Imagination

MIPS® Training

Segmentation Control and
Extended Virtual Addressing www.imgtec.com

This section will cover the Programmed Segmentation Control and Extended
Virtual Addressing.

Introduction

= Programmed Segmentation Control (PSC)
» MIPS32® Release 3
» Flexible memory segments

» Extended Virtual Addressing (EVA)
» Extend Kernel Spaces
» Easier for Kernel to Access User Spaces
= Fully programmable Exception Vector
= Full programmable BEV using Boot Exception Vector Overlay

q] Imaglnahon © Imagination Technologies Imagination — Confidential p2

Segmentation Control and Extended Virtual Addressing have been added to
MIPS32® in Release 3 of the Architecture. The MIPS Architecture is changing
with the times, and today many products are demanding larger memory
segments. In previous releases of the architecture, the memory scheme is
static in the allocation of memory and the assignment of attributes for the
different memory segments.

In Release 3, the Programmed Segmentation Control provides more flexible
memory segments. An OS such as Linux can use Programmed Segmentation
Control to extend kernel and User spaces without losing performance. This is
called Extended Virtual Address or EVA.

There are also new instructions that facilitate EVA which allow the Kernel to
access User space as if it were executing as a process in user mode. In
addition it adds the ability of changing both the boot exception vector and the
exception vector virtual and physical address.

Introduction

What are Segments and how to program them

How a core is setup for Legacy Compatibility Setting
How Segments are set up to use 3GB of Ram

Boot Overlays

Example of Segmentation Control and Linux using the Malta
Evaluation Board

QJ |mag|n0h0n © Imagination Technologies Imagination — Confidential p3

The topics covered in this section are

What are Segments and how to program them

How a core is setup for Legacy Compatibility Setting

How Segments are set up to use 3GB of Ram

Boot Overlays which change the boot exception vector physical address

And an Example of how Linux uses Segmentation Control on our Malta
Evaluation Board

Legacy Memory Map With TLB

Virtual Memory Map

OxFFFF_FFFF Kernel Mapped kseg3
Cacheable

0XE000_0000 0.5GB
Kernel Mapped kseg2
Cacheable

0xC000_0000 0.5GB
Kernel kseg1
Unmapped

0xA000_0000 Uncached 0.5GB
Kernel kseg0
Unmapped

0x8000_0000 Cacheable 0.5GB

User Mapped kuseg
Cacheable
\ny whe
\ 0x2000_0000
2GB
0x0000_0000
0x0000_0000

Physical

OXFFFF_FFFF

QJ |mag|n0tl0n © Imagination Technologies Imagination — Confidential p4

Prior to Programmed Segmentation Control, each segment of the Address Space was classified as
“Mapped” or “Unmapped”.

+ A “Mapped” address is one that is translated through the TLB. KUSEG, KSEG2 and KSEG3 are the
Mapped segments.

+ An “Unmapped” address is one that is not translated through the TLB. KSEGO0 and KSEG1 are
unmapped segments and that provide a 512MB window into the lowest portion of the physical address
space, starting at physical address zero.

Each segment of an Address Space is associated with one or more of the three processor’s operating
modes User, Supervisor, or Kernel. A segment associated with a particular mode is accessible if the
processor is running in that mode or a more privileged mode. The Kernel mode is the most privileged
mode and has access to the full 4 GBs of virtual and physical address space. The user mode is the
least privileged mode and has access to the lowest 2 GBs of virtual address space when a TLB is used.

The thing to take away from this is that up until now each segment was defined with specific and
unchangeable attributes.

This mapping is now referred to as Legacy mode. This is also the default segment mapping when the
core is built for legacy mode.

Programmed Segmentation Control

Virtual Memory Map

OxFFFF_FFFF Segment 0

Register CFGO
0xE000_0000

Segment 0

Register CFG1
0xC000_0000

Segment 1

Register CFG2
0xA000_0000

Segment 1

Register CFG3
0x8000_0000

Segment 2

Register CFG4
0x4000_0000

Segment 2

Register CFG5
0x0000_0000

0.5GB

0.5GB

O5EE All Programmable

Any where

0.5GB

1GB

1GB

Physical

OXFFFF_FFFF

0x0000_0000

QJimagination

© Imagination Technologies

Imagination — Confidential p5

Programmed Segmentation Control divides the Virtual memory map into 6
fixed-size virtual segments whose characteristics are fully programmable.

Each segment can be set for mapped or unmapped, Kernel, Supervisor or
User mode access, and set for any Cache Attribute. The only characteristic

that is fixed is the Virtual Address range of each segment.

Notice that the segment size is different for segments 4 and 5.

Configuration Registers for PSC

» There are three CPO registers that are used to configure the
characteristics of the segments.

Segment CPO Segment Starting Virtual Ending Virtual
number Register Bits Address Address

0 (CFGO) SegCﬂO 0-15 5GB 0XE000 0000 OXFFFF FFFF
1(CFG1) 16- 31 5GB 0xC000 0000 OXDFFF FFFF
2 (CFG2) SegCtl1 0-15 5GB 0XA000 0000 OXBFFF FFFF
3 (CFG3) >° 16 - 31 5GB 0x8000 0000 OX9FFF FFFF
4 (CFG4) SegCtl2 0-15 1GB 0x4000 0000 OX7FFF FFFF
5 (CFG5) o4 16 - 31 1GB 0x0000 0000 OX3FFF FFFF
q:l imagination © Imagination Technologies Imagination — Confidential p6

Segments are programmed using three CPO registers that are used to
configure the characteristics of the segments. Each register is divided into
two 16-bit sections; each section is used to configure a segment.

Shown is an expanded Segment Address Table with the CPO registers and the
bit field that correspond to each segment.

The size column is the size of the segment and the address columns are the
starting and ending virtual address for each segment.

