
This section will cover the Programmed Segmentation Control and Extended
Virtual Addressing.

1

Virtual Addressing.

Segmentation Control and Extended Virtual Addressing have been added to
MIPS32® in Release 3 of the Architecture. The MIPS Architecture is changing

2

MIPS32® in Release 3 of the Architecture. The MIPS Architecture is changing
with the times, and today many products are demanding larger memory
segments. In previous releases of the architecture, the memory scheme is
static in the allocation of memory and the assignment of attributes for the
different memory segments.

In Release 3, the Programmed Segmentation Control provides more flexible
memory segments. An OS such as Linux can use Programmed Segmentation
Control to extend kernel and User spaces without losing performance. This is
called Extended Virtual Address or EVA.

There are also new instructions that facilitate EVA which allow the Kernel to
access User space as if it were executing as a process in user mode. In
addition it adds the ability of changing both the boot exception vector and the
exception vector virtual and physical address.

The topics covered in this section are

3

What are Segments and how to program them

How a core is setup for Legacy Compatibility Setting

How Segments are set up to use 3GB of Ram

Boot Overlays which change the boot exception vector physical address

And an Example of how Linux uses Segmentation Control on our Malta
Evaluation Board

Prior to Programmed Segmentation Control, each segment of the Address Space was classified as
“Mapped” or “Unmapped”.

4

“Mapped” or “Unmapped”.

+ A “Mapped” address is one that is translated through the TLB. KUSEG, KSEG2 and KSEG3 are the
Mapped segments.

+ An “Unmapped” address is one that is not translated through the TLB. KSEG0 and KSEG1 are
unmapped segments and that provide a 512MB window into the lowest portion of the physical address
space, starting at physical address zero.

Each segment of an Address Space is associated with one or more of the three processor’s operating
modes User, Supervisor, or Kernel. A segment associated with a particular mode is accessible if the
processor is running in that mode or a more privileged mode. The Kernel mode is the most privileged
mode and has access to the full 4 GBs of virtual and physical address space. The user mode is the
least privileged mode and has access to the lowest 2 GBs of virtual address space when a TLB is used.

The thing to take away from this is that up until now each segment was defined with specific and
unchangeable attributes.

This mapping is now referred to as Legacy mode. This is also the default segment mapping when the

core is built for legacy mode.

Programmed Segmentation Control divides the Virtual memory map into 6
fixed-size virtual segments whose characteristics are fully programmable.

5

fixed-size virtual segments whose characteristics are fully programmable.

Each segment can be set for mapped or unmapped, Kernel, Supervisor or
User mode access, and set for any Cache Attribute. The only characteristic
that is fixed is the Virtual Address range of each segment.

Notice that the segment size is different for segments 4 and 5.

Segments are programmed using three CP0 registers that are used to
configure the characteristics of the segments. Each register is divided into configure the characteristics of the segments. Each register is divided into
two 16-bit sections; each section is used to configure a segment.

Shown is an expanded Segment Address Table with the CP0 registers and the
bit field that correspond to each segment.

The size column is the size of the segment and the address columns are the
starting and ending virtual address for each segment.

6

As mentioned in the previous slide there are 3 CP0 segmentation registers.
Each of them is split into 2 16 bit parts. Each part is used to configure an Each of them is split into 2 16 bit parts. Each part is used to configure an
address segment. This slide shows the configuration fields for a segment in
these registers.

In the name column you can see the field name followed by Upper or Lower
bit positions for the 2 segments in each register. There are 4 fields for each
segment:

The Physical Address field which will map the segment to a physical address
when the segment is configured to be unmapped.

The Access Mode which is the User, Kernel and Supervisor mode and cache
state.

The error condition behavior, which when set changes the segment access to
uncached and unmapped.

And last the cache coherency of the segment when it is configured
unmapped.

The default reset state of these fields depends on the Use Legacy mode
selection at Core build time. The settings will be covered in later slides.

The next slides will go into each field in more detail.

7

When the segment is unmapped, either by the Access Mode or Error
Condition, it will use the PA field to select the segment of physical memory Condition, it will use the PA field to select the segment of physical memory
that corresponds to the virtual segment. Physical addresses can only be set
on a 512 Megabyte boundary so that means only the top 3 bits of the 32 bit
physical address can be set and the remaining bits will be 0. The table shows
the Physical address that corresponds to the PA settings.

