MIFPS

MIPS MT Training

Inter Thread Communication

WWW.mips.com

This section covers inter thread communication

MT Inter Thread Communication

= ITC
= The ITC block is a piece of logic:
= Qutside of the core and
= Connects through the gating storage interface.

= SoC integrators are free to use the MIPS-supplied example logic in whole, in part, or to write
their own.

»= This section only describes the programming features of the sample ITC block supplied in the
core package by MIPS.

MIFPPS

Inter thread communication is handled by an external logic Block

+ It is connected outside of the core
+ this block connects to the core through the getting storage interface
+ you can design your own ITC block to do exactly what you want it to do

+ But This section deals with an ITC block that has been designed by
MIPS as part of your core package, that you are free to use.

MIPS ITC Implementation, Data

= The reference ITC supports two kinds of storage in a cell:
= FIFO queues containing 4 data entries each 32 bits wide
= Semaphore cells containing 1 data entry that is 32 bits wide

= All cells should be accessed as 32 bit memory. Accesses such as LH or SB
instructions should not be used.

MIFPPS

The ITC block is grouped into elements called cells. Two kinds of cell are
supported:

+ A FIFO Cell that contains 4 32 bit entries
+ And a semaphore that contains one entry

+ all cells can only be accessed by whole words, in other words you can
only do 32 bit loads or stores to a cell location.

MIPS ITC Implementation, Tags

= Each ITC cell contains a tag entry and 1 or more

data entries

* The tag of each ITC cell contains a number of control bits that regulate
accesses to that cell:

| Fields | ITC Cell Tag ReadWrite | Reset
Name Bits State
R ubD

FIFODepth 31-28 0 for a single entry Semaphore cell or 2 for four entry FIFO cells.

FIFOPtr 20-18 Number of entries to read until cell is empty, reads zero for single R uD
entry Semaphore cells

FIFO i Tells you the type of cell itis. 1 for FIFO cells and 0 for R ubD

single entry Semaphore cells.

T 16 Trap Bit. When set, this bit causes the processor to take a Gating RIW uD
Storage Exception on PV or EF accesses. (Could be used by OS
to reused TC).

E 1 Full Bit. This bit indicates that the cell is full R/W ubD
E 0 Empty Bit. This bit indicates that the cell is empty. Writing 1 to this R/W D

bit also reset FIFOPtr.
MIIFPPS

Each cell contains a tag entry that tells you about the cell and allows you
some control of the cell. The Tag entry is accessed through the control
view that | will go over later.

+ The FIFO Depth field will be set to O if this is a semaphore cell or a 2 if
this is 4 entry FIFO cell.

+ the PTR field will always be set to 0 if this is a semaphore. For a FIFO
cell it indicates the number of cells to read before the cell becomes
empty.

+ the FIFO Field will be set to 0 for a semaphore cell and a 1 if the cell is
a FIFO.

+ The trap bit will cause a getting storage exception if the thread
accessed the cell through a PV or EF view. This can be used by a OS to
swap this thread out for another.

+ the F bit will indicate that the cell is full

+ the E bit indicates that the cell is empty. Software can set this bit making the
cell empty which will also reset the cell pointer so this is a quick way of clearing a
Cell.

MIPS ITC Implementation, Views

= A View controls the behavior of a access to Cells.
* The view is encoded in bits 6:3 of the memory address being accessed.

Address Cell Address View
Bits 3-6 offset

0x0
0x1
0x2
0x3
Ox4
0x5

0
8
16
24
32
40

Bypass View

Control View

Empty/Full Synchronized View
Empty/Full Try View

P/V Synchronized View

PN Try View

MIFPPS

A view is the method the thread what'’s to use to access the cell. The ITC
controller will look at bits 3 through 6 of the address being accessed and
use them to figure out how the thread wants to access the cell.

The next several slides will go into each view in detail.

MIPS ITC Bypass View

* The Bypass View Can be used to load or store data to a cell
without any other effect.

= Aload or store does not cause the issuing thread to block and does not
affect any of the cells’ state bits.

= A Bypass view store to a FIFO ITC location overwrites the newest FIFO
entry, while a Bypass view load returns the contents of the oldest entry.

= Use this view to set the initial value for a cell.

MIFPPS

The Bypass view is used to bypass the normal operations of the cell.

+ Loads or stores do not cause the issuing thread to block and the cells
state bits stored in the cells tags do not change.

+ for a FIFO type of sell a Bypass store overwrites the newest FIFO entry
and a load returns the oldest entry.

