
1

This section covers inter thread communication



2

Inter thread communication is handled by an external logic Block 

+ It is connected outside of the  core

+ this block connects to the  core through the getting storage interface

+ you can design your own ITC block to do exactly what you want it to do

+ But This section deals with an ITC block that has been designed by 
MIPS as part of your core package, that you are free to use.



3

The ITC block is grouped into elements called cells. Two kinds of cell are 
supported:

+ A FIFO Cell that contains 4 32 bit entries 

+ And a semaphore that contains one entry

+ all cells can only be accessed by whole words, in other words you can 
only do 32 bit loads or stores to a cell location.



4

Each cell contains a tag entry that tells you about the cell and allows you 
some control of the cell. The Tag entry is accessed through the control 
view that I will go over later.

+ The FIFO Depth field will be set to 0 if this is a semaphore cell or a 2 if 
this is 4 entry FIFO cell.

+ the PTR field will always be set to 0 if this is a semaphore. For a FIFO 
cell it indicates the number of cells to read before the cell becomes 
empty.

+ the FIFO Field will be set to 0 for a semaphore cell and a 1 if the cell is 
a FIFO.

+ The trap bit will cause a getting storage exception if the thread 
accessed the cell through a PV or EF view. This can be used by a OS to 
swap this thread out for another.

+ the F bit will indicate that the cell is full



+ the E bit indicates that the cell is empty. Software can set this bit making the 
cell empty which will also reset the cell pointer so this is a quick way of clearing a 
Cell.

4



5

A view is the method the thread what’s to use to access the cell. The ITC 
controller will look at bits 3 through 6 of the address being accessed and 
use them to figure out how the thread wants to access the cell.

The next several slides will go into each view in detail.



6

The Bypass view is used to bypass the normal operations of the cell.

+ Loads or stores do not cause the issuing thread to block and the cells 
state bits stored in the cells tags do not change.

+ for a FIFO type of sell a Bypass store overwrites the newest FIFO entry 
and a load returns the oldest entry.

+ you would this view to set the initial data values for a cell.



7

The control view is use to change the cell’s tag values without any other 
effect.

+ All tag loads or stores will write the entire 32 bit tag value

+ A load or store to a tag will not cause the issuing thread to block or 
cause an Gating Storage exception

+ If you use the control view to set the empty bit The FIFO pointer also 
gets reset thus clearing the FIFO at the same time so you don’t have to 
read out all the FIFO locations.



8

The Empty  Full Synchronized View is used to write 32 bit data to the Cell. 
If the cell is a FIFO the data is read in a First in first out manner. Reading 
an empty cell will cause the executing thread to block until something is 
written  by another thread to the cell. Writing to a full cell will block until the 
cell is read by another thread.

+ The Empty Full bits are evaluated and update appropriately with each 
load or store to the cell.

+ You should not use the Store Conditional instruction with this view.

+ If the Trap bit is set any access will cause a gating storage exception. 
This can be used by an OS to reuse threads that would be idle waiting 
something to get written to the cell. The OS would have to save the 
context of the Thread then it could use the thread for another process. 
When new data is written to the cell another exception would happen and 
the OS would know that it need to find a thread to continue processing.



9

The Empty Full Try view is simulator to the previous Empty Full 
Synchronize view but it is intended to work with the Load Link Store 
conditional instructions.

+ instead of blocking a load will return a 0 if the cell is empty.

+ a store to a full location will not block just fail silently

+ but a Store Conditional instruction can be use to tell you if the store 
succeeded or not. 



10

The P/V Synchronized View implements a P/V counting Semaphore

+ a load will block if the semaphore value is 0 or decrement the value and 
return the old value.

+ a store does not actually store a value to the semaphore instead it 
increments the value in the semaphore.

+ The Empty/full bits have no meaning when using this view and are not 
updated. 

+ Don’t use this view with a FIFO cell.

If the trap bit is set in the Cell’s tag then any access will cause a gating 
storage exception as discussed in previous slides. 



11

The Try version of the P/V view never blocks.

+ If the cell value is 0 a load will return a 0

+ don’t used the Store Conditional instruction with this view 

If the trap bit is set in the Cell’s tag then any access will cause a gating 
storage exception as discussed in previous slides.



12

The ITC Block contains 2 tags that can be used to read the current 
configuration and configure the ITC block.

+ To access the ITC block you need to set the ITC bit in the CP0 Error 
Control register. This will direct the cache instruction to the ITC Block 
instead of the cache block. 

+ Here is an example of the C code needed to set the ITC bit.

+ to read a tag use the cache index load tag data instruction

+ to write a tag use the index store tag data instruction

There is an example at the end of this section that will show the 
instructions need to read and write these tags



13

The first ITC tag is located at offset 0 it contains the Base address of the 
ITC Block and the ITC Enable bit.

+ The base address should be set when you initialize the ITC block. The 
address uses the top 22 bit of this register along with the address mask, 
that I’ll explain on the next slide, to determine the starting address of the 
ITC block.

+ the ITC_En bit enables the ITC block. This should be set when you 
want to start using the block.

NOTE: If you position the ITC block over real memory or device I/O 
memory you will no longer be able to access that memory or device.



14

The second ITC tag is located at offset 8 and contains the number of ITC 
entries you have, the Address mask and Cell Entry Grain.

+ the Number of ITC cells is static for you core and this field tells you how 
many you have.

+ you can set the address mask field. This is an address mask. It 
Indicates which bits of the BaseAddress field should not participate in 
determining an ITC memory hit. This field effectively defines the size of 
the ITC memory block. AddrMask set to zero implies a 1KB ITC address 
space, and AddrMask set to 0x3f implies a 128KB address space.