8

The Am field contains the three address mode bits. These are the various
combinations of address modes a segment can be configured for, mode name combinations of address modes a segment can be configured for, mode name
and the field encoding.

9

When the EU field is set, the segment becomes unmapped and uncached to
the physical address encoded in the PA field An error condition is one of reset, the physical address encoded in the PA field An error condition is one of reset,
NMI or cache error.

10

The C field sets the cache coherency of the segment if its Address Mode is
set to unmapped. The table shows the cache modes with their corresponding set to unmapped. The table shows the cache modes with their corresponding
bit encodings.

11

As an example of how to configure all the segments, let’s look at how
Programmed Segmentation Control is used to configure a core to look just like Programmed Segmentation Control is used to configure a core to look just like
the legacy memory mapping prior to Programmed Segmentation Control. The
slide shows the complete configuration setting for a legacy memory map. The
following slides will go through the setting of each segment in detail.

12

The legacy KUSEG segment was accessible in Kernel, Supervisor, or User Mode
with an address range that covers the lowest 2 GB of virtual memory and could be with an address range that covers the lowest 2 GB of virtual memory and could be
mapped through the TLB to any Physical address. When in error state, KUSEG
becomes direct-mapped and uncached to the lowest 2 GB of Physical memory.

In the table SegCtl2 which is CP0 register 5, select 4 is used to program segments
CFG4 and CFG5 which correspond to the legacy KUSEG virtual address range. The
access mode is 0x011 or Mapped, User, Supervisor and Kernel, which means they
will be accessible through the TLB in all modes for non-error conditions.

The Error Condition field, EU is set to 1 to indicate that these segments will become
unmapped and uncached when the CPU is in an error state. The translation in this
state is configured by the PA bits. Segment CFG5 sets PA to 0, causing a mapping
of the segment to start at physical address 0, which will cover the first GB of physical
memory. Segment CFG4 sets the PA to 010. This will map the segment to second
lowest GB of physical memory.

The C field, the coherency attribute does not apply because the segment is mapped
through the TLB.

13

The legacy KSEG0 was a segment accessible in Kernel mode. It had a 512
MB virtual address range starting at 0x8000 0000. It was cacheable and direct MB virtual address range starting at 0x8000 0000. It was cacheable and direct
mapped to physical address 0.

In the table, SegCtl1 which is CP0 register 5, select 3 is used to program
CFG3. This segment covers the 512 MB virtual address range starting at
0x8000 0000 . The Access Mode is unmapped, Kernel encoded with 000. The
PA bits are encoded with to 0x000, so this segment will be directly map to
physical address 0. The cache coherency attribute will be determined by the
K0 field in the CP0 config0 register, more on this later.

The Error Condition field, EU is set to 0 to indicate that this section will retain
these same characteristics when the CPU is in the error state.

14

The legacy KSEG1 was a segment accessible in Kernel mode. It had a 512 MB
virtual address range starting at 0xA000 0000. It was uncached and direct virtual address range starting at 0xA000 0000. It was uncached and direct
mapped to physical address 0..

In the table, the SegCtl1 which is CP0 register 5, select 3 is used to program
CFG2. This segment covers the 512 MB virtual address range starting at
0xA000 0000. The access mode encoding is 0x000 or unmapped, Kernel. The
PA bits are set to 0x000, so this segment will directly map to physical address
0 covering the first 512 MB of physical memory. The cache coherency
attribute is uncached so all memory accesses to this segment will go directly
to memory.

The Error Condition field, EU is set to 0 to indicate that this section will retain
these same characteristics when the CPU is in the error state.

15

KSEG2 and KSEG3 cover 2 512 MB virtual address segments, starting at
0xC000 0000 and 0xE000 0000, respectively. These segments are always 0xC000 0000 and 0xE000 0000, respectively. These segments are always
mapped, cacheable, and not accessible in User Mode.

In the table the SegCtl0 which is CP0 register 5, select 2 will be used to
program these segments. This register controls the configuration for
segments CFG1 and CFG0.

Segment CFG1 is a 512mb virtual address space starting at 0xC000 0000
that corresponds to KSEG2. The access mode is encoded 010 setting it to
Mapped, which means that CFG1 will be accessible through the TLB in
Supervisor and Kernel modes.

Segment CFG0 is a 512mb virtual address space starting at 0xE000 0000
that corresponds to KSEG3. The access mode is encoded 001 or Mapped,
Kernel mode, which means CFG0 will be accessible through the TLB in
Kernel mode.