+ you would this view to set the initial data values for a cell.

MIPS ITC Control View

= The Control View of the ITC location can be used to manipulate
the tag of the ITC cell without any other effect.

= All tag loads and stores, access the entire 32-bit tag value.

= Accesses using Control view never cause the issuing thread to block
and never result in Gating Storage exceptions.

= A Control view store to a FIFO location with the E bit set will cause the
FIFO to reset its read pointer (FIFOPtr).

MIFPPS

The control view is use to change the cell’s tag values without any other
effect.

+ All tag loads or stores will write the entire 32 bit tag value

+ A load or store to a tag will not cause the issuing thread to block or
cause an Gating Storage exception

+ If you use the control view to set the empty bit The FIFO pointer also
gets reset thus clearing the FIFO at the same time so you don’t have to
read out all the FIFO locations.

MIPS ITC | Empty/Full Synchronized View

* The Empty/Full Synchronized View of the ITC location implies that a load
causes the issuing thread to block if the cell is Empty. Similarly, a store
blocks if the cell is full.

= Accesses using this view cause an atomic update of the Empty and Full bits to
reflect the new state of the cell.

= The operation of SC using this view is undefined.
= [fthe T bit is set, then any accesses will cause a gated exception trap.

= T could be set by an OS which wants to keep track of reads and writes, perhaps because
it's recycled a TC which was waiting here and wants to know when it might have been
unblocked or wants to recycle a TC that will become blocked.

MIFPPS

The Empty Full Synchronized View is used to write 32 bit data to the Cell.
If the cell is a FIFO the data is read in a First in first out manner. Reading
an empty cell will cause the executing thread to block until something is
written by another thread to the cell. Writing to a full cell will block until the
cell is read by another thread.

+ The Empty Full bits are evaluated and update appropriately with each
load or store to the cell.

+ You should not use the Store Conditional instruction with this view.

+ If the Trap bit is set any access will cause a gating storage exception.
This can be used by an OS to reuse threads that would be idle waiting
something to get written to the cell. The OS would have to save the
context of the Thread then it could use the thread for another process.
When new data is written to the cell another exception would happen and
the OS would know that it need to find a thread to continue processing.

MIPS ITC Empty/Full Try View

* The Empty/Full Try View of the ITC location is similar in nature to the
previous E/F Synchronized but it does not block if an access fails. It
differs in the following ways:

* Aload returns a value of zero if the cell is empty.
= Astore (SW) instruction to Full locations fail silently.

= Store Conditional (SC) instructions will indicate success or failure based on whether
the ITC store succeeds or fails.

MIFPPS

The Empty Full Try view is simulator to the previous Empty Full
Synchronize view but it is intended to work with the Load Link Store
conditional instructions.

+ instead of blocking a load will return a 0 if the cell is empty.

+ a store to a full location will not block just fail silently

+ but a Store Conditional instruction can be use to tell you if the store
succeeded or not.

MIPS ITC P/V Synchronized Views

» The P/V Synchronized View implements a "P/V" counting semaphore, "p"

and "v" are the "wait if zero, then count down" and "count up" functions
respectively.

= Aload from a zero cell, blocks until a non-zero value appears. Otherwise the load
returns the value and atomically decrements the stored value.

= Any store causes an atomic increment of the cell value, up to a maximum value of
216-1 at which it saturates.

= P/V operations do not modify the empty and full bits, which should both be cleared
before an entry is used for P/V purposes.

= The P/V view of a FIFO Cell doesn't make sense, and the result of any such access
is undefined.

MIFPPS o

The P/V Synchronized View implements a P/V counting Semaphore

+ a load will block if the semaphore value is 0 or decrement the value and
return the old value.

+ a store does not actually store a value to the semaphore instead it
increments the value in the semaphore.

+ The Empty/full bits have no meaning when using this view and are not
updated.

+ Don’t use this view with a FIFO cell.

If the trap bit is set in the Cell’s tag then any access will cause a gating
storage exception as discussed in previous slides.

10

MIPS ITC P/V Try View

= The P/V Try View is similar in nature to the previous P/V
Synchronized except it does not block if the access fails. It
differs in the following ways:

= A l|oad with this view returns a value of zero even if the cell contains a
data value of zero.

* The operation of Store Conditional instruction using this view is
undefined.

MIFPPS

The Try version of the P/V view never blocks.

+ If the cell value is 0 a load will returna O

+ don’t used the Store Conditional instruction with this view

If the trap bit is set in the Cell’s tag then any access will cause a gating
storage exception as discussed in previous slides.