Segmentation Register

Register Fields

(SegCtl0-3 Register Format (CP0 Register 5, Select 2-5))

Reset State

PA Upper 16 31:25 Physical address bits 31:29 for segment 1. For use when unmapped. Bits Configuration
27:25 correspond to physical address bits 31:29. Bits 31:28 are reserved for Dependent

PA Lower 16 15:9 future expansion.

AM Upper 16 22:20 Configuration 1 access control mode Configuration

Dependent

AM Lower 16 6:4

EU Upper 16 19 Error condition behavior. Configuration segment 1 becomes unmapped and Configuration
uncached when StatusERL = 1. Dependent

EU Lower 16 %)

C Upper 16 18:16 Cache coherency attribute for segment 1, for use when unmapped. As Configuration
defined by the base architecture. Dependent

C Lower 16 2:0

qj Imaglndflon © Imagination Technologies Imagination — Confidential p7

As mentioned in the previous slide there are 3 CP0 segmentation registers.
Each of them is split into 2 16 bit parts. Each part is used to configure an
address segment. This slide shows the configuration fields for a segment in

these registers.

In the name column you can see the field name followed by Upper or Lower
bit positions for the 2 segments in each register. There are 4 fields for each

segment:

The Physical Address field which will map the segment to a physical address
when the segment is configured to be unmapped.

The Access Mode which is the User, Kernel and Supervisor mode and cache
state.

The error condition behavior, which when set changes the segment access to
uncached and unmapped.

And last the cache coherency of the segment when it is configured
unmapped.

The default reset state of these fields depends on the Use Legacy mode
selection at Core build time. The settings will be covered in later slides.

Segmentation Register PA Fields
= PA (Physical Address Field)

| Bis | Descripion | Reset __

Physical address bits 31:29 for segment. These bits are used when the Preset at Core Build
virtual address space is configured as kernel unmapped or EU is set and
ERL =1, to select the segment in memory to be accessed.

11:9
and
27:25

Qg imagination

PA Physical Address
000 | 0x0000 0000
001 0x2000 0000
010 [0x4000 0000
011 0x6000 0000
100 | 0x8000 0000
101 0xA000 0000
110 | 0xC000 0000
111 | OXE000 0000

© Imagination Technologies Imagination — Confidential p8

When the segment is unmapped, either by the Access Mode or Error
Condition, it will use the PA field to select the segment of physical memory
that corresponds to the virtual segment. Physical addresses can only be set
on a 512 Megabyte boundary so that means only the top 3 bits of the 32 bit
physical address can be set and the remaining bits will be 0. The table shows
the Physical address that corresponds to the PA settings.

Configuration Register AM Fields
= AM (Address Mode) Bits 6:4 and 22:20 (Preset at Core Build)

Description Mode
Name

Unmapped Kernel Segment UK 000
Mapped Kernel Segment MK 001
Mapped Supervisor and Kernel Segment MSK 010
Mapped User, Supervisor and Kernel Segment MUSK 011
Mapped User and Supervisor and Unmapped Kernel MUSUK 100
Unmapped Supervisor and Kernel Segment USK 101
Unrestricted Unmapped Segment UUSK 111
q: Imaglnahon © Imagination Technologies Imagination — Confidential p9

The Am field contains the three address mode bits. These are the various
combinations of address modes a segment can be configured for, mode name
and the field encoding.

Configuration Register EU Fields
= EU (Error Condition Behavior) bits 3 and 19 (Preset at Core
Build)

» |f set, Configured segment becomes unmapped and uncached when
Status.ERL = 1 (reset, NMI or cache error) regardless of any other
settings.

qj Imaglndflon © Imagination Technologies Imagination — Confidential p10

When the EU field is set, the segment becomes unmapped and uncached to
the physical address encoded in the PA field An error condition is one of reset,
NMI or cache error.

10

Configuration Register C Fields

= C (Cache Coherency Attribute) Bits 2:0 and 18:16 (Preset at

Core Build)

Name bits

Uncached, non-coherent
Writeback, write-allocate, non-coherent
Writeback, write-allocate, coherent, exclusive

Writeback, write-allocate, coherent, exclusive on write

Uncached accelerated, non-coherent

uc
WB
CWBE
CwB

UCA

010
011
100
101

111

q: Imaglnahon © Imagination Technologies

Imagination — Confidential p11

The C field sets the cache coherency of the segment if its Address Mode is
set to unmapped. The table shows the cache modes with their corresponding

bit encodings.

11

Configuration for MIPS Legacy Memory Map

CPO
Register

SegCtlo CFGO na MK - 001 0 na OxFFFF FFFF KSEG3

(5,2) Bits (Mapped Kernel) (TLB)
15-0 0xE000 0000
CFG1 na MSK - 010 0 na OxDFFF FFFF KSEG2
Bits (Mapped Supervisor/Kernel) (TLB) KSSEG
31-16 0XC000 0000
SegCtl1 CFG2 000 UK - 000 0 010 O0xBFFF FFFF KSEG1
(5,3) Bits (Unmapped Kernel) (uncached)
15-0 0xA000 0000
CFG3 000 UK - 000 0 Config0 KO bit 0x9FFF FFFF KSEGO0
Bits (Unmapped Kernel) determines CCA
31-16 0x8000 0000
SegCtl2 CFG4 010 MUSK - 011 1 na O0x7FFF FFFF KUSEG
(5,4) Bits (Mapped (TLB)
15-0 User/Supervisor/Kernel) 0x4000 0000
CFG5 000 MUSK - 011 1 na Ox3FFF FFFF
Bits (Mapped (TLB)
31-16 User/Supervisor/Kernel) 0x0000 0000
QJ Imaglnahon © Imagination Technologies Imagination — Confidential p12

As an example of how to configure all the segments, let’s look at how
Programmed Segmentation Control is used to configure a core to look just like
the legacy memory mapping prior to Programmed Segmentation Control. The
slide shows the complete configuration setting for a legacy memory map. The
following slides will go through the setting of each segment in detail.

