesnnes 356
6.4.2: CM2 Configuration REZISEEISueiuiriieiiriiiierie ittt ettt ettt e st testeeaesseessesseenseeseenseeseensesseensesseensennean 359

6.4.2.1: Global Config Register (GCR_CONFIG Offset 0X0000)ccoeoveieieirininineninieienereeeeee e 359
6.4.2.2: GCR Base Register (GCR_BASE Offset 0X0008)......ccuiiieieiieieeiieieeteee ettt 361
6.4.2.3: GCR Base Upper Register (GCR_BASE _UPPER Offset 0X000C)........c.ccceriererieieiieieeieeeeeieeeeenes 363
6.4.2.4: Global CM2 Control Register (GCR_CONTROL Offset 0X0010).......ccceeieeeririeneiieieniieeseeeeeeenes 363
6.4.2.5: Global CM2 Control2 Register (GCR_CONTROL2 Offset 0X0018)......ccceveereerieieiieieeieeeeeeeeeene 365
6.4.2.6: Global CSR Access Privilege Register (GCR_ACCESS Offset 0X0020).......ccceevererierenieieeieieeeene 367
6.4.2.7: CM2 Revision Register (GCR_REV Offset 0X0030)......cccuiiirieriieieiieierie et 367
6.4.2.8: Global CM2 Error Mask Register (GCR_ERROR_MASK Offset 0X0040)........cccceriererienenieiennenne 368
6.4.2.9: Global CM2 Error Cause Register (GCR_ERROR CAUSE Offset 0X0048)cccccererveieinccnenenenn 369
6.4.2.10: Global CM2 Error Address Register (GCR_ERROR ADDR Offset 0X0050)......c.cccevvevecvrerenennenn 369
6.4.2.11: Global CM2 Error Address Upper Register (GCR_ERROR_ADDR UPPER Offset 0x0054).......... 370
6.4.2.12: Global CM2 Error Multiple Register (GCR_ERROR_MULT Offset 0X0058)c..cccevvevevrerenennenn 370
6.4.2.13: GCR Custom Base Register (GCR_CUSTOM_BASE Offset 0X0000)......c..cccecurerereneneneneeenenenn 370
6.4.2.14: GCR Custom Base Upper Register (GCR_CUSTOM BASE UPPER Offset 0x0064) 371
6.4.2.15: GCR Custom Status Register (GCR_CUSTOM_STATUS Offset 0X0068).......ccccoererveiecercenenennen 371

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

6.4.2.16: L2-Only Sync Base Register (GCR_L2 ONLY SYNC BASE Offset 0X0070).......cccevverereeeennnne. 372
6.4.2.17: L2-Only Sync Base Upper Register (GCR_L2 ONLY SYNC BASE UPPER Offset 0x0064)....... 373
6.4.3: CM2 Region Address Map REZISTETSeiuieuieiiriieie ettt ettt et e st eneeseeeeeeeneeneeeneeneeenean 373
6.4.3.1: Global Interrupt Controller Base Address Register (GCR_GIC BASE Offset 0x0080)...........ccceenu..... 373
6.4.3.2: GIC Base Address Upper Register (GCR_GIC_BASE_UPPER Offset 0x0084).........ccceeoveverveneennnnne. 374
6.4.3.3: Cluster Power Controller Base Address Register (GCR_CPC_BASE Offset 0x0088)ccccceevenneene. 374
6.4.3.4: GIC CPC Address Upper Register (GCR_CPC_BASE UPPER Offset 0X0084)ccceeveieeveniennnnne. 374
6.4.3.5: CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 0x00BO,
OXOOC0) -ttt ettt ettt s et b et s e b et s et e st b e st R et ee bRt b n b et bt h e st h et st s et bt nenaenen 375
6.4.3.6: CM2 Region [0 - 3] Base Upper Address Register (GCR_REGn _BASE UPPER Offsets 0x0094,
0X00A4, 0X00BA, OXO0CA)ottt ettt ettt ettt ettt ettt et s ae st b et et et et ebeebeebesrenaens 375
6.4.3.7: CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 0x00B8,
OXOOC) ettt ettt ettt et e a e bttt b e e b ettt et et et a e a e btk b e bbb a et b bt et e et eat bttt e nre e 376
6.4.3.8: CM2 Region [0 - 3] Address Mask Upper Address Register (GCR_REGn Mask UPPER Offsets
0x009C, 0X00AC, 0X00BC, OXO0CC)euiiuieiieiiriiiieriietenie sttt ettt ettt ettt sttt st ettt ebeebeebesre e 377
6.4.4: CM2 Status and ReviSion REGISTETScceriririiriiriiieieiiteeeteete sttt ettt et et 378
6.4.4.1: Global Interrupt Controller Status Register (GCR_GIC_STATUS Offset 0x00DO)........ccccoveveevreencne 378
6.4.4.2: Cache Revision Register (GCR_CACHE_ REV Offset 0X00EQ)........ccccocevininirinienienenicicrceeeeenee 379
6.4.4.3: Cluster Power Controller Status Register (GCR_CPC_STATUS Offset 0X00F0)cccovvcvvererennnn 379
6.4.4.4: IOCU Base Address Register (GCR_I0OC_BASE Offset 0X0100)cccevirenirinienienenieiereeeeecnene 379
6.4.4.5: IOCU Base Address Upper Register (GCR_IOC _BASE UPPER Offset 0x0104).......cccccecveeevrennenn 380
6.4.4.6: IOMMU Status Register (GCR_IOMMU_STATUS Offset 0X0108).....c.cccvvererinenienenieieeieneniennenne 380
6.4.4.7: I0CU Revision Register (GCR_IOCU1 REV Offset 0X0200)cccovererimenerinienienenieieeeeeeeennene 381
6.4.5: CM2 Attribute-Only Region Address Map REZISTEIScceirireriiniiiiiiiiiciinenestseseseee et e 381
6.4.5.1: CM2 Attribute-Only Region [0 - 3] Base Address Registers (GCR_REGn_ATTR BASE Offsets 0x0190,
0XOTAO, 0X0210, 0X0220) ...euriuieiieiieieeteeteete ettt ettt ettt eb et sttt ettt b e bttt sb e et b et et estebeebeebesbenbe e 381
6.4.5.2: CM2 Attribute-Only Region [0 - 3] Base Upper Address Register (GCR_REGn ATTR BASE UPPER
Offsets 0x0194, 0X01A4, 0X0214, 0X0224).....c.eiuiiiiirieiieierit ettt ettt sttt ettt 382
6.4.5.3: CM Attribute-Only Region[0 - 3] Address Mask Registers (GCR_REGn_ATTR MASK Offsets 0x0198,
OXTAS, OX218, DX228) ...ttt ettt ettt ettt ettt ettt es st s et es et ee et e st et et b et bt s b et e st s e b et e st es et st e enenaenen 382
6.4.5.4: CM2 Atrribute-Only Region [0 - 3] Address Mask Upper Address Register
(GCR_REGn_Attr Mask Upper, Offsets 0x019C, 0x01AC, 0x021C, 0X022C) ...eoeueereirieneiienieeieeeee e 384
6.4.5.5: L2 RAM Configuration Register (GCR_L2 RAM_ CONFIG, Offset 0x0240).......cccceevereereneenernnennes 384
6.4.5.6: L2 Prefetch Control Register (GCR_L2 PFT CONTROL, Offset 0X0300)........cccerieverieienieieneenne 385
6.4.5.7: L2 Prefetch Control Register 2 (GCR_L2 PFR_CONTROL_B, Offset 0x0300)........cccccoveruereerernnrnne 386
6.5: Core-Local and Core-Other Control BIOCKScccccuiiiiiiiiiiriiccceceeeee sttt 387
6.5.1: Core-Local and Core-Other Control Blocks Address Mapcccverieieniieiienieiese e 387
6.5.2: Core-Local and Core-Other Control BIOCk REZISIETSccuiiiieiiiiieiieiieie et 388
6.5.2.1: Core Local Coherence Control Register (GCR_Cx_COHERENCE Offset 0x0008)ccccccererennene. 388
6.5.2.2: Core Local Config REGISTETcciviririeiiiiiieeieetesie sttt ettt 389
6.5.2.3: Core-Other Addressing REZISLETc..couiiiiiiiiiiiiiiietietere sttt 389
6.5.2.4: Core Local Reset Exception Base Register (GCR_Cx RESET BASE Offset 0x0020)........c.ccccoeune... 390
6.5.2.5: Core Local Identification Register (GCR_Cx_ID Offset 0X0028).......cccecererererenienienenieieieeeenenene 390
6.5.2.6: Core Local Reset Exception Extended Base Register (GCR_Cx RESET EXT BASE Offset 0x0030)...
392
6.5.2.7: Core Local TCID Registers (GCR_Cx_TCID PRIORITYOffset 0X0040).......ccccoverreruerveinenenenennenn 394
6.6: Global Debug Control BIOCKcouiiiiiiiiiiiiiiieere ettt sttt et et ebesae b b e 395
6.6.1: Global Debug Control BIock Address Map.........ccccueiriririnininieieieieiese sttt ettt 395
6.6.2: Global Debug Control BIOCK REZISETSccuevuiiiiiiieiiiiiitiitinierieteetetettet sttt ettt s 396
6.6.2.1: CM2 PDTrace TCB ControlB Register (GCR_DB TCBCONTROLB Offset 0x0008)..........c.ccccene.. 396
6.6.2.2: CM2 PDTrace TCB ControlD Register (GCR_DB_TCBCONTROLD Offset 0x0010)........c.cccccnne.. 400
6.6.2.3: CM2 PDTrace TCB ControlE Register (GCR_DB TCBCONTROLE Offset 0x0020)ccccccu.... 402
6.6.2.4: CM2 PDTrace TCB Config Register (GCR_DB_TCBConfig Offset 0X0028)cccccvevveveererenennenn 402

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 11

Table of Contents

6.6.2.5: CM2 Performance Counter Control Register (GCR_DB_PC_CTL Offset 0x0100)ccceeceveveeennenne. 403
6.6.2.6: CM2 PDTrace TCB Trace Word Read Pointer Register (GCR_DB_TCBRDP Offset 0x0108)........... 405
6.6.2.7: CM2 PDTrace TCB Trace Word Write Pointer Register (GCR_DB_TCBWRP Offset 0x0110)......... 405
6.6.2.8: CM2 PDTrace TCB Trace Word Start Pointer Register (GCR_DB_TCBSTP Offset 0x0118) 405
6.6.2.9: CM2 PDTrace TCB System Trace User Control Register (GCR_DB_TCBSYS Offset 0x0040) 406
6.6.2.10: CM2 Performance Counter Overflow Status Register (GCR_DB_PC_OV Offset 0x120)................. 407
6.6.2.11: CM2 Performance Counter Event Select Register (GCR_DB_PC_EVENT Offset 0x130)................ 407
6.6.2.12: CM2 Cycle Counter REGISTETcc.eiuieieiiieieetieieee ettt ettt ente s eeeteeneesneenes 407

6.6.2.13: CM2 Performance Counter n Qualifier Field Register (GCR_DB_PC_QUALn Offset 0x190, 0x1a0) ...
408

6.6.2.14: CM2 Performance Counter n Register (GCR_DB PC_CNTn Offset 0x198, OX1A8) ...c.cceevvevrenenn 408
6.6.2.15: CM2 PDTrace TCB Trace Word LO Register (GCR_DB TCBTW_LO Offset 0x0200) 408
6.6.2.16: CM2 PDTrace TCB Trace Word HI Register (GCR_DB TCBTW_HI Offset 0x0208).................... 409
Chapter 7: Power Management and the Cluster Power Controller...........cccoovveiieii i 411
7.1: Introduction to the Cluster POWer CONLIOIIET...........couiiiieiiiieieeeeee et sttt se e ens 411
7.1.1: Power Domains of the P6600 MultiproCeSsing SYStEIMcc.eerveriieierierieniieieeieiesieesieeeeeseeesessesseensesneessesnees 412
7.1.2: Operating Level TIANSITIONSccueiieieriieiesie ettt stet et et e st ete st esaesseeseesseessenseeseeseenseeseensesseensesseensesnean 412
7.1.2.1: Coherent to Non-Coherent Mode Transition...........c.eceeieruirierieneeieiieieseeeeeeeeeeeeaesreessesseeseenseeseesseenes 413

7.1.2.2: Non-Coherent to Coherent Mode TTansition...........c.cceeverueeieriieieniieiereetesteeeesieeaesseensesseessesseeneenseenes 413

7.1.2.3: Non-Coherent to Power Down Mode Transitionccccceecueeieieriieienieieseeiesieeeesieeesesieesesseeseneeens 413

7.1.2.4: Non-Coherent to Clock Off Mode TIansitionccceecverveeieriieieniieiene e sreeie st sre s sseeseesseeeenseens 414

7.1.2.5: Clock Off to Power Down Mode TTansitioncceeveruieieriieieniieierie e seeeee s sreessesseessesseeneenseens 414

7.1.2.6: Clock Off to Non-Coherent Mode TTansitionceecveruieieriieieniieiene e sieeeesieeee e ensesseensesseesenseens 414

7.1.2.7: PowerDown to Non-Coherent Mode Transitioncecveeierieiieniinienieeiieieeieie e seeeens 414

7.2: CPC RegISter PrOGIAMIMING......c..iiietiiiieieeiieiiete ettt steste et ste et esteetesteeseenseeseesseessesseesaesseensessaessesseessenseessenseensensennes 415
7.2.1: Requestor ACCESS t0 CPC REZISTETSiciiriiiieriieieitieie sttt ettt st et staetessaesse et eenseeseenseeseensesseensenneas 415
7.2.2: Global Sequence DElay COUNL...........ccieierieiierieetiete ettt ettt esteetesseestesseessesseessesseessesseessesseensesseensesseensesses 415
7.2.37 RAIIDICLAY ..ottt ettt sttt ettt et e s e be e st ens e s st e s e esten s e en s e eseenbe et e en s e st enteeseennesneenneenean 416
7247 RESCE DICLAY ...ttt ettt ettt b et e e et e st e et e be e st e s s e ss e e be e st en s e et e eseense et e en b e st enseeseenteeaeenneenen 417
7.2.5: EXCCULING @ POWET SCQUEIICE ... ueeuiiiieiiiiieiieitieiiettetesteeteteeteestesteessesseesaesseessensesssensesssenseansesssensesseensesseensessens 417
7.2.6: AcCeSSING ANOTNET COTCviiiiiiieiieciieiieteeie ettt ettt ettt et e te et eeteeseeeseesaesseesaesseeseensesseensenseensesseensesseas 418

7.3: Cluster Power Controller AdAress MAPc.ocveiieiieieeieieet ettt ettt et aestessessaesseesaesseessenseessenseessensenns 418
7.3.1: Block Offsets Relative to the Base AdAIeSScvecviiieiieieiieiesie ettt ettt ae s ae e eaesnees 418
7.3.2: Register Offsets Relative to the BIOCK OffSEtScc.iiieiiieiiiiieieii et 419
7.3.3: Global Control BIOCK REZISTET IMAP ...ccuvieiiieiiieiiieiie ettt ettt st ettt sve et e sebeetaeseaeenseesnseenseessneenseenseens 421
7.3.3.1: Global CSR Access Privile@e REGISIET.......cccviiiieeiieiiieiieett ettt ettt esteesaeenseessaeenseeaee s 421

7.3.3.2: Global Sequence Delay COUNLET..........c.ccciiiiierieeieerieeie et steeieesie e eseeeeereessaeebeessaeesseesseesnseeseessneas 422

7.3.3.3: Global Rail DElay COUNLETcccuiiiiieeieeiieeiteeieerieeste ettt veesteesbeesteesaeesebeesseessaesaseesssesnseessneenseeseens 422

7.3.3.4: Global Reset Width COUNLET.........couiiiiiiiiiieitie ettt sttt e e eee 423

7.3.3.5: REVISION REEZISIET ... eecuiiiiiiiiii ettt ettt et sttt e st ete et eeabeessaesaeeentaessaeensesnseessseenseensnesnseenseens 424

7.3.4: Local and Core-Other Control BIOCKScoiiiiiiiiiiiiiiiee et 424
7.3.4.1: ComMMANA REGISTETuieiuiiiiiieitieeieeiie ettt ettt e st te e et e e beesaaeense e tbeenaeenseesseessseenseensnessseenseens 426

7.3.4.2: Core-Other Addressing REZISTETeeuiiriiiiiiieeiie ettt ettt ettt e bte e et e st e e aeesseesabeenseesneean 429

7.4: Cluster Power Controller COMMANASoouireieieieiieiteteet ettt ettt sbe sttt e e et et ebeeaeebesbesaeas 429
7.5: P6600 Core Power Management OPTIONS.......c.ccieieriierieriieienieetesieetesteessesseeseesseessesseessesseessesssessesseessessesssessesssessennes 431
7.6: POO00 COre ClOCK GALINEZeevvivieiiieiieiietieieeteteeetesteetestesetesteessebeessesseessasseessesseessesseessesseessesssessesseessensensseseessensennes 431
7.6.1: Designs Implementing Top Level CloCK GatiNgc.coieiiriieieriieieiieie ittt sseereese e aesnees 431
7.6.1.1: Reduction of VDD During S1eep MOdecc.ccvevirieiiiiieiiiiieieeie ettt sse e aeens 432

7.6.1.2: Restart Latency Trade-OfFScciiiiiiiiiiieie ettt et sae e be s e sbeeseeaeens 432

7.6.2: Designs Not Implementing Top Level Clock Gatingcc.oovieierieiieriiiieie et ere e e sae e 432
7.6.3: Designs Implementing Fine Grain ClOCK GatiNgccocvevvirieriieiierieiieiie ettt eese e eaesaeeae e essesaeas 432

7.7: POO00 COTE POWET GATINE ...eeevvieiiieiieiieetteeiie ettt e et e tee et et e sttt e tteesteesteeesseenseeenbeeseessseenseesssesnseenssesnseenseesnseenseens 433

12

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

7.7.1: Hardware SUSPENd/RESUMIEccuieiiiieiiiiieie ettt ettt et e sttt e s et e e e s tees e st eneeeseeneeeseeneesneeneas 433
7.7.2: Software SUSPENA/RESUITICc.eeiiiiiiiieiieiti ettt ettt ettt ettt et e et e st e s et eneesaeeseenaenseeneenseeneeseeneeneeenean 433
7.7.2.1: Overview of Suspend/ReSUmE PIOCESSccoveriiieiiiieriieiieie ettt 433
7.7.37 SUSPEIA PIOCESS. ...t cueieieiieete ettt ettt ettt ettt e e s e bt e et et e e s e st e aeeseeemeeaseeseeseeseenseeneanseeneenseeneesneennes 435
A T Nl € o N T 4]) SRS 436
7.7.3.2: SAVE CPO REGISTETSeetieieeeieie ittt ettt s ettt st e e st e e et e bt e e e et enee st eneesaesseenseeseenseeseeneenneenes 437
7.7.3.3: Flush Dirty Lines in L1 Data Cache..........ccooiiiiiiiiiee et 437
7.7.3.4: Save the RESUME AdAIESS.coiiiiieiiieiee ettt ese et et e eeeseentesseeneeeseeneenneenes 439
7.7.3.5: Copy Memory Power Down Sequence Into Cache...........occueiieiiiiieiiiieeseeecee e 439
7.7.3.6: Move Memory to LOW POWET IMOAEcuiiuiiieiieiieie ettt e 439
7.7.3.7: Shut Down Power to the POOG00 COTC..........ccuieiiiieieii ettt st sne e saeenes 440
T.T.4: RESUIME PTOCESS ...euveetiiiiiieiieeite ettt ettt ettt st e bttt b e eh et et e shte et e e b bt et e e bt e sh bt e sabesabeeabeeeabeebeesabeebaesanean 440
77412 SYStEM WaKE-UD ..ottt ettt ettt sttt ettt 440
7.7.4.2: Power-Up VDD to the P6600 Core and Assert Power-On Reset.........ccccuvirirerinenenenieieiieecnenee 440
7.7.4.3: Warm/Cold BOOt DEtECLIONceiiuieiiiieiieteeiiet ettt ettt see s se et e seenseeseeneenneenes 440
7.7.4.4: EXit Memory LOW-POWEr MOGC..........ccuiiiiieiiiieie ettt 441
7.7.4.5: Initialize Caches and TLBcccoiiiiiii ettt ettt eneenes 441
7.7.4.6: Jump t0 RESUME AAIESS ..c..eoviriiiiiiiiiciieieeiet ettt ettt 441
7.7.4.7: RESOTe CPO REZISEISuvuiuiiiitiiieriesteitettee ettt sttt ettt ettt b e sttt et ebe b e 441
7.7.4.8: ReStOre GPR REGISTETSecuiiiiiiiriiiiiiienieteiiee ettt sttt ettt st 442
Chapter 8: Global INterrupt CONTIOIIEr........ccviie e 443
8.1: GENETAL GIC FRATUTES ...ttt ettt ettt ettt e ettt a et b e bbb s b st e bt et et ea b et ebeebeebenbesae 443
8.2: GIC AdAress MaP OVEIVIEWccviiuieieiieiietieteetieteeteestesteestesseessesseessesseessanseaseesseessensesssensesseesssensesseessenseessenseessensennes 444
8.2.1: GIC BaSE AQAIESS. ..c..evetiteeieiieiiettettee sttt ettt ettt ettt et et b e eb bbbttt ea bbb ettt et be et sae et b nee 445
8.2.2: Block Offsets Relative to the Base AdAIesscccveiiiriiiiiniinenienecieteee ettt 445
8.2.3: Register Offsets Relative to the BIOCK OffSEtScc.viieiieiiiieiecieeeee et 446
8.3 GIC PrOGIAMIMING.eouieiieiieiieitteie et ete et ett e e et eteeteetesseeaeeseesseeseessesseesseseesseeseessesseensesseensesseensesseenseseensenseensenseenes 448
8.3.1: Setting the GIC Base Address and Enabling the GICccoeciivieiiiiieniiiiee e 448
8.3.2: Enabling Virtualization MOGEcc.eouiiiiiiiiierie ettt ettt se et e e ssaeseesaenseeseeseeseensesneensesnnan 448
8.3.3: Configuring INEITUPE SOUTCESc.vieuieiieeieiieieste ettt ettt et e st et e st estesteesseeseesseeseesseessenseeseenseeseensesseensesnean 448
8.3.3.1: Trigger TYPe REZISLET GIOUP ...veeveriieiieiieieie ettt ettt ettt et et ettt eteestesseessesseesaesseesaeseessenseensenseenes 449
8.3.3.2: EAZe TyPE REGISTET GIOUDvevievieiieiieieeiieteettet et ete et etesteeeesseesaesseeseesesseessesseensesseensenseessenseessenseenes 450
8.3.3.3: Polarity Type Re@ISEr GIOUP.....ccueiieiiriiiieitieiieitiettete ettt e et eaeste et esesseensesseesaesseesseseessesseessenseenes 450
8.3.4: INEITUPT ROULING ...oviiiieiieiie ettt ettt ettt et e et e st e ese e seeseeeseesaesseeseenseeseanseeseenseeseensesseensennean 450
8.3.4.1: Mapping an Interrupt SOUICE t0 @ PrOCESSOTvivuiiiiieriiieiieiiie ettt ettt sveeaeesnee s 451
8.3.4.2: Mapping and Interrupt Source to a Specific Processor Pifl.........cc.ccvecvivieiiviieiiniiieciecicieeeere e 451
8.3.5: Enabling, Disabling, and Polling INtEITUDPLScccccuiriiiieiiriieiesie ettt sttt se e esse e sveereeaeseeesaeeneas 452
8.3.5.1: Enabling EXternal INEITUDPLS.......cc.ccieieriiieieieiieeiectteie ettt ettt e saeeseesaeesaesbeessesseessesseessesseens 452
8.3.5.2: Disabling EXternal INtEITUPLS........ccvieieriiiieriieierie ettt ettt et eve et ete e e sreessesaeessesreessesseessesseessesseenes 452
8.3.5.3: Determining the Enabled or Disabled Interrupt Stateccceevieiiiinieiiiieiececeecee e 452
8.3.5.4: Polling for an ACtIVE INTEITUDL......coiierieeiieiie ettt ettt ettt e et e et e st e e sseeesbeesbeeenbeenseessneenseenseeas 452
8.3.5.5: Programming EXAMPLEcceeiiiiiiiiiieeiieiie ettt ettt ettt ettt e et e s beeaeessaeenseenbeenseesnaeenseennne s 453
8.3.0: INLET-PrOCESSOT INTETTUDLS....eutieieiieiieetie et eite ettt e st e et et e s te et esteeebe e beesebeeseeseessbeenseesssesnsaennseenseessneenseenseens 454
8.3.6.1: WEDGE Register Programming EXampleccccciiiiiiiiiiiiieiieeiecie ettt n 455
8.3.6.2: Inter-Processor Interrupt Code EXampPIeccouviiiiiiiiiiiiiieiieciece et s 456
8.3.6.3: Example of Sending an Inter-Processor INEITUPEccveecuieiieeiiierie ettt s 457
8.3.6.4: Example of Clearing an Inter-Processor INTEITUPL.........ccueeiiierieriiiiiesieeie ettt 457
8.3.7: Local Device Interrupt CONTIGUIALIONcc.vieeuieiieiiieiierie et eeite et e steeteeieeere et e sebeeseaeesbeesseesnseeseesnsesnseenseeas 458
8.3.7.1: GIC INLEIVAL TIIMIET ...ttt ettt ettt et ae ettt et e nte bt eb et e eeeenteeaeenaeenee 458
8.3.7.2: GIC WatCAOZ TIIMET ..ecuviiiiiieiieeiit ettt ettt ettt e e te e st eeteessaeenseentbeenseenseessbesnseenseessseenseenneeas 461
8.3.8: Local INtETTUPE ROULING ...vveeueieiiiieiieeie ettt ettt st ettt et e st e st e e st eesaeeteessbaesesssesasaesnseenseessneenseenseeas 465
8.3.8.1: Routability 0f LoCal INTEITUPLSeeiviieiieiieiiie ettt ettt seve e e e e e steeesaeenseessaeenseennneas 465

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 13

Table of Contents

14

8.3.8.2: ROUING L0CAL INtEITUPLS.ceeeieiiiiieie ettt ettt et e e e et est et eneesteeneenneenes 465
8.3.8.3: Watchdog Timer INTETTUPLSccueiuieiiiiieiee ettt ettt ettt a et e e e s et e e steeneenaeenes 468
8.3.8.4: Count and Compare INTEITUPLSeeieriirierie ettt ettt ettt et e sttt e see e e eeentesseeneeseeeneenneenes 469
8.3.8.5: TAMET INEEITUPLSe.veeeieiteie ettt ettt ettt ettt ettt e e et e ent e e st et e eseeneeeneeneesseensenseeneenseeneenseenes 469
8.3.8.6: Performance Counter INTEITUPLSoouiiierieiieieeiieieete ettt ettt ettt ene e e e eneenes 469
8.3.8.7: SOFtWATE INTEITUPLS ...eveeieie ettt ettt ettt et e et et et e ese e et eneesaesseentenseeneenseeneeneenes 470
8.3.8.8: Fast Debug Channel INteITUPLSocueiuieieiieiieieee ettt ettt enaeenes 470
8.3.97 EIC MOAE@ SEEIMNEveeueieiieie ettt ettt ettt et te st e eat et e et e st e et e st eneesseemeenseenseseenseeseanseeneenseeneensesneensesnean 470
8.3.10: Enabling, Disabling, and Polling Local INtITuPLSccueiieierieiiiiee st 471
8.3.10.1: Enabling EXternal INTeITUPLS.......ccieiiriiiieie ettt ettt st et ne e see e e enaeenes 471
8.3.10.2: Disabling EXternal INterTUPLS..........cccuiruiiieriieiieiiet ettt ettt sttt sse e eeeeneesaeenes 471
8.3.10.3: Determining the Enabled or Disabled Interrupt Stateccoeceeeieiirierieneeieseee e 472
8.3.10.4: Polling for an ACtiVe INTEITUPL........eeouiiiiieiti ettt ettt esee e e e naeenes 472
8.3.11: Debug INterrupt GENETALIONc..eouerieieiieiieitetieteete et ettt ettt ettt et ettt ettt sae st ettt ettt et eaeeae b e 473
8.4: VIrtUAliZAtION SUPPOTL.....cutiuiiiiitietiitiitit ettt ettt ettt sttt a ettt es sttt e bt s bt et besae st et e s et eseenteneebeeaeebentenaens 474
8.4.1: Routing of Guest External Source INTeITUPLS.........ccceoveiriiirinininincicicteeeteese ettt 474
8.4.2: Qualification of Root or Guest Software Access to GIC TEZISTETSc..couerieiririrerirerererrenereeeeeeeee e 476
8.4.3: Guest Accesses t0 Core-Local REZISIEIScoueiiiriiiiiiiiiieieetestestese ettt 477
8.4.4: Count-Compare (CC) TImer INTEITUPLScc.erviriiriiriiieieieiieeeteetese ettt ettt s s 479
8.4.4.1: Root Mode Count-Compare Timer INTEITUPLSc.cvververtirieniiiiiiiiceieeententeteeseeee et e 479
8.4.4.2: Guest Mode Count-Compare Timer INtEITUPLSco.evverririeieieiiiiiiirercreetese ettt e 480
8.4.5: Watchdog (WD) Timer INEITUPES ..c..cveuveuiiiiiiitiiterient ettt sttt ettt st s 482
8.4.6: WatchDog Timer RIPL and NMI GEeNnerationccoccveieieiiininiiniineteieiiniesiesteereseeseeieeesee e 483
8.4.6.1: Root Context WatchDog Timer RIPL Generationc..cocoueieiririnininineneneieeeeeeeieie e 483
8.4.6.2: Guest Context WatchDog Timer RIPL GeNeration............cccccueeeirirenenininieneneeeieeeeeeeiese e e 484
8.4.6.3: Root Context WatchDog Timer NMI Interrupt Generationc.ccuecevererererenienienenieieeeeeesenenee 485
8.4.6.4: Guest Context WatchDog Timer NMI Interrupt Generation.............ccuecuvererererenienienienieieenenesennene 486
8.5 SNATCA REGISET SOliiuiiuiiitieiieiieieet ettt ettt et ettt et e e e st et e es e enseeseesseenteseeneesseessenseeneenseessenseeneenseeneanseenes 487
8.5.1: GIC Re@ISLEr FICLA TYPES 1.uvevieuiiiieiieiietietieie ettt sttt ettt ettt e e st e s e e st enseeseenseeseenseeseensesneensesseensennean 487
8.5.2: Shared Section REGISTET IMAP.......ccueiieiiiieiieie ettt sttt e ettt e st e e s se et e beessebeesee s eensesseensesseensesseensennean 488
8.5.3: Shared Section RegiSter DeSCIIPLIONS.......ccuiiieriieieitieie ettt ie ettt tee e et e st st e e saesseesaeseeseenseeseensesseensesneas 493
8.5.3.1: Global Config Register (GIC_SH _CONFIG — Offset 0X0000)ccvvvieriirieieniieiesiieieieeienee e 493
8.5.3.2: GIC CounterLo (GIC_SH_CounterLo — Offset 0X0010)c.cevvervirieriieienieeieeieeie e 495
8.5.3.3: GIC CounterHi (GIC_SH_CounterHi — Offset 0X0014)cc.ccuevieiiriniininininenencieceeecreeeeeene e 495
8.5.3.4: GIC Revision Register (GIC_RevisionID — Offset 0X0020)........ccerieiiririinieiene e 496
8.5.3.5: Interrupt Availability Registers (GIC_SH_INT AVAIL — Offsets 0x0024 - 0x0040)..........cccecueneene. 496
8.5.3.6: ID Group Configuration Registers (GIC_SH_GID_CONFIG, Offsets 0x0080 - 0x009C) 497
8.5.3.7: Global Interrupt Polarity Registers (GIC_SH _POLx_y — See Table 8.24 for Mapping)..................... 498
8.5.3.8: Global Interrupt Trigger Type Registers (GIC_SH_TRIGx_y — See Table 8.26 for Mapping) 499
8.5.3.9: Global Interrupt Dual Edge Registers (GIC_SH DUALx_y — See Table 8.28 for Mapping)............. 500
8.5.3.10: Global Interrupt Write Edge Register (GIC_SH WEDGE Offset 0x0280).........ccceoveierieienieieeene 501
8.5.3.11: Global Interrupt Reset Mask Registers (GIC_SH RMASKx y — See Table 8.31 for Mapping)......501
8.5.3.12: Global Interrupt Set Mask Registers (GIC_SH SMASKx y — See Table 8.33 for Mapping).......... 502
8.5.3.13: Global Interrupt Mask Registers (GIC_ SH MASKx y — See Table 8.35 for Mapping) 503
8.5.3.14: Global Interrupt Pending Registers (GIC_SH PENDx_y — See Table 8.37 for Mapping) 504
8.5.3.15: Global Interrupt Map to Pin Registers (GIC_SH MAPX ¥) .ccocoveoiriiinininiinenieiciceceeteene e 505
8.5.3.16: Global Interrupt Map to Core Registers (GIC_ SH MAPn CORE31:0) — See Table 8.5 for Mapping).

507
8.5.3.17: DINT Send to Group Register (GIC_VB DINT SEND Offset 0X6000)........ccccoeveveieininenenennenn 508
8.6: GIC Core-Local and Core-Other REZISTEI Stcc.coueuiiiiiiiiiiiiitinieretet ettt sttt ettt st s 509
8.6.1: Core-Local and Core-Other ReZIStEr MaAPSc.cceruiririiririinintirterteeeit ettt ettt 509
8.6.2: Guest and ROOt REZISIET ACCESSESeeuiruirieuiiiiiiiriirieitieteste sttt ettt ettt ettt ettt ettt ettt sa e ae e 512
8.6.3: Core-Local and Core-Other Section Register DeSCIiPtionccccverveieieieiiininienienenieneeeeeeeieee e 512

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

8.6.3.1: Local Interrupt Control Register (GCI_COREi_CTL — Offset 0X0000).........ccccererierenieieneeieeenne 512

8.6.3.2: Local Interrupt Pending Register (GIC_COREi_PEND — Offset 0X0004)ccoceiieienieeneeieenne 513

8.6.3.3: Local Interrupt Mask Register (GCI_COREi_MASK — Offset 0X0008)cccooveverierenieieeieeeene 513

8.6.3.4: Local Interrupt Reset Mask Register (GCI_COREi RMASK — Offset 0X000C).......cccceverereeernnnnne. 514

8.6.3.5: Local Interrupt Set Mask Register (GCI_COREi_SMASK — Offset 0X0010)........ccceeverieierienirnnenne 515

8.6.3.6: Local Map to Pin Registers (Offset 0x0040 - 0x0058 — See Table 8.48 for Mapping)ccccveneene. 515

8.6.3.7: Core-Other Addressing Register (GCI_COREi_OTHER ADDR — Offset 0x0080)ccccevevennenne. 516

8.6.3.8: Core-Local Identification Register (GCI_COREi_IDENT — Offset 0X0088)........ccccceverererieirennnne 517

8.6.4: Local Timer RegiSter DESCIIPLIONSeuieiiierieeiietieie sttt te ettt e st et et e e et eeeeseenseeseenseeneeeeeneenseenean 518
8.6.4.1: Watchdog Timer Config Register (GCI_COREi_ WD _CONFIG0 — Offset 0x0090).........cccccveveneene. 518

8.6.4.2: Watchdog Timer Count Register (GIC_COREi WD COUNT — Offset 0x0094)c..cccccvveveerennenn 519

8.6.4.3: Watchdog Timer Initial Count Register (GIC_COREi WD _INITIAL — Offset 0x0098).................. 520

8.6.4.4: Compare Low Register (GCI_COREi_ComparLo — Offset 0X00A0)ccceveriruerienienieinencneniennenne 520

8.6.4.5: Core-Local CompareHi Register (GCI_COREi_ComparHi — Offset 0X00A4).....cc.cocevveievveeenennenn 520

8.6.4.6: Local Counter Offset Register (GCI_COREi_COFFSET — Offset 0X0200)ccccoerervevecvrcenenennenn 521

8.6.4.7: Core-Local DINT Group Participate Register (GIC_Vx DINT PART — Offset 0x3000).................. 521

8.6.4.8: Core-Local DebugBreak Group Register (GIC_Cx BRK GROUP — Offset 0x3080)cccecervennene 522

8.7: GIC USEr-M0de ViSIDIE SECTIOMeuieeieiieieitieiieie ettt ettt ie sttt e st e e et e s e eseesseentesseeneesseeneesseessenseeneenseeneenseenes 523
Chapter 9: /0O Memory Management UNIT..........ccooiiriieiioii e esie et e e ae e stesteesneennee e 525
9.1 IOMMU OVEIVIEW ...ttt ettt et ettt sttt st ettt et eb e e bt eb e e bt e bt s et ettt e st e st ea b ebe e bt eb e e bt sbe st e b e s et et esteneebeebeebesbesaens 525
9.1.1: IOMMU and VIrtUalIZAtIONc.coeruiriiriiriiitiieiieiceieet ettt ettt ettt sttt be sttt e 525
9.1.2: IOMMU Address TranSlationcoeeerueierterteieiet ettt sttt ettt ettt st st b sttt ettt et ebe et ebe e 525
9.1.3: Overview of MIPS IOMMU Software INterfacecceoueieiiiiininiieiciccesee et e 525
9.1.4: IOMMU Programming MOGEL..........cceiuiiiiiiieieiieiierie ettt ettt et et aesseesaesseesaeseeseesseeseensesseensesnnan 526

9.2: IOMMU Virtual Memory MaNA@EMICNLceeverrieeeierieetesteetesieeeesseessasseeeesseessesseessesseessesssessessesssessesssessesssensennes 526
9.2.1: IOMMU Address Translationcoccrererterienteieiet oottt sttt ettt ettt bbbttt et et eae b b ee 526
9.2.1.1: IOMMU Guest Address TTansIationc..coceoieirerireninenceiee ettt 526

9.2.1.2: IOMMU Root Address Translationcccceiiiririiiiiieieieer et e 526

9.2.2: IOMMU Block-Level Address Translation FIOW..........cccoiiiiiiininiiiiiiiceeeeeee e 527

9.3: IOMMU SOftWare INTETTACE.........covirtiiiiiieieii ettt b e b sttt ettt ebe bt et saenaens 527
0.3.1: DEVICE TADICcuieititetieee ettt ettt b e eh b bttt bt b a ettt ettt et be e 527
0.3.2: TLB COMIMANAS ...ttt ettt ettt ettt eb e bttt be s et st et es et es e eb e ebeeheeb bt s bt st et e st et eseebeeseebeebeebenae 529
9.3.3: Device Table COMMANAS.......cc.iriitiriieieietet ettt ettt ettt ettt ea bbbt sttt ettt beeae b b ae 529
9.3.4: TLB Command FOTMAL.......c..coirtiiiiiieieititit ettt ettt sttt ettt ettt 530
9.3.5: TLB Command to CP0 Register RelationShip.........cceevieriiiiiiiiiieiecieieeie e e 530
0.3.6: IOMMU ReE@ISLEr INTETTACE......c.vieitieeiiiiiieiieeie ettt ettt et ettt e st e et e et eeaseenbeesbeeenseenseesnseenseenneeas 531
9.3.6.1: IOMMU EntryLo0 and EntryLol (Offsets 0x000, 0x004, 0x008, 0X00C).......cccceruerrereereeinerereeienen 531

9.3.6.2: IOMMU EntryHi Register (Offsets 0X010 and OX014).....cceeeieerieiiiiiieiieiieeee et 533

9.3.6.3: IOMMU Index Register (OffSet OXO18)iiiiiiiiiiiiiiieeieeiie ettt ettt eeee e n 534

9.3.6.4: IOMMU Wired Register (OffSet 0X020)cerieriiiiieeieeiie e eieesiee ettt e seeeeteestaeeeeessaeeseeseesnnes 535

9.3.6.5: IOMMU PageMask Register (Offset 0X028)ocoviiiiierieiieiieeee ettt s ve e s 536

9.3.6.6: IOMMU Segmentation Control 0 Register (Offset 0X030).......ccvvieriienieriiiiierieeie e 537

9.3.6.7: IOMMU Segmentation Control 1 Register (Offset 0X038).....c.eevuieiiierieiiieiieriecie e 538

9.3.6.8: IOMMU Segmentation Control 2 Register (Offset 0X040).......cooieriiirieriiiiienieeie e 539

9.3.6.9: IOMMU TLB Configuration Register (Offset 0X048)cccviiiieriiiiierieiie et 540
9.3.6.10: IOMMU Global Configuration Register (Offset 0X050)......cccceririoiiirieriiieiieeieeie e 541
9.3.6.11: IOMMU Error Status Register 0 (Offset 0X050)......uieiiiiiiiiieiieeieeeeie ettt 542
9.3.6.12: IOMMU Error Status Register 1 (Offset 0X0600)........cccuieiiiiieeiieiiierieerie et 544
9.3.6.13: Command Register (OffSet OX0O08).......ccuuiiiieiieeiieiieeieeiee ettt ettt eebeesteeeaeeseesveeseesneeas 545
9.3.6.14: Device Table Register (OffSet 0X070)....ecuiieieriiiieiieierieeieeie ettt et sre e sre s seessesseessesseenes 545
Chapter 10: VIFTUAIIZATIONoouiii ettt ettt e st e teste et eteeseeneesaeeneeneeneeneenneas 547

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 15

Table of Contents

10.1: Elements Of VIITUAHZATIONo..iiuiiitieeieiieiiee ettt ettt et e st e s et e e et ebeeseens e et e enteeseeneeeneenaesneensesseenseaneans 547
10.2: Introduction t0 the HYPeIVISOTcc.iiuiiiieiieie ettt ettt et eat e s et e e et e e st et eneeeneeneeeneeneesneensesseenseaneans 547
10.3: Root and GUEest OPerating MOGAESeouieieiieieieieieite ettt et et eeeste et e st ese e teeseeneeeseeseeseeneeeneensesneensenseensesneans 548
10.3.1: Enabling Guest Mode Translationsccoceeieruirieriieieiieieie ettt sttt et e e et e steeneeseeeneeneeenean 549
10.3.2: MMU CONSIACTALIONSeuvieueitienieetienteetieste st estesteete s st etesseesteeseeseeeseaneesseeneesseenaeseeseanseensenseaneesseeneenseeneensesnean 549
TO.3.3: GUESTE D ettt et e b et b e sh e e bt e bt st e bt e e bt e sab e et e eb et et e b ee st e e b e it s 550
10.3.4: Address Translation PSEUAOCOTEccuiiuiiiiiiieiieiiee ettt et sae e neeenean 551
10.3.5: Address Translation for the Root and GUEest PrOCESSEScuervieieriiieiiiie et 553
10.3.6: Enabling Guest Mode Translationsccoceeieiuirieriieieiieiee ettt ettt e et e e eneeseeeneeseeeneenseenean 553
10.4: Software Detection Of VIrtUaliZAtIONccevuiiieriiiieieeeieieeiee ettt ettt ettt et seesaeene e seenaenseeseenseeneenseens 553
10.5: CPO Structure in Root and GUESt MOGEC.........ccuieiiiiiiieitieiieiee ettt ettt e eeenee st eaesneeneesseensesneens 554
10.5.1: ROOt MO OPEIALION ...ttt ettt ettt ettt ettt sttt et eb et ae et b ettt e st et ebeeneebenaeneens 555
10.5.2: GUESt MOAE OPETALION....c..etitititeiieiieitettete sttt ettt ettt ettt st bttt ettt eae bt ettt et eseeaeebeebeebenaeneens 555
LT TR B L0801 (o T (< PRSPPSO 555
10.6: Exception Handling in Root and GUESt MOAEccoiriiiiiniiniiiiiiicceinese ettt 556
10.6.1: Root and Guest Shared TLB OPEration........c.ccceeireririirierienieieieieteiese ettt ettt ere st sbese et eseeresresaesaens 557
10.6.1.1: Root and Guest Access to the Shared TLBcocueiiiiieiieieieiee e 557
10.6.1.2: Wired Register ManaeIMENTc.ceerirtirririirieieiieiieitntcetest sttt ettt ettt st st et ettt bt eueebesaenaen 557
10.6.1.3: CPO RegiSter AIIOCALIONc.eeuiiiiitiiiiitititetet ettt ettt ettt sttt ettt ebeeae et sae e 558
10.6.1.41 CPO REZISTET ACCESS. ... euteuteueeiteuieiteiteieeit ettt st sttt et ettt ee e et ettetteseeae et e s bt sae st e b et e st et eseeseebeeueebesaenaen 558
10.6.1.5: CPO Register Initialization and COntrolcccoceiriiririniniiniieieeiceeese ettt 558

10.6.2: NEW CPO REZISTETS ..ttt ettt ettt ettt ettt ettt sttt ettt et eb e bt b sa ettt e st eaeeaeebeebesbesbenaens 558
10.6.3: Guest CP0 Register Accesses USING INSIIUCLIONSco.evuiriirteriiiiicieieieiieere ettt 559
10.6.4: Guest CPO Register Initialization and COntrolc.ccccoiririniinierineieieeteeee et 559
10.6.5: CPO Registers in the GUESt CONEXL.....c.cctiiiiriririinieteteiieiteicet ettt et ettt sttt sttt eae bt saestesaeseens 559
10.6.6: Guest Config Re@iSter FICLAScc.eoveiiiiiiiiiiiti ettt 561
10.6.7: Read-Only Guest Context Fields Writeable from ROOt........ccccieieiiiiiiiiieicee e 562
10.7: NEeW CPO INSLIUCTIONS ..vtiuiiiiiietirtertest ettt ettt ettt ettt ettt b bbbt sttt et et ebe e bt e bt ebesbesae st et e st et esteutebeebeeneas 563
10.8: VirtualizZation EXCEPLIONS.c.viitieiieiieiieit ettt ettt et et et et estesseenseeseense et e enseseensesseensesseensesseensenseensenseans 564
10.8.1: Overview of Exception Handling in Root and Guest Mode..........cccooveiiiieiiinieieeieieeeee e 564
10.8.2: EXCeptions i GUESE IMOAECc.ueruieuiiiieiiesie ettt ettt ettt ee st esaesseesaesbeeseenseessaseeneeeseensensesneensesnean 565
10.8.3: Faulting Address for Exceptions from GUESt MOdEccueueriiiiiiiiiiinire ettt 566
10.8.4: Guest Initiated ROOt TLB EXCEPHION ...cuvieuiiiiiieie ettt ettt ettt ettt ae e eaesteenaesseeseensesneesesneensenseas 566
10.8.5: EXCEPION PLIOTILY ...vivieiiiiieiiieiieie ettt sttt ettt ettt et et e sseesaesseesse s aensenseenseeseenseeseensesaeensesneensenseas 567
10.8.6: EXCEPioN VECtOr LOCALIONSoovieiieiieiieiieiieieeiesie sttt te ettt e e seeesaesaeesaebeeseenseeseenseeseensesneensesneensensean 571
10.8.7: Synchronous and Synchronous Hypervisor EXCEPLiONScccvevuieieriiiierieiiieiesieeiesie e 571
10.8.8: Guest Exception Code in ROOt CONEXE......cueruiiieiieieriteieriieie st ete sttt ste et eseesteeseesseesaesseeseesseensesseensensens 571
10,97 TIEETTUPES 1.ttt ettt ettt ettt ettt et e bt e sttt e bt e s ate s et e e bt e e ae e eabeesabeeab e e sh bt e abeemseeaabee st e sabe e st e enbeeabeesnbeeaneesaneenseenseean 572
10.9.1: EXtEINAl INTEITUPES ...evveiieeieiiietieieett et eetiete st et ettt et et et e e st estesseesesseessesseessensaessenseenseeneenseeneeseeneensesneensennean 574
10.9.1.1: Non-EIC Interrupt Handling.ccveriiieiiiieieieeie ettt s eenneens 574
10.9.1.2: EIC Interrupt HAnAIINgc.ooouioiieiiiiee ettt ettt et e ee et e s eneenneens 575

10.9.2: Derivation of Guest.CauseIP/RIPLcccoooiiiiiiiei ettt seeeneas 578
10.9.3: TIMEE TNEETIUPES ..ottt ettt ettt st e st e et et e e s e e e e st e e e et e eneeeseeneeeseemseaseeneanseeseenseeneeseeneesesmeensennean 579
10.9.4: Performance Counter INEEITUPLScc.eiiiiiiiiieieeieie ettt ettt ettt et e eneeseeeneesaesneenseenean 579
10.10: Floating Point Unit (COPIOCESSOT 1)ieuiiiieiiriieieiiieiestieie sttt ete et e e st e e st est et es e s seenee st eneesseeneenseeneenseennens 580
10.11: MSA (MIPS SIMD ATCRIEECIUIE)veveviieieiieiirietietett sttt ettt sttt sttt sttt ettt be b ene e e 580
10.12: Guest Mode and DebUZ FEatUIESc.ueiiiiiiiiieieiee ettt ettt et s st eneesneentesseenseeneens 581
10.13: Watchpoint DebUZ SUPPOTL......c..ciiiiiiieiriitiiert ettt ettt ettt bt ettt et eae et ebe st benae e nen 581
Chapter 11: FIoating-PoOINT UNIT........cccooiiiiieicic ettt te e te e ste e teeraesneenreeneesreenree e 583
11,12 FEALUTES OVETVIEWouviiiiiiieiiiieiiiteit ettt ettt ettt et sttt b et bt b et h et e b et e a et et b et eb ettt be et e b ene e e 584
11.2: IEEE Standard 754cooueiiiiiieiiei ittt ettt ettt ettt ettt 584
11.3: Enabling the F1oating-Point COPIOCESSOTcviiiiriieiertieiesieetesteetesteessesteessesseessesseesseaseessesseessesssessesssessesseessesseens 585

16 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

11.4: ENaDIING IMISA .ottt ettt ettt et e a e n et e et e e e eh e emt e eseemteeseemeeaseen s e eneeneeeneeneesneenseeneenseeneans 585
11.5: ATCHITECTUIAL OVEIVICWeieueieiieie ettt ettt ettt ettt et et e e st et e et eeaeemeeeaeeaeeseeemseeseemseeseenseaseenseeneanseeneensesneenseaneensenneans 586
IS R T LSS 586
11.5.2: COPIOCESSOT 1D ...ttt ettt ettt et e bt e s a e e b e e sht e eab e e sateeabeesbeeeabeebeesateenbeenaee s 586
11.5.3: Decode / RENAME UNIT.....ccuiiuiiiiiiieiietieie ettt sttt ettt et eeste et eseeemeesaeeseesseeseeneenseeneeseeeneenseemeenseenean 587
L1547 ISSUE UL .ttt ettt ettt ettt et e sttt et e st en e e st en et e ae e st eme e seeme e s e es e e seemeeseeseenteenee st eneenneeneenseenean 587
11.5.5: EX@CULION UTIES «..eoutiiieiieiietiet ettt ettt sttt et ettt et e e st e e et e e e e st eneeeseemsees e e e eseeneenseeneenseeneenneeneenseenean 587
L1.5.5.1: SNOTt OPEIALIONSveeeeteeeeetieiie et et et eee et et e st ee e steeet et e eseeeseeseesseeseeeseesseseenseseensanseeneensesneensesseensenneans 587
11.5.5.2: NG OPEIALIONSveuvieuieiieieieteeie et et et etesteeete et ee e eeeeseeeseensesseemeesseenseaseenseseenseeneenseeneensesneensesseensenseans 588

L1.5.6: REUIE UNIE ...eeeiiitieiesieeie ettt sttt ettt ettt e e et e st e e st e meesseemee s s e eseenseenee s e eneenseeneesseeneenneeneenseenean 588
11.5.7: Architectural REZIStEr File.........coooiiiiiiieieiee ettt ettt eeeeneeneas 589
11.5.8: EXCeption HAnAIINGooviiiiiiiieec ettt st sttt ettt et e st e teeneesneeneenseenean 589
L1.5092 SREIE UL ...ttt ettt sttt ettt b e bt st b e s bt e bt e bt eb e st es e st e st st es e et eb e et ese et enesteneateneas 589
11.6: MIPS SIMD ATCRITECLUIEc.viuveiteiieiietietiettrteet ettt ettt ettt sttt sttt et et ettt sbesa et be st et eseeteebeebe st eebenaenaennen 589
11.6.1: MISA VECtOr REZISIEIS ...ttt ettt ettt ettt sttt ettt et ettt e bttt e st et ebeebeetenaenaens 590
11.6.2: Layout 0f MISA REZISTETScveiiieiieiiitiitietestet ettt ettt sttt ettt sttt sttt ettt ebeebeetesbenaen 590
11.6.3: MSA GNU COMPILET SUPPOTTE ...ttt ettt ettt sttt ettt e et et ebeebesbesae e 591
T1.6.3. 10 MISA ABL..oeeet ettt ettt h sttt ettt et st n e sttt nen 591
11.6.3.2: ABI REQUITEIMEIIES «....oueuiiiiiitiitietietest ettt ettt ettt ettt st s sttt et et bt eaeebenaenee 591

11.6.3.3: Command Line Options and Function AttribULesc.coueoveiririninininenenesenereee e 591
11.6.3.4: Vector and Floating-Point Register Usage for -mmsa and -msimd-abi=msa..........c..ccccceevvrvervenvencnnene 592
11.6.3.5: Inter-calling Between MSA and non-MSA FUNCHONSc.c.coueiririiiiinininienesenceeercreeeeee e 592
11.6.3.6: MSA GNU Options and DITECTIVESc.ceeeuiriiriruintiriinieieietetetieiteie sttt sttt ettt eie vt ebe e e 593

T1.7: DAt FOTMALS ..ottt ettt ettt et eh et st e u et e et e bt e et e s e saeesaesaeennesaeennesanens 594
11.7.1: Floating-Point FOTIMALScc.coiriiiiiieiiiiitietestet ettt e bttt et ebe bbb e 594
11.7.1.1: Normalized and Denormalized NUMDETScccoiriiiiriiiiiiiiiiieirec ettt 596
11.7.1.2: Reserved Operand Values—Infinity and NaNccccocoiiiiiiiiiiinincneeeeeeeeeeeeee e 596
11.7.1.3: Infinity and Beyondcoooiiiiiiiiiiiccee ettt sttt 597
11.7.1.4: Signalling Non-Number (SNAN)c.cccorimirimiiiiiieieieen ettt sttt ettt ebe b sae e 597
11.7.1.5: Quiet Non-Number (QNAN)cocciiriiiierieeieieeierte ettt etee et etesteetesteessesseessesseeseesseeneesseesesseensenseens 597

11.7.2: Signed INteEr FOTMALS.......cc.eiiiiiiieietieieee ettt et ettt e s ee e e beetaente s st eneeeseenseeneenseeneensesneenseennan 598
T1.7.3: MISA DAA TYPES «.uveeneeeeitieiieeiteeie ettt ettt sttt sht et e st e st e bt eeat e ea bt e shteeabeesbbeeabeeabeesabeeabeesbeeenbeebeesaneenseenanean 598
11.7.4: MSA Vector EIement SELECTION.coiuiiiiiiiieiriciiiietriet ettt sttt 599
I TR 2 1111) TSRS 599
11.8: Mapping of Scalar Floating-Point Registers to MSA Vector REGIStErsccovevieiiiiiiiniiiiiieeeeceeeeseeeees 601
11.9: Floating-Point General REGISTEISc.eiuiiiiiiiiiiieieeieie ettt e e st e e seaesteese et e esaeseeseenseensensesnsensesssesennnens 602
11.9.1: FPRs and Formatted Operand Layoutccceoieiiriieieniieieit ettt sttt eseenaesneenaenseennas 602
11.9.2: Formats of Values Used in Floating Point REGISTErS........c.cccueriiiieriiieri ettt 602
11.9.3: Binary Data Transfers (32-Bit and 64-Bit).........ccccociiiiiiiiiiiieieecee et 603
11.10: Floating-Point Control REGISTETSc.eiiiieriieieiieieste et etesteetesteestesteessesteessesseesseeseessesseensesssensesseensessenssesseans 604
11.10.1: Floating-Point Implementation Register (FIR, CP1 Control Register 0)cccecevirerenineneneinenencnne 605
11.10.2: Floating-Point Exceptions Register (FEXR, CP1 Control Register 26)......c..cccovecerererenineneneieieeneenens 607
11.10.3: Floating-Point Enables Register (FENR, CP1 Control Register 28)cccoooirreriiieiieieeeiee e 607
11.10.4: Floating-Point Control and Status Register (FCSR, CP1 Control Register 31)cccccevieiinieienieeeeenee, 608
11.10.5: Operation Of the FIS Bil......c.ooiiiiiiieiit ettt ettt et e e e e et et e ese et e eneennesmeeneeenean 611
L ST N 141 o) T 4]) SRS 612
11.11.1: MSA Implementation Register (MSAIR, MSA Control Register 0)ccceveiierierieiieiieeeeeee e 612
11.11.2: MSA Control and Status Register (MSACSR, MSA Control Register 1)cccoovrieiinieiiiieee e 612
11.12: Floating Point and MSA EXCEPLIONS.c..eeuieiiitieieieeeiieteeiieie et ettt eeste et e et siteteeseeneesseensesseenseeneensesneensenseensesneans 616
11.12.1: Precise EXCEPLION IMOGEcouiiuieiiiieieeit ettt ettt ettt et e e e et enae s st e ssees e et e st eneeeseeneesneeneenseenean 616
11.12.2: EXCEPLION CONAILIONS. .. .cutitieiieitieietieie st eteteette e st et et e te et et e sseeneesseeseesseeseenseeseenseenseseeneesseeneenneeneenseenean 616
11.12.2.1: Invalid Operation EXCEPTION.ccuiiuiiiiiiiiieiieiiete ettt enee e eaesseenseeneens 617
11.12.2.2: DiviSion By Zero EXCEPLIONeoueiiiiiieiiieiieiieiieit ettt sttt st ae et e sneeaesneenseeneens 617

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 17

Table of Contents

11.12.2.3: UNderflow EXCEPLION.eouiiiieiieeieit ittt ettt sttt sttt e s e s et enee st eeesreenaesneeneenneens 617
11.12.2.4: OVEITlOW EXCOPIION. ...ccueiitieiieitieie ettt ettt ettt et et e e e ese e st e s e saees e eneesneensesseensenneans 617
11.12.2.5: ITNEXACE EXCOPTION ...ttt ettt ettt ettt sttt et e et e e et et e e st e e saeeeneeneesneenaenseeneenseans 618
11.12.2.6: Unimplemented Operation EXCEPLIONcc.ccieriiiieiitieiesieieetieie ettt eee e eeeneens 618

11.12.3: Floating POINt EXCEPIIOMNSeuieiieiietieieeit ettt ettt ettt e e s et et e s te s e st e e st et e enee e e eneeseeeneenseeneenseenean 618
11.12.3.1: MSA Non-Trapping EXCEPLIONScerueruiiieiiieiieieeeieieetieie sttt ettt see e eseesaeseeesesseenseenaesseensesneens 618
11.12.3.2: Floating Point Exception Defaults............coeiiiiiiieiiiiiiee e e 619
11.12.3.3: MSACSR Cause Register Update PSEUd0oCOdecueiirieiiiiieeieeieseeeeeee e 620

11.13: Floating Point INStruCtION OVEIVIEWcceeruiiiieiietieieetieteetiete et eeesete e steentesseen e sseeneesseenseeseenseaseensesneensenseensenneans 622
11.13.1: Data Transfer INSITUCTIONSeciiiiirieieeie ettt ettt ettt ettt s e et este st e e e st et eeseenteeneeneeeneensesneenseenean 622
11.13.1.1: Data Alignment in Loads, Stores, and MOVESccueririeriirieriieieseeiesieeie et see e seeens 622
11.13.1.2: Addressing Used in Data Transfer INStructions.coeeueeverieneieieieiiininesesteteecteeeeeeeeie e 622

11.13.2: Arithmetic INSTITUCTIONS ...vetieiiiiiieiietieie ettt ettt ettt e et e e s et e seesteeseenteeseeneeeseenseeneeseeneensesneesennean 623
11.13.3: CoNVEIrSiON INSIIUCTIONSeeuiieieieeiieie ettt ettt ettt ettt et e et eseeeseesteeneenseesee s eeseenseeneenseeneensesneensennean 624
11.13.4: Coprocessor 1 Branch INStIUCTIONSc..cvetiuiiiririiiiniintitet ettt ettt ettt sre b b e 624
11.13.5: MiScellancous INSIITUCTIONSecueeriireieieeiieiertteie sttt ettt ettt e e s et eeesteestenbeeseenseeseenseeneenseeneesesneesesnean 624
11.14: MSA INStruction DESCTIPLIONSc.veuveureuieiiriintirientetetet ettt sttt sttt ettt sttt et st be et eseeutebeebe st eebenaenaennen 625
11.14.1: Arithmetic INSTIUCTIONS ..ouveivieiiiiieietieie ettt ettt e ettt et e e s ee e e e saeeseenteeseeneeeseenseeneenseeneenesneensennean 625
11.14.2: MSA Floating-Point INStIUCLIONScc.evviriiieiiiiieiieiieiteterteet ettt ettt ettt sre b e 632
11.14.3: Fixed-Point Multiplication INStIUCTIONS.cceitiiriririntitctet ettt ettt ettt et sre e 636
11.14.4: Branch and Compare INSIIUCLIONSc..coverteiiieiiiiietintietente sttt ettt ettt sttt sttt eaeebeeaesbesaeseens 636
11.14.5: Load/Store and Element Move INStIUCHIONSccveriiiiieieiieieie ettt s e e seeas 638
11.14.6: Element Permute INStIUCTIONSccviitieieeie ettt ettt ettt ae st e e st e eseenteeseeneeeneenesneensesnean 639
11.15: Alphabetical Listing of Floating Point INStIUCTIONScc.civiitiriirieieiiieicceteerc ettt 641
11.16: Alphabetical Listing of MSA SIMD INStIUCLIONSeeiieiieiiiieieeiieieeieste ettt ee sttt eeenee e eae e eseenseensenneens 642
Chapter 12: Hardware and Software INitializationcccocveiiiiic s 649
12.1: Hardware-Initialized ProCeSSOT STAe.........ccoueuirieuiriiiiiieirieiiricicrteie sttt s 649
12.1.1: COPTOCESSOT 0 STALE ...eeiutieiieeiieeiee sttt ettt et st et e st et e ea bt et e eshbeeabeesbeesabeeabeeabeeenbeebeesabeenseenaeean 649
12.1.2: TLB INTHALZATION ...ttt sttt ettt ettt ettt ea et st sae e saeaea 650
12.1.3: BUS State MaCRINeS.c.ccociiieiiiciiiiciinecrcee ettt sttt 650
12.1.4: Static Configuration INPULS.........ccueriiriieiiet ettt ettt st st e et e b e et ebeesaenteeseenseeneenseeneensessnan 650
12.1.5: FECRh AQAIESS ...ttt sttt ea et st 650
12.2: Software-Initialized PrOCESSOT STALEcciriiiiiiiiiiiiiiciiereree ettt 650
12.2.1: REEISEET FIl@..cuuiiuiiiiiieie ettt ettt sttt et ettt et e et e esaesseestesseenaesseeseenseessenseeseenseeneesesneensennnan 650
12.2.2: CACRRS ..ttt ettt ettt ekttt ettt eaeae e 651
12.2.3: COPTOCESSOT 0 STALEveevvieiieeiieeiee ettt ettt ettt sttt et e stte e bt estae ettt e teessteeateessaeenseensaessseenseeaseesnseenseesnsesnseenseean 651
12,37 SYSTEIM BOOT-UD ..ttiitietieiit ettt ettt et s et e b e et e e st e saeeeaseesseesabeenseensbeaaseenseesaseenseeenseenseesnseenseesnneenseenneean 652
Chapter 13: EJTAG DeDUQG SUPPOIT ...ttt sttt sttt et e teste et e neeseeseeebeaneeneeneeseenneas 653
I3 12 OVEIVIEW .ttt ettt et sttt et a e bttt e bt ek eb e sa et e s et eae bt ebeeb e b saeeaenes 654
13.2: Trace FUNNEl and TTaCE TYPES..ccuuiiiieriieiiieiieeieeiteete et e st e et eteesbeesteesebeessaessseessaesssesnseessseenseessseanseenseessseenseenseeas 655
132,12 TTACE TYPES -enteeuientieiteett ettt ettt ettt ettt et e h ettt et e b e st e bt et e e a e e bt es e e s aeeb e emb e e st et e eseenteesee et eneenaesneenaeenean 655
13.2.2: EJTAG TAP INEEITACE ...ttt sttt ettt st 656
13.2.3: EJITAGBOOT vs NORMALBOOT ...ttt ettt sttt sttt ettt 656
13.3: Detecting DEDUZ IMOGE ..ottt ettt ettt e st bt es e b e e e et e e st et e emteeaeemeeeseemaesaeenbenbeensenneans 656
13.4: Ways of Entering Debug IMOAEc.ooiiiiiiiiiiieiiiee ettt ettt e st et e et et sbeese e beeneenneene 656
13.4.1: EJTAG DEDUZ STNEIE STEP .nveeutiiienietieiieett ettt ettt ettt sttt sttt et e et e et e bt ese et e eneeaesaeeeesaean 657
13.4.2: EJTAG DEDUZ INTEITUPE ..ottt ettt ettt ettt e e et et et e st e bt et e ebeente et eneeseeeneas 657
13.4.3: EJTAG Hardware Data Breakpoint MatCh.........ccoooiiiiiiiiiiiecee e 657
13.4.4: EJTAG Hardware Instruction Breakpoint MatChcccoooiiiiiiiiiiiiiie e 657
13.4.5: EJTAG Software BreakpOint........coouiiioiiiieetieiese ettt sttt ettt e e et e e e saeeeeseean 657
13.5: EXItING DEDUZ IMOAE ...ttt ettt ettt ae et et e bt et e em e e eaeemeeeseenaeseeensenbeenseaneans 658

18

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

13.6: EJTAG and PDTTace REVISIONS.ccuertiriiieiieieiieiieititeetente sttt ettt ettt ettt sttt s sttt et ene b b e saenen 658
13.7: CONNECION OPLIONS -..euvieietieetiteeeieeteeeeeeteeeesteesee et eseeateeseen st eseeneeeseenseemeeaseeseenseeseenseeseenseaseenseeneanseaneensesneensenseensenneans 659
13.8: Hardware BIEaKPOINTScuiiuieieriieieit ettt ettt ettt e e ete e st e s st e ee st e ese e teenseneeesee et e enseeseenseeseeneesneensenseensenneans 659
13.8.1: INStruction BreaKPOintS.oo.eiieiieieiieie ettt ettt e st et e sttt et e st ent e e s et e eneeeteeneennesneenneenean 660
13.8.2: Data BreakPOINTSeeouieiieiietieieee ettt sttt e ettt ettt et e et e st e e meesaeeseesaeeseenteene et e eneenteenee st eneenneeneenneenean 660
13.8.3: Instruction Breakpoint Re@IStErS OVEIVIEWccueeueeuieuieiieiieieeiertesiiesiesieesteeeteteeseesteeseeneeeneeseeeneeneesneensesnean 660
13.8.4: Data Breakpoint REZIStErS OVEIVIEWccciruiriieiieieitieiieteette et etie et e e st eae et e e et eneeteeneeeseeneesneeneesneenees 661
13.8.5: Conditions for Matching BreakPOintscccovereiiiieriiieieeeie ettt ettt see e seeeneas 661
13.8.5.1: Conditions for Matching Instruction Breakpointsccoeoeruieiirieiienieieiieese e 661
13.8.5.2: Conditions for Matching Data Breakpoints..........coveriieierierieiiriieie e 662
13.8.5.3: Misaligned SIMD Load/Store Data Handlingccoeoiiieiiniiieieeieeeee e 663
13.8.6: Debug Exceptions from Breakpoints.cooc.iiieriiiieiieiiieesieeiesee ettt enee e eneeneeeneas 665
13.8.6.1: Debug Exception by Instruction Breakpointccooveiiiieiiiiiiiieeseeeee e 665
13.8.6.2: Debug Exception by Data Breakpoint...........c.eecuieiierieieniiie ettt eeeens 665
13.8.7: Breakpoint Used as TIIZZEIPOINT.......cc.veiuieiereieiieieeieertestteie st ete et etee et eeeseeeseessesseeseeseenseseeneesseeneensesneensesnean 667
13.9: DebUZ VECtOr AQAIESSINGeouieeeeiiesieeiieteeiteeteete et et e steesee s et esee e st eseesseeseeseesseaseentesseenseaseenseeneenseaseensesneensenseensenseans 667
13.10: TeSt ACCESS POTT (TAP) .oeieieeeieeie ettt ettt ettt e et e e te e eabeebeeeabeesseebeessaeenseessseenseesseesaseensaennses 668
13.10.1: EJTAG Internal and External INterfaces..........ccocieiiiririniininiiiciicicictrce ettt 668
13.10.2: Test Access POTt OPETALIONccueiiiiuiiiiiiriirtintentet ettt sttt ettt ettt et sa ettt eat bt et ebesaeneens 669
13.10.2.1: TeSt-LOZIC-RESEE STALEccuertiriirtirtiiiieiieiieitettet ettt sttt ettt sttt ebeeae et sae e 670
13.10.2.2: RUN-TESH/IALE STALEeuveiititetit ettt sttt ettt et eae et 670
13.10.2.3: Select DR SCAN STALEeeuirtiriititeieterit ettt st sttt ettt ebeeae b nae e 670
13.10.2.4: Select TR SCAN STALE......ceeiiiitirtirterieietet ettt ettt ettt ettt s b e s b e sttt et bt eae et nae e 670
13.10.2.5: Capture DR SHALEccviviiiiiiieieeeeete e ettt ettt st 671
13.10.2.6: Shift DR SEALE....c.eiuiiiiiiiiietiitest ettt b e s sttt et ebe bt et nae e 671
13.10.2.7: EXIt] DR SHALE ...cueoiiiiiiitiiietieteit ettt sttt ettt ebesae et nae e 671
13.10.2.8: PaUuSE DR SHALEueiiiiiiciiiieiiee ettt st st 671
13.10.2.9: EXIt2 DR SHALE ...cueeuiiiiiiiitieteetest ettt ettt sb e s sttt et et ebeeae et nae 671
13.10.2.10: Update DR SEALEcvetiuiiieiieiietiitestestet ettt sttt et ettt sttt bt ebeebeebe st 671
13.10.2.11: Capture TR STALE.....cc.eiiiiiiieiieiitet ettt sttt ettt ae e naeeas 671
13.10.2.12: Shift TR STALEouiiiiiiiiet ettt et aens 672
13.10.2.13: EXIt] TR STALE c..eiiiiiiiiciet ettt neas 672
13.10.2.14: PAUSE TR STAt....cuiiiiiiiiiiiiieiieitt ettt ettt ettt et e sttt et e st e et e s bbeenbeebeesaneenseenaneas 672
13.10.2.15: EXTt2_ TR STALE ..ottt ettt ettt ettt enens 672
13.10.2.16: UPAALe TR STALC.....ecvieeieiiieiieieeieeie ettt ettt ettt et e ee st e esae st e e seeseesseeseessesseensesseensesseensenseensenseans 672
13.10.3: Test Access Port (TAP) INSIIUCIONSocuveviriieieiieeiecieeieie ettt sttt s et e eeeseeseesseesseeneessesneensesnnan 672
13.10.3.1: BYPASS INSIUCHIOMN.euitieitiiietiieteieteiet ettt ettt sttt enens 673
13.10.3.2: IDCODE INSIUCHION.cutiiiiieiieieiieieiieteitet ettt ettt ettt s e e enens 673
13.10.3.3: IMPCODE INSEIUCHIONc.viuietiietiteiiietieet ettt ettt sttt eeees 673
13.10.3.4: ADDRESS INSEIUCTION. c.c..teutitiitirtintenteteiteit ettt ettt ettt ettt ettt sae st be e se et ebe bt ebesaeseea 673
13.10.3.5: DATA INSEIUCTION.....eutiuteiieiiitiitiet ettt ettt ettt sttt ettt ettt ae bt bt sae st besae st et ese et eneeueebesaeneens 673
13.10.3.6: CONTROL INSIUCHIONcvtviititirtirietetcteteitetieit ettt sttt ettt ettt sae s sa et ebeeueebesaeseea 674
13.10.3.7: ALL INSEIUCHION «.cuttiiieitetietintertest ettt ettt ettt sttt ettt ettt sae e b et ettt ebeeueebenaeneen 674
13.10.3.8: EITTAGBOOT INSIUCTION. c..cteitititeteieiieiteitettet ettt sttt ettt ettt sttt sae st be e et ess et eneeueebesaeseen 674
13.10.3.9: NORMALBOOT INSIIUCHION.cviititiiieiieiieiteitetieteste sttt sttt sttt vt eveeresae e 674
13.10.3.10: FASTDATA INSIIUCEIONevitititeieieiieii ettt sttt st sttt ettt ebeeue b sae e 674
13.10.3.11: TCBCONTROLA INSIIUCLIONetitiniiiieiieiieiietieicsie sttt sttt ettt et ere e e 676
13.10.3.12: TCBCONTROLB INSIUCTIONcvetiuiiiieiieiieitetieiesicsteetetenteeeit ettt ettt ettt ere vt eresae e 676
13.10.3.13: TCBCONTROLC INSIUCHIONevitiniiiieiieiieiiitiniisie sttt ettt st sttt eeveeve b sae e 676
13.10.3.14: TCBDATA INSEIUCTION ...cutitiitirtiitertetcteiteiteitet ettt ettt ettt ettt sae st bt et ae et ebeeueebesaeneens 676
13.10.3.15: PCSAMPLE INSIIUCIONcuvetititeieiteiietieteste sttt ettt ettt st s sttt et et ebeeue et saenee 676
13.10.3.16: TCBCONTROLD INSIIUCLIONeuveutiiiiitiiteiteiietietistestet ettt sttt ettt et ere e nee 676
13.10.3.17: TCBCONTROLE INStIUCHONcottrtitiiieiieiieiietieiisi sttt ettt ettt ettt eve b e nee 676

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 19

Table of Contents

13.10.3.18: FDC INSIIUCLION «...ovieiieiiiteite ettt sttt ettt ettt sa e b ettt et bt eueebesaenee 676
13.10.4: TAP PrOCESSOT ACCESSES.ecuuiuiieuiiiieiiettetett ettt ettt e et eee e sttt e et et e et et eae st e saeeae e e et e eaeeseeeaeesaesaeesneennes 676
13.10.4.1: Fetch/Load and Store From/To the EJTAG Probe Through dmseg.........ccccecevieveniiieiieieiieiee 677
I3 11 PDTIACE . et et e s h e e e et et e e et e b e eae et e e s e eae e et eaeesaesaeeanesueennesaeens 678
131111 PrOCESSOT MOAES ...ttt ettt sttt ettt b ettt ettt et et sae et b e 679
13.11.2: Software Versus Hardware CONLIOL.........c..ccueiriiiriniinieieieieiiecscstesete ettt sttt 679
13.11.3: Trace INFOrMAtION ...c.cc.eeuiiiiiiiiiiitirt ettt ettt ettt st e bt ettt ebeebeebesaesaen 679
13.11.4: Load/Store Address and Data Trace INformation............cecevirirerenenieiiieieineceeesene e 680
13.11.5: Programmable Processor Trace Mode OPLiONScccveiuieieriieieniiiiese ettt ettt eneeseeeeeseeeneas 680
13.11.6: Programmable Trace Information OPtONSc.eeeeruieieriieieniieiesie ettt et eneeseeeneeseeeneenseeneas 681
13.11.6.1: USET DAt TTACEcuvieuiiiieiiiiieieeee ettt st ettt ettt et sae e aeeenesaeens 681
13.11.7: Enable Trace to Probe On-Chip MEMOTYccccciriririniiniininiitcteeteieie ettt sttt sre e 681
13.11.8: ENADIING PDITACEueiiieiieiieiieie ettt ettt ettt e e e e st e e s et e e st et e eneenseeneeseeneenesneensennean 681
13.11.8.1: Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints..........c.ccovevververieienieveninencnnens 681
13.11.8.2: Turning On PDraceT™ TTACEc.cccueureuieuieiiniiriirtietente sttt sttt ettt ettt et sttt sae sttt se et eaeebeeueeaea 682
13.11.8.3: Turning Off PDIrace™ TTACE......c.cccuriririiriiriirtirtetesteteit ettt sttt sttt et ebeeae b e e 684
13.12: PDtrace Cycle-by-Cycle BERAVIOT......cc.ccuiiiiiiiiiiiieiinste ettt sttt 684
13.12.1: FIFO Logic in PDtrace and TCB MoOUIES..........c.ccceririririiniiniiieicictcietet ettt 684
13.12.2: Handling of FIFO Overflow in the PDtrace Module...........ccccoivieiiiniiiiiininiiininenceeseeeeeeeceeee e 685
13.12.3: Handling of FIFO Overflow in the TCBc..cciiiiiiiiiiniiictictceeeee sttt 685
13.12.3.1: Probe Width and Clock-1atio SEtNEScc.eiveruiriieietieieee ettt eeseeens 686
13.12.4: Adding Cycle Accurate Information to the TraCeccceiieiirieiiii et 686
13,1372 PC SAMPIING ...ttt ettt ettt ettt et et e e s e et e st e e st e st en s e eseeneees e emeeeseeneeeme e s e enseeneenseeneensesneensenseensenneans 686
13.13.1: PC Sampling in Wait SEALEcc.ieieiiiiieie ettt ettt et este st et e s st et e eseenteeseeneeeneeneesneenseseean 687
13,141 EJTAG REZISLEIS . .eeteiieiietieie ettt ettt ettt ettt e e et ese e te et esae e st e st e s e e s e es e emeeeseeneeese e st enseeneenseeneensesneensenseensenneans 687
13.14.1: General Purpose Control and StatUSc.coirieiiiiiie ettt saeeeeseeeneas 687
13.14.1.1: Debug Control REGISIETIcc.veiiieeieii ettt ettt ettt et et et eeesseenaesseensesneens 687
13.14.1.2: DebugVectorAddr REGISIETeouiiiieieieieeeiiee sttt ettt e et e e ne e sneens 691
13.14.2: Instruction Breakpoint REGISTEISccuiiieriiriiieie ettt e st e e e e neeenean 691
13.14.2.1: Instruction Breakpoint Status (IBS) REGIStErcccuieiiiiiiiiiieieieeeeeee e 692
13.14.2.2: Instruction Breakpoint Address n (IBAN) REGISLErc.eeuiiiieiiiiieiecieieee e 693
13.14.2.3: Instruction Breakpoint Address Mask n (IBMn) Re@ISter........c.cooueiirieiiiiieiieieieeee e 693
13.14.2.4: Instruction Breakpoint ASID n (IBASIDN) REZISIETccveviiiiriiiiiiiinerienteieeeeeeeeeeeeeeeve s 693
13.14.2.5: Instruction Breakpoint Control n (IBCn) ReISTETc..ccueveieieiiiiiniiiscniestceececteeeeeeeieee e 694
13.14.3: Data Breakpoint REGISTETSeeieiiiriieiieiieieetieie sttt ettt et e e st e e et esaeste et et e eseenseeneesseeneesseeneenseenean 695
13.14.3.1: Data Breakpoint Status (DBS) REZISLETc.ccueieiiiiiriririesieieteeceit sttt 695
13.14.3.2: Data Breakpoint Address n (DBAN) REZISLETco.eoveriirieiiiiiiiiieiicscccccetecei e 696
13.14.3.3: Data Breakpoint Address Mask n (DBMn) REgISter..........coevuiierieieiiiiiiininencneceeeeeceeeeeceeae 697
13.14.3.4: Data Breakpoint ASID n (DBASIDN) REISIET.....cc.couiiiiiiiiiiiirciceesentesteeeceeteeeeeeeie e 697
13.14.3.5: Data Breakpoint Control n (DBCn) REISTETcc.couiiiiiiiiiiiiiirinceteseneseeeeeeeeeeeee e 698
13.14.3.6: Data Breakpoint Control SIMD n (DBCSn) RegISterc..covevieiiiiiiiiiniienisenceeceeceeeeesec e 700
13.14.3.7: Data Breakpoint Value n (DBVN) REZISETc..coviiiriiiiiiiiiiieiieiireee ettt 701
13.14.3.8: Data Breakpoint Value SIMD n (DBVSn) ReZISter.....c..ccocoiiiiiriiiriiincieneenereeececeeeeieeieeaas 701
13.14.3.9: Misaligned Load/Store Breakpoint SUPPOTT........cccviririeiiieieieinieeieete ettt 701
13.14.4: EJTAG TAP REZISETS ..ottt ettt ettt ettt ettt s et ettt bt ebeebesbesae 702
13.14.4.1: INSEIUCHION REZISLET.....cueiiiiiiiiiitietiiteititet ettt ettt be e sttt bbb saenae 702
13.14.4.2: Data REZISLETS OVETVIEWccuiiuirtiriiriitiiteieteiteiteit ettt ettt sttt et ebt bt st sae st et e et ebeebeebesbeseea 702
13.14.4.3: BYPASS REGISTETcviiuiiiiiiitiitestert ettt sttt b ettt ettt ebe et sbe e 702
13.14.4.4: Device Identification (ID) RE@ISTETccuieuieriieieiieiiertieie sttt s eae s aeseeens 703
13.14.4.5: Implementation REGISIEI.......c.cccieieiiiierie ettt ettt et aesae e seesesneensesseensenneens 703
13.14.4.6: EJTAG CONIOL REGISTET . ..eoviiiieeiitieie ettt sttt e sttt etesseesaesseensesseensenseensessesseensesseensenseens 705
13.14.5: ProceSSOr ACCESS REGISTEIS.ueiuiiiietieieeiieietieie sttt sttt et et e e st e esae e s e beeseenseesaenseeneanseeneenseennenseenean 709
13.14.5.1: Processor Access Address REGISIETcuiiiiiiiiieriieeieiieieie ettt eae e seeeeens 709

20 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table of Contents

13.14.5.2: Processor Access Data REGISTEToiiiiiiuieiiiieieeieeee ettt 709

B T 1 ' 1 A o4] 1<) TSP 709
13.14.6.1: Fastdata Register (TAP Instruction FASTDATA)cviiiieieeeceeeeieee ettt 709

L B B T G 1N gl 4]) SRS SU 710
13.14.8: Fast Debug Channel REISEIScc.ueuiriiiiriieieie ettt sttt ettt et e seeeneesaeeneeseeeneas 711
13.14.8.1: FDC Access Control and Status (FDACSR) Register (Offset 0X0)cceeveriieeenieieneieeieceeeeieene 711
13.14.8.2: FDC Configuration (FDCFG) Register (Offset 0X8)cccceiieiieiieieriieiesiieeeeeee e 712
13.14.8.3: FDC Status (FDSTAT) Register (OffSet OX10).....ccueeriiririerieeiesieeiestieieseeie e 713
13.14.8.4: FDC Receive (FDRX) Register (OffSet OX18) ...cueeiiieiieieiieeiecieieseee e 714
13.14.8.5: FDC Transmit n (FDTXn) Registers (Offset 0X20 + 0X8 M)erveeieriieiiiieiieiee e 714

13.14.9: PDtrace™ Registers (SOftware CONLIOL)oiuieieiieieiieieee ettt ettt sne s 715
13.14.10: Trace Control Block (TCB) Registers (Hardware Control)ccoovevieririeninieniieieieeeeeee e 715
13.14.10.1: TCBCONTROLA REZISTETectiitiiiieuieiieiiesietietieteeteetetestesiestesseseeseesessessessesessessaseessessessaseesessessens 716
13.14.10.2: TCBCONTROLB REZISLETecviivieiiiiiiieiesieeieiieiietieteeteetestestessesestesseseeseeseesessessassessessassassesessessens 718
13.14.10.3: TCBDATA REZISIET ...uecuieuietietietieteeteieiieiiettettetieteeteetetestessestestasteseeseesessessessassessessansassensassaseesesseasens 720
13.14.10.4: TCBCONTROLC REZISLETecviiviienierieiiesiesietietieteetestetetestestesseseeseesessessessessessessassassesseseesessessessens 720
13.14.10.5: TCBCONTROLD REZISTETectiiviiteieiieiieiietietietietestestetestestestesseseeseesessessessassessessassassessessaseesessessens 721
13.14.10.6: TCBCONTROLE RE@ISIET......ccutiuiititiieieiesieeieiietietieteeteetestestessesaestesseseeseeseesessessessassessassassesessessens 722
13.14.10.7: TCBCONFIG Re@iSter (REEZ 0)eoviiiiiiiieiieiieiieiieiieieeie ettt ae et ese e eseeseesessessessesseseesseseeseesens 724
13.14.10.8: TCBTRIGX Register (REZ 16-23)ocieiiiiiiiieiieieiieiieitete ettt eie et sse st esa e eseeseesaeseanens 725
13.14.11: Re@ISTEr RESEE STALEcvetitiriiietciieiteiete ettt ettt st sttt ettt ebe bbb e 728
13.15: Fast DebUZ CRANNEL........couiiiiiiiiiiiitiiere ettt ettt eb et b e sttt et ebe bt eat et ebe et eaes 728
13.15.1: Common Device MEMOTY MaPccoccueiriiiriiniiieieteieiieitei ettt sttt ettt st sa ettt et et bt ebeetesae e 728
13.15.2: Fast Debug Channel INTEITUPL.........cc.eoveiiiiiiiiicteeetsesc sttt sttt et ebe b b 729
13.15.3: Core FDC BUTTEIS ...ttt sttt ettt et e et et esseeseesseeteenaenteeneesseeneenneeneensennean 729
13.15.41 SIEEP MOME. ...ttt ettt bttt ettt a bbbt bt s bt sb bt nt et et et e bt ebeebeebesae 731
13.16: TCB TTIGEZET LOZIC .enveuiieiieieetiiteett ettt sttt ettt et eb e e bt ettt b e ettt ebtebeebeebenae et nes 731
13.16.1: TCB Trace ENabIINGc.cccoouiiiiiiriiiiiititccict ettt sttt ettt ebe et b e 731
13.16.2: Tracing @ RESEt EXCEPTION ..c..eviuiiuiiiiiiiitiitisict ettt sttt sttt et ebe bbb 731
13.16.3: TriEr UNItS OVEIVIEWeuvieuieniieiietietietesttetesteestesteessenseestenseeseessesseesesseensenseessenseaneasssanseansesssensessesnsensesseen 731
13.16.4: TriGET SOUICE Ut ...cuiiiiiiieiieiieiieteeieie sttt ettt et ettt e e et e aesseessesseesseseessenseenseessenseeneeseeneenseeneensennean 732
13.16.5: Triger CONLIOL UNILSc.eiiiieiieiieiieiietiesie sttt ettt ettt esee et estesseessesseessenseessenseeneseneenseeneenseeneensesneenseenean 733
13.16.6: TriZEr ACHON UL ...ouiiiiiiiiiiieiieieet ettt sttt sttt et ettt e et e et e et e st e sesseesseeteeneenseeneeeeeeneensesneenseenean 733
13.16.7: SIMUIANEOUS TTIZEETSeeutitieniietieie ettt ettt ettt ettt et et e saesmeesaeeneesaeeseeseesee s e eseenseeneenseeneennesneenseenean 733
13.16.7.1: PrioritiZ€d TriZEET ACHOMNS .. .eeiuieuieieiieeieiteeeieetteee et eeeesteeeesteetee s e eseeteeseeneeeseeeesseenseensesneensesseensenneens 733
13.16.7.2: OR’€d TIIEET ACHIONS ..eueitieiieetiete it ettt ettt ettt ettt e e st esae st e eaee st e easeseenteeneeneeeneensesneenseaseensenseans 734
Chapter 14: MUITI-CPU DEDUQcoiiiiciicie ettt ettt e te e te e sbe e teesaesneenreeteeneeenree e 735
14.1: CM Performance COUNTETSc.ueueeuieuiiuirtirtinteteteetee ettt etesteseeste b et et e st estese e st sbe et e sbeseees e beseeneenseseeneeseebeebenbensennen 735
14.1.1: CM Performance Counter FUNCHONALILYc.cccveruiiiiriiiieieiieie ettt ettt ete et eereenaesneenaesseeneas 735
14.1.2: Performance Counter USage MOAEIScccviriiiieiiiiieiiiciieieet ettt et eseeere e saeenaesseenees 736
14.1.3: CM Performance Counter Event Types and QUalifiersccccvevvevuiiieniiieniiiieie et 739
14.2: DebUZ MOAE TIIZZETING ...c.veevviiereieiiiesiieiieiteetesteetesteeetesteestesseesaesseeseesseessesseessesssessesssesseassessesseessesssessesssessesseessenseens 747
14.2.1: Selecting CPUs to Enter DebUZ MOAEcooviiuieiiiiiiiiiiicieieeee ettt sttt e ere e sneenaesneenees 747
14.2.2: Debug Mode Groups and Cross TIIZZETING........ccueceerueieeierieeresreeiesieeeessesseessesseesesseessesseeseessesssessesssessessees 747
14.2.3: Debug Cross Trigger Facility and Power Managementcccecveeierieerieieneeienieeeeereeieeeesreeeesseenesseesnas 748
14.3: PDTrace SOftWare ATCRITECTUTEe.etiieuieiieiieiiet ettt ettt ettt be et et s e et e st eseeseeseebeebeaeeeaenen 748
14.3.1: CM Trace FUNCHONAIILYcoviivieiiiieiieiiecte ettt ettt ettt ste et e esaesaeesaesbeessebeessesseeseesseensesesneesessnas 749
14.3.1.1: CM Trace Configuration and CONIOLc.eeiieeiiieiieiiiieie ettt esiee st eiee st eaee st e beeeeesbeeseennnes 749
14.3.1.2: System Trace Interface Configuration and Control............cccooveviiiieniiiieiiieieieeeee et 750
14.3.1.3: Trace FUNNE] ENADIC.........ooiiiiiiiiiiiii ettt ettt 751
14.3.1.4: CM TTACE FOITNALScoviiuiiiiiiiiitieteit ettt sttt ettt b et ettt et sbeeste bt esbenbeens 751
14.3.1.5: CM / CPU Core Trace Correlationc..cecuieuiiiiiiieniiiieneetente ettt st eee 751

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 21

Table of Contents

14.3.2: Controlling Trace in a Multi-CPU Multiprocessing SYSTeMccceeruiiiiieieeieriieiesieeeeie et 752

14.3.3: EJTAG Debug Support in the P6600 Coherence Managerccceevueriereiierieseeie st 752

14.3.3.1: Test ACCESS POTt (TAP) cocueiiiiieieeee ettt ettt ettt e et e e te e e sbeebeesebeebeesseessseensaensseas 752

14.3.3.2: Test Access Port (TAP) INSIIUCHONSccueieiiiiiieiieiie et eeite ettt ettt et aeete et eeaeeeaeeesbeesaensnes 756

14.3.3.3: EJTAG TAP REZISIEIS. ..c..eeutieiieiieiieit ittt ettt ettt ettt st ettt et et ese et e esteaesseenseeneesneenaeaneensenneens 758

14.3.3.4: Data REZISIEIS OVEIVICWeeuieiieuietieieiteeiteteettenteeseenteeseeseeeseesseeseeaseeseenseeseenseeneanseeneesesneensesseensenseens 758

14.3.3.5: CM2 Trace Control Block (TCB) REGISIEIS......c.eciuieuieiieiieiieiieie ettt 761

14.3.4: MIPS TTaC CaPADILILY ...cuviovieiiieieie ettt ettt ettt ettt e st e et estees e et e enee b e eneenseenee et eneennesneensennean 773

14.3.5: Memory-Mapped Access to PDtrace™ Control and On-Chip Trace RAM.......cccoooeiieieiiecinieeeeeeeeeen 773

14.3.6: On-Chip Trace BUer USAZE........coertiriiiiieiiiiiiieiieerestet ettt sttt ettt ettt sne e e 773
Chapter 15: Instruction Latencies and RePeat RAES.........ccceiiiiiiiie i 775
15.1: DefINTtON OF TEITIS. c....cueiuiiiiiiiteietee ettt et sttt ettt 775
15.2: MTCO Instruction CONSIAETATIONS.......c.coueuiriiuirieiiietirtete sttt ettt sttt sttt ettt ne e 776
15.3: Compact Branch Handling...........ccooouiiiiiiiiiie ettt ettt et et e eseenseeseenaesseensensaensenseens 776
15.4: Integer Instruction Latencies and Repeat RAtES..........ccueviiiirieiieiieieciecie ettt s sesneens 777
15.5: Floating Point Instruction Latencies and Repeat Ratescccieieiiiiiiiiiieiiciee e 786
15.6: MSA Instruction Latencies and Repeat RAtESccoovueiuiiieiiiiieiieieie sttt e s e saensesneens 788
Chapter 16: Implementation-Specific INSTIUCTIONSoiiiiiiiiieiee e 795

22

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Chapter 1

Overview of the P6600 Architecture

The P6600™ series of high performance multi-core microprocessor cores provides best in class power efficiency for
use in system-on-chip (SoC) applications. The P6600 Multiprocessing System (MPS) combines a deep pipeline with
multi-issue out-of order-execution to deliver outstanding computational throughput. The P6600 provides full virtual-
ization support. The P6600 Multiprocessing System is fully configurable/synthesizable and contains up to six
MIPS64® P6600 CPU cores, a system level Coherence Manager with integrated L2 cache, a coherent I/O port
(IOCU), and optional floating point unit with SIMD functionality.