11

MIPS ITC Block Configuration

= The configuration information for the ITC space is held in two
“tags”.
= Access to these tags is done by
= Set the ErrCHI[ITC] bit to access ITC space configuration “tags”
errctlreg = mips32_geterrctl();
errctireg_withITC = errctireg | ERRCTL_ITC;
mips32_seterrctl(errctlireg_withITC);

= cache Index_Load_Tag_D instruction
= cache Index_Store_Tag_D instruction

Mll=5 12

The ITC Block contains 2 tags that can be used to read the current
configuration and configure the ITC block.

+ To access the ITC block you need to set the ITC bit in the CPO Error
Control register. This will direct the cache instruction to the ITC Block
instead of the cache block.

+ Here is an example of the C code needed to set the ITC bit.

+ to read a tag use the cache index load tag data instruction

+ to write a tag use the index store tag data instruction

There is an example at the end of this section that will show the
instructions need to read and write these tags

12

MIPS ITC Configuration Tag (address 0)

Address Map Register Tag0 Read/Write Reset
Name Bits Offset 0 State

BaseAddress 31-10 ITC Base Address (Physical)
ITC_En 0 ITC Enable — clear at reset (hides ITC) setting it to 1 enables ITC RIW uD
B block
M ' I=S 13

The first ITC tag is located at offset O it contains the Base address of the
ITC Block and the ITC Enable bit.

+ The base address should be set when you initialize the ITC block. The
address uses the top 22 bit of this register along with the address mask,
that I'll explain on the next slide, to determine the starting address of the
ITC block.

+ the ITC_En bit enables the ITC block. This should be set when you
want to start using the block.

NOTE: If you position the ITC block over real memory or device I/O
memory you will no longer be able to access that memory or device.

13

MIPS ITC Configuration Tag (address 8)

| Fielas | Address Map Register Tag1 Read/ | Reset
Num Entries 30-20 Number of ITC cells present R Preset
AddrMask 16-19 Indicates which bits of the BaseAddress field should not participate R/W ubD

in determining an ITC memary hit. This field effectively defines the
size of the ITC memory block. AddrMask set to zero implies a 1KB
ITC address space, and AddrMask set to 0x3f implies a 128KB

address space.

Entry Grain 2-0 Interval spacing between ITC Cells R/W ubD
Encoding Size in Bytes
0x0 128
0x1 256
0x2 512
0x3 1024
Ox4 2048
0x5 4096
0x6 8192
0x7 16384

MIFPS

The second ITC tag is located at offset 8 and contains the number of ITC
entries you have, the Address mask and Cell Entry Grain.

+ the Number of ITC cells is static for you core and this field tells you how
many you have.

+ you can set the address mask field. This is an address mask. It
Indicates which bits of the BaseAddress field should not participate in
determining an ITC memory hit. This field effectively defines the size of
the ITC memory block. AddrMask set to zero implies a 1KB ITC address
space, and AddrMask set to 0x3f implies a 128KB address space.

+ You can set the Entry Grain to configure the interval spacing of the ITC

Cells This chart gives you the Entry value and the corresponding size of
the interval.

14

MIPS ITC Configuration

= Entry Grain:

= Control the cell spacing.

= Tightly spaced cells save on memory space, but widely spaced cells spread across a number
of TLB pages, permitting different cells to be mapped to different processes.

= |f you set the cell spacing very high, you'll limit the number of cells you can access in the usual
ITC region.

MIFPPS .

Here are some ideas of what you would do about the Entry Grain value

+ For simple semaphore cells that are used to communicate between
processes and the OS you will probably want to space them a tightly as
possible this will save on memory map space.

For FIFO cells that will be used to hold data within a process that will not
be shared by other processes you can space the cells wider apart on
different pages so the cells can be mapped to the process and protected
buy the TLB.

One thing to take into account is,

Depending on the setting of the AddrMask, NumEntries, and EntryGrain, it
is possible that ITC cells do not fill up the

entire ITC address block. If for example, if you have only two cells and
they are mapped to a 1KB area with a stride of 256B that is the EntryGrain
equal to 0x1, the first cell starts at offset 0x000 and the second at offset
0x100. The remaining two 256B regions starting at offsets 0x200 and
0x300 do not map to any storage. Any access to an address that does not
map to an ITC entry will result in undefined behavior.

15

+ It is also possible to set the cell grain entry too large for the address mask
which would make some of the cells unavailable.