16

Just fixing the segmentation registers does not put the core into a Legacy
compatibility Setting. Here is the total list of registers the need to be set for compatibility Setting. Here is the total list of registers the need to be set for
Legacy Compatibility Setting.

Note all of these reregisters will be preset to these values if the Legacy mode
option was selected at core build time.

I will go into each of remaining registers in detail in the upcoming slides.

17

There are 3 fields in the CP0 Config 5 register that are used to configure the
core for Legacy compatibility.

18

core for Legacy compatibility.

The K bit controls the use of the K0 field in the CP0 Config register. For non-
EVA legacy Cores the K0 field controls the cache coherency attribute of the
KSEG0 virtual memory segment. To make an EVA core compatible with
legacy software, the CFG3 segment that covers the same range of virtual
address as did the KSEG0 segment can have its cacheability controlled by
the K0 field. If the K field is 0 then the cacheability setting in the K0 bit will
override the C field in the CFG3 segment configuration. If the K bit is 1 then
the setting of the K0 field will have no effect on the cacheability of the CFG3
segment. The K bit is set by the SI_EVAReset pin on reset. If the pin is
deserted then the reset state is 0 and the cacheability of CFG3 is controlled
by the K0 field and the K bit is writable which enables the switching from
Legacy compatibility to EVA Setting. If the pin is asserted the K0 field has no
effect, the K field is set to 1 and is read only disallowing any change from EVA
Setting to Legacy compatibility setting.

In addition to selecting the location of the cache coherency attributes for the
CFG3 segment, the CONFIG5.K bit also causes hardware to generate two
virtual boot exception overlay segments to be compatible with Legacy
settings, of 0xBfC0 0000 and mirrored at 0x9FC0 0000. I will go into boot
overlays in upcoming slides.

The CV field controls the cache error exception vector. For non EVA legacy
Cores, the cache error exception is forced to virtual address 0xA000 0100
located in the uncached KSEG1 memory segment. To make an EVA core
compatible with legacy software, when the CV bit is cleared bits 31:29 are

The CP0 EBase register has three fields.

The Exception Base field sets bits 12 – 31 of the exception base address.
This is defaulted to 0x8000 00 at reset.

The WG bit controls the writing of bits 31:39 of the Exception Base address.
For non EVA legacy Cores, bits 31:30 of the Exception Base address are not
writable and are set to a binary 10. This forces the Exception to a virtual
address in the legacy KSEG0 and KSEG1 segments.

To make an EVA core compatible with legacy software, on reset bits 31:30 are
set to a binary 10 and these bits are unchanged on writes to Ebase when
WG=0 in the value being written. This forces the exception bass address into
the CFG2 and CFG3 segments which correspond to the old KSEG0 and
KSEG1 legacy segments.

If WG=1 in the written value then bits 31:30 are over written.

The CPUNum field is the CPU number of the processor executing the read of
this register.

19

All EVA Cores have a new feature called the Boot Exception Vector overlay.
This overlay maps a virtual Boot Exception Vector to a Physical address This overlay maps a virtual Boot Exception Vector to a Physical address
overlaying any segment configuration. This is done to add more flexibility
because both the virtual and physical address of the Boot Exception Vector
can be changed and are no longer limited to 0xBFC0 0000 and physical
address 0x1FC0 0000.

This is called the BEV Overlay because it overlays part of the configuration for
the memory segment it is in. The BEV overlay is always present whether or
not the core is in EVA Setting. The BEV Overlay is predefined at core build
time so core 0 will always use the overlay mapping that was built into the
core. Core 0 can make changes in the BEV overlay for the other cores before
Core 0 powers up the other cores. That way they can run different boot code.
The next 2 GCR registers are used to configure BEV Overlay.

20

The Boot Exception Base field in the Core Local Reset Exception Base
Register controls where the CPU will fetch the first instruction from on cold Register controls where the CPU will fetch the first instruction from on cold
reset. For Legacy Setting, the start of the Boot Exception Vectors is located at
the virtual address of 0xBFC0 0000 set as the default state for the GCR Core
Local Reset Exception Base Register. If you want a Core to cold boot from a
different address not legacy Setting then this register can be configured a IP
configuration time for a different address.

If you wanted to have CPUs that used different boot code you could access
this register through the core-other group from another CPU and set the boot
address for this CPU. This register also depends on the settings in the next
register the Core Local Reset Exception Extended Base Register.