Figure 1.1 shows a block diagram of the P6600 Multiprocessing System (MPS). In the P6600 Multiprocessing Sys-
tem, the Coherence Manager (CM2) with the integrated L2 cache streamlines the dataflow. Multi-CPU coherence is
handled in hardware by the Coherence Manager. The I/O Coherence Unit (IOCU) supports hardware I/O coherence
by bridging a non-coherent OCP I/O interconnect to the Coherence Manager (CM2) and handling ordering require-
ments. The Global Interrupt Controller (GIC) handles the distribution of interrupts between and among the CPUs.
Under software controlled power management, the Cluster Power Controller (CPC) can gate off the clocks and/or
voltage supply to idle cores.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 23

24

Figure 1.1 P6600 Multiprocessing System Block Diagram

[Denotes optional feature

P6600 P6600
CPU1 CPU2

Coherent
4 - - -128-bitbus-- - |/O
Devices

Coherence Manager

L2 Cache
(512KB-8MB,
8-way set associative)

GIC GCRs
Global Global
Interrupt Config
Controller Registers
CPC

Cluster
Power
Controller

System/
| 4——128/256-bit bus— \]ain

Memory

P6600 P6600
CPU4 CPU5

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Coherent
- - -128-bitbus-- - |/O
Devices

1.1 P6600 Features

P6600 Multiprocessor System is feature rich with the most current MIPS64 architecture, new CPU and system level
features designed for the performance and features required for tomorrow’s mainstream connected consumer elec-
tronics including smart phones, tablets, connected TVs and set-top boxes.

1.1.1 MIPS Architecture

P6600 Multiprocessing System has three key architecture features that sets the core’s foundation.

1.1.1.1 MIPS64™ Release 6 Architecture

MIPS64® architecture, an industry standard, is the foundation of the P6600 product offering.

MIPS64 architecture provides a solid high-performance foundation by incorporating powerful features, standardizing
privileged mode instructions, supporting past ISAs, and provides a seamless upgrade path from the MIPS32 architec-
ture. MIPS64 is based on a fixed-length, regularly encoded instruction set, and it uses a load/store data model. It is
streamlined to support optimized execution of high-level languages. Arithmetic and logic operations use a three-oper-
and format, allowing compilers to optimize complex expressions formulation. Availability of 32 general-purpose reg-
isters enables compilers to further optimize code generation by keeping frequently accessed data in registers.

MIPS64 provides backward compatibility, standardizing privileged mode, and memory management, and provides
the information through the configuration registers. The MIPS64 architecture enables real-time operating systems
and application code to be implemented once and reused.

1.1.1.2 MIPS® SIMD Architecture

SIMD (Single Instruction Multiple Data), important technology for modern CPU designs that improves performance
by allowing efficient parallel processing of vector operations. A non-programmable hardware aids the CPU and GPU
by handling heavy-duty multimedia codecs, the MIPS® SIMD Architecture (MSA) technology incorporates a soft-
ware-programmable solution into the CPU to handle emerging codecs or a small number of functions not covered by
dedicated hardware. This programmable solution allows for increased system flexibility. In addition, the MSA is
designed to accelerate many compute-intensive applications by enabling generic compiler support.

1.1.1.3 MIPS® Virtualization

To address security, privacy and reliability concerns in a wide range of devices, MIPS has added hardware sup-
ported virtualization technology into P6600 core. The hardware virtualization support enables processors

to be OmniShield-ready. OmniShield is security technology which ensures that applications that

need to be secure are effectively and reliably isolated from each other, as well as protected from non-secure applica-
tions.

Virtualization can be achieved with software only (para-virtualized) or with hardware assistance (fully virtualized).
The core element of virtualization is the Hypervisor, a small body of trusted and privileged code that sits above the
hardware, managing and orchestrating all of the SoC resources. It manages the resources by defining access policies
for each execution environment or “guest.” Guests are isolated from each other, but can communicate with the hyper-
visor and with each other via secure APIs. This ensures the reliability of the system by allowing the rest of the guests
to operate reliably even if one of the guests crashes. The hypervisor manages all memory I/O privileges of the subsys-
tems.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 25

1.1.2 System Level Features

Up to six coherent MIPS64 P6600 CPU cores

Superscalar, variable-length, out -of-order data return

Support for power management with multiple power domains

Cluster Power Controller (CPC) to shut down idle CPU cores to save power

Hardware I/0 coherence unit (IOCU)

Hardware Virtualization Module Support

Cache-to-cache data transfers

Speculative memory reads to reduce latency

Integrated 8-way set associative L2 cache controller supporting 512 KB to 8 MB cache sizes
Shared L2 cache controller supporting 512 KB to 8 MB cache sizes

Separate clock ratios on memory and IOCU OCP ports

Clock ratio of 1:1 between Core, CM2, and L2 cache

SOC system interface supports OCP version 2.1 protocol with 32- or 40-bit address and 128-bit or 256-bit data paths
EJTAG Debug port supporting multi-processor debugging

MIPS PDtrace

Full scan design achieves test coverage in excess of 99% with memory BIST for internal SRAM arrays

1.1.3 CPU Core Level Features

40-bit addressing

Quad issue integer and dual issue 128-bit (integer/floating point) execution pipes
Sophisticated branch prediction with fully associative Level 1 BTB

Floating Point Unit with SIMD support and Out-Of-Order (OOO) execution
Virtualization support

Instruction Fetch Unit (IFU) with 4 instructions fetched per cycle

Programmable Memory Management Unit with large first-level ITLB/DTLB backed by fast on-core second-level variable
page size TLB (VTLB) and fixed page size TLB (FTLB):

L1 Instruction and Data Caches can be configured as 32 or 64 KB per cache

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

1.2 P6600 CPU Core

Figure 1.2 shows a block diagram of a single P6600 core. The logic blocks in this diagram are described in the fol-
lowing sections.

Figure 1.2 P6600™ Core Block Diagram

Coherent OCP 3.0 Interface (to On-chip Buses)

Optional Feature ¢

| Bus IF Unit <
Instruction 1 Memory Mgmt Unit
L1 Cache < > Instruction Fetch Unit < »
(32-64KB, 4-way)
¢ 16 Entry 64 Entry
ITLB DTLB

ALU Instructi |
_-_Iﬂ nslsr;;;elon e
| Unit ‘I 128 Entry VTLB

R
1024 Entry FTLB
v

A

Execution Pipes X — 1
P Branch Pipe g
Memory Pipe

Branch ” <

MDU || ALU ALU <
h . . Integer :
Pipe pipe pipe Resolution and
SP/DP FP Store Data Pipe Load/Store Address

A 4 A A 4 ¢

| Graduation Unit

Data
L1 Cache
AP Power Management (32-64KB, 4-way)
Unit (PMU)
Off/On chip Debug Off-
Trace I/F chip
interface

For more information on the P6600 core in a multiprocessing environment, refer to Section 1.3 “Multiprocessing
System”.

1.2.1 Instruction Fetch Unit

The Instruction Fetch Unit (IFU) fetches instructions from the instruction cache and supplies them to the Instruction
Issue Unit (ITU). The IFU can fetch up to four MIPS64 instructions at a time from the 4-way associative instruction
cache. Instructions can also be fetched immediately from refill buffers in the event of an instruction cache miss.

The IFU employs sophisticated branch prediction and instruction supply strategies. The main predictor consists of
three 2048-entry global branch history tables (BHT) that are indexed by different combinations of instruction PC and

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 27

28

global history. A proprietary scheme is used to combine information from the three arrays to make a branch direction
prediction.

The IFU also has a hardware-based return prediction stack to predict subroutine return addresses.The main predictor
corrects target mispredicts from lower-level predictors without paying a full branch resolution penalty. The IFU sup-
ports fully out-of-order branch resolution.

The IFU has a 16-entry micro-Instruction TLB (ITLB) used to translate the virtual address into a physical address and
used to compare against tags in the instruction cache to determine a hit. Refer to Section 1.2.6 “Memory
Management Unit (MMU)” for more information.

A 24-entry instruction buffer decouples the instruction fetch from the execution. To maximize performance, some
‘bonding’ (or concatenation) of instructions is done at this stage while other types of instruction ‘bonding’ are per-
formed downstream.

The IFU can also be configured to allow for hardware prefetching of cache lines on a miss. This mechanism provides
excellent performance without incurring the area, power and latency costs of more overly complicated branch or
instruction prefetch strategies.

The Global History register is internal to the IFU block and supports a novel history computation scheme that factors
different information into the history for different kinds of control transfer instructions.

The P6600 level 1 (L1) instruction cache incorporates ‘next fetch way’ hit prediction logic. This allows the IFU to
power on only those cache tag and data arrays that will provide the final instruction bytes and contributes to low
power consumption.

1.2.2 Instruction Issue Unit (IIU)

The Instruction Issue Unit (IIU) is responsible for receiving instructions from the IFU and dispatching them to the
out-of-order instruction scheduling windows and global instruction tracking window at a rate of 4 instructions per
cycle.

The IIU tracks dynamic data flow dependencies between operations and issues them to the various pipes as efficiently
as possible. Two schedulers service the various integer pipes.

The schedulers employ multiple dependency wake-up and pick schemes to enable age-based scheduling at high fre-
quency. These two schedulers provide superior performance and power characteristics.

The ITU helps to ‘bond’ load and store operations whereby two 32-bit loads or 64-bit or stores to adjacent locations
are ‘bonded’ or concatenated into one 64-bit or 128-bit memory access. This allows a factor of two improvement in
certain memory intensive codes.

The ITU also keeps track of the progress of each instruction through the pipeline, updating the availability of operands
in the ‘rename map’ and in all dependent instructions. Renamed instructions are steered to the most appropriate

schedulers, taking opcode and other information into account.

The ITU also keeps track of global pipeline flushes, adjusting the rename map and other control structures to deal with
interrupts, exceptions and other unexpected changes of control.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

1.2.3 Graduation Unit (GRU)

The Graduation Unit (GRU) is responsible for committing execution results and releasing buffers and resources used
by these instructions. The GRU is also responsible for evaluating the exception conditions reported by execution
units and taking the appropriate exception. Asynchronous interrupts are funneled into the GRU, which prioritizes
those events with existing conditions and takes the appropriate interrupt.

After processing the exception conditions, the GRU performs the following functions:
* Destination register(s) are updated and the completion buffers are released.

* Graduation information is sent to the IIU so it can update the rename maps to reflect the state of execution results
(such as GPRs).

* Resolved branch information is sent to the IFU so that branch history tables can be updated and if needed, a pipe-
line redirect can be initiated. If sequential control flow is aborted for any reason, the GRU signals all core units to
flush and recover microarchitectural state. After recovery is complete, it allows the ITU to resume dispatching
instructions.

1.2.4 Level 1 Instruction Cache

The Level-1 (L1) instruction cache is configurable at 32 or 64 KB in size and is organized as 4-way set associative.
Up to four instruction cache misses can be outstanding. The instruction cache is virtually indexed and physically
tagged to make the data access independent of virtual to physical address translation.

Each instruction cache entry contains a tag portion, a data portion, and a way select portion.
An instruction tag entry holds 21 - 29 bits of physical address, a valid bit, a lock bit, and a parity bit. The data entry
consists of 256 bits (8 MIPS64 instructions) of data and 32 bits of parity for a total of 288 bits. The way-select entry

contains a 6 bit least-recently-used (LRU) field.

The P6600 core supports instruction-cache locking. Cache locking allows critical code segments to be locked into the
cache on a “per-line” basis, enabling the system programmer to maximize the performance of the system cache.

The cache-locking function is always available on all instruction-cache entries. Entries can be marked as locked or
unlocked on a per entry basis using the CACHE instruction.

The P6600 core implements virtual aliasing for the instruction cache, although this function can be disabled by the
user.

1.2.5 Level 1 Data Cache

The Level 1 (L1) data cache is configurable at 32 or 64 KB in size. It is also organized as 4-way set-associative. Data
cache misses are non-blocking and up to nine misses may be outstanding. The data cache is virtually indexed and
physically tagged to make the data access independent of virtual-to-physical address translation. To achieve the high-
est possible frequencies using commercially available SRAM generators, cache access and hit determination are
spread across three pipeline stages, dedicating an entire cycle for the SRAM access.

Each instruction cache entry contains a tag portion, a data portion, a way-select portion, and a dirty status portion.

e A data tag entry holds 21 bits of physical address in 32-bit addressing mode (29 bits in 40-bit addressing mode),
a valid bit, a state bit, and a parity bit, making a total of 24 - 32 bits per tag entry.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 29

* The data entry consists of 256 bits consisting of 32 bytes of data of data and 32 bits of parity for a total of 288
bits. The way-select entry contains a 6 bit least-recently-used (LRU) field, a 4-bit lock field, and a 4-bit lock par-
ity field for a total of 14 bits.

* The Dirty state entry contains a 4-bit dirty field and a 4-bit dirty parity field.

The P6600 core supports a data-cache locking mechanism identical to that used in the instruction cache. Critical data
segments are locked into the cache on a “per-line” basis. The locked contents can be updated on a store hit, but are not
selected for replacement on a cache miss.

The P6600 core implements virtual aliasing for the data cache. This function is managed in hardware and is transpar-
ent to the user.

1.2.6 Memory Management Unit (MMU)

The P6600 core’s Memory Management Unit (MMU) is primarily responsible for converting virtual addresses to
physical addresses and providing attribute information for different segments of memory. The P6600 MMU contains
the following Translation Lookaside Buffer (TLB) types:

e Instruction TLB (ITLB)
* Data TLB (DTLB)
* Variable Page Size Translation Lookaside Buffer (VTLB)

* Fixed Page Size Translation Lookaside Buffer (FTLB)

1.2.6.1 Instruction TLB (ITLB)

The ITLB is a 16-entry high speed TLB dedicated to performing translations for the instruction stream. The ITLB
maps only 4 KB or 16 KB pages. Larger pages are split into smaller pages of one of these two sizes and installed in
the ITLB.

The ITLB is managed by hardware and is transparent to software. The larger VTLB and FTLB structures are used as
a backup structure for the ITLB. If a fetch address cannot be translated by the ITLB, the VTLB/FTLB attempts to
translate it in the following clock cycle or when available. If successful, the translation information is copied into the
ITLB for future use.

1.2.6.2 Data TLB (DTLB)

The DTLB is a 32-entry high speed TLB dedicated to performing translations for the data stream. The DTLB maps
only 4 KB or 16 KB pages. Larger pages are split into one of these configured sizes and installed in the DTLB.

The DTLB is managed by hardware and is transparent to software. The larger VTLB and FTLB structures are used as
a backup structure for the DTLB. If a fetch address cannot be translated by the DTLB, the VTLB/FTLB attempts to
translate it in the following clock cycle or when available. If successful, the translation information is copied into the
DTLB for future use.

1.2.6.3 Variable Page Size TLB (VTLB)

The VTLB is a fully associative variable translation lookaside buffer with 64 dual entries that can map variable size
pages from 4KB to 256MB. When an instruction address is calculated, the virtual address is first compared to the
contents of the ITLB and DTLB. If the address is not found in either the ITLB or DTLB, the VTLB/FTLB is

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

accessed. If the entry is found in the VTLB, that entry is then written into the ITLB or DTLB. If the address is not
found in the VTLB, a software TLB exception is taken. For data accesses, the virtual address is looked up in the
VTLB only, and a miss causes a TLB exception.

1.2.6.4 Fixed Page Size TLB (FTLB)

The FTLB is 512 dual entries organized as 128 sets and 4 ways. Each set of each way contains dual data RAM entries
and one tag RAM entry. If the tag RAM contents match the requested address, either the low or high RAM location of
the dual data RAM is accessed depending on the state of the most-significant-bit (MSB) of the offset portion of the

virtual address (VPN2). Each RAM location can only map a fixed page size, which is configurable to 4KB or 16KB.

1.2.6.5 Enhanced Virtual Address

The P6600 core supports a programmable memory segmentation scheme called Enhanced Virtual Address (EVA).
EVA allows for more efficient use of 32-bit address space. Traditional MIPS virtual memory support divides up the
virtual address space into fixed segments, each with fixed attributes and access privileges. Such a scheme limits the
amount of physical memory available to 0.5GB, the size of kernel segment 0 (kseg0).

1.2.6.6 Virtualization Support

Virtualization defines a set of extensions to the MIPS64 Architecture for efficient implementation of virtualized sys-
tems.

Virtualization is enabled by software. The key element is a control program known as a Virtual Machine Monitor
(VMM) or hypervisor. The hypervisor is in full control of machine resources at all times.

The hypervisor is responsible for managing access to sensitive resources, maintaining the expected behavior for each
VM, and sharing resources between multiple VMs.

In a traditional operating system, the kernel (or supervisor) typically runs at a higher level of privilege than user
applications. The kernel provides a protected virtual-memory environment for each user application, inter-process
communications, IO device sharing and transparent context switching. The hypervisor performs the same basic func-
tions in a virtualized system, except that the hypervisor’s clients are full operating systems rather than user applica-
tions.

The virtual machine execution environment created and managed by the hypervisor consists of the full Instruction Set
Architecture (ISA), including all Privileged Resource Architecture (PRA) facilities, and any device-specific or board-
specific peripherals and associated registers. It appears to each guest operating system as if it is running on a real

machine with full and exclusive control.

The Virtualization Module enables full virtualization, and is intended to allow VM scheduling to take place while
meeting real-time requirements, and to minimize costs of context switching between VMs.

1.2.7 Execution Pipelines
The P6600 core contains the following execution pipelines:
* Arithmetic Logic Pipeline
* Multiply-Divide Pipeline

* Memory Pipeline

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 31

* Branch Pipeline
* Two FPU3 Pipelines

Each of these execution units is described in the following subsections. Instructions intended for the arithmetic logic
pipeline are driven by the out-of-order ALU Decode and Dispatch queue inside the Instruction Issue Unit (IIU) as
shown in Figure 1.2. The other four pipelines are driven by the out-of-order Address Generation unit (AGU) Decode
and Dispatch queue also located in the ITU.

1.2.7.1 Arithmetic Logic Pipeline

The arithmetic unit pipeline consists of one execution unit, called the ALU (Arithmetic Logic Unit), which performs
integer instructions such as adds, shifts and bit-wise logical operations with a single cycle latency. If the ITU decodes
a single-cycle instruction, it is usually sent to the ALU dispatch queue that feeds the arithmetic unit pipeline. This
pipeline also contributes to performing ‘bonded’ loads. Refer to Section 1.2.2 “Instruction Issue Unit (IIU) for a def-
inition of instruction ‘bonding’.

1.2.7.2 Multiply/Divide Pipeline

The multiply/divide pipeline executes integer multiplies, integer divides, and integer multiply-accumulate instruc-
tions. The multiply/divide pipeline incorporates a new very high-speed integer divider.

The MDU consists of a 64-bit multiplier, result/accumulation registers, a divide state machine, and all necessary mul-
tiplexers and control logic.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle whereas divides
can be executed as fast as one every four cycles.

1.2.7.3 Memory Pipeline

The memory pipeline primarily contains the LSU (Load Store Unit). The LSU is responsible for interfacing with the
AGU dispatch queue (see Figure 1.2) and processing load/store instructions to read/write data from data caches and
downstream memory.

It is capable of handling loads and stores issued out-of-order. The LSU has the ability to receive loads and stores in
almost any order enables very high performance compared to an in-order machine. Such instruction-level parallelism
allows maximum utilization of the memory pipe resources with minimal area and power.

The LSU can execute loads and stores at twice the rate of regular operations by concatenating data from two 32-bit or
64-bit memory to form a single 64-bit or 128-bit entity, respectively. This ‘bonding’ of instructions allows the LSU to
provide almost all the benefits of dual memory access pipes without incurring the area and power costs of multiple
tag, data and TLB structures.

The memory pipeline receives instructions from the Instruction Issue Unit (IIU) and interfaces to the L1 data cache.
Loads are non-blocking in the P6600 core. Loads that miss in the data cache are allowed to proceed with their desti-
nation register marked unavailable. Consumers of this destination register are held back and replayed as needed after
the cache miss has been serviced by the downstream memory subsystem, which includes the high performance L2
cache.

Graduated load misses and store hits and misses are sent in order to the Load/Store Graduation Buffer (LSGB). The
LSGB has corresponding data and address buffers to hold all relevant attributes.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

An 8-entry Fill Store Buffer (FSB) tracks outstanding fill or copy-back requests. It fills the data cache at the rate of
128-bits per cycle when an incoming line is completely received. Each FSB entry can hold an entire cache line.

The Load Data Queue (LDQ) keeps track of outstanding load misses and forwards the critical data to the main pipe as
soon as it becomes available.

Hardware anti-aliasing allows using the core with operating systems that do not support software page coloring. The
fully-associative DTLB operates a clock earlier in the LSU pipeline, making use of fast add-and-compare logic to

enable virtual address to physical address translations that do not require the area and power expense of virtual tag-
ging. All of this is done completely transparent to software.

1.2.7.4 Branch Pipeline
The Branch pipeline performs the following functions:
* Executes Branch and Jump instructions
* Performs Branch resolution
* Performs Jump resolution
* Sends the redirect to the Instruction Fetch Unit (IFU)

* Performs a write-back to the Link registers

1.2.7.5 Floating Point Pipelines
The optional Floating Point Unit with SIMD contains two execution pipelines. One pipeline executes SIMD logical
operations (ops), SIMD integer adds. The FP compares and stores. The other pipeline executes SIMD integer multi-
plies, SIMD vector shuffles, FP adds, FP multiplies, and FP divides.

For more information, refer to Section 1.2.12 “Floating Point Unit”.
1.2.8 Bus Interface (BIU)

The BIU controls a 128-bit interface to the CM2. The interface implements the Open Core Protocol (OCP).

1.2.8.1 Write Buffer

The BIU contains a merging write buffer. This buffer stores and combines write transactions before issuing them to
the external interface. The write buffer is organized as eight, 32-byte buffers. Each buffer can contain data from a sin-
gle 32-byte aligned block of memory.

When using the write-through cache policy or performing uncached accelerated writes, the write buffer significantly
reduces the number of write transactions on the external interface and reduces the amount of stalling in the core

caused by the issuance of multiple writes in a short period of time.

The write buffer also holds eviction data for write-back lines. The load-store unit extracts dirty data from the cache
and sends it to the BIU. In the BIU, the dirty data is gathered in the write buffer and sent out as a bursted write.

For uncached accelerated writes, the write buffer can gather multiple writes together and then perform a bursted write
in order to increase the efficiency of the bus.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 33

34

Gathering of uncached accelerated stores can start on any arbitrary address and can be combined in any order within
a cache line. Uncached accelerated stores that do not meet the conditions required to start gathering are treated like
regular uncached stores.

1.2.9 System Control Coprocessor (CPO)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation and cache protocols, the
exception control system, the processor’s diagnostic capability, the operating modes, and whether interrupts are
enabled or disabled. Configuration information, such as cache size and associativity, and the presence of features like
a floating point unit, are also available by accessing the CPO registers.

CPO also contains the state used for identifying and managing exceptions. Exceptions can be caused by a variety of
sources, including boundary cases in data, external events, or program errors.

1.2.10 Interrupt Handling

The P6600 core supports six hardware interrupts, two software interrupts, a timer interrupt, and a performance coun-
ter interrupt. These interrupts can be used in any of three interrupt modes, as defined in the MIPS64 Architecture:

* Interrupt compatibility mode.

* Vectored Interrupt (VI) mode. Adds the ability to prioritize and vector interrupts to a handler dedicated to that
interrupt.

« External Interrupt Controller (EIC) mode. Provides support for an external interrupt controller that handles prior-
itization and vectoring of interrupts.

1.2.11 Modes of Operation

The P6600 core supports four modes of operation:
* Two user modes (guest and root), most often used for application programs.

* Two supervisor modes (guest and root) provides an intermediate privilege level with access to the ksseg (kernel
supervisor segment) address space.

* Two kernel modes (guest and root), typically used for handling exceptions and operating system kernel func-
tions, including CPO management and I/O device accesses.

* Debug mode is used during system bring-up and software development. Refer to Section 1.2.14 “EJTAG Debug
Support” for more information on debug mode.

1.2.12 Floating Point Unit

The P6600 core features an optional IEEE 754 compliant 3rd generation Floating Point Unit with SIMD.!
The FPU3 contains thirty-two, 128-bit vector registers shared between SIMD and MIPS64 instructions.

SIMD instructions enable:

1.

Requires separate MIPS license.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

» Efficient vector parallel arithmetic operations on integer, fixed-point and floating-point data.
* Operations on absolute value operands.

* Rounding and saturation options available.

* Full precision multiply and multiply-add.

» Conversions between integer, floating-point, and fixed-point data.

* Complete set of vector-level compare and branch instructions with no condition flag.

* Vector (1D) and array (2D) shuffle operations.

* Typed load and store instructions for endian-independent operation.

The FPU3 with SIMD is fully synthesizable and operates at the same clock speed as the CPU. The IIU can issueup to
two instructions per cycle to the FPU3.

The FPU3 contains two execution pipelines for floating point and SIMD instruction execution. These pipelines oper-
ate in parallel with the integer core and do not stall when the integer pipeline stalls. This allows long-running FPU3/
SIMD operations such as divide or square root, to be partially masked by system stall and/or other integer unit
instructions.

An out-of-order scheduler in the FPU3 issues instructions to the two execution units. The exception model is ‘pre-
cise’ at all times.

1.2.13 P6600 Core Power Management

The P6600 core offers several power management features, that support low-power designs, such as active power
management and power-down modes of operation. The P6600 core is a static design that supports slowing or halting
the clocks to reduce system power consumption during idle periods.

You can also use the Cluster Power Controller (CPC) to control your power management. Refer to “Cluster Power
Controller (CPC)” on page 37 for more details.

1.2.13.1 Instruction-Controlled Power Management

The Instruction Controlled power-down mode is invoked through execution of an instruction. When the WAIT
instruction is executed, the internal clock is suspended; however, the internal timer and some of the input pins con-
tinue to run. When the CPU is in this instruction-controlled power management mode, any interrupt, NMI, or reset
condition causes the CPU to exit this mode and resume normal operation.

The P6600 core asserts a sleep signal whenever it has entered low-power mode (sleep mode). The core enters sleep
mode when all bus transactions are complete and there are no running instructions.

The WAIT instruction can put the processor in a mode where no instructions are running. When the WAIT instruction
is seen by the Instruction Fetch Unit (IFU), subsequent instruction fetches are stopped. The WAIT instruction is dis-

patched down the pipe and graduated. Upon graduation of the WAIT, the GRU waits for the processor to reach a qui-
escent state and allows the processor to enter sleep mode.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 35

1.2.14 EJTAG Debug Support

The P6600 core includes an Enhanced JTAG (EJTAG) block for use in software debugging of application and kernel
code. For this purpose, in addition to standard user/supervisor/kernel modes of operation, the P6600 core provides a
Debug mode.

Debug mode is entered when a debug exception occurs and continues until a debug exception return instruction is
executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring
test data in and out of the P6600 core. In addition to the standard JTAG instructions, special instructions defined in
the EJTAG specification define which registers are selected and how they are used.

There are several types of simple hardware breakpoints defined in the EJTAG specification. These breakpoints stop
the normal operation of the CPU and force the system into debug mode.

During synthesis, the P6600 core can be configured to support the following breakpoint options:
* Zero instruction, zero data breakpoints
* Four instruction, two data breakpoints

Instruction breaks occur on instruction fetch operations, and the break is set on the virtual address. Instruction breaks
can also be made on the ASID value used by the MMU. A mask can be applied to the virtual address to set break-
points on a range of instructions.

Data breakpoints occur on load and/or store transactions. Breakpoints are set on virtual address and address space
identifier (ASID) values, similar to the Instruction breakpoint. Data breakpoints can also be set based on the value of
the load/store operation. Finally, masks can be applied to the virtual address, ASID value, and the load/store value.

1.2.14.1 Fast Debug Channel

The P6600 CPU includes the EJTAG Fast Debug Channel (FDC) for efficient bi-directional data transfer between the
CPU and the debug probe. Data is transferred serially via the TAP interface. A pair of memory- mapped FIFOs buffer
the data, isolating software running on the CPU from the actual data transfer. Software can configure the FDC block
to generate an interrupt based on the FIFO occupancy or can poll the status.

1.2.14.2 PDtrace

The P5600 core includes trace support for real-time tracing of instruction addresses, data addresses, data values, per-
formance counters, and processor pipeline inefficiencies. The trace information is collected in an on-chip or off-chip
memory, for post-capture processing by trace regeneration software. Software-only control of trace is possible in
addition to probe-based control.

An on-chip trace memory may be configured in size from 256B to 8 MB; it is accessed either through load instruc-
tions or the existing EJTAG TAP interface, which requires no additional chip pins.

Off-chip trace is managed with the PIB2 (2nd-generation Probe Interface Block) hardware that ships with the prod-

uct. It provides a selectable trace port width of 4, 8, or 16 pins plus DDR clock. Trace data is streamed on these pins
and captured using the MIPS Navigator™ Pro probe Other supported probes include DA-net and Joyner.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

1.3 Multiprocessing System

The Multiprocessing System (MPS) consists of the logic modules —CPC, CM2, IOCU, GIC, and GCR—shown in
Figure 1.1. Each block is described throughout this section. In additional the clocking and debugging features are also
described in this section

1.3.1 Cluster Power Controller (CPC)

Individual CPUs within the cluster can have their clock and/or power gated off when they are not in use. This gating
is managed by the Cluster Power Controller (CPC). The CPC handles the power shutdown and ramp-up of all CPUs
in the cluster. Any P6600 CPU that supports power-gating features is managed by the CPC.

The CPC also organizes power-cycling of the CM2 dependent on the individual core status and shutdown policy.
Reset and root-level clock gating of individual CPUs are considered part of this sequencing.

1.3.1.1 Reset Control

The reset input of the system resets the Cluster Power Controller (CPC). Reset sideband signals are required to qual-
ify a reset as system cold, or warm start. Pin settings determine the course of action for each core after a CPC reset.

* Remain in powered-down
* Go into clock-off mode
* Power-up and start execution

In case of a system cold start, after reset is released, the CPC powers up the P6600 CPUs as directed in the CPC cold
start configuration pins. If at least one CPU has been chosen to be powered up on system cold start, the CM2 is also
powered up.

When supply rail conditions of power gated CPUs have reached a nominal level, the CPC will enable clocks and
schedule reset sequences for those CPUs and the coherence manager.

At a warm start reset, the CPC brings all power domains into their cold start configuration. However, to ensure power
integrity for all domains, the CPC ensures that domain isolation is raised before power is gated off. Domains that
were previously powered and are configured to power up at cold start remain powered and go through a reset
sequence.

Within a warm start reset, sideband signals are also used to qualify if coherence manager status registers and GIC
watch dog timers are to be reset or remain unchanged. The CPC, after power up of any CPU, provides a test logic
reset sequence per domain to initialize TAP logic.

There are memory-mapped registers that can set the value for each CPU’s SI_ExceptionBase pins. This allows dif-
ferent boot vectors to be specified for each of the cores so they can execute unique code if required. Each of the cores
will have a unique CPU number, so it is also possible to use the same boot vector and branch based on that.

1.3.2 Coherence Manager 2 (CM2)

The Coherence Manager with integrated L2 cache (CM2) is responsible for establishing the global ordering of
requests and for collecting the intervention responses and sending the correct data back to the requester. A high-level
view of the request/response flow through the CM2 is shown in Figure 1.3. Each of the blocks is described in more
detail in the following subsections.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 37

1.3.2.1 Request Unit (RQU)

The Request Unit (RQU) receives OCP bus transactions from multiple CPU cores and/or I/O ports, serializes the
transactions and routes them to the Intervention Unit (IVU), Transaction Routing Unit (TRU), or an auxiliary port
used to access a configuration registers or memory-mapped IO. The routing is based on the transaction type, the
transaction address, and the CM2’s programmable address map.

1.3.2.2 Intervention Unit (IVU)

The Intervention Unit (IVU) interrogates the L1 data caches by placing requests on the intervention OCP interfaces.
Each processor responds with the state of the corresponding cache line. If the processor has the corresponding data in
its L1 data cache, it provides the data with its response. If the original request was a read, the IVU routes the data to
the original requestor via the Response Unit (RSU).

Figure 1.3 Coherence Manager 2 (CM2) with Integrated L2 Cache Block Diagram

Intervention Intervention
Request Response
Main Request Ports Ports Ports Main Response Ports

. 1T] IR

(\
Request Unit va Intervention Unit L1 Hits Response Unit
. J

4
Auxiliary | Non-Coherent and Speculative Coherent | | 1 Hits / Non-Speculative 4
Ports v v Coherent

s ™
Performance

Counters Transaction Routing Unit

Misses / Uncached
Reads

Global Conflguranon Cached Uncached / L2 Bypass
Registers A ~

Hits
\4
PDTrace Refills s
L2 Cache * >

System Memory Unit

[. J
|

N

Misses/ \ "

EJTAG TAP Evictions
4 v \- J
o AR 256/128-bit 256/128-bit

IOCU &CPC -DI -
i Memory Memory
& MMIO Optional
- Request Port Response Port

The IVU gathers the responses from each of the agents and manages the following actions:
* Speculative reads are resolved (confirmed or cancelled).

* Memory reads that are required because they were not speculative are issued to the Transaction Routing Unit
(TRU).

* Modified data returned from the CPU is sent to the TRU to be written back to the L2 cache or memory.

* Data returned from the CPU is forwarded to the Response Unit (RSU) to be returned to the requester.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

* The MESI state in which the line is installed by the requesting CPU is determined (the “install state”). If there are
no other CPUs with the data, a Shared request is upgraded to Exclusive.

Each device updates its cache state for the intervention and responds when the state transition has completed. The
previous state of the line is indicated in the response. If a read type intervention hits on a line that the CPU has in a
Modified or Exclusive state, the CPU returns the cache line with its response. A cache-less device, such as the IOCU,
does not require an intervention port.

1.3.2.3 System Memory Unit (SMU)

The System Memory Unit (SMU) provides the interface to the memory OCP port. For an L2 refill, the SMU reads the
data from an internal buffer and issues the refill request to the L2 pipeline.

1.3.2.4 Response Unit (RSU)

The RSU takes responses from the SMU, L2, IVU, or auxiliary port and places them on the appropriate OCP inter-
face. Data from the L2 or SMU is buffered inside a buffer associated with each RSU port.

When a coherent read receives an intervention hit in the MODIFIED or EXCLUSIVE state, the Intervention Unit
(IVU) provides the data to the RSU. The RSU then returns the data to the requesting core.

1.3.2.5 Transaction Routing Unit
The Transaction Routing Unit (TRU) arbitrates between requests from the RQU and IVU, and routes requests to
either the L2 or the SMU. The TRU also contains the request and intervention data buffers which are written directly

from the RQU and IVU, respectively. The TRU reads the appropriate write buffer when it processes the correspond-
ing write request.

1.3.2.6 Level 2 Cache

The unified L2 cache holds both instruction and data references and contains a 7-stage pipeline to achieve high fre-
quencies with low power while using commercially available SRAM generators.

Cache read misses are non-blocking; that is, the L2 can continue to process cache accesses while up to 15 misses are
outstanding. The cache is physically indexed and physical tagged.

» L2 Cache Configuration provides the following L2 cache configuration options: 512KB, 1MB, 2MB, 4MB, and
8MB

* L2 Pipeline Tasks manages the flow of data to and from the L2 cache. The L2 pipeline performs the following
tasks:

* Accesses the tags and data RAMs located in the memory block (MEM).
* Returns data to the RSU for cache hits.

o Issues L2 miss requests.

* Issues L2 write and eviction requests.

* Returns L2 write data to the SMU. The SMU issues refill requests to the L2 for installation of data for L2
allocations

* L2 Cache Features are

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 39

40

* Supports write-back operation.
* Pseudo-LRU replacement algorithm
* Programmable wait state generator to accommodate a wide variety of SRAMs.

* L2 prefetcher. Hardware recognizes streams of sequential accesses and prefetches memory data into the L2
cache.

* Operates at same clock frequency as CPU.

* Cache line locking support

* ECC support for resilience to soft errors

* Single-bit error correction and 2-bit error detection support for Tag and Data arrays
* Single bit detection only for WS array

* Bypass mode

* Fully static design: minimum frequency is 0 MHz

* Sleep mode

¢ Memory BIST for internal SRAM arrays, with support for integrated (March C+, IFA-13) or custom BIST
controller.

1.3.2.7 CM2 Configuration Registers

The Registers block (GCR) contains the control and status registers for the CM2. It also contains registers that control
the Trace Funnel, EJTAG TAP state machine, and other multi-core features.

1.3.2.8 Performance Counter Unit

The CM2 implements a Performance Counter Unit (PERF) that contains the performance counters and associated
logic.

1.3.2.9 Coherence Manager Performance

The CM2 has a number of high performance features:

256-bit wide internal data paths throughout the CM2
128-bit or 256-bit wide system OCP interface

Integrated L2 cache provides low latency for L2 cache hits
CM2 and L2 can process up to 1 request per cycle

Cache to Cache transfers: If a read request hits in another L1 cache in the EXCLUSIVE or MODIFIED state, it
will return the data to the CM2 and it will be forwarded to the requesting CPU, thus reducing latency on the miss.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

» Speculative Reads: Coherent read requests are forwarded to the L2 cache before they are looked up in the other
caches. This is speculating that the cache line will not be found in another CPU’s L1 cache.

1.3.3 1/0 Coherence Unit (IOCU)

Hardware I/0O coherence is provided bythe I/O Coherence Unit (IOCU), which maintains I/O coherence of the caches
in all coherent CPUs in the cluster.

The IOCU acts as an interface block between the Coherence Manager (CM2) and I/O devices. Reads and writes from
I/0O devices may access the L1 and L2 caches by passing through the IOCU and the CM2. Each request from an I/O
device may be marked as coherent, non-coherent cached, or uncached. Coherent requests access the L1 and L2
caches. Non-coherent cached requests access only the L2 cache. Uncached requests bypass both the L1 and L2 caches
and are routed to main memory.

The IOCU also provides a legacy (without coherent extensions) OCP slave interface to the I/O interconnect for I/O
devices to read and write system memory. The design also includes an OCP Master port to the I/O interconnect that
allows the CPUs to access registers and memory on the I/O devices.

The IOCU design provides several features for easier integration:

* Supports incremental bursts up to 256 bytes (16 beats of 128b data) on I/O side. These requests are split into
cache-line- sized requests on the CM side

* Read responses with different TagIDs may be returned out-of-order

* Integrated /O Memory Management Unit IOMMU)

In addition, the IOCU contains the following features used to enforce transaction ordering.
* Writes are issued to the CM in the order they were received.

* The CM provides an acknowledge (ACK) signal to the IOCU when writes are “visible” (guaranteed that a subse-
quent CPU read will receive that data).

* Non-coherent write is acknowledged after serialization
* Coherent write is acknowledged after intervention complete on all CPUs
1.3.3.1 Software I/O Coherence

For cases where system redesign to accommodate hardware I/O coherence is not feasible, the CPUs and Coherence
Manager provide support for an efficient software-managed 1/O coherence. This support is through the globalization
of hit-type CACHE instructions.
When a coherent address is used for the L1 CACHE operations, the CPU makes a corresponding coherent request.
The CM2 sends interventions for the request to all of the CPUs, allowing all of the L1 caches to be maintained

together. The basic software coherence routines developed for single CPU systems can be reused with minimal mod-
ifications.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 41

42

1.3.4 Global Interrupt Controller

The Global Interrupt Controller (GIC) handles the distribution of interrupts between and among the CPUs in the clus-
ter. This block has the following features:

* Software interface through relocatable memory-mapped address range.
* Configurable number of system interrupts - from 128 to 1256.
* Support for different interrupt types:
* Level-sensitive: active high or low.
» Edge-sensitive: positive-, negative-, or double-edge sensitive.
* Virtualization support allows each interrupt to be mapped to Guest or Root.
* Ability to mask and control routing of interrupts to a particular CPU.
* Support for NMI routing.

* Standardized mechanism for sending inter-processor interrupts.
1.3.5 Global Configuration Registers (GCR)

The Global Configuration Registers (GCR) are a set of memory-mapped registers that are used to configure and con-
trol various aspects of the Coherence Manager and the coherence scheme.

1.3.5.1 Inter-CPU Debug Breaks

The MPS includes registers that enable cooperative debugging across all CPUs. Each core features a debug output
signal that indicates it has entered debug mode (possibly through a debug breakpoint). Registers are defined that
allow CPUs to be placed into debug groups such that whenever one CPU within the group enters debug mode, a
debug interrupt is sent to all CPUs within the group, causing them to also enter debug mode and stop executing non-
debug mode instructions.

1.3.5.2 CM2 Control Registers

Control registers in the CM2 allow software to configure and control various aspects of the operation of the CM2.
Some of the control options include:

» Address map: the base address for the GCR and GIC address ranges can be specified. An additional four address
ranges can be defined as well. These control whether non-coherent requests go to memory or to memory-mapped

I/O. A default can also be selected for addresses that do not fall within any range.

» Error reporting and control: Logs information about errors detected by the CM2 and controls how errors are
handled (ignored, interrupt, etc.).

» Control Options: Various features of the CM2 can be disabled or configured. Examples of this are disabling spec-
ulative reads and preventing ReadShared requests from being upgraded to Exclusive.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

1.4 Clocking Options

The P6600 core has the following clock domains:
e Cluster domain — This is the main clock domain, and includes all P6600 cores (including optional FPU3) and
the CM2 (including Coherence Manager, Global Interrupt Controller, Cluster Power Controller, trace funnel,

IOCU, and L2 cache).

¢ System Domain - The OCP port connecting to the SOC and the rest of the memory subsystem may operate at a
ratio of the cluster domain. Supported ratios are 1:1, 1:2, 1:3, 1:4, 1:5, and 1:10.

* TAP domain - This is a low-speed clock domain for the EITAG TAP controller

* 10 Domain - This is the OCP port connecting the IOCU to the I/O Subsystem. This clock may operate at a ratio
of the CM2 domain. Supported ratios are the same as the system domain.

1.5 Design For Test (DFT) Features

The P6600 core provides the following test for determining the integrity of the core.

* Internal Scan: The P6600 core supports full mux-based scan for maximum test coverage, with a configurable
number of scan chains. ATPG test coverage can exceed 99%, depending on standard cell libraries and configura-
tion options.

¢ Memory BIST: The P6600 core provides an integrated memory BIST solution for testing of all internal SRAMs.

Memory BIST can also be inserted with a CAD tool or other user-specified method. Wrapper modules and signal
buses of configurable width are provided within the core to facilitate this approach.

1.6 Configuration Options

The P6600 provides a number of configuration options as shown in Table 1.1. These are options available to you to
select for your P6600 configuration.

Table 1.1 P6600 Multiprocessing System Configuration Options

Parameter Configurable Options
Number of Cores 1,2,3,4,5,0r6
L1 Instruction Cache 32 or 64 KB
L1 Data Cache 32 or 64 KB
MIPS64 + SIMD None or MIPS64 + SIMD
System Interrupts 128 or 256
L2 Cache 512KB, 1| MB, 2 MB, 4 MB, or 8 MB
Physical Address Bits 40
Location of Boot Exception Vector Configurable
External Interface Type OCP or AXI
External Interface Width 128- or 256-bit

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

43

44

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Chapter 2

CPO Registers

The P6600 Multiprocessing System Control Coprocessor (CP0) provides the register interface to the P6600 core and
supports memory management, address translation, exception handling, and other privileged operations. Each CP0
register has a unique number that identifies it, referred to as its register number. A separate select number is used to
differentiate additional registers within the register number. For example, as shown in the table below, there are eight
configuration registers (Selects) within register number 16. If the select number is omitted, it is zero.

This chapter contains the following sections:

* Section 2.1 “CP0 Register Summary”

* Section 2.2 “CPO0 Register Descriptions”
2.1 CPO Register Summary

The following two subsections show the CPO register set grouped by function and grouped by number.
2.1.1 CPO Registers Grouped by Function

The CPO registers set are divided into the register groups shown in Table 2.1. Note that assembly programmers mod-
ifying certain CPO registers or register fields must clear any execution or instruction hazards created by the modifica-
tion.

The following table provides a functional listing of the CPO registers. Click on a Name column entry to provide a link
to the desired register.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 45

Table 2.1 P6600 CPO Registers Grouped by Function

Register Register
Category Register Name Number Select Location in Document
CPU Configuration Config 16 0 Section 2.2.1.1 on page 52
and Status Configl 16 1 Section 2.2.1.2 on page 54
Config2 16 2 Section 2.2.1.3 on page 57
Config3 16 3 Section 2.2.1.4 on page 58
Config4 16 4 Section 2.2.1.5 on page 60
Config5 16 5 Section 2.2.1.6 on page 62
Config6 16 6 Section 2.2.1.7 on page 64
Config7 16 7 Section 2.2.1.8 on page 67
PRId 15 0 Section 2.2.1.9 on page 71
EBase 15 1 Section 2.2.1.10 on page 71
Status 12 0 Section 2.2.1.11 on page 73
IntCtl 12 1 Section 2.2.1.12 on page 76
TLB Management Index 0 0 Section 2.2.2.1 on page 79
EntryLo0 2 0 Section 2.2.2.2 on page 80
EntryLol 3 0
EntryHi 10 0 Section 2.2.2.3 on page 82
Context 4 0 Section 2.2.2.4 on page 84
ContextConfig 4 1 Section 2.2.2.5 on page 85
XContext 20 0 Section 2.2.2.6 on page 86
XContextConfig 4 3 Section 2.2.2.7 on page 87
PageMask 5 0 Section 2.2.2.8 on page 88
PageGrain 5 1 Section 2.2.2.9 on page 89
Wired 6 0 Section 2.2.2.10 on page 91
BadVAddr 8 0 Section 2.2.2.11 on page 91
PWBase 5 5 Section 2.2.2.12 on page 92
PWField 5 6 Section 2.2.2.13 on page 93
PWSize 5 7 Section 2.2.2.14 on page 95
PWCtl 6 6 Section 2.2.2.15 on page 97
Exception Control Cause 13 0 Section 2.2.3.1 on page 100
EPC 14 0 Section 2.2.3.2 on page 104
ErrorEPC 30 0 Section 2.2.3.3 on page 104
BadlInstr 8 1 Section 2.2.3.4 on page 105
BadlnstrP 8 2 Section 2.2.3.5 on page 106
Timer Count 9 0 Section 2.2.4.1 on page 107
Compare 11 0 Section 2.2.4.2 on page 107

46

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.1 P6600 CPO Registers Grouped by Function (continued)

Register Register
Category Register Name Number Select Location in Document
Cache Management ITaglo 28 0 Section 2.2.5.1 on page 108
ITagHi 29 0 Section 2.2.5.2 on page 110
[Datal.o 28 1 Section 2.2.5.3 on page 111
IDataHi 29 1 Section 2.2.5.4 on page 111
DTaglo 28 2 Section 2.2.5.5 on page 112
DDatal.o 28 3 Section 2.2.5.6 on page 115
L23Taglo 28 4 Section 2.2.5.7 on page 116
L23Datal.o 28 5 Section 2.2.5.8 on page 117
L23DataHi 29 5 Section 2.2.5.9 on page 118
ErrCtl 26 0 Section 2.2.5.10 on page 118
CacheErr 27 0 Section 2.2.5.11 on page 120
Shadow Registers SRSCtl 12 2 Section 2.2.6.1 on page 121
Performance PerfCtl0 25 0 Section 2.2.7.1 on page 123
Monitoring PerfCtl1 25 2
PerfCtl2 25 4
PerfCtl3 25 6
PerfCnt0 25 1 Section 2.2.7.2 on page 132
PerfCntl 25 3
PerfCnt2 25 5
PerfCnt3 25 7
Debug Debug 23 0 Section 2.2.8.1 on page 132
DEPC 24 0 Section 2.2.8.2 on page 135
DESAVE 31 0 Section 2.2.8.3 on page 136
WatchLo0 18 0 Section 2.2.8.4 on page 136
WatchLol 18 1
WatchLo2 18 2
WatchLo3 18 3
WatchHi0 19 0 Section 2.2.8.5 on page 137
WatchHil 19 1
WatchHi2 19 2
WatchHi3 19 3

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

Table 2.1 P6600 CPO Registers Grouped by Function (continued)

Register Register
Category Register Name Number Select Location in Document
PDTrace TraceControl 23 1 Section 2.2.9.1 on page 138
TraceControl2 23 2 Section 2.2.9.2 on page 140
TraceControl3 24 2 Section 2.2.9.3 on page 142
UserTraceDatal 23 3 Section 2.2.9.4 on page 143
UserTraceData2 24 3 Section 2.2.9.5 on page 144
TraceIBPC 23 4 Section 2.2.9.6 on page 144
TraceDBPC 23 5 Section 2.2.9.7 on page 145
User Mode Support HWREna 7 0 Section 2.2.10.1 on page 147
UserLocal 4 2 Section 2.2.10.2 on page 148
Kernel Mode Support KScratchl 31 2 Section 2.2.11 on page 150
KScratch2 31 3
KScratch3 31 4
KScratch4 31 5
KScratch5 31 6
KScratch6 31 7
Memory Mapped CDMMBase 15 2 Section 2.2.12.1 on page 152
CMGCRBase 15 3 Section 2.2.12.2 on page 153
Virtualization GuestCtl0 12 6 Section 2.2.13.1 on page 154
GuestCtl1 10 4 Section 2.2.13.2 on page 158
GuestCtl2 10 5 Section 2.2.13.3 on page 159
GuestCtlIOExt 11 4 Section 2.2.13.4 on page 161
GTOffset 12 7 Section 2.2.13.5 on page 163
Memory Accessibility MAAR 17 1 Section 2.2.14.1 on page 165
Altribute MARRI 17 2 Section 2.2.14.2 on page 168
Memory Segmentation SegCtl0 - SegCtl2 5 2-4 Section 2.2.15 on page 169

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.1.2 CPO Registers Grouped by Number

Table 2.2 CPO Registers Grouped by Number

The following table provides a numerical listing of the P6600 CPO registers. Click on a Name column entry to pro-
vide a link to the desired register.

Register
Num Sel Name Function Location
0 0 Index Index into the TLB array Section 2.2.2.1
2 0 EntryLo0 Low-order portion of the TLB entry for even-numbered virtual pages. Section 2.2.2.2
3 0 EntryLol Low-order portion of the TLB entry for odd-numbered virtual pages.
4 0 Context Pointer to page table entry in memory. Section 2.2.2.4
4 1 ContextConfig Defines the bits of the Context register into which the high order bits Section 2.2.2.5
of the virtual address causing a TLB exception will be written, and
how many bits of that virtual address will be extracted.
4 2 UserLocal User information that can be written by privileged software and read Section 2.2.10.2
via RDHWR register 29
4 3 XContextConfig Defines the bits of the XContext register into which the high order Section 2.2.2.7
bits of the virtual address causing a TLB exception will be written,
and how many bits of that virtual address will be extracted.
5 0 PageMask PageMask controls the variable page sizes in TLB entries. Section 2.2.2.8
5 1 PageGrain PageGrain controls the granularity of the page sizes in TLB entries. Section 2.2.2.8
5 5 PWBase Hardware page table walker base address register. Section 2.2.2.12
5 6 PWField Hardware page table walker field configuration register. Section 2.2.2.13
5 7 PWSize Hardware page table walker size register. Section 2.2.2.14
6 0 Wired Controls the number of fixed (“wired””) TLB entries. This register is Section 2.2.2.10
reserved if the TLB is not implemented.
6 6 PWCtl Hardware page table walker configuration register. Section 2.2.2.15
7 0 HWREna Enables access via the RDHWR instruction to selected hardware reg- Section 2.2.10.1
isters in non-privileged mode.
8 0 BadVAddr Reports the address for the most recent address-related exception. Section 2.2.2.11
8 1 BadlInstr Captures the most recent instruction that caused the exception. Section 2.2.3.4
8 2 BadlnstrP Used in conjunction with the Badlnstr register. Contains the prior Section 2.2.3.5
branch instruction, when the faulting instruction is in a branch delay
slot.
9 0 Count Processor cycle count. Section 2.2.4.1
10 0 EntryHi High-order portion of the TLB entry. This register is reserved if the Section 2.2.2.3
TLB is not implemented.
10 4 GuestCtl1 Guest ID register used in Virtualization. Section 2.2.13.2
10 5 GuestCtl2 Guest interrupt-related register used in virtualization. Section 2.2.13.3
11 0 Compare Timer interrupt control. Section 2.2.4.2
11 4 GuestCtI0Ext Extension of guest control register used in virtualization. Section 2.2.13.4
12 0 Status Processor status and control. Section 2.2.1.11

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

49

Table 2.2 CP0O Registers Grouped by Number (continued)

Register
Num Sel Name Function Location
12 1 IntCtl Setup for interrupt vector and interrupt priority features. Section 2.2.1.12
12 2 SRSCtl Shadow register set control. Section 2.2.6.1
12 6 GuestCtl0 Guest mode control register used in virtualization. Section 2.2.13.1
12 7 GTOffset Guest timer offset register used in virtualization. Section 2.2.13.5
13 0 Cause Cause of last exception. Section 2.2.3.1
14 0 EPC Program counter at last exception. Section 2.2.3.2
15 0 PRId Processor identification and revision. Section 2.2.1.9
15 1 EBase Exception base address. Section 2.2.1.10
15 2 CDMMBase Common Device Memory Map Base Address. Section 2.2.12.1
15 3 CMGCRBase Defines the 36-bit physical base address for the memory-mapped Section 2.2.12.1
Coherency Manager Global Configuration Register (CMGCR) space.
16 0 Config Configuration register. Section 2.2.1.1
16 1 Configl Configuration for MMU, caches etc. Section 2.2.1.2
16 2 Config2 Configuration for MMU, caches etc. Section 2.2.1.3
16 3 Config3 Interrupt and ASE capabilities Section 2.2.1.4
16 4 Config4 Indicates presence of Config5 register Section 2.2.1.5
16 5 Config5 Provides information on EVA and cache error exception vector. Section 2.2.1.6
16 5 Config6 Provides information about the presence of optional extensions to the Section 2.2.1.7
base MIPS64 architecture.
16 7 Config7 P6600 family-specific configuration register. Section 2.2.1.8
17 1 MAAR Memory accessibility attribute register. Section 2.2.14.1
17 2 MARRI Memory accessibility attribute index register. Section 2.2.14.2
18 0 WatchLoO Watchpoint address associated with instruction watchpoint 0. Section 2.2.8.4
18 1 WatchLol Watchpoint address associated with instruction watchpoint 1.
18 2 WatchLo2 Watchpoint address associated with data watchpoints 0.
18 3 WatchLo3 Watchpoint address associated with data watchpoints 1.
19 0 WatchHi0 Watchpoint ASID and Mask associated with instruction watchpoint 0. Section 2.2.8.5
19 1 WatchHil Watchpoint ASID and Mask associated with instruction watchpoint 1.
19 2 WatchHi2 Watchpoint ASID and Mask associated with data watchpoint 0.
19 3 WatchHi3 Watchpoint ASID and Mask associated with data watchpoint 1.
20 0 XContext Pointer to page table entry in memory. Section 2.2.2.6
23 0 Debug EJTAG Debug register. Section 2.2.8.1
23 1 TraceControl PDTrace control register 1. Section 2.2.9.1
23 2 TraceControl2 PDTrace control register 2. Section 2.2.9.2
23 3 UserTraceDatal PDTrace user trace data 1. Section 2.2.9.4
23 4 TraceIBPC Trace instruction breakpoint condition. Section 2.2.9.6
23 5 TraceDBPC Trace data breakpoint condition. Section 2.2.9.7
50 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.2 CP0O Registers Grouped by Number (continued)

Register
Num Sel Name Function Location
24 0 DEPC Restart address from last EJTAG debug exception. Section 2.2.8.2
24 2 TraceControl3 PDTrace Control 3. Section 2.2.9.3
24 3 UserTraceData2 PDTrace user trace data 2. Section 2.2.9.5
25 0 PerfCtl0 Performance counter 0 control. Section 2.2.7.1
25 1 PerfCnt0 Performance counter 0 count. Section 2.2.7.2
25 2 PerfCtll Performance counter 1 control. Section 2.2.7.1
25 3 PerfCntl Performance counter 1 count. Section 2.2.7.2
25 4 PerfCtl2 Performance counter 2 control. Section 2.2.7.1
25 5 PerfCnt2 Performance counter 2 count. Section 2.2.7.2
25 6 PerfCtl3 Performance counter 3 control. Section 2.2.7.1
25 7 PerfCnt3 Performance counter 3 count. Section 2.2.7.2
26 0 ErrCtl Software test enable of way-select and Data RAM arrays for I-Cache Section 2.2.5.10
and D-Cache.
27 0 CacheErr Records information about cache parity errors Section 2.2.5.11
28 0 ITaglo Cache tag read/write interface for I-cache. Section 2.2.5.1
28 1 IDatalLo Low-order data read/write interface for I-cache. Section 2.2.5.3
28 2 DTagLo Cache tag read/write interface for D-cache. Section 2.2.5.5
28 3 DDatalo Low-order data read/write interface for D-cache. Section 2.2.5.6
28 4 L23TagLo Cache tag read/write interface for L2-cache. Section 2.2.5.7
28 5 L23Datalo Low-order data read/write interface for L2-cache. Section 2.2.5.8
29 0 ITagHi Cache tag read/write interface for I-cache, upper 32 bits. Section 2.2.5.1
29 1 [DataHi High-order data read/write interface for I-cache. Section 2.2.5.4
29 5 L23DataHi High-order data read/write interface for L2-cache. Section 2.2.5.9
30 0 ErrorEPC Program counter at last error. Section 2.2.3.3
31 0 DESAVE Debug handler scratchpad register. Section 2.2.8.3
31 2 KScratchl Kernel scratch pad register 1. Section 2.2.11
31 3 KScratch2 Kernel scratch pad register 2. Section 2.2.11
31 4 KScratch3 Kernel scratch pad register 3. Section 2.2.11
31 5 KScratch4 Kernel scratch pad register 4. Section 2.2.11
31 6 KScratch5 Kernel scratch pad register 5. Section 2.2.11
31 7 KScratch6 Kernel scratch pad register 6. Section 2.2.11

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

51

2.2 CPO Register Descriptions

The following subsections describe the CPO registers listed in Table 2.1 above.
2.2.1 CPU Configuration and Status Registers

This section contains the following CPU Configuration and Status registers.

* Section 2.2.1.1, "Device Configuration — Config (CP0 Register 16, Select 0)" on page 52

* Section 2.2.1.2, "Device Configuration | — Configl (CPO Register 16, Select 1)" on page 54
* Section 2.2.1.3, "Device Configuration 2 — Config2 (CP0 Register 16, Select 2)" on page 57
* Section 2.2.1.4, "Device Configuration 3 — Config3 (CPO Register 16, Select 3)" on page 58
* Section 2.2.1.5, "Device Configuration 4 — Config4 (CPO Register 16, Select 4)" on page 60
* Section 2.2.1.6, "Device Configuration 5 — Config5 (CP0 Register 16, Select 5)" on page 62
* Section 2.2.1.7, "Device Configuration 6 — Config6 (CP0 Register 16, Select 6)" on page 64
* Section 2.2.1.8, "Device Configuration 7 — Config7 (CP0 Register 16, Select 7)" on page 67
e Section 2.2.1.9, "Processor ID — PRId (CP0 Register 15, Select 0)" on page 71

* Section 2.2.1.10, "Exception Base Address — EBase (CP0 Register 15, Select 1)" on page 71
* Section 2.2.1.11, "Status (CP0O Register 12, Select 0)" on page 73

* Section 2.2.1.12, "Interrupt Control — IntCtl (CPO Register 12, Select 1)" on page 76

2.2.1.1 Device Configuration — Config (CPO Register 16, Select 0)

The main role of the Config register is to be a read-only repository of information about the P6600 core resources,
encoded so as to be useful to operating system initialization code.

52 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.1 Config Register Format

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 09 7 4 3 2 0
M K23 KU ISP | DSP | UDI | SB 0 MM (0 | BM | BE| AT AR MT 0 VI| KO
Table 2.3 Field Descriptions for Config Register
Read/
Name Bit(s) Description Write Reset State
M 31 This bit is hardwired to ‘1’ to indicate the presence of the Configl register. R 1
K23 30:28 | These fields are unused in the P6600 core since the TLB structure is supported. | R/W 0x0
KU 2725 They should be written as zero only. R/W 0x0
ISP 24 Instruction Scratch Pad RAM present. This bit is always 0 in the P6600 core. R 0
0: Instruction scratch pad RAM (ISPRAM) is not implemented.
1: Instruction scratch pad RAM (ISPRAM) is implemented.
DSP 23 Data Scratch Pad RAM present. This bit is always 0 in the P6600 core. R 0
0: Data scratch pad RAM (DSPRAM) is not implemented.
1: Data scratch pad RAM (DSPRAM) is implemented.
uUDI 22 User-Defined Instruction. This bit is always 0 in the P6600 core. R 0
0: The P6600 core does not contain user-defined "CorExtend" instructions.
1: The P6600 core contains user-defined "CorExtend" instructions.
SB 21 Read-only "SimpleBE" bus mode indicator, which reflects the P6600 input sig- R Externally Set
nal SI_SimpleBE.
0: No reserved byte enabled on the OCP interface.
1: Only simple byte enables allows on the OCP interface.
If set by hardware, the P6600 core will only do simple partial-word transfers on
its OCP interface; that is, the only partial-word transfers will be byte, aligned
half-word, and aligned word.
If zero, it may generate partial-word transfers with an arbitrary set of bytes
enabled. This generates less requests, but may not be supported by all down-
stream devices.
0 20:19 | Must be written as zero; returns zero on read. R 0
MM 18 Write Merge. This bit indicates whether write-through merging is enabled in the R/W 1
32-byte collapsing write buffer.
0: No merging allowed
1: Merging allowed
Setting this bit allows writes resulting from separate store instructions in write-
through mode to be merged into a single transaction at the interface.
The state of this bit does not affect cache writebacks (which are always whole
blocks together) or uncached writes (which are never merged).
0 17 Must be written as zero; returns zero on read. R 0
BM 16 Burst Mode. R 0
0: Sequential burst mode
1: Subblock burst mode
This bit reads 0 when the bus uses sequential burst ordering and reads 1 when it
uses sub-block burst ordering. This bit is set by the inputsignal SI_SBlock signal
to match the system controller.
BE 15 Endian mode. R Externally Set
0: Little endian
1: Big endian
This bit is written by hardware based on the state of the SI_Endian input pin.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

53

Table 2.3 Field Descriptions for Config Register (continued)

Read/
Name Bit(s) Description Write Reset State

AT 14:13 | Architecture type implemented by the processor. R 0x2
This field is always 0x2 to indicate the MIPS64 architecture.

AR 12:10 | Architecture release. R 0x2
0x2: Release 6
This bit always reads 2 to reflect Release 6 of the MIPS64 architecture.

MT 9:7 | MMU type: This field is encoded as follows. For Root mode, this field has a R 0x1 or Ox4
default value of 3’b001. In Guest mode, the Root can write the Guest.Config.MT
field with a value of 3’b001 or 3°’b100 depending on whether an FTLB is imple-
mented.

000: Reserved

001: VTLB Only

010 - 011: Reserved

100: VTLB + FTLB

101 - 111: Reserved

0 6:4 Must be written as zero; returns zero on read. R 0

VI 3 Virtually indexed. This bit is set by hardware and is 0 to indicate that the L1 R 0
instruction cache is physically tagged.

KO 2:0 | Kseg0 coherency attribute of the page. See Table 2.19 for the field encoding. R/W 2

2.2.1.2 Device Configuration 1 — Configl (CPO Register 16, Select 1)

The Configl register provides information such as the size of the VTLB and the L1 instruction and data cache param-
eters. It also contains a series of single bits that indicate the presence of selected logic units on the P6600 core.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.2 Configl Register Format

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0
M MMUSize IS IL 1A DS DL DA |C2| MD |PC| WR | CA | EP | FP
Table 2.4 Field Descriptions for Configl Register

Name Bit(s) Description Read/ Write | Reset State
M 31 Continuation bit, set to 1 to indicate that the Config2 register is implemented. R 1
MMUSize 30:25 | The size of the TLB array (the array has MMUSize + 1 entries). Refer to the R 0x3F
Config4 register for more information. In Root mode, this field has a default
value of 0x3F. In Guest mode, the Root can write the
Guest.Configl MMUSize field with another default value depending on the
size of the MMU.
IS 24:22 | L1 Instruction cache number of sets per way. This field indicates the number of R Preset
sets per way in the L1 instruction cache. The number of sets is multiplied by
the number of ways and the line size to derive the cache size. In this case, the
number of sets defines the cache size since the line size and number of ways in
the P6600 core are fixed. This field is encoded as follows:
000 - 001: Reserved
010: 256 sets per way (equates to 32 KByte instruction cache)
011: 512 sets per way (equates to 64 KByte instruction cache)
100 - 111: Reserved
Because the line size and associativity are fixed for the P6600 instruction
cache as defined in the IL and IA fields below, the IS field is used to determine
the overall cache size as follows:
If this field is set to 2, the instruction cache size would be:
256 sets/way x 32 bytes/line x 4 sets per way = 32 KBytes.
If this field is set to 3, the instruction cache size would be:
512 sets/way x 32 bytes/line x 4 sets per way = 64 KBytes.
IL 21:19 | L1 Instruction cache line size. In the P6600 core, the instruction cache line size R Preset
is fixed at 32 bytes. As such, this field is encoded as follows:
000 - 011: Reserved
100: 32 byte line size
101 - 111: Reserved
1A 18:16 | L1 Instruction cache associativity. In the P6600 core, the instruction cache R 3
associativity is fixed at 4 ways. As such, this field is encoded as follows:
000 - 010: Reserved
011: 4-ways
100 - 111: Reserved
A default value of 3 indicates a 4-way set associative instruction cache. Refer
to the IS field above to determine how to calculate the size of the L1 instruc-
tion cache.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

55

Table 2.4 Field Descriptions for Configl Register

Name

Bit(s)

Description

Read/ Write

Reset State

DS

15:13

L1 Data cache number of sets per way. This field indicates the number of sets
per way in the L1 data cache and is encoded as follows: The number of sets is
multiplied by the number of ways and the line size to derive the cache size. In
this case, the number of sets defines the cache size since the line size and num-
ber of ways in the P6600 core are fixed. This field is encoded as follows:

000 - 001: Reserved

010: 256 sets per way (equates to 32 KByte instruction cache)

011: 512 sets per way (equates to 64 KByte instruction cache)

100 - 111: Reserved

Because the line size and associativity are fixed for the P6600 data cache as
defined in the DL and DA fields below, the DS field is used to determine the
overall cache size as follows:

If this field is set to 2, the data cache size would be:

256 sets/way x 32 bytes/line x 4 sets per way = 32 KBytes.

If this field is set to 3, the data cache size would be:

512 sets/way x 32 bytes/line x 4 sets per way = 64 KBytes.

R

Preset

DL

12:10

L1 data cache line size. In theP6600 core, the data cache line size is fixedat 32
bytes. As such, this field is encoded as follows:

000 - 011: Reserved

100: 32 byte line size

101 - 111: Reserved

Preset

DA

9:7

L1 data cache associativity. In the P6600 core, the data cache associativity is
fixed at 4 ways. As such, this field is encoded as follows:

000 - 010: Reserved

011: 4-ways

100 - 111: Reserved

A default value of 3 indicates a 4-way set associative data cache.

Cc2

This bit is always 0 to indicate that a coprocessor 2 is not supported.

Preset

MD

MDMX Application Specific Extension (ASE).
A logic ‘0’ indicates that the MDMX ASE is not implemented in the floating
point unit (FPU) of the P6600 core.

0

PC

Performance counter enable.

There are four performance counters implemented in the P6600 core. For the
Root version of this register, this bit isalways a logic ‘1°. For the Guest version
of this register, this bit can be cleared by the root using the MTGCO instruc-
tion. Refer to the PerfCtl0-3 and PerfCnt0-3 registers for more information.

WR

Watchpoint registers present.

This bit always reads 1 because the P6600 core always contains watchpoint
registers. Refer to the WatchLo 0-3/WatchHi 0-3 registers in Section
2.2.8.4 “Watch Low 0 - 3 — WatchLo0-3 (CPO Register 18, Select 0-3)”.

CA

MIPS16e present. This bit always reads 0 to indicate the MIPS16e com-
pressed-code instruction set is not available.

EP

EJTAG unit present. This bit always reads 1 as the EITAG debug unit is pro-
vided on the P6600 core.

FP

Floating Point Unit present. This bit is set to indicate that a floating point unit
is present. The floating point unit is optional on the P6600 core.

Preset

56

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

31 30

2.2.1.3 Device Configuration 2 — Config2 (CPO Register 16, Select 2)

The Config2 register provides information about the size and organization of L2 and L3 caches. The Config2 register
also has fields that indicate the presence of some extensions to the base MIPS64 architecture.

An L3 cache can be used with the P6600 core. However, the core does not support passing of the L3 configuration
information via the Config2 register. As such, the TU, TS, TL and TA bits of this register, which handle L3 opera-
tions, are not used and are all tied to 0. Information on L3 transfers may be available in an implementation specific
register elsewhere in the system.

28 27

Figure 2.3 Config2 Register Format

bit also forces Config2s,_ to 0. Based on this information, most operating system
code will conclude that there is no L2 cache in the system.

Setting this bit forces hardware to drive a series of internal handshake signals
between the core to the CM2, placing the L2 cache into bypass mode.

When this bit is set through a write operation, a subsequent read of this bit will
not indicate a logic 1 until the L2 has asserted its internal handshake signal, indi-
cating that it has been bypassed.

24 23 20 19 16 15 13 12 1 7 3 0
M TU TS TL TA SU L2B SS SL SA
Table 2.5 Field Descriptions for Config2 Register
Name | Bit(s) Description Read/ Write Reset State
M 31 This bit is hardwired to ‘1’ to indicate the presence of the Config3 register. R 1
TU 30:28 | An L3 cache can be used with the P6600 core. However, the core does not sup- R 0
TS 2704 port passing of the L3 configuration data via the Config2 register. As such, the R 0
: TU, TS, TL and TA bits of this register, which report L3 information, are not
TL 23:20 | used and are all tied to 0. Details of the L3 configuration may be available in an R 0
TA 19:16 implementation specific register elsewhere in the system. R 0
SU 15:13 | These bits are reserved in the P6600 core and is always 0. R 0
L2B 12 L2 cache bypass. Setting this bit disables or bypasses the L2 cache. Setting this R/W 0

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

57

Table 2.5 Field Descriptions for Config2 Register

Name | Bit(s) Description Read/ Write Reset State
SS 11:8 | L2 cache number of sets per way. This field indicates the number of sets per way R Preset
in the L2 cache of the Coherent Processing System (CPS) and is written by hard-
ware at reset based on the state of the L2_Sets[3:0] signals.
At IP configuration time, the user selects the cache size and the line size. Hard-
ware then takes this information and selects the appropriate number of sets. See
the example formulas below for determining the number of sets based on cache
and line size.
This field is encoded as follows:
0x0 - 0x3: Reserved
0x4: 1024 sets per way
0x5: 2048 sets per way
0x6: 4096 sets per way
0x7: 8192 sets per way
0x8: 16384 sets per way
0x9: 32768 sets per way
0xA- OxF: Reserved
For example:
If this field is set to 0x4, the SL field is set to 0x5, and the SA field is set to 0x4,
the L2 cache size would be:
1024 sets/way x 64 bytes/line x 8 ways = 512 KBytes
Conversely, if this field is set to 0x9, the SL field is set to 0x4, and the SA field
is set to 0x4, the L2 cache size would be:
32768 sets/way x 32 bytes/line x 8 ways = 8§ MBytes
SL 7:4 | L2 cache line size. The L2 cache line sizes can be configured at 32 or 64 bytes. R Preset
This field is written by hardware at reset based on the state of the
L2_LineSize[3:0] signals. These signals are driven based on the customer’s line
size choice during IP configuration. As such, this field is encoded as follows:
0x0 - 0x3: Reserved
0x4: 32 byte line size
0x5: 64 byte line size
0x6 - OxF: Reserved
SA 3:0 L2 cache associativity. In the P6600 core, the L2 cache associativity is fixed at 8 R 0x7
ways. This field is written by hardware at reset based on the state of the
L2_Assoc[3:0] signals. As such, this field is encoded as follows:
0x0 - 0x6: Reserved
0x7: 8-way set associative
0x8 - OxF: Reserved

2.2.1.4 Device Configuration 3 — Config3 (CPO Register 16, Select 3)

58

Config3 provides information about the presence of optional extensions to the base MIPS64 architecture in addition to
those specified in Config2. All fields in the Config3 register are read-only.

If Virtualization is supported (Config3yz = 1), and GuestID is supported, then explicit invalid TLB entry support
(EHINV) is required in order for a Guest to be able to detect invalid entries in the Guest TLB.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.4 Config3 Register Format

31 30 29 28 27 26 25 24 23 22 16
M | BPG | CMGCR | MSAP | BP BI SC PW | VZ
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
ISA ULRI | RXI| DSP2P DSPP CTXTC 0 |LPA| VEIC Vint | SP | CDMM | MT | SM | TL
Table 2.6 Field Descriptions for Config3 Register
Read/
Name Bit(s) Description Write Reset State
M 31 Configuration continuation bit. This bit is always one to indicate the presence R 1
of Config4.
BPG 30 Big pages. This bit is always 1 to indicate that TLB pages larger than 256 MB R 1
are supported and that the CPO PageMask Register is 64-bits wide.
CMGCR 29 Reads 1 to indicate that the Coherence Manager has a Global Configuration R 1
Register Space and the CMGCRBase cop0 register is implemented.
MSAP 28 MIPS SIMD architecture implemented. This bit indicates if the MIPS SIMD R Preset
architecture is implemented and is encoded as follows:
0: MSA module not implemented
1: MSA module is implemented
BP 27 BadInstrP register implemented. This bit indicates whether the faulting prior R 1
branch instruction word register is present. This bit is always set in the P6600
core to indicate the presence of the BadInstrP register.
BI 26 BadlInstr register implemented. This bit indicates whether the faulting branch R 1
instruction word register is present. This bit is always set in the P6600 core to
indicate the presence of the BadInstr register.
SC 25 Segment Control implemented. This bit indicates whether the Segment Control R 1
registers SegCtl0, SegCtl1 and SegCtl2 are present. This bit is always 1 in the
P6600 core.
PW 24 HardWare page table walk implemented. This bit indicates whether the page R Preset
table walking registers PWBase, PWField and PWSize are present. This bit is
encoded as follows:
0: Page table walking not implemented.
1: Page table walking is implemented
VZ 23 Virtualization Module implemented. This bit indicates whether the Virtualiza- R 1
tion Module is implemented. This bit is always 1 for the P6600 core.
0: Virtualization module not implemented
1: Virtualization module is implemented
0 22:16 | Must be written as zero; returns zero on read. R 0
ISA 15:14 | Indicates the instruction set availability. This bit is always 0 to indicate R 0
MIPS64.
ULRI 13 Reads 1 to indicate that the UserLocal Register is implemented. R 1
RXI 12 Reads 1 to indicate that the RIE and XIE fields exist in the PageGrain register. R 1
DSP2P 11 Indicates the MIPS DSP ASE revision. This bit is ignored in the P6600 core. R 0
0: Revision 1 (DSP R1)
1: Revision 2 (DSP R2)

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

59

Table 2.6 Field Descriptions for Config3 Register (continued)

Read/
Name Bit(s) Description Write Reset State

DSPP 10 Reads 1 to indicate that the MIPS DSP ASE extension is implemented. This bit R 0
is always 0 in the P6600 core.

CTXTC 9 Reads 1 to indicate the ContextConfig register is implemented. The width of the R 1
BadVPN?2 field in the Context register depends on the contents of the
ContextConfig register.

0 8 Must be written as zero; returns zero on read. R 0

LPA 7 Large physical address support is implemented, and the PageGrain register R 1
exists.
The following Coprocessor 0 fields and associated control are present if this bit
isal:

* Modifications to the EntryLo0/1, EntryHi, and BadVaddr registers to support
40-bit physical addresses of the P6600.

* Modifications to other optional COPO registers with PA: LLAddr, ITagLo
and DTagLo.

+ PageGrain

* Config5.MVH

VEIC 6 Support for an external interrupt controller. This bit is set or cleared by hard- R Externally Set
ware depending on whether the EIC option was selected at build time.

0: Support for EIC mode not supported.

1: Support of EIC mode supported.

The value of this bit is set by the static input, SI_EICPresent. This allows exter-
nal logic to communicate whether an external interrupt controller is attached to
the processor or not

Vint 5 Vectored interrupts implemented. This bit indicates whether vectored interrupts R 1
are implemented. On the P6600 core, this bit reads 1 to indicate the CPU can
handle vectored interrupts.

SP 4 Reads 0 to indicate the CPU does not support 1 Kbyte TLB pages. R 0

CDMM 3 Reads 1 to indicate the Common Device Memory Map (CDMM) feature is R 1
implemented, as well as the CDMMBase register is present.

MT 2 Reads 0 to indicate the P6600 core does not include the MIPS MT module. R 0

SM 1 Reads 0 to indicate the P6600 does not include the instructions of the Smart- R 0
MIPS ASE.

TL 1 Reads 1 to indicate PDTrace is supported. R 0

2.2.1.5 Device Configuration 4 — Config4 (CPO Register 16, Select 4)

The Config4 register encodes additional capabilities such as TLBINYV instruction support and the number of kernel
scratch registers.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.5 Config4 Register Format

31 30 29 28 27 24 23 16 15 13 12 11 10 9 8 7 6 5 4 2 1 o0
VTLB . .
M| IE |AE . KScrExist 0 FTLB Page Size FTLB Ways FTLB Sets
SizeExt
Table 2.7 Field Descriptions for Config4 Register
Read/
Name Bit(s) Description Write Reset State
M 31 Configuration continuation bit. This bit is one to indicate the presence of R 1
Config5.
IE 30:29 | TLBINV instruction support. For this field, the P6600 core only returns the R 0x2
following encoding.
10: TLBINV, TLBINVF instruction supported, EntryHiggmny supported.
TLBINV, TLBINVF instruction operate on one TLB entry.
AE 28 If this bit is set, then EntryHI.ASID is extended to 10 bits. R Preset
VTLBSizeExt 27:24 | VTLB size extension. This field is used to extend the size of the VTLB. This R Preset
field is always concatenated to the left of the most-significant bit of the
Configlmmusize. In the P6600 core the VTLB size is fixed. Hence this field
is not used.
KScrExist 23:16 |Indicates how many scratch registers are available to kernel-mode software R 0xFC
within CPO Register 31. In the P6600 architecture, six kernel scratch regis-
ters are included at register selects 2 - 7.
Each bit represents a select for CPO Register 31. Bit 16 represents Select 0,
Bit 23 represents Select 7. If the bit is set, the associated scratch register is
implemented and available for kernel-mode software. Therefore, this field
contains a value of 0xFC (8°’b11111100). This indicates that bits 18 - 23 are
set, corresponding to selects 2 - 7.
These registers are used by the kernel for temporary storage of information.
Refer to Section 2.2.11, "Kernel Mode Support Registers" on page 150 for
more information.
0 15:13 | Reserved. Must be written as zero. Ignored on reads. R 0
FTLB Page 12:8 | Indicates the Page Size of the FTLB Array Entries. The FTLB must be R/W 0x01
Size flushed of any valid entries before this register field value is changed by soft-
ware. The FTLB behavior is UNDEFINED if there are valid FTLB entries
which were not all programmed using a common page size.
This field is encoded as follows:
00000: Reserved
00001: 4 KB
00010: 16 KB
00011 - 11111: Reserved
FTLB Ways 7:4 Indicates the set associativity of the FTLB array, which is fixed at 4 in the R 0x2
P6600 architecture. This field is encoded as follows:
0000 - 0001: Reserved
0010: 4 way
0011 - 1111: Reserved
FTLB Sets 3:0 Indicates the number of sets per way within the FTLB array, which is fixed at R 0x7
128 in the P6600 architecture. This field is encoded as follows:
0000 - 0110: Reserved
0111: 128 sets
1000 - 1111: Reserved

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

61

2.2.1.6 Device Configuration 5 — Config5 (CPO Register 16, Select 5)

31 30

The Config5 register encodes additional capabilities for the address mode programming and cache error exceptions.

29

26

Figure 2.6 Configh Register Format

16

cv

EVA | MSAEN

15

14

13 12

11

10

XNP 0

DEC

L2C

UFE

FRE

SBRI

MVH

LLB

MRP

0 NFE

Table 2.8 Field Descriptions for Configs Register

Name

Bit(s)

Description

Read/
Write

Reset State

31

Configuration continuation bit. Even though the Configé and Config7 regis-
ters are used in the P6600 Multiprocessing System, they are both defined as
implementation-specific registers. As such, this bit is zero and is not used to
indicate the presence of Config6.

0

30

This bit effects the cache coherency attributes, the boot exception vector
overlay, and the location of the exception vector as follows:

When this bit is cleared, the following events occur:

1. The Configkpg field is used to set the cache coherency attributes for the
kseg0 region (0x8000_0000 - 0x9FFF_FFFF).

2. Hardware creates two boot overlay segments, one for kseg0 and one for
ksegl.

3. The exception vectors are forced to reside in kseg0/ksegl by ignoring the
state of bits 31:30 of the EBase register as well as the
SI_ExceptionBase[31:30] pins and forcing them to a value of 2°b10.

When this bit is set, the following events occur:

1: The Configyp field is ignored and the cache coherency attributes are
derived from the C fields of the various segmentation control registers
(SegCtl0 - SegCtl2).

2. Hardware creates one boot overlay segment that can reside anywhere in
virtual address space.

3. The exception vectors are not forced to reside in kseg0/ksegl. Rather, bits
31:30 of the EBase register, as well as the SI_ExceptionBase[31:30] signals
and used to place the exception vectors anywhere within virtual address
space.

R/W

(0\%

29

Cache error exception vector control. Disables logic forcing use of ksegl
region in the event of a Cache Error exception when Statusggy = 0.

When the CV bit is cleared, bits 31:30 of the EBase Register are fixed with
the value 2°b10 to force the exception base address to be in the kseg0 or
ksegl unmapped virtual address segments. Bit 29 of exception base address
will be forced to 1 on Cache Error exceptions so the exception handler will
be executed from the uncached ksegl segment.

When the CV bit is set, the ExcBase field is expanded to include bits 31:30
to facilitate programmable memory segmentation.

R/W

EVA

28

This bit is always a logic one to indicate support for enhanced virtual address
(EVA).

62

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.8 Field Descriptions for Configs Register (continued)

Name

Bit(s)

Description

Read/
Write

Reset State

MSAEN

27

MIPS SIMD architecture (MSA) enable. This bit is encoded as follows:

0: MSA instructions and registers are disabled. Executing an MSA instruc-
tion causes a MSA disabled exception.

1: MSA instructions and registers are enabled.

R/W

0

Reserved

26:14

Reserved. Must be written as zero. Ignored on reads.

XNP

13

Extended LL/SC family of instructions. The LLX/SCX family of instruc-
tions is required for Release 6 Double-Width atomic support. This support is
provided by extending the capability of legacy LL/SC instructions.

0: LLX/SCX instruction family supported

1: LLX/SCX instruction family not supported

This bit is always 1 in the P6600 core.

This bit can be read in user mode by setting the XNP bit in the HWREna CP0
register. Refer to Section 2.2.10.1, "Hardware Enable — HWREna (CPO
Register 7, Select 0)".

Reserved. Must be written as zero. Ignored on reads.

DEC

11

Dual Endian Capability. Determines endian capability of processor.If both
modes are supported, then the processor will initially boot in little-endian
mode always. Thereafter, software can force a change in endian mode by set-
ting a bit in a memory-mapped external register. The endian mode change
will only take effect on a subsequent reset. For current endian state, software
should read Config.BE.

0: Only Little-Endian mode supported. Any implementation must support
Little-endian mode.

1: Both Little and Big-Endian modes supported.

L2C

Indicates presence of COPO Config2.

0: Config2 present. Software can read Config2 to determine L2/L3 cache
configuration.

1: Config2 not present. Replaced by memory mapped register that software
can read instead.

UFE

Enable for user mode access to Config5.FRE. User mode can conditionally
access Config5.FRE using CTC1 and CFC1 instructions.

0: An attempt by the user to read/write Config5.FRE causes a Reserved
Instruction exception.

1: User is allowed to write Config5.FRE (only) using CTC1, and read
Config5.FRE (only) using CFCI1.

A kernel can access Config5 using MTCO/MFCO. Config5.UFE applies also
to kernel use of CFC1/CTCI. Config5.UFE is reserved if: FIR.FREP is 0 or
Configl.FP=0.

R/W

FRE

Enable for user mode to emulate Status.FR = 0 handling on an FPU with Sta-
tus.FR hardwired to 1. User mode can conditionally access Config5.FRE
using the CTC1 and CFC1 instructions.

Release 6 eliminates the Status.FR = 0. If Status.UFE = 0, which is always
the case in the P6600 core, then FRE always equals 0.

0: Instructions impacted by Config5.FRE do not generate additional excep-
tion conditions.

1: The following instructions cause a Reserved Instruction exception:

- All single-precision FP arithmetic instructions.

- Al LWC1 and MTCI1 instructions.

- All SWC1 and MFCI1 instructions.

COP1 branches are not affected by Config5.FRE.

R/W

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

63

Table 2.8 Field Descriptions for Configs Register (continued)

Read/
Name Bit(s) Description Write Reset State
0 7 Reserved. Must be written as zero. Ignored on reads. R 0
SBRI 6 SDBBP instruction Reserved Instruction control. The purpose of this field is R/W 0

to restrict availability of SDBBP to kernel mode operation. It prevents user
(and supervisor) code from entering Debug mode using SDBBP.

0: SDBBP instruction executes as defined prior to Release 6.

1: SDBBP instruction can only be executed in kernel mode. User or supervi-
sor execution of SDBBP causes a Reserved Instruction exception.

MVH 5 Move To/From High COPO (MTHCO/MFHCO) instructions. These instruc- R 0
tion are not used in the P6600, hence this bit is always 0.
0: MTHCO and MFHCO instructions are not supported.
1: MTHCO and MFHCO instruction are supported.

LLB 4 Load-Linked Bit software support present. Features enabled by setting this R 1

bit are recommended if Virtualization is supported (Config3yz = 1). This bit

is set by hardware to indicate support for LLB and is encoded as follows:

0: LLB functionality is not supported.

1: LLB functionality is supported. When this bit is set, the following features

are supported.

« ERETNC instruction added.

e CPO LLAddr 1 g bit must be set.

» LLbit is software accessible through the LLADDR[0] bit in the LLADDR
register.

MRP 3 COPO Memory Accessibility Attribute Registers, MAAR and MAARI, pres- R 1
ent. This bit is encoded as follows:

0: MAAR and MAARI not present.

1. MAAR and MAARI present. Software may program these registers to
apply additional attributes to fetch, load, or store accesses to memory/IO
address ranges.

0 2:1 Reserved. Must be written as zero. Ignored on reads. R 0
NFE 0 Nested fault. Setting this bit indicates that the nested fault feature exists. The R 0
nested fault allows recognition of faulting behavior within an exception han-
dler.

2.2.1.7 Device Configuration 6 — Config6 (CPO Register 16, Select 6)

Configé provides information about the presence of optional extensions to the base MIPS64 architecture. Note that
this register is implemented only by the root context and not by the guest context.

Figure 2.7 Config6 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 | FPDSR | DOPC| 0 |DSFW | DWP | DL1B | DNPE | ODTG |ODDG | DLSB | DFIS |HITLB |HDTLB FTLBP

15 14 13 12 10 9 1 0

FLTBEn | SPCD 0 IFUPerfCtl 0 JRCD

64

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.9 Field Descriptions for Config6 Register

Name

Bit(s)

Description

Read/
Write

Reset State

31:30

Reserved. Write as zero. Ignored on reads.

FPDSR

30

Floating point disable square root.
0: Enable floating point divide and square root
1: Disable floating point divide and square root

R/W

DOPC

29

Opcode cache disable. Setting this bit indicates that the opcode cache is dis-
abled.

0: Opcode cache is enabled.

1: Opcode cache is disabled.

28

Reserved. Write as zero. Ignored on reads.

DSFW

27

Disable superforwarding.
0: Enable superforwarding.
1: Disable superforwarding.

DwWP

26

Disable IFU way prediction.
0: Enable IFU way prediction.
1: Disable IFU way prediction.

DL1B

25

Disable L1 branch target buffer.
0: Enable L1 branch target buffer.
1: Disable L1 branch target buffer.

DNPE

24

Disable NOP elimination.
0: Enable NOP elimination.
1: Disable NOP elimination.

ODTG

23

Override data cache tag clock gater.

0: Enable data cache tag clock gating.

1: Override data cache tag clock gating. Enable the clock to data cache tag
array always.

ODDG

22

Override data cache data clock gater.

0: Enable data cache data clock gating.

1: Override data cache data clock gating. Enable the clock to data cache data
array always.

DLSB

21

Disable load/store bonding.
0: Enable load/store bonding.
1: Disable load/store bonding.

DFIS

20

Disable ‘cracking’.
0: Enable cracking.
1: Disable cracking.

HITLB

19

Half size instruction TLB (ITLB). When this bit is set, the ITLB becomes
half of its current size.

0: Full size ITLB.

1: Half size ITLB.

HDTLB

18

Half size data TLB (DTLB). When this bit is set, the DTLB becomes half of
its current size.

0: Full size DTLB.

1: Half size DTLB.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

65

Table 2.9 Field Descriptions for Configbé Register (continued)

Read/
Name Bit(s) Description Write Reset State
FTLBP 17:16 | FTLB probability. On a TLBWR instruction, if the PageMask register R/W 0

matches the FTLB page size, the write would be done to the FTLB. Other-
wise it would go to the FTLB. However, for systems that use only a single
page size, the FTLB would be used and most of the FTLB would be unused.
This field allows some TLBWR instruction to go to the VTLB instead of the
FTLB whenever the PageMask register matches the FTLB page size. If the
contents of the PageMask register do not match the FTLB page size, the
TLBWR instruction goes to the VTLB.

0: FTLB only. All TLBWR instructions go to the FTLB.

1: FTLB:VTLB = 15:1. For every 16 TLBWR instructions, 15 go to the
FTLB and 1 goes to the VTLB.

2: FTLB:VTLB = 7:1. For every 8 TLBWR instructions, 7 go to the FTLB
and 1 goes to the VTLB.

3: FTLB:VTLB = 3:1. For every 4 TLBWR instructions, 3 go to the FTLB
and 1 goes to the VTLB.

FTLBEnN 15 FTLB enable. Setting this bit indicates that the FTLB is enabled. R/W 0
0: FTLB is disabled.
1: FTLB is enabled.

SPCD 14 Sleep state performance counter disable. When this bit is set, the perfor- R/W 0
mance counter P6600 clocks are prevented from shutting down.

The primary use of this bit is to keep performance counters alive when the
P6600 core is in sleep mode.

0: Performance counters are enabled in sleep mode.

1: Performance counters are disabled in sleep mode.