15

MIPS ITC Configuration

= Once this is set up and enabled (ITC_En),

All accesses to this physical address range will go to ITC, and will no longer show up
on the main system interface.

These locations will “overlay” anything else you expected to be there. Take care not to
overlap any vital address.

Don’t forget to clear ErrCti[ITC] afterwards, so that cache operations can continue as
usual.

MIFPPS .

Once the ITC_Enable bit is set in the ITC tag.

+ All access for the memory region will go to the ITC controller

+ Anything that was in that address range will no longer be accessible

+ After you are finished initializing the ITC Block make sure to clear the
ITC bit in the ErrCtl register so cache instructions will once again be
directed to the Cache controller.

16

MIPS ITC Example

= |TC Example
= 4 TCs running on 1VPE.
= Uses P/V view.

" Each TC will block all others while it increments a counter to 2000. Then it will release
the semaphore and the next TC will enter the code.

MIFPPS .

| am now going to tie this al together by going through a code walk through
of the use of the ITC block as a semaphore.

+ In the example | will be using 4 threads on 1 VPE

+ | will use the P/V view for the semaphore.

+ In this simple program each thread will acquire a semaphore count to
2000 and then release the semaphore so another thread can count

17

Configuring the ITC tags

= The code is similar to the other examples with the following major changes.

= Configure the ITC tags. This is done by using cache opts. To set the cache mode for
ITC tags the ITC bit in the ErrCtl register must be set.

errctireg = mips32_geterrctl();
errctlreg_withITC = errctlreg | ERRCTL_ITC;
mips32_seterrctl(errctireg_withITC);

MIFPPS "

| will go over the code changes made to the basic thread example | show
you earlier.

+ First | am going to configure the ITC Block. To get to the ITC block’s
controller to configure its tags you need to turn on the ITC bit in the Error
Control register. Once you do that you can use the cache instruction to
read or write to the ITC block’s tags.

Here is the sequence of C instruction to turn on the ITC configuration bit.

+ As you can see | use the mips32_geterrctl macro to get the register

+ then turn on the ITC bit using the ERRCTL_ITC #define

+ and last write the Error Control with the new value using the
mips32_seterrctl macro

18

Configuring the Address mask bits and Entry Grain

= Code Changes continued:
= Configure the Address mask bits and Entry Grain.

ITC_Config_Tag8 = ((ITC_AddrMask << 9) | ITC_EntryGrain);
mips32_setdtaglo(ITC_Config_Tag8);

MIFPPS

Now | am set to configure the ITC’s address mask and Entry grain.

Since | am going to use the cache instruction to write the ITC’s tags | must
first setup the Data Tag lo register with the correct information. The cache
instruction will write the value in the data tag low register to the ITC tag.

+ here is the code to set the address mask and the entry grain using
#define values for the address mask and entry grain.

+ this code moves the value to the data tag low register using the
mips32_setdtaglo macro

19

Cache Opt, “index store tag” for Tag 1

= Code Changes continued:
« Cache Opt, “index store tag” to set ITC Tag 1 (offset 8)

__asm___ volatile
"
cache 9, 8(%0); \
ehb; \

MIFPPS

20

Now that the Data tag lo register is set up | can use the cache instruction
to write it to the ITC’s tag register.

+ I'll use inline assemble code to do that.

+You can see the cache instruction takes 2 arguments:

+ the first is the command operation you want it to perform which is
operation 9, index store tag

+ the second argument is, which location within the ITC tag memory you
want to write. In this case | am using GPR 0 with an offset of 8 bytes to
write ITC tag 1.

20

Configure the Base Address and ITC_En

= Code Changes continued:
= Configure Base address and ITC_En (enable bit) in ITC tag index 0 and
= Use physical base address
ITC_BlockNC = (unsigned int *)
((unsigned int)ITC_Block & Ox7fffffff);
= Settag
ITC_Config_Tag0 = ((unsigned int)
ITC_BlockNC | ITC_En);
mips32_setdtaglo(ITC_Config_Tag0);

Address Map Register Tag0 Read/Write Reset
Name Bits Offset 0 Al

BaseAddress 31-10 ITC Base Address (Physical)
ITC_En 0 ITC Enable — clear at reset (hides ITC) setting it to 1 enables ITC R uD
block
M l I= 5 21

Now I'm going to configure the ITC tag 0 with the Base address of the ITC
block and enable the ITC Block.