Bits 12 through 28 will also be used for bits 12 through 28 of the Physical
address for the boot exception vector.

21

To see what the BEV overlay is and to change the BEV overlay there is a Global
Configuration Register called Core-Local Reset Exception Extended Base register. Configuration Register called Core-Local Reset Exception Extended Base register.
This register is an extension to the Core-Local Reset Exception Base Register. The
value is used for placing the boot exception vectors within the physical address map
during core boot-up time. This is a per core register so it is in the Core-Local section
of the Global Configuration Registers.

The initial value of EVAReset is set at IP configuration time. The EVAReset bit controls the
SI_EVAReset pin. This pin is driven by the CM to the core.

If EVAReset is 0 then the SI_EVAReset pin is de-asserted which drives the K bit to 0. In this
case the K0 field in the CP0 Config register will control the CCA of CFG3 and the CP0
segmentation control registers will reflect Legacy mappings for KUSEG, KSEG0, KSEG1
and KSEG2/3. In other words it will map and behave just like a Legacy core.

If the EVAReset is set then the SI_EVAReset pin will be asserted at boot and the K
bit will be set and be unchangeable. This means that the state of the core is not
Legacy compatible and can never be set for legacy compatibility. The k0 bit in the
CP0 Config register is disabled and the CCA of CGF3 is controlled by the settings in
the SegCtl register. The CP0 segmentation control registers will reflect an EVA
mapping for a 3GB RAM region. The details of the mapping will be shown in a later
slide.

The LegacyUseExceptionBase bit will force the Boot Exception vector address that is
in the Core-Local Boot Exception Base Register to be located in segments CFG2
and CFG3 which correspond to the Legacy KSEG0 and KSEG1 by overriding bits
31:30 of the Boot Exception Vector address and forcing them to be 1:0.

22

Here is a summary chart of the effects of the setting of the EVAReset bit.

23

Continuing with the Reset Exception Extended Base register; The
BEVExceptionBaseMask determines the size of the Overlay region from 1 MB BEVExceptionBaseMask determines the size of the Overlay region from 1 MB
to 256 MB in powers of two. The initial value is set at core build time. The
size also determines where the overlay starts. The overlay will start on a
boundary that corresponds to the size of the overlay.

+ Here is a table that shows the mask bit encodings and the associated
overlay size.

+ for example if the physical address of the Boot Exception vector were
0xBFC0 0000 and the Base Mask was set to 16MB then the start of the
Overlay region would be 16MB boundary of 0xBF00 0000 and end at 0xBFFF
FFFF.

24

The Physical Base address is set using the BEV Exception Base PA. The
Boot Exception Vector Base Physical address is a 7 bit field but the current Boot Exception Vector Base Physical address is a 7 bit field but the current
cores only uses the first 3 bits. The remaining lower bits 28:0 of the address
come from the Core Local Reset Base Register.

+ Having control of the top three bits allows the physical address of the boot
exception vector to be placed in any Segment. This address and BEV
Exception Base Mask then determines where the Overlay will be in memory
as shown in the previous slide.

The Present bit is always set if this register is present. It is a read only bit.

25

The Boot Exception Vector Overlay is always present. For a core that boots with
legacy settings the Core-Local Reset Exception Base Register and the Core-Local legacy settings the Core-Local Reset Exception Base Register and the Core-Local
Reset Exception Extended Base Register are preset at core build time with default
values to match the Legacy virtual addresses.

Here are the legacy settings for a BEV overlay of 1MB.

+ The legacy virtual base address is set in the Core-Local Reset Exception Base
Register.

+ The EVAReset bit is 0 to indicate that this is a legacy setting boot.

+ The LegacyUseExceptionBase is set to indicate the complete address of the Core-
Local Reset Exception Base Register will be used for the virtual address.

+ The BEVExceptionBaseMask is set to 0 to indicate a overlay size of 1MB.

+ And the BEVExceptionBasePA is set to 0 so the top three bit of the address are
cleared. When combined with bits 0 – 28 of the BEV set in the Core-Local Reset
Exception Base Register this set the physical address to 1FC0 0000 .

Note that the physical address can be set to a address other than 1FC0 0000 and the
core still be considered legacy setting because it still uses the virtual boot addresses
of 0xBFC0 0000.

26

Here is the table of the Segment Control registers combined with the boot
exception Vector overlay when EVAReset = 0 putting the core into Legacy

27

exception Vector overlay when EVAReset = 0 putting the core into Legacy
Compatibility Setting as discussed in the previous slide.

