MIIFPS

MIPS MT Training
MT Code Example

WWW.mips.com

In the next 2 sections | will show you a simple example of the use of Multi
threading.

MT TC Example

= |ntroduction

The following example will:
= Demonstrate the starting of three threads
= Show effects of fine grain MT

MIFPPS

+ This example show you how to start three threads.

+ you will see the effect of threading

MT TC Example

. We will go thought the steps in the example code that create
the threads and get them running.

a Most steps will link a view of an architectural register, with Intrinsics,
macros, defines and assemble code that they produce to perform the
necessary action.

MIFPPS

In this section | will do a code walk through. At each step I'll show the
registers involved, the C code lines and assemble code for each step.

In the next section | will go through the compiling and running the code in
the debugger.

MT TC Example

= |ntrinsic, macros and #defines for the MIPS® MT ASE

= Allow easy access from C code to special MT instructions and
operations.

= The Intrinsic are defined in the file include/mips/mt.h
= #include <mips/mt.h> in your C code source file.
= Refer to the mt.h file for more information.

MIFPPS

| have already shown you some of the macros that allow you to program
in C. Just a reminder these are located in the include/mips/mt.h file.

Turn on Virtual Processor Configuration
and Disable Virtual Processing

| Fields | MVPControl - CP0 #0-Sel1 Read/Write | Reset
Name Bits State
R/W 0

VPC 1 VPE Configuration State. If set, allows writing to normally read-only
configuration register fields on conventional MIPS32 CPUs.

EVP 0 Enable Virtual Processors. If set, execute instructions for all threads R/W 0
on activated VPEs. If cleared, execute instructions only for thread
which is running when cleared.

mips32_setmvpcontrol((mips32_getmvpcontrol() & ~MVPCONTROL_EVP) | MVPCONTROL_VPC);
Assembly code:

mfc0 t0,c0_mvpcontrol Il read MVPControl

lit12 Il load the value for the combined VPC and EVP fields

ins t0, t1, 0, 2 Il insert VPC and EVP fields number into MVPControl register value
mtc0 t0,c0_mvpcontrol Il write new value to the MVPControl register

ehb Il ensure write has completed before continuing

The first thing the code needs to do is to put the processor into a mode
where we can use the CPO registers to configure the threads we want to
run.

The MVPControl register has 2 fields, VPC and EVP.

+ Setting the VPC field will allow us to write registers that a normally are
not writable on a single core MIPS processor.

+ Clearing EVP disables all multi processing so we can configure all the
threads.

+ The mips32_getmvpcontrol macro reads the MVPControl register.
| clear the EVP bit using the MVPCONTROL_EVP #define

and set the VPC bit using the MVPCONTROL_VPC #define

The write is back using the mips32_setmvpcontrol macro.

+ Here is what the assemble code looks like

Setup so we can access TC1s CPO0 registers with
the mttr and mftr instructions

| Fields | VPEControl - CP0#1-Sel Read/Write | Reset
Name Bits State
TargTC 7-0 Target TC number to be used on MTTR and MFTR instructions R/W 0

mips32_mt_settarget(TC1);
Assembly code:

mfc0 t0,c0_vpecontrol I/l read the VPEControl Register

lit1, TC1 I load target TC number

ins t0,t1,0, 8 /l insert TC number into VPEControl register value
mtc0 v0,c0_vpecontrol I write new value to VPEControl register

ehb 1/l ensure write has completed before continuing

Assuming the thread we are executing on is thread 0, the target TC
needs to be configure for thread 1. To do this use the TargTC field in the
VPEControl register

Once this done the mttr - move to thread register instruction and the mftr
- move from thread register instruction will be directed to Thread 1.

+ This is simple to do in C using the mips32_mt_settarget macro

+Here is the assemble code

Halt TC1

Name Bits

H

0

TCHalt - CP0#2-Sel4
State

Thread Halted. If set thread has been halted and cannot be
allocated, activated, or scheduled

mips32_mt_settchalt(TCHALT_H);

Assembly code:
li t0,1

mttc0 t0,c0_|

ehb

I load the H field
tchalt // write the value to the TCHalt register
Il ensure write has completed before continuing

MIFPPS

Before continuing, the target thread needs to be halted otherwise the

chang
halted

+InC
#defin

e being made will be unpredictable. To make sure Thread 1 is
before configuring it; set the H field in its TCHalt register.

| can use the mips32_mt_settchalt macro and the TCHALT _H
e

+ Here is the assemble code

Bind TC1 to VPEO

TCBind - CP0#2-Sel2 Read/ | Reset
Name B|ts Write State

CurVPE ID number of the VPE the TC is bound to

mips32_mt_settchind (VPEO);
Assembly code:
mttc0 zero,c0_tchind Il write the value to the TCBind register
ehb Il ensure write has completed before continuing