+ When | reserved space for the ITC block | just declared an array. | did
this to make sure no other variables would be placed in that memory
mapped range. | could have just selected a physical address that is not
mapped to any device. Because | declared the ITC as an array in C it is
given a virtual address in Kseg 0. Since addresses in Kseg 0 are mapped
to physical address starting a 0 all | need to do convert this virtual address
to a physical address is strip off the top bit.

+ next | or in the enable bit

+ then write the value to the data tag lo register using the
mips32_setdtaglo macro.

21

Cache Opt, “index store tag” for Tag 0

= Code Changes continued:
= Cache Opt, “index store tag” to set ITC Tag O

__asm___volatile
"\
cache 9, 0($0); \
ehb; \

)

MIFPPS

22

Now | use the cache instruction to write the Data Tag lo register to the ITC
tag 0 the same as | did for ITC tag 1

+ Except this time | use a offset value of 0 for Tag 0

22

Enable ITC Entry

= Code Changes continued

= Return ErrCtl to its previous state
mips32_seterrctl(errctireg);

= Then Enable ITC Entry
= Use cached address

(from 0x80000000 to 0xA0000000)
ITC_BlockNC = (unsigned int *)
((unsigned int)ITC_Block | 0x20000000),

Mll=5 23

Now that | am done with writing the ITC Block Tags | will turn off the ITC bit
in the Error Control register so the cache instruction operation will refer to
the cache controller instead of the ITC controller.

+ So far | have enabled the ITC Block but not the actual ITC Cell | will be
using. To do this | need to use an uncached address to access the Cell. |
can do this by changing the address of the Cell array from being in KSEG
0 to KSEG 1. All | need to do is change the top bit of the address.

+ here is the C code to do that.

23

Enable ITC Entry

Use control view to access Entry Tag
ITC_Cell =(unsigned int *)}((unsigned int)ITC_BlockNC | ITC_ControlView);
= Write Tag
*ITC_Cell = ITC_E;

| Fielas | ITC Cell Tag Read/Write Reset
Name Bits State
R ub

FIFODepth 31-28 0 for a single entry Semaphore cell or 2 for four entry FIFO cells.

FIFOPtr 20-18 Number of entries to read until cell is empty, reads zero for single R ub
entry Semaphore cells

FIFO 17 Tells you the type of cell it is. 1 for FIFO cells and 0 for R uD
single entry Semaphore cells.

T 16 Trap Bit. When set, this bit causes the processor to take a Gating R/W ubD

Storage Exception on PV or EF accesses. (Could be used by OS
to reused TC).

= 1 Full Bit. This bit indicates that the cell is full R/W ub
E 0 Empty Bit. This bit indicates that the cell is empty. Writing 1 to this R/W D
bit also reset FIFOPtr.

MIFPPS

24

Now that | have the correct address | need to set the lower bits of the
address to tell the ITC controller which view | what to use. To enable the
Cell | need to set the enable bit and to do that | need to use the Control
View so | set those bits.

+ Then | write the enable bit to the Cell.

24

Increment ITC Cell value

Code Changes continued
» Next, Increment ITC cell using PV view so first access will not block.

ITC_Cell =(unsigned int *)((unsigned int)I TC_BlockNC | ITC_PVSyncView);
*ITC_Cell=1;

MIFPPS 2

Since | don’t want the semaphore to block | want the cell to start out with a
1.

+ To do this | can just use the PV Sync view where any writes to the Cell
will increment its contents. So | or in the P/V Sync View Bits Using the
#define ITC_PVSyncView and write to the address.

25

Using the Semaphore

= Code Changes continued

= In the count function:
= Using PV view read ITC entry. This will block if entry is 0.

ITC_Cell =(unsigned int *)
((unsigned int)ITC_BlockNC | ITC_PVSyncView);
ITC =*ITC_Cell;

MIFPPS 2

In the count function before we enter the counting loop | what to add the
code so not more than one thread will be counting at a time.

This is where | will read the Cell using the PV Sync view.

+ To do this | or in the PV Sync View bits into the Cell address and then
read the Cell

Since | initially incremented the cell the first thread to get to this point will
get the semaphore and decrement the Cell counter to 0. The next thread
that reads the Cell will block waiting until the Cell counter in incremented
before it can continue.

26

MIPS ITC Example

Code Changes continued

= After counting is finished release semaphore:
= Use P/V view to write back read in value.

e Ll =1

MIFPPS

27

| then add code after the count loop to write to the Cell. This will increment
the Cell to 1 so that another thread can continue.

27