I’ll go through what you would see in the Registers if the Core is set up at build time to boot in
EVA mode with the Boot Exception Vector at 0xBFC0 0000 both for the virtual and Physical EVA mode with the Boot Exception Vector at 0xBFC0 0000 both for the virtual and Physical
address, instead of physical address of 0x1FC0 0000, with a 16MB. Overlay size.

+The Boot Exception Base field in the Core Local Reset Exception Base Register will be set
to 0XBFC0 0000 which sets the virtual address of the Boot Exception Vector.

+ The Core Local Reset Exception Extended Base Register would be set to 0x87F0 000B.
Here is how that value is arrived at:

+ The EVAReset bit will be set indicating the addresses configured by the Core-Local Reset
Exception Extended Base and the Core-Local Reset Exception Base Register will be used for
the Virtual and Physical address of the boot exception vector.

+ The LegacyUseExceptionBase will be cleared so bits 31:30 will remain as they are in the
Core-Local Reset Exception Base Register.

+ The BEVExceptionBaseMask bits 27:20 are set to 0x0F this sets the size of the address
range to map to 16MB.

+ The BEVExceptionBasePA bits 7:1 are set to 0x5 combining these with bits 28:12 of the
Core-Local Reset Exception Base Register sets the Physical address to 0xBFC0 0000

+ Here is the Map again showing the overlay region in relationship to the Boot Exception
Vector.

The K bit in the CP0 Config 5 register would also be set which disables the K0 field in the CP0
Config 0 register so it will no longer control the Cache Attributes of the CFG3 region.

28

Here is an example of a 2GB physical Ram memory map when the boot
exception vector overlay moves the physical address as setup in the previous

29

exception vector overlay moves the physical address as setup in the previous
slide. If the system is set up with an overlay that changes the physical
address of the boot exception vector to the BFC0 0000 and if the I/O register
placement was also placed at an address above the first 2 GB then there is
no longer a hole preventing a contiguous block of RAM memory.

NOTE the Default value of the Global Configuration Base register is set to
0x1FBF 8000 this will also need to be changed to a address outside of the
RAM memory space. The I/O registers and the GCRs can also be located
with in the BEV overlay region which is preferable because it is guaranteed to
be unmapped and uncached.

Next I will cover how to setup the segmentation register to expand the Kernel
and user mapped virtual and physical address range to 3 gigabytes.

30

and user mapped virtual and physical address range to 3 gigabytes.

The main purpose of Programmed Segmentation Control is to expand the
virtual and physical address space available in User mode, to expand the
unmapped virtual and physical address space in Kernel mode, and to be able
to overlap the two to make it easy for an OS Kernel to access the User
address space.

+ This table shows just that. It configures a virtual memory from 0x0000 0000
to 0xBFFF FFFF as the first 3 GB of virtual memory, accessible in
User/Supervisor mode as a mapped region.

For that same virtual range, it sets up Kernel mode access as unmapped,
directly translated to the lower 3 GB of physical memory. It does this by using

31

directly translated to the lower 3 GB of physical memory. It does this by using
segments CFG2 through CFG5.

+ The top two virtual memory segments CFG 0 and 1 are set up as mapped
Kernel mode only.

In error mode the lower 3GB of virtual address become directly translated and
uncached

32

uncached

The MIPS32 R3 architecture includes load and store instructions that allow
the Kernel to access User space as if it were the process whose ASID is the Kernel to access User space as if it were the process whose ASID is
currently set in the CP0 EntryHi register.

The E instructions function in exactly the same fashion as there counterparts,
except that address translation is performed using the user mode virtual
address space mapping in the TLB. The memory segment must be configured
to use the Mapped User Supervisor and Unmapped Kernel access mode,
Unmapped User, Supervisor and Kernel or Mapped User or Supervisor and
Kernel access mode.

The names for these instructions just have an E appended to the normal non-
EVA load/store instruction name. All of these instructions have the same
meaning as their non-EVA counterparts, except that they are Kernel-mode
instructions that use the User-mode translation of the address for the load or
store, based on the current EntryHi ASID value.

33

The next slides will show the use of Segmentation and EVA when used with
Linux. This is example uses a MIPS Malta Evaluation Board for a test Linux. This is example uses a MIPS Malta Evaluation Board for a test
platform. The Evaluation Board is limited to a maximum addressable memory
of 1.75 GB due to a limitation of the memory controller on the board.