12

Programming Segments for Legacy KUSEG
» KUSEG Virtual address 0 — Ox7FFF FFFF

1 2 3 4 5 6 7 8
CPO0 Register | Segment PA AM (Access mode) EU |C VAR LM
Bits (Cache (Virtual Address (Legacy
Coherency Range) Segment)
Attribute)
SegCtl2 CFG4 010 MUSK - 011 1 na 0x7FFF FFFF KUSEG
(5,4) Bits (Mapped (TLB)
15-0 User/Supervisor/Kernel)
0x4000 0000
CFG5 000 MUSK - 011 1 na 0x3FFF FFFF
Bits (Mapped (TLB)
31-16 User/Supervisor/Kernel)
0x0000 0000
qj Imaglndflon © Imagination Technologies Imagination — Confidential p13

The legacy KUSEG segment was accessible in Kernel, Supervisor, or User Mode
with an address range that covers the lowest 2 GB of virtual memory and could be
mapped through the TLB to any Physical address. When in error state, KUSEG
becomes direct-mapped and uncached to the lowest 2 GB of Physical memory.

In the table SegCtl2 which is CPO register 5, select 4 is used to program segments
CFG4 and CFG5 which correspond to the legacy KUSEG virtual address range. The
access mode is 0x011 or Mapped, User, Supervisor and Kernel, which means they
will be accessible through the TLB in all modes for non-error conditions.

The Error Condition field, EU is set to 1 to indicate that these segments will become
unmapped and uncached when the CPU is in an error state. The translation in this
state is configured by the PA bits. Segment CFG5 sets PA to 0, causing a mapping
of the segment to start at physical address 0, which will cover the first GB of physical
memory. Segment CFG4 sets the PA to 010. This will map the segmentto second
lowest GB of physical memory.

The C field, the coherency attribute does not apply because the segment is mapped
through the TLB.

13

Programming Segment for Legacy KSEGO

= KSEGO Virtual address 0x8000 0000 — Ox9FFF FFFF

¢+ /2 {3 {4 /5 J6 7 /s |
CPO0 Register Segment PA AM (Access mode) EU © VAR LM
Bits (Cache (Virtual Address Range) (Legacy Mode

Coherency Segment)
Attribute)

SegCtl1 CFG3 000 UK - 000 0 Config0 KO bit O0x9FFF FFFF KSEGO0

(5,3) Bits (Unmapped Kernel) determines CCA

31-16 0x8000 0000

qj Imaglnahon © Imagination Technologies

Imagination — Confidential p14

The legacy KSEGO was a segment accessible in Kernel mode. It had a 512
MB virtual address range starting at 0x8000 0000. It was cacheable and direct

mapped to physical address 0.

In the table, SegCtl1 which is CPO register 5, select 3 is used to program

CFG3. This segment covers the 512 MB virtual address range starting at
0x8000 0000 . The Access Mode is unmapped, Kernel encoded with 000. The
PA bits are encoded with to 0x000, so this segment will be directly map to
physical address 0. The cache coherency attribute will be determined by the
KO field in the CPO config0 register, more on this later.

The Error Condition field, EU is set to 0 to indicate that this section will retain
these same characteristics when the CPU is in the error state.

14

Programming Segment for Legacy KSEG1
» KSEG1 Virtual address 0xA000 0000 — OxBFFF FFFF

CPO Register Segment PA AM (Access mode) EU VAR
Bits (Cache Coherency (Virtual Address (Legacy
Attribute) Range) Segment)
SegCtl1 CFG2 000 UK - 000 0 010 O0xBFFF FFFF KSEG1
(5,3) Bits (Unmapped Kernel) (uncached)
15-0 0xA000 0000
qj Imaglnahon © Imagination Technologies Imagination — Confidential p15

The legacy KSEG1 was a segment accessible in Kernel mode. It had a 512 MB
virtual address range starting at 0xA000 0000. It was uncached and direct
mapped to physical address 0..

In the table, the SegCtl1 which is CPO register 5, select 3 is used to program
CFG2. This segment covers the 512 MB virtual address range starting at
0xA000 0000. The access mode encoding is 0x000 or unmapped, Kernel. The
PA bits are set to 0x000, so this segment will directly map to physical address
0 covering the first 512 MB of physical memory. The cache coherency
attribute is uncached so all memory accesses to this segment will go directly
to memory.

The Error Condition field, EU is set to O to indicate that this section will retain
these same characteristics when the CPU is in the error state.

15

Programming Segments setting for Legacy ,
KSEG2/3 or a combination of the two called KSSEG

» KSEG2/3 Virtual address 0xC000 0000 — OxFFFF FFFF

1 2 3 4 5 6 7 8
CPO Register | Segment PA AM (Access mode) EU C VAR LM
Bits (Cache Coherency | (Virtual Address Range) | (Legacy Mode
31:29 Attribute) Segment)
SegCtl0o CFGO na MK - 001 0 na OxFFFF FFFF KSEG3
(5,2) Bits (Mapped Kernel) (TLB)
15-0 0xE000 0000
CFG1 na MSK - 010 0 na 0xDFFF FFFF KSEG2
Bits (Mapped (TLB) KSSEG
31-16 Supervisor/Kernel)
0XC000 0000
qj Imaglndflon © Imagination Technologies Imagination — Confidential p16

KSEG2 and KSEG3 cover 2 512 MB virtual address segments, starting at
0xC000 0000 and 0xEOO0O0 0000, respectively. These segments are always
mapped, cacheable, and not accessible in User Mode.

In the table the SegCtl0 which is CPO register 5, select 2 will be used to
program these segments. This register controls the configuration for
segments CFG1 and CFGO.

Segment CFG1 is a 512mb virtual address space starting at 0xC000 0000
that corresponds to KSEG2. The access mode is encoded 010 setting it to
Mapped, which means that CFG1 will be accessible through the TLB in
Supervisor and Kernel modes.

Segment CFGO is a 512mb virtual address space starting at OXE000 0000
that corresponds to KSEG3. The access mode is encoded 001 or Mapped,
Kernel mode, which means CFGO will be accessible through the TLB in

Kernel mode.