MIFPPS

Bind thread 1 to VPE 0 using its TCBind register

+ The mips32_mt_settcbind macro will write the register
+ Here is the assemble code

Set Stack and Global Pointers

= Enables the calling of C functions for this TC:

unsigned int TC1_stack[4096] __attribute__((aligned(16)));
unsigned int TC1_stack_top = (unsigned int)TC1_stack + 4080;
mips32_mt_setsp(TC1_stack_top); // load stack pointer

Assembly code:
Iw t0,-32740(gp) /1 load global variable TC1_stack_top
mttgpr t0,sp I write target TC stack pointer

mips32_mt_setgp(&_gp);
Assembly code:
mttgpr gp.gp /f move gp from gp of current thread to gp of target thread

MIFPPS

| now setup the stack pointer and global pointer of the thread.

| have previously allocated space for the threads stack and set the variable
TC1_stack_top to the last word entry in the stack since stacks grow down.

| use the mips32_mt_setsp macro to write the stack pointer register.

+ Here is the assemble code

The Global pointer is used to reference the global variables in the small
data areas. These variables are shared by all threads.

+ To set the global pointer | will use an external variable set up by the
linker called _gp and the mips32_mt_setgp macro

+ Here is the assemble code notice | just copy the current threads gp
register to the target thread

Set Starting function address

TCRestart - CP0#2-Sel3 Read/Write | Reset
Name Bits State

Restart 31-0 Address at which execution is started
Address

mips32_mt_settcrestart(startTC1);

Assembly code:

li t0, _startTC1 I load starting address using function lable
mttcO t0,c0_tcrestart /I write address to TCRestart register
ehb Il ensure write has completed before continuing
MIFPPS 10

Use the TCRestart register to tell the CPU where to start fetching
instructions from for the target TC. Use the function pointer for the
startTC1 function as the address to start TC from.

+ The macro mips32_mt_settcrestart sets the starting address using the
startTC1 function pointer which points to the starting function for the
thread.

+ Here is the assemble code

10

Activate TC1 and set Dynamic Allocation

TCStatus - CP0#2-Sel1 Read/ | Reset
Name Bits Write State

A Activated. If set run instructions for this TC. Also set by FORK and cleared
by YIELD $0
DA 15 Dynamic Allocation enable. If set TC can be allocated by FORK or de-

allocated by Yield

mips32_mt_settcstatus(mips32_mt_gettcstatus() | (TCSTATUS_A | TCSTATUS_DA));

Assembly code:
mftc0 v0,c0_tcstatus
ori v0,v0,0xa000
mttc0 v0,c0_tcstatus
ehb

Il read the TCStatus register

Il or in the A and AD bits

Il write the TCStatus register

Il ensure write has completed before continuing

R/IW

R/W 0

MIFPPS

Next activate the thread and make it available for use with Fork and Yield
instructions using the TCStatus register.

+ To active the thread, set the A field (activated)

+ To make the thread Yieldable it must be marked a Dynamically
Allocatable, set the DA bit

Note: This example does not use the fork instruction but it will use the
Yield instruction at the end of execution so we do need to enable
Dynamic Thread allocation by setting the DA field.

+ | use the mips32_mt_gettcstatus to get the curent value and the
TCSTATUS_A and TCSTATUS_DA #define to set the bits and the
mips32_mt_settcstatus macro to write the value to the register.

+ Here is the assemble code

11

MIPS® MT TCHalt - CP0#2-Sel4

TCHalt - CP0O#2-Sel4 Read/Write | Reset
Name Blts State

H Thread Halted. If set thread has been halted and cannot be located,
activated, or scheduled

mips32_mt_settchalt(0);
Assembly code:

mttcO zero,c0_tchalt /1 only bit in register move the value in the zero register to TCHalt
ehb Il ensure write has completed before continuing
M l |= S 12

The last step in configuring the Thread is to un-halt it. By doing this the
thread can be scheduled and instructions can be fetched once | enable
multi threading. Clearing the H bit in the TCHalt register un-halts the
thread.

+ The mips32_mt_settchalt macro with a zero argument will clear the H
bit in the TCHalt register.

+ Here is the assemble code

12

MT TC Example

» Setup TC2 just like TC1
mips32_mt_settarget(TC2)

a The rest is the same as for TC1

= NOTE: You need to use different values for stack and starting function. Use
TC2_stack_top for stack.

MIFPPS s

To setup thread 2 | just set the Target TC to 2 and then set it up the same
as thread 1.

+ The one thing that must be different for each thread is the stack other
wise the stack will be corrupted. You can use the same starting code
address since each thread will have its own stack and therefore each will
have its own context. However this example will use slightly different code
for each thread.