0 13 Reserved. Write as zero. Ignored on reads. R 0

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.9 Field Descriptions for Configb Register (continued)

Read/
Name Bit(s) Description Write Reset State
IFUPerfCtl 12:10 | IFU Performance Control. This field encodes IFU events that provide debug R/W 0
and performance information for the IFU pipeline and is encoded as follows:
Encoding Meaning
000 IDU is accepting instructions, but IFU is not
providing any.
001 A control transfer instruction such as a
branch or jump causes lost IDU bandwidth.
010 A stalled instruction such as an unpredicted
jump must wait for an address and thus
causes lost IDU bandwidth.
011 Cache prediction was correct.
100 Cache prediction was incorrect.
101 Cache did not predict due to invalid JR
cache entry, or the instruction tag miscom-
pared with tag in JR cache.
110 Unimplemented.
111 Condition branch was taken.
Lost IDU bandwidth occurs when the IDU is accepting instructions, but
instructions are not being provided by the IFU. The count of these events can
be seen via Performance Counters 0 or 3, and the event number 11. In order
to view the IFU Perf Ctl events, the Performance Counter Control needs to
be programmed accordingly See Table 2.64, "Performance Counter Events
and Codes" for general information on event number 11.
0 9:1 Reserved. Write as zero. Ignored on reads. R 0
JRCD 0 Jump register cache prediction disable. Setting this bit disables the Jump R/W 0
Register (JR) target address prediction.
0: JR cache target address prediction is enabled.
1: JR cache target address prediction is not enabled.

2.2.1.8 Device Configuration 7 — Config7 (CPO Register 16, Select 7)

This register controls machine-specific features of the P6600 core. A few of them are for hardware interface adapta-
tion, but most are for chip or system test only. They default to a "safe" value. Most software, including bootstrap soft-
ware, can and should ignore these registers unless specifically advised to use them. Note that in the P6600
Multiprocessing System, this register is implemented only by the root context and not by the guest context.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 67

31 30

29

Figure 2.8 Config7 Register Format
28 27 26 25 24 23 22 21 20 19

17

16

WIIL FPFS

IHB

0 SEHB 0 DGHR SG SUI 0

HCI

AR

15

13

PREF IAR | IVAD ES 0 CP1IO0 0 ULB BP

RPS

BHT

SL

Table 2.10 Field Descriptions for Config7 Register

Name

Bit(s)

Description

Read/
Write

Reset State

WII

31

Wait IE Ignore. When this bit is set, an interrupt will unblock await instruc-
tion, even if Statusg is preventing the interrupt from being taken. If Wl reads 0,
the P6600 core remains in the wait condition forever if entered with interrupts
disabled. If set to 1, it allows operating system code to avoid complex race con-
ditions.

1

FPFS

30

Fast prepare for store. When this bit is set, pref 31 will behave as specified,
i.e., the prefetch instruction will only validate the data tag but not write 0’s into
the data cache.

By default, this bit will be 0 and pref 31 will behave like pref 30. This
means that pref 31 will validate the data tag and write 0’s into the data cache
array for the specified line.

R/W

IHB

29

Implicit hazard barrier.

If IHB = 1, the following behavior will be true:

* When the P6600 sees any explicit/implicitmtcO(cache, 11, mtcO,
tlbop, eret,deret, sync-in-debug-mode, di, ei) followed by
any implicitmfc0 (ehb, mfc0, eret, deret,di, ei), the pipe-
line will behave as if an ehb is introduced implicitly prior to executing the
mfcO0. This ensures all state modification by mtcO is completely seen by
mfcO.

* Anyjalr r31,jr r31 instruction seen by the CPU when CPO is usable
(i.e CUO=1 or Kernel or Debug mode as defined in the PRA) will automagi-
cally treat those instructions as jalr.hb and jr.hb.

If IHB = 0, the following behavior will be true:

* Programmer is responsible for resolving hazards and put ehb or .hb where
appropriate. Prior cores may have used some number of nops or ssnops
to ensure that the effect of a CPO modifying instruction is seen by a CP0 read
instruction, but the P6600 core cannot guarantee such behavior with a small
number of nops/ssnops.

Per Release3, the programmer is expected to put in an explicit ehb or . hb

where needed. If there is reason to believe that the programmer has not done

this, then this bit can be enabled to get correct operation.

R/W

28

Reserved. Write as zero. Ignored on reads.

SEHB

27

Slow EHB. An experimental mode to accelerate CP0O sequences using the ehb
instruction.

If this bit is set, ehb will block issue of instructions from the instruction buffer
until all older instructions have graduated and the pipe is empty. By default,
ehb will block issue of instructions from the instruction buffer only if there are
pending explicit CPO-modifying instructions in the pipe.

R/W

68

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.10 Field Descriptions for Config7 Register (continued)

Name

Bit(s)

Description

Read/
Write

Reset State

26:24

Reserved for future use.

R/W

DGHR

23

Disables the use of any global history in the branch predictor.

R/W

SG

22

Set 1 to allow only one instruction to graduate per cycle. This has a negative
impact on performance and should only be used for test purposes.

R/W

SUl

21

Strict Uncached Instruction (SUI) policy control.

When this bit is set, hardware runs uncached instructions strictly in order and (as
far as possible) unpipelined. This will cause a significant performance degrada-
tion as it will introduce a bubble equivalent to the depth of the pipeline between
each instruction. Only the branch-delay-slot instruction of a branch is fetched
without this bubble.

The advantage is that the CPU will not wander off speculatively fetching
unwanted instructions from a (perhaps slow) boot memory.

R/W

20:19

Reserved. Write as zero. Ignored on reads.

HCI

18

Hardware Cache Initialization: Indicates that a cache does not require initializa-
tion by software. This bit will most likely only be set on simulation-only cache
models and not on real hardware.

Preset

17

Reserved. Write as zero. Ignored on reads.

AR

16

Alias removed. Hardware sets this bit to indicate that the L1 data cache is con-
figured to avoid cache aliases.

15:13

Reserved. Write as zero. Ignored on reads.

PREF

12:11

These two bits control the extent of prefetching of instructions into the instruc-
tion cache as indicated. This field is encoded as follows:

Encoding Meaning

00 Prefetch 0 cache lines on an I-cache miss in addi-
tion to fetching the missing cache line. i.e. Disable
I-cache prefetching.

01 Prefetch 1 cache line (sequential next line) on an
I-cache miss in addition to fetching the missing
cache line.

10 Reserved.
11 Prefetch 2 cache lines (sequential next 2 lines) on

an I-cache miss in addition to fetching the missing
cache line.

R/W

01

IAR

10

Instruction Alias Removed.

Indicates that the P6600 core has hardware support to remove instruction cache
aliasing. The virtual aliasing hardware can be disabled via the IVAD bit
described below. The instruction cache virtual aliasing hardware is always pres-
ent in the P6600 core.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

69

Table 2.10 Field Descriptions for Config7 Register (continued)

Read/
Name Bit(s) Description Write Reset State

IVAD 9 Instruction Virtual Aliasing disabled. R/W 0
The hardware required to resolve instruction cache virtual aliasing is always
present in the P6600 core as noted by the default state of the IAR bit shown
above. However, software can toggle the IVAD bit to enable or disable the vir-
tual aliasing hardware for the instruction cache.

Setting this bit disables the hardware alias removal on the instruction cache. If
this bit is cleared, the CACHE Hit Invalidate and SYNCI instructions
look up all possible aliased locations and invalidate the given cache line in all of
them. This bit is Read-only if IAR = 0 and can only be written when IAR = 1.

ES 8 Externalize sync. R 1
If this bit is set, and if the downstream device (toward memory) is capable of
accepting SYNCs (indicated by the pin SI_SyncTxEn), the sync instruction
causes a SYNC-specific transaction to go out on the external bus. If this bit is
cleared or if SI_SyncTxEn is deasserted, no transaction will go out, but all
SYNC handling internal to the CPU will nevertheless be performed.

The sync instruction is signalled on the P6600’s OCP interface as an "ordering
barrier" transaction. The transaction is an extension to the OCP standards, and
system controllers which don’t support it typically under-decode it as a read
from the boot ROM area. But that’s going to be quite slow, so set this bit only if
your system understands the synchronizing transaction.

When this bit is read, the value returned depends on the state of the
SI_SyncTxEn pin. If SI_SyncTxEn is 0, a value of 0 is returned. If SI_SyncTxEn
is 1, the value returned is the last value that was written to this bit.

0 7 Reserved. Write as zero. Ignored on reads. R 0

CP1IO 6 CP1 instruction order. By default, data sent from the P6600 core to a coproces- R/W 0
sor block may be sent in an order reflecting the internal pipeline execution
sequence. Set this bit to arrange that data will be sent only in instruction order to
the FPU.

0 5 Reserved. Write as zero. Ignored on reads. R 0

ULB 4 Uncached load blocking. Set to 1 to make all uncached loads blocking (a pro- R/W 0
gram usually only blocks when it uses the data which is loaded).

BP 3 Branch prediction. When set, no branch prediction is done, and all branches R/W 0
stall.

RPS 2 Return prediction stack. When set, the return address branch predictor is dis- R/W 0
abled, so jr $31 is treated just like any other jump register. An instruction
fetch stalls after the branch delay slot, until the jump instruction reaches the
Address Generation pipeline and can provide the right address.

BHT 1 Branch history table. When set, the branch history table is disabled and all R/W 0
branches are predicted taken. This bit is don’t care if Config7gp is set.

SL 0 Scheduled loads. When set, non-blocking loads are disabled. Normally the R/W 0
P6600 core continues after a load instruction, even if it misses in the D-cache,
until the data is used. When this bit is set, the CPU stalls on any D-cache load
miss.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.1.9 Processor ID — PRId (CPO Register 15, Select 0)

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the

manufacturer, manufacturing options, processor identification, and revision level of the processor.

Figure 2.9 PRId Register Format

31 24 23 16 15 8 0
CoOpt ColD ProcType Rev
Table 2.11 Field Descriptions for PRId Register
Read/
Name Bit(s) Description Write Reset State
CoOpt 31:24 | Company Option. Should be a number between 0 and 127— higher values are R Preset
reserved by MIPS Technologies.
ColD 23:16 | Company ID. Identifies the company that designed or manufactured the proces- R 0x01
sor. In the P6600, this field contains a value of 1 to indicate MIPS Technologies,
Inc.
ProcType 15:8 | Processor ID. Identifies the type of processor. This field allows software to dis- R 0xA4
tinguish between the various types of processors from MIPS Technologies. The
value of this field is 0xA4 for the P6600 core.
Rev 7:0 | The revision number of the P6600 design. This field allows software to distin- R Preset

guish between one revision and another of the same processor type.
This field is broken up into the following three subfields:

Bit(s) Name Meaning

7:5 Major | This number is increased on major
Revision |revisions of the P6600 core.

4:2 Minor | This number is increased on each
Revision |incremental revision of the processor
and reset on each new major revision.

1:0 Patch |If a patch is made to modify an older
Level |revision of the processor, this field will
be incremented.

2.2.1.10 Exception Base Address — EBase (CPO Register 15, Select 1)

The 64-bit EBase register is a read/write register containing the base address of the exception vectors used when
StatusBEV equals 0, and a read-only CPU number value that may be used by software to distinguish different proces-
sors in a multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor system,
and allows the exception vectors for each processor to be different. Bits 63:12 of the EBase register are concatenated

with zeros to form the base of the exception vectors when Statusggy is 0. The exception vector base address comes

from the fixed defaults when Statusggy is 1, or for any EJTAG Debug exception.

The size of the ExcBase field depends on the state of the WG bit. At reset, the WG bit is cleared by default. In this

case, the ExcBase field is comprised of bits 29:12. Bits 63:30 of the EBase Register are not writeable and retain their
previous state. This is shown in Figure 2.10.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

71

When the WG bit is set, bits 63:30 of the ExcBase field become writeable and are used to relocate the ExcBase field
to other segments. This is shown in Figure 2.11. Note that if the WG bit is set by software (allowing bits 63:30 to
become part of the ExcBase field) and then cleared, bits 63:30 can no longer be written by software and the state of
these bits remains unchanged for any writes after WG was cleared.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal to 1. The operation
of the processor is UNDEFINED if the exception base field is written with a different value when StatusBEV is 0.

Combining bits 63:12 with the Exception Base field allows the base address of the exception vectors to beplaced at any

16 Kbyte page boundary.
Figure 2.10 EBase Register Format — WG =0
63 30 29 12 11 10 9 0
Fill (not writable) ExcBase WG | 0 CPUNum
Figure 2.11 EBase Register Format —WG =1
63 12 11 10 9 0
ExcBase WG | 0 CPUNum
Table 2.12 Field Descriptions for EBase Register
Read/
Name Bit(s) Description Write Reset State
Fill 63:30 | When the WG bit is cleared, this field is not writable by software and retains its | R/W Undefined
previous value.
ExcBase 29:12 | Exception Base Address. The size and behavior of this field depends on the state | R/W 0x8000.0
or 63:12 | of the WG bit. When the WG bit is set, the ExcBase field includes bits 63:12. or
When the WG bit is cleared, bits 63:30 are not writable and the exception base OxF.FFFF.
address is stored in bits 29:12. Bits 31:30 default to a value of 2°b10, forcing the FFF8.0000
exception vector into kseg0/ksegl address space to maintain 32-bit backward
compatibility.

Setting EBase in any CPU to a unique value allows that CPU can have its own
unique exception handlers.

This field should be written only when Statusggy is set so that any exception will
be handled through the ROM entry points.

WG 11 Write gate. R/W Externally Set
When the WG bit is set, the ExcBase field is expanded to include bits 31:30 of
the EBase register to facilitate programmable memory segmentation controlled
by the SegCtl0 through SegCtl2 registers.

When the WG bit is cleared, bits 31:30 of the EBase register are not writeable
and remain unchanged from the last time that WG was cleared.

0 10 Reserved. Write as zero. Ignored on reads. R 0

CPUNum 9:0 | This field contains an identifier that will be unique among the CPU’s in a multi- R Externally Set
processor system. The value in this field is set by the SI_CPUNum[9:0] static
input pins to the P6600 core.

72 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.1.11 Status (CPO Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and diagnostic states
of the processor. Fields in this register and the CPO Debug register combine to create operating modes for the proces-
sor. Selected bits are encoded as follows to place the processor into one of the operating modes. Refer to the MMU
chapter for more information on the various operating modes. A brief summary is provided below.

Table 2.13 Operating Mode Encoding

Status|g

StatusgrL

Statusgx

Statusksu

Debugpm

Mode of Operation

1

0

0

X

0

Individual interrupts can be disabled/enabled
using the Statusjm7-o mask bits.

2’b2

User Mode. In user mode, the CPU has access
only to the mapped kuseg address region.

2’bl

Supervisor Mode. In supervisor mode, the CPU
has access to the top half of the kseg2 region
(sometimes known as kseg3), but no access to
CPO registers or most kernel memory.

2’b0

Kernel addressing mode. In this mode, a TLB
miss goes to the TLB Refill Handler.

Kernel addressing mode. In this mode, a TLB
miss goes to the TLB Refill Handler.

Kernel addressing mode. In this mode, a TLB
miss goes to the general exception handler as
opposed to the TLB Refill handler.

Debug Mode. In debug mode, the processor has
full access to all resources that are available in
Kernel Mode operation, in addition to those pro-
vided by EJTAG.

Figure 2.12 shows the format of the Status Register; Table 2.14 describes the Status register fields.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

73

Figure 2.12 Status Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 5 4 3 2 1 0
CU3|CU2|CUL|RW | 0 |FR|RE 1;(4 PX|BEV| 0 | SR |NMI| 0 | CEE | 0 IM7-0 KX|SX|UX| KSU |ERL|EXL|IE
Table 2.14 Field Descriptions for Status Register
Read/
Name Bit(s) Description Write Reset State
CuU3 31 Coprocessor 3 usable. Because the P6600 core does not support a coprocessor 3, R 0
Statuscuys is hardwired to zero.
Cu2 30 Coprocessor 2 usable. Because the P6600 core does not support a coprocessor 2, R 0
Statuscyp is hardwired to zero.
Cul 29 Coprocessor 1 Usable. Controls access to coprocessor 1. R/W Undefined
0: Access not allowed.
1: Access allowed.
CUL1 is most often used for a floating-point unit. When no coprocessor 1 is pres-
ent, this bit is read-only and reads zero.
Rw 28 Read/write field. This bit can be written by software without side-effects. Ause | R/W Undefined
case is for the kernel to set this bit to signify that the exception condition is due
to user code, priorto saving Status to the stack in memory. This bit is not used by
the P6600 core hardware.
0 27 Reserved. Write as zero. Ignored on reads. R 0
FR 26 Floating Register. This bit is used to indicate the floating-point register mode for R 1
64-bit floating point units: This bit is encoded as follows:
0: Floating point registers can contain any 32-bit data type. 64-bit data types are
stored in even-odd pairs of registers.
1: Floating point registers can contain any data type.
If the P6600 core is equipped with an optional FPU, set this bit to 0 for MIPS 1
compatibility mode, which allows for 16 real FP registers, with 16 odd FP regis-
ter numbers reserved for access to the high-order bits of double-precision values.
0 25 Reserved. Write as zero. Ignored on reads. R 0
MX 24 MIPS DSP Extension. Enables access to DSP ASE resources. This bit is always R 0
0 in the P6600 core.
0: Access not allowed.
1: Access allowed.
An attempt to execute any DSP ASE instruction before when this bit is 0 will
cause a DSP State Disabled exception. The state of this bit is reflected in
Config3pspp .
PX 23 Enables access to 64-bit operations in User mode, without enabling 64-bit R 0
addressing.
0: Access not allowed
1: Access allowed
BEV 22 Boot Exception Vector. Controls the location of exception vectors: R/W 1
0: Normal. Refer to the EBase register for more information
1: Bootstrap
When set to 1, all exception entry points are relocated to near the reset start
address.
0 21 Reserved. Write as zero. Ignored on reads. R 0
74 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.14 Field Descriptions for Status Register (continued)

Name

Bit(s)

Description

Read/
Write

Reset State

SR

20

Soft Reset. The P6600 core only supports a full external reset, so this bit is not
used and always reads zero.

R

0

NMI

19

Indicates that the entry through the reset exception vector was due to an NML.
0: Not NMI (reset)

1: NMI

Software can only write a 0 to this bit to clear it and cannot force a 0 to 1 transi-
tion. As such, a write of 1 to this bit is ignored.

R/WO

1 for NMI
0 otherwise

18:16

Reserved. Write as zero. Ignored on reads.

0

IM7-0

15:8

Interrupt Mask. Bitwise interrupt enables for the eight interrupt conditions. The
state of these bits is visible in Cause|p7-g, except in EIC mode.

External Interrupt Controller (EIC) mode is activated when the Config3ye|c is
set by hardware at reset based on the state of the SI_EICPresent signal. If this bit
is set by hardware, software should set the Causejy bit, then write a non-zero
"vector spacing" in the VS bit of the IntCtl register.

In EIC mode, IM7-2 is used as a 6-bit Status|p| (Interrupt Priority Level) field.
An interrupt is only triggered when the interrupt controller presents an interrupt
code which is numerically higher than the current value of Status|p.
Statusimi-o always acts as a bitwise mask for the two software interrupt bits pro-
grammable in Causelp1-g.

R/W

Undefined

KX

Setting this bit enables the following:

* Access to 64-bit Kernel Segments

* Use of the XTLB Refill Vector for references to Kernel Segments

This bit is encoded as follows:

0: Access to 64-bit Kernel Segments is disabled; the TLB Refill Vector is used
for references to Kernel Segments.

1: Access to 64-bit Kernel Segments is enabled; the XTLB Refill Vector is used
for references to Kernel Segments.

R/W

SX

Setting this bit enables the following:

* Access to 64-bit Supervisor Segments

* Use of the XTLB Refill Vector for references to Supervisor Segments

This bit is encoded as follows:

0: Access to 64-bit Supervisor Segments is disabled; the TLB Refill Vector is
used for references to Supervisor Segments.

1: Access to 64-bit Supervisor Segments is enabled; the XTLB Refill Vector is
used for references to Supervisor Segments.

In the P6600 core, a write of 1 to this register is ignored when KX = 0.

R/W

UXx

Setting this bit enables the following:

* Access to 64-bit User Segments

* Use of the XTLB Refill Vector for references to User Segments

This bit is encoded as follows:

0: Access to 64-bit User Segments is disabled; the TLB Refill Vector is used for
references to User Segments.

1: Access to 64-bit User Segments is enabled; the XTLB Refill Vector is used for
references to User Segments.

In the P6600 core, a write of 1 to this register is ignored when KX =0 or SX = 0.

R/W

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

75

Table 2.14 Field Descriptions for Status Register (continued)

Read/
Name Bit(s) Description Write Reset State
KSU 4:3 | These bits denote the processor’s operating mode. R/W 2’b00
2’b00: Kernel Mode
2’b01: Supervisor Mode
2’b10: User Mode.
2’b11: Reserved
A value of 2°b11 in this field is an illegal value that will drop the entire write
operation.
Note that the processor can also be in Kernel mode if ERL or EXL is set, regard-
less of the state of these bits.
ERL 2 Error Level; Set by the processor when a Reset, NMI, or Cache Error exception | R/W 1
is taken.
0: Normal level
1: Error level
When ERL is set:
 The processor is running in kernel mode
* Interrupts are disabled
» The ERET instruction will use the return address held in ErrorEPC instead of
EPC
* When ERL =1 in the Status register, the segment kuseg (legacy) or xkseg0
(EVA) is treated as an unmapped and uncached address space. While in this
setting, the kuseg virtual address maps directly to the same physical address,
and does not include the ASID field.
EXL 1 Exception Level; Set by the processor when any exception other than Reset, R/W 0
Cache Error, or NMI exception is taken.
0: Normal level
1: Exception level
When EXL is set:
 The processor is running in Kernel Mode.
* Hardware and software interrupts are disabled.
» TLB Refill exceptions use the general exception vector instead of the TLB
Refill vector.
When an exception occurs and EXL is set, a nested TLB Refill exception is sent
to the general exception handler (rather than to its dedicated handler) and the
values in EPC and Causegp are not overwritten. The result is that, after return-
ing from the second exception, the processor jumps back to the code that was
executing before the first exception occurred.
IE 0 Interrupt Enable. Acts as the master enable for software and hardware interrupts. | R/W 0
0: Interrupts are disabled
1: Interrupts are enabled
This bit can be written using the di/ei instructions.

2.2.1.12 Interrupt Control — IntCtl (CPO Register 12, Select 1)

The IntCtl register controls the interrupt capabilities of the P6600 core, including vectored interrupts and support for
an external interrupt controller.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

31 29

28

26

Figure 2.13 IntCtl Register Format
25 23 22 10 9

IPTI

IPPCI

IPFDCI 0 VS

Table 2.15 Field Descriptions for IntCtl Register

Name

Bit(s)

Description

Read/
Write

Reset State

IPTI

31:29

For Interrupt Compatibility and Vectored Interrupt modes, this field specifies
the IP number to which the Timer Interrupt request is merged, and allows soft-
ware to determine whether to consider Causer) for a potential interrupt. This
field is encoded as shown in Table 2.16, "Encoding of IPTI, IPPCI, and IPFDCI
Fields".

The value of this bit is set by the static input, SI_IPTI[2:0]. This allows external
logic to communicate the specific SI_Int hardware interrupt pin to which the
SI_TimerInt signal is attached.

The value of this field is not meaningful if External Interrupt Controller Mode is
enabled. The external interrupt controller is expected to provide this information
for that interrupt mode.

Externally Set

IPPCI

28:26

For Interrupt Compatibility and Vectored Interrupt modes, this field specifies
the IP number to which the Performance Counter Interrupt request is merged,
and allows software to determine whether to consider Causepc; for a potential
interrupt. This field is encoded as shown in Table 2.16, "Encoding of IPTI,
IPPCI, and IPFDCI Fields".

The value of this bit is set by the static input SI_IPPCI[2:0]. This allows exter-
nal logic to communicate the specific SI_Int hardware interrupt pin to which the
SI_PClnt signal is attached.

The value of this field is not meaningful if External Interrupt Controller Mode is
enabled. The external interrupt controller is expected to provide this information
for that interrupt mode.

Externally Set

IPFDCI

25:23

For Interrupt Compatibility and Vectored Interrupt modes, this field specifies
the IP number to which theFast Debug Channel Interrupt request is merged, and
allows software to determine whether to consider Causerpc for a potential
interrupt. This field is encoded as shown in Table 2.16, "Encoding of IPTI,
IPPCI, and IPFDCI Fields".

The value of this bit is set by the static input, SI_IPFDCI[2:0]. This allows
external logic to communicate the specific SI_Int hardware interrupt pin to
which the SI_FDClInt signal is attached.

The value of this field is not meaningful if External Interrupt Controller Mode is
enabled. The external interrupt controller is expected to provide this information
for that interrupt mode.

Externally Set

22:10

Reserved. Write as zero. Ignored on reads.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

77

Table 2.15 Field Descriptions for IntCtl Register

Read/
Name Bit(s) Description Write Reset State
VS 9:5 | Vector Spacing. If vectored interrupts are implemented (as denoted by R/W 0
Config3ynt or Config3yve|c), this field specifies the spacing between vectored
interrupts.
VS Field | Spacing Between Spacing Between
Encoding Vectors (hex) Vectors (decimal)
0x00 0x000 0
0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512
All other values are reserved. The operation of the processor is UNDEFINED if
a reserved value is written to this field.
0 4:0 | Reserved. Write as zero. Ignored on reads. R 0
Table 2.16 Encoding of IPTI, IPPCI, and IPFDCI Fields
Encoding IP bit Hardware Interrupt Source
0 0 Reserved
1 1 Reserved
2 2 HWO
3 3 HWI1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HWS5

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.2 TLB Management Registers

This section contains the following TLB management registers.

* Section 2.2.2.1, "Index (CPO Register 0, Select 0)" on page 79

* Section 2.2.2.2, "EntryLo0 - EntryLo1 (CPO Registers 2 and 3, Select 0)" on page 80

* Section 2.2.2.3, "EntryHi (CPO Register 10, Select 0)" on page 82

* Section 2.2.2.4, "Context (CPO Register 4, Select 0)" on page 84

* Section 2.2.2.5, "Context Configuration — ContextConfig (CP0 Register 4, Select 1)" on page 85
* Section 2.2.2.6, "XContext Register (CPO Register 20, Select 0)" on page 86

* Section 2.2.2.7, "XContext Configuration — XContextConfig (CP0O Register 4, Select 3)" on page 87
* Section 2.2.2.8, "PageMask (CPO Register 5, Select 0)" on page 88

* Section 2.2.2.9, "Page Granularity — PageGrain (CP0O Register 5, Select 1)" on page 89

* Section 2.2.2.10, "Wired (CPO Register 6, Select 0)" on page 91

* Section 2.2.2.11, "Bad Virtual Address — BadVAddr (CPO Register 8, Select 0)" on page 91

* Section 2.2.2.12, "PWBase Register (CP0 Register 5, Select 5)" on page 92

* Section 2.2.2.13, "PWField Register (CPO Register 5, Select 6)" on page 93

* Section 2.2.2.14, "PWSize Register (CPO Register 5, Select 7)" on page 95

2.2.2.1 Index (CPO Register 0, Select 0)

Index is used as the TLB index when reading or writing the TLB with TLBR/TLBWI/TLBINV/TLBINVF respec-
tively. It is also set by a TLB probe (TLBP) instruction to return the location of an address match in the TLB.

During execution of a TLBR instruction, the Index field that was previously written by software or by a TLBP
instruction is used to indicate the TLB entry to be read. Hardware then uses this information to perform the read oper-
ation.

During execution of a TLBWI, TLBINV, or TLBINVF instruction, the Index field that was previously written by soft-
ware or by a TLBP instruction is used to indicate the TLB entry to be written or invalidated. Hardware then uses this
information to perform the respective write or invalidate operation.

Prior to executing a TLBP instruction, the VPN to be searched should have been written to the VPN2 field in the
EntryHi register. During the TLBP instruction, hardware searches the TLB array for a match to the VPN stored in the

EntryHi register. If a match is found, hardware writes the index into the Index field of this register.

The P bit of this register is set by hardware to indicate that a match was not found. If this bit is not set, software can
then read the corresponding index from this register.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 79

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

Note that when virtualization is enabled, there is one Index register for Root and one for each Guest.

Figure 2.14 Index Register Format

31 30 10 9 0
P 0 Index
(VTLB and FTLB)
Table 2.17 Field Descriptions for Index Register
Read/
Name Bit(s) Description Write Reset State
P 31 Probe Failure. This bit is automatically set when a TLBP search of the TLB WO 0
fails to find a matching entry. The following rules apply when accessing this bit: or
1. Root can only set Root.Index.P value to 1 (and not clear it) using the MTCO R/W
instruction. (See
2, Guest can only set Guest.Index.P value to 1 (and not clear it) using the MTCO | descr)
instruction.
3. Root can both set and clear Guest.Index.P value using the MTGCO instruc-
tion.
0 30:10 | Must be written as zero; returns zero on reads. 0 0
Index 9:0 | An index into the TLB used for TLBR, TLBWI, TLBINV and R/W 0
TLBINVF instructions. This field is set by the TLBP instruction when it finds
a matching entry.

2.2.2.2 EntryLoO - EntryLol (CPO Registers 2 and 3, Select 0)

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions. These registers store the contents of a TLB entry. Each entry maps a pair of pages. The EntryLo0 and
EntryLol register store even and odd numbered virtual pages respectively. These registers are read during a TLBWR or
TBLWI instruction, and written by a TLBR instruction. They are not used for any other purpose.

Software may determine the value of PABITS by writing all ones to the EntryLo0O or EntryLo1 registers and reading
the value back. Bits read as “1” from the PFN field allow software to determine the boundary between the PFN and
Fill fields to calculate the value of PABITS.

The contents of the EntryLo0 and EntryLo1 registers are not defined after an address error exception and some fields

may be modified by hardware during the address error exception sequence. Software writes of the EntryHi register
(via MTCO) do not cause the implicit update of address-related fields in the BadVAddr or Context registers.

80 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

63 62 61

Figure 2.15 EntryLoO and EntryLol Register Format

34 33 32

RI| XI

PFNX

31 30 29

PFNX

PFN

Table 2.18 Field Descriptions for EntryLoO and EntryLol Registers

Name

Bit(s)

Description

Read/
Write

Reset State

RI

63

Read Inhibit. If this bit is set in a TLB entry, any attempt to read data on the vir-
tual page causes either a TLB Invalid or a TLBRI exception, even if the V
(Valid) bit is set. The RI bit is writable only if the RIE bit of the PageGrain reg-
ister is set. For more information, refer to Section 2.2.2.9, "Page Granularity —
PageGrain (CPO Register 5, Select 1)".

If the RIE bit of the PageGrain register is not set, the RI bit of Entry 0 and
Entry 1 are set to zero on any write to the register, regardless of the value writ-
ten.

R/W

0

Xl

62

Execute Inhibit. If this bit is set in a TLB entry, any attempt to fetch an instruc-
tion or to load MIPS16 PC-relative data from the virtual page causes a TLB
Invalid or a TLBXI exception, even if the V (Valid) bit is set. The XI bit is writ-
able only if the XIE bit of the PageGrain register is set. For more information,
refer to Section 2.2.2.9, "Page Granularity — PageGrain (CPO Register 5, Select
nH"

If the XIE bit of the PageGrain register not set, the XI bit of TLB Entry 0 - 1 is
set to zero on any write to the register, regardless of the value written.

R/W

Fill

61:34

These bits are ignored on writes and return 0 on reads.

0

PENX

33:30

Page Frame Number Extension. This field is used to extend the size of the PFN.
This field is concatenated with the PFN field to form the full page frame number
corresponding to the physical address, thereby providing up to 40 bits of physi-
cal address.

If the processor is not enabled to support 1KB pages (Config3SP = 0 or
PageGrainESP = 0), the combined PFNX || PFN fields corresponds to 0b00 ||
bits PABITS-1..12 of the physical address (the field is unshifted and the upper
two bits must be written as zero).

The boundaries of this field change as a function of the value of PABITS. If sup-
port for large physical addresses is enabled (Config3.LPA =1 or

PageGrain. ELPA = 1), this field is R/W and can be written by software. If sup-
port for large physical addresses is not enabled (Config3.LPA =0 or
PageGrain.ELPA = 0), this field is read-only. In that case, the PFNX bits are
ignored on write and return 0 on read.

R/'W
or R

Undefined

PFN

29:6

The 24 bits of PFN, together with the 4-bit PFNX field and 12 bits of in-page
address, make up a 40-bit physical address. The PFNX field in bits 33:30 of this
register is appended to the upper bits of the PFN to create the extended address.

R/W

Undefined

5:3

Coherency attribute of the page. See Table 2.19.

R/W

Undefined

The "Dirty" flag. Indicates that the page has been written, and/or is writable. If
this bit is a one, stores to the page are pamitted. If this bit is a zero, stores to the
page cause a TLB Modified exception.

Software can use this bit to track pages that have been written to. When a page
is first mapped, this bit should be cleared. It is set on the first write that causes

an exception.

R/W

Undefined

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

81

Table 2.18 Field Descriptions for EntryLoO and EntryLol Registers

Read/
Name Bit(s) Description Write Reset State
1 The “Valid” flag. Indicates that the TLB entry, and thus the virtual page map- R/W Undefined

ping, are valid. If this bit is a set, accesses to the page are permitted. If this bit is
a zero, accesses to the page cause a TLB Invalid exception.
This bit can be used to make just one of a pair of pages valid.

0 The “Global” bit. On a TLB write, the logical AND of the G bits in both the R/W Undefined
Entry 0 and Entry 1 registers become the G bit in the TLB entry. If the TLB
entry G bit is a one, then the ASID comparisons are ignored during TLB
matches. On a read from a TLB entry, the G bits of both Entry 0 and Entry 1
reflect the state of the TLB G bit.

Table 2.19 Cache Coherency Attributes Encoding of the C Field

C[5:3]/ KO[2:O]1 Name Cache Coherency Attribute
0 — Reserved
1 — Reserved
2 ucC Uncached, non-coherent
3 WB Cacheable, non-coherent, write-back, write allocate
4 CWBE Cacheable, coherent, write-back, write-allocate, read misses request Exclusive
5 CWB Cacheable, coherent, write-back, write-allocate, read misses request Shared
6 — Reserved
7 UCA Uncached Accelerated, non-coherent

1. State of the KO field at bits 2:0 of the Config register. See Section 2.2.1.1 “Device Configuration — Config (CPO Register 16, Select

82

2.2.2.3 EntryHi (CPO Register 10, Select 0)

The EntryHi register contains the upper portion of the virtual address match information used for TLB read, write, and
access operations. The remaining information is stored in the EntryLo0 and EntryLol registers described in Section
2.2.2.2 “EntryLo0 - EntryLol (CPO Registers 2 and 3, Select 0)”.

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, or TLB Modi-
fied) causes bits VA47.13 of the virtual address to be written into the VPN2 field of the EntryHi register and VA[63:62]
to be written to the Region (R) field of the EntryHi register. A TLBR instruction writes the EntryHi register with the
corresponding fields from the selected TLB entry. The ASID field is written by software with the current address
space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID and EHINV fields are overwritten by a TLBR instruction, software must save and restore the value

of ASID around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in
other memory management software.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

The VPN2 field of the EntryHi register is not defined after an address error exception and this field may be modified by
hardware during the address error exception sequence. Software writes of the EntryHi register (via MTCO) do not

cause the implicit write of address-related fields in the BadVAddr and Context registers.

The EntryHigny field has been added to support explicit invalidation of TLB entries via the TLBWI instruction.
When EntryHigyny = 1, the TLBWI instruction acts as a TLB invalidate operation, setting the hardware valid bit
associated with a TLB entry to the invalid state. When EntryHigny = 1, only the Index register is required to be
valid. Behavior of the TLBWR instruction is unmodified by EntryHigpny. The TLBR instruction copies the EHINV
bit from the TLB Entry to EntryHIgHny. Note that execution of the TLBP instruction does not change this value.

63 62 61

Figure 2.16 EntryHi Register Format
48 47

32

0 VPN2

31

13 12 11 10 9 8

VPN2 0 EHINV 0

ASID

Table 2.20 Field Descriptions for EntryHi Register

Name

Bit(s)

Description

Read/
Write

Reset State

63:62

Virtual memory region, corresponding to VA[63:62]. This field is
encoded as follows:

00: xuseg: user address region

01: xsseg: supervisor address region. If Supervisor Mode is not imple-
mented, this encoding is reserved

10: Reserved

11: xkseg: kernel address region

This field is written by hardware on a TLB exception or on a TLB read,
and is written by software before a TLB write.

R/W

0

61:48

Reserved. Write as zero. Ignored on reads.

0

VPN2

47:13

EntryHiypng is the virtual address to be matched on a TLBP. This field
consists of VA39.13 of the virtual address (virtual page number / 2). It is
also the virtual address to be written into the TLB on a TLBWI and
TLBWR, and the destination of the virtual address on a TLBR.

On a TLB-related exception, the VPN2 field is automatically set to the
virtual address that was being translated when the exception occurred.
This field is written by software before a TLBP or TLBWT and written
by hardware in all other cases.

R/W

Undefined

12:11

Reserved. Write as zero. Ignored on reads.

EHINV

10

TLBWI invalidate enable. When this bit is set, the TLBWI instruction
acts as a TLB invalidate operation, setting the hardware valid bit associ-
ated with the TLB entry to the invalid state. When this bit is set, the
PageMask and EntryLoO/EntryLol registers do not needto be valid. Only
the Index register is required to be valid.

This bit is ignored on a TLBWR instruction.

R/W

9:8

Reserved. Write as zero. Ignored on reads.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

83

Table 2.20 Field Descriptions for EntryHi Register

Read/
Name Bit(s) Description Write Reset State
ASID 7:0 | Address space identifier. This field is used to stage data to and from the R/W 0

TLB, but in normal running software it’s also the source of the current
"ASID" value, used to extend the virtual address and help to map address
translations for the current process.

This field is written by hardware on a TLB read and by software to estab-
lish the current ASID value for TLB write and against which TLB refer-
ences match each entry’s TLB ASID field.

This field supports up to 256 unique ASID values, consisting of a virtual
tag that is in addition to the 32-bit address.

2.2.2.4 Context (CPO Register 4, Select 0)

The 64-bit Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array.
This array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the
operating system loads the TLB with the missing translation from the PTE array. The Context register duplicates some
of the information provided in the BadVAddr register but is organized in such a way that the operating system can
directly reference an 8-byte page table entry (PTE) in memory.

The BadVPN2 field of the Context register is not defined after an address error exception, and this field may be modi-
fied by hardware during the address error exception sequence.

The pointer implemented by the Context register can point to any power-of-two-sized PTE structure within memory.
This allows the TLB refill handler to use the pointer without additional shifting and masking steps. For example, if
the low-order bit of the PTEBase field is 20, the page table entry (PTE) structure occurs on a 1M boundary. If the
low-order bit is 21, PTE structure occurs on a 2M boundary, etc. Depending on the value in the ContextConfig register,
it may point to an 8-byte pair of 32-bit PTEs within a single-level page table scheme, or to a first level page directory
entry in a two-level lookup scheme.

A TLB exception (Refill, Invalid, Modified, Read Inhibit, Execute Inhibit) causes the virtual address to be written to
a variable range of bits, defined as (X-1):Y of the Context register. This range corresponds to the contiguous range of
set bits in the ContextConfig register. Bits 63:X, Y-1:0 are read/write to software and are unaffected by the exception.

For example, if X =23 and Y =4, i.e. bits 22:4 are set in ContextConfig, the behavior is identical to the standard
MIPS32 Context register (bits 22:4 are filled with VA31.13). Although the fields have been made variable in size and
interpretation, the MIPS32 nomenclature is retained. Bits 63:X are referred to as the PTEBase field, and bits X-1:Y
are referred to as BadVPN2.

The value of the Context register is UNPREDICTABLE following a modification of the contents of the ContextConfig
register. After the ContextConfig register is modified, software should write the PTEBase field of the Context register.
However, note that the contents of the BadVPN?2 field will not be valid until the next TLB exception.

Figure 2.17 shows the format of the Context Register; Table 2.21 describes the Context register fields.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.17 Context Register Format
63 X X1 Y Y-1 0

PTEBase BadVPN2 PTEBaseLow

Table 2.21 Context Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State

PTEBase Variable, 63:X This field is for use by the operating system and is R/W Undefined
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer to
an array of data structures in memory corresponding
to the address region that contains the virtual address
which caused the exception.

The size of the BadVPN2 field is determined by num-
ber of contiguous ‘ones’ in the Virtuallndex field of
the ContextConfig register described below. If the
Virtuallndex field is all ‘ones’, then the BadVPN2
field is comprised of bits 22:2. If the Virtuallndex
field is all ‘zero’, then there is no BadVPN and the
PTEBase and PTEBase low fields are merged
together to form a single 32-bit PTEBase value.

BadVPN2 Variable, (X-1):Y This field is written by hardware on a TLB exception. R Undefined
It contains bits VA31:32.x+y of the virtual address that
caused the exception.

PTEBaseLow Variable, (Y-1):0 This field is for use by the operating system and is R/W Undefined
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer to
an array of data structures in memory corresponding
to the address region that contains the virtual address
which caused the exception.

2.2.2.5 Context Configuration — ContextConfig (CPO Register 4, Select 1)

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected BadVPN?2 field of the Context register are read/write to software and serve as the PTEBase field. Bits below
the selected BadVPN2 field of the Context register serve as the PTEBaseLow field.

Software writes a set of contiguous ones to the Virtuallndex field of the ContextConfig register. Hardware then deter-
mines which bits of this register are high and low. The highest order bit that is a logic ‘1’ serves as the MSB of the
BadVPN2 field of the Context register. The lowest order bit that is a logic ‘1’ serves as the LSB of theBadVPN2 field
of the Context register. A value of all zero’s in the Virtuallndex field means that the full 32 bits of the Context register
are R/W for software and are unaffected by TLB exceptions.

Figure 2.18 shows the formats of the ContextConfig register; Table 2.22 describes the ContextConfig register fields.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 85

Figure 2.18 ContextConfig Register Format

31 23 22 2 1 0
0 Virtuallndex 0
Table 2.22 ContextConfig Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
0 31:23 Ignored on write; returns zero on read. R 0x00
Virtuallndex 22:2 A mask of 0 to 21 contiguous 1 bits in this field causes the corre- R/W 0x1F_FFFC
sponding bits of the Context register to be written with the high-
order bits of the virtual address causing a TLB exception.
Behavior of the processor is UNDEFINED if non-contiguous 1
bits are written into the register field. Note that it is the responsi-
bility of software to ensure that this field is written with contigu-
ous ones because if non-contiguous 1 bits are written, no exception
will be taken.
0 1:0 Ignored on write; returns zero on read. R 0
2.2.2.6 XContext Register (CPO Register 20, Select 0)
The XContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The XContext register is primarily intended
for use with the XTLB Refill handler, but is also loaded by hardware on a TLB Refill. However, it is unlikely to be
useful to software in the TLB Refill Handler. The XContext register duplicates some of the information provided in the
BadVaddr register. The size of the BadVPN2 field, indicated by the X-1:Y parameter in the figure below, depends on
the number of consecutive ones in the XContextConfig register.
Figure 2.19 shows the format of the XContext register.
Figure 2.19 XContext Register Format
63 X X1 Y Y1 0
PTEBase BadVPN2 PTEBaseLow
Table 2.23 XContext Register Field Descriptions when Config3.CTXTC =1
Fields
Read /
Name Bits Description Write Reset State
PTEBase 63:X This field is for use by the operating system and is normally written R/W Undefined
with a value that allows the operating system to use the XContext Reg-
ister as a pointer to an array of data structures in memory corresponding
to the address region containing the virtual address which caused the
exception. Note that the lower 2-bits of PTEBase are always 0.
86 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.23 XContext Register Field Descriptions when Config3.CTXTC =1 (continued)

Fields
Read /

Name Bits Description Write Reset State

BadVPN2 X-1:Y | This field is written by hardware on a TLB exception. It contains the R Undefined
virtual address that caused the exception. The upper and lower bound
of this field is determined by the consecutive number of 1’s in the
XContextConfig register.

PTEBaseLow (Y-1):0 | This field is for use by the operating system and is normally written R/W Undefined
with a value that allows the operating system to use the Context Regis-
ter as a pointer to an array of data structures in memory corresponding
to the address region that contains the virtual address which caused the
exception.

2.2.2.7 XContext Configuration — XContextConfig (CPO Register 4, Select 3)

The XContextConfig register defines the bits of the XContext register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the

selected BadVPN2 field of the Context register are read/write to software and serve as the PTEBase field. Bits below
the selected BadVPNZ2 field of the Context register serve as the PTEBaseLow field.

Software writes a set of contiguous ones to the Virtuallndex field of the XContextConfig register. Hardware then
determines which bits of this register are high and low. The highest order bit that is a logic ‘1’ serves as the MSB of
the BadVPN2 field of the XContext register. The lowest order bit that is a logic ‘1’ serves as the LSB of the BadVPN2
field of the XContext register. A value of all zero’s in the Virtuallndex field means that the full 32 bits of the XContext
register are R/W for software and are unaffected by TLB exceptions.

Figure 2.18 shows the formats of the XContextConfig register; Table 2.22 describes the XContextConfig register fields.

Figure 2.20 XContextConfig Register Format
63 39 38 2 1 0

0 Virtuallndex 0

Table 2.24 XContextConfig Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
0 63:39 Ignored on write; returns zero on read. R 0x00

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 87

Table 2.24 XContextConfig Register Field Descriptions (continued)

Fields

Name

Bits

Description

Read /
Write

Reset State

Virtuallndex

38:2

A mask of 0 to 37 contiguous 1 bits in this field causes the corre-
sponding bits of the XContext register to be written with the high-
order bits of the virtual address causing a TLB exception.
Behavior of the processor is UNDEFINED if non-contiguous 1
bits are written into the register field. Note that it is the responsi-
bility of software to ensure that this field is written with contigu-
ous ones because if non-contiguous 1 bits are written, no exception
will be taken.

R/W

0x1F_FFFF
_FFFC

1:0

Ignored on write; returns zero on read.

88

2.2.2.8 PageMask (CPO Register 5, Select 0)

Every TLB entry has an independent virtual-address mask that allows it to ignore some address bits when deciding to

match. By selectively ignoring lower page addresses, the entry can be made to match all the addresses in a "page"
larger than 4KB.

Software can determine the maximum page size supported by writing all ones to the PageMask register, then reading

the value back. If a pair of bits reads back as ones, the processor implements that page size. Note that the bits are read
in pairs, so bits 14:13 are read first and can have only a value of 00 or 11. If they are both 11, bits 16:15 are read, and

SO on.

The operation of the processor is UNDEFINED if software loads the Mask field with a value other than one of those
listed in Table 2.26, even if the hardware returns a different value on read. Hardware may depend on this requirement

in implementing hardware structures.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.21 PageMask Register Format

63 33 32 13 12
0 Mask 0
Table 2.25 Field Descriptions for PageMask Register
Read/
Name Bit(s) Description Write Reset State
0 63:33 | Ignored on write; returns zero on read. R 0
Mask 32:13 | The mask field is a bit mask in which a logic “1” indicates that the correspond- R/W Undefined
ing bit of the virtual address should not participate in the TLB match. Note that
only a restricted range of PageMask values are legal (i.e., with "1"s filling the
PageMaskpask field from low bits upward, two at a time).
Maximum page size is 4 GB. The legal values for this field are shown in Table
2.26 below.
0 12:0 |Ignored on write; returns zero on read. R 0

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading the
value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the proces-
sor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table 2.26, even if
the hardware returns a different value on read. Hardware may depend on this requirement in implementing hardware

Table 2.26 PageMask Register Values

PageMask Register Value Size of Each Output Page
0x0000_0000_0000.6000 16 Kbytes
0x0000_0000_0001.E000 64 Kbytes
0x0000_0000_0007.E000 256 Kbytes
0x0000_0000_O001F.E000 1 Mbyte
0x0000_0000_007F.E000 4 Mbytes
0x0000_0000_01FF.E000 16 Mbytes
0x0000_0000_07FF.E000 64 Mbytes
0x0000_0000_1FFF.E000 256 Mbytes
0x0000_0000_7FFF.E000 1 Gbytes
0x0000_0001 FFFF.E000 4 Gbytes

structures.

2.2.2.9 Page Granularity — PageGrain (CPO Register 5, Select 1)

The PageGrain register is a read/write register used for XI/RI TLB protection bits. Figure 2.22 shows the format of
the PageGrain register. Table 2.27 describes the PageGrain register fields.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

Figure 2.22 PageGrain Register Format
31 30 29 28 27 26 5 4 0

RIE | XIE |ELPA | ESP | IEC 0 MCAUSE

Table 2.27 Field Descriptions for PageGrain Register

Read/
Name Bit(s) Description Write Reset State

RIE 31 Read inhibit enable. This bit is always 1 to indicate that the RI bit of the Entry0 R 1
and Entry1 registers is enabled.

XIE 30 Execute inhibit enable. This bit is always 1 to indicate that the XI bit of the R 1
Entry0 and Entry1 registers is enabled.

ELPA 29 Enables support for large physical addresses. This field is encoded as follows: R/W 0
0: Large physical address support is disabled.
1: Large physical address support is enabled.
If this bit is a 1, the following changes occur to coprocessor 0 registers:

* The PFNX field of the EntryLo0O and EntryLol registers is writable and con-
catenated with the PFN field to form the full page frame number.

» Access to optional COPO registers with PA extension, LLAddr, TagLo is
defined.

If this bit is a 0 and Config31 pa=1, then writes to above registers or fields are

ignored and reads return 0.

ESP 28 This bit is always 0 as 1K pages are notsupported. This bit must be written with R 0
0.

IEC 27 Enables unique exception codes for the Read-Inhibit and Execute-Inhibit excep- R 1
tions. This bit is always 1 to indicate that Read-Inhibit exceptions use the TLBRI
exception code, and that Execute-Inhibit exceptions use the TLBXI exception
code.

0 26:5 | Reserved. Ignored on write; returns zero on read. R 0

MCAUSE 4:0 | Machine Check Cause. Only valid after a Machine Check Exception. This field R 0
indicates the cause of the machine check exception and it encoded as follows:
0x0: No Machine Check Reported

0x1: Multiple Hit in TLB(s).

0x2: Multiple Hits in TLB(s) for speculative accesses. The value in EPC might
not point to the faulting instruction.

0x3: For Dual VTLB and FTLB. A page with EntryHi.EHINV=0 is written into
FTLB and PageMask is not set to a page size that is supported by the FTLB.
0x4: For Dual VTLB and FTLB. A page with EntryHi. EHINV=0 is written into
FTLB but the VPN2 field is not consistent with the TLB set selected by the
Index register.

0x5: For Hardware Page Table Walker and Dual Page Mode of Directory Level
PTE:s - first PTE accessed from memory has PTEVId bit set but second PTE
accessed from memory does not have PTEVId bit set.

0x6: For Hardware Page Table Walker and derived Huge Page size is power-of-
4 but Dual Page mode not implemented.

0x7 - 0x31: Reserved.

920 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

31

2.2.2.10 Wired (CPO Register 6, Select 0)

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 2.28. Wired entries are fixed, non-replaceable entries that cannot be overwritten by a
TLBWR instruction. Wired entries can be overwritten by a TLBWI instruction.

Note that wired entries in the TLB must be contiguous and start from 0. For example, if the Wired field of this register
contains a value of 5, this indicates that entries 4, 3, 2, 1, and 0 of the VTLB are wired. Release 6 adds the Limit field.
The intent of a non-zero value for this field is to place a limit on the number of wired entries in a TLB such that non-
wired entries may be shared. If the Limit field is greater than 0, and software attempts to wire an entry greater than
the value programmed into the Limit field, the write is ignored. The Wired register is reset to zero by a Reset excep-
tion.

Hardware will drop any attempt to write the Wired.Wired field with a value greater than either the number stored in
the Limit field, or the number of VTLB entries.Wired can be set to a non-zero value to prevent the random replace-
ment of up to 63 VTLB pages.

Figure 2.23 Wired Register Format
21 20 16 15 6 5 0

0 Limit 0 Wired

Table 2.28 Field Descriptions for Wired Register

Read/
Name Bit(s) Description Write Reset State
31:21 |Ignored on write; returns zero on read. R 0
Limit 20:16 | Limit field. This field indicates the maximum number of entries that can be R 0x1F
wired, which in the P6600 core is 31. Values above 31 are ignored and the value
in this field is truncated to Ox1F.
However, if the value in the Limit field is 0, hardware will allow all writes to the
Wired field as long as the value being written is less than the total number of
TLB entries.
15:6 | Ignored on write; returns zero on read. R 0
Wired 5:0 Defines the number of wired dual entries in the VTLB. A value of 0 in this field | R/W 0

indicates that no TLB entries are hard wired. A value of Ox1F indicates that all
31 VTLB entries are hard wired.

This field is encoded as follows:
0x00: 0 VTLB entries are hardwired
0x01: 1 VTLB entry is hardwired
0x02: 2 VTLB entries are hardwired

0x1F: 31 VTLB entries are hardwired

2.2.2.11 Bad Virtual Address — BadVAddr (CPO Register 8, Select 0)

The 64-bit BadVAddr register is a read-only registerthat captures the most recent virtual address that caused one of the
following exceptions:

¢ Address error (AdEL or AdES)

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 91

+ TLB Refill

+ TLB Invalid (TLBL, TLBS)

* TLB Read Inhibit (TLBRI)

* TLB Execute Inhibit (TLBXI)
* TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, since they are not addressing
eITOTS.

There is more information about this register in the notes to the Causegxccode field.

Figure 2.24 BadVAddr Register Format
63 0

BadVAddr

Table 2.29 BadVAddr Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
BadVAddr 63:0 Bad virtual address. This register stores the virtual address that causes one R Undefined
of the TLB exceptions listed above.

2.2.2.12 PWBase Register (CPO Register 5, Select 5)
The PWBase register contains the Page Table Base virtual address, used as the starting point for hardware page table
walking. It is used in combination with the PWField and PWSize registers. The existence of this register is indicated
when Config3py = 1. For more information on page table walking, refer to Chapter 3 of this manual.

Figure 2.25 shows the format of the PWBase register; Table 2.30 describes the PWBase register fields.

Figure 2.25 PWBase Register Format
63 0

PWBase

Table 2.30 PWBase Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
PWBase 63:0 Page Table Base address pointer. R/W 0

92 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.2.13 PWEField Register (CPO Register 5, Select 6)

The PWField register configures hardware page table walking for TLB refills. It is used in combination with the
PWBase and PWSize registers.

The hardware page walker supports multi-level page tables - up to four directory levels plus one page table level. The
lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a Page Table
(PT) and is indexed using bits from the faulting address. A single-level page table system contains only a single Page
Table.

A multi-level page table system consists of multiple levels, the lowest level being the Page Table Entries. Levels
above the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each pointer
in a directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address. The PWBase register con-
tains the base address of the first Directory or Page Table which will be accessed. The PWSize register specifies the

number of index bits to be used for each level. The PWField register specifies the location of the index fields in the
faulting address. This PWField register only exists if Config3py = 1.

If a synchronous exception condition is detected on a read operation during hardware page-table walking, the auto-
mated process is aborted and a TLB Refill exception is taken.

Figure 2.26 shows the formats of the PWField Register; Table 2.31 describes the PWField register fields.

Figure 2.26 PWField Register Format

63 38 37 32
0 BDI
31 30 29 24 23 18 17 12 1 6 5 0
0 GDI UDI MDI PTI PTEI
Table 2.31 PWField Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State
0 63:38 Must be written as zero; returns zero on read. R 0
BDI 37:32 | Base Directory index. Least significant bit of the index field extracted from the R 0x0
faulting address, which is used to index into the Base Directory. The number of
index bits is specified by PWSize. BDW.
GDI 29:24 | Global Directory index. Least significant bit of the index field extracted from R/W 0xC
the faulting address, which is used to index into the Global Directory. The num-
ber of index bits is specified by PWSizegpw.
This register must contain a value greater than 0x0C at all times. The entire
write is dropped if the write value to this field is less than 12 decimal.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 93

Table 2.31 PWField Register Field Descriptions (continued)

Fields
Read / Reset
Name Bits Description Write State
UDI 23:18 | Upper Directory index. Least significant bit of the index field extracted from R/W 0xC

the faulting address, which is used to index into the Upper Directory. The num-
ber of index bits is specified by PWSizeypw.

This register must contain a value greater than 0x0C at all times. The entire
write is dropped if the write value to this field is less than 12 decimal.

MDI 17:12 | Middle Directory index. Least significant bit of the index field extracted from R/W 0xC
the faulting address, which is used to index into the Middle Directory. The
number of index bits is specified by PWSizepmpw.

This register must contain a value greater than 0x0C at all times. The entire
write is dropped if the write value to this field is less than 12 decimal.

PTI 11:6 Page Table index. Least significant bit of the index field extracted from the R/W 0xC
faulting address, which is used to index into the Page Table. The number of
index bits is specified by PWSizepTw.

This register must contain a value greater than 0x0C at all times. The entire
write is dropped if the write value to this field is less than 12 decimal.

PTEI 5:0 Page Table Entry shift. R/W 0x2
Specifies the logical right shift and rotation which will be applied to Page Table
Entry values loaded by hardware page table walking.

The entire PTE is logically right shifted by PTEI-2 bits first. The purpose of
this shift is to remove the software-only bits from what will be written into the
TLB entry. Then the two least-significant bits of the shifted value are rotated
into position for the RI and XI protection bit locations within the TLB entry.

A value of 2 means rotate the right-most 2 bits into the RI/XI bit positions for
the TLB entry.

A value of 3 means logical shift right by 1 bit the entire PTE and then rotate the
right-most 2 bits into the RI/XI positions for the TLB entry. A value of 4 means
logical shift right by 2bits the entire PTE and then rotate the right-most 2 bits
into the RI/XI positions for the TLB entry.

In the P6600 core, the values of 1 and 0 in this field are RESERVED and
should not be used; the operation of the page table walker is UNPREDICT-
ABLE for these cases.

The set of available non-zero shifts is implementation-dependent. Software can
discover the available values by writing this field. If the requested shift value is
not available, PTE| will remain unchanged. A shift of zero must be imple-
mented.

Note that the PTEI field can be incorrectly programmed so that the entire PFN, C, V, G TLB fields are overwritten
with zeros by the logical right shift operation. The intention of this facility is to only remove the SW-only bits of the
PTE from the value which will be later written into the TLB.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.2.14 PWSize Register (CPO Register 5, Select 7)

The 64-bit PWSize register configures hardware page table walking for TLB refills. It is used in combination with the
PWBase and PWField registers. For more information on the page table walker, refer to Chapter 3 of this manual.

The hardware page walk feature supports multi-level page tables - up to four directory levels plus one page table
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a
single Page Table.

A multi-level page table system contains multiple levels, the lowest of which are Page Table Entries. Levels above
the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each pointer in a
directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address BadVAddr. The PWBase reg-
ister contains the base address of the first Directory or Page Table which will be accessed. The PWSize register speci-
fies the number of index bits to be used for each level. The PWField register specifies the location of the index fields

in BadVAddr.

Index values used to access Directories are multiplied by the 32-bit native pointer size for the refill. When PWSizeps =
0, the native pointer size is 32 bits (2 bit left shift), and hardware page table walking is applied only when the TLB
exception would be taken. When PWSizeps = 1, the native pointer size is 64 bits (3 bit left shift), and hardware page
table walking is applied only when a TLB Refill exception would be taken.

The index value used to access the Page Table is multiplied by the native pointer size. An additional multiplier (left
shift value) can be specified using the PWSizeptew field. This allows space to be allocated in the Page Table structure
for software-managed fields.

This register only exists if Config3py = 1.

Figure 2.27 shows the formats of the PWSize Register; Table 2.32 describes the PWSize register fields.

Figure 2.27 PWSize Register Format

38 37 32
0 BDW
30 29 24 23 18 17 12 1 6 5 0
0 ‘ PS ‘ GDW UDW MDW PTW PTEW
Table 2.32 PWSize Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State
0 63:38 Must be written as zero; returns zero on read. 0 0
BDW 37:32 | Base Directory index. This field is encoded as follows: R 0x0
0: No read is performed using the base directory index.
0x01 - 0x3F: The number of bits to be extracted from BadVAddr to create an
index into the base directory. The least significant bit of the field is specified by
the PWField.BDI field.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 95

Table 2.32 PWSize Register Field Descriptions (continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

0

31

Must be written as zero; returns zero on read.

PS

30

Pointer Size. This field determines whether the pointer is loaded with 32-bit
aligned addresses or 64-bit aligned address and is encoded as follows:

0: 32-bit pointer size. Pointers within Directories are loaded as 32-bit
addresses. Hardware Page Table Walking is activated only for 32-bit address
regions, when the TLB Refill vector would be used.

1: 64-bit pointer size. Pointers within Directories are loaded as 64-bit
addresses. Hardware Page Table Walking is activated only for 64-bit address
regions, when the XTLB Refill vector would be used.

R/W

GDW

29:24

Global Directory index width. This field is encoded as follows:

0: No read is performed using Global Directory index.

0x01 - 0x 3F: A non-zero number in this field indicates the number of bits to be
extracted from BadVAddr to create an index into the Global Directory. The
least significant bit of the field is specified by PWFieldgp.

R/W

UDW

23:18

Upper Directory index width.

0: No read is performed using Upper Directory index.

0x01 - 0x 3F: A non-zero number in this field indicates the number of bits to be
extracted from BadVAddr to create an index into the Upper Directory. The least
significant bit of the field is specified by PWFieldyp.

R/W

MDW

17:12

Middle Directory index width.

0: No read is performed using Middle Directory index.

0x01 - 0x 3F: A non-zero number in this field indicates the number of bits to be
extracted from BadVAddr to create an index into the Middle Directory. The
least significant bit of the field is specified by PWFieldmpy.

R/W

PTW

11:6

Page Table index width. This field is encoded as follows:

0: UNPREDICTABLE. A value of 0 in this field causes unpredictable behav-
ior. This field should have a non-zero value.

1: Number of bits to be extracted from BadVAddr to create an index into the
Page Table. The least significant bit of the field is specified by PWFieldpT.

Note that a write of 0 to this bit causes the entire write to be dropped.

R/W

PTEW

5:0

Specifies the left shift applied to the Page Table index, in addition to the shift
required to account for the native data size of the machine.

In the P6600 core, the PTEW field cannot be set to value 1 if PWSizeps = 1. In
addition, if PWSizeptgy is already set to 1 and PWSizeps is changed from 0 to
1, hardware forces the PWSizeptew field to a value to 0 (as a side-effect of
updating PWSizeps to 1). Therefore, if PWSizeps = 0, then PTEW can be set to
1, else it is always 0.

R/W

96

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.33 describes valid PWSize ps/prew and PWCtlHygepg settings.

Table 2.33 PS/PTEW Usage

Pointer Directory |Non-leaf| Leaf PTE
PWSizeps | PWCtlhugepg | PWSizeptew| Addressing | Pointer Size |PTE Size Slze Suggested Use Case
0 0 0 32b 32b N/A 32b 32-bit Compatibility
0 0 1 32b 32b N/A 64b 32-bit PA
32-bit Compatibility
0 1 0 32b 32b 32b 32b 32-bit with Huge Page
Compeatibility
0 1 1 32b 64b 64b 64b 32-bit with Huge Pages and PA
32-bit Compatibility
1 0 0 64b 64b N/A 64b 64-bit Base
1 0 1 64b 64b N/A 128b 64-bit with Extended PTE
1 1 0 64b 64b 64b 64b 64-bit with Huge Pages
1 1 1 64b 128b 128b 128b 64-bit with Huge Pages and
Extended PTE

2.2.2.15 PWCt| Register (CPO Register 6, Select 6)

The 32-bit PWCtl register configures hardware page table walking for TLB refills. It is used in combination with the
PWBase, PWField and PWSize registers. Hardware page table walking is disabled when PWCtlpwgn = 0.

The hardware page walker feature supports multi-level page tables - up to four directory levels plus one page table
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a
single Page Table.

A multi-level page table system supports multiple levels, the lowest of which are Page Table Entries. Levels above
the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each pointer in a
directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address BadVAddr. The PWBase reg-
ister contains the base address of the first Directory or Page Table which will be accessed. The PWSize register speci-
fies the number of index bits to be used for each level. The PWField register specifies the location of the index fields

in BadVAddr. The existence of this register is denoted when Config3py = 1.

Figure 2.28 shows the formats of the PWCtl Register; Table 2.34 describes the PWCtl register fields.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 97

31

30

29

28

27

Figure 2.28 PWCtl Register Format

26

25

PWEn

PWDirExt

XK

XS

XU

DPH

HugePg

Psn

Table 2.34 PWCtl Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

PWEn

31

Hardware Page Table walker enable
If this bit is set, then the Hardware Page Table is enabled.

R/W

PWDirExt

30

PW Indices - PWField and PWSize - extended for 4th directory level - the Base
level.

29

Reserved, Must be written as zero; returns zero on read.

XK

28

XKSEG kernel address space management. This bit is encoded as follows:

0: xkseg misses generate a TLB miss exception. The hardware page walk is not
initiated.

1: The page table walker handles xkseg.

R/W

XS

27

XSSEG supervisor address space management. This bit is encoded as follows:
0: xsseg misses generate a TLB miss exception. The hardware page walk is not
initiated.

1: The page table walker handles xsseg accesses.

R/W

XU

26

XUSEG user address space management. This bit is encoded as follows:

0: xuseg misses generate a TLB miss exception. The hardware page walk is not
initiated.

1: The page table walker handles xuseg accesses.

R/W

25:8

Reserved, Must be written as zero; returns zero on read.

DPH

Dual Page format of Huge Page support. This bit is only used when HugePg =
1.

If DPH bit is set, then a Huge Page PTE can represent a power-of-4 memory
region or a 2x power-of-4 memory region. For the first case, one PTE is used
for even TLB page and the adjacent PTE is used for the odd PTE. For the latter
case, the Hardware will synthesize the physical addresses for both the even and
odd TLB pages from the single PTE entry.

If DPH bit is clear, then a Huge Page PTE can only represent a region that is 2 x
power-of-4 in size. For this case, the Hardware will synthesize the physical
addresses for both the even and odd TLB pages from the single PTE entry.

R/W

HugePg

Huge Page PTE supported in Directory levels. If this bit is set, then Huge Page
PTE in non-leaf table (i.e., directory level) is supported.

R/W

PSn

5:0

Bit position of PTEvId in Huge Page PTE. Only used when HugePg field is set.

R/W

Software enables Huge Pages by setting PWCtlHygepg = 1. Software can disable Huge Pages by setting PWCtlHygepg =
0. The 6-bit PWCtIPsn field indicates the starting bit position for PTEvld up to bit 64 in the PTE. Software can deter-
mine the supported range by writing ones to PWCtIPsn, then reading the value.

98 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.35 describes how the HugePg field is used to denote whether Huge Pages are supported or not.

Table 2.35 HugePg Field and Huge Page configurations

Type of Entr
P y Rsvd Field in Non-
PWCTLHugePg Non-Leaf Leaf leaf entry Comment
0 Always Pointer Always PTE X No Huge-Page Support
PTEpTEVId not used PTEpTEVIq not used
1 PTEpTEVId = 0 means Pointer Always PTE Must be 0 Huge-Page Support
PTEprEvid= 1 means Huge Page PTEptEVId not used

Table 2.36 describes how Huge Pages are represented in the Directory Levels.

Table 2.36 Huge Page representation in Directory Levels

PWCTLppH

Size of Huge Page

Power of 4

non-Power of 4

Comment

0

Not Allowed

If encountered, HW Page Walker aborts
and TLB Refill exception is taken.

Allowed

Even TLB page and Odd TLB page
entries both derived from single PTE

Huge-Page region can only be 2x
power-of-4

Allowed

Two PTEs are read from memory by the
HW Page Walker to be used for the
Even and Odd TLB page entries.

Allowed

Even TLB page and Odd TLB page
entries both derived from single PTE

Huge-Page region can be any power-of-2
(either power of 4 or 2x power-of-4)

Table 2.37 describes the usage of the XK, XS, and XU fields is used to indicate the hardware page walker capability.

Table 2.37 PWCtl XK/XS/XU Register Field Configurations

Register Fields
VA Bits Prepended to
PWCTLxk PWCTLxs PWCTLxu Global Directory Index Hardware Walker Capability
0 0 0 None Disabled
0 0 1 None xuseg
0 1 0 - Reserved. Not supported in the P6600 core.
0 1 1 62 xuseg and xsseg
1 0 0 - Reserved. Not supported in the P6600 core.
1 0 1 63 xuseg and xkseg
1 1 0 - Reserved. Not supported in the P6600 core.
1 1 1 63:62 xuseg, xsseg, xkseg

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

99

2.2.3 Exception Control Registers

This section contains the following exception control registers.

* Section 2.2.3.1, "Cause (CPO Register 13, Select 0)" on page 100

* Section 2.2.3.2, "Exception Program Counter — EPC (CPO Register 14, Select 0)" on page 104

* Section 2.2.3.3, "Error Exception Program Counter — ErrorEPC (CPO Register 30, Select 0)" on page 104
* Section 2.2.3.4, "BadInstr Register (CPO Register 8, Select 1)" on page 105

* Section 2.2.3.5, "BadInstrP Register (CPO Register 8, Select 2)" on page 106

Also refer to the Interrupt Control register in Section 2.2.1.12, "Interrupt Control — IntCtl (CPO Register 12, Select
1)" on page 76.

2.2.3.1 Cause (CPO Register 13, Select 0)

The Cause register describes the cause of the most recent exception and controls software interrupt requests and the
vector through which interrupts are dispatched. With the exception of the IP1:0, DC, 1V, and WP fields, all fields in the
Cause register are read-only. IP7:2 are interpreted as the Requested Interrupt Priority Level (RIPL) in External Inter-
rupt Controller (EIC) interrupt mode.

Figure 2.29 Cause Register Format
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 8 7 6 210

BD | TI| CE DC | PCI 0 IV | WP | FDCI 0 IP7-2 IP1-0 | 0| ExcCode 0

Table 2.38 Field Descriptions for Cause Register

Read/
Name Bit(s) Description Write Reset State

BD 31 Indicates whether the last exception taken occurred in a branch delay slot. R Undefined
0: Exception taken was not in delay slot

1: Exception taken was in delay slot

The processor updates BD only if the EXL bit in the Status register was zero
when the exception occurred.

If the exception occurred in a branch delay slot, the exception program counter
(EPC) is set to restart execution at the branch. Software should read this bit to
determine if the exception was taken in a delay slot.

Tl 30 Timer Interrupt. Denotes whether a timer interrupt is pending (analogous to the R Undefined
IP bits for other interrupt types)

0: No timer interrupt is pending

1: Timer interrupt is pending

Hardware sets this bit based on the state of the external SI_TimerInt signal. See
also the descriptions of the Count and Compare registers.

100 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.38 Field Descriptions for Cause Register (continued)

Read/
Name Bit(s) Description Write Reset State
CE 29:28 | Coprocessor unit number referenced when a Coprocessor Unusable exception is R Undefined
taken. This field is loaded by hardware on every exception, but is UNPRE-
DICTABLE for all exceptions except Coprocessor Unusable.
00: Coprocessor 0
01: Coprocessor 1
10: Coprocessor 2 (not supported in P6600)
11: Coprocessor 3 (not supported in P6600)
DC 27 Disable Count register. In some power-sensitive applications, the Count register | R/W 0
is not used but may still be the source of some noticeable power dissipation.
This bit allows the Count register to be stopped in such situations. For example,
this can be useful during low-power operation following a wai t instruction.
0: Enable counting of Count register
1: Disable counting of Count register
PCI 26 Performance Counter Interrupt. Indicates whether a performance counter inter- R Undefined
rupt is pending (analogous to the IP bits for other interrupt types).
0: No performance counter interrupt is pending
1: Performance counter interrupt is pending
See also the description of the PerfCnt registers.
0 25:24 | Reserved. Write as zero. Ignored on reads. R 0
\% 23 Indicates whether an interrupt exception uses the general exception vector or a R/W Undefined
special interrupt vector:
0: Use the general exception vector (0x180)
1: Use the special interrupt vector (0x200)
When the IV bit in the Cause register is 1 and the BEV bit in the Status register is
0, the special interrupt vector represents the base of the vector interrupt table.
WP 22 Indicates that a watch exception was deferred because either theStatusgxy bitor | R/W Undefined
the Statusgry bit was a logic ‘1’ at the time the watch exception was detected.
This bit both indicates that the watch exception was deferred, and causes the
exception to be initiated when Statusgxy and Statusgrp are both zero. As such,
software must clear this bit as part of the watch exception handler to prevent a
watch exception loop.
Software should never write a 1 to this bit when its value is a 0, thereby causing
a 0-to-1 transition. If such a transition is caused by software, it is UNPRE-
DICTABLE whether hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a watch exception once Statusgxp, and
Statusgry are both zero. Software should clear this bit, but never set it. It is set
by hardware.
FDCI 21 Fast Debug Channel Interrupt: This bit denotes whether an FDC interrupt is R Undefined
pending (analogous to the IP bits for other interrupt types).
0: No FDC interrupt is pending
1: FDC interrupt is pending
This bit is set by hardware based on the state of the external SI_FDClInt signal.
0 20:16 |Reserved. Write as zero. Ignored on reads. R 0
MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 101

Table 2.38 Field Descriptions for Cause Register (continued)

Read/

Name Bit(s) Description Write Reset State
IP7-2 15:10 |Indicates an interrupt is pending. R Undefined
RIPL If External Interrupt Controller (EIC) mode is disabled (Config3yg|c = 0), timer

interrupts are combined in a system-dependent way with any hardware interrupt.
Each bit of this field maps to an individual hardware interrupt.
Bit Name Meaning
15 IP7 |Hardware interrupt 5
14 IP6 |Hardware interrupt 4
13 IP5 |Hardware interrupt 3
12 IP4 |Hardware interrupt 2
11 IP3 |Hardware interrupt 1
10 IP2 |Hardware interrupt 0
If EIC interrupt mode is enabled (Config3yeic = 1), these bits take on a different
meaning and are interpreted as the Requested Interrupt Priority Level (RIPL)
field.
When EIC interrupt mode is enabled, this field (RIPL) contains the encoded (0 -
63) value of the requested interrupt. A value of zero indicates that no interrupt is
requested.
IP1-0 9:8 | Controls the request for software interrupts: R/W Undefined
Bit Name Meaning
9 IP1 |Request software interrupt 1
8 IPO |Request software interrupt 0
These bits are exported to an external interrupt controller for prioritization in
EIC interrupt mode with other interrupt sources. The state of these bits are
driven onto the external SI_SWInt[1:0] bus.
0 7 Reserved. Write as zero. Ignored on reads. 0
ExcCode 6:2 Encodes the cause of the last exception as described in Table 2.39. Undefined
0 1:0 | Reserved. Write as zero. Ignored on reads. 0
Table 2.39 Exception Code Values in ExcCode Field of Cause Register
Value Value
(decimal) (hex) Code Description
0 0x0 Int Interrupt
1 0x1 Mod Store, but page marked as read-only in the TLB
2 0x2 TLBL Load or fetch, but page not present or marked as invalid in the TLB
3 0x3 TLBS Store, but page not present or marked as invalid in the TLB
4 0x4 AdEL Address error on load/fetch or store respectively. Address is either wrongly aligned, or a
5 0x5 AdES privilege violation.
6 0x6 IBE Bus error signaled on instruction fetch
7 0x7 DBE Bus error signaled on load/store (imprecise)

102 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.39 Exception Code Values in ExcCode Field of Cause Register (continued)

Value Value
(decimal) (hex) Code Description
8 0x8 Sys System call, i.e. syscall instruction executed.
9 0x9 Bp Breakpoint, i.e. break instruction executed. If an SDBBP instruction is executed while
the processor is running in EJTAG Debug Mode, this value is written to the
Debugpexccode field to denote an SDBBP in Debug mode.

10 0xA RI Reserved instruction. Instruction code not recognized (or not legal)

11 0xB CpU Coprocessor Unusable Exception. Instruction code was for a co-processor which is not
enabled in Statuscuys-o.

12 0xC Ov Overflow exception. Overflow from a trapping variant of integer arithmetic instructions.

13 0xD Tr Trap exception. Condition met on one of the conditional trap instructions teq etc.

14 0xE MSAFPE | MSA floating point unit exception.

15 OxF FPE Floating point unit exception — more details in the FPU control/status registers.

16 0x10 TLBPAR | TLB parity error exception.

17-18 0x11 - 0x12 - Available for implementation-dependent use.

19 0x13 TLBRI | TLB read inhibit exception.

20 0x14 TLBXI | TLB execute inhibit exception.

21 0x15 MDADi | MSADi exception.

22 0x16 - Reserved.

23 0x17 WATCH | Instruction or data reference matched a watchpoint. Refer to WatchHi/WatchLo address.

24 0x18 MCheck | Machine check exception.

25 0x19 - Reserved

26 Ox1A DSPDis | DSP ASE not enabled or not present exception. This exception occurs when trying to run
an instruction from the MIPS DSP ASE, but the ASE is either not enabled or not avail-
able. If this exception occurs and the DSP ASE is present in the system, check the state
of the Statusyx bit to make sure it is set to ‘1°. This value is not used in the P6600 core.

27 0x1B GE Hypervisor Exception (Guest Exit). GE is set to 1 in following cases:

- Hypervisor-intervention exception occurred during guest mode execution.
- Hypercall executed in root mode
GuestCtl0GExcCode contains additional cause information.

2829 0x1C - 0x1D - Reserved.

30 0x1E CacheErr | Parity/ECC error occurred somewhere in the P6600 core, on either an instruction fetch,
load, or cache refill. This exception does not occur during normal operation, but can
occur while in debug mode. Refer to Section 2.2.8.1 “Debug (CPO Register 23, Select
0)” for more information.

31 0x1F - Reserved.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

103

2.2.3.2 Exception Program Counter — EPC (CPO Register 14, Select 0)
Following an exception other than an error or debug exception, the 64-bit Exception Program Counter (EPC) contains
the address at which processing resumes after the exception has been serviced (the corresponding debug and error

exception use DEPC and ErrorEPC respectively).

Unless the EXL bit in the Status register is set (indicating, among other things, that interrupts are disabled), the proces-
sor writes the EPC register when an exception occurs.

* For synchronous (precise) exceptions, EPC contains either:
e The virtual address of the instruction that was the direct cause of the exception, or

¢ The virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

* For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the eret instruction.

Figure 2.30 EPC Register Format
63 0

EPC

Table 2.40 EPC Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
EPC 63:0 Exception Program Counter. R/W Undefined

2.2.3.3 Error Exception Program Counter — ErrorEPC (CPO Register 30, Select 0)

The 64-bit ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

This full 32-bit register is filled with the restart address on a cache error exception or any kind of CPU reset — in fact,
any exception which sets Statusgr| and leaves the CPU in "error mode".

Figure 2.31 ErrorEPC Register Format

63 0

ErrorEPC

104 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.41 ErrorEPC Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
ErrorEPC 63:0 Error Exception Program Counter. R/W Undefined

2.2.3.4 BadlInstr Register (CPO Register 8, Select 1)

The 32-bit Badlnstr register is a read-only register that captures the most recent instruction which caused one of the

following exceptions:

* Instruction validity

Coprocessor Unusable, Reserved Instruction

* Execution Exception

Integer Overflow, Trap, System Call, Breakpoint, Floating Point, Coprocessor 2 exception

e Addressing

Address Error, TLB or XTLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

The Badlnstr register is provided to allow acceleration of instruction emulation. The BadlInstr register is only set by
exceptions which are synchronous to an instruction. The BadlInstr register is not set by Interrupts, NMI, Machine
check, Bus Error or Cache Error exceptions. The BadlInstr register is not set by Watch or EJTAG exceptions.

When a synchronous exception occurs for which there is no valid instruction word (for example TLB Refill - Instruc-
tion Fetch), the value stored in BadInstr is UNPREDICTABLE. Presence of the BadInstr register is indicated by the
Config3g bit.

Figure 2.32 shows the format of the BadInstr register; Table 2.42 describes the BadlInstr register fields.

31

Figure 2.32 Badlnstr Register Format

Badlnstr

Table 2.42 BadInstr Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Badlnstr 31:0 Faulting instruction word. R Undefined
Instruction words smaller than 32 bits are placed in bits 15:0, with
bits 31:16 containing zero.
MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 105

106

2.2.3.5 BadlInstrP Register (CPO Register 8, Select 2)

The 32-bit BadInstrP register is used in conjunction with the BadInstr register. The BadInstrP register contains the prior
branch instruction, when the faulting instruction is in a branch delay slot.

The BadlnstrP register is updated for these exceptions:
* Instruction validity
Coprocessor Unusable, Reserved Instruction
* Execution Exception
Integer Overflow, Trap, System Call, Breakpoint, Floating Point, Coprocessor 2 exception
e Addressing
Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified
The BadInstrP register is provided to allow acceleration of instruction emulation. The BadInstrP register is only set by
exceptions which are synchronous to an instruction. The BadlInstrP register is not set by Interrupts, NMI, Machine

check, Bus Error or Cache Error exceptions. The BadlInstr register is not set by Watch or EJTAG exceptions.

When a synchronous exception occurs and the faulting instruction is not in a branch delay slot, then the value stored
in BadInstrP is UNPREDICTABLE. Presence of the BadInstrP register is indicated by the Config3gp bit.

Figure 2.33 shows the proposed format of the BadInstrP register; Table 2.43 describes the BadInstrP register fields.

Figure 2.33 BadInstrP Register Format
31 0

BadlnstrP

Table 2.43 BadInstrP Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
BadlInstrP 31:0 Prior branch instruction. R Undefined

Instruction words smaller than 32 bits are placed in bits 15:0,
with bits 31:16 containing zero.

2.2.4 Timer Registers

This section contains the following timer registers.
* Section 2.2.4.1, "Count (CPO Register 9, Select 0)" on page 107

* Section 2.2.4.2, "Compare (CP0 Register 11, Select 0)" on page 107

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

31

2.2.4.1 Count (CPO Register 9, Select 0)

The 32-bit Count register acts as a timer, incrementing at a constant rate. Incrementing of this register occurs whether
or not an instruction is executed, retired, or any forward progress is made through the pipeline. When enabled by
clearing the DC bit in the Cause register, the counter increments every other clock (half the clock rate).

The Count may be stopped in either of the following two circumstances.

* Some implementations may stop Count in the low-power mode, for example, through the wait instruction, but
only if the Causepc flag is set to 1.

* When the device is in debug mode, the Count register can be stopped by setting Debugcountom. By writing the
Countpwm bit, it is possible to control whether the Count register continues incrementing while the processor is in
debug mode.

The Count field starts counting from whatever value is loaded into it. However, OS timers are usually implemented by
leaving Count free-running and writing Compare as necessary. This counter rolls over when reaching it maximum

value.

By writing the Countpy bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor is in debug mode.

Figure 2.34 Count Register Format

Count

Table 2.44 Count Register Field Description

Fields

Name

Bits

Description Read / Write Reset State

Count

31:0

Interval counter.

R/W

Undefined

2.2.4.2 Compare (CPO Register 11, Select 0)

The 32-bit Compare register acts in conjunction with the Count register to implement a timer and timer interrupt func-
tion. When the value of the Count register equals the value of the Compare register, the SI_TimerInt output pin is
asserted. SI_TimerInt remains asserted until the Compare register is written.

The SI_TimerInt output can be fed back into the P6600 core on one of the interrupt pins to generate an interrupt. Tradi-
tionally, this has been done by multiplexing it with hardware interrupt 5 in order to set interrupt bit IP(7) in the Cause
register.

For diagnostic purposes, the Compare register is a read/write register. In normal use however, the Compare register is
write-only. As a side effect, writing a value to this register clears the timer interrupt.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 107

Figure 2.35 Compare Register Format
31 0

Compare

Table 2.45 Compare Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
Compare 31:0 Interval count compare value. R/W OxFFFF_FFFF

2.2.5 Cache Management Registers

This section contains the following cache management registers.

e Section 2.2.5.1, "Level 1 Instruction Cache Tag Low — ITagLo (CPO Register 28, Select 0)" on page 108

e Section 2.2.5.2, "Level 1 Instruction Cache Tag High — ITagHi (CPO Register 29, Select 0)" on page 110
* Section 2.2.5.3, "Level 1 Instruction Cache Data Low — IDatalLo (CP0 Register 28, Select 1)" on page 111
* Section 2.2.5.4, "Level 1 Instruction Cache Data High — IDataHi (CPO Register 29, Select 1)" on page 111
e Section 2.2.5.5, "Level 1 Data Cache Tag Low — DTagLo (CPO Register 28, Select 2)" on page 112

* Section 2.2.5.6, "Level 1 Data Cache Data Low — DDatalL.o (CPO Register 28, Select 3)" on page 115

* Section 2.2.5.7, "Level 2/3 Cache Tag Low — L23TaglLo (CPO Register 28, Select 4)" on page 116

* Section 2.2.5.8, "Level 2/3 Cache Data Low — L23DatalLo (CP0O Register 28, Select 5)" on page 117

* Section 2.2.5.9, "Level 2/3 Cache Data High — L23DataHi (CPO Register 29, Select 5)" on page 118

e Section 2.2.5.10, "ErrCtl (CPO Register 26, Select 0)" on page 118

* Section 2.2.5.11, "Cache Error — CacheErr (CPO Register 27, Select 0)" on page 120

2.2.5.1 Level 1 Instruction Cache Tag Low — ITagLo (CPO Register 28, Select 0)

The 64-bit ITagLo register acts as the interface to the instruction cache tag array. The Index Store Tag and Index Load
Tag operations of the CACHE instruction use the ITagLo register as the source of tag information.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag
operations.

The interpretation of this register changes depending on the setting s of ErrCtlyst and ErrCtlspg.

108 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Default cache interface mode (ErrCtlyst = 0)

Diagnostic "way select test mode" (ErrCtlwst = 1)

See the diagrams below for a description.

ITagLo (ErrCtlwst =0)

In this mode, this register is a staging location for cache tag information being read/written with cache load-tag/
store-tag operations—routinely used in cache initialization.

Figure 2.36 ITagLo Register Format (ErrCtlysTt = 0)

63 40 39 32
0 PTagLo
31 12 11 8 7 6 5 1 0
PTaglo 0 V]0|L 0 P
Table 2.46 Field Descriptions for ITagLo Register
Read/
Name Bit(s) Description Write Reset State
0 63:40 | Must be written as zero; returns zero on read. R 0
PTagLo 39:12 | The cache address tag, which is a physical address because the P6600’s caches R/W Undefined
are physically tagged. It holds bits 40:16 of the physical address. The low-order
16 bits of the address are implied by the position of the data in the cache.
0 11:8 | Must be written as zero; returns zero on read. R 0
\ 7 Set to 1 if this cache entry is valid (set to zero to initialize the cache). R/W Undefined
0 6 Must be written as zero; returns zero on read. R 0
L 5 Specifies the lock bit for the cache tag. This bit is set to lock this cache entry, R/W Undefined
preventing it from being replaced by another line when a cache miss occurs.
When this bit is set, and the V bit isset, the corresponding cache line will not be
replaced by the cache replacement algorithm.
This can be used for critical data that must not be removed from the cache. How-
ever, this can reduce the efficiency of the cache for memory data competing for
space at this index.
4:1 Must be written as zero; returns zero on read. R 0
P 0 Parity bit over the cache tag entries. This bit is updated with tag array parity on R/W Undefined

CACHE Index Load Tag operations and used as tag array parity on Index Store
Tag operations when the PO bit of the ErrCtl register is set.

ITagLo-WST (ErrCtIWST =1)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access the data in these fields either by cache load-tag or store-tag operations when ErrCtlysr is set.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

109

Figure 2.37 ITagLo Register Format (ErrCtlwst = 1)
63 32

31 16 15 10 9 0

0 LRU 0

Table 2.47 Field Descriptions for ITagLo-WST Register

Read/
Name Bit(s) Description Write Reset State
0 63:16 | Must be written as zero; returns zero on read. R/W Undefined
LRU 15:10 |LRU bits. This field contains the value read from the WS array after a R/W Undefined
CACHE Index Load WS operation. It is used to store into the WS array
during CACHE Index Store WS operations.
When reading or writing the tag in way-select test mode (that is, with
ErrCtlysT set), this field reads or writes the LRU ("least recently used")
state bits, held in the way-select RAM.
0 9:8 | Must be written as zero; returns zero on read. R 0

2.2.5.2 Level 1 Instruction Cache Tag High — ITagHi (CPO Register 29, Select 0)

This register represents the [-cache Predecode bits and is intended for diagnostic use only.

Figure 2.38 ITagHi Register Format

31 25 24 18 17 1 10 4 3 2 1 0
PREC 67 PREC 45 PREC 23 PREC 01 P_67/P_45/P_23/P_01
Table 2.48 Field Descriptions for ITagHi Register
Read/

Name Bit(s) Description Write Reset State
PREC_67 31:25 | P6600 family cores do some decoding of instructions when they’re loaded into R/W Undefined
PREC_45 2418 the I-cache., which helps speed ins@ction di§patch. When you use cache tag RIW Undefined

load/store instructions, you see that information here.
PREC_23 17:11 | The individual PREC fields hold precode information for pairs of adjacent R/W Undefined
PREC 01 10:4 | instructions in the I-cache line, and the P fields hold parity over them. R/W Undefined
P_67 3 R/W Undefined
P_45 2 R/W Undefined
P_23 1 R/W Undefined
P_01 0 R/W Undefined

110 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.5.3 Level 1 Instruction Cache Data Low — IDatalL.o (CPO Register 28, Select 1)

The IDatalo register is a register that acts as the interface to the instruction cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values
into the IDataLo register. If the WST bit in the ErrCtl register is set, then the contents of IDataLo can be written to the
cache data array by doing an Index Store Data CACHE instruction.

Two registers (IDataHi, IDatalLo) are needed, because the P6600 core loads I-cache data at least 64 bits at a time.

Figure 2.39 IDatalLo Register Format

31 0

DATA

Table 2.49 IDatalL o Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 Low-order data read from the cache data array. R/W Undefined

2.2.5.4 Level 1 Instruction Cache Data High — IDataHi (CPO Register 29, Select 1)

The IDataHi register is a register that acts as the interface to the cache data array and is intended for diagnostic opera-
tions only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the
IDataHi register. If the WST bit in the ErrCtl register is set, then the contents of IDataHi can be written to the cache data
array by doing an Index Store Data CACHE instruction.

Because the interface to the I-cache only operates on pairs of instructions, two registers (IDataHi, IDatalLo) are needed
because the P6600 core loads I-cache data at least 64-bits at a time. The high instruction is written into the IDataHi
register. Note that IDataHi and IDatalo reflect the memory ordering of the instructions. Depending on the endianness
of the system, Instruction0 belongs in either IDataHi (BigEndian) or IDataLo (LittleEndian) and vice versa for

Instructionl.
Figure 2.40 IDataHi Register Format
31 0
DATA
Table 2.50 IDataHi Register Field Description
Fields
Read /

Name Bit(s) Description Write Reset State
DATA 31:0 High-order data read from the cache data array. R/W Undefined

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 111

112

2.2.5.5 Level 1 Data Cache Tag Low — DTagLo (CPO Register 28, Select 2)

The 64-bit DTaglLo register acts as the interface to the data cache tag array. The Index Store Tag and Index Load Tag
operations of the CACHE instruction use the DTagLo register as the source of tag information.

When the WST bit of the ErrCtl register is asserted, this register becomes the interface to the way-selection RAM. In
this mode, the fields are redefined to give appropriate access the contents of the WS array instead of the Tag array.

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag
operations.

The D-cache has five logical memory arrays associated with this DTagLo register. The tag RAM stores tags and other
state bits with special attention to the needs of the CPU. The duplicate tag RAM also stores tags and state, but is opti-
mized for the needs of interventions. Both of these arrays are set-associative (4-way). The Dirty RAM and duplicate
Dirty RAM store the dirty bits (indicating modified data) for intervention uses, and each combine their ways together
in a single entry per set. The WS RAM also combines the lock and LRU data in a single entry per set. Accessing these
arrays for index cache loads and stores is controlled by using three bits in the ErrCtl register to create modes that
allow the correct access to these arrays.

Note that the P6600 core does not implement the DTagHi register.

The interpretation of this register changes depending on the settings of ErrCtlyst and ErrCtlpy,

e Default cache interface mode (ErrCtlyst = 0, ErrCtlpyt = 0)

» Diagnostic "way select test mode" (ErrCtlyst = 1, ErrCtlpyt = 0)

» Diagnostic "dirty array test mode" (ErrCtlyst = 0, ErrCtlpyt = 1)

For all modes, the data RAM, tag RAM, WS RAM, and duplicate tag RAM are read. In addition, for duplicate tag

array test mode, the duplicate tag RAM isalso read, and for duplicate dirty array test mode, the duplicate Dirty RAM
is read. Table 2.51 shows which RAMs are accessed for each mode for Loads and Stores.