16

Setting Legacy Compatibility Setting

» |n Legacy Compatibility Setting the following values are set:
= CPO SegCtl0=0x0020 0010
» CPO SegCtl1=0x0003 0002
» CPO SegCtl2=0x0038 0438
= CPO Config5 register is set to 0x8000 0001

» K=0 (KO bit controls CCA setting for CFG3 - legacy KSGEDO)
» CV=0 (cache error vectored to 0xA000 0100)

= CPO Ebase is set to 0x8000 0000
» Bits 31:30 Read only set to binary 10

» GCR Core Local ResetExceptionBase Register=0xBFC0 0000
» GCR Core-Local ResetExceptionExtendedBase Register=0x4000 0000

qj Imaglndflon © Imagination Technologies Imagination — Confidential p17

Just fixing the segmentation registers does not put the core into a Legacy
compatibility Setting. Here is the total list of registers the need to be set for
Legacy Compatibility Setting.

Note all of these reregisters will be preset to these values if the Legacy mode
option was selected at core build time.

| will go into each of remaining registers in detail in the upcoming slides.

17

Configb (CP0 Register 16, Select 5)

Description Read/W | Reset
rite state

0: Config KO over rides segment configuration cache mode for CFG3 (Legacy
KSEGO0) Segment.
1: Config KO disabled.

SI_EVAReset pin de-asserted at reset RW 0
SI_EVAReset pin asserted at reset, R
CV 29 Cache error exception vector control. Disables logic forcing use of CFG2 (Legacy R/W 0

KSEG1) segment in the event of a Cache Error exception when StatusBEV = 0.

EVA 28 This bit is always a logic one to indicate support for enhanced virtual address R 1
(EVA).

q] Imaglnahon © Imagination Technologies Imagination — Confidential p18

There are 3 fields in the CP0 Config 5 register that are used to configure the
core for Legacy compatibility.

The K bit controls the use of the KO field in the CP0O Config register. For non-
EVA legacy Cores the KO field controls the cache coherency attribute of the
KSEGO virtual memory segment. To make an EVA core compatible with
legacy software, the CFG3 segment that covers the same range of virtual
address as did the KSEGO segment can have its cacheability controlled by
the KO field. If the K field is 0 then the cacheability setting in the KO bit will
override the C field in the CFG3 segment configuration. If the K bit is 1 then
the setting of the KO field will have no effect on the cacheability of the CFG3
segment. The K bit is set by the SI_EVAReset pin on reset. If the pin is
deserted then the reset state is 0 and the cacheability of CFG3 is controlled
by the KO field and the K bit is writable which enables the switching from
Legacy compatibility to EVA Setting. If the pin is asserted the KO field has no
effect, the K field is set to 1 and is read only disallowing any change from EVA
Setting to Legacy compatibility setting.

In addition to selecting the location of the cache coherency attributes for the
CFG3 segment, the CONFIG5.K bit also causes hardware to generate two
virtual boot exception overlay segments to be compatible with Legacy
settings, of 0xBfCO 0000 and mirrored at Ox9FCO0 0000. I will go into boot
overlays in upcoming slides.

The CV field controls the cache error exception vector. For non EVA legacy
Cores, the cache error exception is forced to virtual address 0xA000 0100

located in the uncached KSEG1 memory segment. To make an EVA core
comnatihle with leaacv sanftware when the C\V/ hit is cleared hits 31:29 are

EBase Register
= CPO EBase bit 11 “WG” Write Gate EBase Override

Register Fields EBase Register (CP0 Register 15, Select 1)

Exception Base 31:12 This field specifies the base address of the exception vectors when 0x80000
StatusBEV is zero.
WG 11 Write gate. Bits 31..30 are unchanged on writes to Ebase when WG=0 in 0

the value being written. The WG bit must be set true in the written value to
change the values of bits 31..30.

CPUNum 9:0 This field specifies the number of the CPU in a multi-processor system preset

qj Imaglndflon © Imagination Technologies Imagination — Confidential p19

The CPO EBase register has three fields.

The Exception Base field sets bits 12 — 31 of the exception base address.
This is defaulted to 0x8000 00 at reset.

The WG bit controls the writing of bits 31:39 of the Exception Base address.
For non EVA legacy Cores, bits 31:30 of the Exception Base address are not
writable and are set to a binary 10. This forces the Exception to a virtual
address in the legacy KSEGO0 and KSEG1 segments.

To make an EVA core compatible with legacy software, on reset bits 31:30 are
set to a binary 10 and these bits are unchanged on writes to Ebase when
WG=0 in the value being written. This forces the exception bass address into
the CFG2 and CFG3 segments which correspond to the old KSEGO and
KSEG1 legacy segments.

If WG=1 in the written value then bits 31:30 are over written.

The CPUNum field is the CPU number of the processor executing the read of
this register.

Boot Exception Vector Overlay

» Changing the Boot Exception Vector Addresses
» Change the Virtual address.
= Allows for more contiguous virtual memory
» Change the Physical address
= Allows for more contagious physical memory
» Together allows for each core to use different boot code

qj Imaglncﬂlon © Imagination Technologies Imagination — Confidential p20

All EVA Cores have a new feature called the Boot Exception Vector overlay.
This overlay maps a virtual Boot Exception Vector to a Physical address
overlaying any segment configuration. This is done to add more flexibility
because both the virtual and physical address of the Boot Exception Vector
can be changed and are no longer limited to 0xBFCO0 0000 and physical
address 0x1FCO0 0000.

This is called the BEV Overlay because it overlays part of the configuration for
the memory segment it is in. The BEV overlay is always present whether or
not the core is in EVA Setting. The BEV Overlay is predefined at core build
time so core 0 will always use the overlay mapping that was built into the
core. Core 0 can make changes in the BEV overlay for the other cores before
Core 0 powers up the other cores. That way they can run different boot code.
The next 2 GCR registers are used to configure BEV Overlay.

