
1

In this section I’ll cover instructions added to the instruction set for the MT
ASE

2

There are 8 instructions that have been added to the instruction set for
MT. I’ll go into each in detail.

3

The fork instruction fires up a thread on a free TC.

+ rs is a pointer to the instruction where the new thread will start executing.

+ RT is the number of the current threads general purpose register who’s
value will be copied to the new threads

+ general purpose given in RD. This way you can pass a value the new
thread by initializing one of its GPRs with the value of one of the current
thread’s GPRs.

4

Some vital per-TC state is copied from the parent TC. The kernel or user
mode state , defined in

TCStatus[TKSU], and what address space identifier defined in
TCStatus[TASID]

+fork will only select a TC which is both "free" identified by the TCStatus
register A field being zero

+ and the TC is specifically marked as usable by fork identified by the
TCStatus register DA field being set.

+ If there are no TCs to allocate a Thread Overflow exception happens
and it is left up to the OS to figure out what to do.

5

The Yield instruction allows a thread to control its execution. It can
terminate itself, check for events to process or wait for events to happen.

+ A TC that issues a yield with rs as GPR $0 will terminate itself. This
could result in a "Thread Underflow" exception, which occurs when you’re
about to reach a situation where all the are available for a fork are
stopped, The exception is used to tell the OS that the system might stop
forever, with no threads running the code so it can decide what to do.

6

When rs equals a -1 the thread maybe be stopped briefly while the yield
indication is sent out to an external scheduling policy manager, if this
feature is supported by the policy manager the policy manager may cause
the thread to stop for a while, lower this threads priority or that other
actions. This behavior is strictly the result of the implementation of the
policy manager. None of the policy managers supplied by MIPS use this
feature.

+ When rs equals a -2 the current value of all the Yield Qualifier signals
are placed into the GPR number in RD. There is no scheduling effect,
purely done for the value delivered to rd.

+ when rs greater than 0 the TC waits for one or more of the Yield
Qualifier signals to be asserted and masked by a “1” bit in the rs GPR
value. This feature can be used to tie a specific thread to a external event.
Several threads can be setup to wait on different events depend on the
mask given by rs.

7

+ As I have previously covered in the MT control registers section the
YQMask register enables particular Yield Qualifier pin signals so if the bit
corresponding to the pin is not set a "invalid qualifier“ exception will be
generated and the OS can then decide what to do with the thread.

+ There are only 16 pin inputs so only the lower 16 bits of the YQMask
register are used the rest may float.

+ After the Yield instruction completes and the TC starts executing again
the GPR referenced by rd will contain the value of all active signals that
are not masked by the YQMask register.

+ The yield instruction should never be put into a branch or jump delay
slot.

8

The Yield instruction with RS> 0 allow a thread to wait for an external
event like a interrupt only in a much more direct fashion.

+ Since each thread has its own GRP set it is like using an interrupt with a
Shadow Registers but with the advantage of no vector fetch overhead.
There are no cycles or cache state lost to saving/restoring register context

+ this all adds up to no latency once a signal is asserted on a Qualifier pin.
No cycles lost to pipeline flushing and fetch redirection,

Because no exception is taken, vs. 10 cycles of pipeline bubble on an
interrupt.

Post-YIELD instructions typically already in Instruction Buffer so thee are
no additional fetch cycles

+ This method can by use to replace any interrupt but is particularly good
to use in place of a interrupt where the interrupt is very frequent and the
interrupt service routine is very quick.

+ the Yield instruction can be used in user mode so there is no need to
switch to Kernel mode to execute it

+ interrupts do not have to be enabled

+ Say we have 2 threads in our system A and B

+ Thread B starts a I/O call and used the Yield instruction to Wait for the I/O to
complete.

+ Thread A can then use all of the CPU cycles to execute instructions.

+ Immediately when the I/O Signal is raised on the Qualifier pin Thread B begins
to execute the rest of the driver.

+ once the device is serviced the execution of thread B will continue, where it
could just set up another I/O and yield again.

+ Thread A and B continue to execute in what ever manner the Scheduling Policy
dedicates.

8

9

I am going to go into the Move to and from thread register instructions
which provide read/write access to another TC’s registers but first let me
tell you about how to set up for these instructions.

+ first The VPE that the issuing thread belongs to must be the master
Virtual Processor this is done by writing a 1 to the MVP field of the
VPEConf0 CP0 register.

+ The target TC is identified by the value in the TargTC field of the
VPEControl register.

+ the Target TC should be in a halted state other wise it could result in an
unstable value. Most of the time these instructions are used to setup a TC
before it is started or restarted so this is usually not a problem.

+ The processor must be in kernel mode and access to Cop 0 must be
enabled to execute this instruction.

10

The MFTR or move from thread register will place the value of the register
being read into the GPR referenced by rd in the instruction .

This instruction can be used by an OS to save the context of a TC when a
TC needs to be swapped out.

11

There is a corresponding Move to Thread register instruction. The same
restrictions and setup that apply to the Move from thread register apply to
the Move to thread register instruction

12

In summary of the Move to or from Thread Register instructions

+ They are used to move values to Thread or VPE registers other then the
one executing the current code.

+ All CPU register can be accessed

+ The target Thread is selected by setting of the TargTC field in the
VPEControl register

+ The VPE is selected is the one the target Thread belongs to this is set in
the CurVPE field of the target thread’s TCBind register.

+ If you are trying to access VPE registers that are not in the current
threads VPE the MVP field in the VPEConf register so before you can
access another VPE’s registers you first need to set the TargTC in the
VPEControl register then make sure the CurVPE field in the Target’s
TCBind register is set to the other VPE then set the MVP filed of the
VPEConf0 register.

+ last the Target thread must be in the halted state.

12

13

The DMT instruction will disable any other thread that is associated with
the VPE the code is executed in.

+ it is a why to insure the currently executing thread executing is the only
thread executing in the VPE group. If you have another VPE with threads
executing they will still be active.

+ the DMT instruction takes one register as an output. This register will
contain the value of the VPEControl register before the DMT took effect.

+ When you want to enable the VPE to its previous state you can use the
EMT instruction to enable multi threading but if you are concerned with
nested calls it’s more robust to replace the whole original value of
VPEControl.

14

The EMT instruction will enable multi threading for the VPE you are
executing on.

15

The DVPE instruction disables all multithreading, including any other TCs

Affiliated to other VPEs, leaving the current thread running alone.

+ the DVPE instruction takes one register as an output. This register will
contain the value of the VPEControl register before the DVPE took effect.

+ When you want to enable the CPU to its previous state you can use the
EVPE instruction to enable multi threading on all VPEs but if you are
concerned with nested calls it’s more robust to replace the whole original
value of VPEControl register.

16

The EVPE instruction enables all VPEs in the CPU.

17

Enable/Disable pairs to force serial execution on a single VPE using the
EMT/DMT pair or across all VPEs on a processor using the
EVPE/DVPE pair

+ Handy for OS critical regions around use of shared resources

+ Global OS Memory Variables

+ Shared CP0 Resources (e.g. VPEControl)

+ Safe and Easy to Use within Exception Handlers

Note I will also cover later in another section, Inter Thread Communication
that can be use for semaphore control which maybe a better way to
control shared resources.

+ EVPE/DVPE allowed only for “privileged” or “master” VPEs so the MVP
field in the VPEConf register must be set before you can execute
this instruction.