Table 2.51 Summary of D-cache RAM accesses for Index Loads and Stores

Mode RAM Being Accessed
Duplicate

Index Primary Dirty Duplicate Dirty
Cacheop WST | DYT | Tag RAM WS RAM | Data RAM RAM Tag RAM RAM
Tag Store 0 0 WR partial WR RD — WR —
Tag Load 0 0 RD RD RD RD — —
Tag Store 1 0 — partial WR RD — — —
Tag Load 1 0 RD RD RD RD — —
Data Store 1 0 — — WR — _ _
Tag Store 0 1 — — RD WR — WR
Tag Load 0 1 RD RD RD RD — —

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

DTagLo (ErrCtlwst =0, ErrCtlpyt = 0)

In this mode, this register is a staging location for cache tag information being read/written with cache load-tag/
store-tag operations—routinely used in cache initialization. For stores in this mode, the tag RAM, WS RAM, and
duplicate tag RAM are written. Also for stores, the ErrCtlpg bit controls whether the tag RAM is written with P bit or
with generated parity; the other RAMs written in this mode always use generated parity.

Figure 2.41 DTaglLo Register Format (ErrCtlywsTt = 0, ErrCtlpyt =0)

63 40 39 12 11 10 8 7 6 5 4 1 0
PTaglo
Unused (40-bit address mode) VAT 0 VIEIL 0 P
Table 2.52 Field Descriptions for DTagLo Register
Read/
Name Bit(s) Description Write Reset State
0 63:40 | Unused R/W Undefined
PTagLo 39:12 | The cache address tag — a physical address because the P6600 caches R/W Undefined
are physically tagged. It holds bits 39:12 of the physical address. The low
12 bits of the address are implied by the position of the data in the cache.
VA1l 11 This bit always gets the virtual address bit [11] of the tag if the indexload | R/W Undefined
tag cache instruction is executed.
0 10:8 | Reserved. Write as zero. Ignored on reads. R 0
V 7 Valid entry: This bit is set if this cache entry is valid (set zero to initialize | R/W Undefined
the cache).
Index Load: load from V field in primary tag RAM
Index Store: store to V field in primary and duplicate tag RAM
E 6 Exclusive entry: This bit is set if this cache entry is exclusive (set zeroto | R/W Undefined
initialize the cache).
Index Load: load from E field in primary tag RAM
Index Store: store to E field in primary tag RAM
L 5 Locked entry: This bit is set to lock this cache entry, preventing it from R/W Undefined
being replaced by another line when there’s a cache miss. Done when you
have data so critical that it must be in the cache: it’s quite costly, reducing
the efficiency of the cache for memory data competing for space at this
index.
Index Load: load from appropriate way of L field in WS RAM
Index Store: store to appropriate way of L and LP field in WS RAM, and
if V is set, make selected way MRU in WS RAM,; also, store to L field of
duplicate tag RAM.
4:1 |Reserved. Write as zero. Ignored on reads. R 0
P 0 Parity bit over the PTAG, E, and V bits of the cache tag entries R/W Undefined
Index Load: load from P field in primary tag RAM
Index Store: possible write value for the P field of the primary tag RAM;
write this bit if ErrCtl.PO = 1, else generate;
parity written to other RAMs is generated.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

113

DTagLo-WST(ErrCtlyst = 1, ErrCtlpyt = 0)

The way-select RAM is an independent slice of the cache memory (distinct from the tag and data arrays). Test soft-
ware can access either by cache load-tag/store-tag operations when ErrCtlyst is set: then you get the data in these
fields. For stores in this mode, the WS RAM is written. Also for stores, the ErrCtlpg bit controls whether the WS
RAM is written with LP bits or with generated parity; the other RAMs written in this mode always use generated par-
ity. Also for stores, the LP and L fields only have the appropriate way written in the WS RAM. It is software’s
responsibility to maintain consistency with the value of the L field written into the duplicate tag RAM.

Figure 2.42 DTagLo Register Format (ErrCtlyst = 1, ErrCtlpyt = 0)

63 32
0
31 24 23 20 19 16 15 10 9 0
0 LP L LRU 0
Table 2.53 Field Descriptions for DTagLo-WST Register
Read/
Name Bit(s) Description Write Reset State

0 63:24 | Reserved. Write as zero. Ignored on reads. R 0

LP 23:20 | Parity for Cache-line locking control bits, held in the way select RAM. R/W Undefined
Each bit of this field is a parity bit for the corresponding bit in the L field.
Index Load: load from LP field of WS RAM
Index Store: store to appropriate way of LP field of WS RAM if
ErrCtlpo=1,
else generate;

L 19:16 | Cache-line locking control bits, held in the way select RAM. R/W Undefined
Index Load: load from L field of WS RAM
Index Store: store to appropriate way of L field of WS RAM.

LRU 15:10 | When reading or writing the tag in way select test mode (that is, with R/W Undefined

ErrCtlysr set) this field reads or writes the LRU ("least recently used")
state bits, held in the way select RAM.
Index Load: load from LRU field of WS RAM
Index Store: store to LRU field of WS RAM

0 9:0 | Reserved. Write as zero. Ignored on reads. R 0

DTagLo-DYT (ErrCtlwst = 0, ErrCtlpyt = 1)

The dirty RAM is another slice of the cache memory (distinct from the tag and data arrays). Test software can access
either by cache load-tag/store-tag operations when ErrCtlpyT is set: then you get the data in these fields. For stores,
the Dirty RAM is written. For stores, the Dirty RAM and duplicate Dirty RAM are written. Also for stores, the
ErrCtlpo bit controls whether the Dirty RAM is written with DP bits or with generated parity; the other RAMs written
in this mode always use generated parity.

114 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.43 DTagLo-DYT Register Format

63 32
0
31 24 23 20 19 16 15 12 11 10 9 0
0 DP D 0 A 0
Table 2.54 Field Descriptions for DTagLo-DYT Register
Read/
Name Bit(s) Description Write Reset State
0 63:24 | Reserved. Write as zero. Ignored on reads. R 0
DP 23:20 | Parity for Cache line "dirty" bits. R/W Undefined
Index Load: load from DP field of Dirty RAM
Index Store: store to DP field of Dirty RAM if ErrCtlpo=1, else generate;
D 19:16 | Cache line "dirty" bits. R/W Undefined
Index Load: load from D field of Dirty RAM
Index Store: store to D field of Dirty RAM
0 15:12 | Reserved. Write as zero. Ignored on reads. R 0
A 11:10 | Cache line "alias" bits. R/W Undefined
Index Load: load from A field of Dirty RAM
Index Store: store 0 and A[10] to A field of Dirty RAM
0 9:0 | Reserved. Write as zero. Ignored on reads. R 0

2.2.5.6 Level 1 Data Cache Data Low — DDatal o (CPO Register 28, Select 3)

In the P6600 core, software can read or write cache data using a cache index load tag/index store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

The DDatalo register acts as the interface to the data cache data array and is intended for diagnostic operations only.
The Index Load Tag operation of the CACHE instruction reads the corresponding data values into the DDatalo regis-
ter. If the WST bit in the ErrCtl register is set, then the contents of DDataLo can be written to the cache data array by
doing an Index Store Data CACHE instruction.

Figure 2.44 DDatalo Register Format

31 0
DATA
Table 2.55 DDatal o Register Field Description
Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 Low-order data read from the cache data array. R/W Undefined

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

115

116

2.2.5.7 Level 2/3 Cache Tag Low — L23TagLo (CPO Register 28, Select 4)
The L23TagLo register acts as the interface to the L2 or L3 cache tag array. The L2 and L3 Index Store Tag and Index
Load Tag operations of the CACHE instruction use the L23TagLo register as the source of tag information. Note that
the P6600 CPU does not implement the L23TagHi register.

Figure 2.45 and Table 2.56 describe the fields of L23TagLo as interpreted by the L2 during Index Load Tag and Index
Store Tag cache-ops. In Figure 2.46, the Tag field is always left justified so system address bit 31 is at L23TagLo[31].

Figure 2.45 L23TagLo Register (Tag Accesses)

63 40 39 32
0 Tag
31 14 13 9 8 7 6 5 4 0
Tag 0 TP|V|D|L Parity
Table 2.56 L23TagLo Register (Tag Accesses) Field Descriptions
Fields
Read/
Name Bits Description Write Reset State
0 63:40 Reserved. Write as zero. Ignored on reads. R 0
Tag 39:14 Tag. R/W Undefined
0 13:9 Reserved. Write as zero. Ignored on reads. R/W Undefined
TP 8 Total Parity. R/W Undefined
\Y% 7 Valid. R/W Undefined
D 6 Dirty. R/W Undefined
L 5 Lock. R/W Undefined
Parity 4:0 Parity. R/W Undefined

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.46 L23TagLo Register (WS Accesses)

63 32
0
31 24 23 16 15 9 8 0
DP D LRU 0
Table 2.57 L23TagLo Register (WS Accesses) Field Descriptions
Fields
Read/
Name Bits Description Write Reset State
0 63:32 Reserved. Write as zero. Ignored on reads. R/W Undefined
DP 31:24 Dirty Parity. R/W Undefined
D 23:16 Dirty. R/W Undefined
LRU 15:9 LRU algorithm. For Cache-Ops that access the LRU field, the asso- R/W Undefined
ciativity impacts the number of LRU bits present and how they
affect line replacement and refill. The P6600 core supports an 8-
way set associative L2 cache.
The 8-way configuration uses all bits of the LRU field (15:9), but
since it is a pseudo-LRU algorithm, the value of the LRU field does
not directly correspond to the least-to-most order of the 8§ ways.
0 8:0 Reserved. Write as zero. Ignored on reads. R/W Undefined

2.2.5.8 Level 2/3 Cache Data Low — L23DataLo (CPO Register 28, Select 5)

The L23DatalLo register is a register that acts as the interface to the L2 or L3 cache data array and is intended for diag-
nostic operations only. The Index Load Tag operation of the CACHE instruction reads the corresponding data values

into the L23DataLo register. If the WST bit in the ErrCtl register is set, then the contents of L23Datalo can be written to

the cache data array by doing an Index Store Data CACHE instruction.

The core can be configured without L2/L.3 cache support. In this case, this register will be a read-only register that
reads as 0.

On P6600 family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

Figure 2.47 L23DataLo Register Format

DATA

Table 2.58 L23DatalLo Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 Low-order data read from the cache data array. R/W Undefined

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 117

2.2.5.9 Level 2/3 Cache Data High — L23DataHi (CPO Register 29, Select 5)

On P6600 family cores, test software can read or write cache data using a cache index load/store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

Figure 2.48 L23DataHi Register Format

31 0

DATA

Table 2.59 L23DataHi Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DATA 31:0 High-order data read from the cache data array. R/'W Undefined

2.2.5.10 ErrCtl (CPO Register 26, Select 0)

Most of the fields of this register are for test software only. The MIPS64 architecture defines this register as imple-
mentation-dependent, but most CPUs put the parity-enable control in the top bit. So running OS software is well
advised to set this register to 0x8000.0000 to enable cache parity checking, or to zero to disable parity checking.

Figure 2.49 Error Control Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 4 3 0

PE|PO|WST| 0 |PCO| O |(LBE| WABE | L2P |PCD |DYT |[SE| FE 0 PI PD

Table 2.60 Field Descriptions for ErrCtl Register

Read/
Name Bit(s) Description Write Reset State

PE 31 This bit is set to 1 to enable cache parity checking and is encoded as follows: R/'W 0
0: Parity disabled
1: Parity enabled

PO 30 Parity Overwrite. Set 1 to set the parity bit regardless of parity computation, R/W 0
which is only for diagnostic/test purposes.

After setting this bit you can use cache IndexStoreTag to set the
cache data parity to the value currently in PI (for I-cache) or PD (for D-cache),
while the tag parity is forcefully set from ITagLop/DTagLop.

0 = User calculated parity

1 = Override calculated parity

WST 29 | Write to 1 for test mode for cache IndexLoadTag/ R/W 0
cache IndexStoreTag instructions, which then read/write the cache’s
internal way-selection RAM instead of the cache tags.

0 28 Reserved. Write as zero. Ignored on reads. This bit should never be set. R/W 0

118 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.60 Field Descriptions for ErrCtl Register (continued)

Name

Bit(s)

Description

Read/
Write

Reset State

PCO

27

Precode override. Used for diagnostic/test of the instruction cache. When this
bit is set, then the precode values in the ITagHi register are used instead of the
hardware generated precode values. This applies to index store data cacheop
operations.

R/W

0

26

Reserved. Write as zero. Ignored on reads.

0

LBE

25

WABE

24

Indicates whether a bus error (the last one, if there’s been more than one) was
triggered by a load or a write-allocate respectively. A write-allocate is where a
cacheable write has missed in the cache, and the cache has read the line from
memory.

Where both a load and write-allocate are waiting on the same cache-line refill,
both could be set. These bits are "sticky", remaining set until explicitly written
zero.

R/WO

Undefined

R/WO

Undefined

L2P

23

L2 cache parity enable. Indicates whether parity is enabled on the L2Cache if
present. If the L2 cache is not present, this bit has no meaning.

0: L2 cache present, L2 parity disabled

1: L2 cache present, L2 parity enabled

PCD

22

Precode Disable. When set, cache IndexStoreTag instructions do
not update the corresponding precode field and precode parity in the instruction
cache tag array.

DYT

21

Setting this bit allows cache load/store data operations to work on the "dirty
array" — the slice of cache memory which holds the "dirty"/"stored-into" bits.

SE

20

Indicates that a second cache or TLB error was detected before the first error
was processed. This is an unrecoverable error. This bit is set when a cache error
is detected while the FE bit is set. This bit is cleared on reset or when a cache
error is detected with FE cleared.

FE

19

Indicates that this is the first cache or TLB error and therefore potentially
recoverable. Error handling software should clear this bit when the error has
been processed. This bit is set by hardware and cleared by software on reset.
Refer to the SE bit description for implications of this bit.

Note that software can only write a 0 to this bit. A write value of 1 will not have
any effect.

18:12

Reserved. Write as zero. Ignored on reads.

0

Pl

11:4

Parity bits per double-word (two instructions) of data being read/written to the
instruction cache data when the PO bit is set. During a read of IDataHi and
IDatal o registers, the parity bits are stored here.

This field is updated by hardware on every instruction fetch and also during a
CacheOp store.

During a CacheOp store, this field can be used for instruction cache data parity
error injection apart from the Instruction cache store index.

During a CacheOp read, this field can be used to check/read the instruction
cache parity bits and also for storing the parity bits when an index load tag is
executed.

Undefined

PD

3:0

Parity bits being read/written to the data cache when PO is set.

0x0

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

119

2.2.5.11 Cache Error — CacheErr (CPO Register 27, Select 0)

Read-only register used to analyze the deails of a parity error. The FTLB parity error sets the EREC field to ‘b11, and
also sets either the ED or ET bits indicating a data or tag parity error (not both) and then updates the index and way
fields. The other bits are left as 0. Note that the index field contains the FTLB set and not the index value from the

Index CPO register.
Figure 2.50 CacheErr Register Format
31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 0
EREC ED | ET |ES|EE | EB |EF | 0 | EW Way DR | O Index
Table 2.61 Field Descriptions for CacheErr Register
Read/
Name Bit(s) Description Write Reset State
EREC 31:30 | This 2-bit field indicates the block where the error occurred and is encoded as R Undefined
follows:

00: L1 instruction cache error

01: External cache error

10: L1 data cache error

11: FTLB parity error

The FTLB parity error sets the EREC field to ‘b11, and sets either the ED or ET
bits indicating a data or tag parity error (not both). It also updates the Index (bits
16:0) and Way (bits 21:19) fields. The other bits are left as 0. Note that the index
field contains the FTLB set and not the index value from the CPO Index register.

ED 29 The encoding of these two bits depends on the state of the EREC field above. If R Undefined
the state of this field contains an encoding of 00, 01, or 10, indicating a cache

ET 28 error, the encoding of this field is as shown below. R Undefined
00: No tag or data RAM error detected
01: Primary tag RAM error
10: Data RAM error
11: Duplicate tag RAM error
A parity error in the FTLB tag sets the ET bit (28), while a parity error in the
FTLB data sets the ED bit (29). One or both of these bits may be set.
ES 27 Error source. In a multi-core system, this bit reads 0 if the error was caused by R Undefined
one of the cores and 1 if the error was caused by an external snoop request.
In a single-core system, this bit is not used.
EE 26 Error external: In a multi-core system, this bit indicates that a parity error was R Undefined

seen on a coherent L1 cache in another CPU.
In a single-core system, this bit is not used.

EB/EM 25 If EREC equals 0 indicating an error in the L1 cache, this bit is EB, indicating an R Undefined
error in Both caches. If data and instruction-fetch errors are reported on the same
instruction, it is unrecoverable. If so, the rest of the register reports on the
instruction-fetch error.

If EREC equals 1, indicating an error in the L2 cache, this bit is EM, indicating
there are errors in multiple locations in the cache.

120 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.61 Field Descriptions for CacheErr Register(continued)

Name

Bit(s)

Description

Read/
Write

Reset State

EF

24

Unrecoverable (fatal) error (other than the EB type above). Some parity errors
can be fixed by invalidating the cache line and relying on good data from mem-
ory. However, if this bit is set, it indicates the error cannot be fixed. Here are
some possible scenarios of when the EF bit might be set by hardware:

* Dirty parity error in dirty line being displaced from cache

 Line being displaced from cache has a tag parity error.

* The line being displaced from cache tag indicates it has been written by the
CPU since it was obtained from memory (the line is "dirty" and needs a write-
back), but it has a data parity error.

» Writeback store miss and CacheErrgy error.

* At least one more cache error happened concurrently with or after this one,
but before the original error reached the cache error exception handler.

» If EREC equals 0, and a second L2 error occurs when an earlier L2 error is
pending.

R

Undefined

23

Reserved. Write as zero. Ignored on reads.

Undefined

EW

22

Parity error on way-selection RAM array.

Undefined

Way

21:19

If EREC equals 0, bit 19 is unused. Bits 21:20 indicate the way-number of the
cache entry where the error occurred.

If EREC equals 1, indicating an L2 or higher-level cache error, bits 21:19 indi-
cate the way-number of the cache entry where the error occurred.

On a FTLB error, bits 20:19 indicate the number of ways in each set. Bit 21 is
not used on a FTLB error.

Undefined

DR

18

A 1 bit indicates that the reported error affected the cache-line "dirty" bits. This
bit is only meaningful in case of an L1 data cache access.

Undefined

Index

16:0

The cache index or Scratchpad RAM index of the double word entry where the
error occurred. The way of the faulty cache is written by hardware in the Way
field. The CacheErr bits [16:0] represents the Address index bits [19:3].

The index-type cache instruction will need an "index" with the way bits glued
on top of this cache-entry field; you know how to put that together, because the
shape of the cache is defined in the Configl-2 registers.

On a TLB error, this field indicates the number of sets in the FTLB. The number
of bits is implementation dependent and is always right-justified in the Index
field.

Undefined

2.2.6 Shadow Control Registers

Although the P6600 Multiprocessing System does not support thread contexts or shadow registers, the Shadow Reg-
ister Set Control (SRSCtl) register is implemented to allow software to read this register to determine that shadow
registers are not implemented.

2.2.6.1 SRSCtl Register (CPO Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

121

Figure 2.51 SRSCt| Register Format
31 30 29 26 25 0

0 HSS 0

Table 2.62 SRSCtl Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State
0 31:30 Must be written as zeros; returns zero on read. 0 0
HSS 29:26 | Highest Shadow Set. This field contains the highest shadow set R Preset

number that is implemented by this processor. A value of zero in this
field indicates that only the normal GPRs are implemented.
Possible values of this field for the P6600 core are:
0x0: One shadow register set present
0x1 - OxF: Reserved
0 25:0 Must be written as zeros; returns zero on read. 0 0

122 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.7 Performance Monitoring Registers

This section contains the following performance monitoring registers.

* Section 2.2.7.1, "Performance Counter Control 0 - 3 — PerfCtl0-3 (CPO Register 25, Select 0, 2, 4, 6)" on page
123

* Section 2.2.7.2, "Performance Counter 0 - 3 — PerfCnt0-3 (CPO Register 25, Select 1, 3, 5, 7)" on page 132

2.2.7.1 Performance Counter Control 0 - 3 — PerfCtl0-3 (CPO Register 25, Select 0, 2, 4, 6)

Cores in the P6600 family provide four performance counters that provide the capability to count events or cycles for
use in performance analysis. Each performance counter consists of a pair of registers: a 32-bit control register
(PerfCtl) and a 32-bit counter register (PerfCnt).

Performance counters can be configured to count implementation-dependent events or cycles under a specified set of
conditions that are determined by the performance counter’s control register. The counter register increments once for
each enabled event; when the most-significant bit of the counter register is a one (the counter overflows), and the
counter is enabled, the performance counter optionally requests an interrupt.

The IE flag in the performance counter controlregister is used to enable an interrupt to be signalled when bit 31 of the
corresponding counter overflows. The OR of all the performance counter register interrupts becomes the CPU output
SI_PCI, which is typically fed back into an interrupt input, conventionally identified by IntCtljppci. However, systems
using more sophisticated interrupt controllers may feed the performance counter interrupt into the interrupt controller.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 123

31

30

29

Figure 2.52 PerfCtl0-3 Register Format
25 24 23 22

13 12 5

EC 0 Event

IE

EXL

Table 2.63 Field Descriptions for PerfCtl0-3 Register

Name

Bit(s)

Description

Read/
Write

Reset State

31

Set to 1 if there is another PerfCtl register after this one. This field is set for
PerfCtl0-2 and cleared on PerfCtl3.

1 for PerfCnt 0 - 2
0 for PerfCnt 3

30

Specifies the width of the corresponding Counter register as follows:
0: 32-bit counter width
1: 64-bit counter width

0

29:25

Reserved. Must be written as zeros; returns zeros on reads.

0

EC

24:23

Event Class. Root only. Reserved, read-only 0 in all other contexts. The P6600
may detect the existence of this feature by writing a non-zero value to the field
and reading. If value read is 0, then EC is not supported. This field is encoded
as follows:

00: Root events counted (default). Active in Root context.

01: Root intervention events counted, Active in Root context.

10: Guest events counted. Active in Guest context.

11: Guest events plus Root intervention events counted. Active in Guest con-
text. Root will only assign encoding if it wants to give Guest visibility into
Root intervention events.

Root events are those that occur when GuestCtlOgm = 0.

Root intervention events are those that occur when GuestCtlOgpy = 1 and
!(Root.Statusgxy. = 0 and Root.Statusgry, = 0 and Root.Debugpy = 0)

Guest events are those that occur when GuestCtlOgy = 1 and Root.Statusgxy, =
0 and Root.Statusgrr = 0 and Root.Debugpym = 0

For the case of root intervention mode, PerfCtly/s/k/ExL are ignored as
Root.Statusgx =1 and root must be in kernel mode.

An implementation must qualify existing performance counter events with the
value of EC. For example, if an event is “Instructions Graduated” and EC = 0,
then only instructions graduated in root mode are counted.

R/W

Undefined

22:13

Reserved. Must be written as zeros; returns zeros on reads.

0

Event

12:5

Determines which event to count. Available events are listed in Table 2.64,
"Performance Counter Events and Codes".

R/W

Undefined

Set to cause an interrupt when the counter overflows into bit 31. This caneither
be used to implement an extended count or (by presetting the counter appropri-
ately) to notify software after a certain number of events have occurred.

R/W

Count events in User mode. When this bit is set, events can be counted in User
mode.

R/W

Undefined

Count events in Supervisor mode. When this bit is set, events can be counted in
Supervisor mode.

R/W

Undefined

Count events in Kernel mode. When this bit is set, events can be counted in
Kernel mode.

R/W

Undefined

124

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.63 Field Descriptions for PerfCtl0-3 Register (continued)

Read/
Name Bit(s) Description Write Reset State
EXL 0 Count events in Exception mode. When this bit is set, events can be counted in | R/W Undefined
Exception mode (when StatusEXL is set).

Table 2.64 provides a list of performance counter events as encoded into the Event field in bits 12:5. Note that events
128 and above are root intervention events, meaning they are only counted if PerfCtl[0-3].EC = 2’b01 of 2’b11.
Hypercall instructions are also included when EC = 2’b01 or 2°b11. These events are not visible when EC = 2°b10.

Table 2.64 Performance Counter Events and Codes

Event
Number Counter 0/2 Counter 1/3
0 Cycles
1 Instructions graduated
2 jr $31 (return) instructions whose target is pre- | jr $31 (return) predicted but guessed wrong.
dicted.
3 Cycles where no instruction is fetched because it has | §r $31 (return) instructions fetched and not predicted
no “next address” candidate. This includes stalls due | using RPS
to register indirect jumps such as jr, stalls follow-
ingawait or eret
Redirect Stall cycles due to:
« Stalls due to register indirect jumps including non-
predicted JR $31.
¢ Stalls due to ERET, WAIT instructions.
« Stalls due to IFU determined exception.
and stalls dues to exceptions from instruction fetch
4 ITLB accesses. ITLB misses, which result in an MMU access.
ITLB misses seen at the ID stage (this is the same for
MMU instruction accesses). It is possible that a pending
ITLB is killed before accessing the MMU.
5 Reserved Reserved
6 Instruction Cache accesses. P6600 cores have a 128- | Instruction cache misses. Includes misses resulting from
bit connection to the I-cache and fetch 4 instructions | fetch-ahead and speculation.
every access. This counts every such access, includ-
ing accesses for instructions which are eventually
discarded. For example, following a branch which is
incorrectly predicted, the P6600 core will continue to
fetch instructions, which will eventually get thrown
away.
7 Cycles where no instruction is fetched because we | Number of fetches restricted due to MAAR.
missed in the I-cache.
I-cache miss stall cycles. This includes the cycles
where the I[FU state machine for a given TC is in the
miss state. It is possible that multiple TCs requesting
the same line will all count the same miss cycles.
8 Uncached Instruction Fetch stall cycles. Reserved
Cycles where no instruction is fetched because we
are waiting for an I-fetch from uncached memory.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

125

126

Table 2.64 Performance Counter Events and Codes (continued)

Event
Number Counter 0/2 Counter 1/3

9 Number of IFU fetch stalls due to lack of credits on | Valid fetch slots killed due to taken branches/jumps or

the IBUF interface. stalling instructions.

10 Reserved in single-core environments Reserved in single-core environments

In a multi-core environment, store misses transition- | In a multi-core environment, load misses transitioning to
ing to [->M or S->M [->S or I>E

11 Cycles IFU-IDU gate is closed due to mispredicted | Cycles IFU-IDU gate is open but no instructions fetched

branch. This counts the time from when IEU closes | by IFU. May be overridden by changing Config6.IFU-

the gate to when GRU opens. PerfSel field. See Table 2.9, "Field Descriptions for
Config6 Register" for a description of the other overload-
ing events.

12 Cycles IFU-IDU gate is closed due to other reasons: | Reserved in single-core environments.

*+ MTCO/MFCO sequence in pipe In a multi-core environment, intervention hits.
+ EHB
+ DD _DR DS is blocked
13 Number of cycles where no instruction is inserted in | Number of cycles where no instruction is inserted in
DDQO because it is full. DDQI1 because it is full.
14 Number of cycles where no instructions can be Reserved.
issued because there are no completion buffer ID’s.

15 Reserved. Cycles where no instructions can be added to the issue
pool, because we have filled the coprocessor 1°s shelves
used for coprocessor 1 instructions.

16 -17 Reserved Reserved

18 Cycles when three instructions are issued. Cycles when four instructions are issued.

19 Reserved Reserved

20 Cycles when only one instruction is issued. Cycles when two instructions are issued.

21 Number of jr (not $31) instructions mispre- Number of jr $31 instructions graduated.

dicted at graduation.
22 Number of graduated JAR/JALR.HB D-cache line refill (not LD/ST misses)
23 Counts the number of speculative loads. Pairs of Speculative data cache accesses and instruction cache
loads or stores that are bonded count as one. Cacheops. Pairs of loads or stores that are bonded count
as one.

24 Number of data cache misses at graduation. D-cache misses. This count is per instruction at gradua-
tion and includes load, store, prefetch, synci and
address based cacheops.

25 JTLB translation fails on d-side (data side as Reserved

opposed to instruction side) accesses. This pertains
to graduated instructions only.
26 Load/store instruction redirects, which happen when | Reserved

the load/store follows too closely on a possibly
matching cacheop.

Load/Store generated replays - typically, a load fol-
lowing a CacheOp that has matches the Index match
of the CacheOp.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.64 Performance Counter Events and Codes (continued)

Event
Number Counter 0/2 Counter 1/3
27 LSGB graduation blocked cycles. Reasons for block: | LSGB graduation that does not result in a request going
out on the bus. Reasons include:

* CP1/2 store data not ready
* SYNC, SYNCI at the head » Misses at integer pipe graduation turn into hit.
* sc at the head * Miss merges with outstanding fill request.
* CACHEORP at the head
FSB, LDQ, WBB, or ITU FIFO full.

28 L2 cache writebacks L2 cache accesses

29 L2 cache misses L2 cache miss cycles

30 Cycles Fill Store Buffer (FSB) are full and cause a | Cycles Fill Store Buffer (FSB) > 1/2 full
pipe stall

31 Cycles Load Data Queue (LDQ) are full and cause a | Cycles Load Data Queue (LDQ) > 1/2 full
pipe stall

32 Cycles Writeback Buffer (WBB) are full and cause a | Cycles Writeback Buffer (WBB) > 1/2 full
pipe stall

33 Not used in single-core environments. Not used in single-core environments.
In a multi-core environment, counts requests that In a multi-core environment, request latency to first data
will receive data from the Coherence Manager. word of data from the Coherence Manager.

34 Reserved in single-core environments. Reserved in single-core environments.
In a multi-core environment, invalidate intervention | In a multi-core environment, all invalidate interventions.
hits.

35 Replays following optimistic issue of instruction Floating Point Load instructions graduated.
dependent on load which missed. Counted only when
the dependent instruction graduates. Reserved.

36 jr (not $31) instructions graduated. jr $31 mispredicted at graduation.

37 Integer Branch instructions graduated. Floating Point Branch instructions graduated.

38 Branch likely instructions graduated. Mispredicted Branch likely instructions graduated.

39 Conditional branches graduated. Mispredicted Conditional branches graduated.

40 Integer instructions graduated (includes nop, Floating Point instructions graduated (but not counting
ssnop, ehb aswell as all arithmetic, logic, Floating Point load/store).
shift and extract type operations).

41 Loads graduated. Bonded load/store counted as 2. Stores graduated. Bonded load/store counted as 2.

42 j/jal graduated. Reserved.

43 no-ops graduated. integer multiply/divides graduated.

44 Reserved Reserved

45 Reserved Reserved

46 Uncached loads graduated. Uncached stores graduated.

47 Reserved in single-core environments. Reserved in single-core environments.
In a multi-core environment, writebacks due to evic- | In a multi-core environment, writebacks due to any rea-
tions. son.

48 Reserved in single-core environments. Reserved in single-core environments.
In a multi-core environment, count of all invalidates | In a multi-core environment, count of transitions from
(MLE,S)->1 (I,S)->E.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

127

128

Table 2.64 Performance Counter Events and Codes (continued)

Event
Number Counter 0/2 Counter 1/3

49 EJTAG instruction triggers. EJTAG data triggers.

50 CP1 branches mispredicted. Reserved

51 sc instructions graduated. sc instructions failed.

52 prefetch instructions graduated at the top of prefetch instructions which did nothing, because

LSGB. they hit in the cache.

53 Cycles where no instructions graduated. Cacheable load misses in TI. Includes floating point and
fast path loads.

54 Cycles where one instruction graduated. Cycles where two instructions graduated.

55 GFifo blocked cycles. Floating point stores graduated.

56 GFifo blocked due to TLB or Cacheop. Number of cycles no instructions graduated from the time
the pipe was flushed because of a replay until the first
new instruction graduates. This is an indicator graduation
bandwidth loss due to replay. Often times this replay is a
result of event 25 and therefore an indicator of bandwidth
lost due to cache miss.

57 Mispredicted branch instruction graduations without | Cycles waiting for delay slot to graduate on a mispre-

the delay slot (in the same cycle). dicted branch.

58 Exceptions taken. Replays initiated from graduation.

59 Indicates the load/store graduation buffer (LSGB) is | Indicates the load/store graduation bufter (LSGB) is half

full. full.

60 Reserved in single-core environments. Reserved in single-core environments.

In a multi-core environment, state transition from S- | In a multi-core environment, state transitions from (M,E)-
>M (coherent and non-coh). >S.

61 Reserved in single-core environments. Reserved in single-core environments.

In a multi-core environment, request latency to self- | In a multi-core environment, count of requests that will
intervention. receive self-intervention.
62 Prediction buffer full causing IFU stall. Reserved.
63 L2 single-bit errors detected. Reserved in single-core environments. In a multi-core
environment, all interventions.
64 SI_Event[0] - Implementation-specific system event. | SI_Event[1] - Implementation-specific system event. The
The system integrator of the P6600 core may connect | system integrator of the P6600 core may connect the
the SI_PCEvent[0] pin to an event to be counted. SI_PCEvent[1] pin to an event to be counted.

65 SI Event[2] - Implementation-specific system event. | SI_Event[3] - Implementation-specific system event. The
The system integrator of the P6600 core may connect | system integrator of the P6600 core may connect the
the SI_PCEvent[2] pin to an event to be counted. SI_PCEvent[3] pin to an event to be counted.

66 SI Event[4] - Implementation-specific system event. | SI Event[5] - Implementation-specific system event. The
The system integrator of the P6600 core may connect | system integrator of the P6600 core may connect the
the SI_PCEvent[4] pin to an event to be counted. SI_PCEvent[5] pin to an event to be counted.

67 SI_Event[7] - Implementation-specific system event. | SI_Event[8] - Implementation-specific system event. The
The system integrator of the P6600 core may connect | system integrator of the P6600 core may connect the
the SI_PCEvent[7] pin to an event to be counted. SI_PCEvent[8] pin to an event to be counted.

68 All OCP requests accepted. All OCP cacheable requests accepted.

69 OCP read requests accepted. OCP cacheable read requests accepted.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.64 Performance Counter Events and Codes (continued)

Event
Number Counter 0/2 Counter 1/3

70 OCP write requests accepted. OCP cacheable write requests accepted.

71 Reserved OCP write data sent.

72 Reserved OCP read data received.

73 Reserved in single-core environments. Reserved in single-core environments.

In a multi-core environment, OCP Intervention write | In a multi-core environment, OCP Intervention write data
data stalled (valid but not accepted). valid (accepted or not).

74 Cycles Fill Store Buffer (FSB) < 1/4 full. Cycles Fill Store Buffer (FSB) 1/4 to 1/2 full.

75 Cycles Load Data Queue (LDQ) < 1/4 full. Cycles Load Data Queue (LDQ) 1/4 to 1/2 full.

76 Cycles Writeback Buffer (WBB) < 1/4 full. Cycles Writeback Buffer (WBB) 1/4 to 1/2 full.

77 Counts the number of times that the L1 Branch Tar- | Counts the number of times that the L1 Branch Target
get Buffer (L1BTB) caused a redirect without [IFU | Buffer (L1BTB) caused a redirect without IFU prede-
predecode-based prediction, causing a redirect or code-based prediction causing a redirect or replay. Mea-
replay. Measures the number of true hits for the sures the number of true hits for the branch portion of the
Return Prediction Stack (RPS) portion of the L1BTB.

LIBTB.

78 Counts the number of times that the L1 Branch Tar- | Counts the number of times that the L1 Branch Target
get Buffer (L1BTB) caused a redirect with IFU pre- | Buffer (L1BTB) caused a redirect with IFU predecode-
decode-based prediction causing a redirect or replay. | based prediction causing a redirect or replay. Measures
Measures the number of mis-predicts for the Return | the number of mis-predicts for the branch portion of the
Prediction Stack (RPS) portion of the L1BTB. L1BTB.

79 Counts the number of writes to the Return Prediction | Counts the number of writes to the branch portion of the
Stack (RPS) portion of the L1 Branch Target Buffer | L1 Branch Target Buffer (L1BTB) with no L1BTB hit
(L1BTB) with no L1BTB hit (cold miss). (cold miss).

80 Number of L1 Branch Target Buffer masked hits due | Number of L1 Branch Target Buffer masked hits due to
to lack of credit for DS. lack of credit for target.

81 Number of NFW or L1 Branch Target Buffer mis- Reserved
predicts for instruction cache way-hit prediction.

82 -83 Reserved Reserved

84 Counts the number of times a Write-Back Buffer Counts the number of times a Write-Back Buffer (WBB)
(WBB) entry is newly allocated for an Uncached entry is newly allocated for an Uncached Accelerated
Accelerated (UCA) store and there is one UCA store | (UCA) store and there are two UCA stores already active
already active in the WBB. in the WBB.

85 Number of times an uncached instruction arrives at | Reserved
BIU while there is an actively gathering UCA buffer.

86 Reserved Reserved

87 Number of stall cycles due to the lack of load/store | Number of stall cycles due to the lack of IID.
queue (LSQ) ID.

88 Reserved. Reserved.

89 Number of cycles when no FP instructions are dis- | Number of cycles when no integer instructions are dis-
patched. patched.

90 Number of cycles when one FP instruction is dis- Number of cycles when one integer instruction is dis-
patched. patched.

91 Number of cycles when two FP instructions are dis- | Number of cycles when two integer instructions are dis-
patched. patched.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

129

130

Table 2.64 Performance Counter Events and Codes (continued)

Event
Number Counter 0/2 Counter 1/3
92-93 Reserved Reserved
94 Number of cycles when three instructions are issued. | Number of cycles when four instructions are issued.
95 -96 Reserved Reserved

97 Number of instructions issued on AGU port from Number of instructions issued on BSU port from DDQI.
DDQI.

98 Number of instructions issued on MDU/ALU2 port | Number of instructions issued on ALU1 port from DDQO.
from DDQI.

99 Number of DTLB accesses (speculative). Number of DTLB misses (speculative).

100 Data side hits in the VTLB/FTLB. This includes Instruction side hits in the VTLB/FTLB. This includes
FTLB and VTLB hits and unmapped region FTLB and VTLB hits and unmapped region accesses.
accesses.

101 Number of data side hits in the VTLB/FTLB inan | Number of instruction side hits in the VTLB/FTLB in an
unmapped region. unmapped region.

102 Number of instruction side hits in the VTLB. Number of instruction side hits in the FTLB.

103 Number of data side hits in the VTLB. Number of data side hits in the FTLB.

104 Number of TLBWR writes to the VTLB. Number of TLBWR writes to the FTLB.

105 Number of DTLB hits to the half of EntryLo that Number of DTLB hits to the half of EntryLo that did not
caused a fill (speculative). cause a fill (speculative).

106 Number of pairs of bonded stores at graduation. Number of pairs of bonded loads at graduation.

107 Reserved Speculative count of ‘over-eager’ loads that hit a store

without the data being available.

108 Number of times a load is not issued because it is Reserved
tagged by the ‘over-eager’ predictor.

109 Speculative count of incorrectly bonded loads and Reserved
stores.

110 Number of misaligned loads that graduated. Number of misaligned stores that graduated.

111-112 | Reserved Reserved

113 Number of cycles where one FP/MSA opcode is Number of cycles where FPU/MSA sent F2I strobes.
issued.

114 Number of cycles where two FP/MSA opcodes are | Number of cycles where FPU/MSA received I12F strobes
issued.

115 Number of data-side unmapped XKPhys accesses. | Number of instruction-side unmapped XKPhys accesses.

116 Number of cycles where one FP/MSA opcode is Number of cycles where FPU/MSA received I12F load
retired. strobes.

117 Number of cycles where two FP/MSA opcodes are | Number of cycles where FPU/MSA received I2F bonded
simultaneously retired. load strobes.

118 Number of cycles where FPU/MSA shelf is full. Number of cycles where FPU/MSA slowly returning

credits.

119 Number of load and stores graduated with VA[13:12] | Reserved
1=PA[13:12]. Misaligned stores counted as two.

120 Number of Number of noRFO stores graduated. Number of times noRFO detected.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.64 Performance Counter Events and Codes (continued)

Event
Number Counter 0/2 Counter 1/3

121 Number of refetches for integer misaligned instruc- | Number of refetches for MSA misaligned instructions.
tions.

122 Number of doubleword bonded speculative loads. Number of doubleword bonded speculative stores.

123 Number of quadword bonded speculative loads. Number of quadword bonded speculative stores.

124 - 125 | Reserved Reserved

126 Hardware table walker (HTW) abort due to HTW Hardware table walker (HTW) abort due to HTW access
access denied to XKSeg (XK = 0). denied to XSSeg (XS = 0).

127 Reserved Reserved

128 Number of root exceptions taken in guest mode. Number of guest mode to root mode transitions.

129 Number of GSFC exceptions. Number of GHFC exceptions.

130 Number of GPSI exceptions. Number of GRIR exceptions.

131 Number of Hypercall exceptions. Number of guest-related root TLB exceptions taken when

GuestCtl0.GExcCode = GVA.

132 Number of root TLB exceptions caused by instruc- | Number of root TLB exceptions caused by data-side guest
tion-side guest translation requests. translation requests.

133 Number of root writes that set the Guest.Cause.TI bit | Number of root writes to Guest.PerfCnt that set the
to 1. Guest.Cause.PCI bit to 1.

134 Number of guest accesses to the Watch registers that | Number of guest accesses to the PerfCnt and PerfCtl reg-
cause GPSI when virtually shared. isters that cause GPSI when virtually shared.

135 Number of interrupts that cause a guest exit in EIC | Number of interrupts that cause a guest exit in non-EIC
mode. mode.

136 Number of data side hardware page table walks Number of instruction side hardware page table walks
aborted due to an exception or branch mispredict aborted due to an exception or branch mispredict related
related to an older instruction. to an older instruction.

137 Number of instruction or data side hardware page Number of instruction or data side hardware page table
table walks aborted because a related table walk load | walks aborted because a related table walk load has
has missed in the main TLB. caused an exception, including a TLB refill.

138 An instruction or data side hardware page table walk | Reserved
has been initiated.

139 Number of dependent instructions replayed in Number of dependent instructions replayed in CTI pipe
ALU2/MDU due to load miss. due to load miss.

140 Number of dependent instructions replayed in ALU1 | Number of dependent instructions replayed in AGEN
pipe due to load miss. pipe due to load miss.

138 - 255 |Reserved Reserved

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

131

132

2.2.7.2 Performance Counter 0 - 3 — PerfCnt0-3 (CPO Register 25, Select 1, 3,5, 7)
General purpose event counters, which operate as directed by PerfCtl0-3.

Figure 2.53 Performance Counter O - 3 Register
31 0

Counter

Table 2.65 Performance Counter O - 3 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Counter 31:0 Counter value. R/'W Undefined

2.2.8 Debug Registers

This section contains the following debug registers.

e Section 2.2.8.1, "Debug (CP0 Register 23, Select 0)" on page 132

* Section 2.2.8.2, "Debug Exception Program Counter — DEPC (CPO Register 24, Select 0)" on page 135
e Section 2.2.8.3, "Debug Save — DESAVE (CPO Register 31, Select 0)" on page 136

* Section 2.2.8.4, "Watch Low 0 - 3 — WatchLo0-3 (CPO Register 18, Select 0-3)" on page 136

* Section 2.2.8.5, "Watch High 0 - 3 — WatchHi0-3 (CPO Register 19, Select 0-3)" on page 137

2.2.8.1 Debug (CPO Register 23, Select 0)

The Debug register provides control and status information while in debug mode. During normal operation (non-
debug mode), this register may not be written at all, and only the DM bit and the EJTAGver field returns valid data.

The read-only bits are updated by hardware every time the debug exception is taken, or when a normal exception is
taken when already in debug mode (a "nested exception"). Not all fields are valid in both circumstances: Halt and
Doze are not defined after a nested exception, and the nested-exception-type field DExcCode is undefined from a
debug exception.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:
» DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug modes

* DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

* Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode

* DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.
EJTAGver and DM.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.54 Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20
‘ DBD ‘ DM | NoDCR ‘ LSNM ‘ Doze | Halt ‘ CountDM ‘ IBusEP ‘ MCheckP ‘ CacheEP ‘ DBusEP ‘ 1IEXI ‘
19 18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

‘ DDBSImpr ‘ DDBLImpr

EJTAGver | DExcCode l NoSSt ‘ SSt ‘ 0 | DINT IDIBI DDBS ‘ DDBL | DBp ‘ DSS ‘

Table 2.66 Field Descriptions for Debug Register

Read/
Name Bit(s) Description Write Reset State

DBD 31 Indicates if the last debug exception or exception in debug mode occurred in a R Preset
branch delay slot.

0: Not in delay slot

1: In delay slot

When set to 1, the Debug Exception Program Counter (DEPC) points to the
branch instruction, which is usually the correct place to restart.

DM 30 Indicates if the processor is operating in debug mode. R 0
0: Processor is operating in non-debug mode

1: Processor is operating in debug mode

In debug mode, this bit is set on any debug exception and is cleared by
deret.

NoDCR 29 Indicates if the dseg memory segment and a memory-mapped DCR register is R 0
present.

0: dseg address space is present

1: dseg address space is not present

LSNM 28 Controls access of load/store between dseg and main memory. R/W 0
0: Load/stores in dseg address range goes to dseg

1: Load/stores in dseg address range goes to main memory

Setting this bit causes debug-mode accesses to dseg addresses to be sent to
system memory. This makes most of the EJTAG unit’s control systems
unavailable, so will probably only be done around a particular load/store.

Doze 27 Indicates that the processor was in any kind of low power mode whena debug R 0
exception occurred.

0: Processor not in low power mode when debug exception occurred

1: Processor in low power mode when debug exception occurred

Before the debug exception, CPU was in one of the reduced power mode.

Halt 26 Indicates that the internal system bus clock was stopped when the debug R 1
exception occurred.

0: Internal system bus clock running

1: Internal system bus clock stopped

Before the debug exception, the CPU was stopped — probably asleep follow-
ing a wait instruction.

CountDM 25 Controls or indicates the Count register behavior in debug mode. R/W 1
0: Count register stopped in debug mode
1: Count register is running in debug mode

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 133

Table 2.66 Field Descriptions for Debug Register (continued)

Read/
Name Bit(s) Description Write Reset State

IBUsEP 24 These "pending exception" flags remember exception events caused by R 0
MCheckP 3 instructions run in debug mode, but which have not yet occurred because they R 0
are imprecise and Debug)ex is set. Note that you can write a 1 to any of these
CacheEP 22 | at any time, so they survive writes to the whole Debug register; but a write of | R/W 0
DBUSEP 21 zero to a field is ignored. R/W 0
They remain set until Debug|gx is cleared explicitly, or implicitly by a
deret. If the deret clears the bit, the exception is taken and the pending
bit cleared.

IBUSEP remembers a bus error on an instruction fetch. This exception is pre-
cise, so it cannot occur and the field is always zero.

MCheckP machine check condition (usually an illegal TLB update). . The
machine check can be either precise or imprecise depending on the type of
error- Refer to the Machine Check exception in the Exception chapter for
more information.

CacheEP indicates a precise cache parity error is pending.

Data access Bus Error exception Pending: DBUSEP remembers a bus error on
a data access. Set when an data bus error event occurs or if a 1 is written to the
bit by software. Cleared when a Data Bus Error exception is taken by the pro-
cessor, and by reset. If DBUSEP is set when IEXI is cleared, a Data Bus Error
exception is taken by the processor, and DBUSEP is cleared

IEXI 20 Imprecise Error eXception Inhibit. Set to 1 to defer imprecise exceptions. By | R/W 0
default, this bit is set on entry to debug mode and cleared on exit. The deferred
exception returns when and if this bit is cleared, and until then the occurrence
of the imprecise exception can be observed in the “pending exception” flags
described in bits 24:21 above.

DDBSImpr 19 Imprecise store breakpoint. DEPC probably points to an instruction some R Preset
time later in the sequence than the store which triggered the breakpoint.

DDBLImpr 18 Imprecise load breakpoint. DEPC probably points to an instruction some time R Preset
later in the sequence than the store which triggered the breakpoint. The
debugger or user (or both) have to cope as best they can.

EJTAGver 17:15 | These read-only bits encode the revision of the EITAG specification to which R 6
this implementation conforms. The legal values are.
110: Version 6.0

All other values are reserved.

DExcCode 14:10 |Indicates the cause of the latest exception in debug mode. Following initial R Preset
entry to debug mode, this field is undefined. The subsequent value will be one
of those defined in Causegxccode. See Table 2.39 for a list of values. Value is
undefined after a debug exception.

NoSSt 9 Indicates whether the single-step feature controllable by the SSt bit is avail- R 0
able in this implementation. This read-only bit is always zero on the P6600
core because single-step is implemented.

SSt 8 Controls if debug single step exception is enabled. R/W 0
0 = No debug single-step exception enabled
1 = Debug single-step exception enabled

R 7:6 Reserved. Must be written as zeros; returns zeros on reads. R 0

DINT 5 Indicates that a debug interrupt exception (from EJTAG pin) occurred. R Preset
Cleared on exception in debug mode.
0: No debug interrupt exception

1: Debug interrupt exception

134 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.66 Field Descriptions for Debug Register (continued)

Name

Bit(s)

Description

Read/
Write

Reset State

DIB

Instruction breakpoint. This bit is set by hardware when an instruction break-
point occurs.

0: No debug exception breakpoint

1: Debug exception breakpoint occurred

R

Preset

DDBS

Indicates that a debug data break exception occurred on a store. Cleared on
exception in debug mode.

0: No debug data exception on a store

1: Debug instruction exception on a store

Preset

DDBL

Indicates that a debug data break exception occurred on a load. Cleared on
exception in debug mode.

0: No debug data exception on a load

1: Debug instruction exception on a load

Preset

DBp

Indicates that a debug software breakpoint exception occurred. Cleared on
exception in debug mode.

0: No debug software breakpoint exception

1: Debug software breakpoint exception

Preset

DSS

Indicates that a debug single-step exception occurred. Cleared on exception in
debug mode.

0: No debug single-step exception

1: Debug single-step exception

Preset

2.2.8.2 Debug Exception Program Counter — DEPC (CPO Register 24, Select 0)

The 64-bit Debug Exception Program Counter (DEPC) points to the instruction to restart when a deret is executed
to exit debug mode. When Debugpgp is set, it means that the "real" return address is in a branch delay slot, and DEPC
points to the preceding branch.

63

Figure 2.55 DEPC Register Format \

DEPC

Table 2.67 DEPC Register Formats

Field

Name

Read /
Bit(s) Description Write

Reset

DEPC

31:0 The DEPC register is updated with the virtual address of the R/W

instruction that caused the debug exception. If the instruction is in
the branch delay slot, then the virtual address of the immediately
preceding branch or jump instruction is placed in this register.
Execution of the deret instruction causes a jump to the address
in the DEPC.

Preset

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

135

2.2.8.3 Debug Save — DESAVE (CPO Register 31, Select 0)

Software-only register, with no hardware effect. Provided because the debug exception handler can’t use the k0-1 GP
registers, used by ordinary exception handlers to bootstrap themselves: but a debug handler can save a GPR into
DESAVE, and then use that GPR register in code which saves everything else.

Figure 2.56 DeSave Register Format
63 0

DESAVE

Table 2.68 DeSave Register Field Description

Fields
Read /
Name Bit(s) Description Write Reset State
DESAVE 63:0 Debug exception save contents. SO Undefined

2.2.8.4 Watch Low 0 - 3 — WatchLo0-3 (CP0O Register 18, Select 0-3)

Used in conjunction with WatchHi0-3 respectively, each of these registers carries the virtual address and what-to-
match fields for a CPO watchpoint. WatchLo0-1 are used for instruction side accesses and WatchLo2-3 are used for data
side accesses. The bit assignments for each of the WatchLo registers is identical. Hence, only one register is shown

below.
Figure 2.57 WatchLo0-3 Register Format
63 3 2 1 0
VAddr I | R|W
Table 2.69 Field Descriptions for WatchLo0-3 Register
Read/
Name Bit(s) Description Write Reset State
VAddr 63:3 | The address to match on, with a resolution of a doubleword. R/W Undefined
| 2 Accesses to match: R/W 0
R 1
I = Instruction fetches. This bit is always 0 in the P6600 core. Rw 0
w 0 |R =Reads (loads) R/W 0

W = Writes (stores)

In the P6600 core, the | bit of this field (bit 2) is always 0 for WatchLo
registers 2 and 3, but is R/W and can be programmed for WatchLo regis-
ters 0 and 1.

WatchLo0-1r and WatchLoO-1yy are fixed to zero as the P6600 core does
not implement load/store watches.

136 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.8.5 Watch High 0 - 3 — WatchHi0-3 (CPO Register 19, Select 0-3)
These registers provide the interface to a debug facility that causes an exception if an instruction or data access
matches the address specified in the registers. Watch exceptions are not taken ifthe CPU is already in exception mode

(that is if Statusgx| or Statusgry is already set).

Watch events which trigger in exception mode are remembered, and result in a "deferred" exception, taken as soon as
the CPU leaves exception mode.

WatchHi0-1 are used for instruction side accesses and WatchHi2-3 are used for data side accesses.

This CPO watchpoint system is independent of the EJTAG debug system (which provides more sophisticated hard-
ware breakpoints).

The WatchLo0-3 registers hold the address to match, while WatchHi0-3 hold a bundle of control fields.

Figure 2.58 WatchHiO-3 Register Format
31 30 29 28 27 24 23 16 15 12 11 3 2 1 0

M| G| WM 0 ASID 0 Mask 1| R|W

Table 2.70 Field Descriptions for WatchHiO-3 Register

Read/
Name Bit(s) Description Write Reset State
M 31 The WatchHi0-3 bit is set whenever there is one more watchpoint register R 1
pair to find. Software can use these four bits (starting with WatchHi0) to deter- (WatchHi0-2)
mine how many watchpoints there are. This field is set for WatchHi0-2 and 0
cleared on WatchHi3. (WatchHi3)
G 30 If the WatchHi0-3¢ bit is set, any address that matches that specified in the R/W Undefined
corresponding WatchLo register causes a watch exception. If this bit is zero,
the ASID field of the WatchHi register must match the ASID field of the
EntryHi register to cause a watch exception.
WM 29:28 | Virtualization support. This bit is used for root management of the Watch R/W 0
functionality. This field is reserved and read as 0 for GuestWatchHi, or if such
functionality is unimplemented. Software can determine existence of this fea-
ture by writing then reading this field.
0 27:24 | Reserved. Write as zero. Ignored on reads. R 0
ASID 23:16 | WatchHi0-3asip matches addresses from a particular address space (the R/W Undefined
"ASID" is like that in TLB entries) — except that you can set WatchHi0-3g
("global") to match the address in any address space.
The match a particular address, the WatchHi0-3g bit is cleared and the
WatchHi0-3asip value is used to ensure that the match is to the correct address
space. If the If the WatchHi0-3¢ bit is set, the address is always matched,
regardless of the WatchHi0-3asip value.
0 15:12 | Reserved. Write as zero. Ignored on reads. R 0
Mask 11:3 | Watch mask. This field marks the corresponding WatchLo0-3yadqdr address R/W Undefined
bits to be ignored when deciding whether this is a match.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 137

Table 2.70 Field Descriptions for WatchHi0-3 Register (continued)

Read/
Name Bit(s) Description Write Reset State
| 2 Watch exception type. These bits indicate what type of access (if any) WIC Undefined
R 1 matched after a watch exception. WIC 0

I = Instruction fetches
w 0 R = Reads (loads) wi1C 0
W = Writes (stores)

Write a 1 to any of these bits in order to clear it (and therefore prevent the
exception from immediately happening again). This behavior is unusual
among CPO registers, but it is quite convenient: to clear a watchpoint of all the
exception causes you’ve seen, just read the value of WatchHi0-3 and write it
back again. WatchHi0-1g and WatchHiO-1y should always read 0 and
WatchHi2-3; should always read 0

2.2.9 PDTrace Registers

This section contains the following MIPS PDTrace registers.

* Section 2.2.9.1, "Trace Control Register — TraceControl (CP0O Register 23, Select 1)" on page 138

* Section 2.2.9.2, "Trace Control 2 Register — TraceControl2 (CP0 Register 23, Select 2)" on page 140

e Section 2.2.9.3, "Trace Control 3 Register — TraceControl3 (CP0O Register 24, Select 2)" on page 142

e Section 2.2.9.4, "User Trace Data 1 Register — UserTraceDatal (CP0O Register 23, Select 3)" on page 143
* Section 2.2.9.5, "User Trace Data 2 Register — UserDataTrace2 (CP0O Register 24, Select 3)" on page 144

* Section 2.2.9.6, "Trace Instruction Breakpoint Condition Register — TraceIBPC (CPO Register 23, Select 4)" on
page 144

* Section 2.2.9.7, "Trace Data Breakpoint Condition Register — TraceDBPC (CP0 Register 23, Select 5)" on page
145

2.2.9.1 Trace Control Register — TraceControl (CPO Register 23, Select 1)
The TraceControl register configuration is shown below.
Figure 2.59 TraceControl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 2 1 0

TS|UT| O |Ineff TB/IO|D| E| K| S| U ASID M ASID G | TFCR|TLSM|TIM|On

138 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.71 TraceControl Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset State

TS

31

The trace select bit is used to select between the hardware and the software
trace control bits. A value of zero selects the external hardware trace block
signals, and a value of one selects the trace control bits in the TraceControl
register.

R/W

0

uT

30

This bit has been deprecated and is no longer used since there are now two
explicit trace registers, UserTraceDatal and UserTraceData2. This bit is
tied to 0 internally.

29

Reserved. Must be written as zero; returns zero on read.

Ineff

28

When set to 1, core-specific inefficiency tracing is enabled, and core-spe-
cific trace information is included in the trace stream. The inefficiency
code replaces an “NI” and is interpreted in the trace stream with an
expanded InsComp (Instruction Completion Indicator). The InsComp is
expanded from 3b to 4b for all trace formats.

R/W

B

27

Trace All Branch. When set to 1, this tells the processor to trace the PC
value for all branches taken, not just the ones whose branch target address
is statically unpredictable.

R/W

Undefined

26

Inhibit Overflow. This signal is used to indicate to the P6600 trace logic
that slow but complete tracing is desired. Hence, the P6600 tracing logic
must not allow a FIFO overflow and discard trace data. This is achieved by
stalling the pipeline when the FIFO is nearly full, so that no trace records
are ever lost.

R/W

Undefined

25

Debug mode. When set to one, this enables tracing in debug mode. For a
trace to be enabled in Debug mode, the On bit must also be set, and either
the G bit must be set, or the current process ASID must match the ASID
field in this register.

When set to zero, trace is disabled in debug mode.

R/W

Undefined

24

Exception mode. When set to one, tracing is enabled in Exception mode.
For a trace to be enabled in Exception mode, the On bit must be set, and
either the G bit must be set, or the current process ASID must match the
ASID field in this register.

When set to zero, trace is disabled in Exception Mode.

R/W

Undefined

23

Kernel mode. When set to one, enables tracing in Kernel mode. For a trace
to be enabled in Kernel mode, the On bit must be set, and either the G bit
must be set, or the current process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Kernel Mode.

R/W

Undefined

22

Supervisor mode. When set to one, tracing is enabled in Supervisor Mode.
For a trace to be enabled in Supervisor mode, the On bit must be set, and
either the G bit must be set, or the current process ASID must match the
ASID field in this register.

When set to zero, trace is disabled in Supervisor Mode, regardless of other
bits.

If the processor does not implement Supervisor Mode, this bit is ignored
on write and returns zero on read.

R/W

Undefined

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

139

Table 2.71 TraceControl Register Field Descriptions (continued)

Fields
Read /
Name Bits Description Write Reset State
U 21 User mode. When set to one, tracing is enabled in User mode. For a trace R/W Undefined

to be enabled in User mode, the On bit must be set, and either the G bit
must be set, or the current process ASID must match the ASID field in this
register.
When set to zero, trace is disabled in User Mode, regardless of the setting
of other bits.

ASID_M 20:13 ASID mask. This is a mask value applied to the ASID comparison (done R/W Undefined

when the G bit is zero). A “1” in any bit in this field inhibits the corre-
sponding ASID bit from participating in the match. As such, a value of zero
in this field compares all bits of ASID.

Note that the ability to mask the ASID value is not available in the hard-
ware signal bit; it is only available via the software control register.

ASID 12:5 Address space identifier. This field stores the ASID field to match when the R/W Undefined
G bit is zero. When the G bit is one, this field is ignored.

G 4 Global enable. When set, tracing is to be enabled for all processes, pro- R/W Undefined
vided that other enabling functions (like U, S, etc.,) are also true.

TFCR 3 When set, this bit indicates to the PDtrace interface that the optional Fcr R/W Undefined
bit must be traced in the appropriate trace formats. If PC tracing is dis-
abled, the full PC of the function call (or return) instruction must also be
traced.

TLSM 2 Load/Store Miss trace. When set, this indicates to the PDtrace interface R/W Undefined
that information about data cache misses should be traced. If PC, load/
store address, and data tracing are disabled (see the TraceControl2Mode
field), the full PC and load/store address are traced for data cache misses.

If load/store data tracing is enabled, the LSM bit must be traced in the
appropriate trace format. Note that data cache miss information is only
traced if tracing is actually enabled for the current mode.

TIM 1 Trace IM bit. When set, this indicates to the PDtrace interface that the R/W Undefined
optional IM bit must be traced in the appropriate trace formats. If PC trac-
ing is disabled, the full PC of the instruction that missed in the I-cache
must be traced. Note that instruction cache miss information is only traced
if tracing is actually enabled in the current mode.

On 0 This is the master trace enable switch in software control. When zero, trac- R/W 0
ing is always disabled. When set to one, tracing is enabled whenever the
other enabling functions are also true.

2.2.9.2 Trace Control 2 Register — TraceControl2 (CPO Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB). As such, these fields in the TraceControl2 register will not have valid values
until the TCB asserts these values.

This register is only implemented if the MIPS Trace capability is present.

140 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

31 30 29

Figure 2.60 TraceControl2 Register Format
10 9 7 6

SyPExt

R Mode ValidModes

TBI

TBU

SyP

Table 2.72 TraceControl2 Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset State

SyPEXxt

31:30

Sync period extension. Extension to the SyP (sync period) field for
implementations that need higher numbers of cycles between synchroni-
zation events.

The value of SyP is extended by assuming that these two bits are juxta-
posed to the left of the three bits of SyP (SypExtsyp). When only SyP was
used to specify the synchronization period, the value was 2x, where x
was computed from SyP by adding 5 to the actual value represented by
the bits. A similar formula is applied to the 5 bits just obtained by the

juxtaposition of SyPEXxt and SyP. Sync period values greater than 23l are
UNPREDICTABLE. That is all values greater than 11010 (26 + 5 =31)
are UNPREDICTABLE. With SyPExt bits, a sync period range of 25 to

231 ¢ycles can be obtained.

R/W

0

29:10

Reserved. Write as zero. Ignored on reads.

0

Mode

9:7

When tracing is turned on, these five bits specify what information is to
be traced by the core. Each bit turns on tracing of a specific tracing mode
when that bit value is a 1. If the corresponding bit is 0, then the corre-

sponding trace (shown in the table below) is not traced by the processor.

Each bit is this field is encoded as follows:
Bit 7: PC

Bit 8: Load address

Bit 9: Store address

R/W

Undefined

ValidModes

6:5

This field specifies the subset of tracing that is supported by the proces-
sor. This field is encoded as follows:

01: PC and load and store address tracing only

All other values are invalid.

2’b01

TBI

This bit indicates how many trace buffers are implemented by the TCB,
as follows.

0: Only one trace buffer is implemented, and the TBU bit of this register
indicates which trace buffer is implemented.

1: Both on-chip and off-chip trace buffers are implemented by the TCB
and the TBU bit of this register indicates to which trace buffer the traces
is currently written.

Undefined

TBU

This bit denotes to which trace buffer the trace is currently being written
and is used to select the appropriate interpretation of the
TraceControl2syp field.

0: Trace data is being sent to an on-chip trace buffer
1: Trace Data is being sent to an off-chip trace buffer

This bit is loaded from TCBCONTROLBofc.

Undefined

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

141

Table 2.72 TraceControl2 Register Field Descriptions (continued)

Fields
Read /
Name Bits Description Write Reset State
SyP 2:0 The period (in cycles) to which the internal synchronization counter is R Undefined

reset when tracing is started, or when the synchronization counter has
overflowed. This field is encoded as follows.

000: 2°
001: 2°
010: 27
011: 28
100: 2°
101: 210
110: 211
111: 212

This field is loaded from TCBCONTROLAgyp.

2.2.9.3 Trace Control 3 Register — TraceControl3 (CPO Register 24, Select 2)

The TraceControl3 register provides additional control and status information. This register is only implemented if the
PDtrace capability is present.

Figure 2.61 TraceControl3 Register Format

31 30 29 28 27 26 23 22 21 14 13 12 1 10 9 8 7 3 3 1 0
0 |[UPR| O [MSA 0 GV | GuestID | PeCOvf | PeCFCR | PeCBP | PeCSync | PeCE |[PeC| 0 | TRIDLE |TRPAD| 0
Table 2.73 TraceControl3 Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
0 31:30 Reserved. Must be written as zeros; returns zeros on reads. R 0
UPR 29 Indicates that for 128 bit load/ stores (MSA, if tracing of 128 bit MSA 1d/st R 1
is not implemented (see bit TraceControl3.MSA) and bonded 2x64) only
the lower 64 bits are traced.
0 28 Reserved. Must be written as zeros; returns zeros on reads. R 0
MSA 27 128 bit MSA load/store data trace not implemented (see the UPR bit 29). R 0
0 26:23 Reserved. Must be written as zeros; returns zeros on reads. R 0
GV 22 Enable trace for all GuestIDs or only 1 GuestID. R/W 0
0: Trace enabled for all Guests
1: Trace enabled only for Guest specified by TCBControlEGuestID

142 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.73 TraceControl3 Register Field Descriptions (continued)

Fields Read /

Name Bits Description Write Reset State

GuestID 21:14 The GuestID field to match when tracing. R/W Undefined

If GuestCtl0.G1 = 1, the number of active bits in this register field matches
the number of writeable bits in GuestCtlID register field and the rest of the
bits of this field are read-only as zero.

If GuestCtl0.G1 = 0, then only the right-most bit of this register field is
writeable and the rest of the bits of this field are read-only as zero.

A value of 0 represents Root execution while non-zero represents Guest
execution.

PeCOVf 13 Performance counter overflow. Setting this bit enables the trace control R/W 0
logic to trace a performance counter overflow.

PeCFCR 12 Performance counter function/call return. Setting this bit enables the trace R/W 0
control logic to trace a function call/return condition or an exception han-
dler entry.

PeCBP 11 Performance counter hardware breakpoint. Setting this bit enables the trace R/W 0
control logic to trace a hardware breakpoint condition.

PeCSync 10 Performance counter synchronization counter expiration. Setting this bit R/W 0
enables the trace control logic to trace a synchronization counter expiration
condition.

PeCE 9 Performance counter tracing enable. When set to 0, the tracing out of per- R/W 0
formance counter values as specified is disabled. To enable, this bit must
be set to 1. This bit is used under software control. When trace is con-

trolled by an external probe, this enabling is done via TraceControl3pece.

PeC 8 Specifies whether or not Performance Control Tracing is implemented. R 1
This bit is always set to 1 in the P6600 processor.

0 73 Reserved. Must be written as zeros; returns zeros on reads. R 0

TrIDLE 2 Trace Unit Idle. This bit indicates if the trace hardware is currently idle R/W 0
(not processing any data). This can be useful when switching control of
trace from hardware to software and vice versa. The bit is read-only and
updated by the trace hardware.

TRPAD 1 Trace RAM Access Disable. Disables program software access to the on- R/W 0
chip trace RAM using load/store instructions. This bit is loaded from
TCBCONTROLBTRpPAD.

0 0 Reserved. Must be written as zeros; returns zeros on reads. R 0

2.2.9.4 User Trace Data 1 Register — UserTraceDatal (CPO Register 23, Select 3)

A software write to any bits in the UserTraceDatal register triggers a trace record to be written with a type indicator
TUL.

This register is only implemented if the MIPS Trace capability is present.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 143

Figure 2.62 User Trace Data 1 Register Format
63 0

Data

Table 2.74 User Trace Data 1 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Data 63:0 Software readable/writable data. When written, this triggers a user format R/W 0

trace record out of the PDtrace interface that transmits the Data field to
trace memory.

2.2.9.5 User Trace Data 2 Register — UserDataTrace2 (CPO Register 24, Select 3)

A software write to any bits in the UserTraceData2 register triggers a trace record to be written with a type indicator
TU2.

These register are only implemented if the MIPS Trace capability is present.

Figure 2.63 User Trace Data 2 Register Format
63 0

Data

Table 2.75 User Trace Data 2 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
Data 63:0 Software readable/writable data. When written, this triggers a user format R/W 0

trace record out of the PDtrace interface that transmits the Data field to
trace memory.

2.2.9.6 Trace Instruction Breakpoint Condition Register — TracelBPC (CPO Register 23, Select 4)

The TracelBPC register is used to control start and stop of tracing using an EJTAG Instruction Hardware breakpoint.
The Instruction Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception
breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 2.64 TracelBPC Register Format
31 30 29 28 27 12 11 9 8 6 5 32 0

0 PCT|IE 0 IBPC3 IBPC; IBPC, IBPCy

144 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.76 TracelBPC Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
0 31:30 Reserved. Must be written as zeros; returns zeros on reads. R 0
PCT 29 Used to specify whether a performance counter trigger signal is generated R/W 0
when an EJTAG instruction breakpoint match occurs.
0: Disables performance counter trigger signal from instruction breakpoints
1: Enables performance trigger signals from instruction breakpoints
IE 28 Used to specify whether or not the trigger signal from EJTAG instruction R/W 0
breakpoint should trigger tracing functions.
0: Disables trigger signals from instruction breakpoints
1: Enables trigger signals from instruction breakpoints
0 27:12 Reserved. Must be written as zeros; returns zeros on reads. R 0
IBPC3 11:9 The four 3-bit fields are decoded to enable different tracing modes. Table R/W 0
IBPC2 9:6 2.78 shows the possible interpretations. Each set of 3 bits represents the
IBPC1 5:3 encoding for the instruction breakpoint n in the EJTAG implementation, if
IBPCO 2:0 it exists. If the breakpoint does not exist, then the bits are reserved, read as
zero, and writes are ignored.

2.2.9.7 Trace Data Breakpoint Condition Register — TraceDBPC (CPO Register 23, Select 5)

The TraceDBPC register is used to control start and stop of tracing using an EJTAG Data Hardware breakpoint. The
Data Hardware breakpoint would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the MIPS Trace capability are present.

Figure 2.65 TraceDBPC Register Format

31 30 29 28 27 6 5 32 0
0 PCT | DE 0 DBPC; DBPCy
Table 2.77 TraceDBPC Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
0 31:30 Reserved. Must be written as zeros; returns zeros on reads. R 0
PCT 29 Used to specify whether a performance counter trigger signal is generated R/W 0
when an EJTAG data breakpoint match occurs.
0: Disables performance counter trigger signal from data breakpoints
1: Enables performance trigger signals from data breakpoints
DE 28 Used to specify whether the trigger signal from EJTAG data breakpoint R/W 0
should trigger tracing functions.
0: Disables trigger signals from data breakpoints
1: Enables trigger signals from data breakpoints
0 27:26 Reserved. Must be written as zeros; returns zeros on reads. R 0

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

145

Table 2.77 TraceDBPC Register Field Descriptions (continued)

CM)

Fields
Read /
Name Bits Description Write Reset State
DBPCO 2:0 The two 3-bit fields are decoded to enable different tracing modes. Table R/W 0
DBPC1 5:3 2.78 shows the possible interpretations. Each set of 3 bits represents the
encoding for the data breakpoint n in the EITAG implementation, if it exists.
If the breakpoint does not exist then the bits are reserved, read as zero and
writes are ignored.
Table 2.78 BreakPoint Control Modes: IBPC and DBPC
Value Trigger Action Description
000 Unconditional Trace Stop Unconditionally stop tracing if tracing was turned on. If tracing is already off,
then there is no effect.
001 Unconditional Trace Start Unconditionally start tracing if tracing was turned off. If tracing is already
turned on, then there is no effect.
010 None Reserved for future implementations.
011 Unconditional Trace Start (core and | Unconditionally start tracing in both coreand coherence manager if tracing was

turned off. If tracing is already turned on, then there is no effect.

CM), and in addition, dump the full
performance counter values into the
trace stream

100 Identical to trigger condition 000, If tracing is currently on, dump the full values of all the implemented perfor-
and in addition, dump the full perfor- | mance counters into the trace stream, and turn tracing off. If tracing is already
mance counter values into the trace | off, then there is no effect.
stream

101 Identical to trigger condition 001, Unconditionally start tracing if tracing was turned off. If tracing is already
and in addition, also dump the full turned on, then there is no effect. In both cases, dump the full values of all the
performance counter values into the |implemented performance counters into the trace stream.
trace stream

110 Not used Reserved for future implementations.

111 Unconditional Trace Start (core and | Unconditionally start tracing in both coreand coherence manager if tracing was

turned off. If tracing is already turned on, then there is no effect. Dump the full
values of all the implemented performance counters into the trace stream.

146

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.10 User Mode Support Registers

This section contains the following hardware access registers.
* Section 2.2.10.1, "Hardware Enable — HWREna (CPO Register 7, Select 0)" on page 147
* Section 2.2.10.2, "UserLocal (CPO Register 4, Select 2)" on page 148

* Section 2.2.10.3, "LLAddr Register (CP0O Register 17, Select 0)" on page 149

2.2.10.1 Hardware Enable — HWREna (CPO Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the rdhwr
instruction when that instruction is executed in user mode.

The low-order four bits [3:0] control access to the four registers required by the MIPS64® architecture standard. The
two high-order bits [31:30] are available for implementation-dependent use.

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide
direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading the
value back. If a bit reads back as a one, the processor implements that hardware register.

Figure 2.66 HWREna Register Format

31 30 29 28 6 5 4 3 2 1 0

Impl

UL 0 XNP| PerfCnt | CCRes | CC| SYNCI Step CPUNum

Table 2.79 Field Descriptions for HWREna Register

Read/
Name Bit(s) Description Write | Reset State
Impl 31:30 | These bits control access to implementation-dependent hardware registers. These reg- R 0
isters are not currently implemented in any P6600 family processor. Attempts to
access these bits results in a Reserved Instruction Exception.
UL 29 | UserLocal register present. This register provides read access to the coprocessor 0 R/W 0
UserLocal register. Set this bit to 1 to permit user programs to obtain the value of the
UserLocal CPO register using rdhwr 29.
28:4 | Ignored on write; returns zero on read. R 0
XNP 5 When set, this bit provides read access to the coprocessor 0 ConfigS. XNP register bit. | R/W 0
Set this bit to 1 to permit user programs to obtain the value of the Config5.XNP CP0
register field using rdhwr 5.
See Config5.XNP.
PerfCnt 4 Performance Counter Pair. Even sel selects the Control register, while odd sel selects | R/W 0
the Counter register in the pair.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 147

Table 2.79 Field Descriptions for HWREna Register

Read/
Name Bit(s) Description Write | Reset State

CCRes 3 Resolution of the Count register. This value denotes the number of cycles between R/W 0
updates of the Count register. Setting this bit allows selected instructions to read the
Count register. For example, if this bit is set, the execution of a user-mode rdhwr 3
instruction read the interval at which the Count register increments. This field is
encoded as follows:

0: Count register increments every cycle

1: Count register increments every second cycle

2: Count register increments every third cycle

etc.

CcC 2 Count register present. This register provides read access to the coprocessor 0 Count | R/W 0
Register. Set this bit to 1 so a user-mode rdhwr 2 can read out the value of the
Count register.

SYNCI_Step 1 L1 cache line size. Setting this bit allows hardware to read the line size of the L1 R/W 0
cache. This field is used in conjunction synci instruction. See that instruction’s
description for the use of this value.

In the typical implementation, this value should be zero if there are no caches in the
system that must be synchronized (either because there are no caches, or because the
instruction cache tracks writes to the data cache). In other cases, the return value
should be the smallest line size of the caches that must be synchronized.

For the P6600 core, the SYNCI_Step value is 32 since the line size is 32 bytes.

Set this bit to 1 so that a user-mode rdhwr 1 can read the cache line size (actually,
the smaller of the L1 I-cache line size and D-cache line size). That line size deter-
mines the step between successive uses of the synci instruction, which does the
cache manipulation necessary to ensure that the CPU can correctly execute the
instructions.

CPUNum 0 This register provides read access to the coprocessor 0 EBasecpunum field. Set this bit | R/W 0
1 so a user-mode rdhwr 0 reads out the CPU ID number.

2.2.10.2 UserLocal (CPO Register 4, Select 2)

UserLocal is a read-write 64-bit register that is not interpreted by the hardware and conditionally readable by soft-
ware . This register is suitable for a kernel-maintained ID whose value can be read by user-level code with
rdhwr 29, aslongas HWRENAy is set.

The presence of the UserLocal register is indicated by Config3yLri = 1.

148 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 2.67 UserLocal Register Format

63 0
UserLocal
Table 2.80 UserLocal Register Field Description
Fields
Read /
Name Bits Description Write Reset State
UserLocal 63:0 Software information that is not interpreted by hardware. R/W Undefined
2.2.10.3 LLAddr Register (CP0O Register 17, Select 0)
The LLAddr register stores the physical address (to the enclosing 32-byte block) of the target location of any LL/SC
sequence. This register is readable purely for diagnostic reasons. This register is used by the hardware to properly
handle LL/SC sequences by monitoring if the memory location has potentially been written between the LL and SC
instructions.
Figure 2.68 LLAddr Register Format
63 36 35 32
0 PAddr
31 1 0
PAddr LLB
Table 2.81 LLAddr Register Field Descriptions
Fields
Read /
Name Bit(s) Description Write Reset State
0 63:36 Unused bits. For these bits, writes are ignored and reads return zero. R Undefined
PAddr 35:1 Bits [39:5] of address used by lastthe LL instruction. LLAddr[1] is always R Undefined
aligned to PA[5], which implies PAddr is always 32-byte aligned.
LLB 0 Load-Linked bit. The LL instruction sets this bit when executed. The SC R/W 0
instructions and other hardware events may clear the LLB bit.
This bit allows the LL bit to be software accessible. Software can never
write 1 to LL bit. In this case, the state of LLAddr.LLB must remain
unchanged. Software may clear LL bit by writing a 0 to LLAddr..LLB.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

149

2.2.11 Kernel Mode Support Registers

This section contains the following 64-bit kernel scratch registers.

* KSecratchl (CPO Register 31, Select 2)
* KScratch2 (CPO Register 31, Select 3)
* KScratch3 (CPO Register 31, Select 4)
* KScratch4 (CPO Register 31, Select 5)
* KScratch5 (CPO Register 31, Select 6)
* KScratch6 (CPO Register 31, Select 7)

The presence of KScratch registers is indicated by the Configdkscrexist field (bits 23:18). Six KScratch registers are
required in the MIPSr6 architecture and reside at CPO register 31, selects 2 - 7. As such, the various bits of the

KScrExist field are used to identify the presence of the KScratch registers as shown in the table below.

Table 2.82 KScratch Register Map

CPO Config4 Indicates the
Register Bit Bit Name Presence of KScratch Register Location
18 KScrExist[2] KSratch] register CPO register 31, select 2
19 KScrExist[3] KSratch?2 register CPO register 31, select 3
20 KScrExist[4] KSratch3 register CPO register 31, select 4
21 KScrExist[5] KSratch4 register CPO register 31, select 5
22 KScrExist[6] KSratchS5 register CPO register 31, select 6
23 KScrExist[7] KSratch6 register CPO register 31, select 7

Each of the KScratch registers listed above have an identical bit orientation as shown below.

KScratchl - KScratch6 are read-write 64-bit registers used by the kernel for temporary storage of information .

The presence of the KScratch registers is indicated by Configdkscrexistf7:2] = 1°b1 as shown in Table 2.82 above.

150

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

63

Figure 2.69 KScratch 1 - 6 Register Format

KScratch

Table 2.83 KScratch 1 - 6 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
KScratch 63:0 Used by the kernel for temporary storage of information. R/W Undefined
MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 151

2.2.12 Memory Mapped Registers

This section contains the following memory mapped registers.

* Section 2.2.12.1, "Common Device Memory Map Base Address — CDMMBase (CP0 Register 15, Select 2)" on
page 152

* Section 2.2.12.2, "Coherency Manager Global Configuration Register Base Address — CMGCRBase (CP0
Register 15, Select 3)" on page 153

2.2.12.1 Common Device Memory Map Base Address — CDMMBase (CPO Register 15, Select 2)

The 32-bit physical base address for the Common Device Memory Map facility is defined by this register. This regis-
ter only exists if Config3cpmwm is set to one.

Figure 2.70 shows the format of the CDMMBase register, and Table 2.84 describes the register fields.

Figure 2.70 CDMMBase Register

63 40 35 11 10 9 8 0
0 CDMM_UPPER_ADDR |EN| I ‘ CDMMSize

Table 2.84 CDMMBase Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
0 63:36 Unimplemented physical address bits. Writes are ignored, returns R 0
0 on read.
CDMM_UPPER_ 35:11 Bits 39:15 of the base physical address of the common device R/W Undefined
ADDR memory-mapped registers.
EN 10 Enables the CDMM region. R/W 0

If this bit is cleared, memory requests to this address region go to
regular system memory. If this bit is set, memory requests to this
region go to the CDMM logic.

0: CDMM region is disabled.

1: CDMM region is enabled.

Cl 9 If set to 1 by hardware, this bit indicates that the first 64-byte R 0
Device Register Block (DRB) of the CDMM is reserved for addi-
tional registers which manage CDMM region behavior and are
not 1O device registers.

This bit is always 0 in the P6600 core since additional I/O device
registers are not implemented.

CDMMSize 8:0 This field represents the number of 64-byte Device Register R 2
Blocks (DRB) instantiated in the P6600 core.
0x000: 1 DRB

0x001: 2 DRB’s

0x010: 3 DRB’s

Ox1FF: 512 DRB’s

152 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.12.2 Coherency Manager Global Configuration Register Base Address — CMGCRBase
(CPO Register 15, Select 3)

This register is used in a multi-core environment and defines the 36-bit physical base address for the memory-mapped
Coherency Manager Global Configuration Register (CMGCR) space. This register only exists if Config3cMmGCR 18

set.

Figure 2.71 shows the format of the CMGCRBase register, and Table 2.85 describes the register fields.

Figure 2.71 CMGCRBase Register

63 36 35 11 10 0
0 CMGCR_BASE_ADDR 0
Table 2.85 CMGCRBase Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State

0 63:36 Unimplemented physical address bits. Writes are ignored, returns 0 R 0

on read
CMGCR _ 35:11 Bits 39:15 of the base physical address of the memory mapped R Preset
BASE_ADDR Coherency Manager Global Configuration registers.

The number of implemented physical address bits is implementa-
tion-specific. For the unimplemented address bits, writes are
ignored, reads return zero.
The reset value is set when the core is configured using the Config-
uration GUI.

0 10:0 Must be written as zero; returns zero on read R 0

2.2.13 Virtualization Registers

This section contains the set of register used to control Virtualization on the P6600 core. The Virtualization Module
extends the MIPS64 architecture with a set of new instructions and machine state, and makes backward-compatible
modifications to existing MIPS32 features.

The Virtualization Module is designed to enable full virtualization of operating systems and allows for the execution
of guest Operating Systems in a fully virtualized environment. Software can determine if the Virtualization Module is
implemented by checking the state of the VZ bit in the Config3 CPO register.

The Virtualization Module is supported by the following CPO register.

* Section 2.2.13.1, "GuestCtl0 Register (CPO Register 12, Select 6)"

* Section 2.2.13.2, "GuestCtl1 Register (CP0O Register 10, Select 4)"

e Section 2.2.13.3, "GuestCtI2 Register (CP0O Register 10, Select 5)"

* Section 2.2.13.4, "GuestCtlOExt Register (CPO Register 11, Select 4)"

* Section 2.2.13.5, "GTOffset Register (CP0O Register 12, Select 7)"

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

153

2.2.13.1 GuestCtl0 Register (CP0O Register 12, Select 6)

The GuestCtl0 register contains control bits that indicate whether the base mode of the processor is guest mode or root
mode, plus additional bits controlling guest mode access to privileged resources. The GuestCtl0 register is accessible
only in root mode.

Note on behaviour of GuestCtlOprg/raD: These R/W fields define additional functions for the Guest and Root TLBs.
Both must be interpreted together. An implementation does not have to support all valid combinations. Root software
can test supported combinations by writing then reading legal values. Legal values for (RAD,DRG)={00,01,11}.

Figure 2.72 shows the format of the Virtualization Module GuestCtI0 register; Table 2.86 describes the GuestCtl0 reg-
ister fields.

Figure 2.72 GuestCtl0O Register Format

31 30 29 28 2726 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 2 1 0

GM |RI|MC|CP0O| AT |GT|CG|CF|G1| Impl |GOE| PT | ASE PIP RAD|DRG|G2| GExcCode |SFC2|SFCl

Table 2.86 GuestCtl0 Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

GM

31

Guest Mode

The processor is in guest mode when GM = 1 and the following bits are all
zero:Root.Statusgx = 0, Root.Statusgr. = 0, and Root.Debugpm = 0.

RI 30 Guest Reserved Instruction Redirect. This field is encoded as follows: R/W 0
0: Reserved Instruction exceptions during guest-mode execution are taken in
guest mode.

1: Reserved Instruction exceptions during guest-mode execution result in a

Guest Reserved Instruction Redirect exception, taken in root mode.

MC 29 Guest Mode-Change exception enable. The purpose of this enable is to provide R/W 0
Root software control over certain mode-changing events within guest context
that may be frequent in guest context by causing Field Change exceptions. This

field is encoded as follows:

0: During guest mode execution a hardware initiated change to Guest.Statusgx
will not trigger a Guest Hardware Field Change Exception.

During guest mode execution, a software initiated change to Guest.Statusymy
ksu will not trigger a Guest Software Field Change Exception.

1: During guest mode execution a hardware initiated change to Guest.Statusgx
will trigger a Guest Hardware Field Change Exception.

During guest mode execution, a software initiated change to Guest.Statusymy
ksu will trigger a Guest Software Field Change Exception.

154 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.86 GuestCtl0 Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

CPO

28

Guest access to coprocessor 0. This field is encoded as follows:

0: Guest-kernel use of any Guest Privileged Sensitive Instruction will trigger a
Guest Privileged Sensitive Instruction exception.

E.g., Guest use of TLBWI always causes GPSI if CPO = 0.

1: Guest-kernel use of selective Guest Privileged Sensitive Instructions is per-
mitted, subject to all other exception conditions.

Eg., Guest use of TLBWI only causes GPSI if GuestCtlOaT =3 while CP0 = 1.

The CPO bit has no other effect on the operation of coprocessor 0 in guest mode.

AT

27:26

Guest Address Translation control This field indicates which entity has control
over the guest MMU. In the P6600 core the value of this field is always 0x3,
indicating that the Guest MMU is under Guest control. Guest and Root MMU
are both implemented and active in hardware.

Guest TLB resources include:

* TLB related instructions - TLBWR, TLBWI, TLBR, TLBP, TLBINV,
TLBINVFE.

» Supporting Registers - Index, Random, EntryLo0, EntryLol, EntryHi,
Context, XContext, ContextConfig, PageMask, PageGrain, SegCtl0, SegCtl1,
SegCtl2, PWBase, PWField, PWSize, PWCtl.

If the Guest TLB resources (excluding Index, Random, EntryLo0, EntryLol,

Context, XContext, ContextConfig, PageMask and EntryHi) are under Root

control (GuestCtlOaT = 1), Guest use of these instructions or access to any of

these registers triggers a Guest Privileged Sensitive Instruction exception,
allowing Root to control Guest address translation directly.

In default mode (GuestCtlOaT = 3), the Guest TLB resources are active under
Guest control.

0x3

GT

25

Timer register access. This register is encoded as follows:

0: Guest-kernel access to Count or Compare registers, or a read from CC with
RDHWR will trigger a Guest Privileged Sensitive Instruction exception.

1: Guest kernel read access from Count and guest-kernel read or write access to
Compare is permitted. Guest reads from CC using RDHWR are permitted in
any mode.

The GT bit has no other effect on the operation of timers in guest mode.

CG

24

Cache Instruction Guest-mode enable. This register is encoded as follows:

0: A Guest Privileged Sensitive Instruction exception will result from use the
CACHE, CACHEE instruction.

1: The CACHE, CACHEE instruction can be used with an Effective Address
Operand type of ‘Address’. A Guest Privileged Sensitive Instruction exception
will result from use of any other Effective Address Operand type.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

155

Table 2.86 GuestCtl0 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
CF 23 Config register access. This register is encoded as follows: R/W 0
0: Guest-kernel write access to Config0-7 triggers a Guest Privileged Sensitive
Instruction exception.
1: Guest-kernel access to Config0-7 is permitted.
The CF bit has no other effect on the operation of Config register fields in Guest
mode.
Gl 22 GuestCtl1 register implemented. Set by hardware. This register is encoded as R Preset
follows:

0: Unimplemented
1: Implemented

Impl 21:20 Implementation defined. R/W 0
These bits are implementation dependent and not defined by the architecture. If
not implemented, they must be ignored on write and read as zero. If imple-
mented and if modifying the behavior of the processor, it must be defined in
such a way that correct behavior is preserved if software, with no knowledge of
these bits, reads the GuestCtl0 register, modifies another field, and writes the
updated value back to the GuestCtl0 register.

GOE 19 GuestCtIOEXxt register implemented. Set by hardware. This register is encoded R 1
as follows:

0: Unimplemented
1: Implemented

PT 18 Defines the existence of the Pending Interrupt Pass-through feature. This regis- R 1
ter is encoded as follows:

0: GuestCtlOpp not supported. GuestCtlOp|p is a reserved field.
All external interrupts are processed via Root intervention.
1: GuestCtlOpp supported. Interrupts may be assigned to Root or Guest.

ASE 17:16 Reserved for MCU Module Pending Interrupt Pass-through. This field is not 0 0
used in the P6600 core and is always zero.
PIP 15:10 Pending Interrupt Pass-through. R/W 0

In non-EIC mode, controls how external interrupts are passed through to the
guest CPO context. Interpreted as a bit mask and applies 1:1 to Guest.Cau-
se|p[7:2]. GuestCtllp;p may be extended by GuestCtl1ask.

Existence of the PIP feature is defined by the GuestCtlOpt field.

This field is encoded as follows:

0: Corresponding interrupt request is not visible in guest context.
1: Corresponding interrupt request is visible in guest context.

RAD 9 RAD, or “Root ASID Dealias” mode determines the means that a Virtualized R 0
MMU implementation uses Root ASID to dealias different contexts. This field
is encoded as follows:

0: GuestID used to de-alias both Guest and Root TLB entries.
1: Root ASID is used to de-alias Root TLB entries, while Guest TLB contains
only one context at any given time.

156 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.86 GuestCtl0 Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

DRG

8

DRG, or “Direct Root to Guest” access determines whether an implementation
provides root kernel the means to access guest entries directly in the Root TLB
for access to guest memory. This bit is always 0 in the P6600 as root software
cannot access guest entries directly.

RO

G2

GuestCtl2 register implemented. Set by hardware. This bit is always set to 1 in
the P6600 core.

preset

GExCode

6:2

Hypervisor exception cause code. Described in Table 2.87.

Undefined

This field is UNDEFINED on a root exception.

SFC2

1 Guest Software Field Change exception enable for Guest.Statuscurz]. R 0

The purpose of this enable is to provide Root software control over guest COP2
enable related Field Change exception. This bit is not used and is always 0 in
the P6600 as COP2 is not supported.

SFC1

0 Guest Software Field Change exception enable for Guest.Statuscurij.

The purpose of this enable is to provide Root software control over guest COP1
enable related Field Change exception. Guest software may utilize Statuscuy
for COP1 specific context switching. This bit is encoded as follows:

0: GSFC exception taken if CU[1] is modified by guest.
1: GSFC exception not taken if CU[1] modified by guest.

Table 2.87 describes the cause codes use for GExcCode.

Table 2.87 GuestCtl0 GExcCode values

Exception Code Value
Decimal Hexadecimal Mnemonic Description

0 0x00 GPSI Guest Privileged Sensitive instruction. Taken when execution of a Guest Privi-
leged Sensitive Instruction was attempted from guest-kernel mode, but the
instruction was not enabled for guest-kernel mode.

1 0x01 GSFC Guest Software Field Change event.

2 0x02 HC Hypercall.