GCR Core Local Reset Exception Base Register

= Setting Boot Exception vector
» Value is a core build time setting
» For Legacy Setting boot it must be built with OxBFCO 0000

Register Fields Core-Local Reset Exception Base Register Reset State
(GCR_Cx_RESET_BASE Offset 0x0020)

BEVExceptionBase 31:12 Bits [31:12] of the virtual address that the local core will use as the 0xBFCO00
exception base in the boot environment (COPO StatusBEV=1).

q: Imaglnc:hon © Imagination Technologies Imagination — Confidential p21

The Boot Exception Base field in the Core Local Reset Exception Base
Register controls where the CPU will fetch the first instruction from on cold
reset. For Legacy Setting, the start of the Boot Exception Vectors is located at
the virtual address of OxBFCO 0000 set as the default state for the GCR Core
Local Reset Exception Base Register. If you want a Core to cold boot from a
different address not legacy Setting then this register can be configured a IP
configuration time for a different address.

If you wanted to have CPUs that used different boot code you could access
this register through the core-other group from another CPU and set the boot
address for this CPU. This register also depends on the settings in the next
register the Core Local Reset Exception Extended Base Register.

Bits 12 through 28 will also be used for bits 12 through 28 of the Physical
address for the boot exception vector.

21

Core Local Reset Exception Extended Base Register

Register Fields Core-Local Reset Exception Extended Base Register Reset State
mw (GCR_Cx_RESET_EXT_BASE Offset 0x0030)

EVAReset 31 If set - Indication to the local core to not use the legacy reset (RW) Build Option
LegacyUse 30 If set - Indication to the core to not use the ExceptionBase Forces bits 31-30 Build Option
ExceptionBase of the exception Base Register to 10. (RW)

qj Imaglndflon © Imagination Technologies Imagination — Confidential p22

To see what the BEV overlay is and to change the BEV overlay there is a Global
Configuration Register called Core-Local Reset Exception Exténded Base register.
This register is an extension to the Core-Local Reset Exception Base Register. The
value is used for placing the boot exception vectors within the Rhysmal address map
during core boot-up time. This is a per core register so it is in the Core-Local section
of the Global Configuration Registers.

The initial value of EVAReset is set at IP configuration time. The EVAReset bit controls the
SI EVAReset pin. This pin is driven by the CM to the core.

If EVAReset is 0 then the SI EVAReset pin is de-asserted which drives the K bit to 0. In this
case the KO field in the CP0O Config register will control the CCA of CFG3 and the CP0
se%mentatlon control registers will reflect Le ac¥l mappings for KUSEG, KSEGO0, KSEG1
and KSEG2/3. In other words it will map and behave just like a Legacy core.

If the EVAReset is set then the SI_EVAReset pin will be asserted at boot and the K
bit will be set and be unchangeable. This means that the state of the core is not
Lep%ag:y compatible and can never be set for legacy compatibility. The kO bit in the
C onfig register is disabled and the CCA of CGF3 is controlled by the settings in
the SegCtlregister. The CPO segmentation control registers will reflect an EVA
n"ll%pplng for a 3GB RAM region.” The details of the mapping will be shown in a later
slide.

The LegacyUseExceptionBase bit will force the Boot Exception vector address that is
in the Core-Local Boot Exception Base Register to be located in segments CFG2
and CFG3 which correspond to the Legacy KSEGO and KSEG1 by overriding bits
31:30 of the Boot Exception Vector address and forcing them to bé 1:0.

22

EVAReset bit setting

EVAReset
Set?

SI_EVAReset Asserted SI_EVAReset De-asserted
CPO Config5 K bit = 1 CPO Config5 K bit = 0
CPO0 Config KO Disabled CCA of CFG3 controlled CPO0 Config KO Enabled Controls CCA CFG3
by CPO0 SegCtl1
CPO0 SegCtl Registers set for 3GB Extended CP) SegCtl Registers set for Legacy Mappings
mapping
q: Imaglnahon © Imagination Technologies Imagination — Confidential p23

Here is a summary chart of the effects of the setting of the EVAReset bit.

23

Core Local Reset Exception Extended Base
Register

Reglster Flelds Core-Local Reset Exception Extended Base Register Reset
(GCR_Cx_RESET_EXT_BASE Offset 0x0030) State

BEVExceptlonBaseMask 27 20 Bits [27:20] of the virtual address Build
that the local core will use as the exception base in the boot environment (COPO Option
StatusBEV = 1). (RW)

MaSk blts 27-20 m Overlay s e
Physical address of BEV of 0xBFC0 0000

0000 0000 1 OxBFFF FFFF End of Overlay Region
0000 0001 2

S0o0loniy 2 0xBFCO 0000 Boot Exception Vector
0000 0111 8

0000 1111 16

0001 1114 32 0xBFO00 0000 Start of Overlay Region
0011 1111 64

o111 1111 128

slide
q: Imaglnc:hon © Imagination Technologies Imagination — Confidential p24

Continuing with the Reset Exception Extended Base register; The
BEVEXxceptionBaseMask determines the size of the Overlay region from 1 MB
to 256 MB in powers of two. The initial value is set at core build time. The
size also determines where the overlay starts. The overlay will start on a
boundary that corresponds to the size of the overlay.

+ Here is a table that shows the mask bit encodings and the associated
overlay size.

+ for example if the physical address of the Boot Exception vector were
0xBFCO0 0000 and the Base Mask was set to 16MB then the start of the
Overlay region would be 16MB boundary of 0xBF00 0000 and end at OxBFFF
FFFF.