The 1st RAM region is 256MB starting at physical 0. The 2nd RAM region
occupies the region between 2 and 8 million hex, a 1.5GB region. There is an
“IO hole” between the two RAM memory regions used for the boot flash, I/O
device registers and the memory mapped GCRs.

Since IO address used is the same as a legacy core’s no device drivers
needed to change.

34

The next slides show the values programmed into the segmentation registers
and how they pertain to the different processor modes.

35

and how they pertain to the different processor modes.

This first memory map is of the Linux Kernel when running in kernel mode.

+ Segments CFG3 and CFG2 correspond to the old KSEG0 and KSEG1 and
direct map to the lower 512 MB of physical address which encompasses the
low 256MB of ram and the I0 Space.

+ Segments CFG5 and CFG4 correspond to the old KUSEG region are
directly mapped to the lower 2GB of the physical address space
encompassing the 2 RAM memory blocks and the I/O space.

+ Segments CFG1 and CFG0 correspond to the old KSEG2 and KSGE3 and
are both mapped through the TLB.

This is the memory map for the Linux Kernel running in user mode.

36

Segments CFG2, CFG3, CFG4 and CFG5 are all mapped through the TLB
expanding the user virtual memory to 3GB.

+ Segments CFG0 and CFG1 are not accessible.

Here’s the map for error conditions reset, NMI or cache errors.

37

+ Segments CFG0, CFG1, CFG2 and CFG3 correspond to the old KGES3,
KSEG2, KSEG1 and KSEG0 respectively and all direct map to the lower 512
MB of physical address including the low 256MB of ram and the I0 Space.

+ Segment CFG5 is directly mapped to the lower 1GB of the physical address space

which includes three quarters of a GB RAM divided into two parts with I/O space in-

between.

+ Segment CFG4 is directly mapped to 1GB of physical ram stating at 0x4000
0000.

For the Linux kernel to use the extra memory the add_memory_region
function is used to register the memory. See the arch/mips/mti-malta/malta-function is used to register the memory. See the arch/mips/mti-malta/malta-
memory.c to see how this is done for the Malta Board.

Since the mappings and the cache attributes remain the same, existing device
drivers and the root file system can be used without any modification.

38

The changes to the Linux Kernel can be classified into the following;

Files marked in grey are for generic CPU detection, FPU initialization, and
instruction emulation.

Files marked in purple contain functions that need to copy to user space or from
kernel space. These functions have been changed to use the EVA Load/Store
instructions. The reason for this is there is no KUSEG segment anymore and
segmentation control register are not programmed to be Kernel mapped. In an old
legacy core, when data was copied from address space in user mode to address space
in kernel mode, lw/sw could be used because both USEG and KUSEG were mapped.

Files marked in green have been changed to use the new TLB instructions to
invalidate TLB entries.

Files marked in white are needed for Malta to configure EVA and use the
larger ram memory. This is platform specific. The key functions for these files
setup the memory descriptor for Linux to register the appropriate memory that
has been detected, register the memory with the add_memory_region
function, and setup the segmentation control registers.

39

Another thing that has been change in Linux kernel, for the Malta board, is the
code that accesses the IO registers. The macro CKSEG1ADDR in code that accesses the IO registers. The macro CKSEG1ADDR in
addrspace.h has been changed depending on settings in the malta specific
spaces.h include file. This macro should be used when a device driver needs
access to an IO control register, via an uncached address. The macro
supports a 3GB Ram space. It is needed because the kernel normally used
the KSEG3 region as uncached for this purpose and when the core is
programmed for 3GB of ram the corresponding CFG0 is configured for use as
a DMA zone. It is recommended that you use a similar approach when you
need to support 3GB of Ram.

40

When the kernel is configured to support 3GB of memory it will use the CFG0
segment as a DMA zone. This segment will be configured by the kernel as segment as a DMA zone. This segment will be configured by the kernel as
unmapped and uncached configured to the lower area in physical memory.

41

The kernel will configure the CFG2 segment for I/O coherence when there is
less than 3 GB of RAM memory the same as it configures the CFG0 segment less than 3 GB of RAM memory the same as it configures the CFG0 segment
when there is 3GB of memory or more .

In all cases the CFG1 segment is configured by the kernel as a mapped
segment used for vmalloc and loading kernel modules.

42