3 0x03 GRR Guest Reserved Instruction Redirect. A Reserved Instruction or MDMX Unus-
able exception would be taken in guest mode. When GuestCtlOg =1, this root-
mode exception is raised before the guest-mode exception can be taken.

4-7 0x4 - 0x7 IMP Available for implementation specific use.

8 0x08 GVA Guest mode initiated Root TLB exception has Guest Virtual Address avail-
able.

Set when a Guest mode initiated TLB translation results in a Root TLB related
exception occurring in Root mode and the Guest Physical Address is not avail-
able.

9 0x09 GHFC Guest Hardware Field Change event.

10 0x0A GPA Guest mode initiated Root TLB exception has Guest Physical Address avail-
able.

Set when a Guest mode initiated TLB translation results in a Root TLB related
exception occurring in Root mode and the Guest Physical Address is available.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

157

Table 2.87 GuestCtl0 GExcCode values

Exception Code Value

Decimal Hexadecimal Mnemonic Description

11-31 0xB - 0x1F - Reserved

2.2.13.2 GuestCtl1 Register (CPO Register 10, Select 4)

The GuestCtl1 register defines GuestID control fields for Root (GuestCtl1gip) and Guest (GuestCtl1;p) which may be
used in the context of TLB instructions, instruction and data address translation. The GuestCtl1g|p field additionally is
written by the processor on a TLBR or TLBGR instruction in Root mode, then containing the GuestID read from the
TLB entry. A TLBR executed in Guest mode does not cause a write to either GuestCtl1;p and GuestCtl1gp,

GuestCtl1 is optional and thus the use of GuestID is optional in the context of TLB instructions, instruction and data
address translation. The GuestCtl1 register only exists in Root Context. A GuestID value of 0 is reserved for Root.
The primary purpose of the GuestID isto provide a unique component of the Guest/Root TLB entry eliminating TLB
invalidation overhead on virtual machine level context switch.

A system implementing a GuestID is required to support a guest identifier field (GID) in each Guest and Root TLB
entry. This GuestID field within the TLB is not accessible to the Guest. While operating in guest context, the behavior
of guest TLB operations is constrained by the GuestCtl1p field so that only guest TLB entries with a matching GID
field are considered.

The actual number of bits usable in the GuestCtl1;p and GuestCtllg|p fields is implementation dependent. Software
may determine the usable size of these fields by writing all ones and reading the value back. The size of GuestCtl1|p
and GuestCtl1gp must be equal.

Figure 2.73 shows the format of the Virtualization Module GuestCtl1 register; Table 2.88 describes the GuestCtl1 reg-
ister fields.

Figure 2.73 GuestCtll Register Format

31 24 23 16 15 8 7 0
EID RID 0 ID
Table 2.88 GuestCtl1l Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State
EID 31:24 External Interrupt Controller Guest ID. R 0
Required if an External Interrupt Controller (EIC) is supported.
A guest interrupt which is posted by the EIC to the root interrupt bus, must
cause the Guest ID of the root interrupt bus to be registered in EID once the
interrupt is taken. This field is read-only and set by hardware.
RID 23:16 Root control GuestID. Used by root TLB operations, and when GuestCtlOprg = R/W 0
1 in Root mode. Legal values for this field are 0x00 - 0xOF. A value greater
than 0xOF causes the entire write operation to be dropped.
0 15:8 Must be written as zero; returns zero on read. R 0
ID 7:0 Guest control GuestID. Identifies resident guest. Applies to guest address trans- R/W 0
lation. A value greater than 0xOF causes the entire write operation to be
dropped.
158 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

2.2.13.3 GuestCtl2 Register (CP0O Register 10, Select 5)

The GuestCtI2 register is optional in an implementation. It is only required if support for Virtual Interrupts in non-
EIC mode is included in an implementation. Alternatively, if EIC mode is supported, then GuestCtl2 is required.

GuestCtI2 is present if GuestCtl2g2 = 1.

Figure 2.74 shows the format of the Virtualization Module GuestCtI2 register in non-EIC mode. Table 2.89 describes

the non-EIC mode GuestCtI2 register fields.

Figure 2.75 shows the format of the Virtualization Module GuestCtI2 register in EIC mode. Table 2.90 describes the

EIC mode GuestCtI2 register fields.

Figure 2.74 GuestCtl2 Register Format for non-EIC Mode

31 30 29 24 23 18 17 16 15 10 9 0
ASEHC HC 0 ASEVIP VIP 0
Figure 2.75 GuestCtl2 Register Format for EIC Mode
31 30 29 24 23 16 15 0
ASE GRIPL 0 GVEC
Table 2.89 non-EIC mode GuestCtl2 Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State
ASEHC 31:30 MCU Module extension for HC. Must be written as zero; returns zero on read. R 0
HC 29:24 Hardware Clear for GuestCtl2yp R/'W 0
This set of bits maps one to one to GuestCtl2yp
This field is encoded as follows.
0: The deassertion of related external interrupt (IRQ[n]) has no effect on
GuestCtl2yp[n]. Root software must write zero to GuestCtl2yp[n] to clear the
virtual interrupt.
1: The deassertion of related external interrupt (IRQ[n]) causes GuestCtl2yp[n]
to be cleared by hardware.
In the case of HC = 0, Guest.Cause|p[n+2] could continue to be asserted due to
an external interrupt when GuestCtl2yp[n] is cleared by software. Source of
external interrupt must be serviced appropriately.
Root software can write then read this field to determine the supported configura-
tion.
0 25:18 Must be written as zero; returns zero on read. R 0
MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 159

Table 2.89 non-EIC mode GuestCtl2 Register Field Descriptions (continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

ASEVIP

17:16

MCU Module extension for VIP. Must be written as zero; returns zero on read.

R

VIP

15:10

Virtual Interrupt Pending.

The VIP field is used by root to inject virtual interrupts into Guest context.
VIP[5:0] maps to Guest.Statusp[7:2]. VIP effects Guest.Status;p in the following
manner:

0: Guest.Status|p[n+2] cannot be asserted due to VIP[n], though it may be
asserted by an external interrupt IRQ[n]. n = 5:0.

1: Guest.Status;p[n+2] must at least be asserted due to VIP[n]. It may also be
asserted by a concurrent external interrupt. n=5:0.

R/W

9:0

Must be written as zero; returns zero on read.

RO

Table 2.90 EIC mode GuestCtl2 Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

ASE

31:30

MCU Module extension for GRIPL. This field is not used by the P6600 core,
and must be written as zero; returns zero on read.

GRIPL

29:24

Guest RIPL

This field is written only when an interrupt received on the root interrupt bus
for a guest is taken. The RIPL(Requested Interrupt Priority Level) sent by EIC
on the root interrupt bus is written to this field.

Root software can write the field if it needs to modify the EIC value before
assigning to guest. It may also clear this field to prevent a transition to guest
mode from causing an interrupt if this field was set with a non-zero value ear-
lier.

R/W

GEICSS

21:18

Guest EICSS

This field is written only when an interrupt received on the root interrupt bus
for a guest is taken. The EICSS (External Interrupt Controller Shadow Set)
sent by EIC on the root interrupt bus is written to this field

Root software can write the field if it needs to modify the EIC value before
assigning to guest.

R/W

Undefined

23:16

Must be written as zero; returns zero on read.

160

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.90 EIC mode GuestCtl2 Register Field Descriptions (continued)

Fields
Read / Reset
Name Bits Description Write State
GVEC 15:0 Guest Vector R/W 0

This field is written only when an interrupt is received on the root interrupt
bus for a guest. The Vector Offset (or Number) sent by EIC on the root inter-
rupt bus is written to this field.

GVEC is not loaded into any guest CPO field, but is used to generate an inter-
rupt vector in guest mode using the root interrupt bus vector and not the guest
interrupt bus vector. This will only occur ifthe interrupt was first taken in root
mode.

It is recommended that root software use write access only to restore context,
not to modify the value delivered by the EIC.

2.2.13.4 GuestCtIOExt Register (CP0O Register 11, Select 4)
GuestCtlOgoe should be read by software to determine if GuestCtIOEXxt is implemented.

Figure 2.76 shows the format of the Virtualization Module GuestCtIOExt register. Table 2.91 describes the GuestCtIOExt
register fields.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 161

Figure 2.76 GuestCtIOExt Register Format
31 10 9 8 7 6 5 4 3 2 1 0

0 RPW | NCC | 0 |CGI| FCD | OG | BG |1 MG

Table 2.91 GuestCtIOExt Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State
0 31:6 Must be written as zero, returns zero on read. RO 0
RPW 9:8 Root Page Walk configuration. R/W 0

Determines whether Root COPO Page Walk registers are used for GPA to RPA
or RVA to RPA translations, or both.
This field is encoded as follows:

00: Pagewalk, if enabled, is enabled for both. Root software is responsible for
restoring COPO Page Walk related registers on context switch between root and
guest.

01: Reserved

10: Pagewalk in root context is enabled for guest GPA to RPA translation.
Root miss in root TLB causes an exception.

11: Pagewalk in root context is enabled for root RVA to RPA translation.
Guest miss in root TLB causes a root exception.

Note that the 10 encoding is reserved for internal use. As such, software should
never program this field with a value of 2°b10 as it will cause the entire write
operation to be dropped.

NCC 7:6 Nested Cache Coherency Attributes R 10
Determines whether guest CCA is modified by root CCA in 2nd step of guest
address translation. This field is encoded as follows:

00: Guest CCA is independent of root CCA.

01: Guest CCA is modified by root CCA.

10: Guest CCA is passed through without being modified by the root CCA.
11: Reserved

The P6600 supports encoding 2°b10 of this field. The P6600 core converts
unsupported CCAs to supported CCAs. CCA conversion must only be carried
out on the effective CCA after the result of combining guest and root CCAs
(GuestVA -> GuestPA -> RootPA).

For RootVA -> RootPA translations, the effective CCA is the CCA from the
root TLB entry.

0 5 Must be written as zero, returns zero on read. RO 0

CGI 4 Related to GuestCtlOcg Allows execution of CACHE, CACHEE Index Invali- R/W 0
date operations in guest mode. This field is encoded as follows:

0: Definition of GuestCtlOcg does not change.

1: If GuestCtlOcg =1 and GuestCtlOExtcg) =1, then all CACHE, CACHEE
Index Invalidate (code 0xb000) operations may execute in guest mode without
causing a GPSIL.

162 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.91 GuestCtIOExt Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

FCD

Disables Guest Software/Hardware Field Change Exceptions (GSFC/GHFC).
This mode is useful for an implementation with root software that is not a full-
featured hypervisor. For e.g., the software may just support memory protection,
but may not require protection of CPO state.

If FCD = 1, then hardware must treat guest write, in case of GSFC, and hard-
ware events, in case of GHFC. This bit is encoded as follows:

0: GSFC or GHFC event will cause exception.
1: GSFC or GHFC event will not cause exception.

R/W

oG

Other GPSI Enable. Applies to UserLocal, HWREna, LLAddr, and KScratchl
through KScratch6. This bit is encoded as follows:

0: GPSI not enabled for these registers unless GuestCtl0cpo=0.
1: GPSI enabled for these registers.

R/W

BG

Bad register GPSI Enable. Applies to BadVAddr, BadInstr, and BadInstrP. This
field is encoded as follows:

0: GPSI not enabled for these registers unless GuestCtl0cpo=0.
1: GPSI enabled for these registers.

R/W

MG

MMU GPSI Enable. Applies to Index, EntryLo0, EntryLol, Context, Context-
Config, XContextConfig, PageMask, and EntryHi. This field is encoded as fol-
lows:

0: GPSI not enabled for these registers unless GuestCtl0cpo=0.
1: GPSI enabled for these registers.

R/W

2.2.13.5 GTOffset Register (CPO Register 12, Select 7)

Timekeeping within the guest context is controlled by root mode. The guest time value is generated by adding the

two’s complement offset in the Root. GTOffset register to the root timer in value Root.Count.

The guest time value is used to generate timer interrupts within the guest context, by comparison with the

Guest.Compare register. The guest time value can be read from the Guest.Count register. Guest writes to the Guest.Count
register always result in a Guest Privileged Sensitive Instruction exception.

The number of bits supported in GTOffset is implementation dependent but must be non-zero. It is recommended that
a minimum of 16 bits be implemented. Root software can check the number of implemented bits by writing all ones
and then reading. Unimplemented bits will return zero.

Figure 2.77 shows the Virtualization Module format of the GTOffset register; Table 2.92 describes the GTOffset register
fields.

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

163

Figure 2.77 GTOffset Register Format

31 0
GTOffset
Table 2.92 GTOffset Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
GTOffset 31:0 Two’s complement offset from Root.Count. R/W 0

2.2.14 Memory Accessibility Attribute Registers

164

The 64-bit Memory Accessibility Attribute registers (MAAR) and the 64-bit Memory Accessibility Attribute register
Index (MAARI) define the accessibility attributes of memory regions.

The MAAR register defines whether an instruction fetch or data load/store can speculatively access a memory region
within the address bounds specified by MAAR. The MAARI register is used to specify a MAAR register number that
may be accessed by software with an MTCO or MFCO instruction. Prior to access by MTCO or MFCO, software must
set the MAARIINDEX field to the appropriate value.

MAAR Register Pairs

The P6600 core contains three pairs of MAAR registers, each of which are indexed using the MAAR Index (MAARI)
register located at CPO Register 17, Sel 2. Each MAAR register pair consists of a 64-bit even and an odd register. The
three MAAR register pairs are as follows, where ‘O’ indicates the odd register of the pair and ‘E’ indicates the even
register; MAAROO / MAAROE, MAAR1O / MAARIE, and MAAR20O / MAARZ2E.

The MAARI register must be initialized with the appropriate MAAR register number before the MAAR can be
accessed with an MTCO or MFCO instruction. An EHB instruction is required to be placed in between the write to
MAARI and the subsequent execution of a MTCO or MFCO instruction that specifies the MAAR.

The P6600 core implements three pairs of MAAR registers. The presence of a MAAR register pair can be detected by
software through Config5mrp.

3-Pair MAAR Implementation

The following pseudo-code shows a 3-pair MAAR implementation to determine speculation. Software must set the
logical valid to 1 of each register in the pair to enable a MAAR pair. It may however, clear any one logical valid of the
pair to invalidate the whole MAAR pair. Once both logical values are set to 1, hardware factors in the speculate attri-
bute of only the upper MAAR register with even index. The logical valid is determined as described in the pseudo-
code below.

speculateCCA — 0 // default is not to speculate

/I Modify speculate attribute as per CCA of memory access

/I Cached CCA and UCA speculates

if ((CCA == “cached”) or (CCA == “uncached-accelerated (UCA)”))
speculateCCA — 1

endif

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

// Now factor in MAAR

MAARmatch — 0

speculateMAAR — 1

/! Example of 40-bit PA is 64KB aligned
PA_Align — PA[39:16]

for (i=0; i<6; i=i+2) // assume 3 pairs

// Factor in XPA (Extended Physical Addressing)

MAARTJi]V = MAARJi]VL and (MAARJi]VH or not PageGrainELPA)

MAAR][i+1]V = MAAR[i+1]VL and (MAAR[i+1]VH or not PageGrainELPA)

if (MAAR[i]V and MAAR[i+1]V) // both logical valids must be set to 1
if (MAARJi][35:12] >=PA_Align) && // upper bound

(MAARJi+1][35:12] <= PA_Align)) // lower bound

speculateMAAR — speculatepmaar and MAAR([i]g
MAARmatch — 1

endif

endif
endfor

// if no MAAR is valid, or no MAAR match occurs, then speculateMAAR — 0 speculate — speculateMAAR and
// speculateCCA and MAARmatch

Programming the State of the MAAR / MAARI Register Pair
Software must follow the described method for reprogramming the state of a MAAR pair.

* Disable the MAAR pair by clearing MAAR.VL and MAAR.VH. Accesses to the MAAR region become non-
speculative.

* Program PageGraingLpa as needed.

* Set MAAR.VL along with other fields in MAAR[63:0]

2.2.14.1 Memory Accessibility Attribute Register (CPO Register 17, Select 1)

The Memory Accessibility Attribute Register (MAAR) is a read/write register defines the accessibility attributes of
memory regions. In particular, MAAR defines whether an instruction fetch or data load/store can speculatively access
a memory region within the address bounds specified by MAAR.

The purpose of the MAAR register is to control speculation on load or fetch access to memory and I/O addresses. A
load is considered speculative if it accesses memory prior to its being the oldest instruction to retire. A fetch typically
always speculates on access to memory, while never speculating to 1/0.

If the MAAR function yields a valid attribute, it will only override any equivalent attribute determined through other
means, if it provides a more conservative outcome. For example, if the MMU yields a cacheable CCA, but MAAR
yields a speculate attribute set to 0, then the access should not speculate as determined by the MAAR result. Similarly,
if the MMU yields an uncacheable CCA, but MAAR yields a speculate attribute set to 1, then the access should not
speculate.

The CCA of amemory access now defines speculation, along with MAAR. A memory access with a cacheable CCA is
allowed to speculate. A memory access with uncacheable CCA on the other hand is not allowed to speculate unless

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23 165

the uncacheable CCA =7 (UCA) is used. The final speculative attribute is a combination of the CCA and MAAR as
described above.

The address range specified by a MAAR may be used to specify an attribute for any region of the address space,
whether memory (DRAM) or memory-mapped 1/O.

Note that the MAARI register must be initialized with the appropriate MAARI register number before the MAAR is
accessed with an MTCO or MFCO instruction. An EHB instruction is required to be placed between the write to
MAARI and subsequent execution of MTCO or MFCO that specifies the MAAR.

The MAAR register has the following properties:

+ Ifall MAAR instances are invalid, then no speculation is allowed. This allows the MAAR initialization to occur
at any point of time without the risk of execution speculative (bad path) loads or fetches from issuing to IO
addresses, with the tradeoff possibly being lower performance.

+ Ifany MAAR region enables speculation, then accesses to physical addresses outside this MAAR region must be
non-speculative, unless the physical address of the access matches against a MAAR region with speculation
enabled. This access can then speculate.

* MAAR overlap is allowed: This allows non-speculative MAAR region to overlap a speculative MAAR region.
For e.g., with this property, a non-speculative region can be overlayed on a speculative DRAM region with the

use of just two MAAR pairs.

For software to enable a speculative region out of reset, it should first initialize MAARxO[63:0] and then
MAARXE[63:32].

Figure 2.78 shows the format of the MAAR register; Table 2.93 describes the MAAR register fields.

Figure 2.78 MAAR Register Format
63 36 35 12 11 2 1 0

0 ADDR 0 S|V

Table 2.93 MAAR Register Field Descriptions

Fields

Name Bits Description Read/Write Reset State

0 63:36 Reserved. Writes are ignored, read as 0. R 0

166 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.93 MAAR Register Field Descriptions (continued)

Fields

Name

Bits

Description

Read/Write

Reset State

ADDR

35:12

Address bounds.

ADDR must always specify a physical address.

MAAR regions are at least 64KB-aligned, and thus the least-sig-
nificant bit of ADDR is equal to PA[16].

If the register specifies the upper bound, then any sourced
address must be less than or equal to ADDR.

If the register specifies the lower bound, then any sourced
address must be greater than or equal to ADDR.

See MAAR Index (CPO Register 17, Select 2) for the method of
determining which register is upper or lower in a pair.

MAAR[12] = PA[16]. This allows the MAAR register to specify
40 bits of PA, where MAAR[35] = PA[39]. The lower 16 bits of
the PA are not specified in this register since the MAAR regions
must be 64 KB aligned.

R/W

Undefined

11:2

Reserved. Writes are ignored, read as 0.

0

Speculate.

If an access is qualified as non-speculative, it must be the oldest
unretired instruction in the processor before being allowed to
access memory or memory-mapped regions. This field is
encoded as follows:

0: Instruction fetch or data load/store that matches MAAR reg-
ister pair address range is never allowed to speculatively access
address range.

1: Instruction fetch or data load/store that matches MAAR reg-
ister pair address range may be allowed to speculate.

MAAR regions are allowed to overlap. The cumulative specula-
tive attribute for overlapping regions is determined by ANDing
individual valid MAAR pair speculation attributes.

R/W

Undefined

MAAR register valid. This field is encoded as follows:

0: MAAR register is not valid and should not modify the behav-
ior of any instruction fetch or data load/store.

1: MAAR register is valid and may modify behavior of any
instruction fetch or data load/store that falls within the range of
addresses specified by the MAAR register pair.

If either valid bit of the MAAR register pair is set to 0, then the
pair is assumed invalid and thus will not modify the behavior of
any memory access. Software may thus invalidate one register
of the MAAR pair to invalidate the MAAR comparison.

R/W

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

167

Table 2.94 shows how the valid attribute for a MAAR pair is determined from the cumulative individual MAAR register
valids.

Table 2.94 Valid Determination for MAAR Pair

MAARTilv
where i is even MAARJi+1]y Result
0 0 Result is invalid
0 1 Result is invalid
1 0 Result is invalid
1 1 Result is valid

Table 2.95 shows how the speculate attribute for a MAAR pair is determined by the cumulative individual speculate
attributes.

Table 2.95 Speculate Determination for MAAR Pair

MAAR]Ji]s
whereiis even | MAAR[i+1]s Result
1 0/1 Valid access may speculate
0 0/1 Valid access may never speculate

2.2.14.2 Memory Accessibility Attribute Register Index (CPO Register 17, Select 2)

The MAAR Index register is used in conjunction with MAAR registers (CPO Register 17, Select 1). Multiple MAAR
registers may be implemented - MAAR Index is used to specify a MAAR register number that may be accessed by soft-
ware with an MTCO or MFCO instruction. Prior to access by MTCO or MFCO, software must set MAARI|NDEX to the
appropriate value.

Figure 2.79 shows the format of the MAAR Index register; Table 2.96 describes the MAAR Index register fields.
The presence of MAARI can be detected by software through Config5mrp.

Figure 2.79 MAAR Index Register Format
63 6 5 0

0 INDEX

Table 2.96 MAARI Index Register Field Descriptions

Fields

Name

Bits

Description

Read/Write

Reset State

0

63:6

Reserved. Writes are ignored, read as 0.

R

0

168

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 2.96 MAARI Index Register Field Descriptions (continued)

Fields

Name

Bits

Description

Read/Write

Reset State

INDEX

5:0

MAAR Index. The number of MAAR registers is greater than 1.
INDEX specifies the MAAR register to access.

MAAR registers are paired. The least-significant bit of INDEX
is encoded as follows to indicate which register of the pair is
being accessed.

0: This register specifies the upper address bound of the MAAR
register pair.
1: This register specifies thelower address bound of the MAAR
register pair.

Software may write all ones to INDEX to determine the maxi-
mum value supported. Other than the all ones, if the value writ-
ten is not supported, then INDEX is unchanged from its
previous value since the write is dropped. The register range is
always contiguous and starts at value 0.

R/W 0

2.2.15 Memory Segmentation Registers

Programmable segmentation is a backward compatible mode in the P6600 that allows for the virtual address space
segments to be programmed with different access modes and attributes when operating in 32-bit mode. Control of the

4GB of virtual address space is divided into six segments that are controlled using three CPO registers; SegCtl0

through SegCtl2. Each register has two 16-bit fields. Each field controls one of the six address segments as shown in
Table 2.97. For more information, refer to Section 2.6 of the MMU chapter of this manual.

Table 2.97 Programmable Segmentation Register Interface

CPO Memory Register Virtual Address
Register Location Segment Bits Space Controlled Virtual Address Range (Hex)

SegCtl2 Register 5 CFGS5 31:16 0.0GBto 1.0 GB 0x0000_0000_0000_0000 -
Select 4 0x0000_0000 3FFF_FFFF

CFG4 15:0 1.0 GB to 2.0 GB 0x0000_0000_4000 0000 -

0x0000_0000_7FFF_FFFF

SegCtll Register 5 CFG3 31:16 2.0GBt02.5GB 0xFFFF_FFFF_8000 0000 -
Select 3 OXFFFF_FFFF_9FFF FFFF
CFG2 15:0 2.5GB to 3.0 GB OxFFFF_FFFF_A000_ 0000 -

OXFFFF_FFFF_BFFF_FFFF
SegCtl0 Register 5 CFG1 31:16 3.0GBt03.5GB O0xFFFF_FFFF_C000_0000 -
Select 2 OXxFFFF_FFFF_DFFF_FFFF
CFGO 15:0 3.5GB t0o 4.0 GB O0XxFFFF_FFFF_E000_0000 -

OXFFFF_FFFF_FFFF_FFFF

MIPS64® P6600 Multiprocessing System Software User’'s Guide, Revision 01.23

169

170 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Chapter 3

Memory Management Unit

The P6600 core includes a Memory Management Unit (MMU) that translates virtual addresses to physical addresses.
The MMU consists of a 16-entry Instruction TLB (ITLB), a 32-entry data TLB (DTLB), 64 dual-entry Variable TLB
(VTLB), and a 512 dual-entry Fixed TLB (FTLB).

This chapter contains the following sections:

* Section 3.1, "Introduction" on page 171

* Section 3.2, "Memory Management Unit Architecture" on page 172

* Section 3.3, "MMU Configuration Options" on page 175

* Section 3.4, "Overview of Virtual-to-Physical Address Translation" on page 177
* Section 3.5, "Relationship of TLB Entries and CP0 Registers" on page 182

* Section 3.6, "Indexing the VTLB and FTLB" on page 187

* Section 3.7, "Hardware Page Table Walker" on page 188

* Section 3.8, "Hardwiring VTLB Entries" on page 201

* Section 3.9, "FTLB Parity Errors" on page 201

* Section 3.10, "FTLB Hashing Scheme and the TLBWI Instruction" on page 202
* Section 3.11, "TLB Exception Handling" on page 205

* Section 3.12, "Exception Base Address Relocation" on page 213

* Section 3.13, "Address Error Detection" on page 214

* Section 3.14, "VTLB and FTLB Initialization" on page 215

* Section 3.15, "TLB Duplicate Entries" on page 217

* Section 3.16, "Modes of Operation" on page 217

* Section 3.17, "TLB Instructions" on page 238

3.1 Introduction

The MMU translates a virtual address to a physical address before the request is sent to the cache controllers for tag
comparison or to the bus interface unit for an external memory reference. Virtual-to-physical address translation is
especially useful for operating systems that must manage physical memory to accommodate multiple tasks active in
the same memory, and possibly in the same virtual address space. The MMU also enforces the protection of memory
areas and defines the cache protocols.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 171

3.2 Memory Management Unit Architecture

172

The Memory Management Unit (MMU) in the P6600 core consists of four address-translation lookaside buffers
(TLB):

* l6-entry Instruction TLB (ITLB)

¢ 32 dual-entry Data TLB (DTLB)

* 64 dual-entry Variable Page Size Translation Lookaside Buffer (VTLB)

* Optional 512 dual-entry Fixed Page Size Translation Lookaside Buffer (FTLB)

When an instruction address is to be translated, the ITLB is accessed first. If the translation is not found, the VTLB/
FTLB is accessed. If there is a miss in the VTLB/FTLB, an exception is taken. Similarly, when a data reference is to

be translated, the DTLB is accessed directly. If the address is not present in the DTLB, the VTLB/FTLB is accessed.
If there is a miss in the VTLB/FTLB, an exception is taken.

Figure 3.1 shows an overview of the P6600 MMU architecture.

Figure 3.1 Overview of MMU Architecture in the P6600 Core

Virtual Address - lnét;g}clgon
Tag RAM
Instruction +
Address > ITLB »-| Comparator
Calculator IVA P
IVA A Entry
\i
Instruction
> Hit/Miss
VTLB/
FTLB Data
Hit/Miss
A
DVA 'Entry
Data
DVA
Address » DTLB »| Comparator
Calculator

A

Data
L Cache
Tag RAM

Virtual Address

3.2.1 Instruction TLB (ITLB)

The ITLB is a 16-entry high speed TLB dedicated to performing translations for the instruction stream. The ITLB
maps only 4 KB or 16 KB pages. For 4 KB or 16 KB pages, the entire page is mapped in the ITLB. IF the pagesize is
larger than 16 KB, then the contents of the larger page are copied into the ITLB on a 16 KB boundary.

The ITLB is managed by hardware and is transparent to software. The larger VTLB/FTLB is used as a backup struc-
ture for the ITLB. If a fetch address cannot be translated by the ITLB, the VTLB/FTLB attempts to translate it in the
following clock cycle or when available. If successful, the translation information is copied into the ITLB for future

use.

The ITLB is functionally invisible to software and is entries are automatically refilled from the VTLB/FTLB when
required, and automatically cleared whenever the associated VTLB/FTLB is updated.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

3.2.2 Data TLB (DTLB)

The DTLB is a 32 dual-entry high speed TLB dedicated to performing translations for the data stream. The DTLB
maps only 4 KB or 16 KB pages. For 4 KB or 16 KB pages, the entire page is mapped in the DTLB.

The DTLB is managed by hardware and is transparent to software. The larger VTLB/FTLB is used as a backup struc-
ture for the DTLB. If a load/store address cannot be translated by the DTLB, the VTLB/FTLB attempts to translate it
in the following clock cycle or when available. If successful, the translation information is copied into the DTLB for
future use.

The DTLB is functionally invisible to software and entries are automatically refilled from the VTLB/FTLB when
required, and automatically cleared whenever the associated VTLB/FTLB is updated.

3.2.3 Variable Page Size TLB (VTLB)

The VTLB is a fully associative variable page size translation lookaside buffer with 64 dual entries. The purpose of
the VTLB is to translate virtual addresses and their corresponding ASID into a physical memory address. The transla-
tion is performed by comparing the upper bits of the virtual address (along with the ASID bits) against each of the
entries in the tag portion of the VTLB structure. This structure is used to translate both instruction and data virtual
addresses.

The VTLB is organized as 64 pairs of even and odd entries. The VTLB implements the following page sizes:
4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, and 256M, 1G, and 4G

The VTLB/FTLB is organized in pairs of page entries to minimize its overall size. Each virtual tag entry corresponds
to two physical data entries, an even page entry and an odd page entry. The highest order virtual address bit not par-
ticipating in the tag comparison is used to determine which of the two data entries is used. Since page size canvary on
a page-pair basis, the determination of which address bits participate in the comparison and which bit is used to make
the even-odd selection must be done dynamically during the TLB lookup.

The PageMask register is loaded with the desired page size, which is then entered into the TLB when a new entry is
written. Thus, operating systems can provide special-purpose maps. For example, a typical frame buffer can be mem-
ory-mapped with only one TLB entry. Software can determine which page sizes are supported by writing all ones to
the PageMask register, then reading the value back.

The VTLB/FTLB entries are controlled through select CPO registers. Refer to Section 3.5, "Relationship of TLB
Entries and CP0O Registers" for more information.

3.2.4 Fixed Page Size TLB (FTLB)

The 512-entry FTLB is a fixed page size TLB organized as 128 sets and 4-ways. Each set of each way contains dual
data RAM entries and one tag RAM entry. If the tag RAM contents matches the requested address, either the low or
high RAM location of the dual data RAM is accessed depending on the state of the least-significant-bit (MSB) of the
VPN field. Refer to Section 3.5.3, "Address Translation Examples" for more information on VPN2 usage.

The FTLB is organized as 512 pairs of even and odd entries. The FTLB implements the following page sizes:

4K, 16K

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 173

174

If the FTLB is implemented, the organization is as shown in Table 3.1. Note that all of the entries in the FTLB must
be the same page size, either 4K or 16K. The size is determined by the Config4rr; g page size field as described in the
following table.

Table 3.1 FTLB Configuration Options

FTLB Parameter Programmable Options Register Reference
Ways 4 ways ConfigdeTLB ways
Sets 128 sets Config4rr, g sets
Page Size 4KB ConfigderLg page size
16KB

The FTLB resides at the top of the VTLB range as shown in Figure 3.2.

Figure 3.2 P6600 VTLB and FTLB

575
FTLB - Way 3

448

447
FTLB - Way 2

320

319
FTLB - Way 1

192

191
FTLB - Way 0

64

63

VTLB
0

As shown in Figure 3.3, the 512-entry FTLB contains four ways and 128 sets. Each set of each way contains one
dual-entry.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Way 0

Figure 3.3 FTLB Organization

Way 1 Way 2 Way 3
Set 127 Set 127 Set 127 Set 127
. o) .
. .) .
o .) o
Sets 2 - 126 Sets 2 - 126 Sets 2 - 126 Sets 2 - 126
o o o o
° o o °
. o) .
Set 1 Set 1 Set 1 Set 1
Set 0 Set 0 Set 0 Set 0

3.3 MMU Configuration Options

The MMU in the P6600 core can be configured with the following options.
+ FTLB enabled/disabled
« MMU type

* MMU size and organization

3.3.1 FTLB Enabled/Disabled

The P6600 core allows software to enable and disable the 512-entry FTLB. This is done via the FTLBEn bit in the
Config6 register (CPO Register 16, Select 6). Depending on how this bit is set, one of the following will occur:

» Ifthe Configbgr ggp bit is set by software, the FTLB is enabled and the hardware will configure the device
accordingly.

If the Configbgr gg, bit is cleared by software, the FTLB is disabled. This mode allows the P6600 core to
remain backward compatible with existing software. Note that if the Config6et gg,, bit is cleared, the address
translation mechanism acts just like a Joint TLB (JTLB) in previous generation MIPS processors.

If the Configber ggp bit is not programmed by software, the FTLB is disabled by default because this bit is
cleared automatically at reset.

These options are illustrated in the Table 3.2.

Table 3.2 FTLB Enabled of Disabled in the System

Config6gr gen Bit Configy7 Field?
(Set by Software) (Set by Hardware)
1 3°’b100
(FTLB Enabled)
0 3’001
(FTLB Disabled, VTLB Only)

1. See Section 3.3.2, "MMU Type".

Note that the size of the FTLB is fixed at 512 entries. The user cannot implement less than 512 entries if the FTLB is
enabled.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 175

3.3.2 MMU Type

The MT field of the Config register (CP0O Register 16, Select 0) is programmed depending on whether the FTLB is
enabled. This is determined by the state ofthe Config6gr gg, bit described above. If Configbgr ggp is cleared, hardware
writes a value of 3°b001 to this field. If Configrt g, is set, hardware writes a value of 3’°b100 to this field. The ker-
nel code uses this field to determine how to configure the TLB.

The 3-bit Configyt field supports the following two encodings. All other encodings are reserved.
* 3’b001: VTLB only (FTLB disabled)
* 3’b100: VTLB and FTLB present

3.3.3 MMU Size and Organization

The P6600 core uses the following CPO register fields to determine the size and organization of the MMU. Each of
the items below is described in the following subsections.

* Bits 30:25 of the Configl register (Configlymusize)- Determines VTLB size. The number of VTLB entries is equal
to ConﬁglMMUS|ZE -1.

* Bits 12:8 of the Config4 register (Config4rr, g page size)- Determines the FTLB page size. If the FTLB is disabled,
this field is ignored.

* Bits 7:4 of the Config4 register (Config4rr g ways)- This field determines the number of ways in the FTLB.

* Bits 3:0 of the Config4 register (Configdrt g sets)- This field determines the number of sets per way in the FTLB.
3.3.3.1 Determining VTLB Size

Hardware writes a value of 0x3F into the The 6-bit MMUSize field at reset, indicating 64 entries numbered 0 - 63. Note
that the number of VTLB entries in the P6600 core is fixed at 64. The user cannot modify this value.

3.3.3.2 FTLB Parameters

Bits 12:0 of this register are used to indicate the FTLB page size (Config4gr, g page size)> the number of ways
(Config4eT; g ways)> and the number of sets (Configder g sers)- In the P6600 core, only the FTLB page size is program-
mable. The number of ways is fixed at 4 and the number of sets is fixed at 128. The page size can be programmed to
either 4KB or 16KB pages. This concept is shown in Figure 3.4.

176 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.4 Determining the FTLB Characteristics — FTLB Enabled

Config4

31 1312 87 4 3 0
| | FTLB Page Size | FTLBWays | FTLBSets |

— A N
Y
Sets FTLB page size 4__\/
to either 4KB or 16KB.
/\
~

Set 127 Set 127 Set 127 Set127 |
[[] [] []
[] [] [] []
[] [] [] []
[] [] [] [
[[] [] [)
[] [] [] o
Set 1 Set 1 Set 1 Set 1
Set 0 Set 0 Set 0 Set 0 j
FTLB Array

3.4 Overview of Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with
the virtual addresses in the TLB. There is a match when the VPN of the address is the same as the VPN field of the
TLB entry after masking out the bits specified by the entries page size, and either:

* The Global (G) bit of both the even and odd pages of the TLB entry is set, or
e The Global (G) bit is cleared and the ASID field of the virtual address is the same as the ASID field of the TLB
entry

This match is referred to as a TLB hit. If there is no match, a TLB Refill exception is taken by the processor, and soft-
ware is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 3.5 shows the translation of a virtual address into a physical address. In this figure, the virtual address is
extended with an 8-bit ASID, which reduces the frequency of TLB flushes during a context switch. This 8-bit ASID

contains the number assigned to that process.

Note that the various register fields used during a TLB translation are managed via CPO registers as described in
Section 3.5, "Relationship of TLB Entries and CPO Registers".

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 177

Figure 3.5 Overview of Virtual to Physical Address Translation

Virtual Address

| asp |G| VPN | | Offset
1. The virtual address represented by the virtual page number
(VPN) is compared with the tag portion of the TLB entry.
TLB
| PageMask || VPN2 | [AspD] TLB Tag
Entrv 0 > One TLB Entry
\ PENO /
Flags TLB Data
| PENL Rl
2. If there is a match, the page frame number
(PFNO or PFN1) representing the upper bits of 3. The offset, which does not pass through the
the physical address (PA) is output from the TLB. TLB, is concatenated with the PFN output of
the TLB to form the physical address. 7
PFN || Offset

Physical Address

If there is a virtual address match in the TLB, the Physical Frame Number (PFN) is output from the TLB and concat-
enated with the Offset to form the physical address. The Offset represents an address within the page frame space. As
shown in Figure 3.5, the Offset does not pass through the TLB. Note that if the G bit is set, the ASID is ignored and

the TLB compares only the VPN portion ofthe virtual address. The G bit is alogical AND of the G bit in the EntryLo0

and EntryLol registers.

3.4.1 Operating and Addressing Modes

Both the operating mode and the addressing mode of the processor can be selected. The operating mode allows the
processor to execute 64-bit operations internally. The addressing mode allows the processor to generate either 32-bit

or 64-bit addresses.

3.4.1.1 Operating Modes

The P6600 core can operate in one of the following modes. The mode is determined by the state of the CP0 Statusyg
field. Refer to Table 2.13 in Chapter 2 for additional information on the encoding of this field. Note that if the DM bit
of the Debug register is set, the device is placed in debug mode, regardless of the state of the Statusygy field.

Table 3.1 Determining the Operating Mode

Status Register
KSU Field

Debug.DM Field Mode

X

1 Debug mode

178

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 3.1 Determining the Operating Mode (continued)

Status Register
KSU Field Debug.DM Field Mode
2’b00 0 Kernel mode
2°b01 0 Supervisor mode
2’b10 0 User mode

Once in the appropriate operatingmode, the processor can execute either 32-bit or 64-bit operations. This information
can be obtained from the CPO Status register as shown in the following table.

Table 3.2 Determining the Addressing Mode

Status.KX

Status.SX Status.UX

Status.PX

Mode

0 0

0

32-bit compatibility mode.

0 0

0

Access to 64-bit kernel address space is enabled.
Uses the XTLB refill exception on a TLB Miss for a kernel address.

Access to 64-bit Kernel and 64-bit Supervisor address space enabled.
Uses the XTLB refill exception on a TLB Miss for a kernel/supervisor
address.

Access to 64-bit Kernel/Supervisor/User address space enabled.
Uses the XTLB refill exception on a TLB Miss for any mapped address.

Access to 64bit Kernel/Supervisor address space enabled.

64-bit operations are enabled in User space, but no access to 64-bit
address space.

Uses the TLB Refill exception on a TLB Miss.

Access to 64bit Kernel/Supervisor/Use address space enabled.
Uses the XTLB refill exception on a TLB Miss for any mapped address.

3.4.2 Address Translation in 64-bit Mode

Figure 3.6 shows a flow diagram of the 64-bit address translation process for a 4 KByte page size. In the MIPSr6
architecture, VA[63:62] are used to perform the memory segmentation function to indicate which of the following
area of VA space is being accessed.

Kernel: VA[63:62] =11
XKPhys: VA[63:62] =10
Supervisor: VA[63:62] =01
User: VA[63:62] = 00

In the P6600 core, which implements a 48-bit virtual address, VA[63:62] are appended to the end of the VA and

reside in VA[49:48]. The remaining 36 bits of the address (VA[47:12]) represent the virtual page number (VPN) at the
segment of memory determined by VA[49:48]. The width of the Offset is defined by the page size. For more informa-
tion, refer to Table 3.14 later in this chapter.

In the figure below, VPN 47:12 represent the virtual address. Bits 49:48 are the Region bits and are used to divide the
virtual address space into four segments:

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 179

Figure 3.6 64-bit Virtual Address Translation — 4 KB Page Size
Virtual Address

57 5049 36-bit VPN = 64G 4K-pages 12 11 0
ASID VPN | Offset
T~ —~
TLB
39 12 11 \J 0
PFN Offset

Physical Address

Figure 3.7 shows a flow diagram of the 64-bit address translation process for a 16 MByte page size. The width of the
Offset is defined by the page size. The remaining bits of the address represent the virtual page number (VPN). Note
that the P6600 core can support page sizes up to 4 GB, which yields a 32-bit offset and a 16-bit VPN.

Figure 3.7 64-bit Virtual Address Translation — 16 MB Page Size

Virtual Address

57 5049 24 23 0
ASID VPN Offset

—
N — T~ —

14-bit VPN = 16K 16M-pages

TLB

39 24 23 \ 0
| PN | Offset

Physical Address

3.4.3 Address Translation in 32-bit Mode

In the P6600 core, all address translations are performed on 64-bit values. To maintain backward compatibility,
addresses translation can be done on 32-bit addresses by sign-extending the unused bits 47:32. The 64-bit address
space maps to the 32-bit compatibility mode as described in Figure 3.31.

3.4.4 Address Translation Flow

During an address translation, the hardware checks for various conditions such as the addressing mode (user, kernel
etc.), access permissions based on the mode, the access type (load/store, etc), and the state of selected bits in the TLB

180 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

entry. If one or more of the conditions for translation are not met, a TLB exception is taken. This concept is shown in

Figure 3.8.
Figure 3.8 Address Translation Flow
Virtual Address (Input)

Kernel

Address \ No “heck AM field
Error A for permission
Exception Yes
Supervisor
No eck AM fie
for permission
Unmapped
heck PA
Field
_ ASIDN_ No >
’ o i% atch?,/ o
Yes
y Y
TLB TLB
Invalid Refill
Instruction Accoss Load
+ Type
Store
-y Dirty
No Y
D=17 No
Yes
Y . .
Yes
TLBXI TLBL Yes
Exception/ \Exception Y
TLBL TLBRI
Exception/\Exception,

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

181

3.5 Relationship of TLB Entries and CPO Registers

Each TLB entry in the VTLB/FTLB consists of a tag portion and dual-data portion as shown in Figure 3.9. In this fig-
ure, the following registers are used to manage the TLB entries.

* EntryLoO (CPO Register 2, Select 0)
e EntryLol (CPO Register 3, Select 0)
* EntryHi (CPO Register 10, Select 0)
* PageMask (CPO Register 5, Select 0)

In order to fill an entry in the VTLB/FTLB, software executes a TLBWI or TLBWR instruction (see Section 3.17).
Prior to invoking one of these instructions, the CPO registers listed above must be updated with the information to be
written to the TLB entry:

* PageMask is set in the CPO PageMask register.

* VPN2, and ASID are set in the CPO EntryHi register.

* PFNO, C0, DO, VO, RI, XI, and G bits are set in the CP0 EntryLoO register.
* PFNI, Cl1, DI, V1, RI, XI, and G bits are set in the CPO EntryLol register.

These register fields and their relationship to a TLB entry is described in the following subsections.

182 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.9 Relationship Between CPO Registers and TLB Entries

PageMask EntryHi

63 3332 1312 o 63 62 49 1312 87 0
| o | PageMask | VPN2 \ | Asp |

| /’%// —

\

‘ PageMask ‘E| VPN2 ‘ | ASID | TLB Tag
A

Logic AND

EntryLoO
63 62 61 3433 5 32 10

RI[xi| 0 c |p|v]g]|

k_/%_\ One TLB Entry

o] 9 0 (] b W | |

Flags TLB Data

| PFNl | E E - BR Entry 1

6362 61 3429 5 32 1
(R[] 0 PF c [p]v]g]

EntryLol

3.5.1 TLB Tag Entry

The tag portion of the TLB entry contains the fields necessary to match an incoming address against that entry. This
section describes each field of the TLB tag entry shown in Figure 3.9.

3.5.1.1 VPN2 Field

The virtual page number (VPN) contains the high bits of the program (virtual) address. The ‘“VPN2’ designation indi-
cates that this address is for a double-page-size virtual region which will map to a pair of physical pages. The VPN2
field is generated using the EntryHi register.

Note that on a TLB-related exception, the VPN2 field is automatically set to the virtual address that was being trans-
lated when the exception occurred. If the outcome of the exception handler is to find and install the translation to that
address, the VPN2 field will already contain the correct value.

3.5.1.2 ASID Field
The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The ASID

field extends the virtual address with an 8-bit memory space identifier assigned by the operating system. The ASID
allows translations for multiple different applications to co-exist in the TLB (in Linux, for example, each application

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 183

has different code and data lying in the same virtual address region). The ASID field is generated using the EntryHi
register.

3.5.1.3 PageMask Field

The size of the tag can be configured using the ‘PageMask’ field. This field determines how many incoming address
bits to match. For the VTLB, the P6600 core allows page sizes of 4 Kbytes up to 4 Gbytes in multiples of four. For the
FTLB, the P6600 core allows page sizes of 4 Kbytes and 16 Kbytes. The PageMask field is generated using the
PageMask register.

In the PageMask field, a ‘1’ on a given bit means "don’t compare this address bit when matching this address". How-
ever, only a restricted range of PageMask values are legal. The values must start with "1"s filling the PageMask field
from the low-order bits upward, two at a time. A list of valid 32-bit PageMask register values, the corresponding
binary value of the PageMask[32:13] field, and the corresponding page size is shown in Table 3.3. For the Page-
Mask[32:13] field, note that the bits are set two at a time from the least significant bit (LSB) to the most significant
bit (MSB).

Table 3.3 PageMask Value and Corresponding Page Size

33-bit PageMask Even/Odd Bank Select
Register Value PageMask[32:13] Page Size Bit
0x0_0000_0000 0x00_0000_0000_0000_00 4 KBytes VAddr[12]
0x0_0000 6000 0x00 0000 0000 0000 11 16 KBytes VAddr[14]
0x0_0001_E000 0x00_0000_0000 0011 11 64 KBytes VAddr[16]
0x0_0007_E000 0x00_0000_0000 1111 11 256 KBytes VAddr[18]
0x0 001F E000 0x00 0000 0011 1111 11 1 MByte VAddr[20]
0x0_007F_E000 0x00_0000 1111 1111 11 4 MBytes VAddr[22]
0x0_01FF_E000 0x00 0011 1111 _1111_11 16 MBytes VAddr[24]
0x0_07FF_E000 0x00 1111 _1111_1111_11 64 MBytes VAddr[26]
0x0_1FFF_E000 Ox11 1111 1111 1111 11 256 MBytes VAddr[28]
0x0_7FFF_E000 Ox1111_1111_1111_1111_11 1 GByte VAddr[30]
0x1_FFFF_E000 Ox11_1111_1111_1111_1111_11 4 GBytes VAddr[32]

Note that the 4 KByte and 16 KByte entries in the above table correspond to the VTLB and the FTLB. All other
entries correspond to the VTLB only.

3.5.1.4 Global (G) Bit
The ‘G’ (global) bit in the tag entry is a logical AND between the G bits of the EntryLo0 and EntryLol registers. When
set, it causes addresses to match regardless of their ASID value, thus defining a part of the address space which will

be shared by all applications. For example, Linux applications share some ‘kseg?2’ space used for kernel extensions.

Note that since the G bit in the TLB tag entry is a logical AND between two G bits, software must be sure to set
EntryLoOg and EntryLolg to the same value.

3.5.2 TLB Data Entry

The data portion of the TLB entry contains the data and associated flag bits for the corresponding tag entry. This sec-
tion describes each field of the TLB data entry shown in Figure 3.9.

184 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

3.5.2.1 Page Frame Number (PFN)

The Page Frame Number (PFN) contains the high-order bits of the physical address. For a 4 KByte page size, the 28-
bit PFN, together with the lower 12 bits of address that are not translated, make up the 40-bit physical address.

3.5.2.2 Flag Fields (C, D, V, RI, and XI)

These flag bits contain information about the translated address. All of these bits are generated by the EntryLo0 and
EntryLol registers.

C Field: This field contains the cacheability attributes for the corresponding TLB entry. It indicates how to cache data
for this page. Pages can be marked cacheable, uncacheable non-coherent, uncached accelerated, write-back, etc.

D bit: The "dirty" flag. Setting this bit indicates that the page has been written, and/or is writable. If this bit is a one,
stores to the page are permitted. If this bit is a cleared, stores to the page cause a TLB Modified exception. Software
can use this bit to track pages that have been written to. When a page is first mapped, this bit should be cleared. It is
set on the first write that causes an exception.

V bit: The "valid" flag. Indicates that the TLB entry, and thus the virtual page mapping, are valid. If this bit is set,
accesses to the page are permitted. If this bit is a zero, accesses to the page cause a TLB Invalid exception.

RI bit: The ‘read inhibit’ flag. If this bit is set in a TLB entry, any attempt to read data on the virtual page causes a
TLBRI exception depending on the state of the PageGraingc bit, even if the V (Valid) bit is set. Since the PageGrain;gc
bit is always set, a TLBRI exception is taken. Note that the RI bit is writable only if the RIE bit of the PageGrain regis-
ter is set.

X1 bit: The ‘execute inhibit’ flag. If this bit is set in a TLB entry, any attempt to fetch an instruction from the virtual
page causes a TLBXI exception depending on the state of the PageGrain,g¢ bit, even if theV (Valid) bit is set. Since the
PageGrain|gc bit is always set, and TLBXI exception is taken. Note that the XI bit is writable only if the XIE bit of the
PageGrain register is set.

3.5.3 Address Translation Examples

As shown in Figure 3.9, there are two PFN values for each tag match. Which of them is used is determined by the
lowest-order bit of the VPN field of the address. So in standard form (using 4 KByte pages) each entry translates an 8
KByte region of virtual address, but each 4Kbyte page can be mapped onto any physical address (with any permis-
sion flag bits). This concept is described in the following subsections.

4 KByte Page Size Example

In a 4KB page size, 12 address bits are required to select an entry within the page. Therefore, 12 bits of the virtual
address are used for the offset into the page. The upper 36 bits of the virtual address, along with the Region bits
VA[63:62], are used as a pointer to the page table.

The upper 36 bits of virtual address and the Region bits pass through the TLB to generate the corresponding physical
address. As described in Section 3.4, the P6600 core implements a dual-entry VTLB/FTLB scheme, where each TLB
tag corresponds to two data entries. To select between these two entries, hardware reads the low-order bit of the VPN
(first bit after the offset, shown as the S bit in the figure below). In a 4 KByte page example, this equates to bit 12.
This is shown in Figure 3.10.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 185

Figure 3.10 Selecting Between PFNO and PFN1 — 4 KByte Page Size

PageMask Register Virtual Address
63 3332 1312 0 63 6249 131211 0
|] 000000000000000000 | | [R] VPN [s| offset
// Selects between
PFNO and PFN1
Y
TLB Tag
| 000000000000000000| [R | | VPN2 | [asp]
PageMask Field
TLB Data
Entry 0 | PENO | $=0
Flags
Entry 1 | PEN1 | s=1
39 1211y 0
PFN | Offset

186

Physical Address

As shown in Figure 3.10, the PageMask field is derived from the PageMask register and is used to determine the page
size for the application. Since the P6600 core supports VTLB/FTLB page sizes in multiples of four (4 KByte, 16
KByte, 64 KByte, etc. up to 4 GByte), page masking is done in pairs. During translation, hardware checks the VPN
against the contents of the PageMask field to determine the page size, and therefore how many VPN bits to compare.
Refer to Table 3.3 for a list of valid PageMask values.

In the above example, all of the PageMask field bits are 0, indicating a 4 KByte page size. For a 16 KByte page size,
bits 12 and 13 of the PageMask field would be set. This concept is described below.

16 KByte Page Size Example

In a 16 KByte page size, 14 address bits are required to select an entry within the page. Therefore, 14 bits of the vir-
tual address are used for the offset into the page. The upper 34 bits of the virtual address, along with the two Region
bits VA[63:62], are used as a pointer to the page table.

As described in Section 3.4, the P6600 core implements a dual-entry VTLB/FTLB scheme, where each TLB tag cor-
responds to two data entries. To select between these two entries, hardware reads the low-order bit of the VPN (first

bit after the offset, shown as the S bit in the figure below). In a 16 KByte page example, this equates to bit 14. This is
shown in Figure 3.11.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.11 Selecting Between PFNO and PFN1 — 16 KByte Page Size

PageMask Register Virtual Address
63 3332 1312 o 494847 151413 0

| 000000000000000011 | | R| PN Offset
Selects between
PFNO and PFN1

Y
TLB Tag
[000000000000000011 | [R] | VPN2 | [_asp_| [g]

PageMask Field

TLB Data
Entry 0 | PFNO | 5=0
Flags
Entry 1 | PEN1 | s=1
39 14 13 Y 0
PFN | Offset

Physical Address

As shown in Figure 3.11, the PageMask field is used to determine the page size for the application. During translation,
hardware checks the VPN against the contents of the PageMask field to determine the page size, and therefore how
many VPN bits to compare. In the above example, the lower 2 bits of the PageMask field bits are 11, indicating a 16
KByte page size. Refer to Table 3.3 for a list of valid PageMask values.

3.6 Indexing the VTLB and FTLB

In the P6600 core, the VTLB is 64 dual entries, and the FTLB is 512 dual entries. If the FTLB is enabled, a 10-bit
value is used to index all 576 dual entries of the VTLB and FTLB. If the FTLB is disabled, a 6-bit value is used to
index the 64 dual entries of the VTLB. This is shown in Figure 3.12. This value is stored in the Index register (CP0O
register 0, Select 0).

Figure 3.12 Index Register Format Depending on TLB Size

31 30 6 5 0
Index
P 0 (VTLB only)
31 30 10 9 0
P 0 Index
(VTLB + FTLB)

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 187

The Index register determines which TLB entry is accessed by a TLBWI instruction. This register is also used for the
result of a TLBP instruction (used to determine whether a particularaddress was successfully translated by the CPU).
Note that a TLBP instruction which fails to find a match for the specified virtual address sets bit 31 of Index register.

3.7 Hardware Page Table Walker

188

Page Table Walking is the process by which a Page Table Entry (PTE) is located in memory. Hardware acceleration
for page table walking is an optional feature in the architecture. The mechanism can be used to replace the software
handler for the TLB or XTLB Refill condition. The existence of the Hardware Page Walking feature is denoted when
Config3pW: 1.

The Hardware Page Table Walker includes the following enhancements to the normal page table entry format.

1.

2.

Huge Page support in directories (non-leaf levels of the Page Table hierarchy), and Base Page Size for the (Page
Table Entry (PTE) levels (leaf levels of the Page Table hierarchy). This is the baseline definition. Inferred size
PTEs are supported at non-leaf levels.

A reserved field has been added to PTEs. This field is for future extensions.

A Huge Page may logically be specified in two ways:

1.

A Huge Page is a region composed of two power-of-4 pages which have adjacent virtual and physical addresses.
Since the even page and the odd page are derived from a single directory entry, they will both inherit the same
attributes and all but one of the address bits from the single directory entry. The memory region is divided evenly
between the even page and the odd page. The physical address held within the directory entry is aligned to 2 x
size of the page (which is a power of 4). This is distinct from EntryLo0 and EntryLol pairs in the Page Table which
are only guaranteed to be adjacent in virtual, but not physical address. They may also have differing page attri-
butes. This method is known as Adjacent Pages since the EntryLo0/1 physical addresses are both derived from
one entry and have to be adjacent in the physical address space. This is the default method that is supported by
this specification. If an implementation chooses to support Huge Pages in the directory levels, then the Adjacent
Page method must be implemented.

Where a Huge Page is itself a power-of-4 page, it is handled in exactly the same manner as a Base Page in the
Page Table. For this case, one directory entry is used for the even page and the adjacent directory entry is used
for the odd page. The physical address held within the directory entry is aligned to the size of the page (which is
a power of 4). This method is known as Dual Pages since each PFN does not have to be adjacent to each other. If
an implementation chooses to support Huge Pages in the directory levels, then the Dual Page method is an addi-
tional option.

Examples of power-of-4 regions (start with 1KB and multiply by 4 a number of times): 256MB, 1MB, 4MB, 16MB,
64MB, 256MB, 1GB.

Examples of 2x power-of-4 regions (start with 1KB and multiply by 4 a number of times; then multiple by 2) 512MB,
2MB, 8MB, 32MB, 128MB, 512MB, 2GB.

Huge Page Support is optional and is indicated by PWCtlyygepg = 1. If an Implementation supports Huge Pages in the

directory levels, it must support the Adjacent Page method. The Dual Page method is optional if Huge Pages are sup-
ported. The implementation of Dual Page method is indicated by PWCtlppp=1.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

3.7.1 Multi-Level Page Table Support

The hardware page table walking system specifies a mechanism for refilling the TLB, independent of the Context and
XContext registers. Four additional coprocessor 0 registers are added.

» The PWBase register specifies the page table base.

* The PWField and PWSize registers specify address generation for up to four levels of page tables.

» The PWCtl register controls the behavior of the Page Table Walker. These registers also configure the separation
between Page Table Entries (PTEs) in memory and post-load shifting of PTEs.

A multi-level page table system contains multiple levels, the lowest of which are Page Tables. A Page Table is an
array of Page Table Entries. Levels above the Page Tables are known as Directories. A Directory consists of an array
of pointers. Each pointer in a Directory is either to another Directory or to a Page Table.

The next figure shows an example of a multi-level page table structure.

Figure 3.13 Page Table Walk Process

CPUID Faulting address, excluding ASID
| | I Bindex W Gindex [l Uindex [Mindex [PTindex [H
v | | | |
I | | |
PWBase i | | :
I | I I
1] ; ; : :
|
- l
v |
|
Optional :
Base Y
]()élr)e)ctory l(j}?glial Page Table Entry (pair)
Directory
(PGD) Page
Upper
Directory Page
(PUD) Middle

Directory Page
(PMD) Tal%le
(PT)

Each executing process is typically associated with a separate page table base pointer (PWBase). In a uniprocessor
system, only one process is active at once. Where multiple CPUs are in use, multiple processes execute simultane-

ously - thus one page table base pointer is required per CPU. The term ‘page table base’ refers to the start of a Page
Global Directory.

A typical page table structure consists of:
* A PWBase register, containing the base of the Page Global Directory.

» Page Global Directories, indexed by upper bits from the faulting address, containing pointers to Page Upper
Directories.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 189

190

* Page Upper Directories, indexed by bits from the faulting address, containing pointers to Page Middle Directo-
ries.

* Page Middle Directories, indexed by bits from the faulting address, containing pointers to Page Tables.
* Page Tables, indexed by bits from the faulting address, containing Page Table Entry (PTE) pairs.
Figure 3.14 shows the registers and fields used by the page table walking scheme for a four level page table structure.

Figure 3.14 Page Table Walk Process and COPQ Control fields

PWSizegpy PWSizeypw PWSizeypyw PWSizepmy
-

Faulting address [Gindex | Uindex | Mindex . PTindex D

PWFieldGD|| PWFieldUD|| PWFieldMD|| PWFielde|
| |

- - - - - - - - -

| |
| |
| |
PWBase | |
| |
| |
| '
| |
|
: Page Table Entry
Page V (pair)
Global > —{ EntryLo0
Directory >>
(PGD) Page -
pper AN
Directory i/?%ed | \ S
\
(PUD) o . PWFieldPTEl
ry Page N
(PMD) Table AN

(PT) PWSizePTE

Hardware page table walking is performed when enabled and a TLB or XTLB refill condition is detected.

Memory reads during hardware page table walking are performed as if they were kernel-mode load instructions.
Addresses contained in the PWBase register and in memory-resident directories are virtual addresses.

Physical addresses and cache attributes are obtained from the Segment Configuration system when Config3sc = 1, or
from the default MIPS segment system when Config3gc = 0.

The hardware page walk write should treat the multiple-hit case the same as a TLBWR. Assuming that the write by
design cannot detect all duplicates, then a preferred implementation is to invalidate the single duplicate and then write
the TLB. A Machine Check exception may subsequently be taken on a TLBP or lookup of TLB.

If a synchronous exception condition is detected during the hardware page table walk, the hardware walking process

is aborted and a TLB or XTLB Refill exception will be taken. This includes synchronous exceptions such as Address
Error, Precise Debug Data Break and other TLB or XTLB exceptions resulting from accesses to mapped regions.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

If an asynchronous exception is detected during the hardware page table walk, the hardware walking process is
aborted and the asynchronous exception is taken. This includes asynchronous exceptions such as NMI, Cache Error,
and Interrupts. It also includes the asynchronous Machine Check exception which results from multiple matching
entries being present in the TLB following a TLB write.

If an exception is detected during the hardware page table walk, the hardware walking process is aborted and the
exception is taken. This includes exceptions such as NMI, Cache Error, and Interrupts. It also includes the Machine
Check exception which results from multiple matching entries being present in the TLB following a TLB write.

On the 64-bit P6600 core, the hardware page table walk can be used to accelerate TLB or XTLB refills for either 32-
bit or 64-bit address regions, but not both. The PWSize.PS field controls whether pointers within directories are
treated as 32- or 64-bit addresses.

The selection between TLB and XTLB Refill exception is determined from the faulting address and the UX, SX and
KX bits in the Status register.

Hardware page table walking is performed as follows:
1. A temporary pointer is loaded with the contents of the PWBase register

2. The native pointer size is set to 4 or 8 bytes (32 or 64 bits) depending on the state of CPO PWSIZE.PS register
field

3. Check if hardware table walk is allowed to walk on a MIPS64 address. Depending on the operating mode one of
the following CPO register bits must be set; PWCtl. XK (kernel), PWCtl. XS (supervisor), PWCtl. XU (user).

4. If the Global Directory is disabled by PWSizegpy, = 0, skip to the next step.

» If Huge Pages are supported, check PTEVId bit to determine if entry is PTE. IfPTEVId bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

» Extract PWSizegpyy bits from the faulting address, with least-significant bit PWFieldgp,. This is the Global
Directory index (Gindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native
pointer size. The result is a pointer to a location within the Global Directory.

* Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

5. If the Upper Directory is disabled by PWSize py = 0, skip to the next step.

» IfHuge Pages are supported, check PTEVId bit to determine if entry is PTE. IfPTEVId bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

» Extract PWSizeypyy bits from the faulting address, with least-significant bit PWFieldp,. This is the Upper
Directory index (Uindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native

pointer size. The result is a pointer to a location within the Upper Directory.

* Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 191

192

6. If the Middle Directory is disabled by PWSizeypyw = 0, skip to the next step.

» IfHuge Pages are supported, check PTEVId bit to determine if entry is PTE. IfPTEVId bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

» Extract PWSizeypyy bits from the faulting address, with least-significant bit PWFieldyp;. This is the Middle
Directory index (Mindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native
pointer size. The result is a pointer to a location within the Middle Directory.

* Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

* The temporary pointer now contains the address of the Page Table to be used.

7. Extract PWSizepry bits from the faulting address, with least-significant bit PWFieldpt, This is the Page Table
index (PTindex). Multiply (shift) by the native pointer size, then multiply (shift) by the size of the Page Table
Entry, specified in PWSizeptgy,.

* The temporary pointer now contains the address of the first half of the Page Table Entry.

* Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is logically shifted right by PWFieldptg, bits. This is the first half of the Page Table Entry. If an excep-
tion is detected, abort.

8. In the temporary pointer, set the bit located at bit location PWFieldpyg,-1.

* The temporary pointer now contains the address of the second half of the Page Table Entry.

* Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is shifted right by PWFieldptg, bits. This is the second half of the Page Table Entry. If an exception is
detected, abort.

9. Write the two halves of the Page Table Entry into the TLB, using the same semantics as the TLBWR (TLB write
random) instruction.

10. Continue with program execution.

Coprocessor 0 registers which are used by software on a TLB refill exception are unused by the hardware page table
walking process. The registers and fields used by software are BadVAddr, EntryHi, PageMask, EntryLo0, EntryLol,,
COnteXtBadvaz, and XCOntextBadeNzl

3.7.2 PTE and Directory Entry Format

All entries are read from in-memory data structures. There are three types of entries in the baseline definition: Direc-
tory Pointer, Huge Page non-leaf PTE of inferred size, and leaf PTE of base size. For options other than baseline, the
entry type is a function of the table level and the PTEvId field of an entry. For all but the last level table (leaf level),

the PTEvld bit is 0 for directory pointers to the next table and 1 for PTEs. In the leaf table, the entry is always a PTE
and the PTEvld bit is not used by Hardware Walker. The PWCtlygepg register field indicates whether Huge Page non-

leaf PTEs are implemented.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

All PTEs are shifted right by PWFieldptg, -2 (shifting in zeros at the most significant bit) and then rotated right by 2
bits before forming the page-walker equivalents of EntryLo0 and EntryLol values. These operations are used to remove
the Software-only bits and placing the RI and XI protection bits in the proper bit location before writing the TLB. If
the RI and XI bits are implemented and enabled, the HW Page Walker feature requires the RI bit to be placed right of
the G bit in the PTE memory format. Similarly, it is required that the XI bit to be placed right of the RI bit in the PTE
memory format.

Note that the bit position of PTEvId is not fixed at 0. It can be programmed by the PWCltlpg,, field. If non-leaf PTE

entries are available, there will already be a bit used by the software TLB handler to distinguish non-leaf PTE entries
from directory pointers. Normally, the PTEvId bit is configured to point to that software bit within the PTE.

A possible programming error to avoid is placing the PTEvId bit within the Directory Pointer field, as any of those
address bits may be set and thus not appropriate to be used to distinguish between a Directory Pointer or a non-leaf
PTE.

The following figures show an example of 4-byte pointers or PTE entries. The 4-byte width is configured by hav-
ingPWSlzeptey=0. In this example, 4bits are used for Software-only flags. The following figures assume a PTE for-
mat based on PWCtlps,=0, PWFieldptg =6 and a Base Page Size of 4k for simplicity.

Figure 3.15 4-byte Leaf PTE
63 12 11 9 8 7 6 5 4 3.0 Comment

PFN C D |V |G |RI|XI| S/WUse Page Size=Base

Figure 3.16 4-byte Non-Leaf PTE Options

63 16 15 2 1 9 8 7 6 5 4 3.0 Comment
PN ooy | C DIV GRIXI W Use PTE fortoat i soamery
63 16 15 2 1 9 8 7 6 5 4 3.1 0
PFN (iissfrg:g) C |D|V G|RI|XI g;‘f{s\e; PT;EVId PTE forif ienféf;;i%ipbgys f{W Page
Walker; PTEvId configured to be at bit 0

63 12 11 | 0
PTEvId Directory Ptr format interpreted by HW
Dir Pointer 63:12 0 -0 Page Walker; PTEvld configured to be at

bit 0

After shifting out the software bits (3..0) (shifting in zeros at the most significant bit) and then rotating Rl and XI
fields into bits 31:30, the PTE matches the EntryLo register format. In the non-Leaf PTE, 4-bits which are just left of
the C field are reserved for future features.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 193

Figure 3.17 4-Byte Rotated PTE Formats

Comment 63 62 60 6 5.3 2 1 0 Comment
Leaf PTE RI | XI PFN C D|V|G Page Size=Base
63 62 60 10 9:6 5.3 2 1 0
Non-leaf PTE | RI | XI PFN Reserved C |D|V|G| PageSize=HgPgSz
(must be 0) & g'e

The following figures show an example of 8-byte pointers or PTE entries. The 8-byte width is configured by hav-
ingPWSizeprgy=1, or by having PWSize.prpp~1.

This example uses 4-bits for Software-only flags. The use of the wider PTE allows for the use of more PFN bits to be
used for addressing - the 8-byte PTE format is required when more than 32-bits of physical addressing is to be imple-
mented. Both the non-leaf PTE and directory pointer both take 8-bytes of memory space, though only 32-bits are
actually used for the memory address. The following figures assume a PTE format based on PWCtlpg,=0,

PWFieldprg/=6 and a Base Page Size of 4k for simplicity.

Figure 3.18 8-byte Leaf PTE
63 40 39 16 15.13 12 11 10 9 8 7.0 Comment

PFN PFN C D |V |G| RI|XI| S/WUse Page Size=Base

Figure 3.19 8-Byte Non-leaf PTE Options

63 40 39 20 19 16 1513 12 11 10 9 8 7.0 Comment
PFNX PFN Reserved C |D| V| G|RIXI S/WUse Page Size=HgPgSz
(must be 0) PTE format in memory
63 40 39 20 19 16 1513 12 11 10 9 8 7.1 0
Reserved Unused | PTEv Page Size=HgPgSz
PNEX PFN (must be 0) C |D]V]GROXI by HW | 1d=1 | PTE format interpreted by HW Page Walker
63 12 11 1 0
. PTEv | Directory Pointer format interpreted by HW
Directory Ptr 0 1d=0 Page Walker

After the software bits (7..0) are right shifted away (shifting in zeros at the most significant bit) and the RI and XI
fields are rotated to bits 63:62, the PTE matches the EntryLo register format. By setting PWSIzeprgy=1 to denote 8-

byte PTE entries, the shift operation is done on the entire 8 byte PTE, but only the lower 4-bytes are written into the
TLB. In the non-Leaf PTE, 4-bits which are just left of the C field are reserved for future features.

194 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.20 8-Byte Rotated PTE Formats

Comment 63 62 ol 53 52 30 29 6 5 3 2 1 0 Comment
Leaf PTE RI | XI| FILL PFNX PFN C DIV|G Page Size=Base
63 62 61 53 52 30 29 10 9 6 5 32 1 0
Rsvd .
Non-leaf PTE | RI | XI | FILL PFNX PFN C D V|G Page Size=HgPgSz
(must be 0)

Leaf PTEs always occur in pairs (EntryLoO and EntryLol). However, non-leaf PTEs (ones which occur in the upper
directories) can occur either in pairs (if Dual Page method is enabled) or occur with just one entry (Adjacent Page
method).

For the Adjacent Page method, the single non-leaf PTE represent both EntryLo0 and EntryLol values. When the walker
populates the EntryLo registers for a PTE in a directory, the least significant bit above the page size is 0 for EntryLo0
and 1 for EntryLol. That is, EntryLo0 and EntryLol represent adjacent physical pages.

For the Dual Page method, the two PTEs are read from the directory level by the Hardware Page Walker.

For Huge Page handling, the size of the Huge Page is inferred from the directory level in which the Huge Page
resides. For the Adjacent Page Method, the size of each individual PTE in EntryLoO and EntryLol as synthesized from
the single Huge Page is always half the inferred size.

If the inferred page size is 2 x power-of-4, then the Adjacent Page Method is used.

If the inferred page size is a power-of-4, then the Dual Page Method is used (if the Dual Page Method is imple-
mented). If the Dual Page method is implemented (PWCtlpp=1), it is implementation-specific whether the PTEVId

bit is checked for the second PTE when it is read from memory for writing the second TLB page. The recommended
behavior is to check this second PTEVId bit and if it is not set, a Machine Check exception is triggered. The
PageGrainyccause register field is used to differentiate between different types of Machine Check exceptions.

If the inferred Huge Page size is power-of-4, and the Dual Page Methods is not implemented, it is implementation-
specific whether a Machine Check is reported.

An example of Huge Page handling follows. It assumes a leaf PTE size of 4KB.

* PMD Huge Page = 29 (PWSizeptyy) * 212 (PWFieldpt)) =221 = 2MB. Each EntryLo0/1 page is 1MB, which is
a power-of-4 and use the Adjacent Page method.

* PUD Huge Page = 2710 (PWSizeypw) * 29 (PWSizepry) * 212 (PWFieldpy)) = 2731 = 2GB. Each EntryLo0/1
page is 1GB, which is a power-of-4 and would use the Adjacent Page method. Note that the index into PMD has
been extended to 10 bits from 9 bits. Each PMD table thus has 1K entries instead of the typical 512 entries.

3.7.3 Hardware Page Table Walking Process

The hardware page table walking process is described in pseudocode as follows:

/* Perform hardware page table walk

*

* Memory accesses are performed using the KERNEL privilege level.

* Synchronous exceptions detected on memory accesses cause a silent exit
* from page table walking, resulting in a TLB Refill exception.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 195

Implementations are not required to support page table walk memory
accesses from mapped memory regions. When an unsupported access is
attempted, a silent exit is taken, resulting in a TLB Refill exception.

Note that if an exception is caused by AddressTranslation or LoadMemory
functions, the exception is not taken, a silent exit is taken,
resulting in a TLB Refill exception.

For readability, this pseudo-code does not deal with PTEs of different widths.
In reality, implementations will have to deal with the different PTE
and directory pointer widths.

L I S T N T

*/
subroutine PageTableWalkRefill (vAddr)

if (Config3py = 0) then
return(0) # walker is unimplemented

if (PWCtlpypn,=0) then
return (0) # walker is disabled

if 1 ((PWCHpypirrxe & PWSizegpy>0 | PWSizeyny>0) (PWSizegny,>0 | PWSizeyn,>0 | PWSizeyy;>0) then
return (0) # no structure to walk

if 1| (PWSizepg=1 & (PWCtlyx=1 | PWCtlyg=1| PWCtlyy=1))then
return (0) # no segment to map

Initial values
found <« 0

encMask « 0

HugePage <« False
HgPgBDhit <« False
HgPgGDhit <« False
HgPgUDhit <« false
HgPgMDhit <« false

Native pointer size
if PWSizepg=0 then
NativeShift <« 2

DSize <« 32
else

NativeShift <« 3
DSize «— 64

Indices computed from faulting address
if PWCtlpyp;irgxe=1 then

Bindex < (VAddr >> PWFieldgpy) and((l<<PWSizeppy)-1)
Gindex < (VAddr >> PWFieldgpr) and((1l<<PWSizegpy) -1)
else

tempPointer < { (vAddr>>PWFieldgy; and ((l<<PWSizegpy) -1)}
switch ({PWCtlyyg, PWCtlyg, PWCtlyy})

case 001 # xuseg only
if (vAddr[63] or vAddr[62])=1 then

196 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

return (0)
endif
Gindex <« tempPointer
case 011 # xuseg & xsseg
if (vAddr[63] and vAddr[62])=1 then
return (0)
endif
Gindex <« { (vAddr>>62) & 1, tempPointer}
case 101 # xuseg & xkseg
if (~vAddr([63] and vAddr[62])=1 then
return (0)
endif
Gindex < {(vAddr>>63) & 1, tempPointer}
case 111 # xuseg, Xxsseg, xkseg
Gindex <«{ (vAddr>>62) and 3, tempPointer}
default
return (0)
end switch
Uindex < vAddr >> PWFieldyprand((l<<PWSizeypy)-1)
Mindex < vAddr >> PWFieldyp;) and ((l<<PWSizeypy)-1)
PTindex <« vAddr >> PWFieldpr;) and((l<<PWSizepqy) -1)

Offsets into tables

Goffset < Gindex << NativeShift

Uoffset < Uindex << NativeShift

Moffset < Mindex << NativeShift

PToffset0 « (PTindex >> 1) << (NativeShift + PWSizeppgy+l)
PToffsetl <« PToffset0 OR (1 << (NativeShift + PWSizeprgy))

EntryLoO < UNPREDICTABLE
EntrylLol < UNPREDICTABLE
Contextp,gypys < UNPREDICTABLE
XContextpsqypyz ¢ UNPREDICTABLE

Starting address - Page Table Base
vAddr < PWBase

Global Directory
if (PWSizegpy > 0) then

vAddr < vAddr or Goffset
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t < LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlpg,) && PWCtly,gpq=1) then # PTEvld is set
HugePage <« true
HgPgGDHit <« true
t <« t >> PWFieldprgy - 2 // shift entire PTE
t <« ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
w < (PWFieldgpg) -1

if ((PWFieldgpy and 0x1)=1) // check if index is odd e.g.

// generate adjacent page from same PTE for odd TLB page
1sb « (l<<w)>> 6

2x power of 4

pw_EntryLo0 <« t and not lsb # 1lsb=0 even page; note FILL fields are O

pw_EntryLol <« t or 1lsb # 1lsb=1 odd page
elseif (PWCtlppy = 1)

// Dual Pages - figure out whether even or odd page loaded first

OddPageBit = (1 << PWFieldgpy)
if (vAddr and OddPageBit)

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

197

pw_EntryLol <« t
else
pw_EntryLo0 <« t
endif
// load second PTE from directory for other TLB page
vAddr2 <« vAddr xor OddPageBit
(pAddr2, CCA2) <« AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t <« LoadMemory (CCA2, DSize, pAddr2, vAddr2, DATA)
t <« t >> PWFieldppgy - 2 // shift entire PTE
t <« ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)
pw_EntryLoO <« t
else
pw_EntryLol <« t
endif
else
goto ERROR
endif
goto REFILL
else
vAddr <« t
endif
endif

Upper directory
if (PWSizeypy > 0) then

vAddr < vAddr or Uoffset
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t < LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlpg,) && PWCtly,g,q=1) then# PTEvld is set
HugePage <« true
HgPgUDHit <« true
t <« t >> PWFieldprgy - 2 // right-shift entire PTE
t « ROTRIGHT (t, 2) // 64-bit rotate to place RI/XI bits
W <« (PWFIELDyp) -1
if ((PWFIELDypy and 0x1l)= 0x1) //check if odd e.g. 2x power of 4
// generate adjacent page from same PTE for odd TLB page
lsb « (1l<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0 <« t and not lsb # 1lsb=0 even page; note FILL fields are O
pw _EntryLol <« t or 1lsb # 1lsb=1 odd page
elseif (PWCtlppy = 1)
// Dual Pages - figure out whether even or odd page loaded first
OddPageBit = (1 << PWFIELDypp)
if (vAddr and OddPageBit)
pw_EntryLol <« t
else
pw_EntryLoO <« t
endif
// load second PTE from directory for odd TLB page
vAddr2 <« vAddr xor OddPageBit
(pAddr2, CCA2) <« AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t <« LoadMemory (CCA2, DSize, pAddr2, vAddr2, DATA)
t <« t >> PWFieldprgy - 2 // right-shift entire PTE
t <« ROTRIGHT (t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)
pw_EntryLo0 <« t
else

198 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

pw_EntryLol <« t
endif
else
goto ERROR
endif
goto REFILL
else
vAddr <« t
endif
endif

Middle directory
if (PWSizeypy > 0) then

vAddr < vAddr OR Moffset
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t <« LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlpg,) && PWCtly,goo=1) then# PTEvld is set
HugePage <« true
HgPgMDHit <« true
t <« t >> PWFieldprgy - 2 // right-shift entire PTE
t <« ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
pw_EntryLo0 <« t # note FILL fields are O
w <« (PWFieldyp) -1
if ((PWFieldypr and 0x1)= 0x1l) // check if odd e.g. 2x power of 4
// generate adjacent page from same PTE for odd TLB page
lsb « (1l<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0 < t and not lsb # 1lsb=0 even page; note FILL fields are 0
pw_EntryLol <« t or lsb # 1lsb=1 odd page
elseif (PWCtlppy = 1)
// Dual Pages - figure out whether even or odd page loaded first
OddPageBit = (1 << PWFieldypr)
if (vAddr and OddPageBit)
pw_EntryLol <« t
else
pw_EntryLoO <« t
endif
// load second PTE from directory for odd TLB page
vAddr2 <« vAddr xor (1 << (NativeShift + PWSizeprgy)
(pAddr2, CCA2) <« AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t <« LoadMemory (CCA2, DSize, pAddr2, vAddr2, DATA)
t <« t >> PWFieldprgy - 2 // right-shift entire PTE
t « ROTRIGHT (t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)
pw_EntryLoO <« t
else
pw_EntryLol <« t
endif
else
goto ERROR
endif
goto REFILL
else
VAddr <« t
endif
endif

Leaf Level Page Table - First half of PTE pair
vAddr < VvAddr or PToffsetO

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 199

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD, KERNEL)
tempO < LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

Leaf Level Page Table - Second half of PTE pair

vAddr < vAddr or PToffsetl
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD, KERNEL)
templ <« LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

Load Page Table Entry pair into TLB
tempO <« tempO0 >> PWFieldppgr - 2 // right-shift entire PTE
pw_EntryLoO < ROTRIGHT (tempO, 2) // 32-bit rotate to place RI/XI bits

templ <« templ >> PWFieldprpgr - 2 // right-shift entire PTE
pw_EntryLol < ROTRIGHT (templ, 2) // 64-bit rotate to place RI/XI bits

REFILL:
found « 1
m < (1<<PWFieldppg) -1

if (HugePage) then
Non-power-of-4 page size halved to provide power-of-4 page size.
1lst step: Halve page size (l<<(w-1))

switch ({HgPgBDHit, HgPgGDHit, HgPgUDHit, HgPgMDHit })
case 1000
m <« (l<<(PWFieldgpy)) -1
case 0100
m <« (l<<(PWFieldgpr)) -1
case 0010
m < (l<<(PWFieldypr)) -1
case 0001
m <« (l<< (PWFieldyp;)) -1
end switch
endif
2nd step: Normalize mask field to 4KB as smallest base (>>12)
pw_PageMasky,gx < m>>12

The hardware page walker inserts a page into the TLB in a manner
identical to a TLBWR instruction as executed by the software refill handler
pw_EntryHi = (vaddr and not Oxfff)| EntryHigrp
TLBWriteRandom (pw_EntryHi, pw_ EntryLoO, pw_EntryLol, pw_PageMask)
return (found)
If an error/exception condition is detected on a page table
walk memory access, this function exits with found=0.
#
OnError:
return(0)
endsub

If a page is marked invalid, the hardware refill handler will still fill the page into the TLB. Software can point to
invalid PTEs to represent regions that are not mapped. When the Software attempts to use the invalid TLB entry, a
TLB invalid exception will be generated.

200 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

3.8 Hardwiring VTLB Entries

The P6600 core allows up to 63 entries of the VTLB to be hardwired such that they cannot be replaced. This is
accomplished using the Wired register (CPO register 6, Select 0). The Wired register specifies the boundary between
the wired and random entries in the VILB. Wired entries are fixed, non-replaceable entries that cannot be overwritten
by a TLBWR instruction. However, wired entries can be overwritten by a TLBWI instruction.

Note that wired entries in the VTLB must be contiguous and start from 0. For example, if the Wired field of this reg-
ister contains a value of 5, this indicates that entries 4, 3, 2, 1, and 0 of the VTLB are wired. The Wired register is reset
to zero by a Reset exception. Figure 3.21 shows an example of hardwiring the lower 5 entries of the VTLB. A value
of 0x0 in the Wired register indicates that no entries are hardwired and that all entries are available for replacement.

Figure 3.21 Hardwiring Entries in the VTLB
Wired

31 65 0
0 | 000101 \

H/_/ 63

Value in register hardwires
TLB entries such that they
cannot be replaced.

VTLB Array

TLB entries can
be replaced.

5

4
TLB entries cannot
be replaced.

0

3.9 FTLB Parity Errors

FTLB parity errors are reported using bits 31:28 of the CP0 CacheErr register (CPO, Register 27, Select 0). These
read-only bits are set by hardware and are used to report errors within the L1 instruction and data caches, as well as
the FTLB. An FTLB parity error can be reported for either the tag portion or the data portion of the array as shown in
Table 3.4.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 201

Table 3.4 FLTB Parity Error Reporting in the CacheErr Register

EREC ED ET
(Bits 31:30) (Bit 29) (Bit 28) Condition
2’bll 0 0 No FTLB errors
0 1 FTLB Tag RAM error
1 0 FTLB Data RAM error
1 1 N/A!

1. It is not possible to set both the ED and ET bits in the P6600 core. Even if there are simulta-
neous errors in both arrays, the tag error takes precedence and the ET bit is set. In this case
the data error is ignored.

Depending on the instruction being executed, hardware may or may not report a parity error for the tag and/or data
array of the FTLB. Table 3.5 lists each TLB instruction and whether parity errors are logged for the data and tag
arrays.

Table 3.5 FLTB Parity Error Reporting per Instruction

Parity Error Checked?
Instruction FTLB Data Array FTLB Tag Array
TLBINV No Yes
TLBINVF No No
TLBR Yes Yes
TLBWI No No
EntryHigqiny =1 EntryHigqny = 1
No Yes
EntryHigqny =0 EntryHigyny =0
TLBWR No Yes
TLBP Yes Yes
Lookup Yes Yes
(ITLB or DTLB miss)

3.10 FTLB Hashing Scheme and the TLBW!I Instruction

202

When a TLBWI instruction is executed, the following hashing scheme is used to calculate the FTLB index from the
VPN2 field of the EntryHi register and the Index field of the Index register. This scheme is used only when the
EntryHigpny bit is 0. When EntryHigyny = 1, hashing is ignored and the indexing of the FLTB is performed entirely in
hardware.

When the EntryHigyyy bit is 0, the VPN2 field in the EntryHi register must be consistent with the index value stored in

the 10-bit Index field of the CPO Index register. This field is used to index the total number of entries in the TLB,
which equates to 64 entries in the VTLB and 512 entries in the FTLB for a total of 576 entries. To determine the size

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

of the FTLB, hardware subtracts the VTLB size, which is always 64 entries, from the total number of entries (576) to
derive an FTLB size of 512 entries. This number of entries is indexed by the lower 9 bits of the 10-bit Index field.

When the core is configured with an FTLB, the lower 9 bits of the Index field are organized as follows:
* Bits 6:0 =FTLB set
* Bits 8:7=FTLB way

The FTLB set reflected in bits 6:0 of the Index field of the Index register (Indexpqeyx) Must be the same as the set num-
ber calculated from the VPN2 field of the EntryHi register (EntryHiypys).

For a 4 KByte page size, the set number is calculated by performing an Exclusive OR (XOR) function of bits [26:20]
and bits [19:13] of the EntryHiypy» field.

For a 16 KByte page size, the set number is calculated by performing an Exclusive OR (XOR) function of bits
[28:22] and bits [21:15] of the EntryHiypy; field.

If the set number calculated from the EntryHiypp» field as described above matches that stored in bits 6:0 of the Index
register, the TLBWI instruction is allowed to continue and the FTLB is indexed. If the values do not match, a
machine check exception is generated. Refer to Section 5.7.5 of the Exceptions chapter for more information on the
machine check exception. Note that the TLBWR instruction does not use this hashing scheme because the indexing is
performed exclusively in hardware.

The FTLB hashing scheme for a 4 KByte page size is shown in Figure 3.22. The 16 KByte page size would be iden-
tical, except for the range of VPN2 bits that are XOR’ed by hardware as described above. Note that only bits 6:0 of
the Index field are compared with the calculated value. Bits 8:7 represent the FTLB way and bypass the compare
operation.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 203

Figure 3.22 FTLB Hashing Scheme During a TLB Index Write — 4 KByte Page Size

Software clears the EHINV bit to

enable hashing. VPN2 contains Software writes the FTLB index
a segment of the virtual address. to the CPO Index register.
EntryHi Index l
47 13 10 0 31 109 0
\ VPN2 [EHINY | | | Index |
SR

R

Calculate set from VPN2

VPN2[19:13]
VPN2[26:20]

FTLB set
compare logic
Machine Check
Exception
| Yes
FTLB
Index

204 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

3.11 TLB Exception Handling

The P6600 core allows for the following types of TLB exceptions.
e Address error (AdEL or AdES)
+ TLB Refill
+ TLB (TLBL, TLBS)
* TLB Read Inhibit (TLBRI)
e TLB Execute Inhibit (TLBXI)
* TLB Modified
e FTLB Parity

The Address Error exceptions (AdEL and AdES) are used in both user mode and supervisor mode.

e Onaload in user mode, an AdEL exception is taken when the user does not have permission for the load
address being accessed.

* On a store in user mode, an AdES exception is taken when the user does not have permission for the store
address being accessed.

* Onaload in supervisor mode, an AdEL exception is taken when the supervisor does not have permission for
the load address being accessed.

* On a store in supervisor mode, an AJES exception is taken when the supervisor does not have permission for
the store address being accessed.

The TLB Refill exception is taken on any TLB miss regardless of the operating mode.
The XTLB Refill exception is taken on any XTLB miss regardless of the operating mode.

The TLB / XTLB exceptions (TLBL and TLBS) are taken under the following conditions.
« TLBL exception: On a load in any mode, there is a TLB hit, but the valid bit for that TLB entry is not set.
* TLBS exception: On a store in any mode, there is a TLB hit, but the valid bit for that TLB entry is not set.

The TLB Read Inhibit exception (TLBRI) is taken when there is a TLB hit during a read operation, the RI bit of the
entry is set, and the PageGraing,c bit is set.

The TLB Execute Inhibit exception (TLBXI) is taken when there is a TLB hit during an instruction fetch, the XI bit of
the entry is set, and the PageGraing,c bit is set.

A TLB Modified exception is taken whenever there is a TLB hit and the Dirty bit associated with that entry is not set.
Note that only occurs on a store instruction and not on a load/fetch instruction.

A FTLB Parity exception is taken whenever a parity error occurs on an FTLB read. The FTLB parity exception is
taken only when bit 31 of the CPO Error Control register (ErrCtl.pg) is set. If this bit is cleared, FTLB parity errors are

ignored.

Note that for the CacheOp and Sync1I instructions, the TLBRI and TLBXI exceptions are not supported.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 205

63

3.11.1 Overview of TLB Exception Handling Registers

The P6600 core uses three CPO registers to manage TLB exceptions. The exception flow in terms of these registers is
described in Section 3.11.2, "TLB Exception Flow Examples".

* Context (CPO register 4, Select 0): Contains the pointer to an entry in the page table entry (PTE) array.

* ContextConfig (CPO register 4, Select 1): Defines the range of bits used by the Context register into which the
high order bits of the virtual address causing the TLB exception will be written depending on the page size.

* BadVAddr (CPO register 8, Select 0): Stores the virtual address that caused the exception.

3.11.1.1 Context Register

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. When
a TLB exception is taken, hardware performs the bit shifting and manipulation of the value stored in the BadVAddr
register and places the result into the BadVPN2 field of the Context register. This eliminates software from having to
perform this function manually.

A TLB exception causes the virtual address to be written to a variable range of bits, defined as (X-1):Y of the Context
register. This range corresponds to the contiguous range of set bits in the ContextConfig register. Bits 63:X, Y-1:0 are

read/write to software and are unaffected by the exception. Software sets the ContextConfigpregase field to point to the
base address of a page table in memory. The ContextConfiggaqyeny 1 derived from the virtual address associated with
the exception.

Figure 3.23 shows the format of the Context register. Refer to Section 3.11.2, "TLB Exception Flow Examples" for
more information on the usage of this register.

Figure 3.23 Context Register Format
X X-1 Y Y-1 0

PTEBase BadVPN2 PTEBaseLow

206

3.11.1.2 ContextConfig Register

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written (BadVPN2), and how many bits of that virtual address will be extracted. In
the Context register, bits above the selected BadVPN2 field are read/write to software and serve as the PTEBase field.
Bits below the selected BadVPN2 field serve as the PTEBaseLow field.

Software writes a set of contiguous ones to the ContextConfigyjrtyaiindex field. Hardware then determines which bits of
this register are high and low. The highest order bit that is a logic ‘1° serves as the MSB of the BadVPN2 field of the
Context register. The lowest order bit that is a logic ‘1’ serves as the LSB of the BadVPN2 field of the Context regis-
ter. A value of all zero’s in the Virtuallndex field means that the full 32 bits of the Context register are R/W for soft-
ware and are unaffected by TLB exceptions.

A value of all ones in the ContextConfigy;tyaingex field means that the full 21 bits of the faulting virtual address will be
copied into the context register, making it duplicate the BadVAddr register. A value of all zeroes means that the full 32
bits of the Context register are R/W for software and unaffected by TLB exceptions.