24

Core Local Reset Exception Extended Base
Register

Register Fields Core-Local Reset Exception Extended Base Register Reset
(GCR_Cx_RESET_EXT_BASE Offset 0x0030) State

BEVEXxception 71 Bits [35:29] of the physical address that the local core will use as the exception base in Build
BasePA the boot environment (COPO StatusBEV = 1). (RW) Option
PRESENT 0 Reads as 0x1. Writes ignored. (R) 1

CFGO 00000 0000 0000 0000 0000 0000 0000 0xE000 0000

CFG1 110 00000 0000 0000 0000 0000 0000 0000 0xC000 0000

CFG2 101 00000 0000 0000 0000 0000 0000 0000 0xA000 0000

CFG3 100 00000 0000 0000 0000 0000 0000 0000 0x8000 0000

CFG4 010 00000 0000 0000 0000 0000 0000 0000 0x4000 0000

CFG5 000 00000 0000 0000 0000 0000 0000 0000 0x0000 0000

QJ Imaglnahon © Imagination Technologies Imagination — Confidential p25

The Physical Base address is set using the BEV Exception Base PA. The
Boot Exception Vector Base Physical address is a 7 bit field but the current
cores only uses the first 3 bits. The remaining lower bits 28:0 of the address
come from the Core Local Reset Base Register.

+ Having control of the top three bits allows the physical address of the boot
exception vector to be placed in any Segment. This address and BEV
Exception Base Mask then determines where the Overlay will be in memory
as shown in the previous slide.

The Present bit is always set if this register is present. It is a read only bit.

25

Overlay for Legacy Compatibility Setting

» Place the Boot exception vector at 0OxBFCO 0000 Virtual and
Physical Ox1FCO0 0000 with a size of 1MB.
» Core-Local Reset Exception Base Register = 0OxBFC0 0000

» Core-Local Reset Exception Extended Base Register = 0x4000 0000

» EVAReset bit 31 = 0 indicating to use Config KO field to determine the CCA for
CFG3 (Config 5 K bit defaults to 0).

» | egacyUseExceptionBase bit 30 = 1 indicating to use the complete address in
the Core-Local Reset Exception Base Register

» BEVEXxceptionBaseMask bits 27:20 = 0000 0000 (0x00) to set the size of the
address range to map to 1MB.

» BEVExceptionBasePA bits 7:1 = 0000000 (0x0) combining this with bits 28:12
of the Core-Local Reset Exception Base Register sets the Physical address to
0x1FCO0 0000

Imaglndflon © Imagination Technologies Imagination — Confidential p26

The Boot Exception Vector Overlay is always present. For a core that boots with
legacy settings the Core-Local Reset Exception Base Register and the Core-Local
Reset Exception Extended Base Register are preset at core build time with default
values to match the Legacy virtual addresses.

Here are the legacy settings for a BEV overlay of 1MB.

+ The legacy virtual base address is set in the Core-Local Reset Exception Base
Register.

+ The EVAReset bit is 0 to indicate that this is a legacy setting boot.

+ The LegacyUseExceptionBase is set to indicate the complete address of the Core-
Local Reset Exception Base Register will be used for the virtual address.

+ The BEVExceptionBaseMask is set to 0 to indicate a overlay size of 1MB.

+ And the BEVExceptionBasePA is set to 0 so the top three bit of the address are
cleared. When combined with bits 0 — 28 of the BEV set in the Core-Local Reset
Exception Base Register this set the physical address to 1FC0 0000 .

Note that the physical address can be set to a address other than 1FCO 0000 and the
core still be considered legacy setting because it still uses the virtual boot addresses
of OxBFCO 0000.

26

Boot Exception Vector Overlay Legacy Compatibility

CPO Segment

Register

AM
(Access mode)

U

(EVAReset = 0)

(o} VAR LM
(Virtual Address
Range)

(cache
coherency
attribute)

(Legacy
Mode)

Physical
Memory

OXFFFF FFFF

0x8000 0000
OX7FFF FFFF

BEV Normal

0x4000 0000

OX3FFF FFTP
0x1FCO0 0000
0x2000 0000
O Hole

OXOFFF FFFF
0x0000 0000

SegCtl0 MK na OxFFFF FFFF KSEG3
(5.4) 001 (TLB)
(Mapped Kernel)
0xE000 0000
CFG1 000 MK 1 na OxDFFF FFFF KSEG2
001 (TLB)
(Mapped Kernel)
0XC000 0000
SegCtl1 CFG2 000 UK 1 010 KSEG1
(5,3) 000 (uncached) 0xBFCO0 0000
(Unmapped Kernel)
0xA000 0000
CFG3 000 UK 1 100 KSEGO
000 (Writeback, ¢ 0x9FCO0 0000
(Unmapped Kernel) coherent,
exclusive on
write) 0x8000 0000
SegCti2 CFG4 010 MUSK 1 100 0x7FFF FFFF KUSEG
5,2 011 (Writeback,
(Mapped User, Supervisor and coherent,
Kernel) exclusive on
write)
0x4000 0000
CFG5 000 MUSK 1 100 0x3FFF FFFF
011 (Writeback,
(Mapped User, Supervisor and coherent,
Kernel) exclusive on
write)
0x0000 0000
QJ |mag|n0"0n © Imagination Technologies

Imagination — Confidential p27

Here is the table of the Segment Control registers combined with the boot
exception Vector overlay when EVAReset = 0 putting the core into Legacy
Compatibility Setting as discussed in the previous slide.

27

Overlay Example

= Place the Boot exception vector at
0xBFCO 0000 Virtual/Physical - size of 16MB. e warrrr guoms
» Core-Local Reset Exception Base Register el b
- OXB FCO OOOO 0xBF00 0000 0xBF00 0000 ;t:;oﬂove”ay

» Core-Local Reset Exception Extended Base Register = 0x87F0 000B

» EVAReset bit 31 = 1 indicating to use this Core-Local Reset Exception Extended Base
Register and the Core-Local Reset Exception Base Register to determine the placement
of the boot exception vector.

» LegacyUseExceptionBase bit 30 = 0 indicating to use the complete address in the Core-
Local Reset Exception Base Register

» BEVExceptionBaseMask bits 27:20 = 0000 1111 (OxOF) to set the size of the address
range to map to 16MB.