13

MT TC Example Enable Threading

VPEControl - CPO#1-Sel1 Read/Write | Reset
Name Bits State
R/IW 0

TE 15 Thread Enable. If unset only one TC may execute.

mips32_mt_setvpecontrol(mips32_mt_getvpecontrol() | VPECONTROL_TE);
Assembly code:

mftc0 v0,c0_vpecontrol /I read in the VPEControl register
ori v0,v0,0x8000 Il set the TE bit
mttc0 v0,c0_vpecontrol I/ write the VPEControl register
ehb Il ensure write has completed before continuing
MIIFPPS 4

After | have initialized all the threads | need to enable threading on the
VPE. | do this by setting the TE bit in the VPEControl register.

+ To do this | use the mips32_mt_getvpecontrol to get the current value of
the VPEControl register then | use the VPECONTROL_TE #define to set
the TE bit and the mips32_mt_setvpecontrol to write it back.

+ here is the assemble code

14

Turn off configuration flag

and enable Virtual Processing
= MVPControl - CP0#0-Sel1

MVPControl - CP0 #0-Sel1 Read/Write | Reset
Name Bits State

VPC 1 VPE Configuration State. If set, allows writing to normally read-only
configuration register fields on conventional MIPS32 CPUs.

EVP 0 Enable Virtual Processors. If set, execute instructions for all threads R/W 0
on activated VPEs. [f cleared, execute instructions only for thread
which is running when cleared.

mips32_setmvpcontrol((mips32_getmvpcontrol() & ~MVPCONTROL_VPC) | MVPCONTROL_EVP);
Assembly code:

mfc0 t0,c0_mvpcontrol Il read MVPControl

lit11 /l'load the value for the combined VPC and EVP fields

ins t0, t1, 0, 2 /linsert VPC and EVP fields number into MVPControl register value
mtc0 t0,c0_mvpcontrol /l write new value to the MVPControl register

ehb /I ensure write has completed before continuing

MIFPPS

Last, to finally enable Multi threading and start all enabled threads
executing | need to turn off configuration mode and Enable Virtual
Processing. These are set in the MVPControl register.

+ | use the mips32_getmvpcontrol macro to read the register

Then the MVPCONTROL_VPC #define to clear the VPC bit to turn off the
configuration state

and the MVPCONTROL_EVP #define to set the EVP bit to enable virtual
processing.

Then write the register using the mips32_setmvpcontrol macro.

+ Here is the assemble code

15

MT TC Example

= Start count function on TCO
count(0);

return (0); // Never gets here.

MIFPPS

At this point all threads will be scheduled and will start running code.

Now put the current thread that executed the initialization code, thread 0
into the mix by calling the count function.

Note; the code will never execute the return call because all threads will be
yielded including thread 0.

16

MT TC Example

* Count Functions
= Two simple functions

= Both increment a counter element in the same array using the argument
given, which is the TC number.

= Count function — increments array element by using a cached address in
KSEGO. When the counter reaches 2000 the TC will yield (de-allocate)

= Nccount function— increments array element by using a Uncached address
in KSEG1. This function will stall waiting to read the count value.

MIFPPS .

The rest of the code will be used to show multi threading and how the
threads behave when run from cache or straight out of ram.

+ To do this there are 2 simple functions each of which will increment a
counter in a global array.

+ The first function Count, access the counter array using a cached
address.

+ the second function Ncount increments a counter in the same array but
through a uncached address.

17

MT TC Example

= Count Functions (continued)
= Thread behavior:

= The threads that use the count function will not stall. The count will increase
quicker than the thread that uses the Nccount function, because that function
stalls.

= |fthese were threads in a non-MT system, nothing would execute when the
Nccount function stalls.

= This example shows how MT fine-grain threading allows other threads to
execute while other threads are stalled waiting for memory.

MIFPPS "

What you will see is the threads that use the cached address to increment
their counter will not stall and these threads will execute more then the
thread that is writing to the uncached address. This is because the threads
using the cached address will be allowed to execute while the thread that
uses the non cached address stalls waiting for the load to complete.

Fine grain multi threading allows other threads to execute while another

thread is stalled. Normally stall cycles would be wasted in a non threaded
CPU.

18

MT TC Example

= Count Functions (continued)
* Yield behavior:

= To show how to use the Yield command, the threads that use the count
function will Yield after the count reaches a certain point.

i The thread that used the Nccount function will then run on alone and we will
see its count progress.

MIFPPS

The thread shows the effect of the Yield command.

+ Each thread will use the Yield command to terminate itself once terminal
count has been reached.

+ You'll see that the threads using the count function will terminate before
the thread executing the Ncount function because they have gotten to run
while the Ncount function was stalled.

19