Figure 3.24 shows the formats of the ContextConfig Register. Refer to Section 3.11.2, "TLB Exception Flow
Examples" for more information on use of the this register.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

31

Figure 3.24 ContextConfig Register Format
23 22 2 1 0

0 Virtuallndex 0

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately
writing all zeroes and all ones to the register, and reading back the resulting values. Table 3.6 describes some useful
ContextConfig values. In this table, note that for a page table entry size of 32 bits per page, a total of 64 bits are copied
from memory to support the dual-entry structure of the VTLB/FTLB. In this case, the lower 32 bits would be copied
to entry 0 of the dual entry structure, and the upper 32 bits would be copied to entry 1 of the structure. The same is
true for a page table with 64 bits per page. In this case, 128 bits would be fetched from memory.

Table 3.6 Example ContextConfig Values — Single Level Page Table Organization

Page Table Page Table
Value Organization Page Size Entry Size Memory Structure
0x007F_FFFO0 Single Level 4K 64 bits/page 128-bit
0x003F FFF8 Single Level 4K 32 bits/page 64-bit

3.11.1.3 BadVAddr Register

63

The BadVAddr is a 64-bit read-only register which holds the virtual address which caused the last address-related
exception. It is set for the exception types shown at the beginning of Section 3.11, "TLB Exception Handling".

Note that the BadVAddr register does not capture address information for cache or bus errors, since they are not
addressing errors.

Figure 3.25 BadVAddr Register Format

BadVAddr

3.11.2 TLB Exception Flow Examples

The following two examples show the flow of a TLB exception for the single level and dual level page table configu-
rations.

3.11.2.1 Single Level Table Configuration

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

When a VTLB/FTLB error occurs, hardware writes the most recent virtual address that caused the error into bits 63:0
of the read-only BadVAddr register. The number of bits used by hardware to index the page table depends on the page
size. For example, with a 4 KByte page size, hardware uses bits 63:13 of the BadVAddr register, along with the
PTEBase field of the Context register, to determine the address that caused the exception.

Hardware assembles this information and places the result into the Context register. Use of the Context and
ContextConfig registers eliminates software from having to derive the page table index manually. Depending on the
page table architecture, software programs the ContextConfig register to indicate how many bits of the BadVAddr regis-

207

208

ter are used by hardware to program the Context register. This determines the size of both the Contextg,qypn2 and
ContetiTEBase fields.

The example shown in Figure 3.26 is for a single level table configuration with a 4 KByte page size and 32 bits per

page.

When an exception is taken, hardware writes the address that caused the exception into the BadVAddr register.
Because the page table is single level and the page size is already known to be 4 KBytes, software programs a value
of 0x3F FFF8 into the ContextConfigy;ytyaiindex field. This value indicates the following information:

The lower three bits of this value are 0, indicating that a 64-bit memory structure is being accessed. For this
64-bit value, the lower 32 bits are written to the entry 0 of the dual-entry TLB, and the upper 32 bits are writ-
ten to entry 1 of the same TLB entry. Since the lower 3 bits of this field are zero, bit 3 (the first bit that is set)
is used to define the low-order bit of the BadVPN?2 field in the Context register.

The highest-order bit that is 1 in this field is bit 21. This indicates that bit 21 is the last bit of the BadVPN2
field in the Context register. As a result, the PTEBase field of the Context register occupies bits 63:22.

Based on this information, hardware assembles the value in the Context register as follows:

Contextpregase = bits 63:22. Indicates the base address of the page table in memory. This value is a pointer to
the start of the page table in memory.

Contextgaqypne = bits 21:3. Hardware copies bits 31:13 of the BadVAddr register into this field. This 19-bit
value is a pointer for up to 1M entries in each page table selected by the Contextprgpase field. Bits 12:0 of the
BadVAddr register are not used in this case since the page size is 4 KBytes.

ContextpregaseLow = Dits 2:0. Indicates access to a 64-bit memory location.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.26 32-bit TLB Exception Flow Example — Single Level Table, 4 KB Page Size

1. Hardware writes the address that caused 2. Based on a 4 KByte page structure in memory, software
the exception into the BadVAddr register. writes a value of 0x3F_FFF8 to the Virtuallndex field.
31 l 0 31 23 22 l 21 0 ContextConfig
BadVAddr \ | o Jom_1111_1111_1111_1111 10| 0 | Register

3. Hardware reads the Virtuallndex field to
determine there are 19 bits of contiguous
1’s. This determines the size and location

of the BadVPN2 field in the Context register.

4. Based on the value in ContextConfig,
hardware writes the upper 19 bits of the
BadVAddr register into the BadVPN2 field
of the Context register.

BadVAddr[31:13]

~ — >
63 2221 320
| PTEBase | BadVPN2 | 0] Context Register

T

PTEBase points to the start of
the page table in memory. This

value is programmed by software. 7 0
Page
. Table
BadVPN2 points to one of 1M
entries in the page table.
1M

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 209

210

Figure 3.27 64-bit TLB Exception Flow Example — Single Level Table, 4 KB Page Size

1. Hardware writes the address that caused 2. Based on a 4 KByte page structure in memory, software
the exception into the BadVAddr register. writes a value of 0x3F_FFF8 to the Virtuallndex field.
63 l 0 31 23 22 l 21 0 ContextConfig
BadVAddr \ | o Jom_1111_1111_1111_1111 10| 0 | Register

3. Hardware reads the Virtuallndex field to
determine there are 19 bits of contiguous
1’s. This determines the size and location

of the BadVPN2 field in the Context register.

4. Based on the value in ContextConfig,
hardware writes the upper 19 bits of the
BadVAddr register into the BadVPN2 field
of the Context register.

BadVAddr[31:13]

~ — >
63 2221 320
| PTEBase | BadVPN2 | 0] Context Register

T

PTEBase points to the start of
the page table in memory. This

value is programmed by software. 7 0
Page
. Table
BadVPN2 points to one of 1M
entries in the page table.
1M

3.11.2.2 Dual Level Table Configuration

The TLB exception flow for a dual level page table structure is similar to that of a single level table described in
Section 3.11.2.1, "Single Level Table Configuration". The upper bits of PTEBase are used to select the location of the
first level table in memory. The BadVPN2 field of the Context register is used to index the first level table and acts as a
pointer to each of the second level tables in the page table array.

When a VTLB/FTLB error occurs, the most recent virtual address that caused the error is stored in bits 63:0 of the
read-only BadVAddr register. The number of bits in the BadVAddr register used by hardware to index the page table
depends on the page size and table organization.

Hardware assembles this information and places the result into the Context register. Use of the Context and
ContextConfig registers eliminates software from having to derive the page table index manually. Depending on the
page table architecture, software programs the ContextConfig register to indicate how many bits of the BadVAddr regis-

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

ter are used by hardware to program the Context register. This determines the size of both the Contextg,qypn2 and
ContetiTEBase fields.

The example shown in Figure 3.28 is for a dual level table configuration with a 4 KByte page size and 32 bits per
page.
When an exception is taken, hardware writes the address that caused the exception into the 64-bit BadVAddr register.

Because each table in this example contains 1K entries, software programs a value of 0x00_OFFC into the
ContextConfigyirtyanindex fi€ld. This value indicates the following information:

* The lower two bits of this value are 0, indicating that a 32-bit memory structure is being accessed. This also
indicates that bit 2 will be the low-order bit for the Contextg,qypno field.

* The highest-order bit that is ‘1’ in the ContextConfigy;tanindex field is bit 11. This indicates that bit 11 will be
the highest-order bit of the Contextgagypny field. As a result, the Contextpregase field occupies bits 63:12. This
field is used to access the location of the root level page table in memory.

Based on this information, hardware assembles the context register as follows:

* Contextprepase = bits 63:12. Indicates the base address of the page table in memory. This value is a pointer to
the root page table in memory.

* Contextg,qypne = bits 11:2. Based on the state of the ContextConfigyjrtyanndex field in this example, hardware
copies bits 31:22 of the BadVAddr register into this field. This 10-bit value is a pointer to the 1024 entries in
the root page table selected by the Contextpregase field. Bits 12:0 of the BadVAddr register are not used in this
case since the page size is 4 KBytes.

* ContextpregpaseLow = Dits 1:0. Indicates access to a 32-bit memory location.

As stated above, bits 31:22 of the BadVAddr register are copied into the BadVPN2 field of the Context register and are
used to select one of 1024 entries in the root page table. Each of these entries acts as a pointer to one of the 1024 sec-
ond level tables. Software uses bits 21:13 of the BadVAddr register to index one of 1024 entries in each second level
page table.This concept is shown in Figure 3.28.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 211

Figure 3.28 32-bit TLB Exception Flow Example — Dual Level Table, 4 KB Page Size

1. Hardware writes the address that 2. Based on the page size and dual level structure in memory,
caused the exception into the BadVAddr register. software writes a value of 0x00_OFFC to the Virtuallndex field.
31 2221 1312 0 31 23 22 l 21 0 ContextConfig
\ BadVAddr \ | o g)o_oo00_0000_1111_1111_114 0] Register
S ——

Software uses bits 21:13

of BadVAddr to index the
1024 entries of each second

level page table.

3. Hardware reads the Virtuallndex field to
determine there are 10 bits of contiguous
1’s. This determines the size and location
of the BadVPN?2 field in the Context register.
4. Based on the value in ContextConfig,
hardware writes the upper 10 bits of the
BadVAddr register into the BadVPN2 field
of the Context register.

K_H

31 12 11 21 0
PTEBase | BadvPN2 | 0 | Context Register
~— —~ — Y 0
Second
Level
> Page
Table

0 1023

BadVAddr[31:23]

PTEBase points to the start of
the root page table in memory.
This value is programmed by

ft . »
software Secong 10
0 Level
Root Page
Level Table
1
BadVPN2 points to one of 1023 e 1023
entries in the root page table. 1023 °
[]
[]
[]
Second |0
Level
Page
Table
1023 1023

212 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

3.12 Exception Base Address Relocation

The P6600 core allows the base address of an exception vector to be relocated. The base address of the exception is
stored in the CP0 EBase register. In previous generation MIPS32 processors, bits 31:30 of the EBase Register were not
writeable and had a fixed value of 2'b10 so that the exception handler would be executed from the ksegO or ksegl seg-
ments. This concept is shown in Figure 3.29.

Figure 3.29 Location of 32-bit Exception Vector Base Address in Traditional MIPS Virtual Address Space

EBase Register ..
Traditional MIPS

31 30 29 12 Virtual Address Space
m 0 | ExcBase OXFFFF_FFFF Kernel Mapped
—~— — kseg3

e Exception base address can 0xE000_0000 (kseg3)
be located in any 4KB space OxDFFF_FFFF Supervisor Mapped
within the address range of (ksseg)
0x8000_0000 - BFFF_FFFE. 0071‘3%%%0—;’;’22
X — Kernel Unmapped
0xA000_0000 Uncached (kseg1)
0x9FFF FFFF
Bits 31:30 = 2°b10, pointing to B Kernel Unmapped
the kseg0 and ksegl segments. 0x8000_0000 Cached (kseg0)
Ox7FFF_FFFF
User Mapped
(useg)
0x0000_0000

In the P6600 core, the size of the exception base address is determined by the state of the WG bit in the CPO EBase
register (CPO register 15, Select 1). At reset, the WG bit is cleared by default and bits 31:30 of the EBase Register are
forced to a value of 2'b10 by hardware as described above. This is shown in Figure 3.29 above.

When the WG bit is set, bits 63:30 of the ExcBase field become writeable and are used to relocate the exception base
address to other areas of memory. This is shown in Figure 3.30.

Note that if the WG bit is set by software (allowing bits 31:30 to become part of the ExcBase field) and then cleared,
bits 31:30 can no longer be written by software and the state of these bits remains unchanged for any writes after WG
was cleared. Therefore, it is the responsibility of software to write a value of 2'b10 to bits 31:30 of the EBase register
prior to clearing the WG bit if it wants to ensure that future exceptions will be executed from the kseg0 or ksegl seg-
ments.

Note that the WG bit is different from the CV bit in the Config5 register. Although their functions are similar, the CV bit
applies only to cache error exceptions, whereas the WG bit applies to all exceptions.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 213

Note: Although the ExcBase can be located anywhere within
the 512TB address space as shown, MIPS recommends that
ExcBase only be located in an unmapped address space

(e.g. 0x0000 0000 0000 - 0x0000 BFFF FFFF in this figure).

Figure 3.30 Location of Exception Vector Base Address in the P6600

EBase Register .
Kernel Virtual

63 12 Address Space
ExcBase / 0x0000_FFFF FFFF
-
T~ Kernel Mapped
(kseg2)

0x0000_C000_0000
0x0000_BFFF_FFFF

The exception base address can be located in

any 4KB block within the address space. Kernel Unmapped

(xkseg0)

\ 0x0000_0000_0000

3.13 Address Error Detection

This section describes the conditions on which an address error may be taken.

3.13.1 Instruction Address Errors in 64-bit Mode

An address error is taken on an instruction address in 64-bit Mode when any of the following conditions are met.

Address is reserved/ unavailable

Address is in Kernel or XKPhys spaces when operating in Supervisor Mode
Address is in Kernel, XKPhys or Supervisor spaces when operating in User Mode
Address is not word-unaligned

Address is in 64-bit Kernel space when Status. KX = 0

Address is in 64-bit Supervisor space when Status.SX =0

Address is in 64-bit User space when Status.UX =0

Address is in XKPhys space and bits [47:32] are non-zero when operating in guest mode and
Root.PageGrain.ELPA = 0.

3.13.2 Instruction Address Errors in 32-bit Mode

An address error is taken on an instruction address in 32-bit mode when any of the following conditions are met.

214

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Address is in Kernel space when operating in Supervisor Mode
Address is in Kernel or Supervisor spaces when operating in User Mode
Address is not word-unaligned

Address is illegal 32-bit address value

3.13.3 Data Address Errors in 64-bit Mode

A data address error is taken on a data address in 64-bit mode when any of the following conditions are met.

Address is reserved/ unavailable

Address is in Kernel or XKPhys spaces when operating in Supervisor Mode
Address is in Kernel, XKPhys or supervisor spaces when operating in User Mode
Address crosses 16-KB page boundary with specified data size

Address is unaligned when instruction is LL, LLD, SC or SCD

Address is unaligned when cacheability is uncached

Address is in 64-bit Kernel space when Status.KX = 0

Address is in 64-bit Supervisor space when Status.SX = 0

Address is in 64-bit User space when Status.UX =0

Address is in XKPhys space and bits [47:32] are non-zero when operating in guest mode and
Root.PageGrain.ELPA = 0.

3.13.4 Data Address Errors in 32-bit Mode

A data address error is taken on a data address in 32-bit mode when any of the following conditions are met.

Address is in Kernel space when operating in Supervisor Mode
Address is in Kernel or Supervisor spaces when operating in User Mode
Address crosses 16-KB page boundary with specified data size
Address is unaligned when instruction is LL, LLD, SC or SCD

Address is unaligned when cacheability is uncached

Address is illegal 32-bit address value (A legal 32-bit address value is one with natural sign-extension, i.e.

VA63:32 = 32{VA31})

3.14 VTLB and FTLB Initialization

This section describes the procedure for VTLB/FTLB initialization.

3.14.1 TLB Initialization Sequence

The following steps are used to initialize the TLB’s.

1.

Read the 3-bit Configyt field to determine ifan FTLB is enabled. If this field is 3’b001, the FTLB is disabled and

address translation is performed only in the VTLB. If this field is 3’b100, both the VTLB and the FTLB are

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

215

216

enabled. Refer to the Config register in the chapter entitled CP0O Registers of the P6600 Core for more informa-
tion.

Read the 6-bit Configlyusize field to determine the VTLB size. This field has a default of 0x3F, indicating a
VTLB size of 64 entries. Refer to the Configl register in the chapter entitled CPO Registers of the P6600 Core for
more information.

Read the Config4 register to determine the FTLB organization. Bits 12:0 of the Config4 register store information
relating to FTLB organization. Bits 3:0 indicate the number of FTLB ways, bits 7:4 indicate the number of FTLB
sets, and bits 12:8 indicate the FTLB page size. Refer to the Config4 register in the chapter entitled CPO Registers
of the P6600 Core for more information.

Set the EntryHigyy bit to indicate that TLBWI invalidate is enabled. When this bit is set, the TLBWI instruction
acts as a TLB invalidate operation, setting the hardware valid bit associated with the TLB entry to the invalid
state. This bit is ignored on a TLBWR instruction. Refer to the EntryHi register in the chapter entitled CPO Regis-
ters of the P6600 Core for more information.

Write all zero’s to the EntryLoO and EntryLol registers to initialize them. Refer to the EntryLoO and EntryLol regis-
ters in the chapter entitled CPO Registers of the P6600 Core for more information.

Write the appropriate TLB size to the Index;ypex field. The value written depends on whether or not an FTLB is

present. If the FTLB is not present, a value of 0x3F is programmed into the lower 6 bits of this register. If the
FTLB is present, a value of 0x1FF is programmed into the lower 10 bits of this register and indicates a total of
576 entries (64 VTLB + 512 FTLB). Refer to the Index register in the chapter entitled CPO Registers of the P6600
Core for more information.

3.14.2 TLB Initialization Code

The following code snippet can be used to initialize the VTLB and FTLB.

s sk s sk o ok ok sk sk sk sk sk sk st sk sk sk s sk st sk sk sk sk sk skoskoskokoskokoskok ok

r* ..

/*

. at this point, t0 = index of highest tlb entry in jtlb or ftlb if present */

initialize EntryHi. EHINV=1 */

li tl,M EntryHiEHINV
mtcO tl, CO_EntryHi # set EntryHi. EHINV=1

/* initialize EntryLo0/1 to avoid x's in simulation */

/*

10:

mtcO0 zero, CO_EntryLo0
mtcO0 zero, CO_EntryLol

invalidate each entry */

mtcO0 t0, CO_Index # Store new index in register
tlbwi # Initialize the TLB entry

bne 10, zero, 10b # Loop if more to do

addi 10, t0, -1 # Subtract one from index field

/* clear out EHINV bit again */

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

mtcO zero,CO_EntryHi

s sk s s s sk sk sk sk sk sk sk sk ste st sk sk s sk sk sk sk sk sk sk sk sk sk sk sk st sk sk sk sk sk sk sk sk sk sk skoskoske sk sk ste sk sk sk sk skoskoskoskokokoskokokokok

3.15 TLB Duplicate Entries

The VTLB entries come up in a random state on power-up and must be initialized by hardware before use. Typically,
bootstrap software initializes each entry in the TLB. Since the VTLB is a fully-associative array and entries are writ-
ten by index, it is possible to load duplicate entries, where two or more entries match the same virtual address/ASID.

If duplicate entries are detected on a TLB write, no machine check is generated and the older entries are just invali-
dated. The new entry gets written. When writing to the TLB, all ways of a single set in the FTLB and all the entries of
the VTLB are searched for duplicates. If a large page is written to the VTLB and multiple duplicates exist for that
larger page in the FTLB (multiple sets in the FTLB), then not all the duplicates are detected (and invalidated).

3.16 Modes of Operation

The P6600 core can operate in either 32-bit mode, or 64-bit mode. In both of these modes, the core can be accessing
Kernel, Supervisor, User, and Debug address spaces. There are three bits in the CPO Status register that are used to
enable access to each of these address spaces as described in the following subsection.

3.16.1 Memory Address Space Access

The KX, SX, and UX bits are used to permit access to the associated kernel, supervisor, user, and memory address
spaces.

* KX denotes access to kernel space

* SX denotes access to supervisor space

* UX denotes access to user space

Access to these memory spaces is enabled using bits 7:5 of the CPO Status register (12, 0). The KX bit has priority

over the SX and UX bits, and the SX bit has priority over the UX bit as follows: when KX =0, SX and UX are forced
to 0; when SX = 0, UX is forced to 0.

3.16.1.1 KX Bit

The KX bit (7) in the Status register is used to define Kernel and Debug Modes and permitaccess to Extended Kernel
Segment (XKSeg), 0xC000_0000 0000 _0000-0xC000_FFFF_7FFF_FFFF and XKPhys Segments. There are four
types of Kernel/Debug modes defined as follows:

* Kernel 32-bit Mode is defined as DM=0 AND (EXL=0 OR ERL=0 OR KSU=00) AND KX=0.
« Kernel 64-bit Mode is defined as DM=0 AND (EXL=0 OR ERL=0 OR KSU=500) AND KX=1.
* Debug 32-bit Mode is defined as DM=1 AND KX=0.
* Debug 64-bit Mode is defined as DM=1 AND KX=1.

When KX =1, access to XKSeg and XKPhys is allowed; when KX = 0, any access to XKSeg and XKPhys causes an
Address Error exception.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 217

3.16.1.2 SX Bit

The SX bit (6) in the Status register is used to define Supervisor Modes and permit access to Extended Supervisor
Segment (XSSeg), 0x4000_0000_0000_0000-0x4000 FFFF FFFF_FFFF. There are two types of Supervisor modes
defined as follows:

* Supervisor 32-bit Mode is defined as DM=0 AND EXL=0 AND ERL=0 AND KSU='b01 AND SX=0.
* Supervisor 64-bit Mode is defined as DM=0 AND EXL=0 AND ERL=0 AND KSU='b01 AND SX=1.

When SX = 1, access to XSSeg is allowed; when SX = 0, any access to XSSeg causes an Address Error exception.

3.16.1.3 UX Bit

The UX bit (5) in the Status register is used to define User Modes and permit access to Extended User Segment
(XUSeg), 0x0000_0000_8000 0000-0x0000_ FFFF_FFFF FFFF. There are two types of User modes defined as fol-
lows:

e User 32-bit Mode is defined as DM=0 AND EXL=0 AND ERL=0 AND KSU='b10 AND UX=0.
e User 64-bit Mode is defined as DM=0 AND EXL=0 AND ERL=0 AND KSU=b10 AND UX=1.

When UX = 1, access to XUSeg is allowed; when UX = 0, any access to XUSeg causes an Address Error exception.

3.16.2 32-Bit Mode

The MMU’s virtual-to-physical address translation is determined by the mode in which the processor is operating.
The P6600 core operates in one of four modes:

e User mode

* Supervisor mode

* Kernel mode

* Debug mode

User mode is most often used for application programs. Supervisor mode is an intermediate privilege level with
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode is typically

used for handling exceptions and privileged operating system functions, including CP0 management and I/O device
accesses.

Table 3.7 Selecting the 32-bit Addressing Mode

Status Debug
Mode EXL ERL KSU Kxt Sx? UXx DM Description
User 0 0 2°b2 X X 0 0 32-bit User addressing mode. In this mode, a TLB
miss goes to the TLB Refill Handler.
Supervisor 0 0 2’bl X 0 X 0 32-bit Supervisor addressing mode. In this mode, a
TLB miss goes to the TLB Refill Handler.

218

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 3.7 Selecting the 32-bit Addressing Mode

Status Debug
Mode EXL ERL KSU Kxt G UXx DM Description
Kernel X X 2’00 0 X X 0 32-bit Kernel addressing mode. In this mode, a TLB

miss goes to the TLB Refill Handler.

X 1 X 0 32-bit Kernel addressing mode. In this mode, a TLB
miss goes to the TLB Refill Handler.

1 X X 0 32-bit Kernel addressing mode. In this mode, a TLB
miss goes to the general exception handler as
opposed to the TLB Refill handler.

Debug X X X 1 Debug mode.

1. When KX = 0, both the SX and UX bits cannot be set.
2. When SX = 0, the UX bit cannot be set.

3.16.2.1 Mapping 64-bit Address Space for 32-bit Addressing

With support for 64-bit operations and address calculation, the P6600 provides support for a 64-bit virtual address
space that is sub-divided into four Segmerts selected by bits 63:62 of the virtual address. To provide compatibility for
32-bit programs, a 232-byte Compatibility Address Space is defined, separated into two non-contiguous ranges in
which the upper 32 bits of the 64-bit address are the sign extension of bit 31. The Compatibility Address Space is fur-

ther divided similarly into segments selected by bits 31:29 of the virtual address.

Figure 3.31 shows the layout of the Address Spaces, including the Compatibility Address Space and the segmentation
of each Address Space.

Figure 3.31 Mapping 64-bit Address Space in 32-bit Mode

OXxFFFF_FFFF_FFFF_FFFF kse>3 K M q OxFFFF_FFFF FFFF FFFF
Kernel £7| femel Vapped | o« FFEF FFEF_E000 0000
o7 Supervisor | OXFFFF_FFFF_DFFF_FFFF
Unmapped %% kseg2/sseg
N Mapped | 0xFFFF_FFFF_C000_ 0000
0xC000_0000_0000_0000 LN Kemel Unmapped| 0XFEFF_FFFF_BFFF_FFFF
0xBFFF_FFFF_FFFF_FFFF %y ksegl
2 Uncached | 0xFFFF_FFFF_A000 0000
ey Kernel | OXFFFF_FFFF_9FFF_FFFF
Kernel Mapped Koegl crne
Unmapped | oxFFFF_FFFF_8000_0000
0x8000 0000 0000 0000
0x7FFF_FFFF FFFF _FFFF
Supervisor 0x0000 0000 7FFF_FFFF
Mapped
0x4000_0000_0000_0000
0x3FFF_FFFF_FFFF_FFFF User Mapped
User Mapped
0x0000_0000_0000_0000 0x0000_0000_0000_ 0000

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 219

3.16.2.2 Virtual Memory Segments in 32-bit Mode

In the 32-bit mode, the P6600 core supports the traditional MIPS32 virtual address space, which contains fixed
address ranges for the various user and kernel segments.

In 32-bit mode, the MIPS64 architecture supports a 4 GByte virtual address space that is partitioned into a number of
segments, each characterized by a set of attributes defined by hardware and software. The virtual memory segments

are different depending on the mode of operation. Figure 3.32 shows the segmentation for the 4 GByte (232 bytes)
virtual memory space, addressed by a 32-bit virtual address, for each of the four modes.

* User mode accesses are limited to a subset of the virtual address space (0x0000_0000_0000_0000 to
0x0000_0000_7FFF_FFFF) and can be inhibited from accessing CP0 functions. In User mode, virtual addresses
OxFFFF_FFFF_8000 0000 to OxFFFF_FFFF_FFFF_FFFF are invalid and cause an exception if accessed.

* Supervisor mode adds access to sseg (0xFFFF_FFFF_C000_0000 to OXFFFF_FFFF_DFFF FFFF). kseg0,
ksegl, and kseg3 will still cause exceptions if they are accessed.

* In Kernel mode, software has access to the entire address space, as well as all CPO registers.

* Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CPO registers as Kernel mode. In addition, while in Debug mode, the CPU has access to the
debug segment (dseg). This area overlays part of the kernel segment kseg3. Access to dseg in Debug mode can
be turned on or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

220 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.32 Virtual Memory Map — 32-bit Mode
Virtual Address User Mode Kernel Mode Debug Mode Supervisor Mode

OXFFFF_FFFF —
DO T ksee3 dseg Address error
OxXFF3F FFFF L. seg [S
B -7 kseg3
0xFF20_0000 PR (R A N
0XFF1F_FFFF P
0xE000_0000 PR ksseg/kseg2 ksseg/kseg2 sseg
0xDFFF_FFFF |
0xC000_0000 e
------------- Address error
OXBFFF_FFFF ksegl ksegl
0xXA000_0000 . .-===-"77°°7° S N QU
0X9FFF_FFFF
kseg0 kseg0 Address error
0x8000_0000 |
0X7FFF_FFFF
useg kuseg kuseg suseg
0x0000_0000 | | |]

3.16.2.3 32-bit User Mode

In user mode, a single uniform virtual address space, called the user segment (useg), is available. The size of the user
segment depends on the virtual addressing mode used.

In the 32-bit mode, the user segment occupies the lower 2 GB of virtual address space. The user segment starts at

address 0x0000_0000_0000_0000 and ends at address 0x0000 0000 7FFF FFFF. Accesses to all other addresses
cause an address error exception. This is shown in Figure 3.33.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 221

Figure 3.33 User Mode Virtual Address Space — 32-bit Configuration

32 bits
OXFFFF_FFFF _FFFF FFFF
Address
Error
0XFFFF_FFFF_8000_0000
0x0000_0000_7FFF_FFFF
2GB
Mapped useg
0x0000_0000_0000_0000

The processor operates in 32-bit User mode when the Status register contains the following bit values:

* KSU=0bl0
e EXL=0
* ERL=0
« UX=0

In addition to the above values, the DM bit in the Debug register must be 0.
3.16.2.4 32-bit Supervisor Mode

Supervisor mode includes a 512 MByte virtual address space called the supervisor segment (sseg). The supervisor-
mode virtual address space is shown in Figure 3.34.

222 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.34 32-bit Supervisor Mode Virtual Address Space

OXFFFF_FFFF_FFFF_FFFF
Address Error
kseg3
0xFFFF_FFFF_E000_0000
0xFFFF_FFFF_DFFF_FFFF
Supervisor virtual address space
Mapped, 5S12MB sseg
0xFFFF_FFFF_C000_0000
0XFFFF_FFFF_BFFF_FFFF
Address Error
ksegl
0xFFFF_FFFF_A000_0000
0XFFFF_FFFF_9FFF FFFF
Address Error kseg0
0XFFFF_FFFF_8000_ 0000
0x0000_0000_7FFF_FFFF
Mapped, 2048MB suseg
0%0000_0000_0000_0000

The supervisor user segment (suseg) begins at address 0x0000 0000 and ends at address Ox7FFF_FFFE. The supervi-
sor segment begins at 0xC000 0000 and ends at 0OxXDFFF_FFFF. Accesses to all other addresses in Supervisor mode
cause an address error exception.

The processor operates in Supervisor mode when the Status register contains the following bit values:

* KSU=2’b01
e EXL=0
e ERL=0
« SX=0

In addition to the above values, the DM bit in the Debug register must be 0.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 223

Table 3.8 lists the characteristics of the Supervisor mode segments in the 32-bit mode.

Table 3.8 Supervisor Mode Segments — 32-bit Configuration

Status Register
) Bit Value
Address-Bit Segment
Value EXL | ERL | UM | SM Name Address Range Segment Size
32-bit 0 0 0 1 suseg 0x0000_0000_0000_0000 --> 2 GByte
AB31)=0 0x0000_0000_ 7FFF_FFFF (23! bytes)
32-bit 0 0 0 1 sseg OxFFFF_FFFF_C000_0000 -> 512MB
A(31:29) =3’b110 OxFFFF_FFFF_DFFF_FFFF (2% bytes)

224

The system maps all references to suseg and sseg through the TLB. The virtual address is extended with the contents
of the 8-bit ASID field to form a unique virtual address before translation. Also, bit settings within the TLB entry for
the page determine the cacheability of a reference.

3.16.2.5 32-bit Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

e KSU=2’b00, or

e ERL=1.0r

e EXL=1,and

+ KX=0

When a non-debug exception is detected, EXL or ERL will be set and the processor enters Kernel mode. At the end of

the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruction
jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

In Kernel mode, a program has access to the entire virtual address space. Kernel mode virtual address space is divided
into regions differentiated by the high-order bits of the virtual address, as shown in Figure 3.35. The characteristics of

kernel-mode segments are listed in Table 3.9.

The CPU enters Kernel mode both at reset and when an exception is recognized.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.35 Kernel Mode Virtual Address Space — 32-bit Configuration

OXFFFF_FFFF_FFFF_FFFF
Kernel virtual address space
d, 512MB kseg3
0XFFFF_FFFF_E000_0000 Mapped,
OxXFFFF_FFFF_DFFF_FFFF
Kernel virtual address space
Mapped, 512MB ksseg/kseg2
0xFFFF_FFFF_C000_0000
OXFFFF_FFFF _BFFF FFFF
Kernel virtual address space ksegl
OXFFFF_FFFF_A000_ 0000 Unmapped, Uncached, 5S12MB
OXFFFF_FFFF_O9FFF_FFFF
Kernel virtual address space
kseg0
Unmapped, 512MB
0XFFFF_FFFF_8000_ 0000
0x0000_0000_7FFF_FFFF
Mapped, 2048MB kuseg
0x0000_0000_0000_0000

Table 3.9 Kernel Mode Segments

Status Register Is
) One of These Values
Address-Bit Segment Segment
Values KSU ‘ EXL | ERL Name Address Range Size
AGBD=0 (KSU =00, kuseg 0x0000_0000_0000_0000 2 GBytes (23! bytes)
or through
EXL=1 0x0000_0000_7FFF_FFFF
A(31:29)=3"b100 or kseg0 OxFFFF_FFFF_8000 0000 512 MBytes (22° bytes)
ERL=1) through
Dﬁld 0 OxFFFF_FFFF_9FFF_FFFF
A(31:29)=3"b101 ksegl OxFFFF_FFFF_A000_0000 512 MBytes (22° bytes)
through
OxFFFF_FFFF_BFFF_FFFF
A(31:29)=3"b110 ksseg/kseg2 OxFFFF_FFFF_C000_0000 512 MBytes (22° bytes)
through
OXxFFFF_FFFF_DFFF_FFFF
A(31:29)=3"bl11 kseg3 OxFFFF_FFFF_E000 0000 512 MBytes (227 bytes)
through
OxFFFF_FFFF_FFFF_FFFF

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 225

Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address

space is selected and covers the full 23! bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000_0000_0000 - 0x0000_0000_7FFF_FFFF. For cores with TLBs, the virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

When ERL =1 in the Status register, the user address region becomes a 23 1-byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address, and does not include
the ASID field.

Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when virtual address bits VA[31:29] are 3°’b100, 32-bit kseg0 virtual address space is selected; it is

the 229—byte (512-MByte) kernel virtual space located at addresses OxFFFF_FFFF_8000_ 0000 -
OxFFFF_FFFF 9FFF FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtract-
ing 0x8000_0000 from the virtual address. The KO field of the Config register controls cacheability.

Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when virtual address bits VA[31:29] are 3°b101, kseg1 virtual address space is selected. kseg] is the

229-byte (512-MByte) kernel virtual space located at addresses OXFFFF_FFFF_A000_ 0000 -
OxFFFF_FFFF BFFF FFFF. References to ksegl are unmapped; the physical address selected is defined by subtract-
ing 0xA000_ 0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory
(or memory-mapped I/O device registers) are accessed directly.

Kernel Mode, Kernel/Supervisor Space 2 (ksseg/kseg2)

In Kernel mode, when KSU = 2’b00, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and
the most-significant three bits of the 32-bit virtual address are 3’b110, 32-bit kseg2 virtual address space is selected.

Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when virtual address bits VA[31:29] are 3°b111 the kseg3 virtual address space is selected. The ker-
nel virtual space is located at physical addresses OxXFFFF_FFFF_E000 0000 - OxFFFF_FFFF _FFFF_ FFFF.

3.16.2.6 Debug Mode

Except for kseg3, debug-mode address space is identical to kernel-mode address space with respect to mapped and
unmapped areas. In kseg3, a debug segment (dseg) coexists in the virtual address range OxFFFF_FFFF_FF20_0000
to OXFFFF_FFFF_FF3F FFFF. The layout is shown in Figure 3.36.

226 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

0XFFFF_FFFF FFFF FFFF
0XFFFF_FFFF_FF40 0000

0XFFFF_FFFF_FF20 0000

0x0000_0000 0000 0000

ksegl

Figure 3.36 Debug Mode Virtual Address Space

kseg0

Unmapped

Mapped if mapped in Kernel Mode

dseg is subdivided into the dmseg segment at OXFFFF_FFFF_FF20_ 0000 to OxFFFF_FFFF_FF2F FFFF, which is
used when the debug probe services the memory segment, and the drseg segment at OXFFFF_FFFF_FF30_0000 to
OxFFFF_FFFF_FF3F FFFF, which is used when memory-mapped debug registers are accessed. The subdivision and
attributes of the segments are shown in Table 3.10.

Accesses to memory that would normally cause an exception in kernel mode cause the CPU to re-enter debug mode

via a debug-mode exception. This includes accesses usually causing a TLB exception, with the result that such

accesses are not handled by the usual memory-management routines.

The unmapped kseg0 and ksegl segments from kernel-mode address space are available in debug mode, which

allows the debug handler to be executed from uncached, unmapped memory.

Table 3.10 Physical Address and Cache Attributes for dseg, dmseg, and drseg

Segment | Sub-Segment Cache
Name Name Virtual Address Generates Physical Address Attribute
dseg dmseg OxFFFF_FFFF _FF20 0000 dmseg maps to addresses 0x0_0000 - | Uncached
through OxF_FFFF in EJTAG probe memory
OxFFFF_FFFF_FF2F_FFFF space.
drseg maps to the breakpoint registers
drseg OxFFFF_FFFF_FF30 0000 0x0 0000 - 0xF FFEF
through - -
OxFFFF_FFFF_FF3F_FFFF

Debug Mode, Register (drseg)

The behavior of CPU access to the drseg address range at OxFFFF_FFFF FF30 0000 to OXFFFF_FFFF FF3F FFFF
is determined as shown in Table 3.11

Table 3.11 CPU Access to drseg

LSNM Bit in Debug
Transaction Register Access
Load / Store 1 Kernel mode address space (kseg3)
Fetch Don’t care drseg, see comments below
Load / Store 0

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

227

228

Debug software is expected to read the Debug Control register (DCR) to determine which other memory-mapped regis-
ters exist in drseg. The value returned in response to a read of any unimplemented memory-mapped register is unpre-
dictable, and writes are ignored to any unimplemented register in drseg. For more information about the DCR, refer to
Chapter 13, “EJTAG Debug Support”.

The allowed access size is limited for the drseg. Only word-size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

Debug Mode, Memory (dmseg)

The conditions for CPU accesses to the dmseg address range (OxFFFF_FFFF _FF20 0000 to
OxFFFF_FFFF FF2F FFFF) are shown in Table 3.12.

Table 3.12 CPU Access to dmseg

ProbEn Bit in LSNM Bit in
Transaction DCR Register?! Debug Register Access
Load / Store Don’t care 1 Kernel mode address space (kseg3)
Fetch 1 Don’t care dmseg
Load / Store 1 0 dmseg
Fetch 0 Don’t care See comments below
Load / Store 0 0 See comments below

1. The NoDCR bit in the CPO Debug register indicates if the dmseg and drseg address spaces and associated DCR
register exists in memory mapped space. The NoDCR bit must be cleared, this DCR register exists. If the bit is
set, the register does not exist.

An attempt to access dmseg when the ProbEn bit in the DCR register is 0 should not happen, because debug software
is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such a refer-
ence does occur, the reference hangs until it is satisfied by the probe. The probe must not assume that there will never
be a reference to dmseg when the ProbEn bit in the DCR register is 0, because there is an inherent race between the
debug software sampling the ProbEn bit as 1, and the probe clearing it to 0.

3.16.3 64-Bit Mode

The MMU’s virtual-to-physical address translation is determined by the mode in which the processor is operating.
The P6600 core operates in one of four modes:

* User mode

e Supervisor mode

* Kernel mode

e Debug mode

User mode is most often used for application programs. Supervisor mode is an intermediate privilege level with
access to an additional region of memory and is only supported with the TLB-based MMU. Kernel mode is typically

used for handling exceptions and privileged operating system functions, including CP0 management and I/O device
accesses. Debug mode is used for software debugging and usually occurs within a software development tool.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 3.13 Selecting the 64-bit Addressing Mode

Status Debug
EXL ERL KSU KX SX UX DM Description

0 0 2°b10 X X 1 0 User addressing mode. In this mode, a TLB miss goes to
the XTLB Refill Handler.

Supervisor 0 0 2°b01 X 1 X 0 Supervisor addressing mode. In this mode, a TLB miss
goes to the XTLB Refill Handler.

X X 2°b00 1 X X 0 Kernel addressing mode. In this mode, a TLB miss goesto
the XTLB Refill Handler. The core is in the XKPhys
address space when VA[63:62] = 2’b11.

X 1 X 1 X X 0 Kernel addressing mode. In this mode, a TLB miss goesto
the XTLB Refill Handler. The core is in the XKPhys
address space when VA[63:62] = 2’b11.

1 X X 1 X X 0 Kernel addressing mode. In this mode, a TLB miss goesto
the general exception handler as opposed to the XTLB
Refill handler. The core is in the XKPhys address space
when VA[63:62]=2"bl11.

X X X X X X 1 Debug mode.

3.16.3.1 Virtual Memory Segments in 64-bit Mode

In the 64-bit mode, the P6600 core supports the full virtual address space, with fixed address ranges for the various
segments as shown in Table 3.14. Bits 63:62 of the address determine which of the four address segments is accessed:

* Kernel Segment: VA[63:62] = 11

* XKPhys Segment: VA[63:62] = 10

* Supervisor Segment: VA[63:62] =01
* User Segment: VA[63:62] =00

User mode consists of two segments: a 32-bit compatible segment and a 64-bit segment. 32-bit compatible accesses
are limited to a subset of the virtual address space 0x0000 _0000_0000_0000 to 0x0000_0000_7FFF _FFFF and can
be inhibited from accessing CPO functions. 64-bit compatible accesses can access not only the 32-bit compatible
space, but also the 64-bit user segment located at virtual address space 0x0000_0000_8000_0000 to
0x0000 FFFF FFFF FFFF. In User mode, virtual addresses 0x0001 0000 0000 0000 to

0x3FFF_FFFF _FFFF_FFFF are reserved as shown in the table below and cause an address error exception if
accessed.

The Supervisor mode XKSSeg address space is accessed in 64-bit mode at virtual addresses
0x4000_0000 0000 0000 to 0x4000 FFFF _FFFF FFFF. In Supervisor mode, virtual addresses
0x4001_0000_0000_0000 to 0x7FFF_FFFF_FFFF_ FFFF are reserved as shown in the table below and cause an
address error exception if accessed.

XKPhys address space can only be address by the kernel in 64-bit mode and reside at virtual addresses space
0x8000_0000 0000 0000 to 0xBFFF FFFF FFFF FFFF. This address space is split into eight segments. Each seg-
ment contains a dedicated CCA value (0 - 7), aswell as a Reserved portion. Accesses to the Reserved portions shown
in Table 3.14 cause an address error exception if accessed.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 229

Kernel mode contains both 64-bit and 32-bit compatible segments. The XKseg segment can only be accessed in 64-
bit mode and resides at virtual addresses 0xC000_0000_0000_0000 to 0xC000_FFFF_7FFF_FFFF. The Kseg0,
Ksegl, SSeg/KSeg2, and Kseg3 segments are all 32-bit compatible. In Kernel mode, software has access to the entire
address space (except reserved spaces) shown in Table 3.14, as well as all CPO registers.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same

address space and CPO registers as Kernel mode. In addition, while in Debug mode, the CPU has access to the debug
segment (dseg). This area overlays part of the kernel segment kseg3. Access to dseg in Debug mode can be turned on
or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

Table 3.14 MIPS64 Address Space

Segment Address Name Mapping CCA Segment Type
Kernel FFFF_FFFF_FFFF_FFFF - KSeg3 Kernel Mapped From TLB 32-bit Compatible
[63:62] =11 FFFF_FFFF_E000_0000
FFFF_FFFF_DFFF_FFFF - SSeg/Kseg2 | Supervisor Mapped From TLB 32-bit Compatible
FFFF_FFFF_C000_0000
FFFF_FFFF BFFF FFFF - KSegl Kernel Unmapped Uncached 32-bit Compatible
FFFF_FFFF_A000_0000
FFFF_FFFF OFFF FFFF - KSeg0 Kernel Unmapped | From Config. KO | 32-bit Compatible
FFFF_FFFF_8000_0000
Reserved
C000_FFFF _7FFF FFFF - XKSeg Kernel Mapped From TLB 64-bit
C000_0000_0000_0000
XKPhys Reserved
[63:62] = 10 B800 FFFF_FFFF_FFFF - XKPhys Unmapped CCA=7 64-bit
B800_0000_0000_0000
Reserved
B000_FFFF FFFF FFFF - XKPhys Unmapped CCA=6 64-bit
B000_0000_0000_0000
Reserved
A800 FFFF FFFF FFFF - XKPhys Unmapped CCA=5 64-bit
A800_0000_0000_0000
Reserved
A000_FFFF FFFF_FFFF - XKPhys Unmapped CCA=4 64-bit
A000_0000_0000_0000
Reserved
9800 FFFF FFFF FFFF - XKPhys Unmapped CCA=3 64-bit
9800_0000_0000_0000
Reserved
9000 FFFF FFFF FFFF - XKPhys Unmapped CCA=2 64-bit
9000_0000_0000_0000
Reserved
8800 FFFF _FFFF FFFF - XKPhys Unmapped CCA=1 64-bit
8800_0000_0000_0000
Reserved
8000_FFFF_FFFF_FFFF - XKPhys Unmapped CCA=0 64-bit
8000_0000_0000_0000

230

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 3.14 MIPS64 Address Space

Segment Address Name Mapping CCA Segment Type
Supervisor Reserved
[63:62] =01 4000 FFFF_FFFF_FFFF - XSSeg | Supervisor Mapped| ~ From TLB 64-bit
4000 0000 0000 0000
User Reserved
[63:62] = 00 0000 FFFF_FFFF_FFFF - XUSeg User Mapped From TLB 64-bit
0000_0000_8000_0000
0000_0000_7FFF_FFFF - USeg User Mapped From TLB 32-bit Compatible
0000_0000_0000_0000

3.16.3.2 64-bit User Mode

In 64-bit user mode, a single uniform virtual address space, called the user segment (useg), is available.

The user segment occupies the portion of the virtual address space shown below. The user segment starts at address

0x0000_0000 0000 0000 and ends at address 0x0000 FFFF_FFFF_FFFF. Accesses to addresses

0x0001_0000_0000_0000 and ends at address Ox3FFF_FFFF_FFFF_FFFF cause an address error exception. This is
shown in Figure 3.37.

The processor operates in User mode when the Status register contains the following bit values:

0x3FFF_FFFF_FFFF_FFFF

0x0001_0000_0000_0000
0x0000_FFFF_FFFF_FFFF

0x0000_0000_0000_0000

« KSU=2’bl0

e EXL=0
e ERL=0
« UX=1

64 bits

Address
Error

Mapped

In addition to the above values, the DM bit in the Debug register must be 0.

3.16.3.3 64-bit Supervisor Mode

The 64-bit supervisor-mode virtual address space is shown in Figure 3.38. Accesses to addresses

Figure 3.37 User Mode Virtual Address Space — 64-bit Address Mode

0x4001_0000_0000_0000 - 0x7FFF_FFFF_FFFF_FFFF in Supervisor space cause an address error exception.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

231

Figure 3.38 64-bit Supervisor Mode Virtual Address Space

0x7FFF_FFFF_FFFF_FFFF

Address Error

0x4001_0000_0000_0000
0x4000_FFFF_FFFF_FFFF

Mapped XSSeg

0x4000_0000_0000_0000

The accessible supervisor segment begins at address 0x4000_0000_0000_0000 and ends at address
0x4000_FFFF_FFFF_FFFF. The processor operates in Supervisor mode when the Status register contains the follow-
ing bit values:

* KSU=2’b01

e EXL=0
* ERL=0
« SX=0

In addition to the above values, the DM bit in the Debug register must be 0.

3.16.3.4 64-bit Kernel Mode

Kernel mode has access to the entire 64-bit address space (except reserved spaces), including supervisor and user
mode spaces, and the entire XKPhys address segment. The processor operates in Kernel mode when the DM bit in the
Debug register is 0 and the Status register contains one or more of the following values:

e KSU=2’b00, or

e ERL=1,o0r

e EXL=1,and

+ KX=1

When a non-debug exception is detected, hardware sets the EXL or ERL bits in the Status register and the processor
enters Kernel mode. At the end of the exception handler routine, an Exception Return (ERET) instruction is generally

executed. The ERET instruction jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return
the processor to User mode.

In Kernel mode, a program has access to the entire virtual address space. Kernel mode virtual address space is divided

into regions differentiated by the high-order bits of the virtual address, as shown in Figure 3.35. The characteristics of
kernel-mode segments are listed in Table 3.9.

232 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

The CPU enters Kernel mode both at reset and when an exception is recognized.

Figure 3.39 Kernel Mode 64-bit Virtual Address Space

OxFFFF_FFFF_FFFF_FFFF
KSeg3

Kernel Mapped, CCA from TLB

OxFFFF_FFFF_E000_0000

O0xFFF_FFFF_DFFF_FFFF

SSeg/KSeg?2
Kernel Mapped, CCA from TLB

O0XFFFF_FFFF_C000_0000
O0XFFFF_FFFF_BFFF_FFFF

KSegl
Kernel Unmapped, Uncached
OxFFFF_FFFF_A000_0000
OxFFFF_FFFF_9FFF_FFFF

KSeg0
Kernel Unmapped, CCA from Config.K0

OxFFFF_FFFF_8000_0000
OXFFFF_FFFF_7FFF_FFFF

Reserved

0xC000_FFFF_8000_0000
0xC000_FFFF_7FFF_FFFF

XKSeg
Kernel Mapped, CCA from TLB

0xC000_0000_0000_0000

Kernel Mode, Kernel User Space (XKSeg)

The XKSeg segment is accessed under the following conditions:

* The most significant bits of the address (VA[63:62]) are 2°b11, and

e VA[61:48] of the virtual address are all 0’s, and

* The address does not fall in reserved address space of 0xC000_ FFFF_ 8000 0000 to 0xC000 FFFF_FFFF FFFF

In this configuration, kernel virtual user space is located at addresses 0xC000_0000_0000_0000 -
0xC000 FFFF 7FFF FFFF. References to XKSeg are kernel mapped and the CCA attributes come from the TLB.

Kernel Mode, Kernel Space 1 (KSeg1)

The KSegl segment is accessed under the following conditions:

» The most significant bits of the address (VA[63:62]) are 2°bl11, and

* VAJ[61:32] of the virtual address are all 1’s, and

* VA[31:29]is 3°b101

In this configuration, kernel virtual space 1 is located at addresses OXFFFF_FFFF_A000_ 0000 -

OxFFFF_FFFF_BFFF FFFF. References to XKSeg0 are kernel unmapped and uncached. Caches are disabled for
accesses to these addresses, and physical memory (or memory-mapped I/O device registers) are accessed directly.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 233

234

Kernel Mode, Kernel/Supervisor Space 2 (KSSeg/KSeg2)

The KSegl segment is accessed under the following conditions:

* The most significant bits of the address (VA[63:62]) are 2°b11, and

e VA[61:32] of the virtual address are all 1’s, and

e VA[31:29]is 3°b110

In this configuration, kernel virtual space 2 is located at addresses OXFFFF_FFFF_C000 0000 -

OxFFFF_FFFF_DFFF_FFFF. References to XKSeg?2 are supervisor mapped, and the CCA for this segment is defined
by the TLB.

Kernel Mode, Kernel Space 3 (KSeg3)

The KSeg3 segment is accessed under the following conditions:

* The most significant bits of the address (VA[63:62]) are 2°b11, and

e VA[61:32] of the virtual address are all 1’s, and

* VA[31:29]is 3°b111

In this configuration, kernel virtual space 3 is located at addresses OXFFFF_FFFF _E000_0000 -

OxFFFF_FFFF FFFF_FFFF. References to XKSeg3 are kernel mapped, and the CCA for this segment is defined by
the TLB.

3.16.3.5 64-bit Debug Mode

Except for XKSeg3, debug-mode address space is identical to kernel-mode address space with respect to mapped and
unmapped areas. In XKSeg3, a debug segment (dseg) coexists in the virtual address range
OxFFFF_FFFF _FF20 0000 to OXFFFF FFFF FF3F FFFF. The layout is shown in Figure 3.40.

Figure 3.40 64-Bit Debug Mode Virtual Address Space
OXFFFF_FFFF_FFFF_FFFF - - - - - - — -

OXFFFF_FFFF_FF40 0000 -

O0xFFFF_FFFF_FF20 0000 -

XKSegl

XKSeg0 Unmapped

Mapped if mapped in Kernel Mode

0xC000_0000_0000 0000 _ _ _ _ _ _ _ _

dseg is subdivided into the dmseg segment at OXFFFF_FFFF_FF20 0000 to OXFFFF_FFFF FF2F FFFF, which is
used when the debug probe services the memory segment, and the drseg segment at OXFFFF_FFFF_FF30 0000 to
OxFFFF_FFFF _FF3F FFFF, which is used when memory-mapped debug registers are accessed. The subdivision and
attributes of the segments are shown in Table 3.10.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Accesses to memory that would normally cause an exception in kernel mode cause the CPU to re-enter debug mode
via a debug-mode exception. This includes accesses usually causing a TLB exception, with the result that such
accesses are not handled by the usual memory-management routines.

The unmapped XKSeg0 and XKSegl segments from kernel-mode address space are available in debug mode, which
allows the debug handler to be executed from uncached, unmapped memory.

Table 3.15 Physical Address and Cache Attributes for dseg, dmseg, and drseg

Segment | Sub-Segment Cache

Name Name Virtual Address Generates Physical Address Attribute
dseg dmseg OxFFFF_FFFF_FF20 0000 dmseg maps to addresses 0x0_0000 - | Uncached

through OxF_FFFF in EJTAG probe memory

OxFFFF_FFFF_FF2F FFFF space.
drseg maps to the breakpoint registers
drseg OxFFFF_FFFF _FF30 0000 0x0 0000 - 0xF FFFF
through - -

O0XFFFF_FFFF_FF3F_FFFF

Debug Mode, Register (drseg)

The behavior of CPU access to the drseg address range at 0xFF30 0000 to OxFF3F FFFF is determined as shown in

Table 3.11
Table 3.16 CPU Access to drseg
LSNM Bit in Debug
Transaction Register Access
Load / Store 1 Kernel mode address space (kseg3)
Fetch Don’t care drseg, see comments below
Load / Store 0

Debug software is expected to read the Debug Control register (DCR) to determine which other memory-mapped regis-
ters exist in drseg. The value returned in response to a read of any unimplemented memory-mapped register is unpre-
dictable, and writes are ignored to any unimplemented register in drseg. For more information about the DCR, refer to
Chapter 13, “EJTAG Debug Support”.

The allowed access size is limited for the drseg. Only word-size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

Debug Mode, Memory (dmseg)

The conditions for CPU accesses to the dmseg address range (0xFFFF_FFFF_FF20 0000 to
OxFFFF_FFFF _FF2F FFFF) are shown in Table 3.17.

Table 3.17 CPU Access to dmseg

ProbEn Bit in LSNM Bit in
Transaction DCR Register! | Debug Register Access
Load / Store Don’t care 1 Kernel mode address space (kseg3)
Fetch 1 Don’t care dmseg
Load / Store 1 0 dmseg

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 235

236

Table 3.17 CPU Access to dmseg

Transaction

ProbEn Bit in
DCR Register!

LSNM Bit in
Debug Register

Access

Fetch

0

Don’t care

See comments below

Load / Store

0 0 See comments below

1. The NoDCR bit in the CPO Debug register indicates if the dmseg and drseg address spaces and associated DCR
register exists in memory mapped space. The NoDCR bit must be cleared, this DCR register exists. If the bit is
set, the register does not exist.

An attempt to access dmseg when the ProbEn bit in the DCR register is 0 should not happen, because debug software
is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such a refer-
ence does occur, the reference hangs until it is satisfied by the probe. The probe must not assume that there will never
be a reference to dmseg when the ProbEn bit in the DCR register is 0, because there is an inherent race between the
debug software sampling the ProbEn bit as 1, and the probe clearing it to 0.

3.16.3.6 64-bit XKPhys Address Segment

The Extended Kernel Physical Segment (XKPhys) is divided into a series of eight equal segments, each with a differ-
ent Cache Coherency Attribute (CCA). The attribute information is stored in the C field of the EntryLo0O and
EntryLol registers.

The eight segments reside within the following address ranges.

+ 8000 0000 0000 0000 — 8000 FFFF FFFF FFFF: XKPhys0, CCA =0

+ 8800 0000 0000 0000 — 8800 FFFF FFFF FFFF: XKPhysl, CCA =1

* 9000 0000 0000 0000 — 9000 FFFF FFFF FFFF: XKPhys2, CCA =2

+ 9800 0000 0000 0000 — 9800 FFFF FFFF FFFF: XKPhys3, CCA =3

+ A000 0000 0000 0000 — A000 FFFF FFFF FFFF: XKPhys4, CCA =4

+ A800 0000 0000 0000 — A800 FFFF FFFF FFFF: XKPhys5, CCA=5

+ B000_0000 0000 0000 — B000 FFFF FFFF FFFF: XKPhys6, CCA =6

+ B800 0000 0000 0000 — B800 FFFF FFFF FFFF: XKPhys7, CCA =7

Note that there are empty spaces or gaps between each XKPhys memory segment. These empty spaces are reserved
and cause an address error exception if accessed. For example, the address range of 8001 _0000_0000_0000 —
87FF_FFFF_FFFF_FFFF is the empty space between the XKPhys0 and XKPhys1 address spaces.

In the P6600 core address space, the following types of accesses are supports;

¢ Uncached (CCA =2)

e Cache Coherent Read (CCA =5)

e Uncached Accelerated (CCA = 7).

All CCA values map to one of these attributes.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 3.41 XKPhys Address Segments in 64-bit Virtual Address Space

0xB800_FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA =7
0xB800_0000_0000_0000

Reserved

0xB000_FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA=6
0xB000_0000_0000_0000

Reserved

0xA800 FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA =5
0xA800_0000_0000_0000

Reserved

0xA000_FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA =4
0xA000_0000_0000_0000

Reserved

0x9800 FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA =3
0x9800_0000_0000_0000

Reserved

0x9000_FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA =2
0x9000_0000 0000_0000

Reserved

0x8800_FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA =1
0x8800_0000_0000_0000

Reserved

0x8000_FFFF_FFFF_FFFF

Unmapped, 256 GB, CCA =0

0x8000_0000_0000_0000

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 237

3.17 TLB Instructions

Table 3.18 lists the TLB-related instructions implemented in the P6600 core. .

Table 3.18 TLB Instructions

Mnemonic Instruction Description

TLBP Translation Lookaside Buffer Probe Used to determine whether a particular address was
successfully translated. When a TLBP instruction is
executed and fails to find a match for the specified
virtual address, hardware sets bit 31 of the Index
register.

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index TLB write extended to support invalidation of
individual TLB entries.

TLBWR Translation Lookaside Buffer Write Random

TLBINV Translation Lookaside Buffer Invalidate Added to support set level invalidation of TLB
entries.

TLBINVF | Translation Lookaside Buffer Invalidate Flush | Added to support VTLB flush based invalidation
of TLB entries.

Refer to the Instructions chapter for more information on the TLB instructions.

238 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Chapter 4

Caches

This chapter describes the caches present in an P6600 core and contains the following sections:

e Section 4.1

¢ Section 4.2

e Section 4.3

e Section 4.4

¢ Section 4.5

¢ Section 4.6

“Cache Configurations”
“L1 Instruction Cache”

“L1 Data Cache”

“L1 Instruction and Data Cache Software Testing”

“L2 Cache”

“The CACHE Instruction”

4.1 Cache Configurations

The P6600 core contains three caches; L1 instruction, L1 data, and shared L2. These caches are non-optional in the
P6600 architecture and are always present. The size of each cache can be configured as shown in Table 4.1.

Table 4.1 P6600 Cache Configurations

Attribute L1 Instruction Cache L1 Data Cache L2 Cache
Sizel 32 KB or 64 KB 32 KB or 64 KB 512 KB
1 MB, 2 MB, 4 MB, or 8 MB
Line Size 32-byte 32-byte 32-byte
Number of Cache Sets 256 or 512 256 or 512 2048, 4096,
8192, 16384, or 32768
Associativity 4 way 4 way 8 way

1. For Linux-based applications, MIPS recommends an optimum L1 cache size of 64 KB, and a minimum L1 cache size of 32 KB.

The L1 instruction cache is attached to the Instruction Fetch Unit (IFU) via two 64-bit data paths, allowing for up to

four instruction fetches per cycle. The L1 data cache contains two 64-bit data paths, allowing for up to two data read/
write operations per cycle. The L2 cache is embedded within the Coherence Manager (CM2) and communicates with
external memory via a configurable 128-bit or 256-bit OCP interface.

For more information on the L1 instruction cache, refer to Section 4.2 “L1 Instruction Cache”.

For more information on the L1 data cache, refer to Section 4.3 “L1 Data Cache”.

For more information on the L2 cache, refer to Section 4.5 “L2 Cache”.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

239

240

4.1.1 Cacheability Attributes

The P6600 core supports the following cacheability attributes:

Uncached (code #2): Addresses in a memory area indicated as uncached are not read from the cache. Stores to
such addresses are written directly to main memory, without changing cache contents.

Non-coherent Writeback With Write Allocation (code #3): Loads and instruction fetches first search the cache,
reading main memory only if the desired data does not reside in the cache. On data store operations, the cache is
first searched to see if the target address is in the cache. If it is, the cache contents are updated, but main memory
is not written. If the cache lookup misses on a store, main memory is read to bring the line into the cache and
merge it with the new store data. Hence, the allocation policy on a cache miss is read- or write-allocate. Data
stores will update the appropriate dirty bit in the ‘dirty’ array to indicate that the line contains modified data.
When a line with dirty data is displaced from the cache, it is written back to memory.

Coherent Write-back With Write Allocation, Exclusive (code #4): This attribute is similar to code #5 described
below, except that load misses bring data into the cache in the exclusive state rather than the shared state. This
can be used if data is not shared and will eventually be written. This can reduce bus traffic, because the line does
not have to be refetched in an exclusive state when a store is done.

Coherent Write-back With Write Allocation, Exclusive on Write (code #5): Use coherent data. Load misses will
bring the data into the cache in a shared state. Multiple caches can contain data in the shared state. Stores will
bring data into the cache in an exclusive state - no other caches can contain that same line. If a store hits on a
shared line in the cache, the line will be invalidated and brought back into the cache in an exclusive state.

Uncached Accelerated (code #7): Uncached stores are gathered together for more efficient bus utilization.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

4.2 L1 Instruction Cache

The L1 instruction cache contains three arrays: tag, data, and way-select. The L1 instruction cache is virtually
indexed, since a virtual address is used to select the appropriate line within each of the three arrays. The caches are
physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache.
The way-select array holds information to select the way to be filled.

An instruction cache tag entry consists of the upper bits of the physical address bits, one valid bit for the line, and a
lock bit. An instruction cache data entry contains four, 64-bit doublewords in the line, for a total of 32 bytes. All four
words in the line are present or not in the data array together, hence the single valid bit stored with the tag.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm.
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set. The instruc-
tion cache only supports reads, hence only LRU entries are stored in the instruction way-select array.

Table 4.2 shows the key characteristics of the L1 instruction cache. Figure 4.1 shows the format of an entry in the
three arrays comprising the instruction cache: data, tag, and way-select.

Table 4.2 L1 Instruction Cache Attributes

Attribute With Parity
Size! 32 KB or 64 KB
Line Size 32-byte
Number of Cache Sets 256 or 512
Associativity 4-way
Replacement LRU
Cache Locking per line
Data Array
Read Unit 144b x 4
Write Unit 144b
Tag Array
Read Unit 63bx 4
Write Unit 63b
Way-Select Array
Read Unit 6b
Write Unit 1-6b

1. For Linux based applications, MIPS recommends a 64 KB L1 instruction cache size, with a minimum size of 32 KB.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 241

Tag (per way):

(63 bits total)

Data (per way):

(144 bits total)

Way-Select:
(6 bits total)

Figure 4.1 L1 Instruction Cache Organization

5 1 1 28 7 7 7 7
Parity | Valid | Lock PA[39:12] Precode 67 | Precode 45 | Precode 23 | Precode 01
8 8 32 32 32 32

Parity | Parity | word3 | word2 | wordl | word0

LRU

4.2.1 L1 Instruction Cache Virtual Aliasing

The instruction cache on the P6600 core is virtually indexed and physically tagged. The lower bits of the virtual
address are used to access the cache arrays and the physical address is used in the tags. Because the way size can be
larger than the minimum TLB page size, there is a potential for virtual aliasing. This means that one physical address
can exist in multiple indices within the cache, if it is accessed with different virtual addresses. Virtual aliasing comes
into effect only for cache sizes that are larger than 16 KB.

In the P6600 core, the Config7 g bit is always set to indicate the existence of instruction cache virtual aliasing
hardware. The core allows a physical address to reside at multiple indices if accessed with different virtual addresses.
When an invalidate request is made due to the CACHE or SYNCI instructions, the core will serially check each pos-
sible alias location for the given physical address.

The hardware can be enabled and disabled using the Config7sp bit. When this bit is cleared, the hardware used to
remove instruction cache virtual aliasing is enabled. In this case the virtual aliasing is managed in hardware. No soft-
ware interaction is required. When the Con£fig7,p bit is set, the virtual aliasing hardware is disabled. This can be

done when software ensures that no cache aliases are possible, for example when using a minimum TLB page size of
16KB. In cases where the TLB page size is less than 16 KB, it is up to software to manage virtual aliasing within the
instruction cache.

4.2.2 L1 Instruction Cache Precode Bits

In order for the fetch unit to quickly detect branches and jumps when executing code, the instruction cache array con-
tains some additional precode bits. These bits indicate the type and location of branch or jump instructions within a
64b fetch bundle.

4.2.3 L1 Instruction Cache Parity

The instruction cache contains 16 parity bits — one for each byte of the 128 bits of data. The tag array has 5 parity
bits for each tag, one for each of the 4 precodefields and one for the physical tag, lock, and valid bits. The LRU array
does not have any parity. Instruction cache parity is always present in the instruction cache and cannot be disabled.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

4.2.4 L1 Instruction Cache Replacement Policy

The L1 instruction cache replacement policy refers to how a way is chosen to hold an incoming cache line on a miss
which will result in a cache fill. The replacement policy is least-recently used (LRU), but excluding any locked ways.
The LRU bit(s) in the way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen.

The LRU field in the way select array is updated as follows:

* On acache hit, the associated way is updated to be the most recently used. The order of the other ways relative to
each another is unchanged.

e On a cache refill, the filled way is updated to be the most recently used.

* On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

Index (Writeback) Invalidate: Least-recently used.
* Index Load Tag: No update.

* Index Store Tag, WST = 0: Most-recently used if valid bit is set in TagLo CPO register. Least-recently used if
valid bit is cleared in TagLo CPO register.

* Index Store Tag, WST = 1: Update the field with the contents of the TagLo CPO register.
» Index Store Data: No update.
+ Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.
* Fill: Most-recently used.
« Hit Writeback: No update.
» Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.
If all ways are valid, then any locked ways are excluded from consideration for replacement. For the unlocked ways,

the LRU bits are used to identify the way which has been used least-recently, and that way is selected for replace-
ment.

4.2.5 L1 Instruction Cache Line Locking

The P6600 core does not support the locking of all 4 ways of either cache at a particular index. If all 4 ways of the
cache at a given index are locked by either Fetch and Lock or Index Store Tag CACHE instructions, subsequent cache
misses at that cache index will displace one of the locked lines.

Locking lines in the caches is somewhat counter to the idea of coherence. If a line is locked into a particular cache, it
is expected that any processes utilizing that data will be locked to that processor and coherence is not needed. Based
on this usage model, locking coherent lines into the cache is not recommended. However, should this occur, the CPU
adheres to the following rules:

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 243

* SYNClI instructions are user-mode instructions. Since locking is a kernel mode feature (requires the CACHE
instruction), SYNCTI is not allowed to unlock cache lines. This applies to both local and globalized SYNCI
instructions.

* Locking overrides coherence. Intervention requests from other CPUs and /O devices that match on a locked line
are treated as misses.

* Self-intervention requests for globalized CACHE instructions are allowed to affect a locked line. This is done
primarily for handling lock and unlock requests for kseg0 addresses when kseg0 is being treated coherently.

4.2.6 L1 Instruction Cache Memory Coherence Issues

The P6600 core supports cache coherency in a multi-CPU cluster using Cache Coherence Attributes (CCAs) speci-
fied on a per cache-line basis and an Intervention Port containing coherent requests by all CPUs in the system. Each
P6600 core monitors its Intervention Port and updates the state of its cache lines (valid, lock, and dirty tag bits)
accordingly.

The L1 instruction caches utilizes a modified MESI protocol. Each cache line will be in one of the following states:
Invalid: The line is not present in this cache.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present in other L1 data caches.
The line is still clean and is consistent with the value in L2 cache or memory.

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes the write
buffers.

In the P6600 core, the hardware does not automatically keep the instruction caches coherent with the data caches.
Doing so requires many additional cache lookups and would likely require the instruction cache tag array to be dupli-
cated as well. For many types of code, this would be of small benefit, and the added area and power costs would not
make sense. Further, the existing non-coherent cores from MIPS do not keep the I-Cache coherent with the D-Cache,
so the code already exists for software I-Cache coherence where it is required.Globalized CACHE and SYNCI
instructions ease the task of software I-Cache coherence. Existing, single-CPU routines that push dirty data out of the
data cache and invalidate stale instruction cache lines using hit-type CACHE or SYNCI instructions can be global-
ized, and the coherence can be handled for all of the instruction caches in parallel.

4.2.7 Software I-Cache Coherence (JVM, Self-modifying Code)

The CPU does not support hardware I-Cache coherence, so code that modifies the instruction stream must clean up
the instruction cache. This is equivalent to what is currently required on uniprocessor systems that also do not have a
coherent I-Cache. The recommended SYNCI sequence shown below will also work for coherent addresses:

SW instn_address
SYNCI instn_address
SYNC

JR.HB instn address
NOP

4.2.8 L1 Instruction Software Cache Management

The L1 instruction cache is not fully “coherent” and requires OS intervention at times. The CACHE instruction is the
building block of such OS interventions, and is required for correct handling of DMA data and for cache initializa-
tion. Historically, the CACHE instruction also had a role when writing instructions. Unless the programmer takes the

244 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

appropriate action, those instructions may only be in the D-cache and would need them to be fetched through the I-
cache at the appropriate time. Wherever possible, use the SYNCI instruction for this purpose, as described in Section
4.2.11 “Cache Management When Writing Instructions - the “SYNCI” Instruction”.

A cache operation instruction is written cache op, addr where addr is just an address format, written as for a load/
store instruction. Cache operations are privileged and can only run in kernel mode (SYNCI works in user mode,

though).
31 26 25 21 20 18 17 16 15 0
cache base op offset
47 register what to do | which cache

Figure 4.2 Fields in the Encoding of a CACHE Instruction
The op field packs together a 5-bit field. The lower 2 bits of this field (17:16) select which cache to work on:

00 L1 I-cache
01 L1 D-cache
10 reserved
11 L2 cache

The upper 3-bits of the OP field encodes a command to be carried out on the line the instruction selects.

The CACHE instruction come in three varieties which differ in how they pick the cache entry (the “cache line”) they
will work on:

» Hit-type cache operation: presents an address (just like a load/store), which is looked up in the cache. If this loca-
tion is in the cache (it “hits”) the cache operation is carried out on the enclosing line. If this location is not in the
cache, nothing happens.

» Address-type cache operation: presents an address of some memory data, which is processed just like a cached
access - if the cache was previously invalid the data is fetched from memory.

* Index-type cache operation: as many low bits of the address as are required are used to select the byte within the
cache line, then the cache line address inside one of the four cache ways, and then the way. The size of the cache
(contained within the Configl register) to know exactly where the field boundaries are located. The address is
used as follows:

31 5 4 0

| Unused ‘ Way1-0 ‘ Index | byte-within-line

Note that the MIPS64 specification allows the CPU designer to select whether to derive the index from the vir-
tual or physical address. For index-type operations, MIPS recommends using a kseg0 address, so that the virtual
and physical address are the same. This also avoids a potential of cache aliasing.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 245

4.2.9 L1 Instruction Cache CPO0 Register Interface

The P6600 core uses different CPO registers for instruction cache operations.

Table 4.3 Instruction Cache CPO Register Interface

CPO Registers CPO number
Configl 16.1
CacheErr 27.0
ITagLo 28.0
[TagHi 29.0
IDatal.o 28.1
IDataHi 29.1

4.2.9.1 Configl Register (CPO register 16, Select 1)

The Configl.,s field (bits 24:22) indicates the number of sets per way in the instruction cache. The P6600 L1 instruc-

tion cache supports 256 sets per way, which is used to configure a 32 KB cache, or 512 sets per way, which is used to
configure a 64 KB cache.

The Configl.;, field (bits 21:19) indicates the line size for the instruction cache. The P6600 L1 instruction cache sup-
ports a fixed line size of 32 bytes as indicated by a default value of 4 for this field.

The Configl., field (bits 18:16) indicates the set associativity for the instruction cache. The P6600 L1 instruction
cache is fixed at 4-way set associative as indicated by a default value of 3 for this field.

For more information, refer to Section 2.2.1.2, "Device Configuration 1 — Configl (CPO Register 16, Select 1)".

4.2.9.2 CacheErr Register (CPO register 27, Select 0)

The CacheErr register is a read-only register used to determine the status of a cache error. The upper two bits of this
register (CacheErr.ggec) indicate whether the contents of the register pertain to an L1 instruction cache error, an L1

data cache error, a TLB error, or an external error. This register provides information such as:
* LI data versus L2 data cache error

* Tag RAM versus Data RAM error

« External snoop request indication in multi-core systems

* Indicates coherent L1 cache error in another CPU in a multi-core system

¢ Fatal/non-fatal error indication

For more information, refer to Section 2.2.5.11, "Cache Error — CacheErr (CPO Register 27, Select 0)".

4.2.9.3 L1 Instruction Cache TagLo Register (CPO register 28, Select 0)

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag
operations.

246 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

The interpretation of this register changes depending on the setting of the ErrCtlyysy bit
¢ Default cache interface mode (ErrCtlygst = 0)

* Diagnostic "way select test mode" (ErrCtlyst = 1)

For more information, refer to Section 2.2.5.1, "Level 1 Instruction Cache Tag Low — ITaglLo (CP0O Register 28,
Select 0)".

4.2.9.4 L1 Instruction Cache TagHi Register (CPO register 29, Select 0)
This register represents the I-cache pre-decode bits and is intended for diagnostic use only.

For more information, refer to Section 2.2.5.2, "Level 1 Instruction Cache Tag High — ITagHi (CP0 Register 29,
Select 0)".

4.2.9.5 L1 Instruction Cache Datalo Register (CPO register 28, Select 1)

Staging registers for special cache instruction which loads or stores data from or to the cache line. Two registers
(IDataHi, IDatalLo) are needed, because the P6600 core loads I-cache data at least 64 bits at a time. This register stores
the lower 32 bits of the load data.

For more information, refer to Section 2.2.5.3, "Level 1 Instruction Cache Data Low — IDatal.o (CPO Register 28,
Select 1)".

4.2.9.6 L1 Instruction Cache DataHi Register (CPO register 29, Select 1)

Staging registers for special cache instruction which loads or stores data from or to the cache line. Two registers
(IDataHi, IDataLo) are needed, because the P6600 core loads I-cache data at least 64 bits at a time. This register stores
the upper 32 bits of the load data.

For more information, refer to Section 2.2.5.4, "Level 1 Instruction Cache Data High — IDataHi (CPO Register 29,
Select 1)".

4.2.10 L1 Instruction Cache Initialization

The L1 instruction cache must be initialized during power-up or reset in order to place the lines of the cache in a
known state. This is accomplished via the cache initialization routine, which is normally part of the boot code.
For experienced user’s, a sample boot code is shown in the following subsection.

4.2.10.1 L1 Instruction Cache Initialization Routine

The following assembly provides an example initialization routine for the instruction cache.

/**

init_icache invalidates all Instruction cache entries
**/

LEAF (init_icache)

// For this Core there is always an instruction cache
// The IS field determines how many sets there are:

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 247

248

// IS = 2 there are 256 sets
// IS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

1i $11, 32 # Line size is always 32 bytes.

mfcO0 $10, $16, 1 # Read CO_Configl

ext $12, $10, 22, 3 # Extract IS

1i s14, 2 # Used to test against

beq $14, s$12, Isets done# if IS = 2

1i $12, 256 # sets = 256

1i $12, 512 # else sets = 512 Skipped if branch taken
Isets done:

lui $14, 0x8000 # Get a KSeg0 address for cacheops

// clear the lock bit, valid bit, and the LRF bit

mtco $0, $28 # Clear CO_ITagLo to invalidate entry

next icache tag:

cache 0x8, 0($14) # Index Store tag Cache opt

add s12, -1 # Decrement set counter

bne $12, $0, next icache tag # Done yet?

add $14, s11 # Increment line address by line size

done icache:

ins r3l1 return addr, $0, 29, 1
jr r3l1 return addr
nop

END (init_ icache)

4.2.10.2 L1 Instruction Cache Initialization Routine Details

This section provides a detailed description of each line of code in the L1 instruction cache initialization routine
described above. Note that this code represents an example of an implementation specific cache initialization. The
code is used in specific cache sizes of 32K or 64K, is always part of the P6600 MPS, and always have the L2 cache
present. The code example is written with those parameters in mind.

Before use, the cache must be initialized to a known state; that is, all cache entries must be invalidated. This code
example initializes the cache, finds the total number of cache sets, then loops through the cache sets using the cache
instruction to invalidate each cache set.

LEAF (init_icache)

// For this Core there is always an L1l instuction cache

// The IS field determines how many sets there are

// IS = 2 there are 256 sets

// IS = 3 there are 512 sets

// $11 set to line size, will be used to increment through the cache tags

1i $11, 32 # Line size is always 32 bytes.
This instruction cache always has a line size of 32 bytes, 4 ways and can have a size of either 32 KB or 64 KB. The IS

field (sets per way) of the Configl register will be use to determine the size of the cache. This field can have one of
two values. A value of 0x2 indicates a 32 KB cache and a value of 0x3 indicates a 64 KB cache.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

mfcO0 $10, $16, 1 # Read CO_Configl
ext s12, $10, 22, 3 # Extract IS
1i s14, 2 # Used to test against

If the check is true, the code uses the branch delay slot (which is always executed) to set the set iteration value to 256
for a 32 KB cache and then branches ahead to Isets_done. If the check is false, the code assumes that the size of the
cache is 64 KB. At this point, the code still sets the iteration value to 256 in the branch delay slot, but then falls
through and sets it again to 512 for a 64 KB cache.

beq $14, $12, Isets done # if IS = 2

1i $12, 256 # sets = 256
1i $12, 512 # else sets = 512 Skipped if branch taken

Isets done:
GPR 14 will be used as an index into the cache. It will be set to a virtual address, and then translated to a physical
address. Since the address 0x8000 0000 is in kseg0, the CPU will ignore the top bit, so virtual 0x8000 0000 will
become physical address 0x0000 0000. Since the cache is physically indexed, the first time through the loop, the
cache instruction will write the tag to way 0 index line 0.
The lui instruction loads 0x8000 into the upper 16 bits and clears the lower 16 bits of the GPR14 register.

lui $14, 0x8000 # Get a KSeg0 address for cacheops
Clearing the tag registers performs two important functions: it sets the Physical Tag address called PTagLo to 0,
which ensures the upper physical address bits are zeroed out, and it also clears the valid bit for the set, which ensures

that the set is free and may be filled as needed.

The code uses the Move to Coprocessor Zero (MTCO) instruction to move the general purpose register zero, which
always contains a zero, to the tag register.

// clear the lock bit, wvalid bit, and the LRF bit

mtcO0 S0, $28 # Clear CO_ITagLo to invalidate entry
The Cache instruction uses the Index Store Tag operation on the Level 1 instruction cache so the op field is
coded with a value of 0x8. The first two bits are 2°b00 for the L1 instruction cache, and the operation code for Index
Store tagis encoded as 3°’b010 in bits two, three and four.
next icache tag:

cache 0x8, 0($14) # Index Store tag Cache op

The index type of operation can be used to address a byte in the cache in a specific way of the cache. This is done by
breaking down the virtual address argument stored in the base register of the Cache instruction into several fields.

Bits 14:0 of the Cache Instruction
14 13 12 5 4 0

Way Page Index | Byte Index

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 249

The size of the index field varies according to the size of a cache way. The larger the way, the larger the index. In the
table above, the combined byte and page index is 13 bits because each way of the cache is 8K. The way number is
always the next two bits following the index.

The code does not explicitly set the way bits. Instead it just increments the virtual address by the cache lines size so
the next time through the loop the Cache instruction will initialize the next set in the cache. Eventually this incre-
ment has the effect of setting the cache to index 0 of the next way in the cache because it overflows into the way bits.
At this point all the code needs to do is loop maintenance. First decrement the loop counter (12/t4).

add s12, -1 # Decrement set counter
Then test it to see if it has gotten to zero and if it has not branch back to label one.

bne $12, $0, next icache tag # Done yet?

The instruction in the branch delay slot, which is always executed, is used to increment the virtual address (14/t6) to
the next set in the cache. (11/t3) holds the line size in bytes.

add $14, s11 # Increment line address by line size

From this point on, the code can be executed from a cached address. This is easily done by changing the return
address from a KSEG1 address to a KSEGO address by simply inserting a 0 into bit 29 of the address. However, dur-
ing debugging, this operation will confuse the debugger and you will no longer be able to do source-level debugging.
That is why it is commented out here. Once the code has been debugged, the "ins" line can be uncommented.

done_ icache:

// Modify return address to kseg0 which is cacheable

// (for code linked in ksegl.)

// However it makes it easier to debug if this is not done. So while
// debugging, this should be commented out.

ins r3l1l return addr, $0, 29, 1
jr r31 return addr
nop

END (init icache)

4.2.11 Cache Management When Writing Instructions - the “SYNCI” Instruction

The synci instruction provides a mechanism available to user-level code for ensuring that previously written
instructions are correctly presented for execution (it combines a D-cache writeback with an I-cache invalidate). Use
of the synci instruction is preferred to the traditional alternative of a D-cache writeback followed by an I-cache
invalidate.

250 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

4.3 L1 Data Cache

The L1 data cache is similar to the instruction cache, with a few key differences;

* Inaddition to the three arrays (tag, data, and way-select), the L1 datacache also contains a separate dirty array to
hold the dirty bits of cache lines.

e The data cache does not contain any precode information.
» To handle store bytes, the data array is byte-accessible, and the data parity is 1 bit per byte.

* The way-select array for the data cache holds the lock bits (and lock parity bits) for each cache line, in addition to
the LRU information. The lock bits indicate the cache lines that have been locked using the CACHE instruction.

Like the L1 instruction cache, the L1 data cache is virtually indexed, since a virtual address is used to select the
appropriate line within each of the arrays. The cache is physically tagged, as the tag array contains a physical, not vir-
tual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of the cache.
The way-select array holds information to choose the way to be filled, as well as dirty bits in the case of the data
cache.

A tag entry consists of the upper bits of the physical address bits [39:11], a valid bit, and a lock bit. A data entry con-
tains the four, 64-bit doublewords in the line, for a total of 32 bytes. All four words in the line are present or not in the
data array together, hence the single valid bit stored with the tag. Once a valid line is resident in the cache, byte, half-
word, triple-byte, word, or doubleword stores can update all or a portion of the words in that line. The tag and data
entries are repeated for each of the 4 lines in the set.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm.
The LRU information applies to all the ways and there is one way-select entry for all the ways in the set.

Table 4.4 shows the key characteristics of the data cache. Figure 4.3 shows the format of an entry in the arrays com-
prising the data cache: tag, data, way-select, and dirty.

Table 4.4 L1 Data Cache Organization

Attribute With Parity
Size 32 or 64KB
Line Size 32-byte
Number of Cache Sets 256 or 512
Associativity 4-way
Replacement LRU
Cache Locking per line
Data Array
Read Unit 144b x 4
Write Unit 144b
Tag Array
Read Unit 32bx 4
Write Unit 32b

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 251

252

Table 4.4 L1 Data Cache Organization (continued)

Attribute With Parity
Way-Select Array
Read Unit 14b
Write Unit 1-14b
Dirty Array
Read Unit 10b
Write Unit 1-10b

Tag (per way):
(32 bits total)

Data (per way):

(144 bits total)

Way-Select:
(14 bits total)

Dirty
(10 bits total)

Figure 4.3 L1 Data Cache Organization

1 1 29 1
Parity State PA39:11 Valid
15 Parity 1 - 14 1 8 Bytes 2 - 14 8 8
Parity Parity | Datal5 Datal Data0
4 4 6
Lock Parity Lock LRU
2 4 4
Reserved Dirty Parity Dirty

4.3.1 L1 Data Cache Virtual Aliasing

The data cache on the P6600 core is virtually indexed and physically tagged. The lower bits of the virtual address are
used to access the cache arrays and the physical address is used in the tags. Because the way size can be larger than
the minimum TLB page size, there is a potential for virtual aliasing. This means that one physical address can exist in
multiple indices within the cache, if it is accessed with different virtual addresses.

The following table indicates the conditions under which virtual aliasing can occur.

Table 4.5 L1 Data Cache Virtual Aliasing Conditions

Aliasing Can Hardware Aliasing
Cache Size MMU Page Size Way Size Occur Fix Required
32 KB 4 KB 8K Yes Yes
64 KB 4 KB 16 K Yes Yes
32KB >=16 KB 8K No No
64 KB >=16 KB 16 K No No

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

In the P6600 core, the read-only Config?7.,g bit determines whether the data cache virtual aliasing hardware is
enabled based on the build-time configuration. Note that for some of the configuration options in the table above, the
hardware aliasing fix (HWAF) is required. As such, it is incumbent upon the designer to select the HWAF option at
build time. The selection of this option causes hardware to set the Config7.,5 bit.

4.3.2 L1 Data Cache Parity

The L1 cache data parity provides one parity bit for each byte, corresponding to the minimum number of bytes for a
store. The tag array has a single parity bit for each tag. The way-select array has separate parity bits to cover each
dirty bit, but the LRU bits are not covered by parity Instruction cache parity is always present in the instruction cache
and cannot be disabled.

4.3.3 L1 Data Cache Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will result in a
cache fill. The replacement policy is least-recently used (LRU), but excluding any locked ways. The LRU bit(s) in the
way-select array encode the order in which ways on that line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to deter-
mine the way which will be chosen.

The LRU field in the way select array is updated as follows:

* On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to
each another is unchanged.

* On a cache refill, the filled way is updated to be the most recently used.

* On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:

Index (Writeback) Invalidate: Least-recently used.
* Index Load Tag: No update.

» Index Store Tag, WST = 0: Most-recently used if valid bit is set in TagLo CPO register. Least-recently used if
valid bit is cleared in TagLo CPO register.

» Index Store Tag, WST = 1: Update the field with the contents of the TagLo CPO register.

* Index Store Data: No update.

« Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

* Fill: Most-recently used.

« Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.
» Hit Writeback: No update.

» Fetch and Lock: For instruction cache, no update. For data cache, most-recently used.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 253

If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked
ways, the LRU bits are used to identify the way which has been used least-recently, and that way is selected for
replacement.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 32-byte line will be writ-
ten back to memory before the new fill can occur.

4.3.4 L1 Data Cache Line Locking

The mechanism for line locking in the L1 data cache is identical to that of the L1 instruction cache. For more infor-
mation, refer to Section 4.2.5, "L1 Instruction Cache Line Locking".

4.3.5 L1 Data Cache Memory Coherence Protocol

The P6600 core supports cache coherency in a multi-CPU cluster using Cache Coherence Attributes (CCAs) speci-
fied on a per cache-line basis and an Intervention Port containing coherent requests by all CPUs in the system. Each
P6600 core monitors its Intervention Port and updates the state of its cache lines (valid, lock, and dirty tag bits)
accordingly.

The L1 data caches utilize a standard MESI protocol. Each cache line will be in one of the following four states:

Invalid: The line is not present in this cache.

Shared: This cache has a read-only copy of the line. The line may be present in other L1 data caches, also in a Shared
state. The line will have the same value as it does in the L2 cache or memory.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present in other L1 data caches.
The line is still clean - consistent with the value in L2 cache or memory.

Modified: This cache has a dirty copy of the line. The line is not present in other L1 data caches. This is the only up-
to-date copy of the data in the system (the value in the L2 cache or memory is stale).

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes the write
buffers.

Some of the basic characteristics of the coherence protocol are summarized below. Coherence can occur on the data
cache.

* Writeback cache - Uses a writeback cache to ensure high performance
e Cache-line based - Coherence and ownership is maintained per 32-byte cache line
* Snoopy protocol - Each CPU snoops the stream of transactions and updates its cache state accordingly

e Invalidate - A line is invalidated from the cache (possibly with a writeback to memory) when a store from
another processor is seen.

4.3.6 L1 Data Cache Initialization

The L1 data cache must be initialized during power-up or reset in order to place the lines of the cache in a known
state. This is accomplished via the cache initialization routine, which is normally part of the boot code. For expe-
rienced user’s, a sample boot code is shown in the following subsection.

254 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

4.3.6.1 L1 Data Cache Initialization Routine

The following assembly provides an example initialization routine for the data cache.

/***

init dcache invalidates all data cache entries
**/

LEAF (init_dcache)

// For the P6600 MPSthere is always an L1 data cache
// The ID field determines how many sets there are
// DS = 2 there are 256 sets

// DS = 3 there are 512 sets

// $11 set to line size, will be used to increment through the cache tags
1i $11, 32 # Line size is always 32 bytes

mfcO0 $10, $16, 1 # Read CO_Configl

ext $12, $10, 13, 3 # Extract DS

1i $14, 2 # Used to test against

beq $14, $12, Dsets done # if DS = 2

1i $12, 256 # sets = 256

1i $12, 512 # else sets = 512, skipped if branch taken

Dsets done:

lui $14, 0x8000 # Get a KSeg0 address for cacheops
// clear the lock bit, valid bit, and the LRF bit
mtcO S0, $28, 2 # Clear CO _DTagLo to invalidate entry

next dcache tag:

cache 0x9, 0($14) # Index Store tag Cache opt

add $12, -1 # Decrement set counter

bne $12, $0, next dcache tag # Done yet?

add $14, S$11 # Increment line address by line size

done dcache:

jr r3l1 return_ addr
nop

END (init dcache)
4.3.6.2 L1 Data Cache Initialization Routine Details

This section provides a detailed description of each line of code in the initialization routine. The L1 data cache initial-
ization routine is very similar to the L1 instruction cache initialization routine.

LEAF (init dcache)

// For the P6600 CPS there is always a L1 data cache
// The DS field determines how many sets there are

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 255

256

// DS = 2 there are 256 sets
// DS = 3 there are 512 sets
// $11 set to line size, will be used to increment through the cache tags

1i $11, 32 # Line size is always 32 bytes.
The data cache always has a line size of 32 bytes and 4 ways, and can have a size of either 32 KB or 64 KB. The DS

field (sets per way) of the Configl register is used to determine the size of the cache. This field can have one of two
values. A value of 0x2 indicates a 32 KB cache and a value of 0x3 indicates a 64 KB cache.

mfcO0 $10, s$16, 1 # Read CO_Configl
ext s12, $10, 13, 3 # Extract DS
1i s14, 2 # Used to test against

If the check is true, the code uses the branch delay slot (which is always executed) to set the set iteration value to 256
for a 32 KB cache and then branches ahead to Dsets_done. If the check is false, the code assumes that the size of the
cache is 64 KB. At this point, the code still sets the iteration value to 256 in the branch delay slot, but then falls
through and sets it again to 512 for a 64 KB cache.

beq $14, $12, Dsets done # if DS = 2

1i $12, 256 # sets = 256

1i $12, 512 # else sets = 512 Skipped if branch taken
Dsets done:
GPR 14 will be used as an index into the data cache. It is set to a virtual address and then translated to a physical
address. Since the address 0x8000 0000 is in kseg0, the CPU will ignore the top bit, so virtual 0x8000 0000 will
become physical address 0x0000 0000. Since the cache is physically indexed, the first time through the loop, the
cache instruction will write the tag to way 0 index line 0.
The lui instruction loads 0x8000 into the upper 16 bits and clears the lower 16 bits of the GPR14 register.

lui $14, 0x8000 # Get a KSeg0 address for cacheops
Clearing the tag registers performs two important functions: it sets the Physical Tag address called PTagLo to 0,
which ensures the upper physical address bits are zeroed out, and it also clears the valid bit for the set, which ensures

that the set is free and may be filled as needed.

The code uses the Move to Coprocessor zero instruction to move the general purpose register zero, which always
contains a zero, to the tag register.

// clear the lock bit, valid bit, and the LRF bit
mtcO $0, $28, 2 # Clear CO DTagLo to invalidate entry

The Cache instruction uses the Index Store Tag operation on the Level 1 data cache so the op field is coded
with a value of 0x9. The first two bits are 2°b01 for the L1 data cache, and the operation code for Index Store
tag is encoded as 3’b010 in bits two, three and four.

next dcache tag:

cache 0x9, 0($14) # Index Store tag Cache opt

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

The index type of operation can be used to address a byte in the cache in a specific way of the cache. This is done by
breaking down the virtual address argument stored in the base register of the Cache instruction into several fields.