+ You can set the Entry Grain to configure the interval spacing of the ITC 
Cells This chart gives you the Entry value and the corresponding size of 
the interval.



15

Here are some ideas of what you would do about the Entry Grain value 

+ For simple semaphore cells that are used to communicate between 
processes and the OS you will probably want to space them a tightly as 
possible this will save on memory map space. 

For FIFO cells that will be used to hold data within a process that will not 
be shared by other processes you can space the cells wider apart on 
different pages so the cells can be mapped to the process and protected 
buy the TLB.

One thing to take into account is,

Depending on the setting of the AddrMask, NumEntries, and EntryGrain, it 
is possible that ITC cells do not fill up the

entire ITC address block. If for example, if you have only two cells and 
they are mapped to a 1KB area with a stride of 256B that is the EntryGrain
equal to 0x1, the first cell starts at offset 0x000 and the second at offset 
0x100. The remaining two 256B regions starting at offsets 0x200 and 
0x300 do not map to any storage. Any access to an address that does not 
map to an ITC entry will result in undefined behavior. 



+ It is also possible to set the cell grain entry too large for the address mask 
which would make some of the cells unavailable.

15



16

Once the ITC_Enable bit is set in the ITC tag.

+ All access for the memory region will go to the ITC controller

+ Anything that was in that address range will no longer be accessible

+ After you are finished initializing the ITC Block make sure to clear the 
ITC bit in the ErrCtl register so cache instructions will once again be 
directed to the Cache controller.



17

I am now going to tie this al together by going through a code walk through 
of the use of the ITC block as a semaphore.

+ In the example I will be using 4 threads on 1 VPE

+ I will use the P/V view for the semaphore.

+ In this simple program each thread will acquire a semaphore count to 
2000 and then release the semaphore so another thread can count



18

I will go over the code changes made to the basic thread example I show 
you earlier.

+ First I am going to configure the ITC Block. To get to the ITC block’s 
controller to configure its tags you need to turn on the ITC bit in the Error 
Control register. Once you do that you can use the cache instruction to 
read or write to the ITC block’s tags.

Here is the sequence of C instruction to turn on the ITC configuration bit.

+ As you can see I use the mips32_geterrctl macro to get the register

+ then turn on the ITC bit using the ERRCTL_ITC #define

+ and last write the Error Control with the new value using the 
mips32_seterrctl macro



19

Now I am set to configure the ITC’s address mask and Entry grain.

Since I am going to use the cache instruction to write the ITC’s tags I must 
first setup the Data Tag lo register with the correct information. The cache 
instruction will write the value in the data tag low register to the ITC tag.

+ here is the code to set the address mask and the entry grain using 
#define values for the address mask and entry grain.

+ this code moves the value to the data tag low register using the 
mips32_setdtaglo macro



20

Now that the Data tag lo register is set up I can use the cache instruction 
to write it to the ITC’s tag register.

+ I’ll use inline assemble code to do that. 

+You can see the cache instruction takes 2 arguments:

+ the first is the command operation you want it to perform which is 
operation 9, index store tag

+ the second argument is, which location within the ITC tag memory you 
want to write. In this case I am using GPR 0 with an offset of 8 bytes to 
write ITC tag 1.



21

Now I'm going to configure the ITC tag 0 with the Base address of the ITC 
block and enable the ITC Block.

+ When I reserved space for the ITC block I just declared an array. I did 
this to make sure no other variables would be placed in that memory 
mapped  range. I could have just selected a physical address that is not 
mapped to any device. Because I declared the ITC as an array in C it is 
given a virtual address in  Kseg 0. Since addresses in Kseg 0 are mapped 
to physical address starting a 0 all I need to do convert this virtual address 
to a physical address is strip off the top bit.

+ next I or in the enable bit

+ then write the value to the data tag lo register using the 
mips32_setdtaglo macro.



22

Now I use the cache instruction to write the Data Tag lo register to the ITC 
tag 0 the same as I did for ITC tag 1

+ Except this time I use a offset value of 0 for Tag 0



23

Now that I am done with writing the ITC Block Tags I will turn off the ITC bit 
in the Error Control register so the cache instruction operation will refer to 
the cache controller instead of the ITC controller.

+ So far I have enabled the ITC Block but not the actual ITC Cell I will be 
using. To do this I need to use an uncached address to access the Cell. I 
can do this by changing the address of the Cell array from being in KSEG 
0 to KSEG 1. All I need to do is change the top bit of the address.

+ here is the C code to do that.



24

Now that I have the correct address I need to set the lower bits of the 
address to tell the ITC controller which view I what to use. To enable the 
Cell I need to set the enable bit and to do that I need to use the Control 
View so I set those bits.

+ Then I write the enable bit to the Cell.



25

Since I don’t want the semaphore to block I want the cell to start out with a 
1.

+ To do this I can just use the PV Sync view where any writes to the Cell 
will increment its contents. So I or in the P/V Sync View Bits Using the 
#define ITC_PVSyncView  and write to the address.



26

In the count function before we enter the counting loop I what to add the 
code so not more than one thread will be counting at a time. 

This is where I will read the Cell using the PV Sync view.

+ To do this I or in the PV Sync View bits into the Cell address and then 
read the Cell

Since I initially incremented the cell the first thread to get to this point will 
get the semaphore and decrement the Cell counter to 0. The next thread 
that reads the Cell will block waiting until the Cell counter in incremented 
before it can continue.



27

I then add code after the count loop to write to the Cell. This will increment 
the Cell to  1 so that another thread can continue.


