
1

This section covers the policy manager implementations of the MT K
cores.

2

The policy manager is a device that works with the Dispatch Scheduler of
the Core.

+ The objective of the Policy manager is to help you control the
performance of each thread in you system so you can achieve you desired
performance allocation of the CPU. This is commonly called Quality of
Service or QOS.

+ The policy is a device external to the core so it may be changed to suite
your needs.

+ The core includes a choice of 2 types of policy managers.

+ A Basis Round Robin policy manager that gives equal weight to all
threads in the system

+ or a Weighted Round Robin Policy manager where threads are placed in
different priority groups.

The rest of this section will cover the use of these 2 policy managers.

+ Your design can change either of these policy managers or you can create
your own.

2

3

The Round Robin Policy manager implements a equal scheduling
algorithm.

+ All threads have the same priority

+ all thread have the same weight

+ the 2 thread scheduling registers TCSchedule and VPESchedule have
no effect for it an dreads from these registers will return a -1, or all bits set.

4

The Weighted Round Robin Policy manager

+ A thread can belong to one of 4 groups, 0 through 3 with 3 being the
highest priority group.

+ Each Thread in the highest priority group will run in a round robin fashion
until there are no threads runnable within that group. Then threads in the
next group will run in the same fashion.

+ A thread is assigned to a group by the GPR field in its TCSchedule CP0
register.

5

The simple Weight round robin as described in the previous slide might
cause a thread to be starved of any cycles.

It could also cause a deadlock condition if a higher priority thread is
dependent on a action of a lower priority thread and the lower priority
thread never gets to run because other higher priority threads are always
runnable.

6

To help solve the problem of thread starvation the Weighted Round Robin
Policy manager can be configured to rotate priorities but still give the
highest numbered groups more, but not all of the CPU time. This
guaranties all threads will run but some will run more Then others.

+ Rotating Priorities are controlled by the GPO bit in the VPESchedule
CP0 register. When this bit is set static group priorities are used. When it is
cleared Priorities are rotated between groups.

+ The threads in the Highest Numbered group get a chance to run twice as
much as the next lower priority group.

+ Since each group can have more then one thread assigned to it for a
rotation where a group has the highest priority all runnable threads within
that group will get to run.

7

Here is table that illustrates the priority rotation.

Each column is a rotation and shows the group priority for the rotation.
The highest priority is circled.

Lets look at column one. The number in the column represents the
priority the group has for that rotation so here you can see the priorities
match the group number therefore group 3 has the highest priority and
Group 2 the next and so forth.

In column 2 the priorities have rotated so now group 2 has the highest
priority .

To go through a full rotation cycle it takes 15 rotations. Note this is not
processor cycles as you will see on the next slide.

After 15 rotations you can see the group 3 had the highest priority twice as
much as group 2, 8 times verses 4 and group 2 was twice as much as
group 1, 4 times verses 2 and 1 was twice that of group 0, 2 times verses
1.

8

The chart shows the cycle effect of having more than one TC in a group.
There are 4 threads in this system. Three of the threads have been
assigned to group 1 and one of the threads is assigned to group 0. The
first column shows the cycle count the second column shows us which
rotation out of the 15 the policy manager is in and the remaining columns
show the priority of each group for each cycle.

+ Lets look at row one. As we saw in the previous slide the group number
and the priority number match for this first rotation . Since there are no
threads in group 3 or 2 the highest priority is group 1.

+ Because there are 3 threads on group 1 each of those threads gets 1
cycle each so the threads in group 1 use up the first 3 cycles.

+ Once all threads that are runnable in group 1 have run the priority
rotates at cycle 4. This time group 0 has the highest priority so the 1
thread that is in group 0 runs for one cycle.

+ Since there is only 1 thread in group 0 the priority will rotate again at
cycle 5 where group is again the highest priority group with runnable
threads. Each thread in group 1 run one cycle in turn.

Then the priority rotates again at cycle 8 but for this rotation group 1 is still the
highest priority group with runnable threads so it will run for 3 more cycles.

8

9

This slide and the next continue to show the rotations and the running
group for each cycle.

10

11

This slide show the end of the rotation and totals the number of cycles
each Group used.

What we see is each thread in group 1 ran twice a much as a thread in
group 0.

+ Since there were 3 threads in group 1 and 1 thread in group 0, then to
complete the 15 integrations of a full rotation cycle it took 35 CPU cycles.

+ out of the 35 cycles the 3 threads in group 1 had the higher priority to run
for total of 30 cycles each thread in the group getting a equal share. Each
thread then ran for 10 cycles.

+ out of the 35 cycles the single thread in group 0 had the higher priority to
run for 5 cycles.

+ so you can see that each thread in group 1 ran for 10 cycles and each
thread in group 0 ran for 5 cycles which accounts for any thread in group 1
running twice as much as a thread in group 0.

12

Let me summaries what the previous slide demonstrated.

+ What we see is each thread in group 1 ran twice a much as a thread in
group 0.

+ Since there were 3 threads in group 1 and 1 thread in group 0, then to
complete the 15 integrations of a full rotation cycle it took 35 CPU cycles.

+ out of the 35 cycles the 3 threads in group 1 had the higher priority to run
for total of 30 cycles each thread in the group getting a equal share. Each
thread then ran for 10 cycles.

+ out of the 35 cycles the single thread in group 0 had the higher priority to
run for 5 cycles.

+ so you can see that each thread in group 1 ran for 10 cycles and each
thread in group 0 ran for 5 cycles which accounts for any thread in group 1
running twice as much as a thread in group 0.