Bits 14:0 of the Cache Instruction
14 13 12 5 4 0

Way Page Index | Byte Index

The size of the index field varies according to the size of a cache way. The larger the way, the larger the index. In the
table above, the combined byte and page index is 13 bits because each way of the cache is 8K. The way number is
always the next two bits following the index.
The code does not explicitly set the way bits. Insteadit just increments the virtual address by the cache line sizeso the
next time through the loop the Cache instruction will initialize the next set in the cache. Eventually this increment
has the effect of setting the cache to index 0 of the next way in the cache because it overflows into the way bits.
At this point all the code needs to do is loop maintenance. First decrement the loop counter (12/t4).

add s12, -1 # Decrement set counter
Then test it to see if it has gotten to zero and if not branch back to label one.

bne $12, $0, next dcache tag # Done yet?

The instruction in the branch delay slot, which is always executed, is used to increment the virtual address (14/t6) to
the next set in the cache. (11/t3) holds the line size in bytes

add $14, $11 # Increment line address by line size
At this point the Dcache initialization is done.
done dcache:

jr r3l1 return addr
nop

END (init dcache)

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 257

258

4.3.7 Data Cache CPO Register Interface

The P6600 core uses the following CPO registers for data cache operations.

Table 4.6 Data Cache CPO Register Interface

CPO Registers CPO number
Configl 16.1
CacheErr 27.0
DTagLo 28.2
DDatalLo 28.3

4.3.7.1 Configl Register (CPO register 16, Select 1)

The Configl.pg field (bits 15:13) indicates the number of sets per way in the data cache. The P6600 L1 data cache sup-

ports 256 sets per way, which is used to configure a 32 KB cache, or 512 sets per way, which is used to configure a 64
KB cache.

The Configl.p, field (bits 12:10) indicates the line size for the data cache. The P6600 L1 data cache supports a fixed
line size of 32 bytes as indicated by a default value of 4 for this field.

The Configl.pa field (bits 9:7) indicates the set associativity for the data cache. The P6600 L1 data cache is fixed at 4-
way set associative as indicated by a default value of 3 for this field.

For more information, refer to Section 2.2.1.2, "Device Configuration 1 — Configl (CPO Register 16, Select 1)".

4.3.7.2 CacheErr Register (CPO register 27, Select 0)

The CacheErr register is a read-only register used to determine the status of a cache error. The upper two bits of this
register (CacheErr.ggec) indicate whether the contents of the register pertain to an L1 instruction cache error, an L1

data cache error, a TLB error, or an external error.

For more information, refer to Section 2.2.5.11, "Cache Error — CacheErr (CP0O Register 27, Select 0)".

4.3.7.3 L1 Data Cache TagLo Register (CPO register 28, Select 2)

These registers are a staging location for cache tag information being read/written with cache load-tag/store-tag
operations.

In a multi-core system, the D-cache has four logical memory arrays associated with this DTagLo register.
* The tag RAM stores tags and other state bits with special attention to the needs of the CPU.

e The duplicate tag RAM also stores tags and state, but is optimized for the needs of interventions. Both of these
arrays are set-associative (4-way).

* The Dirty RAM and duplicate Dirty RAM store the dirty bits (indicating modified data) for CPU and interven-
tion uses, and each combine their ways together in a single entry per set.

* The WS RAM combines the dirty and LRU data in a single entry per set. Accessing these arrays for index cache
loads and stores is controlled by using three bits in the ErrCtl register to create modes that allow the correct
access to these arrays.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Note that the P6600 core does not implement the DTagHi register.

The interpretation of this register changes depending on the settings of ErrCtlysr ErrCtlpyy and ErrCtlgpg

For more information, refer to Section 2.2.5.5, "Level 1 Data Cache Tag Low — DTaglLo (CPO Register 28, Select
2)".

4.3.7.4 L1 Data Cache Datal o Register (CPO register 28, Select 3)

In the P6600 core, software can read or write cache data using a cache index load tag/index store data instruction.
Which word of the cache line is transferred depends on the low address fed to the cache instruction.

Note that the P6600 core does not implement the DDataHi register.

For more information, refer to Section 2.2.5.6, "Level 1 Data Cache Data Low — DDatal.o (CP0O Register 28, Select
3)".

4.4 L1 Instruction and Data Cache Software Testing

Typically, the cache RAM arrays will be tested using BIST. It is, however, possible for software running on the pro-
cessor to test some of the arrays (prediction arrays are not accessible through software). Of course, testing of the I-
cache arrays should be done from an uncacheable space with interrupts disabled in order to maintain the cache con-
tents. There are multiple methods for testing these arrays in software, some of which are described in the following
subsections.

4.4.1 L1 Instruction Cache Tag Array

The L1 instruction cache tag array can be tested via the Index Load Tag and Index Store Tag varieties of
the CACHE instruction. An Index Store Tag writes the contents of the ITagLo and ITagHi registers into the
selected tag entry. An Index Load Tag reads the selected tag entry into the ITagLo and ITagHi registers.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in the ErrCtl
register. This will override the parity calculation and use the parity bits in ITagLo and ItagHi as the parity values.

4.4.2 L1 Instruction Cache Data Array

This array can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction. The
Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

The Index Store Data instruction can optionally update the corresponding precode field in the tag array. The precode
bits in the array are updated if the PCD bit in the ErrCtl register is zero when executing the Index Store Data instruc-
tion. The precode value is generated by the hardware automatically if the PCO bit in the ErrCtl register is zero. Other-
wise, the corresponding precode value (PREC_01/PREC_23/PREC 45/PREC_67) from the ITagHi register is used in
updating the tag array.

The parity bits in the array can be tested by setting the PO bit in the ErrCtl register. This will use the Pl field in ErrCtl
instead of calculating the parity on a write.

The rest of the data bits are read/written to/from the IDatalLo and |DataHi registers.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 259

260

4.4.3 L1 Instruction Cache Way Select Array

The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By setting the
WST bit in the ErrCtl register, these operations will read and write the WS array instead of the tag array.

4.4.4 L1 Data Cache Tag Array

The L1 data cache tag array can be tested via the Index Load Tag and Index Store Tag varieties of the
CACHE instruction. An Index Store Tag writes the contents of the DTaglLo register into the selected tag entry.
An Index Load Tag will read the selected tag entry into the DTagLo register.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in the ErrCtl
register. This will override the parity calculation and use the parity bits in DTagLo as the parity values.

4.4.5 Duplicate Data Cache Tag Array

This array can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. In order to
access the duplicate tags, the WST and SPR bits of ErrCtl should both be set. Index Store Tag will write the contents
of the TagLo register into the selected tag entry. Index Load Tag will read the selected tag entry into the TagLo. In
normal mode, with WST and SPR cleared, IndexStoreTags will write into both the primary and duplicate tags, while
IndexLoadTags will read the primary tag.

If parity is implemented, the parity bit can be tested as a normal bit by setting the PO bit in the ErrCtl register. This
will override the parity calculation and write P bit in TagLo as the parity value.

4.4.6 L1 Data Cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to set
the initial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to the
PAs that are resident in the cache. The value can then be read using LW instructions and compared to the expected
data.

The parity bits can be implicitly tested using this mechanism. The parity bits can be explicitly tested by setting the PO
bit in ErrCtl and using Index Store Data and Index Load Tag CACHE operations. The parity bits (one bit per byte) are
read/written to/from the PD field in ErrCtl. Unlike the I-cache, the DataHi register is not used, and only 32b of data is
read/written per operation.

4.4.7 L1 Data Cache Way Select Array

The dirty and LRU bits can be tested using the same mechanism as the I-cache WS array.

4.4.8 L1 Data Cache Dirty Bit Array

The testing of this array is also done through Index Load Tag and Index Store Tag CACHE instructions. By setting
the DYT bit in the ErrCtl register, these operations will read and write the dirty array instead of the tag array.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

45 L2 Cache

The L2 cache (which is part of the Coherence manager) processes transactions that are not serviced by the L1 cache.
L2 is generally larger than the L1 cache, but slower, due to the use of higher-density memories. The L2 communi-
cates with external memory via an Open Core Protocol (OCP) interface.

The L2 also communicates with the CPU(s) through the performance counter interface, error reporting interface, and
other side band signals. In addition to these interfaces, the L2 has the clock, reset, and bypass signals as well as some
static input signals which can be used to configure it for different operating modes.

45.1 L2 Cache General Features

» 7-stage pipeline. (Optional 8th stagel for pipelined memory arrays.)
e 40-bit address paths and 256-bit internal data paths

* Associativity: 8-way

¢ Cachesize: 512 KB, 1 MB, 2 MB, 4 MB, 8§ MB

* Line Size: 32 bytes (4 doublewords)

* Locking Support: Yes

* Replacement Algorithm: Pseudo LRU for 8-way

* Write policy: Write Back

* Write miss allocation policy: No-Write-Allocate and Write-Allocate

* Error Checking and Correction (ECC): 2-bit error detection and 1-bit error correction covering the tag and data
arrays. 1-bit error detection covering the WS array

* Maximum read misses outstanding: 15

e Out-Of-Order processing (OOO): Yes

* Coherency: Non-coherent

* 256-bit or 128-bit OCP SData/MData width on memory-side OCP interface.

* OCP Burst Size on the memory interface: 1 or 2 with 128-bit OCP data width, 1 with 256-bit OCP

* Bypass Mode Support: In bypass mode, all processor requests are routed to the system. This mode is used only
for debug purposes and should not be used during normal operation.

* Multi-cycle Data Rams: 0, 1, 2, or 3 stalls can set Data RAM access times to 1, 2, 3, or 4 clocks.
e Multi-cycle Tag Rams: 0, 1, 2, or 3 stalls can set Tag RAM access times to 1, 2, 3, or 4 clocks.

* Multi-cycle Way-Select Rams: 0, 1, 2, or 3 stalls can set the Way-Select RAM access times to 1, 2, 3, or 4 clocks.

1. Build time option. The customer must choose this option if they are using pipelined RAM’s in the wrappers instead of stan-
dard RAM cells (that are not pipelined in this way).

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 261

262

* Endianness: Independent of endianness

Table 4.7 L2 Cache Attributes

Attribute With Parity
Size 512 KB, 1 MB, 2 MB, 4 MB, or § MB
Line Size 32-byte
Number of Cache Sets 2048, 4096, 8192, 16384 of 32768
Associativity 8 way

In the table above, the associativity of the L2 cache is fixed at 8 ways. As a result, changes to the number of sets per
way and the line size determine the overall size of the L2 cache. Table 4.8 shows the list of possible L2 cache config-
urations.

Table 4.8 Valid Cache Configurations

Line Size Sets per Way Number of Ways L2 Cache Size
32 bytes 2048 8 512 KBytes
32 bytes 4096 8 1 MByte
32 bytes 8192 8 2 MByte
32 bytes 16384 8 4 MByte
32 bytes 32768 8 8 MByte

45.2 OCP Interface

In the P6600 core, the L2 cache is integated into the CM2. This integration improves performance by eliminating the
OCP interface that originally connected the L2 cache to the CM, or the L2 cache to the CPU depending on configura-
tion. The OCP interface between the CM2 and the memory is programmable for widths of either 128-bit or 256-bit
and has a fixed 64-byte line size. This is shown in Figure 4.4.

Figure 4.4 .OCP Interface Between CM2 and Memory

Coherence Manager

L2 Cache

128 bits or
256 bits

Main Memory

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

4.5.3 L2 Replacement Policy

The P6600 core uses a pseudo-LRU replacement algorithm. The system memory configuration does not affect the
replacement policy.

4.5.4 L2 Allocation Policy

The L2 cache controller always allocates cacheable reads issued by a core. A cacheable write (such as an L1 write-
back) issued by a core is never allocated in the L2 cache. Cacheable reads and writes from the IOCU may or may not
be allocated into the L2, depending upon signals driven with the request by the IO Subsystem.

4.5.5 Write-Through vs. Write-Back

Write-through and write-back operations are both supported. The L2 decodes MReqlnfo[2:0] fields and determines
which way to handle the write data.

When a write hits in the L2 cache, the dda is written into the L2 cache, and alsosent to the main memory when it was
write-through type (MReqInfo[2:0] = 0).

When a write misses, the no-write-allocation policy is employed in most cases. That is, the write data is forwarded to
the main memory without updating the L2 cache contents. However, for the write-back type write with full line data,
usually resulting from the L1 D-cache eviction, the L2 supports write-allocate on miss as well as the normal no-allo-
cate policy. This is controlled by the value on MReqInfo[4] that is set by the OCP requester. Please refer to the
Section 4.5.4 “L2 Allocation Policy” for more details.

45.6 Cacheable vs. Uncacheable vs. Uncached Accelerated

The L2 cache supports cacheable and uncacheable accesses. Cacheable operations access the cache memories,
whereas an uncached access bypasses the L2 cache arrays and is sent directly to the main memory.

Uncached accelerated accesses are treated the same way as non-accelerated uncached accesses. This CCA enables
uncached transactions to better utilize bus bandwidth via burst transactions.

4.5.7 Cache Aliases
The L2 cache is physically addressed and physically tagged. It is not subject to virtual aliasing.

45.8 Performance Counters

The L2 tracks and reports to core the number of the following events.
* the number of cached accesses
* the number of misses
* the number of write backs
* the amount of cycles the L2 is held due to misses

* the number of single bit errors that were corrected

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 263

* L2 pipeline utilization — Counts the number of starts into the TA stage of the L2 pipeline

* L2 hit qualifier — Counts different types of L2 cache hits and misses, crossed with the instruction being
requested

4.5.9 Sleep Modes

The L2 cache contains two basic sleep modes:
* Instruction controlled sleep mode using the WAIT instruction
* Internal dynamic sleep mode

4.5.9.1 Sleep Mode Using the WAIT Instruction

In addition to slowing down or stopping the primary cm_clk input, software may initiate low-power Sleep Mode via
the execution of the WAIT instruction in the processor.

When the processor enters into Sleep Mode, it will assert SI_Sleep. The SI_Sleep drives the SI_L2_Sleep input to the
L2. The L2 then enters a low-power state and asserts the L2_Sleep output once all outstanding bus activity has com-
pleted. Most clocks in the L2 will be stopped, but a handful of flops will remain active to sense the wake up call from
the processor, which is the deassertion of SI_L2_Sleep.

Power is reduced since the global clock goes to the vast majority of flops within the L2, which are held idle during
this period. There is no bus activity while the L2 is in sleep mode, so the system bus logic which interfaces to the L2
could be placed into a low power state as well.

When the L2 samples SI_L2_Sleep asserted and there is no activity in the L2, the L2 will assert L2_Sleep two cm_clks
later. Any activity in the L2 will delay the start of L2_Sleep assertion.

When SI_L2_Sleep is deasserted, the L2 will deassert L2_Sleep and assert PB_SCmdAccept two clocks later. If there
is a valid PB_MCmd waiting at the L2 pins at the cm_clk, then the following cm_clk will have a coincident internal
12_clk edge (clocks are now enabled) and the command that was accepted is launched into the pipeline as indicated by
inst_ta. The following clock after that will have an 12_tram_clk that initiates the tag ram access for that command.
Thus, there is a four cm_clk latency from SI_L2_Sleep deassertion to the start of a tag ram access.

4.5.9.2 Internal Dynamic Sleep Mode

When there is no activity at the input pins of the L2 cache and all pending transactions from the CPU are completed,
the L2 cache will eventually empty. When this occurs, the L2 cache will turn off the 12_clk signal after some small
delay. Only data of value in the CMOS SRAM’s retains state.

Beside the WAIT instruction induced sleep mode, the L2 is also equipped with the dynamic global clock gating.
When there are no pending transactions in the L2 cache, the L2 shuts down the majority of internal clocks to save
power. While the most part of the L2 cache can be turned off, the minimum required logic on the core-side OCP inter-
face remain active. Thus, the L2 cache can accepta new OCP request from core at any time, and this will wake up the
whole L2 cache controller.

4.5.10 Bypass Mode

Note: Bypass mode is strictly a debug feature and is not intended to be a normal mode of operation. It was not
intended for active switching during normal operation.

264 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Bypass mode is a test/bringup feature that causes the L2 cache to forward all requests received from either the core or
the Coherency Manager to the OCP system interface to main memory. Entering or exiting from Bypass Mode other
than at reset requires flushing of the L2 cache while running from uncached memory to restore the L2 cache state to a
stable state. In bypass mode, all requests are forwarded to the system as received including L2 CACHE instructions
and SYNCs.

4.5.11 Reduced L2 Hit Latency

The CM2 integrates the CM and L2 cache into a single, more tightly-coupled component, providing reduced L2 hit
latency. Table 4.9 provides the latencies for a read request from a P6600 core to an idle CM2.

* The system is idle prior to this request

* The L2 cache is configured with no L2 Tag RAM or Data RAM stalls
* The L2 is configured with ECC

* L2-to-memory clock ratio is 1:1

* The L2 is configured with non-pipelined Data RAM’s

Table 4.9 CM2 Read Latencies (in core clock cycles)

Request CCA Cache Hit/Miss CM2

L1 Miss/L2 Hit 11
Coherent :
(CWB, CWBE) L1 Hit 15
L1 Miss/L2 Miss 14
Cached/Non-coherent L2 Hit 11
(WB) L2 Miss 15
Uncached (UC) - 12
GCR Read - 8
Coherent Upgrade Intervention Response 11
of SHARED

4.5.12 L2-only Sync

The CM2 adds the ability to issue a barrier-sync to the L2 without executing a SYNC instruction, thus reducing the
latency incurred for the sync. The L2-only sync provides a mechanism to guarantee that a uncached request does not
pass previous cached requests in the L2 pipeline. For example, the L2-only SYNC can be used between a L2 HitWB
cacheop and a subsequent uncached write to ensure that the uncached write does not pass the writeback from the L2.
The following sequence could be used to flush a cache line from the L1 and L2 and then provide a sentinel to a con-
suming device as follows:

L1HitWB (flush L1l data to L2. will be globalized to all cores if coherent)
L2HitWB (flush L2 data to memory. CM2 ensures this does not pass the L1 HitWB)
L2-only SYNC (ensures subsequent uncached write does not pass L2HitWB)
uncached Store (sentinel to consuming device)

consuming device receives sentinel and reads memory

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 265

The L2-only sync is achieved by executing an Uncached store to an address that maps to the address region specified
by the CM2’s GCR_L2 ONLY_SYNC BASE register. When the L2-only SYNC write is ready to be issued to the L2
pipeline the following actions occur:

1) Stop issuing new L2 requests until the L2 pipeline is empty and eviction queue is empty
2) The L2-only sync request is dropped and subsequent L2 requests continue.
Notice that the the L2-only sync does not ensure any ordering in the coherent portion of the CM2.

The CM_L2 ONLY SYNC EN in bit 0 of the GCR_L2 ONLY SYNC BASE register must be set to a 1 for this
feature to be enabled. The address match is performed on a 4KB boundary. An uncached write request address
[31:12] that matches the address [31:12] in the GCR_L2 ONLY SYNC BASE will cause the CM2 to treat the
uncached write request as an L2 only Sync.

The GCR_L2 ONLY SYNC BASE register is programmed through the Global Control Block Register Map located
at offset 0x0070.

45.13 L2 Cache Initialization

The L2 cache controller contains minimal hardware initialization logic. It normally relies on software to fully initial-
ize the L2 arrays. The registers used to support cache initialization are described in Section 4.5.14, "L2 Cache CP0
Interface". For additional information, refer to the CPO Registers chapter of this manual.

The L1 data cache must be initialized during power-up or reset in order to place the lines of the cache in a known
state. This is accomplished via the cache initialization routine, which is normally part of the boot code. For experi-
enced user’s, a sample boot code is shown in the following subsection.

4.5.13.1 init_l2u Cache Initialization Routine

The following assembly provides an example initialization routine for the L2 cache.

LEAF (init 12u)
Use CCA Override to allow cached execution of L2 init.
Check for CCA Override Enable by writing a one.
Iw r4_temp_data, 0x0008(r22_gcr_addr) # Read GCR_BASE register
i r7_temp_mark, O0x50 # CM_DEFAULT_TARGET Memory
CCA Override Uncached enabled
ins r4_temp data, r7_temp_mark, 0, 8
sw r4_temp_data, 0x0008(r22_gcr_addr)
Iw r4_temp_data, 0x0008(r22_gcr_addr) # GCR_BASE
ext r4_temp_data, r4_temp_data, 4, 1 # Extract CCA _Override_Enable
bnez r4 temp _data, done_I2 # Skip if CCA Override is implemented.
nop
b init_12u
nop
END(init_I12u)

266 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

4.5.13.2 init_I2c Cache Initialization Routine

The code in this function will be called from start.S after the L1 caches have been initialized. It will check to see if the
core implements CCA Override. If it does, it will call the code to initialize the L2 cache.

LEAF (init_12c)

Skip cached execution if CCA Override is not implemented.
If CCA override is not implemented the L2 cache would have already
been initialized when init 12u was called.

lw r4 temp data, 0x0008(r22 gcr addr) # Read GCR_BASE

bnez rlé _core num, done 12 # Only done from core O.

ext r4 temp data, r4 temp data, 4, 1 # CCA Override Enable
begz r4 temp data, done 12

nop

END (init 12c)

4.,5.13.3 init_L2u Initialization Routine Details
This section provides a detailed description of each line of code in the init_12u initialization routine.

The L2 cache is a system resource used by all cores in the system. Initialization of the L2 cache is done only by Core
0, because it only needs to be done once. The initialization of the L2 cache can be time consuming depending on its
size. For example, a 256 KByte cache initializes quicker than an 8 MB cache.

The L2 cache initialization code executes faster if it is being run out of the instruction cache, so ideally the L2 initial-
ization should be done after the L1 instruction cache in core 0 hasbeen initialized. The instruction cache is a per-core
resource and not initialized in the system initialization section of the code. Therefore, to be efficient and run the L2
cache initialization code out of the I-cache, the boot code tries to put off L2 cache initialization until the core 0
resources have been initialized. This can only be done if the L2 cache can be disabled before other cores are released
to run this boot code. Otherwise there is a danger that other cores will use the L2 cache before it has been initialized
by core 0.

The CCA override feature controls the cache attributes for the L2 cache. It allows for the disabling of the L2 cache by
enabling the CCA override and setting the CCA to uncached. The CCA override works along with the L2 cache
implementation.
The init_12u function tries to enable the CCA override and set the L2 cache to uncached in the GCR_BASE register,
thus disabling it. On systems that do not support CCA override, writes to the CCA override field have no effect, and
reading back the GCR_BASE register will not show the CCA override being set.
The code reads the GCR Base register.

lw r4 temp data, 0x0008(r22 gcr addr) # GCR_BASE
The next 3 lines of code are used to enable CCA Override and set the L2 cache CCA to uncached.

1li r7 temp mark, 0x50 # CM_DEFAULT TARGET Memory

CCA Override Uncached enabled

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 267

268

ins r4 temp data, r7_ temp mark, 0, 8
sw r4 temp data, 0x0008(r22 gcr addr)

Now the code reads back the GCR_BASE register. If the CCA override bit is set, it means the code above worked,
and the L2 cache is set to uncached. Inthis case, the code skips the initialization for now. The routine will be recalled
later once the code isexecuting out of the L1 instruction cache. If nat, the code branches to the init_12 function, which
initializes the L2 cache.

lw r4 temp data, 0x0008(r22 gcr addr) # GCR_BASE

ext r4 temp data, r4 temp data, 4, 1 # CCA Override Enable

bnez r4 temp data, done 123 # Skip if CCA Override is implemented.
nop

b init 12

nop

END (init_12u)

4.,5.13.4 init_L2c Initialization Routine Details

This section provides a detailed description of each line of code in the init_12c¢ initialization routine. The code in this
function is called from the start.S function after the L1 caches have been initialized. It checks to see if the core imple-
ments CCA Override. If it does, it calls the code to initialize the L2 cache.

In Section 4.5.13.3 the code also checks to see if CCA override was implemented, If it was not, then it initialized the
L2 cache while the code was executing in uncached mode, so there is no need to do it again here.

LEAF (init 12c)
Skip cached execution if CCA Override is not implemented.

If CCA override is not implemented the L2 cache
would have already been initialized when init 12u was called.

lw r4 temp data, 0x0008(r22 gcr addr) # GCR_BASE
bnez rlé core num, done_ 12 # Only done from core 0
ext r4 temp data, r4 temp data, 4, 1 # CCA Override Enable

begz r4 temp data, done_ 123 nop

END (init_12c)

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

45.14 L2 Cache CPO Interface

The P6600 core uses different CPO registers for L2 cache operations.

Table 4.10 L2 Cache CPO Register Interface

CPO Registers CPO number
Config2 16.2
ErrCitl 26.0
CacheErr 27.0
L23TagLo 28.4
L23DatalLo 285
L23DataHi 29.5

This section describes the base processor core CPO registers that support the L2 cache. A complete description and bit
assignments for each register listed is described in Chapter 2, CPO Registers.

4.5.14.1 Config2 Register (CPO register 16, Select 2)

Asserting Config2.; ,g (bit 12) enables the bypass-mode of the L2 cache. This bit is reflected on theL2_Bypass output
from the core. When L2 goes into bypass-mode, L2 responds by asserting L2_Bypassed output, and the value or
L2_Bypassed is returned when Config2. »g is read by software. Thus, reading this Config2., ,g bit does not read back
what was written: it reflects the value of a signal sent back from the L2. The feedback signal, L2_Bypassed, will
reflect the previously written value with some implementation and clock ratio dependent delay.

Changing the value of Config2.| ,g field in the middle of the normal operation may cause an unwanted loss of an OCP
transaction in the L2 cache. For the safe transition into the L2 bypass-mode, an externalized SYNC before the MTCO
Config2.| o5 is necessary to make sure all the pending transactions in L2 are completed. And, these instructions should
run from the uncached space. It might be also a good idea to check if L2 is really in bypass-mode by reading the
Config2. ,p field before moving onto the next instructions.

The Config2.gg field (bits 11:8) indicates the number of sets per way in the data cache. The P6600 L2 cache supports
from 512 up to 32768 sets per way, which is used to configure cache sizes from 256 KBytes to 8 MBytes.

The Config2.q field (bits 7:4) indicates the line size for the L2 cache. The P6600 L2 cache can be configured for a 32-
byte or 64 byte line size.

The Config2.g field (bits 3:0) indicates the set associativity for the L2 cache. The P6600 L2 cache is fixed at 8-way
set associative as indicated by a default value of 4 for this field.

For more information, refer to Section 2.2.1.3, "Device Configuration 2 — Config2 (CP0 Register 16, Select 2)".
4.5.14.2 Error Control Register (CPO register 26, Select 0)
ErrorControl.L2P (bit 23) is used to enable L2 ECC checking and correction. This bit is read-only if the L2 has not

been built with ECC/Parity support. Specific parity support is enabled using both L2P and ErrorControl.PE (bit 31) as
described in Table 4.11. L2P is also reflected on the L2_ECCEnable output from the core.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 269

270

These encodings were chosen such that legacy code which is unaware of L2P, will by default enable L2 ECC logic
when it enables L1 parity. For more information, refer to Section 2.2.5.10, "ErrCtl (CPO Register 26, Select 0)"

Table 4.11 L2_ECC_Enable

PE L2P | L2_ECCEnable
1 0 1
1 1 0
0 0 0
0 1 1

4.5.14.3 Cache Error Register (CPO register 27, Select 0)

When the L2 detects an uncorrectable errar, CacheError.EC is set, identifying the exception as an L2 error The Cache
Error register stores information such as the cache way where the error was detected, the cache index of the double word
in which the error was detected, the cache level at which the error was detected, if the tag RAM was involved, etc.

For more information, refer to Section 2.2.5.11, "Cache Error — CacheErr (CPO Register 27, Select 0)".

4.5.14.4 L23TagLo Register (CPO register 28, Select 4)

The L23Taglo register contains the contents of the L2 tag array at the location accessed by the L2 Index Load Tag
cache-op. It is also used as the source register for the L2 Index Store Tag cache-op.

For more information, refer to Section 2.2.5.7, "Level 2/3 Cache Tag Low — L23TagLo (CPO Register 28, Select
4)".

4.5.14.5 L23DataHi Register(CPO register 29, Select 5) / L23Datalo Register(CPO register 28, Select 5)

For the L2 Index Load Tag cache-op, L23DataHi and L23Datal.o hold the contents of the doubleword from the L2
data array at the indexed location. (L23DataHi holds the most-significant word and L23Datalo holds the least-signif-
icant word). For the L2 Index Load WS cache-op, L23DataHi and L23Datal.o each hold the ECC parity of the dou-
bleword from the L2 data array at the indexed location.

These registers are also used for the source data for the Index Store Data cache-op. Finally, L23Datalo is used as the
data source for the ECC to be written by the Index Store ECC cache-ops. For more details on the data returned by the
L2 on a Index Load Tag/Data cache-op, please refer to Section 4.6 “The CACHE Instruction”.

For more information on the L23Datalo register, refer to Section 2.2.5.8, "Level 2/3 Cache Data Low — L23Datal.o
(CPO Register 28, Select 5)". For more information on the L23DataHi register, refer to Section 2.2.5.9, "Level 2/3
Cache Data High — L23DataHi (CPO Register 29, Select 5)".

4.5.15 L2 Cache Operations

Cache-ops are used for control operations such as initialization, invalidation, eviction, etc. A brief description of the
cache-ops implemented by the L2 are given below:

Index Writeback Invalidate: If the state of the cache line at the specified index is valid and dirty, the line is written
back to the memory address specified by the cache tag. After that operation is completed, the state of the cache line is
set to invalid. If the line is valid but not dirty, the state of the line is set to invalid.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Index Load Tag: The tag, valid, lock, dirty, parity and LRU bits for the cache line at the specified index are read.
The doubleword indexed in the data RAM is also read.

Index Load WS: The LRU, dirty, and dirty parity bits for the cache line at the specified index are read. ECC for the
doubleword indexed in the data RAM is also read.

Hit Invalidate: If the cache contains the specified address, the state of that cache line is set to invalid.

Hit Writeback Inv: If the cache contains the specified address and it is valid and dirty, the contents of that line are
written back to main memory. After that operation is completed, the state of the cache line is set to invalid. If the line
is valid but not dirty, the state of the line is set to invalid.

Hit Writeback: If the cache contains the specified address and it is valid and dirty, the contents of that line are writ-
ten back to main memory. After the operation is completed, the state of the line is left valid, but the dirty state is
cleared.

Index Store Tag: Write the tag for the cache line at the specified index.
Index Store WS: Write the WS array for the cache line at the specified index.

Fetch And Lock: If the cache contains the specified address, lock the line. If the cache does not contain the specified
address, refill the line from main memory and then lock the line.

Index Store Data: Write the data and ECC for the cache line at the specified index. Proper ECC is generated for the
written data and written into the ECC field.

Index Store ECC: Write the ECC for the cache line at the specified index.

Most CPO0 instructions are used rarely, in code which is not timing-critical. But an OS which has to manage caches
around I/O operations or otherwise may have to sit in a tight loop issuing hundreds of cache operations at a time, so
performance can be important.

4.,5.15.1 Bus Transaction Equivalence

When the base processor executes an L2 CACHE instruction, the operands and as well as data to be written to CP0
registers is transferred to and from L2. Index Load Tag and Index Load WS generate burst read transactions. All other
L2 cache-ops generate single write transactions.

For 64 byte line configurations, bit 5 (the LSB of the Index field) is the selector to which 32 byte half of the 64 byte
line is targeted (essentially it becomes an additional DW bit). For tag and ws type cache-ops, this bit is disregarded
and cache-ops with either value of bit 5 impact the exact same tag or ws entry. For data type cache-ops, bit 5 selects
which half of the 64 byte cache line is being accessed.

Figure 4.5 Index Encoding for PB_MAddr (1MB, 8-way)
31 23 22 20 19 5 4 3 2 0

Unused Way Index DW | Unused

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 271

4.5.15.2 Details of Cache-ops

Table 4.12 indicates the operation and behavior of the L2 cache for each cache-op.

Table 4.12 Cache-ops

Effective
Address
Cache-op Operand Type Operation
Index WB inv/ INDEX If the state of the cache line at the specified index is valid and dirty, the line is written
Indx Inv back to the memory address specified by the cache tag. After that operation is completed,
(OPCODE: 0) the state of the cache line is set to invalid.
If the line is valid but not dirty, the state of the line is set to invalid
The LRU bits are updated to Least-recently-used.
The dirty bits are updated to clean for that way.
Index Load Tag INDEX The tag, valid, lock, and parity fields from the tag array for the cache line at the specified
(OPCODE: 1) index are written into L23Taglo. Furthermore, the dirty bit from the WS array corre-
ErrCtLWST =0 sponding to the specified index is also written into L23TagLo. (First beat of return data)
For the first beat of return data, the two halves of the 64-bit data bus are identical.
The indexed doubleword is written into {L23DataHi, L23Datal.o}. (2nd beat of return
data)
ErrCtl.PO is treated as a don’t care
The LRU bits are unchanged
Index Load WS INDEX The dirty, dirty parity, and LRU fields from the WS array for the cache line at the speci-
(OPCODE: 1) fied index are written into L23TagLo. (First beat of return data)
ErrCtLWST =1 For the first beat of return data, the two halves of the 64-bit data bus are identical.
The WS data at the indexed location is written into L23TagLo. (First beat of return data)
The indexed doubleword’s ECC is written into {L.23DataHi, L23Datal.o}. (2nd beat of
return data)
ErrCtLPO is treated as a don’t care
The LRU bits are unchanged
Data RAM:
The DW ECC to be read in the line is determined by PB_MAddr[4:3]
Index Store Tag INDEX The tag, valid, and lock fields in the Tag array at the indexed location are written from
(OPCODE: 2) L23TagLo.
ErrCtLWST =0 If ErrCtl.PO==1, the parity and total parity fields in the Tag array at the indexed location
are written from L23TagLo.
If ErrCtl.PO==0, the parity and total parity fields in the Tag array at the indexed location
are written with hardware generated values.
If valid==1, the LRU bits in the WS array are updated to make the indexed way most-
recently-used. If valid==0, the LRU bits are updated with least-recently-used.
If valid==1, the dirty bit in the WS array at the indexed location is written from
L23Taglo.
If valid==0, the dirty bit in the WS array at the indexed location is cleared.
The dirty parity bit in the WS array at the indexed location is written with the correct
hardware generated values.
Index Store WS INDEX The dirty and LRU fields for all 8 ways of the WS array at the indexed location are writ-
(OPCODE: 2) ten from L23Taglo
ErrCtLWST =1 If ErrCtl.PO==1, the dirty parity fields for all § ways of the WS array at the indexed loca-

tion are written from L23TaglLo
If ErrCtl.PO==0, the dirty parity fields for all 8 ways of the WS array at the indexed loca-
tion are written with hardware generated values

272

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 4.12 Cache-ops (continued)

Effective
Address
Cache-op Operand Type Operation
Index Store Data INDEX The doubleword in the dataarray at the indexed location and doubleword offset is written
(OPCODE: 3) from {L23DataHi, L23Datal.o} regardless of the PB_MDataByteEn value.
ErrCtLWST =0 The Parity/ECC field in the data array at the indexed location and doubleword offset is
written with a hardware generated value.
The LRU bits in the WS array are updated to make the indexed way most-recently-used.
Index Store ECC INDEX The Parity/ECC field in the data array at the indexed location and doubleword offset is
(OPCODE: 3) written from L23Datalo[7:0].
ErrCtLWST =1 The LRU bits in the WS array are updated to make the indexed way most-recently-used.
HIT Inv ADDRESS If the address is not contained in L2, nothing happens.
(OPCODE: 4) If the address hits in L2, it is invalidated and the dirty bit is cleared.
If any arrays are written, the appropriate parity fields are updated by hardware.
HIT WB Inv ADDRESS If the address is not contained in L2, nothing happens.
(OPCODE: 5) If the address hits in L2, and it is dirty, the line is written back to main memory. It is then
invalidated and the dirty bit is cleared.
If the address hits in L2, and it is clean, it is invalidated.
If any arrays are written, the appropriate parity fields are updated by hardware.
HIT WB ADDRESS If the address is not contained in L2, nothing happens.
(OPCODE: 6) If the address hits in L2, and it is dirty, the line is written back to main memory and the
dirty bit is cleared.
If the address hits in L2, and it is clean, nothing happens.
If any arrays are written, the appropriate parity fields are updated by hardware.
Fetch and Lock ADDRESS If the address is not contained in L2, the line is refilled. The refilled line is then locked in
(OPCODE: 7) the cache. The LRU bits in the WS array are updated to make the fetched way most-

recently-used. The Dirty bit and the dirty parity bit are set to clean.
On a hit the line is locked and the operation retires. The LRU bits or the dirty bits are not
affected.

45.15.3 Syncin L2

A Sync operation can be used to guarantee ordering of transactions. The L2 ensures that all transactions preceding a
Sync request will be ordered in front of transactions received after the Sync request. Within the L2 only requests are
ordered, not responses, i.e., there is no guarantee of the ordering between a read response vs. the Sync.

One example of the use of a Sync involves cache operations. Normally, the L2 does not guarantee the ordering
between a cache operation, such as a Hit-Writeback-Invalidate, vs. an subsequent uncached request. If the software

wants to ensure that any writes on the system interface due to the Hit-Writeback-Invalidate will be ordered in front of
a subsequent uncached write, then a Sync must be issued between the cache operation and uncached write. Note that
in order for a core to externalize a Sync request, Config7.gg bit must be set before the sync instruction.

The L2 issues a response to a Sync after all 3 of the following have completed:

* All previous requests have cleared the L2 pipeline

* The L2 has issued all requests to the system interface that are required by previous transactions, such as
uncached requests, cache operations, cache misses, evictions, or previous Syncs.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

273

274

* If the downstream system can take a sync OCP transaction (L2_SyncTxEn=1), it will externalize the sync
transaction to the system once the above criteria has been satisfied. When the Sync response is received
from the system interface, the L2 will return a Sync response to the processor interface.

45.15.4 L2 Cache Fetch and Lock

In the L2 cache, each line in a way can be locked independently. If a line is locked it will not be evicted. Software is
not allowed to lock all available ways at the same cache index, since L2 would be unable to refill any other addresses
at that index.

If the requested address is not contained in the L2 cache, the line is refilled and then locked in the cache. The LRU
bits in the WS array are updated to make the fetched way most-recently-used. The dirty bit and the dirty parity bit are

set to clean.

On a hit the L2 cache line is locked and the operation retires. The LRU bits or the dirty bits are not affected.

4.5.16 L2 Cache Error Management

This section describes parity and bus error support for the L2 cache.

4.5.16.1 Parity Support

If Parity support is selected at build time, and this support is enabled via software by setting the ErrCtl.pg bit in the
Error Control register (CPO register 26, Select 0), then the tag and the data arrays are protected with single-error cor-
rection logic.

The Way Select RAM is protected with single-error detection logic. Correctable errors are not reported to the proces-

sor, but uncorrectable errors are reported to the processor. If Parity support is either not selected at build time or dis-
abled, then no errors are detected on any of the cache arrays.

To perform a single detection the parity bits are placed at 2" locations among the data bits. The bits at different loca-
tions are then grouped together. The grouping is done by analyzing the binary weights of the particular location.

For example, to protect 8 data bits, 4 parity bits are needed which will be placed as below:

Table 4.13 Parity Bit Distribution

BitLocation| 12 |11 [10| 9 | 8 | 7|6 | 5|4 |3 |2 |1
Parity and data bits | d7 | d6 [d5 | d4 | p3 | d3 |d2 | dl | p2|dO | pl | pO

Note that Bit location 0 does not exist.

The binary weight of bit location 3 is 20 and 2”1, which is derived from its binary value 0011b. Therefore, bit loca-
tion 3 falls in group g0 and gl. Similarly, Bit location 11 falls into groups g0, gl and g3.

Parity bit p0 will belong to g0 and its value will is generated such that g0 will have an even parity. Similarly all other
parity bits are generated such that their respective group ends up in even parity.

This sharing of binary weights across groups enables the L2 to determine precisely which data or parity bit was in
error. That is achieved by recreating the parity bits from the data read from the memory and XORing it with the parity
bits read from the memory. The XORed value, or the syndrome, points to the bit in error. Once this error is detected
the L2 corrects it. A value of zero on the syndrome indicates that there was no error in the parity and data bits.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

To achieve double bit error detection an even parity is generated across the parity and data bits, which is termed as the
total parity bit. The total parity bit will be flipped in case of a single bit error, whereas for a double bit error it will
remain the same. The syndrome along with the total parity bit is then used to detect a double bit error.

The WSRAM’s dirty bits are protected, whereas the LRU bits are not. For each dirty bit there is one more bit added
called the dirty parity bit. The value of the dirty parity bit enforces even parity protection.

4,5.16.2 Tag, Data, and WS Array Format
Logical Tag Array Format

The width of the tag in an 8 way 128 MB cache is 18 bits per way. The data array format is as shown in Figure 4.14.

Table 4.14 Logical Tag Array Format for a 8 Way 128 MB Cache

Bit position | 26 [25(24| 23 | 22 | 21 {20 | 19 | 18 | 17 |16| 15 [14|13|12|11|10{9 |8 |7 |6 |54 (3|2 |1
Content | TP | L | V |d17|dl6|dl5|d14|d13|dl2|dll|p4|dl0|{d9|d8|d7|d6|d5|d4|p3|d3|d2|dl|p2|dO0|pl|p0

Where, d0-d17 : Tag

v : Valid bit

L : Lock bit
p0-p4 : parity bits

TP : Total parity bit

For larger caches, the width of the tag reduces. In that case, the upper data bits are ignored from the calculation as
appropriate.

Logical Data Array Format
The data array format is as shown in Figure 4.15.

Table 4.15 Logical Data Array Format

Bit position | 72 | 71..65 | 64 63:33 32| 31:17 |16| 159 |8 | 7.5 4|3 |2|1
Content | TP | [63:57] | p6 [56:26] | p5 | [25:11] |p4| [10:4] |p3 | [3:1] [p2]|[0]|pl |pO

4.5.16.3 Cache Parity Error Handling

The three types of memory arrays in the L2 have an option for parity. If selected, this option provides single bit cor-
rection and double bit detection of the tag rams and data rams.

* The Tag RAM coverage is for each way.
* The Data RAM coverage is for each way and each double-word in each way.

* The Way Select RAM has parity for each dirty bit. A correctable bit failure is corrected and no notification of this
event is present at the L2 pins.

4.5.16.4 Multiple Uncorrectable Errors
This error is reported when more than one uncorrectable error is being reported on the same L2 clock cycle. Since

double-bit Tag RAM errors, double-bit Data RAM error, and parity bit errors in the Way Select RAM are each
reported in different L2 pipeline stages, this assertion indicates that different requests have encountered uncorrectable

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 275

requests. In other words, if a single request suffers all three uncorrectable errors, the error will be reported three
times.

4.,5.16.5 Bus Error Handling

Bus errors are never originated by the L2. However, bus errors may be received from the system on an OCP read
from the L2 to the system. The error is indicated when the read-data is returned back to the L2. The L2 propagatesthe
bus error when returning data to the processor or CM2.

If a bus error is received on a 64-byte burst read to the system, the L2 signals the bus error for the processor read that
originated the request. If the L2 receives a subsequent read to the same 64-byte cache line before all the data has been
received from memory for the previous request, the new request also receives a bus error response.

In general, a bus error reported in a system response due to a processor/CM request is considered to be reporting the
entire cache line as having a bus error. However, if the original request is satisfied before the L2 detects the system

bus error, then the response to the processor/CM will not have a bus error.

There is no capability for signalling bus errors on writes.

276 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

4.6 The CACHE Instruction

The L1 instruction, L1 data, and L2 caches in the P6600 core each support the CACHE instruction, which allows
users to manipulate the contents of the Data and Tag arrays, including the locking of individual cache lines. The
behavior of the CACHE instruction is identical for both the L1 instruction and data caches.

4.6.1 Decoding the Type of Cache Operation

The type of cache operation performed is encoded using a combination of the 5-bit op field of the CACHE instruc-
tion, and selected bits from the ErrCtl register (CPO Register 26, Select 0). In addition to performing operations on the
caches themselves, there are other CACHE operations that are performed on internal memories such as the way selec-
tion RAM and the Dirty Bit RAM. The ErrCtl bits determine the type internal memory where the CACHE operation
will be performed.

The selected bits of the ErrCtl register used to determine the type of CACHE operation are as follows:

e Bit 29, WST: If this bit is set, execution of a cache IndexLoadTag or cache IndexStoreTag instruction
reads or writes the cache’s internal way-selection RAM instead of the cache tags.

e Bit 21, DYT: Setting this bit allows cache load/store data operations to work on the "dirty array" associated with the L1
data cache.

4.6.2 CACHE Instruction Opcodes

Refer to the implementation-specific CACHE instruction at the back of this manual for a list of CACHE instruction
opcodes.

4.6.3 Way Selection RAM Encoding

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the Way Select (WS)
RAM by setting the WST bit in the ErrCtl register. Note that when the WST bit is zero, the CACHE index instruction
accesses the cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an issue,
however, if the WS RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings
for way selection order is shown in Table 4.16.

Table 4.16 Way Selection Encoding, 4 Ways

Selection Order! WS[5:0] Selection Order WS[5:0]
0123 000000 2013 100010
0132 000001 2031 110010
0213 000010 2103 100110
0231 010010 2130 101110
0312 010001 2301 111010
0321 010011 2310 111110
1023 000100 3012 011001
1032 000101 3021 011011
1203 100100 3102 011101

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 277

Table 4.16 Way Selection Encoding, 4 Ways (continued)

Selection Order?! WS[5:0] Selection Order WS[5:0]
1230 101100 3120 111101
1302 001101 3201 111011
1320 101101 3210 111111

1. The order is indicated by listing the least-recently used way to the left and the most-
recently used way to the right, etc.

278 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Chapter 5

Exceptions and Interrupts

The P6600 core receives exceptions from a number of sources, including arithmetic overflows, misses in the transla-
tion lookaside buffer (TLB), I/O interrupts, and system calls. When the CPU detects an exception, the normal
sequence of instruction execution is suspended and the processor enters kernel mode, disables interrupts, loads the
Exception Program Counter (EPC) register with the location where execution can restart after the exception has been
serviced, and forces execution of a software exception handler located at a specific address.

The software exception handler saves the context of the processor, including the contents of the program counter, the
current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be
restored when the exception has been serviced.

Exceptions may be precise or imprecise. Precise exceptions are those for which the EPC can be used to identify the
instruction that caused the exception. For precise exceptions, the restart location in the EPC register is the address of
the instruction that caused the exception or, if the instruction was executing in a branch delay slot (as indicated by the
BD bit in the Cause register), the address of the branch instruction immediately preceding the delay slot. Imprecise
exceptions, on the other hand, are those for which no return address can be identified. Bus error exceptions and CP2
exceptions are examples of imprecise exceptions.

This chapter contains the following sections:

* Section 5.1 “Exception Conditions”

e Section 5.2 “TLB Read Inhibit and Execute Inhibit Exceptions”
* Section 5.3 “FTLB Parity Exception”

* Section 5.4 “Exception Priority”

e Section 5.5 “Exception Vector Locations”

* Section 5.6 “General Exception Processing”

e Section 5.7 “Debug Exception Processing”

* Section 5.8 “Exception Descriptions”

* Section 5.10 “Exception Handling and Servicing Flowcharts”

e Section 5.11 “Interrupts”
5.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that follow it in the pipeline
are cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this
instruction are inhibited.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 279

When the exception condition is detected on an instruction fetch, the CPU aborts that instruction and all instructions
that follow. When the instruction graduates, the exception flag causes it to write various CPO registers with the excep-
tion state, change the current program counter (PC) to the appropriate exception vector address, and clear the excep-
tion bits of earlier pipeline stages.

For most types of exceptions, this implementation allows all preceding instructions to complete execution and pre-
vents all subsequent instructions from completing. Thus, the value in the EPC (or ErrorEPC for errors or DEPC for
debug exceptions) is sufficient to restart execution. It also ensures that exceptions are taken in program order. An
instruction taking an exception may itself be aborted by an instruction further down the pipeline that takes an excep-
tion in a later cycle.

Imprecise exceptions are taken after the instruction that caused them has completed and potentially after following
instructions have completed.

5.2 TLB Read Inhibit and Execute Inhibit Exceptions

The P6600 core supports the following new types of exceptions listed below:
e TLB Execute-Inhibit

¢« TLB Read-Inhibit

The TLB Execute Inhibit exception (TLBXI) is taken when there is a TLB hit during an instruction fetch, the XI bit of
the entry is set, the Valid (V) bit is set, and the PageGraing,¢ bit is set. If the PageGraingc bit is cleared, a TLBL excep-
tion is taken. This type of exception is used by the operating system to prevent execute accesses to a particular page.
Refer to Section 5.8.13 “TLB Execute-Inhibit Exception (TLBXI)” for more information.

The TLB Read Inhibit exception (TLBRI) is taken when there is a TLB hit during a read operation, the RI bit of the
entry is set, the Valid (V) bit is set, and the PageGraing,c bit is set. If the PageGraing,c bit is cleared, a TLBL exception

is taken. This type of exception is used by the operating system to prevent read accesses from a particular page. Refer
to Section 5.8.14 “TLB Read-Inhibit Exception (TLBRI)” for more information.

5.3 FTLB Parity Exception

An FTLB Parity exception is taken whenever a parity error is detected on an FTLB read. The error can occur in either
the FTLB Tag RAM or FTLB Data RAM. The FTLB parity exception is taken only when bit 31 of the CPO Error
Control register (ErrCtl.pg) is set. If this bit is cleared, FTLB parity errors are ignored. Referto Section 5.8.15 “FTLB

Parity Exception” for more information.

5.4 Exception Priority

Table 5.1 contains a list and a brief description of all exception conditions, The exceptions are listed in the order of
their relative priority, from highest priority (Reset) to lowest priority (Load/store bus error). When several exceptions
occur simultaneously, the exception with the highest priority is taken.

Table 5.1 Priority of Exceptions

Exception Description

Reset

Assertion of SI_Reset signal.

280

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 5.1 Priority of Exceptions (continued)

Exception Description

DSS EJTAG Debug Single Step. Prioritized above other exceptions, including asynchronous exceptions, so
that one can single-step into interrupt (or other asynchronous) handlers.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by setting the
EjtagBrk bit in the ECR register.

DDBLImpr/DDBSImpr Debug Data Break Load/Store. Imprecise.

NMI Asserting edge of SI_NMI signal.

FTLBPAR FTLB instruction fetch parity error.

Machine Check TLB write that conflicts with an existing entry.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K| DM->!(K|DM) transition).

Debug Instruction Breakpoint

EJTAG debug hardware instruction break matched.

WATCH

A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.

Fetch reference to protected address.
XTLBL - Instruction Fetch XTLB miss.

Fetch XTLB hit to page with V=0
TLBL - Instruction Fetch TLB miss.

Fetch TLB hit to page with V=0
TLBXI TLB Execute Inhibit.

Occurs when there is an execute access from a page table whose XI bit is set.

I-cache Error

Parity error on I-cache instruction fetch.

IBE

From Instruction Fetch Unit (IFU) instruction cache ops. Indicates a bus error on an instruction fetch.

D-cache Error

Data cache parity error. Imprecise.

L2-cache Error

L2 cache parity error. Imprecise.

DBE

Load or store bus error. Imprecise.

DBp

EJTAG Breakpoint (execution of SDBBP instruction).

Sys (Execution exception)

Execution of SYSCALL instruction. Note that all of the execution exceptions have the same priority.

Bp (Execution exception)

Execution of BREAK instruction. Note that all of the execution exceptions have the same priority.

CpU (Execution exception)

Execution of a coprocessor instruction for a coprocessor that is not enabled. Note that all of the execu-
tion exceptions have the same priority.

CEU (Execution exception)

Execution of a CorExtend instruction modifying local state when CorExtend is not enabled. Note that all
of the execution exceptions have the same priority.

RI (Execution exception)

Execution of a Reserved Instruction. Note that all of the execution exceptions have the same priority.

FPE (Execution exception)

Floating Point exception. Note that all of the execution exceptions have the same priority.

C2E (Execution exception)

Coprocessor 2 unusable exception. Note that all of the execution exceptions have the same priority.

ISI (Execution exception)

Implementation specific Coprocessor 2 exception. Note that all of the execution exceptions have the
same priority.

Ov (Execution exception)

Execution of an arithmetic instruction that overflowed. Note that all of the execution exceptions have the
same priority.

Tr (Execution exception)

Execution of a trap (when trap condition is true). Note that all of the execution exceptions have the same
priority.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 281

Table 5.1 Priority of Exceptions (continued)

Exception Description
DDBL / DDBS EJTAG Data Address Break (address only).
WATCH A reference to an address in one of the watch registers (data).
AdEL Load address alignment error.
Load reference to protected address.
AdES Store address alignment error.
Store to protected address.
XTLBL Load XTLB miss.
Load XTLB hit to page with V=0
TLBL Load TLB miss.
Load TLB hit to page with V=10
DFTLBPAR FTLB data load/store parity error.
XTLBS Store XTLB miss.
Store XTLB hit to page with V = 0.
TLBS Store TLB miss.
Store TLB hit to page with V =0.
TLBRI TLB Read Inhibit.
Occurs when there is an attempt to access a page table whose RI bit is set.
TLB Mod Store to TLB page with D = 0.

5.5 Exception Vector Locations

The location of the exception vector in the P6600 core depends on the operating mode. If the core is in the legacy set-
ting, the exception vector location is the same as in previous MIPS processors. However, if the core is configured for
Enhanced Virtual Address (EVA), the exception vector can effectively be placed anywhere within kernel address
space. Refer to the EVA chapter at the end of this manual for more information.

The SI_EVAReset pin determines the addressing scheme and whether the device boots up in the legacy setting or the
EVA setting. The legacy setting is defined as having the traditional MIPS virtual memory map used in previous gen-
eration processors. The EVA setting places the device in the enhanced virtual address configuration, where the initial
size and function of each segment in the virtual memory map is determined from the segmentation control registers
(SegCtl0 - SegCtl2).

If the SI_EVAReset pin is deasserted at reset, the P6600 core comes up in the legacy configuration and hardware takes
the following actions:

* The CONFIG5.k bit becomes read-write and is programmed by hardware to a value of 0 to indicate the legacy
configuration. In this case, the cache coherency attributes for the kseg0 segment are derived from the Config.xq

field as described in the previous subsection. In addition to selecting the location of the cache coherency attri-
butes, the CONFIG5. bit also causes hardware to generate two boot exception overlay segments, one for kseg0
and one for ksegl.

* Hardware programs the CPO memory segmentation registers (SegCtl0 - SegCtl2) for the legacy setting. Note that
these registers are new in the P6600 core and are not used by legacy software. However, they are used by hard-
ware during normal operation, so their default values should not be changed.

If the SI_EVAReset pin is asserted at reset, the P6600 core comes up in the EVA configuration (default size for xkseg0
space = 3 GB). Refer to the EVA Application Note for more information.

282 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

The function of the Config5.x bit and the SI_UseExceptionBase pin is shown in Table 5.2.

Table 5.2 SI_UseExceptionBase Pin and CONFIG5.K Encoding

S|_UseExceptionBase

CONFIG5.K Bit Pin Condition Action
0 0 Legacy Mode Use default BEV location of 0xBFCO0_0000.
SI_ExceptionBase[31:12] pins are
not used.
0 1 Legacy Mode The BEV location is determined as follows:

Use only SI_ExceptionBase[29:12]
for the BEV base location. Bits 31:30 | SI_ExceptionBase[31:12] =2’b10,
are forced to a value of 2°b10 to put | SI_ExceptionBase[29:12] pins, 12°b0
the BEV vector into KSEGO/KSEG1
virtual address space. Bits 31:30 are forced to a value of 2°b10 to
put the BEV vector into KSEGO/KSEG1
virtual address space.

1 Don’t care EVA Mode The SI_ExceptionBase[31:12] pins are used
Use SI_ExceptionBase[31:12] pins. | directly to derive the BEV location. The
Refer to the EVA chapter for more SI_UseExceptionBase pin is ignored.
information.

Another degree of flexibility in the selection of the vector base address, for use when Statusggy, equals 1, is provided
via a set of input pins, SI_UseExceptionBase, SI_ExceptionBase[31:12], and SI_ExceptionBaseMask[27:20].

In the legacy setting, when the SI_UseExceptionBase pin is 0, the Reset, Soft Reset, NMI, and EJTAG Debug excep-
tions are vectored to a specific location, as shown in Table 5.3. Addresses for all other exceptions are a combination
of a vector offset and a vector base address. In the P6600 core, software is allowed to specify the vector base address
via the EBase register for exceptions that occur when Statusggy equals 0. Table 5.3 shows the vector base address
when the core is in legacy setting and the SI_UseExceptionBase pin is 0.

Table 5.4 shows the vector base addresses when the core is in legacy setting and the SI_UseExceptionBase equals 1. As
can be seen in Table 5.4, when SI_UseExceptionBase equals 1, the exception vectors for cases where Statusggy, = 0 are
not affected.

Table 5.3 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase =0

StatUSBEV
Exception 0 1
Reset, NMI 0xFFFF_FFFF_BFC0.0000
EJTAG Debug (with ProbEn = 0, in the 0xFFFF_FFFF _BFCO0.0480

EJTAG_Control register and
DCR.RDVec=0)

EJTAG Debug (with ProbEn =0, in the DebugVectorAddr [31:7] || 7'b0000000
EJTAG Control register and
DCR.RDVec=1)

EJTAG Debug (with ProbEn = 1 in the OXFFFF_FFFF_FF20.0200
EJTAG_Control_register)

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 283

Table 5.3 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase = 0 (continued)

StatUSBEV
Exception 0 1
Cache Error EBasegs 30| 11| OxFFFF_FFFF_BFCO0.0300
EBaSEQ&.u H 0x000
Note that EBase;; 3 have the fixed value of
2b’10
Other EBaseg3 1o || 0x000 0xFFFF_FFFF_BFC0.0200

Note that EBases; 3, have the fixed value of
2’b10 when WG = 0.

i

|” denotes bit string concatenation

In legacy mode, when the SI_UseExceptionBase pin is 1, the Reset, Soft Reset, NMI, and EJTAG Debug exceptions are
vectored to a specific location, as shown in Table 5.4.

Table 5.4 Exception Vector Base Addresses — Legacy Mode, SI_UseExceptionBase = 1

in the EJTAG_Control register and
DCR.RDVec=1)

StatusBEV
Exception 0 1
Reset, NMI OxFFFF _FFFF || 0bl0 || SI_ExceptionBase [29:12] || 0x000
EJTAG Debug (with ProbEn =0 OxFFFF_FFFF || 0bl0 ||SI_ExceptionBase[29:12] || 0x480
in the EJTAG_ Control register and
DCR.RDVec=0)
EJTAG Debug (with ProbEn =0 DebugVectorAddr [31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1
in the EITAG_Control register)

0x0xFFFF_FFFF_FF20.0200

Cache Error EBasegs 30l 1 || OxXFFFF_FFFF || 0b101 ||
EBaseyg 15 || 0x000 SI_ExceptionBase [28:12] || 0x300

Note that EBasey; 3o have the fixed value | Exception vector resides in
2'b10 when WG = 0. Exception ksegl.
vector resides in ksegl.

Other EBaseé3_'12 || 0x000 OXFFFF_FFFF H 0bl0 H
Note that EBases; 3 have the fixed value | SI_ExceptionBase [29:12] || 0x200
2'b10 when WG = 0. Exception Exception vector resides in
vector resides in kseg0/ kseg0/ksegl.

ksegl.

‘|I” denotes bit string concatenation

Table 5.5 shows the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes interrupts to use a dedicated exception vector offset, rather than the general exception vector.
Table 5.26 (on page 322) shows the offset from the base address in the case where Statusggy = 0 and Cause, = 1.

284

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 5.6 combines these three tables into one that contains all possible vector addresses as a function of the state that
can affect the vector selection. To avoid complexity in the table, it is assumed that IntCtly,5 = 0.

Table 5.5 Exception Vector Offsets

Exception Vector Offset
TLB Refill, EXL =0 0x000
XTLB Refill 0x080
General Exception 0x180
Interrupt, Cause)y, = 1 0x200

Reset, NMI None (uses reset base address)
Table 5.6 Exception Vectors
()
]
©
[a1] c
c > N 1]
S (285|218
R R) 5 |a
c o |2 |2 2 |lo
S & | |2 |0 |=
o |4 |t |& =
2 Y Vector
Exception & (IntCtlyg = 0)
Reset, NMI 00| x| x| x|x 0xFFFF_FFFF_BFCO0.0000
Reset, NMI 01| x| x| x|x OxFFFF_FFFF | 2'b10 || SI_ExceptionBase [29:12] | 0x000
Reset, NMI I | x| x| x| x| X OxFFFF_FFFF || SI_ExceptionBase [31:12] | 0x000
EJTAGDebug| 0 | 0 | x | x | x | O O0xOxFFFF_FFFF_BFC0.0480 (if DCR.RDVec=0)
DebugVectorAddr [31:7] || 2b0000000 (if DCR.RDVec=1)
EJTAGDebug| O | 1 | x | x | x | O OXFFFF_FFFF || 2'b10 || SI_ExceptionBase[29:12] | 0x480 (
if DCR.RDVec=0)
DebugVectorAddr [31:7] || 2b0000000
(if DCR.RDVec=1)
EJITAGDebug| 1 | x | x | x | x | O OxFFFF_FFFF || SI_ExceptionBase[31:12] | 0x480 (if DCR.RDVec=0)
DebugVectorAddr [31:7] || 2b0000000 (if DCR.RDVec=1)
EJTAGDebug| x | x | x | x | x | 1 0x0xFFFF FFFF FF20.0200
TLB Refill x | x| 0]0|x]x EBase[63:12] || 0x000 (EBase.WG = 1)
2'bl0 |[EBase[29:12] || 0x000 (EBase.WG = 0)
XTLB Refill x [x| 0|0 | x|x 0xFFFF_FFFF_8000_ 0080
TLB Refill x [x|O0 |1 |x|x EBase[63:12] | 0x180 (EBase.WG = 1)
2'bl0 |[EBase[29:12] || 0x180 (EBase.WG = 0)
XTLB Refill x | x| 0] 1] x]|x OxFFFF_FFFF_8000_0180
TLB Refill 0OlO0 | 1]0]x|x 0x0xFFFF_FFFF BFCO0.0200
XTLB Refill x [x| 1|0 x|x 0x0xFFFF_FFFF _BFC0.0280
TLB Refill 0|1 1 0| x | x OxFFFF_FFFF | 2'b10 || SI_ExceptionBase[29:12] | 0x200
TLB Refill 1 [x| 1 0| x| x OxFFFF_FFFF || SI_ExceptionBase [31:12] | 0x200
TLB Refill OO0 |1]|1]x]|x 0xFFFF_FFFF_BFC0.0380

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

285

Table 5.6 Exception Vectors (continued)

Q
(2]
©
s} c
s |>12 el
s IZ | 8|52 |2
2180 |2 |o |&
c o |2 |2 2 |lo
S |88 |8 1|3 |=
o Y| | P
2 i Vector
Exception 7 (IntCtlys = 0)
XTLB Refill x | x| 1 1| x|x OxFFFF_FFFF_BFC0.0380
TLB Refill 0|11]1|x]x OxFFFF_FFFF ||2'b10 || SI_ExceptionBase[29:12] | 0x380
TLB Refill L x| 1]1|x]x O0xFFFF_FFFF | SI_ExceptionBase [31:12] || 0x380
Cache Error 0| x| 0| x| x]|x EBase[63:30] || 1'bl || EBase[28:12] || 0x100 (EBase.WG = 1)
EBase [31:30] || 1’bl || EBase[28:12] | 0x100 (EBase.WG = 0)
Cache Error I | x| 0] x|x]x O0xFFFF_FFFF_BFC0.0100
(Config5~; = 0)
Cache Error 1 {x|0|x|x|x O0xFFFF_FFFF || EBase[31:12] || 0x100
(Config5qy = 1)
Cache Error 0101 x|x]x 0x0xFFFF_FFFF _BFC0.0300
Cache Error Ol 11 |x]|x|x O0xFFFF_FFFF || 2’b101 | SI_ExceptionBase[28:12] || 0x300
Cache Error I (x| 1 |x|x]|x OxFFFF_FFFF || SI_ExceptionBase[31:12] | 0x300
Interrupt x| x| 0]0/[0]x OxFFFF_FFFF || EBase[31:12] | 0x180 (EBase.WG = 0)
EBase[63:12] || 0x180 (EBase.WG = 1)
Interrupt x [x| 0[O0 1 | x EBase[31:12] || 0x200
Interrupt 001 00| x 0xBFC0.0380
Interrupt 0|1 1 00| x 2'b10 || SI_ExceptionBase [29:12] | 0x380
Interrupt 1 |x|1]0]0|x SI_ExceptionBase [31:12] || 0x380
Interrupt 0101 0 1 | x 0xBFCO0.0400
Interrupt O 1|1]0]1]|x 2'b10 || SI_ExceptionBase [29:12] | 0x400
Interrupt 1 |x|1]0]1/|x SI_ExceptionBase [31:12] || 0x400
All others x| x| 0| x| x|x EBase[31:12] || 0x180
All others 00|11 X | x| x 0xBFC0.0380
All others 0|1 I | x| x| x 2'b10 || SI_ExceptionBase [29:12] | 0x380
All others 1| x| 1] x| x|x SI_ExceptionBase [31:12] || 0x380

‘x” denotes don’t care,
‘|’ denotes bit string concatenation

286

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

5.6 General Exception Processing

With the exception of Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special process-
ing as described below, exceptions have the same basic processing flow:

If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted, and the BD bit is set appropriately in the Cause register. The value loaded into the EPC register is depen-
dent on whether the instruction is in the delay slot of a branch or jump which has delay slots. Table 5.7 shows the
value stored in each of the CP0O PC registers, including EPC.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the Cause
register.

Table 5.7 Value Stored in EPC, ErrorEPC, or DEPC on Exception

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC
No Address of the instruction
Yes Address of the branch or jump instruction (PC-4)
No Upper 31 bits of the address of the instruction, combined with the ISA Mode bit
Yes Upper 31 bits of the branch or jump instruction, combined with the ISA Mode bit

The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The CE
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

The EXL bit is set in the Status register.

The processor begins executing at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception han-
dler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to identify
the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If Statusgy; is 1, all exceptions go through the general exception vector */
/* and neither the EPC nor Causepp are modified */
if Statusgyg; = 1 then

vectorOffset <« 0x180

else
restartPC <« PC
branchAdjust « 4 /* Possible adjustment for delay slot */
endif

if InstructionInBranchDelaySlot then
EPC « restartPC - branchAdjust/* PC of branch/jump */
Causepgp < 1

else
EPC « restartPC /* PC of instruction */
Causepp < O

endif

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 287

/* Compute vector offsets as a function of the type of exception */
if ExceptionType = TLBRefill then
vectorOffset <« 0x000
if ExceptionType = XTLBRefill then
vectorOffset <« 0x080
elseif (ExceptionType = Interrupt) then
if (Causery = 0) then
vectorOffset <« 0x180
else
if (Statusggy = 1) or (IntCtlyg = 0) then
vectorOffset <« 0x200
else
if Config3ygrc = 1 then
VecNum < Causegipy,
else
VecNum <« VIntPriorityEncoder ()
endif
vectorOffset <« 0x200 + (VecNum x (IntCtlyg || 0b00000))
endif /* if (Statusggy = 1) or (IntCtlyg = 0) then */
endif /* if (Causery = 0) then */
endif /* elseif (ExceptionType = Interrupt) then */
endif /* if Statusgy, = 1 then */

Causeqg <« FaultingCoprocessorNumber
Causegyccoge ¢ ExceptionType
Statusgy;, < 1

/* Calculate the vector base address */
if Statuspggy = 1 then
vectorBase <« OxFFFF.FFFF.BFC0.0200
else
if ArchitectureRevision > 2 then
/* The fixed value of EBase;; 3, forces the base to be in kseg0 or ksegl */
vectorBase <« OxFFFF_FFFF | EBases; 15 || 0x000
else
vectorBase <« OxFFFF.FFFF.8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC « vectorBaseg; 3 || (vectorBase,q o + vectorOffset,q)
/* No carry between bits 29 and 30 */

5.7 Debug Exception Processing

288

All debug exceptions have the same basic processing flow:

The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if the
instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot of a
branch.

The DSS, DBp, DDBL, DDBS, DIB, and DINT bits in the Debug register are updated appropriately, depending on the
debug exception type.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

* Halt and Doze bits in the Debug register are updated appropriately.
* The DM bit in the Debug register is set to 1.

* The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug register
unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits [5:0]) in the
Debug register.

No other CPO registers or fields are changed due to the debug exception, and thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC <« PC-4
Debugpgp « 1

else
DEPC <« PC
Debugpgp < 0
endif

Debugps pits at at [5:0] ¢ DebugExceptionType
Debugy,1+ < HaltStatusAtDebugException
Debugpg,e ¢« DozeStatusAtDebugException
Debugpy « 1
if EJTAGControlRegisterp,gprrap = 1 then

PC « OxFFFF_FFFF_FF20_ 0200

else
if DebugControlRegistergpye. = 1 then
if CacheErr then
PC « 2#101 || DebugVectorAddr,g -, || 2#0000000
else
PC « 2#10 || DebugVectorAddr,, - || 2#0000000
else
if SI UseExceptionBase
if CacheErr then
PC <« OxXFFFF.FFFF ||2#101 || SI_ExceptionBase[28:12] || 0x000
else
PC « OxXFFFF.FFFF ||2#10 || SI_ExceptionBase[29:12] | 0x000
else
PC <« OxXFFFF_FFFF BFCO0_0480
endif

The location of the debug exception vector is determined by the ProbTrap bit in the EJTAG Control register (ECR) and
the RDVec bit in the Debug Control register (DCR), as shown in Table 5.8.

Table 5.8 Debug Exception Vector Addresses

ProbTrap bit in ECR RDVec bit in
Register DCR Register Debug Exception Vector Address
0 0 0xBFCO0 0480
0 1 DebugVectorAddry; 7 || 0000000
1 0 0xFF20 0200 in dmseg

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 289

Table 5.8 Debug Exception Vector Addresses

ProbTrap bit in ECR RDVec bit in
Register DCR Register Debug Exception Vector Address
1 1

The value in the optional drseg register DebugVectorAddr (offset 0x00020) is used as the debug exception vector when
the ECR ProbTrap bit is 0 and when enabled through the optional RDVec control bit in the Debug Control Register (DCR).
Bit 0 of DebugVectorAddr determines the ISA mode used to execute the handler. Figure 5.1 shows the format of the
Debug\VectorAddr register; Table 5.9 describes the DebugVectorAddr register fields.

Figure 5.1 DebugVectorAddr Register Format

31 30 29 7 6 0
| 1 | 0 | DebugVectorOffset 0 ‘ M |
Table 5.9 DebugVectorAddr Register Field Descriptions
Fields
Name Bit(s) Description Read / Write | Reset State
1 31 Ignored on write; returns one on read. R 1
DebugVectorOffset 29:7 Programmable Debug Exception Vector Offset R/W Preset to
0x7F8009
M 0 ISA mode to be used for exception handler R 0
0 30,6:1 Ignored on write; returns zero on read. R 0

Bits 31:30 of the DebugVectorAddr register are fixed with the value 0b10, and the addition of the base address and the
exception offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination
of these two restrictions forces the final exception address to be in the kseg0 or ksegl unmapped virtual address seg-

ments. For cache error exceptions, bit 29 is forced to a 1 in the ultimate exception base address, so that this exception
always runs in the ksegl unmapped, uncached virtual address segment.

If the TAP is not implemented, the debug exception vector location is as if ProbTrap=0.

5.8 Exception Descriptions

290

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 5.1.

5.8.1 Reset Exception (Reset)

A reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is not maskable. When a
Reset exception occurs, the processor performs a full reset initialization, including aborting state machines, establish-
ing critical state, and generally placing the processor in a state in which it can execute instructions from uncached,
unmapped address space. On a Reset exception, the state of the processor is not defined, with the following excep-

tions:
* The Wired register is initialized to zero.
* The Config register is initialized with its boot state.

The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

e Thel, R, and W fields of the WatchLo register are initialized to 0.

* The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may or
may not be predictable.

* PCis loaded with OXFFFF_FFFF_BFCO0_0000 (P6600) or other address depending on the product type.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (exact vector address depends on mode of operation - Legacy/EVA)

Operation:

Wired « 0

Config <« ConfigurationState

Statuspgy <« 1

Statusgg <« O

Statusyyr < 0

Statusgg;, < 1

WatchLo; <= 0

WatchLog < 0

WatchLoy < 0

if InstructionInBranchDelaySlot then
ErrorEPC <« PC - 4

else
ErrorEPC <« PC

endif

PC <« 0xBFCO_0000

5.8.2 Debug Single Step Exception (DSS)

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non-jump/
branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction in the
delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug register, and
are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC register will not point to the
instruction which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register
is never set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in
one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch) just
before the SDBBP instruction, causes a debug single step exception with DEPC pointing to the SDBBP instruction.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 291

292

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.8.3 Debug Interrupt Exception (DINT)

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set
DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge sen-
sitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

» The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

* The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

* PCisloaded with OXFFFF_FFFF_BFCO0_0000 (P6600) or other address depending on the product type.

Cause Register ExcCode Value:

None

Additional State Saved:

None

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Entry Vector Used:

Reset (exact vector address depends on mode of operation - Legacy/EVA)

Operation:

Statuspgy < 1

Statusgg < 0

Statusyyy < 1

Statusgg, <« 1

if InstructionInBranchDelaySlot then
ErrorEPC <« PC - 4

else
ErrorEPC <« PC

endif

PC <« OxXFFFF_FFFF_BFCO_0000

5.8.5 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency. The following conditions
cause a machine check exception:

A TLBWI instruction to the FTLB and the index and VPN2 are not consistent and the EHINV bit is not set. See
Section 3.12 of the MMU chapter.

*+ A TLBWTI instruction to the FTLB and the PageMask register does not correspond to the FTLB page size setting
in bits 12:8 of the Config4 register (Config4rr g page size)

* A TLBP instruction and a duplicate/overlap is detected across the FTLB/VTLB.
* Any TLB lookup and a duplicate/overlap is detected across the FTLB/VTLB.
The machine check exception can be either precise or imprecise depending on the type of error.
The machine check exception is imprecise on:

— A Load/Store Unit (LSU) or Instruction Fetch Unit (IFU) lookup matching duplicate entries
The machine check exception is precise on:

— TLBP matching duplicate entries.

— TLBWI to the FTLB with the page size != the FTLB page size.

— TLBWTI to the FTLB with EHINV=0 and the FTLB set implied by the VPN not the same as the set implied by
the index.

Cause Register ExcCode Value:
MCheck

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 293

294

5.8.6 Interrupt Exception (Int)

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requests is
enabled by the Status register and the interrupt input is asserted. See 5.11 “Interrupts” on page 316 for more details
about the processing of interrupts.

Register ExcCode Value:
Int

Additional State Saved:

Table 5.10 Register States an Interrupt Exception

Register State Value

CauselP Indicates the interrupts that are pending.

Entry Vector Used:

See 5.11.2 “Generation of Exception Vector Offsets for Vectored Interrupts” on page 322 for the entry vector used,
depending on the interrupt mode the processor is operating in.

5.8.7 Debug Instruction Break Exception (DIB)

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:
DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.8 Watch Exception — Instruction Fetch or Data Access (WATCH)

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero and the DM bit of the Debug register is also
zero. If any of those bits is a one at the time that a watch exception would normally be taken, then the WP bit in the
Cause register is set, and the exception is deferred until all three bits are zero. Software may use the WP bit in the
Cause register to determine if the EPC register points at the instruction that caused the watch exception, or if the
exception actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:
WATCH

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Additional State Saved:

Table 5.11 Register States on Watch Exception

Register State Value

Causeyp Indicates that the watch exception was deferred until after
Statusgy , Statusgg, , and Debugpy, were zero. This bit
directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler execution.

WatchHi | g w Set for the watch channel that matched, and indicates
which type of match there was.

Entry Vector Used:

General exception vector (offset 0x180)

5.8.9 Address Error Exception — Instruction Fetch/Data Access (AdEL/AdES)

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

Fetch an instruction that is not aligned on a word boundary

LL, LLE, SC, and SCE instructions with misaligned addresses

Any load instruction with a misaligned address and cacheable coherency attribute of uncached
Any store instruction with a misaligned address and cacheable coherency attribute of uncached

Any load/store instructions with misaligned address to a region defined as a non-speculative region by the
MAAR register

Reference the kernel address space from User mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 295

Additional State Saved:

Table 5.12 CPO Register States on Address Exception Error

Register State Value
BadVAddr Failing address
Contextypy; UNPREDICTABLE
EntryHiypp, UNPREDICTABLE
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:

General exception vector (offset 0x180)

5.8.10 TLB Refill Exception — Instruction Fetch or Data Access (TLBL/TLBS)

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches a reference to a
mapped address space and the EXL bit is 0 in the Status register. Note that this is distinct from the case in which an
entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

Cause Register ExcCode Value:
TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store
Additional State Saved:

Table 5.13 CPO Register States on TLB Refill Exception

Register State Value
BadVAddr Failing address.

Context The BadVPN2 field contains VAj.;3 of the failing
address.

EntryHi The VPN2 field contains VA3;.;5 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:
TLB refill vector (offset 0x000) if Statusgxy, = 0 at the time of exception;

General exception vector (offset 0x180) if Statusgxy = 1 at the time of exception

5.8.11 TLB Refill and XTLB Refill Exceptions — Instruction Fetch or Data Access (TLBL/
TLBS)

A TLB Refill or XTLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to a
mapped address space and the EXLbit is zero in the CPO S tatus register. Note that this is distinct from the case in

296 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

which an entry matches but has the valid bit off, in which case a TLB Invalid exception occurs. Refill exceptions have
distinct exception vector offsets: 0x000 for a 32-bit TLB Refill and 0x080 for a 64-bit extended TLB (“XTLB”) refill.
The XTLB refill handler is used whenever a reference is made to an enabled 64-bit address space.

Cause Register ExcCode Value
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

See Table 9.56 on page 238
Additional State Saved:

Table 5.14 CPO Register States on TLB Refill Exception

Register State Value

Context If Config3.CTXTC bit is set, then the bits of the Context
register corresponding to the set bits of the Virtuallndex
field of the ContextConfig register are loaded with the bits
(starting at bit 31) of the virtual address that missed.

If Config3.CTXTC bit is clear, then the BadVPN?2 field
contains VA31:13 of the failing address

XContext If Config3.CTXTC bit is set, thenthe bits of the BadVPN2
field corresponding to the set bits of the Virtuallndex
field of the ContextConfig register are loaded with the
high-order bits (starting at SEGBITS-1) of the virtual
address that missed and the R field contains VA[63:62]
of the failing address.

If Config3.CTXTC bit is clear, then the XContext
BadVPN?2 field contains VA[SEGBITS-1:13], and the
XContext R field contains VA[63:62] of the failing
address.

EntryHi The EntryHi VPN2 field contains VA[SEGBITS-1:13] of
the failing address and the EntryHi R field contains
VA[63:62] of the failing address; the ASID field contains
the ASID of the reference that missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
* TLB Refill vector (offset 0x000) if 64-bit addresses are not enabled and Status.EXL = 0 at the time of exception.
* XTLB Refill vector (offset 0x080) if 64-bit addresses are enabled and Status.EXL = 0 at the time of exception.

* General exception vector (offset 0x180) in either case if Status.EXL = 1 at the time of exception

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 297

5.8.12 TLB Invalid Exception — Instruction Fetch or Data Access (TLBINV)

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

* No TLB entry matches a reference to a mapped address space; and the EXL bit is 1 in the Status register.

* A TLB entry matches a reference to a mapped address space, but the matched entry has the valid bit off.

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

Additional State Saved:

Table 5.15 CPO Register States on TLB Invalid Exception

Register State Value
BadVAddr Failing address

Context The BadVPN2 field contains VAj. 5 of the failing
address.

EntryHi The VPN2 field contains VA3;.;3 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:

General exception vector (offset 0x180)

5.8.13 TLB Execute-Inhibit Exception (TLBXI)

A TLB execute-inhibit exception occurs when there is a execute access from a TLB entry whose X1 bit isset. The TLB
execute-inhibit exception type can only occur if execute-inhibit exceptions are enabled by setting bit 30 (XIE) in the

PageGrain register.

In addition, the type of exception taken depends on the state of the PageGrain,gc bit. If the XI bit of the entry is set,
and the PageGraingc bit is set, a TLBXI exception is taken. If the PageGrainjgc bit is cleared, a TLBL exception is

taken.

Cause Register ExcCode Value:
if PageGrain.;gc == 0 TLBL

if PageGrain.;gc == 1 TLBXI

298

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Additional State Saved:

Table 5.16 CPO Register States on TLB Execute-Inhibit Exception

Register State Value
BadVAddr Failing address.

Context If the Config3.c1xTc bit is set, then the bits of the Context
register corresponding to the set bits of the Virtuallndex
field of the ContextConfig register are loaded with the
high-order bits of the virtual address that misssed.

If the Config3.c7xTc bit is clear, then the BadVPN2 field
contains VAj.;3 of the failing address.

EntryHi The VPN2 field contains VAj. 3 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:

General exception vector (offset 0x180)

5.8.14 TLB Read-Inhibit Exception (TLBRI)

A TLB read-inhibit exception occurs when there is an attempt to read a TLB entry whose RI bit is set. The TLB read-
inhibit exception type can only occur if read-inhibit exceptions are enabled by setting bit 31 (RIE) in the PageGrain

register.

In addition, the type of exception taken depends on the state of the PageGrain,gc bit. If the RI bit of the entry is set,

and the PageGraingc bit is set, a TLBRI exception is taken. If the PageGraingc bit is cleared, a TLBL exception is

taken.

Cause Register ExcCode Value:
if PageGrain.|g.c == 0 TLBL
if PageGrain.;gc == 1 TLBRI

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

299

Additional State Saved:

Table 5.17 CPO Register States on TLB Read-Inhibit Exception

Register State Value
BadVAddr Failing address.
Context If the Config3.c1xTc bit is set, then the bits of the Context

register corresponding to the set bits of the Virtuallndex
field of the ContextConfig register are loaded with the
high-order bits of the virtual address that misssed.

If the Config3.c7xTc bit is clear, then the BadVPN2 field
contains VAj.;3 of the failing address.

EntryHi The VPN2 field contains VAj. 3 of the failing address;
the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:

General exception vector (offset 0x180)

5.8.15 FTLB Parity Exception

An FTLB parity exception occures when a parity error is detected on an FTLB read operation. The error can occur in
either the FTLB Tag RAM of the FTLB Data RAM. Note that FTLB parity errors can only occur when the bit 31 (PE)
of the CPO Error Control register (ErrCtl.pg) is set, enabling system-wide parity errors.

When an FTLB parity error occurs, hardware sets bits 31:30 of the CPO Cache Error register (CacheErr.ggec) to a
value of 2°b11 to indicate that the register contains information based on a TLB error. When the EREC field is set to
2°bl1, bits 29:28 of the Cache Error register (CacheErr.gp and CacheErr.gp) indicate if the error occurred in the FTLB

data RAM or the FTLB tag RAM respectively.
Additional State Saved:

Table 5.18 CPO Register States on an FTLB Parity Exception

Register State Value
CacheErr Error state. Defined in bits 31:28 of this register.
ErrorEPC Restart PC
StatusERL Setto 1

Entry Vector Used:
Cache Error vector (offset 0x100)

300 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

5.8.16 Cache Error Exception (ICache Error/DCache Error)

A cache error exception occurs when an instruction or data reference detects a cache tag or data error. This exception
is not maskable. Because the error was in a cache, the exception vector is to an unmapped, uncached address. This
exception can be imprecise and the ErrorEPC may not point to the instruction that saw the error. Additionally, because
the caches on the cores within the P6600 core are coherent, cache errors detected on other cores could indicate data
corruption for a process on this CPU. An error on another CPU will still cause a Cache Error exception, with the
CacheErrgg indicating that the error occurred on another processor.

L2 cache errors are considered to be imprecise. An L2 cache error on a data load operation can potentially corrupt the
target GPR.

Cause Register ExcCode Value
N/A

Additional State Saved

Table 5.19 CPO Register States on Cache Error Exception

Register State Value
CacheErr Error state
ErrorEPC Restart PC
Entry Vector Used

Cache error vector (offset 0x100)

5.8.17 Bus Error Exception — Instruction Fetch or Data Access (IBE)

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an unca-
cheable reference) and that request terminates in an error. The bus error exception can occur on either an instruction
fetch or a data read. Bus error exceptions cannot be generated on data writes. Bus error exceptions that occur on an
instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Instruction errors are precise, while data bus errors can be imprecise. These errors are taken when the ERR code is
returned on the OC_SResp input.

Cause Register ExcCode Value:
IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.18 Debug Software Breakpoint Exception (DBp)

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 301

302

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.19 Execution Exception — System Call (Sys)

The system call exception is one of the execution exceptions. All of these exceptions have the same priority. A system
call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:
Sys
Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.20 Execution Exception — Breakpoint (Bp)

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:
Bp
Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.21 Execution Exception — Coprocessor Unusable (CpU)

The coprocessor unusable exception is one of the execution exceptions. All of these exceptions have the same prior-
ity. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one of
the following:

* acorresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

* CPO instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:
CpU

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Additional State Saved:

Table 5.20 Register States on Coprocessor Unusable Exception

Register State Value

Causecg Unit number of the coprocessor being referenced

Entry Vector Used:

General exception vector (offset 0x180)
5.8.22 Execution Exception — Reserved Instruction (RI)

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed.
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:
RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.23 Execution Exception — Floating Point Exception (FPE)

A floating point exception is initiated by the floating point coprocessor.

Cause Register ExcCode Value:
FPE

Additional State Saved:

Table 5.21 Register States on Floating Point Exception

Register State Value

FCSR Indicates the cause of the floating point exception

Entry Vector Used:

General exception vector (offset 0x180)
5.8.24 Execution Exception — Integer Overflow (Ov)

The integer overflow exception is one of the execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2°s complement overflow.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 303

304

Cause Register ExcCode Value:
Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.25 Execution Exception — Trap (Tr)

The trap exception is one of the execution exceptions. All of these exceptions have the same priority. A trap exception
occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:
Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.8.26 Debug Data Break Exception (DDBL/DDBS)

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception
has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the
debug handler.

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

5.8.27 TLB Modified Exception (TLB Mod)

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the following con-
dition is true:

* The matching TLB entry is valid, but not dirty.

Cause Register ExcCode Value:
Mod

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Additional State Saved:

Table 5.22 Register States on TLB Modified Exception

Register State Value
BadVAddr Failing address
Context The BadVPN?2 field contains VAj3;.5 of the failing address.
EntryHi The VPN2 field contains VAj3;.;3 of the failing address; the ASID
field contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used:

General exception vector (offset 0x180)
5.9 Synchronous and Synchronous Hypervisor Exceptions

During guest mode execution, control can be returned to root mode at any time. When an exception condition is
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any
exception state is saved. As a result, exception state in the guest CPO context is not affected.

The switch to root mode is achieved by setting Root.Statusgy; =1 or Root.Statusgg =1 (as appropriate) before any

other state is saved. This ensures that all exception state is stored into root CPO context, regardless of whether the pro-
cessor was executing in root or guest mode at the point where the exception was detected.

Table 5.23 summarizes hypervisor conditions.

Table 5.23 Hypervisor Exception Conditions

Root-mode
Type Vector Causes Reference
Synchronous Hypervisor General Guest Privileged Sensitive Instruction | Section 5.9.1
Synchronous Hypervisor General Guest Software Field Change Section 5.9.2
Synchronous Hypervisor General Guest Hardware Field Change Section 5.9.3
Synchronous Hypervisor General Guest Reserved Instruction Redirect Section 5.9.4
Synchronous Hypervisor General Hypercall Section 5.9.5

5.9.1 Guest Privileged Sensitive Instruction Exception

A Guest Privileged Sensitive Instruction exception occurs when an attempt is made to use a Guest Privileged Sensi-
tive Instruction from guest mode, where the instruction is either not permitted in guest mode or is not enabled in guest
mode. The list of sensitive instructions follows:

« WAIT

*+ CACHE, CACHEE
- when GuestCtl0cg=0

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 305

306

- with anything other than ‘Address’ as Effective Address Operand Type, if GuestCtlOcg=1. Specifically
CACHE(E) instructions with code 0b000, 0b001, 0b010, 0b011 will cause a GPSI.

GuestCtlOExtcg, is an optional qualifier of GuestCtlOcg. If GuestCtIOExtcg; =1 and GuestCtlOcg=1 then

CACHE(E) instructions of type Index Invalidate (code 0b000) are excluded from the CACHE(E) instruc-
tions that cause a GPSI.

TLBWR, TLBWI, TLBR, TLBP, TLBINV, TLBINVF when GuestCtl057 != 3.
- TLBINV, TLBINVF are optional in the baseline architecture.

Access to PageGrain, Wired, SegCtl0, SegCtl1, SegCtl2, PWBase, PWField, PWSize, PWCtl when GuestCtlO != 3
(Guest TLB resources disabled)

Write access to any Configg.; register when GuestCtlOcg=0

Access to Count or Compare registers when GuestCtl0gt=0
- including indirect read from CC using RDHWR providing CC is present and enabled by guest HWREna.

Access to CPO registers, or other non-CPO sources (CCRes, Sync_Step), using RDHWR when
GuestCtl0cpp=0 providing the registers are enabled for access by guest user or kernel.

- Guest user access is enabled either by guest HWREna or Statuscyp.

- Guest kernel always has access to registers specified by RDHWR, regardless of guest HWREna and
StatUSCU().

- Guest access to CC may also cause GPSI based on GuestCtlOgT.

Whether a guest RDHWR access to an implementation defined register causes a GPSI is implementation
defined i.e., the access may cause a GPSI or not in an implementation dependent manner. Access to reserved
registers with RDWR generates a Reserved Instruction exception in respective context.

Guest GPSI applies to both guest user and kernel access, as GuestCtl0qpg applies to guest kernel access also.
Write to Count register

All Privileged Instruction, excluding selected Release 3 EVA instructions, when GuestCtl0cpy=0

The baseline architecture defines privileged instructions as the following: CACHE, DI, EI, MTCO0, MFCO,
ERET, DERET, RDPGPR, WRPGPR, WALIT, all Enhanced Virtual Addressing (EVA) related instructions
(e.g., LBE, LBUE) (optional), and all TLB related instructions.

All EVA instructions except CACHEE are excluded from causing a GPSI when GuestCtl0¢cpo=0.

Privileged instructions are defined in Volume II of the architecture. Instructions that are supported depend on
the architecture release that an implementation is compliant with, and in some cases instructions are optional
within a release.

Access to any Guest CPO registers that are active in guest context and always take Guest Privileged Sensi-
tive Instruction Exception.

Cause Register ExcCode value

GE (27, 0x1B)

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

GuestCtl0 Register GExcCode value

GPSI (0, 0x00)

Additional State saved
BadInstr
BadlInstrP

Entry Vector Used
General Exception Vector (offset 0x180).

5.9.2 Guest Software Field Change Exception

A Guest Software Field Change exception occurs when the value of certain CPO register bitfields changes during
guest-mode execution.

Change is caused by MTCO execution, the instruction is copied to the root context Badlnstr register (if the implemen-
tation is so equipped) and the exception is taken. The exception is used to allow the hypervisor to track changes to
certain guest-context fields (e.g. Statusgp or Cause)y,). This can be used to ensure the proper operation of the emulated
guest virtual machine.

This exception can only be raised by a MTCO instruction executed in guest mode. It is the responsibility of Root to
increment EPC in order to return to the instruction following the MTCO. Note that the guest MTCO is never executed,
unless causing GSFC exception is disabled by GuestCtIOExXtecp , or selectively by GuestCtlOggcqp. It is the respon-

sibility of Root to modify the field on the behalf of Guest, providing guest access causes a GSFC.

If a field indicated below is meant to enable access to a resource, but the implementation does not support the
resource, then a GSFC exception is not taken. As an example, if Guest.Configlyp=0, i.e.,, MDMX Module is not

supported, then a guest write to Guest.Statusy;y will not cause a GSFC exception.

Changes to the following CPO register bit fields always trigger the exception.
+ Guest.Status bits: CU[2:1], FR, MX, BEV, SR, NMI, UM/KSU, ERL, Impl (17:16)

A change to UM/KSU can only cause a GSFC if GuestCtlOyc=1. Whether guest access to Status)y causes a
GSFC is implementation-dependent.