» BEVExceptionBasePA bits 7:1 = 0000101 (0x5) combining this with bits 28:12 of the Core-
Local Reset Exception Base Register sets the Physical address to OxBFCO 0000

qj Imaglndflon © Imagination Technologies Imagination — Confidential p28

I’I{/%\o through what)é?u would see in the Registers if the Core is set up at build time to boot in
EVA mode with the Boot Exception Vector at 0xBFC0 0000 both for the virtual and Physical
address, instead of physical address of 0Ox1FCO0 0000, with a 16MB. Overlay size.

+The Boot Exception Base field in the Core Local Reset Exception Base Register will be set
to 0XBFCO0 0000 which sets the virtual address of the Boot Exception Vector.

+ The Core Local Reset Exception Extended Base Register would be set to 0x87F0 000B.
Here is how that value is arrived at:

+ The EVAReset bit will be set indicating the addresses configured by the Core-Local Reset
Exception Extended Base and the Core-Local Reset Exception Base Register will be used for
the Virtual and Physical address of the boot exception vector.

+ The LegacyUseExceptionBase will be cleared so bits 31:30 will remain as they are in the
Core-Local Reset Exception Base Register.

+ The BEVExceptionBaseMask bits 27:20 are set to OxOF this sets the size of the address
range to map to 16MB.

+ The BEVExceptionBasePA bits 7:1 are set to 0x5 combining these with bits 28:12 of the
Core-Local Reset Exception Base Register sets the Physical address to 0OxBFC0 0000

:—/H?re is the Map again showing the overlay region in relationship to the Boot Exception
ector.

The K bit in the CP0O Config 5 register would also be set which disables the KO field in the CPO
Config 0 register so it will no longer control the Cache Attributes of the CFG3 region.

28

CPO Segment

Register

Boot Exception Vector Overlay

AM
(Access mode)

C
(cache

coherency

VAR

Range)

(Virtual Address

LM
(Legacy Mode)

Physical
Memory

attribute)
SegCtlo CFGO 000 MK 1 na OxFFFF FFFF KSEG3
(5,4) 001 (TLB)
(Mapped Kernel)
0xE000 0000
CFG1 000 MK 1 na OxDFFF FFFF KSEG2 .
001 (TLB) 1/0 registers
(Mapped Kernel) and GCR Base
SegCitl1 CFG2 000 MUSUK 1 010 OxBFFF FFFF OxBFFF FFFF
(5,3) 100 (uncached)
(Mapped User and Supervisor and 0xBFCO 0: 00
Unmapped Kernel)
\ OxBE00 0000 OxBE00 0000 L
0xA000 0000 KSEG1 0xA000 0000
CFG3 000 MUSUK 1 100 Ox9FFF FFFF KSEGO Ox9FFF FFFF
100 (Writeback, 0x9FCO0 0000
(Mapped User and Supervisor and coherent, exclusive
Unmapped Kernel) on write)
0x8000 0000
SegCtl2 CFG4 010 MUSUK 1 100 0x7FFF FFFF KUSEG 4 0x7FFF FFFF N
¥ 100 (Writeback, i
62) (Mapped User and Supervisor and coherent, exclusive Contlg uous
Unmapped Kernel) on write) RAM
0x4000 0000 0x4000 0000
CFG5 000 MUSUK 1 100 Ox3FFF FFFF 0x3FFF FFFF
100 (Writeback,
(Mapped User and Supervisor and coherent, exclusive
Unmapped Kernel) on write)
0x0000 0000 N 0x0000 0000 S
QJ |mag|n0tl0n © Imagination Technologies Imagination — Confidential p29

Here is an example of a 2GB physical Ram memory map when the boot
exception vector overlay moves the physical address as setup in the previous
slide. If the system is set up with an overlay that changes the physical
address of the boot exception vector to the BFCO 0000 and if the 1/O register
placement was also placed at an address above the first 2 GB then there is
no longer a hole preventing a contiguous block of RAM memory.

NOTE the Default value of the Global Configuration Base register is set to
0x1FBF 8000 this will also need to be changed to a address outside of the
RAM memory space. The I/O registers and the GCRs can also be located
with in the BEV overlay region which is preferable because it is guaranteed to

be unmapped and uncached.

29

Expanding KUSEG/KEGO0/1 to an Overlapping 3
Gigabyte Virtual Memory Segment

CPO PA AM [VAR Physical
Register bits (Access mode) (cache (Virtual Address Memory
31:29 coherency Range) User/
attribute, supewisor
0 CFGO NA MK 0 NA

OXFFFF FFFF
Mode

001 (TLB)
(Mapped Kernel)
0xE000 0000
CFG1 NA MK 0 NA OxDFFF FFFF
001 (TLB)
(Mapped Kernel)
0XC000 0000 mmy, J—
SegCti1 CFG2 101 MUSUK 1 011 OXBFFF FFFF OXBFFF FFFF (3GB)
(5,3) 100 (Writeback)

(Mapped User and Supervisor and
Unmapped Kernel)
0xA000 0000
CFG3 100 MUSUK 1 011 Ox9FFF FFFF

100 (Writeback) 0x9FCO0 0000
(Mapped User and Supervisor and
Unmapped Kernel)
0x8000 0000 TLB
SegCtl2 CFG4 010 MUSUK 1 011 Ox7FFF FFFF S— -
(5,2) 100 (Writeback) Ma ppe
(Mapped User and Supervisor and
Unmapped Kernel) d
0x4000 0000
CFG5 000 MUSUK 1 011 O0x3FFF FFFF
100 (Writeback)
(Mapped User and Supervisor and
Unmapped Kernel)
0x0000 0000 ey 020000 0000 (0GB)
QJ |mag|n0h0n © Imagination Technologies Imagination — Confidential p30

Next | will cover how to setup the segmentation register to expand the Kernel
and user mapped virtual and physical address range to 3 gigabytes.