The occurrence of GSFC on guest write to Statusgg is dependent on Config5gg as described below.

* Config5 : MSAEn. (Enable for MIPS SIMD Architecture module. Applicable only if MSA implemented.)
: UFR. (User FR enable)

e PageGrain: ELPA.

e Guest.Cause bits: DC, IV

+ Guest.IntCtl bits: VS

* Root.PerfCnt w/ PerfCntgc=2/3: Event, EventExt(Optional)

PerfCnt does not exist in guest context. When PerfCntg-=2/3, however root context registers are accessible to
Guest. GPSI on guest access is only taken only in this configuration.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 307

308

Guest software may modify CU[2:1] often. To prevent frequent GSFC on these events, a set of enables,
GuestCtlOgeco and GuestCtlOgecq, have been provided.

Guest write of 0 to SR or NMI will raise this exception. Guest write of 1 to Guest Statusgg or Statusyy is UNPRE-

DICTABLE behavior as specified in the base architecture. It is optional for an implementation to cause this excep-
tion on a guest write of 1 to either the SR or NMI within the Status register. Guest Statusgg or Statusyy are never set by
hardware, nor will Root software write of 1 to either Guest Statusgg or Statusyy, cause an interrupt in Guest context.

Guest software modification of EXL will not cause a GSFC. This is because guest kernel will often write EXL=1
prior to setting KSU to user mode(b10), allowing processor to stay in kernel mode. ERET will clear EXL, affecting
change to user mode. To avoid frequent GSFC on such events, guest kernel modification of EXL is not trapped on.

If Root PerfCnt.EC=2 or 3, then Guest can access shared Root PerfCnt without GPSI exception. However, any
change to the Event or EventExt fields must be reported as a GSFC exception to Root.

Release 6 introduces an optional feature which allows user code to change the value of Statusggr. The presence of this
feature in a Release 6 implementation is determined by the writeable state of Config5gg. If Configbgr=1, then a
GSFC exception on guest write to StatusSgg is not generated.

Cause Register ExcCode value
GE (27, 0x1B)
GuestCtl0 Register GExcCode value

GSFC(1, 0x01)

Additional State saved
Badlnstr
BadlnstrP

Entry Vector Used

General Exception Vector (offset 0x180)

5.9.3 Guest Hardware Field Change Exception

A Guest Hardware Field Change Exception is caused by exception/interrupt processing or a hardware initiated field
change. The exception is taken after Guest state has been updated and before the following instruction is executed.

A Guest Hardware Field Change exception is considered synchronous with respect to the Guest action that caused it.
In terms of priority, it is only lower than any asynchronous Root exception. It is not prioritized with respect to Guest
exceptions: Guest exceptions are first prioritized amongst themselves, and then the Guest exception may then subse-
quently cause a Hardware Field Change exception.

When GuestCtIOEXtzcp = 1, then no Guest Hardware Field Change exception is triggered. Hardware events that
cause the described events must be allowed to modify state as in the baseline architecture.

When GuestCtlOy,c=1, changes to the following bit-fields trigger this exception.

¢ QGuest Status bits: EXL.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

A change in value in this field causes a Guest Hardware Field Change exception, regardless of whether there is an
effective change in mode.

Since events (Reset, NMI, Cache Error) that set ERL are always processed by Root, hardware initiated field changes
involving ERL will not result in this exception.

Guest Statusgy, will be modified by hardware on a Guest exception. The Guest Hardware Field Change exception is

taken prior to the actual Guest exception handler (when EXL is set) and after the Guest exception handler is com-
pleted (when ERET clears EXL) but prior to the first Guest instruction after the handler. The Guest Hardware Field
Change exception handler must compare state between successive invocations to determine if state of the EXL bit has
changed.

For the transition of EXL from 0 to 1, it is recommended that guest context be loaded with exception related data as if
the guest exception handler were to be executed. Prior to execution of first instruction of guest handler, hardware
must cause a GHFC trap to root. The only root state modified is Root Statusgy, (=1), Causegyccoge(="Guest Exit”)

and GuestCtlOggyccode(="GHFC”). Hardware handling of transition of EXL from 1 to 0 should be similar. In this
manner, the hardware overhead of setting appropriate context for guest and root is kept to a minimum.

The GHFC exception must be viewed atomically with respect to the guest exception that caused it. In a recommended
implementation, the guest exception will cause guest context to be updated simultaneously along with root context
for the GHFC exception. Guest entry on completion of GHFC exception will cause related guest exception to be
taken.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value
GHFC(9, 0x09)

Entry Vector Used

General Exception Vector (offset 0x180).

5.9.4 Guest Reserved Instruction Redirect

A Guest Reserved Instruction Redirect Exception occurs when GuestCtlOg=1 and a guest mode instruction would

trigger a Reserved Instruction Exception. This exception is raised before the guest mode exception can be taken. The
instruction is not executed, the exception is taken in Root mode and the Guest context is unchanged.

The Reserved Instruction Redirect (GRR) must be prioritized in the context of other guest-mode exceptions. For e.g.,
a Coprocessor Unusable exception due to guest context is ranked higher in priority than a Reserved Instruction excep-
tion. Thus a Reserved Instruction Redirect exception is not taken in this case. Another e.g., relates to the case where
Root.Statuscy1=0, while Guest.Status.CU1=1. If the processor is in guest-mode and executes a reserved COP1

instruction, then the Coprocessor Unusable exception is a result of Root qualification. It would be ranked higher pri-
ority than a Reserved Instruction exception for the same guest-mode instruction.

Cause Register ExcCode value

GE (27, 0x1B)

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 309

GuestCtl0 Register GExcCode value
GRR (3, 0x03)

Additional State saved
BadInstr
BadlInstrP

Entry Vector Used
General Exception Vector (offset 0x180).

5.9.5 Hypercall Exception

A Hypercall Exception occurs when a HYPCALL instruction is executed. This is a Privileged Instruction and thus
can only be executed in kernel mode (root-kernel or guest-kernel mode) or debug mode. It is specifically meant to
cause a guest-exit.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value
Hyp (2, 0x02)

Additional State saved
BadInstr
BadlInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

5.10 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:
* General exceptions

* TLB miss exceptions

¢ Reset and NMI exceptions

* Debug exceptions

Generally speaking, exceptions are handled by hardware and then serviced by software. Note that unexpected debug
exceptions to the debug exception vector at OXFFFF_FFFF_BFCO0_ 0200 may be viewed as a reserved instruction
since uncontrolled execution of an SDBBP instruction caused the exception. The DERET instruction must be used at
return from the debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET
instruction returns to the address in the DEPC register.

310 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 5.2 General Exception Handler (HW)

Exceptions other than Reset, NMI, or first-level TLB miss. Note: Interrupts can be
masked by IE or IMs, and Watch is masked if EXL = 1.

Comments
EnHi and Context are set only for TLB-
EntryHi <« VPN2, ASID Invalid, Modified, & Refill exceptions.
Context <« VPN2 BadVA is set only for TLB- Invalid,
Set Cause EXCCode,CE Modified, Refill- and VCED/I exceptions.
BadVA « VA Note: not set if it is a Bus Error
Check if exception withinanother
exception =1
Instr. in Br.Dly. No
Slot?
EPC « (PC - 4) EPC « PC
Cause.BD « 1 Cause.BD « 0
EXL « 1 ~
Processor forced to Kernel Mode

& interrupts disabled

=1 (bootstrap)

=0 (normal)

PC <« 0xFFFF_FFFF_8000_0000 + 180 PC « OxFFFF_FFFF_BFC0_0200 + 180
(unmapped, cached) (unmapped, uncached)

-l
i

To General Exception Servicing Guidelines

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

311

312

Figure 5.3 General Exception Servicing Guidelines (SW)

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB Refill

MFCO -
Context, EPC, Status, Cause

exceptions not possible

* EXL=1 so Watch and Interrupt exceptions disabled
< * OS/System to avoid all other exceptions

* Only Reset, Soft Reset, NMI exceptions possible.

Y

MTCO -
Set Status bits:
UM<0, EXL<«0, IE<1

(Optional - only to enable Interrupts while keeping Kernel Mode)

Check Cause value & Jump to
appropriate Service Code

* After EXL=0, all exceptions allowed (except
interrupt if masked by IE)

Service Code

EXL=1

MTCO -
EPC,STATUS

ERET

* ERET is not allowed in the branch delay slot of another
Jump Instruction

* Processor does not execute the instruction which is in the
ERET’s branch delay slot

*PC « EPC; EXL « 0

*LLbit<« 0

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 5.4 TLB Miss Exception Handler (HW)

Y

EntryHi <« VPN2, ASID
Context «— VPN2
Set Cause EXCCode,CE
BadVA <« VA

Instr. in Br.Dly.
Slot?

\ Check if exception within mother
-1 exception

EXL/—
=0
EPC « (PC-4) EPC « PC

Cause.BD « 1 Cause.BD < 0
| |
Y Y
‘ Vec. Off. = 0x000 ‘

Vec. Off. = 0x180

Points to General Exception

<
-

Processor forced to Kernel Mode &
‘ EXL «1 ‘ interrupts disabled

=0 (normal) =1 (bootstrap)

Y
PC « OxFFFF_FFFF_8000_0000 + PC « OxFFFF_FFFF_BFC0_0200 +
Vec.Off.(unmapped. cached) Vec.Off. (unmapped. uncached)
[

> < |
>

To TLB Exception Servicing Guidelines

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

313

Figure 5.5 TLB Exception Servicing Guidelines (SW)

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB Refill
exceptions not possible

* EXL=1 so Watch, Interrupt exceptions disabled

* OS/System to avoid all other exceptions

* Only Reset, Soft Reset, NMI exceptions possible.

MFC0 -CONTEXT <

* Load the mapping of the virtual address in Context Reg.
Move it to EntryLo and write into the TLB

* There could be a TLB miss again during the mapping of the
data or instruction address. The processor will jump to the
general exception vector since the EXL is 1. (Option to
Service Code < complete the first level refill in the general exception handler
or ERET to the original instruction and take the exception
again)

* ERET is not allowed in the branch delay slot of another
Jump Instruction

* Processor does not execute the instruction which is in the
ERET < ERET’s branch delay slot

*PC « EPC; EXL « 0

* LLbit < 0

314 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 5.6 Reset and NMI Exception Handling and Servicing Guidelines

Reset Exception

Wired < 0

NMI Exception Config < Reset state
§ Status: Status:
= BEV « 1 BEV « 1
= SR« 0 SR <0
£ NMI < 1 NMI < 0
eS| ERL « 1 ERL « 1
g WatchLo:
T LRW<«0
=
2
=
Q,
(]
Q
X
84|
]
=
Z -l
03 ol B
-
Q
wn
&
- ErrorEPC «- PC
o
95
o
Q
wn
[P}
o~

PC < OxFFFF_FFFF_BFCO0_0000

Status.NMI

NMI Service Code

ERET

Reset, Soft Reset & NMI Servicing
Guidelines (SW)

(Optional)

Y

Reset Service Code

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

315

5.11 Interrupts

Release 6 of the MIPS64 architecture, implemented by the P6600 core, includes support for vectored interrupts and
the implementation of a new interrupt mode that permits the use of an external interrupt controller.

Additionally, internal performance counters have been added to the P6600 core. These counters can be configured to
count various events within the CPU. When the MSB of the counter is set, it can trigger a performance counter inter-
rupt. This interrupt, like the timer interrupt, is an output from the core that can be brought back into the cores interrupt
pins in a system-dependent manner.

The Fast Debug Channel feature in EJTAG provides a low overhead means for sending data between CPU software
and the EJTAG probe. It includes a pair of FIFOs for transmit and receive data. Software can define FIFO thresholds
for generating an interrupt. The fast debug channel interrupt is also routed similarly to the timer and performance
counter interrupts. The interrupt status is made available on an output pin and can be brought back into the cores
interrupt pins.

5.11.1 Interrupt Modes

The P6600 core includes support for three interrupt modes:

e Interrupt Compatibility mode, in which the behavior of the P6600 core is identical to the behavior of an imple-
mentation of Release 1 of the Architecture.

* Vectored Interrupt (VI) mode adds the ability to prioritize and vector interrupts to a handler dedicated to that
interrupt. The presence of this mode is denoted by the Vint bit in the Config3 register. Although this mode is archi-
tecturally optional, it is always present on the P6600 core, so the Vint bit will always read as a 1.

+ External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support
for an external interrupt controller that handles prioritization and vectoring of interrupts. As with VI mode, this
mode is architecturally optional. The presence of this mode is denoted by the VEIC bit in the Config3 register. On
the P6600 core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to indicate
the presence of an external interrupt controller.

Following reset, the P6600 core defaults to Compatibility mode, which is fully compatible with all implementations
of Release 1 of the Architecture.

Table 5.24 shows the current interrupt mode of the processor as a function of the Coprocessor 0 register fields that
can affect the mode.

Table 5.24 Interrupt Modes

StatusBEV CauselV IntCtlvVS Config3VINT Config3VEIC Interrupt Mode

1 X X X X Compatibility

X 0 X X X Compeatibility

X X =0 X X Compatibility

0 1 #0 1 0 Vectored Interrupt

0 1 #0 X 1 External Interrupt Controller

0 1 #0 0 0 Cannot occur because IntCtl ;5 cannot be non-zero if
neither Vectored Interrupt nor External Interrupt Con-
troller mode is implemented.

“x” denotes don’t care

316

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

5.11.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 0x180 (if Cause), = 0) or vector offset 0x200 (if
Cause y = 1). This mode is in effect when any of the following conditions are true:

* Causey =0
° StatUSBEV =1

* IntCtlyg = 0, which is the case if vectored interrupts are not implemented or have been disabled.

Here is a typical software handler for compatibility mode:

/*
* Assumptions:
* - Causery = 1 (if it were zero, the interrupt exception would have to
* be isolated from the general exception vector before arriving
* here)
* - GPRs kO and kl are available
* - The software priority is IP7..IP0 (HW5..HWO, SW1..SWO0)
*
* Location: Offset 0x200 from exception base
*/
IVexception:
mfc0 k0, CO_Cause /* Read Cause register for IP bits */
mfco k1, CO_Status /* and Status register for IM bits */
andi k0, k0, M _CauseIM /* Keep only IP bits from Cause */
and k0, ko, k1 /* and mask with IM bits */
beqg k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, kO /* Find first bit set, IP7..IPO0; kO = 16..23 */
xori k0, kO, 0x17 /* 16..23 => 7..0 */
sll k0, kO, VS /* Shift to emulate software IntCtlyg */
la kl, VectorBase /* Get base of 8 interrupt vectors */
addu ko, ko, k1 /* Compute target from base and offset */
jr ko0 /* Jump to specific exception routine */
nop
/*
* Each interrupt processing routine processes a specific interrupt, analogous
* to those reached in VI or EIC interrupt mode. Since each processing routine
* is dedicated to a particular interrupt line, it has the context to know
* which line was asserted. Each processing routine may need to look further
* to determine the actual source of the interrupt if multiple interrupt requests
* are ORed together on a single IP line. Once that task is performed, the
* interrupt may be processed in one of two ways:
*
* - Completely at interrupt level (e.g., a simple UART interrupt). The
* SimpleInterrupt routine below is an example of this type.
* - By saving sufficient state and re-enabling other interrupts. In this
* case the software model determines which interrupts are disabled during
* the processing of this interrupt. Typically, this is either the single
* StatusIM bit that corresponds to the interrupt being processed, or some
* collection of other Statuspy bits so that “lower” priority interrupts are
* also disabled. The NestedInterrupt routine below is an example of this type.
*

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 317

SimpleInterrupt:
/*
* Process the device interrupt here and clear the interupt request
* at the device. In order to do this, some registers may need to be
* saved and restored. The coprocessor 0 state is such that an ERET
* will simply return to the interrupted code.
*/

eret /* Return to interrupted code */

NestedException:
/*

* Nested exceptions typically require saving the EPC and Status registers,

* saving any GPRs that may be modified by the nested exception routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
* pbelow cannot cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/
/* Save GPRs here, and setup software context */
mfcO0 k0, CO_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfcO0 k0, CO_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
1i k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */
and ko, kO, ki1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtcO k0, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*
* Process interrupt here, including clearing device interrupt.
* In some environments this may be done with the core running in
* kernel or user mode. Such an environment is well beyond the scope of
* this example.
*/
/*

* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtcO kO, CO_Status /* Restore the original value */
mtcOo k1, CO_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

318 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

5.11.1.2 Vectored Interrupt Mode

In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be
used to direct each interrupt to a dedicated handler routine. VImode is in effect when all the following conditions are
true:

* Config3yi =1
* Config3ygic=0
* IntCtlys#0

e Causey =1

. StatUSBEV =0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer,
performance counter, and fast debug channel interrupts are combined in a system-dependent way (external to the
CPU) with the hardware interrupts (the interrupt with which they are combined is indicated by the IntCtl\p1)/pci/1PFDCI

fields) to provide the appropriate relative priority of the those interrupts with that of the hardware interrupts. The pro-
cessor interrupt logic ANDs each of the Cause,p bits with the corresponding Status,y, bits. If any of these values is 1,
and if interrupts are enabled (Status;g = 1, Statusgy, = 0, and Statusgg, = 0), an interrupt is signaled and a priority
encoder scans the values in the order shown in Table 5.25.

Table 5.25 Relative Interrupt Priority for Vectored Interrupt Mode

Vector Number
Relative Interrupt Interrupt Interrupt Request Generated by
Priority Type Source Calculated From Priority Encoder
Highest Priority | Hardware HWS5 IP7 and IM7 7
HW4 IP6 and IM6 6
HW3 IP5 and IM5 5
HW2 [P4 and IM4 4
HWI1 IP3 and IM3 3
HWO IP2 and IM2 2
Software SW1 IP1 and IM1 1
Lowest Priority SWO0 IPO and IMO 0

A typical software handler for Vectored Interrupt mode bypasses the entire sequence of code following the
IVexception label shown for the compatibility mode handler above. Instead, the hardware performs the prioritiza-
tion, dispatching directly to the interrupt processing routine.

A nested interrupt is similar to that shown for compatibility mode. Such a routine might look as follows:

NestedException:

/*

* Nested exceptions typically require saving the EPC and Status registers,
disabling the appropriate IM bits in Status to prevent an interrupt loop,
putting the processor in kernel mode, and re-enabling interrupts. The sample
code below cannot cover all nuances of this processing and is intended only
to demonstrate the concepts.

L

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 319

320

mfco ko, CO_EPC /* Get restart address */

sw k0, EPCSave /* Save in memory */

mfcO k0, CO_Status /* Get Status value */

sw k0, StatusSave /* Save in memory */

1i k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, ko, k1 /* Clear bits in copy of Status */

ins k0, zero, S StatusEXL, (W _StatusKSU+W_ StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtcO kO, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

/* Process interrupt here, including clearing device interrupt */

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtcO k0, CO_Status /* Restore the original value */
mtcO k1, CO_EPC /* and EPC */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

5.11.1.3 External Interrupt Controller Mode

External Interrupt Controller (EIC) mode redefines the way that the processor interrupt logic is configured to provide
support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts,
including hardware, software, timer, fast debug channel, and performance counter interrupts, and directly supplying
to the processor the vector number of the highest priority interrupt.

EIC interrupt mode is in effect if all of the following conditions are true:
e Config3ygc=1

* IntCtlyg#0

e Causey =1

* Statusggy =0

In EIC mode, the processor sends the state of the software interrupt requests (Cause;p; |po) and the timer, performance
counter, and fast debug channel interrupt requests (Causer;pcepcy) to the external interrupt controller, which priori-

tizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt controller can be a
hardwired logic block, or it can be configurable by control and status registers. This allows the interrupt controller to
be more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest prior-

ity interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit
encoded value in the range 0..63, inclusive. The values 1..63 represent the lowest (1) to highest (63) RIPL for the

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

interrupt to be serviced. A value of 0 indicates that no interrupt requests are pending. The interrupt controller inputs
this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC mode.

Status;p; (which overlays Status;y7 v2) 1S interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (a value of zero indicates that no interrupt is currently being serviced). When the interrupt con-
troller requests service for an interrupt, the processor compares RIPL with Status;p; to determine if the requested
interrupt has a higher priority than the current IPL. If RIPL is strictly greater than Status|p| , and interrupts are enabled
(Statusg = 1, Statusgy, = 0, and Statusgg; = 0), an interrupt request is signaled to the pipeline. When the processor starts
the interrupt exception, it loads RIPL into Causegp; (Which overlays Causep; |p,) and signals the external interrupt
controller to notify it that the request is being serviced. The interrupt exception uses the value of Causegp| as the vec-
tor number. Because Causeg,p, is only loaded by the processor when an interrupt exception is signaled, it is available

to software during interrupt processing.
The operation of EIC interrupt mode is shown in Figure 5.7.

Figure 5.7 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode Latch Compare Generate
Causery
Causepc; Status RIPL Any Request Interrupt Request
Statusyp, IPL 5] Swwsg
StatuSIPO
— 3
-
Interrupt Exception
g, Interrupt Service IntCtlyg
< % Earted .
> g ;Load Fields
—
- g Requested E g Exception
[=} =
S 5 |IPL = 9 Vector Offset
§ — E > Vector Number > é
2 5 B
E—™ § e &
g > X o
=)

A typical software handler for EIC mode bypasses the entire sequence of code following the IV exception label
shown for the compatibility-mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine.

A nested interrupt is similar to that shown for compatibility mod. It also need only copy Causegryp, to Statusypy, to pre-
vent lower priority interrupts from interrupting the handler. Here is an example of such a routine:

NestedException:
/*

* Nested exceptions typically require saving the EPC and Status registers,

* disabling the appropriate IM bits in Status to prevent an interrupt loop,
* putting the processor in kernel mode, and re-enabling interrupts.

* The sample code below can not cover all nuances of this processing and is
* intended only to demonstrate the concepts.

*/

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 321

mfco k1, CO_Cause /* Read Cause to get RIPL value */

mfco k0, CO_EPC /* Get restart address */

srl k1, k1, S CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */

mfcO0 k0, CO_Status /* Get Status value */

sw k0, StatusSave /* Save in memory */

ins k0, k1, S StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
ins k0, zero, S _StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtcO0 kO, CO_Status /* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */

/* Process interrupt here, including clearing device interrupt */

/*
* The interrupt completion code is identical to that shown for VI mode above.

*/
5.11.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtlyg to create the interrupt offset, which is added to 0x200 to create the
exception vector offset. For VI mode, the vector number is in the range 0..7, inclusive. For EIC interrupt mode, the
vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtly,g field specifies
the spacing between vector locations. If this value is zero (the default reset state), the vector spacing is zero and the
processor reverts to Interrupt Compatibility mode. A non-zero value enables vectored interrupts. Table 5.26 shows
the exception vector offset for a representative subset of the vector numbers and values of the IntCtlyg field.

Table 5.26 Exception Vector Offsets for Vectored Interrupts

Value of IntCtlyg Field
Vector Number 5’00001 | 5'b00010 | 5'b00100 | 501000 | 5'b10000
0 0x0200 0x0200 0x0200 0x0200 0x0200
1 0x0220 0x0240 0x0280 0x0300 0x0400
2 0x0240 0x0280 0x0300 0x0400 0x0600
3 0x0260 0x02C0 0x0380 0x0500 0x0800
4 0x0280 0x0300 0x0400 0x0600 0x0A00
5 0x02A0 0x0340 0x0480 0x0700 0x0C00
6 0x02C0 0x0380 0x0500 0x0800 0xO0E00
7 0x02E0 0x03C0 0x0580 0x0900 0x1000
o
61 0x09A0 0x1140 0x2080 0x3F00 0x7C00
62 0x09C0 0x1180 0x2100 0x4000 0x7E00
63 0x09E0 0x11C0 0x2180 0x4100 0x8000

The general equation for the exception vector offset for a vectored interrupt is:

322 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

vectorOffset <« 0x200 + (vectorNumber x (IntCtlyg || 0b00000))

5.11.3 Global Interrupt Controller

The Global Interrupt Controller (GIC) handles the routing and masking of local interrupts, such as the timer, perfor-
mance counter, fast debug channel interrupts, inter-processor interrupts, and external interrupts. This block can be
configured to support various numbers of external interrupts and to support any of the CPU interrupt modes.

An interactive GUI is available to simplify the setup of desired event-routing through the GIC. The tool outputs a C-
language function covering all required programming registers of the GIC.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 323

324 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Chapter 6

Coherence Manager

The coherence manager (CM2) in the P6600 Multiprocessing System is used to maintain coherency between the L1
caches of each core, and the shared L2 cache within the CM2. The CM2 also contains the Global Interrupt Controller
(GIC), and Cluster Power Controller (CPC) and manages the interface of those components to the cores and the
IOCU. The CM2 adds support for virtualization and L2 prefetching. Some of the new features are listed in Section
6.1, "CM2 Features".

The P6600 Global Control Registers address space (GCR) contains control/status registers for the entire P6600 Mul-
tiprocessing System cluster (see Section 6.4 “Global Control Block™), as well as the individual P6600 cores (see
Section 6.5 “Core-Local and Core-Other Control Blocks™) in the cluster.

The GCR address space has a total size of 32 KBytes, which is divided into 8 KByte blocks as described in Section
6.2 “Coherence Manager Address Map”. The location of the GCR block in the system address map is controlled by
the GCR_BASE register.

Physically, the registers are located within the GCR block of the Coherence Manager (CM2) and are accessed by the
P6600 cores using 32-bit aligned uncached load/store instructions, or by I/O devices via the I/O Coherence Unit
(IOCU), using read/write instructions.

This chapter contains the following sections:

* Section 6.1 “CM2 Features”

* Section 6.2 “Coherence Manager Address Map”

* Section 6.3 “CM2 Programming”

* Section 6.4 “Global Control Block”

* Section 6.5 “Core-Local and Core-Other Control Blocks”

* Section 6.6 “Global Debug Control Block™

6.1 CM2 Features

The P6600 coherence manager contains the following features:

* 128-bit data width between the CM2 and Cores, the CM2 and IOCU, IOCU to memory subsystem and CM2 to
memory.

* When configured with 128-bit data the IOCU can handle requests of up to 256 bytes in length (previously was
restricted to 128 bytes).

e The L2 Prefetcher that can dramatically improve performance for workloads with linear access patterns, such as
memcopy.

* 40-bit address through the CM2 and IOCU.

* The CM2 PDtrace formats are extended to support 40-bit addresses.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 325

* Virtualization support has been added to the General Interrupt Controller (GIC)

* Virtualization support via new IOMMU component included in IOCU.

* New performance counter events/qualifiers to measure L2 prefetcher effectiveness.

* New IOMMU functionality is embedded in the IOCU. An IOMMU standalone component is also available.
» Register access to multiple IOMMU’s supported.

e CM Trace has a new field that indicates internal source of CPU request (instruction fetch, data load, prefetch
instruction, hardware table walker).

* When Virtualization is enabled, the Guest ID is driven with the request on the main memory OCP port and the
IOCU's Memory Mapped 10 OCP Port.

6.2 Coherence Manager Address Map

Table 6.1 shows the address map of the four, 8-KB GCR blocks relative to the GCR_BASE as defined in the GCR Base
Register. Each of these blocks of registers are described in the following sections.

Table 6.1 P6600 Control Space Address Map (Relative to GCR_BASE[39:15])

Address Range Size (bytes) Description
0x00_0000 - 0x00 1FFF 8 KB Global Control Block. Contains registers pertaining to the global system func-
tionality. All cores can access this block of registers.
0x00 2000 - 0x00 3FFF 8 KB Core-Local Control Block (aliased for each P6600 core). Contains registers

pertaining to the P6600 core issuing the request. Each core has its own copy of
registers within this block.

0x00_4000 - 0x00 5SFFF 8 KB Core-Other Control Block (aliased for each P6600 core). This block of
addresses gives each Core a window into another cores Core-Local Control
Block. Before accessing this space, the Core-Other_Addressing Register in the
Local Control Block must be set with the CORENum of the target Core.

0x00_6000 - 0x00_7FFF 8 KB Global Debug Block. Contains global registers useful in debugging the P6600
MPS.

6.2.1 Block Offsets Relative to the Base Address

The block offsets for each of the four blocks listed in Table 6.1 above are relative to a GCR base address and can be
located anywhere in physical memory. The base address is a 17-bit value that is programmed into the GCR_BASE
field of the GCR Base register located at offset address 0x00_0000 in the Global Control Block. The MIPS default
location for the GCR_BASE address is 0x00_1FBF_8. To determine the physical address of each block using the
MIPS default, this value would be added to the GCR block offset to derive the absolute physical address as shown in
Table 6.2.

Table 6.2 Absolute Address of GCR Register Blocks Using the MIPS Default

Size
MIPS Default Base GCR Block Offset Absolute Physical Address | (bytes) Description
0x00_1FBF 8 +| 0x0000- OXIFFF | = 0x00_1FBF_ 8000 - 8 KB | Global Control Block.
0x00_1FBF_9FFF

326 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 6.2 Absolute Address of GCR Register Blocks Using the MIPS Default (continued)

Size
MIPS Default Base GCR Block Offset Absolute Physical Address | (bytes) Description
0x00_1FBF 8 + 0x2000 - 0x3FFF 0x00_1FBF_ A000 - 8 KB | Core-Local Control Block
0x00 1FBF BFFF
0x00 1FBF 8 + 0x4000 - OxSFFF 0x00_1FBF_ C000 - 8 KB | Core-Other Control Block
0x00_1FBF_DFFF
0x00 1FBF 8 + 0x6000 - 0x7FFF 0x00_1FBF_E000 - 8 KB | Global Debug Block

0x00_1FBF_FFFF

6.2.2 Register Offsets Relative to the Block Offsets

In addition to the block offsets, the register offsets provided in each register description of this chapter are relative to
the block offsets shown in Table 6.2 above. To determine the physical address of each register, the MIPS default base
address is added to the corresponding GCR block offset plus the actual register offset to derive the absolute physical
address as shown in Table 6.3. Note that this example shows only a few selected registers of the Global Control

Block.
Table 6.3 Absolute Address of Individual Global Control Block Registers
MIPS Default Global Register Global Register Absolute Physical
Base Block Offset Offset Address Global Control Register
0x00 1FBF 8 | + 0x0000 + 0x0000 0x00_1FBF_8000 |CM2 Configuration.
0x00 _1FBF 8 | + 0x0000 + 0x0008 0x00_1FBF_ 8008 GCR Base.
0x00 1FBF 8 | + 0x0000 + 0x0010 0x00 1FBF_ 8010 |CM2 Control.
0x00 1FBF 8 | + 0x0000 + 0x0018 0x00_1FBF_8018 | CM2 Control2.
0x00 1FBF 8 | + 0x0000 + 0x0020 0x00_1FBF_ 8020 CM2 Access Privilege.
0x00 1FBF 8 | + 0x0000 + 0x0228 0x00_1FBF 8228 | Attribute-Only Region 3 Mask.

The registers within the Core-Local blocks would be accessed in a similar manner as shown in Table 6.4.

Table 6.4 Absolute Address of Individual Core-Local Block Registers

MIPS Default Core-Local Core-Local Absolute Physical

Base Block Offset Register Offset Address Global Control Register
0x00_1FBF_8 | + 0x2000 + 0x0000 0x00_1FBF_ A000 |Reserved.
0x00_1FBF 8 | + 0x2000 + 0x0008 0x00 1FBF A008 | Core-Local Coherence Control.
0x00 1FBF 8 | + 0x2000 + 0x0010 0x00_1FBF_A010 | Core-Local Configuration.
0x00_1FBF_8 | + 0x2000 + 0x0018 0x00_1FBF_ A018 | Core-Other Addressing.
0x00 1FBF 8 | + 0x2000 + 0x0020 0x00 1FBF A020 | Core-Local Reset Exception

Base.

0x00 1FBF 8 | + 0x2000 + 0x0028 0x00_1FBF_A028 | Core-Local Identification.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 6.4 Absolute Address of Individual Core-Local Block Registers(continued)

MIPS Default Core-Local Core-Local Absolute Physical
Base Block Offset Register Offset Address Global Control Register
0x00_1FBF 8 0x2000 0x0030 0x00_1FBF_A030 | Core-Local Reset Exception
Extended Base.
Ox1FBF_8 0x2000 0x0040 0x00_1FBF_ A040 | TCID 0 Priority.

The Core-Other block would be accessed in the same manner, just with a different (Core-Other) block offset

(0x4000).

This concept is described in Figure 6.1 below. For simplicity, the MIPS default value is used for the GCR base

address.

Figure 6.1 CM2 Register Addressing Scheme Using the MIPS Default in GCR_BASE

GCR_BASE Register

35

15

|GCR_BASE| |

328

0x0_1FBF_E000

+0x2000

0x0_1FBF_C000

+0x2000

0x_O01FBF_A000

+0x2000

MIPS Default: 0x00_1FBF_8

0x0_1FBF_FFFF

0x0_1FBF_E000

0x0_1FBF_DFFF

0x0_1FBF_C000

0x0_1FBF_BFFF

0x0_1FBF_A000

0x0_1FBF_9FFF

0x0_1FBF_8000

N

<

> Debug Block

> Core-Other Block

> Core-Local Block

> Global Control Block

J

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

6.3 CM2 Programming

This section provides programming examples based on the capability of the CM2 register set. Some topics described

are:

Section 6.3.1, "40-bit Physical Address Support"

Section 6.3.2, "L2 Cache Prefetcher"

Section 6.3.3, "Verifying Overall System Configuration"
Section 6.3.4, "Requestor Access to GCR Registers"

Section 6.3.5, "CM2 Interface Ports"

Section 6.3.6, "Setting the CM2 Register Block Base Address"
Section 6.3.7, "Address Regions"

Section 6.3.8, "Address Map Programming Example"

Section 6.3.9, "Core-Local GCRs"

Section 6.3.10, "Core-Other GCRs"

Section 6.3.11, "Accessing Another Cores CM2 GCR Registers"
Section 6.3.12, "Coherency Domains"

Section 6.3.13, "L2-Only SYNC Operation"

Section 6.3.14, "Handling of Addresses Not Mapped to a Defined Region"

Section 6.3.15, "Setting the Cache Coherency Attributes for Default Memory Transfers"

Section 6.3.16, "In-Flight L1 and L2 Cache Operations"
Section 6.3.17, "MIPS System Trace"

Section 6.3.18, "Error Processing"

Section 6.3.19, "Custom GCR Implementation"

Section 6.3.20, "Attribute-Only Regions"

6.3.1 40-bit Physical Address Support

The P6600 Multiprocessing System (MPS) supports a 40-bit physical address (PA). The 40-bit address allows for

seamless integration with other IP with similar addressing capability.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

329

All ‘base address’ registers in the CM2 register space have been extended to include a second register used to store
bits 32 through 39 of the 40-bit address. Table 6.5 lists those new CM2 registers that have been added to support the
40-bit address. Note that all register addresses are relative to the Global Control Block offset.

Table 6.5 Registers Used to Support the 40-bit Physical Address

Register Address Name

0x000C GCR Base Upper Register (GCR_BASE_UPPER). This register works in conjunction with the (GCR_BASE)
register at 0x0008 to store upper address bits 35:32. Note that the GCR_BASE extends to only 36 bits instead
of 40 bits.

0x0054 Global CM2 Error Address Upper Register (GCR_ERROR_ADDR_UPPER). This register works in conjunc-
tion with the (GCR_ERROR_ADDR) register at 0x0050 to store upper address bits 39:32.

0x0064 GCR Custom Base Upper Register (GCR_CUSTOM_BASE_UPPER). This register works in conjunction with
the (GCR_CUSTOM_BASE) register at 0x0060 to store upper address bits 39:32.

0x0074 Global L2 only Sync Upper Register (GCR_L2_ONLY_SYNC_BASE_UPPER). This register works in conjunc-
tion with the (GCR_L2_ONLY_SYNC_BASE) register at 0x0070 to store upper address bits 39:32.

0x0084 Global Interrupt Controller Base Address Upper Register (GCR_GIC_BASE_UPPER). This register works in
conjunction with the (GCR_GIC_BASE) register at 0x0080 to store upper address bits 39:32.

0x008C Cluster Power Controller Base Address Upper Register (GCR_CPC_BASE_UPPER). This register works in
conjunction with the (GCR_CPC_BASE) register at 0x0088 to store upper address bits 39:32.

0x0094 CM2 Region0 Base Address Upper Register (GCR_REGO0_BASE_UPPER). This register works in conjunction
with the (GCR_REGO_BASE) register at 0x0090 to store upper address bits 39:32.

0x009C CM2 Region0 Address Mask Upper Register (GCR_REGO_MASK_UPPER). This register works in conjunc-
tion with the (GCR_REGO0_MASK) register at 0x0098 to store upper address bits 39:32.

0x00A4 CM2 Regionl Base Address Upper Register (GCR_REG1_BASE_UPPER). This register works in conjunction
with the (GCR_REG1_BASE) register at 0x00AO to store upper address bits 39:32.

0x00AC CM2 Regionl Address Mask Upper Register (GCR_REG1_MASK_UPPER). This register works in conjunc-
tion with the (GCR_REG1_MASK) register at 0x00AS to store upper address bits 39:32.

0x00B4 CM2 Region2 Base Address Upper Register (GCR_REG2_BASE_UPPER). This register works in conjunction
with the (GCR_REG2_BASE) register at 0x00BO to store upper address bits 39:32.

0x00BC CM2 Region2 Address Mask Upper Register (GCR_REG2_MASK_UPPER). This register works in conjunc-
tion with the (GCR_REG2_MASK) register at 0x00B8 to store upper address bits 39:32.

0x00C4 CM2 Region3 Base Address Upper Register (GCR_REG3_BASE_UPPER). This register works in conjunction
with the (GCR_REG3_BASE) register at 0x00CO to store upper address bits 39:32.

0x00CC CM2 Region3 Address Mask Upper Register (GCR_REG3_MASK_UPPER). This register works in conjunc-
tion with the (GCR_REG3_MASK) register at 0x00C8 to store upper address bits 39:32.

0x0194 CM Attribute-Only Region0 Base Address Upper Register (GCR_REGO_ATTR_BASE_UPPER).
This register works in conjunction with the (GCR_REGO_ATTR_BASE) register at 0x0190 to store upper
address bits 39:32.

0x019C CM Attribute-Only Region0 Address Mask Upper Register (GCR_REGO_ATTR_MASK_UPPER).
This register works in conjunction with the (GCR_REGO_ATTR_MASK) register at 0x0198 to store upper
address bits 39:32.

0x01A4 CM Attribute-Only Regionl Base Address Upper Register (GCR_REG1_ATTR_BASE_UPPER).
This register works in conjunction with the (GCR_REG1_ATTR_BASE) register at 0x01A0 to store upper
address bits 39:32.

0x01AC CM Attribute-Only Region1 Address Mask Upper Register (GCR_REG1_ATTR_MASK_UPPER).
This register works in conjunction with the (GCR_REG1_ATTR_MASK) register at 0x01AS8 to store upper
address bits 39:32.

330 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 6.5 Registers Used to Support the 40-bit Physical Address (continued)

Register Address Name

0x0214 CM Attribute-Only Region2 Base Address Upper Register (GCR_REG2_ATTR_BASE_UPPER).
This register works in conjunction with the (GCR_REG2_ATTR_BASE) register at 0x0210 to store upper
address bits 39:32.

0x021C CM Attribute-Only Region2 Address Mask Upper Register (GCR_REG2_ATTR_MASK_UPPER).
This register works in conjunction with the (GCR_REG2_ATTR_MASK) register at 0x0218 to store upper
address bits 39:32.

0x0224 CM Attribute-Only Region3 Base Address Upper Register (GCR_REG3_ATTR_BASE_UPPER).
This register works in conjunction with the (GCR_REG3_ATTR_BASE) register at 0x0220 to store upper
address bits 39:32.

0x022C CM Attribute-Only Region3 Address Mask Upper Register (GCR_REG3_ATTR_MASK_UPPER).
This register works in conjunction with the (GCR_REG3_ATTR_MASK) register at 0x0228 to store upper
address bits 39:32.

6.3.2 L2 Cache Prefetcher

The coherence manager in the P6600 MPS contains an L2 prefetcher used to enhance L2 performance. The L2
prefetcher contains the following features.

+ Improves memcopy/memset performance

* Recognizes streams with strides of +/-1 and prefetches ahead

e Increases size of prefetch window until requests for that stream hits in L2

* Up to 16 streams can be tracked simultaneously

* Tracks data fetches. GCR bit turns on prefetching for Instructions fetches

* Prefetches will be throttled when CM2.5 resources run low

* L2 prefetcher does not prefetch beyond an O/S page

The L2 prefetcher monitors requests from the cores and IOCU’s and detect strides +/- 1 that miss in L2. It then issues
a prefetch read for subsequent cachelines and regulates the amount of prefetching based on hit/miss and strides of
requests in same stream.

The L2 prefetcher contains a series of prefetch trackers. Each prefetch tracker tracks a particular request stream based
on the address. The output of each prefetch tracker is input to an arbiter which selects the prefetch request to forward.
Each prefetch tracker maintains its own prefetch window, which is defined as the area between the last demanded
address and the prefetch limit (the point after which the prefetcher cannot access).

The L2 prefetcher is controlled using the following two registers. Refer to the Shared register section for more infor-

mation.
Table 6.6 Registers Used to Support L2 Prefetcher
Register Address Name
0x0300 L2 Prefetcher control register. (GCR_L2_PFT_CONTROL). Provides L2 prefetch control.
0x0308 L2 Prefetcher control register 2. (GCR_L2_PFT_CONTROL_B). Provides additional L2 prefetch control.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 331

332

6.3.3 Verifying Overall System Configuration

At build-time, the developer selects the number of cores in the system, the number of I/O coherency units (IOCU’s),
and the number of address regions. When the device is built, these values are hard-wired into the Global Configuration
register at offset address 0x0000. Reading this register provides the following information:

* Bits 7:0 — Number of cores in the system (up to 6)
* Bits 11:8 — Number of IOCU’s (1)

* Bits 19:16 — Number of address regions

6.3.4 Requestor Access to GCR Registers

The CM2 allows up to seven requestor’s in a system. A requestor can be either a core or an IOCU. The P6600 core
allows up to 7 requestors in a multiprocessing system; six cores and one IOCU.

The requestor’s may not have unrestricted access to the CM2 registers. During boot time, software determines which
requestor’s are provided access to the CM2 registers by programming the CM2_ACCESS_EN field of the Global CSR
Access Privilege register located at offset 0x0020. Each bit in this field corresponds to a specific requestor.

The MIPS default for this field is 0OxFF, meaning that all requestor’s in the system have access to the CM2 register set.

To disable access to the registers for a particular requestor, software need only clear the corresponding bit of this field
to zero and all write requests to the CM2 registers by that requestor will be ignored.

6.3.5 CM2 Interface Ports

The CM2 contains numerous ports that allow the various system peripherals to communicate with the CM2. The
ports connected to the CM2 are shown in Figure 6.2. The P6600 Multiprocessing System can have up to 6 cores.

Figure 6.2 Interface Ports of the CM2

Core 0 Core n
Core OCP port 0 ® L4 ° L Core OCP port n
Optional
| —
GIC | ——— Coherence Manager 2 MMIO OCP| 10cy
GI OCP port
—-
port
Memory OCP port GP OCP port GC OCP port
Optional
Memory CPC GCR Custom
GCR

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

6.3.6 Setting the CM2 Register Block Base Address

GCR Base Register ‘ 0x0_1FBF_8 |

As shown in Table 6.1 above, the CM2 register map contains four contiguous 8K blocks and can be located anywhere
within physical memory. During IP configuration, the user can select the option to use the MIPS default base address
of 0x0_1FBF_8, or they can select any 32 KB location in memory to locate the CM2 registers.

This decision determines how the 17-bit GCR_BASE field is programmed. If the MIPS default base address option is
selected, a value of 0x0_1FBF 8 is loaded into this field. If the user selects their own base address, then that address
is programmed into the GCR_BASE field. Refer to Section 6.4.2.2, "GCR Base Register (GCR_BASE Offset
0x0008)" for more information. In addition to the value in the GCR_BASE field, the user can also select whether this
field is R/W or RO during IP configuration.

The following example shows the assignment of the CM2 GCR registers in memory using the MIPS default address.
Note that the physical address is shown in this diagram. During actual programming, the programmer may use the
virtual address associated with a physical address of 0x0_1FBF 8 to address the GCR block. The virtual address is
provided prior to address translation and will be different from the resulting physical address. Refer to Chapter 3 of
this manual for more information on virtual to physical address translation.

Figure 6.3 Mapping the CM2 Registers in Physical Memory Using the MIPS Default Value

GCR Default
Base Address?

IP Configuration User Base Address

Default Base Address)
Physical Memory

Hardware

35 15

\//

L 0x0_1FBF_FFFF
GCR Base Address 32 KB GCR Block 0x0_1FBF_8000

\

6.3.7 Address Regions

The CM2 divides the address space into two types of regions:
* Fixed-size regions

* Variable-size regions

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 333

334

6.3.7.1 Fixed-Size Regions

Fixed-size regions are those that have a fixed size in memory. These include:
* GCR Base; contains the global, core-local, core-other, and debug register blocks, fixed at 32 KB.
* GIC (global interrupt controller) address space, fixed at 128 KB
* CPC (cluster power controller) address space, fixed at 32 KB
* Custom GCR address space, fixed at 64 KB

The 32 KB GCR Base region is further divided into four 8 KB blocks as described in Table 6.1. Refer to Section
6.3.6, "Setting the CM2 Register Block Base Address" for more information on setting the base address in memory
for the CM2 register block.

The GIC region is fixed at 128 KB. Refer to Section 6.4.3.1, "Global Interrupt Controller Base Address Register
(GCR_GIC BASE Offset 0x0080)" for more information on programming the base address for the GIC interface.

The CPC region is fixed at 32 KB. Refer to Section 6.4.3.3, "Cluster Power Controller Base Address Register
(GCR_CPC BASE Offset 0x0088)" for more information on programming the base address for the CPC interface.

The Custom GCR region is fixed at 64 KB. Refer to Section 6.4.2.13, "GCR Custom Base Register
(GCR_CUSTOM_BASE Offset 0x0060)" for more information on programming the base address for the Custom
GCR interface.

6.3.7.2 Variable-Size Regions

The P6600 multiprocessing system may provide four programmable variable size address regions for mapping the
IOCU’s and memory. The number of regions is determined at IP configuration time. If an IOCU is not present, then
the regions registers are not used. The number of regions implemented is determined as follows.

Table 6.7 Setting the Number of Regions

ADDR_REGIONS Field Number of Regions Region Assignments
0x0 0 None (typically used when there is no IOCU).
0x4 4 4 standard regions.
0x6 6 4 standard regions and 2 attribute-only regions.
0x8 8 4 standard regions and 4 attribute-only regions.

For more information, refer to the ADDR REGIONS field in bits 19:16 of the Section 6.4.2.1, "Global Config
Register (GCR_CONFIG Offset 0x0000)". For more information on the attribute-only regions, refer to Section
6.3.20.

Each region is controlled by a corresponding base and mask register as described below. These registers are used to
determine not only the location and size of the memory space, but also whether this space is mapped to an IOCU or to
memory. In addition, the cache coherency attributes (CCA) for each region can be defined as described in Section
6.3.7.6, "Setting the Cache Coherency Attributes for Region Memory Transfers".

In a MIPS core, mapped addresses are processed by the memory management unit (MMU) and the cache coherency

attributes for a given memory page are determined. In this case, the CCA corresponds to both the L1 and L2 caches.
In some situations it may be advantageous to have the CCA of the L2 different from that of the L1 cache. In this case,

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

software can use the CCA_Override_Value field of each Region Address Mask register to set the CCA for the L2 cache.
This changes the attributes of the cache from what was originally assigned by the core.

The CM2 provides four base address and four address mask registers for controlling variable-size address regions 0
through 3. These regions control how some transactions are routed by the CM2. The possible routing options for
requests that map to these variable-size regions are:

¢ To/From Memory via the CM2’s system memory OCP port

* To/From the IOCU’s via the CM2’s MMIO OCP port for Memory-Mapped /O (in hardware I/O coherent
systems only)

Refer to Section 6.4.3.5, "CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0,

0x00B0, 0x00C0)" and Section 6.4.3.7, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets
0x0098, 0x00A8, 0x00B8, 0x00C8)" for more information on these registers.

6.3.7.3 Address Region Priorities
The priority for the region decode is as follows:
1. GCR (highest priority)

2. Custom GCR

3. CPC
4. GIC
5. I0CU

6. Programmed MMIO regions
7. Programmed memory regions
8. CM2_DEFAULT_TARGET (lowest priority)

The above priority allows for large memory regions to be defined with small IOCU regions carved out. Note that
these regions can overlap as described in Section 6.3.7.8, "Overlapping Regions".

6.3.7.4 Defining the Base Address Location and Size for Each Region

The address map is programmable through a set of registers located in the GCR as summarized below. Up to 8 vari-
able-size programmable regions can be implemented. When an IOCU is present (i.e., hardware I/O Coherence is
implemented), these regions determine if requests are routed to memory or to the IOCU via the CM2’s MMIO port.
The regions can also be used with or without an IOCU for the CCA Override feature as described in Section

6.3.15 “Setting the Cache Coherency Attributes for Default Memory Transfers”.

e The GCR Base Register defines the address base of the GCR region. The GCR region has a fixed size of 32
KB (see Table 6.20), hence no corresponding Mask register is required. Note that this region must reside on
a 32 KB boundary.

* The Cluster Power Controller Base Address Register defines the address base of the CPC address region. This
CPC region may be disabled via the CPC_EN bit in that register. When enabled, the CPC address region has
a fixed size of 32 KB (see Table 6.38), hence no corresponding Mask register is required. Note that this
region must reside on a 32KB boundary.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 335

The Global Interrupt Controller Base Address Register defines the address base of the GIC address region. This
GIC region may be disabled via the GIC_EN bit in that register. When enabled, the GIC address region has a
fixed size of 128 KB (see Table 6.36), hence no corresponding Mask register is required. Note that this
region must reside on a 128 KB boundary.

The CM2 Region [0-3] Base Address Registers define the address base for each of the four programmable
regions. The regions have a programmable base address and a programmable size that is selected via the cor-
responding Mask register.

The CM2 Region [0-3] Address Mask Registers define the size for each of thefour programmable regions. These
registers work in conjunction with the corresponding CM2 Region [0-3] Base Address Registers to configure a
given region.

The Custom GCR Base Register defines the address base of the Custom GCR region. This region defines the
location of registers that areimplemented by the user. This region may be disabled via the GGU_EN bit in the
Custom GCR Base Register. When enabled, the Custom GCR region has a fixed size of 64 KB (see Table 6.31),
hence no corresponding Mask register is required. Note that this region must reside on a 64 KB boundary.

As described above, the base of eachregion is defined in the corresponding CM2 Region [0,1,2,3] Address Base Register
(see Table 6.40), and the size of the region is defined in the corresponding CM2 Region [0,1,2,3] Address Mask Register
(see Table 6.42). Because a base/mask scheme is used, the base must be located on a boundary of its size. A region
can be sized from 64K to the entire 32-bit address space.

Table 6.8 Setting the Base Address for the CM2 Peripheral Devices

Offset
Block Register Name Address Field Name Bits Description
GCR GCR_BASE 0x0008 GCR_BASE ADDR 35:15 | Sets the base address of the GCR regis-
ters. This field has a fixed size of 32 KB.
Custom GCR_CUSTOM_BASE | 0x0060 CUSTOM_ BASE 39:16 | Sets the base address of the Customer
GCR GCR registers. This field has a fixed size
of 64 KB.
GIC GCR_GIC BASE 0x0080 GIC BASE _ADDR 39:17 | Sets the base address of the GIC. This
field has a fixed size of 128 KB.
CPC GCR_CPC BASE 0x0088 CPC BASE ADDR 39:15 | Sets the base address of the CPC. This
field has a fixed size of 32 KB.
Region 0 GCR_REGO BASE 0x0090 REGIONO BASE ADDR | 39:16 | Sets the base address of region 0 in mem-
ory. Minimum size is 64 KB.
GCR_REG0O_MASK 0x0098 REGIONO BASE MASK | 39:16 |Sets the size of region 0 in memory.
Region 1 GCR_REGI1 _BASE 0x00A0 REGION1 BASE ADDR | 39:16 | Sets the base address of region 1 in mem-
ory. Minimum size is 64 KB.
GCR_REG1_MASK 0x00A8 REGION1 BASE MASK | 39:16 |Sets the size of region 1 in memory.
Region 2 GCR_REG2 BASE 0x00B0O REGION2 BASE ADDR | 39:16 | Sets the base address of region 2 in mem-
ory. Minimum size is 64 KB.
GCR_REG2 MASK 0x00B8 REGION2 BASE MASK | 39:16 |Sets the size of region 2 in memory.
Region 3 GCR_REG3 BASE 0x00C0 REGION3 BASE ADDR | 39:16 | Sets the base address of region 3 in mem-
ory. Minimum size is 64 KB.
GCR_REG3 MASK 0x00C8 REGION3 BASE MASK | 39:16 |Sets the size of region 3 in memory.

336

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

As described above, some of the blocks are a fixed size, hence there is no corresponding Mask register. Since the
GCR, GIC, and CPC blocks each contain a dedicated Base Address register, the Region 0 - 3 registers are used to
access the memory and IOCU peripherals.

6.3.7.5 Defining the Target Device

Each CM2 Region Address Mask register contains a field that determines how the CM2 routes requests whose address
matches the corresponding region. As defined in the CM2_REGION_TARGET field, the transaction may be routed to
memory or to an I/O device via the CM2’s MMIO port and IOCU. A region may be disabled by setting the
CM2_REGION_TARGET in the corresponding CM2 Region Address Mask register to 0.

The CM2_DEFAULT_TARGET field in the GCR Base Register determines how to route the requests that don’t match any
of the defined regions. Refer to Section 6.3.14, "Handling of Addresses Not Mapped to a Defined Region" for more
information.

6.3.7.6 Setting the Cache Coherency Attributes for Region Memory Transfers

As described in Section 6.3.6 “Setting the CM2 Register Block Base Address”, the P6600 core provides a CCA over-
ride capability that allows the CCA’s for the L2 cache to be different from those of the L1 data cache.

This capability can be achieved via the CCA override feature in the CM2 Region Address Map Registers listed in
Table 6.8. Software can establish up to 4 address map regions by programming the CM2 Region Base Register 0-3 and
CM2 Region Mask Register 0-3.

Programming the CCA

Each region has the CCA_Override_Enable and CCA_Override_Value fields which can be used to set the CCA for trans-
actions on the system memory OCP port. If the CCA_Override_Enable field is set to 1 for a given region and the corre-
sponding CM2_TARGET field in bits 1:0 is set to memory (0x1), then transactions that map to that region and proceed
to the system memory port will have a CCA value set to the corresponding CCA_Override_Value for that region. This
field also determines the CCA value driven to system memory.

Any valid CCA value can be programmed into CCA_Override_Value, but because the L2 does not process coherent
CCA’s, a value of CWB (5) or CWBE (4) is automatically changed to WB (3) by the CM2 before being driven on the
system memory OCP port. The encoding of the CCA_Override_Value field is identical to that shown in Table 6.9.

6.3.7.7 Issue Request Protocol and Region Masking

The CM2 contains four region mask registers used to set the size of a given region. These mask registers work in con-
junction with their corresponding base address registers as shown in Table 6.8. The requesting address is logically
ANDed with the value in the selected Region Address Mask register. At the same time, the value in the corresponding
REGION_BASE_ADDR field is compared to the value in the Region Address Mask register. If both outputs match, the
request is routed to this region.

When performing a comparison on a 40-bit address, the requesting address in the CM2_REGION1_BASE_ADDR and
CM2_REGION1_BASE_ADDR_UPPER registers are compared to the value in the CM2_REGION1_ADDR_MASK and
CM2_REGION1_ADDR_MASK_UPPER registers. If there is a match, the requesting address is routed to region 1. This
concept is shown in Figure 6.4.

The only allowed values in this register are contiguous sets of leading 0x1’s. An 0x1 preceded by a 0x0 is not allowed
(e.g., the value of OXFFFO is allowed, but the value OxFFEF is not allowed).

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 337

Figure 6.4 Mapping a Request to Region 1 Using the Region 1 Base and Mask Registers

Region 1 Mask

Upper Register Region 1 Mask Register
7 031 16 15 0
‘ Addr_Mask Upper | Regionl Addr Mask I Reserved
7
T Region 1 Base
Mask 39:15 Upper Register Region 1 Base Register

7 031 16 15 0
’ Base_Addr_Upper ‘ Regionl Base Addr ‘ Reserved

—

Base 39:15
Logical AND

Match

Logical AND

No match

Request issued to Region 1

6.3.7.8 Overlapping Regions

Since overlapping regions are supported, it is possible that an address maps to more than one region. In this case, the
CCA override enable and value are used from the lowest numbered region mapped to memory. For example, if an
address matches both CM2 Region Base/Mask Register 0 and CM2 Region Base/Mask Register 1, and both regions 0 and 1
are mapped to Memory (CM2_REGION_TARGET is set to 1 in both CM2 Region Mask Register 0 and 1), then the values
of CCA_Override_Enable and CCA_Override_value in CM2 Region Mask Register 0 is used to determine the CCA value
driven on the system memory OCP Port.

This concept is shown in Figure 6.5. In this example, region 1 is a 64 KB space located inside the larger 256 KB
region 0.

338 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 6.5 Example of Overlapping Regions

~ T

0x00_1FC3_FFFF
(end of Reg 0)

Region 0

In this example, region 1 resides inside

region 0. In this case, region 1 assumes

the cache coherency attributes of region 0. 0x00_1FC2_FFFF
(end of Regl)

S Region 1
Software programs the REGION_BASE field of the
Region 1 Base register at offset 0XO0AO with 0x00_1FC2_0000
a value of 0x00_1FC2_0000. Region O size is 64 KB. (start of Reg 1)
Region 0
Software programs the REGION_BASE field of the
of the Region 0 Base register at offset 0x0090 with » 0x00_1FCO0_0000
a value of 0x00_1FCO0_0000. Region 0 size is 256 KB. (start of Reg 0)
/\/

When overriding a CCA value, only the CCA driven to the system memory OCP is affected. Otherwise, the function-
ality of the transaction within the CM2 is based on the original CCA. When the CM2 is programmed to override the
CCAs for an address region, all accesses to that region including speculative reads and write-backs (explicit or
implicit) from the L1 are overridden. Transactions that are never mapped to regions, such as Legacy Syncs, CohCom-
pletionSyncs or L2/L3 CacheOps are unaffected by the CCA override functionality.

6.3.8 Address Map Programming Example

This subsection provides an example of memory mapping for all of the aforementioned regions at different locations
using the MIPS default base address. The memory map for this example is shown in Figure 6.6.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 339

Figure 6.6

7. Software programs the REGION_MASK field
of the Region 1 Mask register at offset 0x00A8,
with a value of OxFFFF_0000, yielding

a size of 64 KB.

6. Software programs the REGION_BASE field
of the Region 1 Base register at offset 0XO0AO.

5. Software programs the REGION_MASK field
of the Region 0 Mask register at offset 0x0098,
with a value of OxFFFF_0000, yielding

a size of 64 KB.

4. Software programs the REGION_BASE field
of the Region 0 Base register at offset 0x0090.

3. Software programs the GCR_BASE field
of the GCR Base register at offset 0x0008
with the MIPS default of OxO_1FBF_8. This
field has a fixed size of 32 KB.

2. Software programs the CPC_BASE field
of the CPC Base register at offset 0x0088.
This field has a fixed size of 32 KB.

1. Software programs the GIC_BASE field
of the GIC Base register at offset 0x0080.
This field has a fixed size of 128 KB.

Address Map Programming Example

CM2 Default Target?

\

\J

CM2 Default Target?®

Global Control Registers <

Y

e

CM2 Default Targeta<

CM2 Default Target?

a. The CM2 Default Target is set using bits 1:0 of the GCR Base register.
In this case this field would be set to 0x0 to indicate memory as the
default target for addresses that do not map to any other address entry.

340

_/—\

Main Memory

Region 1 (64 KB)
Used for IOCU1

Region 0 (64 KB)
Used for IOCUO

Main Memory

Main Memory

/_/

0x00_1FC4_9000
0x00_1FD3_FFFF

0x00_1FD3_0000
0x00_1FD2_FFFF

0x00_1FD2_0000
0x00_1FD1_FFFF

0x00_1FCO_0000
0x00_1FBF_FFFF

0x00_1FBF_E000
0x00_1FBF_DFFF

0x00_1FBF_C000
0x00_1FBF_BFFF

0x00_1FBF_A000
0x00_1FBF_9FFF

0x00_1FBF_8000
0x00_1FBE_7FFF

0x00_1BDE_8000
0x00_1BDE_7FFF

0x00_1BDE_0000
0x00_1BDD_FFFF

0x00_1BDC_0000
0x00_1BDB_FFFF

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

The following programming sequence is used to configure the memory map as shown in Figure 6.6 above.

1.

10.

Software programs the GIC_BASE field of the GIC Base register located at offset 0x0080 with a value of 0x1BDC.
This sets the base address of the GIC registers. This block has a fixed size of 128 KB. Refer to bits 31:17 in
Section 6.4.3.1, "Global Interrupt Controller Base Address Register (GCR_GIC_ BASE Offset 0x0080)" for
more information. Note that this block must reside on a 128 KB boundary.

Software programs the CPC_BASE field of the CPC Base register located at offset 0x0088 with a value of
0x1BDE _0. This sets the base address of the CPC registers. This block has a fixed size of 32 KB. Refer to bits
31:15 in Section 6.4.3.3, "Cluster Power Controller Base Address Register (GCR_CPC_BASE Offset 0x0088)"
for more information. Note that this block must reside on a 32 KB boundary.

Software programs the GCR_BASE field of the GCR Base register located at offset 0x0008 with a value of
Ox1FBF_8. This sets the base address of the 32 KB block of GCR registers. This block is divided into four 8 KB
subblocks that contain the Global, Core-Local, Core-Other, and Debug register blocks. Note that if the MIPS
default address of Ox1FBF_8 is selected for the base address of the GCR registers during IP configuration, this
field becomes read-only. In this case, hardware writes the default value of 0x1FBF_8 to this field. Refer to bits
31:15 in Section 6.4.2.2, "GCR Base Register (GCR_BASE Offset 0x0008)" for more information.

Software programs the REGION_BASE_ADDR field of the CM2 Region 0 Base register located at offset 0x0090 with
avalue of 0x1FD2. This sets the base address of region 0 to 0x1FD2_0000. Refer to bits 31:16 in Section 6.4.3.5,
"CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 0x00B0, 0x00C0)"

for more information.

Software programs the REGION_ADDR_MASK field of the CM2 Region 0 Address Mask register located at offset
0x0098 with a value of OXFFFF_0000. This sets the size of region 0 to 64 KB. Refer to bits 31:16 in Section
6.4.3.7, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 0x00BS,
0x00C8)" for more information. Other values for this field could be OXFFFE (128 KB), OXxFFFC (256 KB), etc.

Software programs the REGION_BASE_ADDR field of the CM2 Region 1 Base register located at offset 0x00A0
with a value of Ox1FD3. This sets the base address of region 1 to 0x1FD3_0000. Refer to bits 31:16 in Section
6.4.3.5, "CM2 Region [0 - 3] Base Address Register (GCR_REGn_BASE Offsets 0x0090, 0x00A0, 0x00BO,
0x00C0)" for more information.

Software programs the REGION_ADDR_MASK field of the CM2 Region 1 Address Mask register located at offset
0x00A8 with a value of OXFFFF_0000. This sets the size of region 1 to 64 KB. Refer to bits 31:16 in Section
6.4.3.7, "CM2 Region [0 - 3] Address Mask Register (GCR_REGn_MASK Offsets 0x0098, 0x00A8, 0x00BS,
0x00C8)" for more information. Other values for this field could be OXFFFE (128 KB), OXFFFC (256 KB), etc.

Software programs the CM2_DEFAULT_TARGET field of the GCR Base register with a value of 2°b00, indicating
that memory is the target device for addresses that do not map to any of the address blocks shown in Figure 6.6.
Refer to bits 1:0 in Section 6.4.2.2, "GCR Base Register (GCR_BASE Offset 0x0008)" for more information.

Software programs the CM2_TARGET field of the CM2 Region 0 Address Mask register located at offset 0x0098 with
a value of 2°’b10. This maps region 0 to IOCUO.

Software programs the CM2_TARGET field of the CM2 Region 1 Address Mask register located at offset 0X00AS8
with a value of 2°b11. This maps region 1 to IOCU1.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 341

342

6.3.9 Core-Local GCRs

The Core-Local GCR block contains the configuration and status registers for a given core. Each core has its own
copy of Core-Local registers. A core can access its own Core-Local block to determine the programmable parameters
for that core. Parameters include base address assignments for cache coherency attributes, reset exception base, boot
exception vector mask, etc.

6.3.10 Core-Other GCRs

The Core-Other GCR block is a single block that all of the cores have access to, and provides a way for one core to
access the Core-Local registers of another core. Before a core can access the Core-Other space, the Core-Other
Addressing register in that cores own Core-Local Control Block must be set with the core number (CORENUM) of the
target core. In this case, a particular core would program the Core-Other Addressing register in its own Core-Local
block with the core number to be accessed. The core would then write the contents of the register to be accessed into
the Core-Other address space.

6.3.11 Accessing Another Cores CM2 GCR Registers

As shown in Table 6.1, the CM2 provides two blocks of registers.
* Core-Local (offset range 0x2000 - 0x3FFF)
* Core-Other (offset range 0x4000 - Ox5SFFF)

Each core contains a copy of these registers. The Core-Local address space contains the GCR registers for that core.
The Core-Other address space allows a core to access the GCR registers for another cores Core-Local GCR block.

As described in Section 6.3.6, these registers can be located anywhere in physical memory if this option is selected
during IP configuration. If this option is not selected, the location of these registers are located at the MIPS default
address of 0x00 1FBF 8000. Refer to Section 6.2 “Coherence Manager Address Map” and related subsection for
more information on use of the MIPS default memory location.

The Core-Local block represents registers corresponding to that core. If a core wishes to modify the contents of its
own set of CM2 GCR registers, it writes to the Core-Local block located at the address range shown in Table 6.1. If a
core wishes to program the GCR registers of another core, it selects the core number and writes this value into the
Core-Other Addressing register in its own Core-Local block at offset address 0x0018. The actual register in the other
core to be written would use the corresponding offset in the Core-Other block shown in Table 6.1.

In a multiprocessor system, it is common for one core to boot up first, then have that core boot the other cores in the
system. In the following example, assume core 0 is booted up first. Then core 0 is used to program the GCR registers
in core 1. This example examines how core 0 would program the boot exception vector location for core 1. Note that
this example uses the MIPS default addressing scheme. The programming sequence would be as follows:

1. Core 0 writes a value of 0x0001 to the CORENUM field (bits 31:16) of the Core-Other Addressing register located
in its own Core-Local block at offset 0x0018 (physical address of 0x1FBF _AO018 in Table 6.3). This indicates
that the register to be programmed corresponds to core 1. Refer to Section 6.5.2.3, "Core-Other Addressing
Register" for more information.

2. Core 0 writes the appropriate value into the BEVEXCBase field (bits 31:12) of the Reset Exception Base register
located in the Core-Other block at offset 0x0020 (physical address of 0x00 1FBF _C020 in Table 6.4). Because
core 0 is setting the BEV base value for core 1, as opposed to its own core, the write is done to the Core-Other
address block. Refer to Section 6.5.2.4, "Core Local Reset Exception Base Register (GCR_Cx RESET BASE
Offset 0x0020)" for more information.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Note that in addition to the CORENUM field in the Core-Other Addressing register used to indicate the number of the
destination core as described in #1 above, a core can determine its own core number by reading the CORENUM field
in its own Core-Local Identification register located at offset 0x0028 in Core-Local address space. Refer to Section
6.5.2.5, "Core Local Identification Register (GCR_Cx_ID Offset 0x0028)" for more information.

Whenever one core read or writes to the registers associated with another core, the number of the core to be written is
programmed into that cores local CORENUM field as described in step 1 above. The actual register to be pro-
grammed is accessed via the Core-Other block as described in step 2 above.

Since there is only one Core-Other block in Table 6.1, this means that when one core wants to access any of the other
cores in the system, the register to be accessed always resides in the Core-Other block, regardless of the number of
cores in the system. The state of the CORENUM field in the Core-Other Addressing register in that cores own Core-
Local space determines which core the data will be written to. This concept is shown in Figure 6.7.

Figure 6.7 Core 0 Accessing the BEV_BASE GCR of Core 1

S 0x00_1FBF_FFFF

Debug Block <

0x00_1FBF_E000
0x00_1FBF_DFFF

N

31 12 11 0
BEV_BASE 0x00_1FBF_C020

2. Software programs the Core-Other
BEVBASE field of the Reset
Exception Base register in
Core-Other address space

0x00_1FBF_C000

at offset 0x020. 0x00_1FBF_BFFF
1. Software programs the Core-Local s1 1615 0
CORENUM field of the Core- 0x0001 0x00_1FBF_A018

0x00_1FBF_A000
0x00_1FBF_OFFF

the Core-Local address space
at offset 0x018.

Global Control

Other Addressing register in [

_________________ 0x00_1FBF_8000

6.3.12 Coherency Domains

The CM2 provides the COH_DOMAIN_EN field in Core-Local Coherence Control register at offset 0x0008 for managing
the coherency aspects of each requestor in the system. There is one register per core. A requestor can be either a core
or an IOCU.

In the 8-bit COH_DOMAIN_EN field, each bit corresponds to one requestor. Setting a given bit in the
COH_DOMAIN_EN field for the GCR local register corresponding to a given core puts that core into coherent mode. If

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 343

the same bit in the COH_DOMAIN_EN is 0 for the GCR local register corresponding to a given core, then that core is
not in coherence mode and will never issue a coherent request.

For example, if bit 1 of this field is set, then interventions from core 1 to core 0 are enabled and can occur. Note that
changing the coherence mode for a local core from 0x1 to 0x0 can only be done after flushing and invalidating all the

cache lines in the core; otherwise, the system behavior is UNDEFINED.

Also note that if bit 1 of the COH_DOMAIN_EN field is set for the GCR local register corresponding to core 0, then
software should also set bit 0 of the COH_DOMAIN_EN field for the GCR local register corresponding to core 1.

There is no need to program COH_DOMAIN_EN for the GCR local register corresponding to IOCUs.

Section 7.1.2, "Operating Level Transitions" in Chapter 7 of this manual provides examples of how this field is used
to transition between coherency domains.

Figure 6.8 Encoding of COH_DOMAIN_EN Field — 2 or 4 Core Package

Core 0's COH_DOMAIN_EN | 7[6|s[4]|3]2][1]0]

LV If 1 then Core O is in coherence mode

— If 1 then Coherent requests from Core 1 are sent to Core 0

—— If 1 then Coherent requests from Core 2 are sent to Core 0

L If 1then Coherent requests from Core 3 are sent to Core 0

——— If 1 then Coherent requests from IOCU 0 are sent to Core 0.

———— If 1 then Coherent requests from IOCU 1 are sent to Core 0.

> This bit is unused in 2 or 4 core systems.

> This bit is unused in 2 or 4 core systems.

Core I's COH_DOMAIN_EN | 7] 65|« |3]2][1]0]

L’ If 1 then Coherent requests from Core 0 are sent to Core 1

—— If 1then Core 1is in coherence mode

—— If 1 then Coherent requests from Core 2 are sent to Core 1

L If1then Coherent requests from Core 3 are sent to Core 1

L If1then Coherent requests from IOCU O are sent to Core 1.

L If1then Coherent requests from IOCU 1 are sent to Core 1.

» This bitis unused in 2 or 4 core systems.

» This bitis unused in 2 or 4 core systems.

344 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 6.9 Encoding of COH_DOMAIN_EN Field — 6 Core Package

Core 0's COH_DOMAIN_EN \7 \ 6 \ sMs \ 2 \ 1 \ 0‘

L’ If 1 then Core O is in coherence mode

— If 1 then Coherent requests from Core 1 are sent to Core 0

* If 1 then Coherent requests from Core 2 are sent to Core 0

——— If 1 then Coherent requests from Core 3 are sent to Core 0

——— If 1 then Coherent requests from Core 4 are sent to Core 0

————— If 1 then Coherent requests from Core 5 are sent to Core 0

* If 1 then Coherent requests from IOCU 0 are sent to Core 0

» If 1 then Coherent requests from IOCU 1 are sent to Core 0

Core 1's COH_DOMAIN_EN \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \

o

—

If 1 then Coherent requests from Core 0 are sent to Core 1

L——— If 1then Core 1is in coherence mode

—— If 1 then Coherent requests from Core 2 are sent to Core 1

——— > If 1 then Coherent requests from Core 3 are sent to Core 1

N If 1 then Coherent requests from Core 4 are sent to Core 1

e If 1 then Coherent requests from Core 5 are sent to Core 1

» If 1 then Coherent requests from IOCU 0 are sent to Core 1

4 If 1 then Coherent requests from IOCU 1 are sent to Core 1

6.3.13 L2-Only SYNC Operation

In previous generation MIPS processors, the execution of a SYNC instruction would cause the entire core pipeline to
stall until all read/write requests were completed. This included the L2 pipeline. After all instructions had been com-
pleted, a signal was sent to the L2 cache to continue. This caused a sometimes unnecessary stalling of the L2 cache.

The P6600 core provides a way to perform a SYNC operation on only the L2 cache. The core defines a fixed 4 KB
address space for performing L2 only SYNC operations. The base address for the location of this fixed 4 KB segment
is programmed using bits 31:12 of the L2-Only Sync Base register located at offset 0x0070.

Bit 0 of the L2-Only Sync Base register enabled the L2-only SYNC function. If this bit is set, the CM2 treats an
uncached write to anywhere within the 4 KB block as an L2-only SYNC. This operation does not write anything to
memory, but rather just initiates the L2-only SYNC.

The L2-only SYNC provides a way for the software to ensure that subsequent uncached loads and stores from a core
will not pass previous L2 cache operations, such as L2 cacheops.

Note that the L2-Only SYNC is not required, but it can be useful for optimizing performance. Since the L2-Only
SYNC operation does not synchronize to the L1 caches, care should be taken to ensure correct system functionality.

As an example of how this operation works, assume the 4 KB block is located at offset address 0x8000 as shown in
Figure 6.10.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 345

Figure 6.10 Example of an L2-Only SYNC Operation

Physical address space

L2-Only SYNC Base Register ~ T
31 1211 10
SYNC_BASE 1
T Ox8FFF
1. Software executes an uncached write to SYNC_EN
L2-Only SYNC address space. No actual Uncached Write L2-Only SYNC
memory write occurs during this operation. >

Note that the SYNC_EN bit must be set in
order to perform an L2-Only SYNC operation.

346

Address Space

SYNC_BASE —> 0x8000

2. Hardware initiates a flush
of the L2 pipeline.

/_/

L2 pipeline stalls until the flush

\-),» L2 Cache Pipeline operation is completed and the
pipeline is empty.

L2 Cache

6.3.14 Handling of Addresses Not Mapped to a Defined Region

The CM2 handles transactions between the core and several devices as described in Figure 6.2.

For addresses that do not map to any of the defined address regions, these transactions can be mapped to either mem-
ory or one of the IOCU’s as determined by the CM2_DEFAULT_TARGET field in bits 1:0 of the GCR Base register
located at offset 0x0008. The default state of this field is determined by the value of the SI_CM_Default_Target[1:0]
pins at reset, but can be changed by software at any point. Refer to Section 6.4.2.2, "GCR Base Register
(GCR_BASE Offset 0x0008)" for more information on the CM2 TARGET field.

Because programmable regions of the address map are disabled at reset, the value of SI_CM_Default_Target[1:0] deter-
mines whether the initial boot code upon power-up is fetched from the L2/Memory port or the MMIO port. For sys-
tems without an IOCU, SI_CM_Default_Target[1:0] should be set to 0 (memory) so that all non-coherent requests are
routed to memory.

6.3.15 Setting the Cache Coherency Attributes for Default Memory Transfers

In previous generation MIPS processors, the cache coherency attributes (CCA) for the L1 and L2 caches were config-
ured as one, and the CCA for the L2 cache could not be different from the CCA for the L1 data cache. The P6600 core
provides a CCA override capability that allows the CCA’s for the L2 cache to be different from those of the L1 data
cache. For example, it may be useful to treat a line as cached in the L1, but uncached in the L2.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

The default region determined by the GCR Base Address register described in Section 6.3.6 above contains a mecha-
nism for modifying the cache coherency attributes of the base region relative to that of the L1 cache. The attributes
are programmed using the CCA_Override_Enable (bit 4) and CCA_Override_Value (bits 7:5) fields in the CM2 GCR Base
Address Register. Addresses that do not map to any other region are mapped to the default region.

Any valid CCA value can be programmed into CCA_Override_Value, but because the L2 does not process coherent
CCAs, a value of CWB (0x5) or CWBE (0x4) is automatically changed to WB (0x3) by the CM2 before being driven
on the system memory OCP port.

The various coherency options are shown in Table 6.9. Note that the CCA overrides shown below only affect the L2
cache and not the L1 cache.

Table 6.9 Cache Coherency Attributes

Encoding Name Descriptions

0x0 WT Write through.

Ox1 — Reserved.

0x2 uc Uncached.

0x3 WB Writeback, cacheable, non-coherent.

0x4 CWBE Coherent writeback exclusive. Since the CM2 does not process coher-
ent CCA’s, this encoding automatically maps to WB (0x3).

0x5 CWB Coherent writeback. Since the CM2 does not process coherent CCA’s,
this encoding automatically maps to WB (0x3).

0x6 — Reserved.

0x7 UCA Uncached accelerated.

The CCA_Override_Enable (bit 4) must be set in order for the CCA_Override_Value field to have meaning.

When overriding a CCA value, the CCA used within the L2 cache and driven to the system memory OCP interface is
affected. Otherwise, the functionality of the transaction within the CM2 is based on the original CCA. Transactions
that are not routed to the system memory OCP port, such as accesses to GCRs, GIC, CPC, or MMIO are also unaf-
fected by the CCA Override.

6.3.16 In-Flight L1 and L2 Cache Operations

A core has the ability to issue a steady stream of cache operations and can potentially saturate the CM2 resources. To
mitigate the possibility of this happening, the CM2 provides a mechanism to limit the number of successive cache
transactions by a particular core. This limits a single core from issuing cache operations in rapid succession. The
CM2 provides limits for both the L1 cache and the L2 cache via the Global CM2 Control2 register located at offset
address 0x0018. The default limit for successive L2 cache operations is four, meaning that a given core can execute a
maximum of four cache operations (bits 19:16). For the L1 cache the limit is six cache operations (bits 3:0).

Setting a value of 0x0 in either of these fields disables this limitation. In this case the CM2 will not limit the number
of successive cache operations that can be issued by a single core.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 347

6.3.17 MIPS System Trace

The MIPS System trace is a new feature to the P6600 Multiprocessing System and allows the SoC designer to place
signals from their non-probe SoC logic directly into the trace funnel for PDTrace to capture. The logic and registers
that controls System Trace are handled by the CM2. For more information, refer to Section 3.6.2 in Chapter 3 of the
P6600 Multiprocessing System Hardware User’s Manual for more information on MIPS System Trace.

6.3.18 Error Processing

The CM2 detects, reports, and handles several types of errors that may be caused by errant software or hardware soft
or hard errors. Table 6.10 lists the errors detected by the CM2. The first 7 errors are invalid requests to the GCR, GIC,
or MMIO. There are two errors for invalid intervention responses due to inconsistent L1 cache states. And thereare 3
errors due to L2 RAM parity errors.

When an error is detected, information that may be useful in debugging the error is captured in the Global CM2 Error
Cause Register and Global CM2 Error Address Register. Refer to Section 6.4.2.9, "Global CM2 Error Cause Register
(GCR_ERROR_CAUSE Offset 0x0048)" and Section 6.4.2.10, "Global CM2 Error Address Register
(GCR_ERROR_ADDR Offset 0x0050)" for more information.

If these registers already have valid error information and a second error isdetected, the error type of the second error
is captured in the CM2 Error Multiple Register. However, an L2 ram correctable error is overwritten by a 2nd error that
is not a second L2 ram correctable error. Refer to Section 6.4.2.12, "Global CM2 Error Multiple Register
(GCR_ERROR_MULT Offset 0x0058)" for more information. Note that for the second error, only the error type is
captured, not the associated error address.

When the Global CM2 Error Cause Register is loaded, an interrupt may be generated if the corresponding bit for that
type of error is set in the Global CM2 Error Mask Register (see Table 6.26). If the error was generated by a request that
requires a response and the corresponding Global CM2 Error Mask Register bit is 0, then the CM2 issues an ERROR
response. However, if the corresponding Global CM2 Error Mask Register bit is 1, then the CM2 issues a normal
response and an interrupt will be generated instead.

Table 6.10 CM2 Error Types

CM2_ERROR_
TYPE Error Name Description Action
0 - Reserved -
1 GC_WR_ERR Non-Coherent Write of length > 1 to Drop Write
GCR or GIC Signal Interrupt if CM_ERROR_MASK][1] = 1
2 GC_RD_ERR Non_Coherent Read of length > 1 to No GCR access
GCR or GIC Return SResp = ERROR if CM_ERROR_MASK]2]
=0
Signal Interrupt if CM2_ERROR _MASK][2] =1
3 COH_WR_ERR Coherent Writeback, Cacheop, or Intervention occurs
CohWriteInvalidate to GIC, GCR, Signal Interrupt if CM_ERROR_MASK[3] =1
MMIO
4 COH_RD_ERR Coherent Read to GIC, GCR, MMIO | Intervention occurs
After intervention, return SResp = ERROR to the
original requestor if CM_ERROR_MASK[4] =0
Signal Interrupt if CM_ERROR_MASK[4] = 1
348 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Table 6.10 CM2 Error Types (continued)

CM2_ERROR_
TYPE Error Name Description Action

5 MMIO_WR_ERR | Write to MMIO from the IOCU Drop Write
(only occurs if Signal Interrupt if CM_ERROR_MASK[5] = 1
CM_DISABLE_MMIO_LIMIT = 0)

6 MMIO_RD_ERR | Write to MMIO from the IOCU Return SResp = ERROR if CM_ERROR_MASK[6]
(only occurs if =0
CM_DISABLE_MMIO_LIMIT = 0) Signal Interrupt if CM_ERROR_MASK[6] = 1

17 INTVN_WR_ERR | Request does not require a response If multiple M or E responses then data from core
and: with lowest port ID is used.
One core responded with M and one or
more cores responded with E, or S Signal Interrupt if CM_ERROR_MASK[17] =1
or
One core responded with E and one or
more cores responded with S
or Multiple cores responded with data

18 INTVN_RD_ERR | Request requires a response and: If multiple M or E responses then data from core
One core responded with M and one or | with lowest port ID is used.
more cores responded with E, or S Return SResp = ERROR if
or CM_ERROR_MASK[18] =0
One core responded with E and one or | Signal Interrupt if CM_ERROR_MASK][18] = 1
more cores responded with S
or Multiple cores responded with data

24 L2_RD_UNCORR | Request requires a response and: Signal Interrupt if CM_ERROR_MASK[24] = 1
an uncorrectable parity/ECC error
occurred during an access to an L2
RAM

25 L2_WR_UNCORR |Request does not require a response Signal Interrupt if CM_ERROR_MASK[25] = 1
and:
an uncorrectable parity/ECC error
occurred during an access to an L2
RAM

26 L2_CORR A correctable parity/ECC error Signal Interrupt if CM_ERROR_MASK[26] = 1

occurred during an access to an L2
RAM

When an error occurs, hardware updates the read-only CM2_ERROR_TYPE field in bits 31:27 of the Global Config
register with one of the values listed in Table 6.10 above. Refer to Section 6.4.2.1 “Global Config Register
(GCR_CONFIG Offset 0x0000)” for more information. When this field is written, hardware also updates the 27-bit
ERROR _INFO field that provides additional information about the error. The organization of this field varies
depending on the value in the CM2_ERROR_TYPE field.

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

349

350

6.3.18.1 Error Codes 1 - 15

If the decimal value in the CM2_ERROR_TYPE field is between 1 and 15, the ERROR _INFO field in the Global
CM2 Error Cause register is organized as shown in Table 6.11.

Table 6.11 State of ERROR_INFO Field for Error Types 1 through 15

Bits Meaning

26:18 Reserved.

17:15 CCA

14:12 Target Region (0: MEM, 1:GCR, 2: GIC, 3: MMIO, 5: CPC)
11:7 OCP MCmd (see Table 6.12)
6:3 Source TagID
2:0 Source Port

As shown in the above table, the OCP MCmd field in bits 11:7 is further encoded as shown in Table 6.12 below.

Table 6.12 MCmd (Bits 11:7) Encoding for CM2_ERROR_INFO

MCmd Encoding Description
0x01 Legacy Write
0x02 Legacy Read
0x08 Coherent Read Own
0x09 Coherent Read Share
0x0A Coherent Read Discard
0x0B Coherent Ready Share Always
0x0C Coherent Upgrade
0x0D Coherent Writeback
0x10 Coherent Copyback
0x11 Coherent Copyback Invalidate
0x12 Coherent Invalidate
0x13 Coherent Write Invalidate
0x14 Coherent Completion Sync

Consider the example where a coherent write error occurs to the MMIO region during a coherent writeback opera-
tion. In this case, the Global Config register would be programmed by hardware as follows:

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

Figure 6.11 Example of a Coherent Write Error to MMIO

Coherent Write Error in MMIO Region
Hardware Decode
Logic

Error Type Region OCP Command
(Coh Write) (MMIO) (Coh Writeback)

Y \i
31 2726 1514 1211

Global Config Register ‘ 0x03 ’ | Ox03’ 0x0D |
Y/\ _
—
CM2_ERROR TYPE ERROR_INFO

6.3.18.2 Error Codes 16 - 23

If the decimal value in the CM2_ERROR_TYPE field is between 16 and 23, the ERROR_INFO field in the Global
Config register is organized as shown in Table 6.13.

Table 6.13 State of ERROR_INFO Field for Error Types 16 through 23

Bit Meaning

26:21 Reserved

20:19 Coherent state from core 3 (see Table 6.14)

18 Intervention SResp from core 3 (see Table 6.15)

17:16 Coherent state from core 2 (see Table 6.14)

15 Intervention SResp from core 2 (see Table 6.15)

14:13 Coherent state from core 1 (see Table 6.14)

12 Intervention SResp from core 1 (see Table 6.15)

11:10 Coherent state from core 0 (see Table 6.14)

9 Intervention SResp from core 0 (see Table 6.15)

8 Request was from a Store Conditional

7:3 OCP MCmd (see Table 6.12)

2:0 Source port

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 351

Note that for each of the coherent state errors in Table 6.13 (bits 20:19, 17:16, 14:13, and 11:10), the encoding for
these fields is shown in Table 6.14.

Table 6.14 Coherent State Values for Error Types 16 through 23

Encoding Meaning
0 Invalid
1 Shared
2 Modified
3 Exclusive

For each of the Intervention SResp errors in Table 6.13 (bits 18, 15, 12, and 9), the encoding for these bits is shown in

Table 6.15.
Table 6.15 Intervention SResp Values for Error Type 16 to 23
Encoding Meaning
0 OK
1 Data (DVA)

Bits 7:3 of the ERROR _INFO field are encoded the same as those shown in Table 6.12.

Consider the example where a core issues a coherent read, and both cores 1 and 2 respond with modified data. In this
case, the Global Config register would be programmed by hardware as follows:

Figure 6.12 Example of a Intervention Read Error to MMIO

Intervention Read Error

Hardware Decode
Logic
& 2 2 o
3 & &]
25 299879 I
g < < <
=3 SEEEEERE
5 = ala| = = ol o] Z|&
£2 YEEEEEE
O| Q| O] 0| ©| © o
Y YYVYVYVYY V
31 27 17 161514 131211 109 7 0
Global Config Register‘ 0x12 ‘ ‘0x2| ‘0x2| ‘0x0| ‘ ‘0x9‘ ‘
CM2_ERROR_TYPE ERROR_INFO

352 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

6.3.18.3 Error Codes 24 - 26

If the decimal value in the CM2_ERROR_TYPE field is between 24 and 26, the ERROR_INFO field in the Global Config
register is organized as shown in Table 6.16.

Table 6.16 State of ERROR_INFO Field for Error Types 24 to 26

Bit Meaning

26:24 Reserved (zero)

23 Multiple Uncorrectable

22:18 Instruction[4:0] associated with the error
see Table 6.17

17:16 Array type[1:0]:

00 = None

01 = Tag RAM single/double ECC error
10 = Data RAM single/double ECC error
11 = WS RAM uncorrectable dirty parity

15:12 DWord[3:0] with error, Array type =2 only

11:9 Way[2:0] associated with the error

8 Multi-way error for Tag or WS RAM
7:0 Syndrome associated with Tag or WS way, or Syndrome associated
with Data DWord

For each of the errors types 24 - 26 listed in Table 6.10, the instruction associated with the error is encoded into bits
22:18 of the ERROR_INFO field as shown in Table 6.16. The encoding for these bits is shown in Table 6.17 below.

Table 6.17 Instructions for Error Type 24 to 26

Bit Meaning

0x00 |L2 NOP
0x01 |L2 ERR_CORR

0x02 |L2 TAG_INV

0x03 |L2_WS_CLEAN

0x04 |L2 RD MDYFY_WR
0x05 |L2 WS _MRU

0x06 |L2 EVICT LN2

0x08 |L2 EVICT

0x09 |L2 REFL

0x0A |L2 RD

0x0B |L2 WR

0x0C |L2_EVICT MRU
0x0D |L2_SYNC

0xOE |L2 REFL ERR

0x10 |L2 INDX WB INV
0x11 |L2_ INDX LD TAG

MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23 353

Table 6.17 Instructions for Error Type 24 to 26 (continued)

Bit Meaning

0x12 |L2_INDX ST TAG
0x13 |L2 INDX_ST DATA
0x14 |L2 INDX ST ECC
0x18 |L2 FTCH _AND LCK
0x19 |L2_HIT INV

0x1A |L2_HIT WB_INV
0xIB |L2 _HIT WB

Consider the example of multiple uncorrectable errors in DWord 3, way 5 of the Data RAM during an L2 Read
instruction. In this case, the Global Config register would be programmed by hardware as follows:

Figure 6.13 Multiple Uncorrectable Errors to Byte 3 of the Data RAM During an L2 Hit Writeback Instruction

Multiple uncorrectable errors in byte 3
Hardware Decode
Logic

=)
S g =
[5) D o
5% 2l |5 |2 =
= o p=0No} E < S
5| Zleg |2 [E B
By S |2 |8 |2
Y Y Y Y Y
31 2726 2322 18171615 121198 0
Global Config Register | o0x18 | [1]0x0A [0x2| 0x3 |0x5] |
CM2_ERROR_TYPE ERROR_INFO

6.3.19 Custom GCR Implementation

The CM2 provides the ability for the user to implement a 64 KB block of custom registers that can be used to control
system level functions. These registers are defined by the user and then instantiated into the design. The CM2 pro-
vides two global registers to handle the implementation of customer registers: the Global Custom Base register at offset
0x0060, and the Global Custom Status register located at offset 0x0068.

The existence of a custom GCR implementation in the system is selected during IP Configuration. If this option is
selected, custom GCR hardware must drive the internal GU_Present pin to the CM2. The state of this pin is loaded into
the GGU_EX bit in the Global Custom Status register. This bit indicates that a custom GCR block is connected to the
CM2. Note that GU_Present is an internal signal that is an output of the Custom GCR and is connected to the CM2

logic.

354 MIPS64® P6600 Multiprocessing System Software User’s Guide, Revision 01.23

If a custom block is implemented, the starting address in memory of the 64 KB block is determined using the 16-bit

CUSTOM_BASE field in the Global Custom Base register. Note that unlike the configuration of the CM2 Global con-
trol registers described in Section 6.3.6, the CUSTOM_BASE field does not have a default base address and this field
is undefined at reset. Therefore, it is software’s responsibility to program the base address into this field during boot

time if a custom GCR block is implemented.

In addition, the selected address region where the registers will reside must be enabled by setting the GGU_EN bit in
the Global Custom Base register. Note that the accessibility of this bit by software depends on the state of the GGU_EX
bit described above. If GGU_EX is cleared (zero), indicating that no custom GCR is connected to the CM2, then the
GGU_EN bit becomes RO and is not accessible by software. If this bit is set, indicating that a custom GCR is con-
nected to the CM2, then the GGU_EN bit becomes