The main purpose of Programmed Segmentation Control is to expand the
virtual and physical address space available in User mode, to expand the
unmapped virtual and physical address space in Kernel mode, and to be able
to overlap the two to make it easy for an OS Kernel to access the User
address space.

+ This table shows just that. It configures a virtual memory from 0x0000 0000
to OXBFFF FFFF as the first 3 GB of virtual memory, accessible in
User/Supervisor mode as a mapped region.

30

Expanding KUSEG/KEGO0/1 to an Overlapping 3
Gigabyte Virtual Memory Seg

—h
CPO PA AM G VAR Kernel Physical
Register bits (Access mode) (cache (Virtual Address Memory
31:29 coherency Range) MOde
attribute,
0 CFGO0 NA MK 0 NA

OxFFFF FFFF

001 (TLB)
(Mapped Kernel)
0xE000 0000 TLB
CFG1 NA MK 0 NA OxDFFF FFFF
001 (TLB) Ma pped
(Mapped Kernel)
0XC000 0000
SegCti1 CFG2 101 MUSUK 1 011 OXBFFF FFFF | [~ OxXBFFF FFFF (3GB)
(5,3) 100 (uncached)
(Mapped User and Supervisor
and Unmapped Kernel)
0xA000 0000
CFG3 100 MUSUK 1 011 Ox9FFF FFFF
100 (Writeback) 0x9FCO 0000
(Mapped User and Supervisor .
and Unmapped Kernel) - D||'ect
0x8000 0000 .
SegCti2 CFG4 010 MUSUK 1 011 Ox7FFF FFFF Translation
(5,2) 100 (Writeback)

(Mapped User and Supervisor
and Unmapped Kernel)

0x4000 0000
CFG5 000 MUSUK 1 011 O0x3FFF FFFF
100 (Writeback)
(Mapped User and Supervisor
and Unmapped Kernel)

_ 0x0000 0000 0x0000 0000 (0GB)
— =

QJ |mag|n0tl0n © Imagination Technologies Imagination — Confidential p31

For that same virtual range, it sets up Kernel mode access as unmapped,
directly translated to the lower 3 GB of physical memory. It does this by using
segments CFG2 through CFG5.

+ The top two virtual memory segments CFG 0 and 1 are set up as mapped
Kernel mode only.

31

CPO
Register

ﬂ

NA

101

100

010

000

(Access mode)

MK
001
(Mapped Kernel)

MK
001
(Mapped Kernel)

MUSUK
100
(Mapped User and Supervisor
and Unmapped Kernel)

MUSUK
100
(Mapped User and Supervisor
and Unmapped Kernel)

MUSUK
100
(Mapped User and Supervisor
and Unmapped Kernel)

MUSUK
100
(Mapped User and Supervisor
and Unmapped Kernel)

0 NA
(TLB)

1 011
(Writeback)

1 011
(Writeback)

1 011
(Writeback)

1 011
(Writeback)

VAR

(Virtual Address

Range)

OxFFFF FFFF

0xE000 0000
OxDFFF FFFF

0XC000 0000
OxBFFF FFFF

0xA000 0000
Ox9FFF FFFF
0x9FCO0 0000

0x8000 0000

Ox7FFF FFFF

0x4000 0000
Ox3FFF FFFF

ry Segment

Error Mode

Expanding KUSEG/KEGO0/1 to an Overlapping 3
Gigabyte Virtual Memo

Physical
Memory

Addr
ess
Error

= OxBFFF FFFF (3GB)

Direct
Translated

0x0000 0000 _J

ke 0%x0000 0000 (0GB)

CFG1
SegCtl1 CFG2
(53)
CFG3
SegCtl2 CFG4
(5.2)
CFG5
Qo imagination

© Imagination Technologies

Imagination — Confidential p32

In error mode the lower 3GB of virtual address become directly translated and

uncached

32

New Load and Store Instructions to support EVA
= Allow processor executing in kernel mode to access user
address without the need to map to the user address.

= ASID in the CPO EntryHi register is used for the Kernel to access as if it
were the user mode process if the user data is in a Segment configured
with a AM of MUSK, MUSUK or UUSK. These instructions can only be
used in Kernel mode.

=» New Load ‘E’ Instructions are:

» | BE, LBUE, LHE, LHUE, LLE, LWE, LWLE, and LWRE
= New Store ‘E’ Instructions are:

= SBE, SCE, SHE, SWE, SWLE, and SWRE

qj Imaglnahon © Imagination Technologies Imagination — Confidential p33

The MIPS32 R3 architecture includes load and store instructions that allow
the Kernel to access User space as if it were the process whose ASID is
currently set in the CP0O EntryHi register.

The E instructions function in exactly the same fashion as there counterparts,
except that address translation is performed using the user mode virtual
address space mapping in the TLB. The memory segment must be configured
to use the Mapped User Supervisor and Unmapped Kernel access mode,
Unmapped User, Supervisor and Kernel or Mapped User or Supervisor and
Kernel access mode.

The names for these instructions just have an E appended to the normal non-
EVA load/store instruction name. All of these instructions have the same
meaning as their non-EVA counterparts, except that they are Kernel-mode
instructions that use the User-mode translation of the address for the load or
store, based on the current EntryHi ASID value.

33

Linux Example using Programmed Segments

2GB Physical
Address Map

OXTFFF FFFF

0x2000 0000

Ox1FFF FFFF

0x1C00 0000
0x1BFF FFFF

0x1000 0000
OXOFFF FFFF

0x0000 0000

Qg imagination

1.5GB Ram

Physical address map for supporting 2GB of RAM on Malta

/0 and Flash

OxIFFF FFFF

0x1F00 0000

0x1E00 0000

110
Reqgisters

and Flash /

0x1C00 0000

Hole

256MB Ram

4MB Flash Ox1FCO 0000 aliased to
0Ox1E00 0000

GCR Control Registers

Malta-R Internal Registers

Ox1fbf.8000

Global Debug Block
Core-Other Control Block
Core-Local Control Block

Global Control Block

4 MB Monitor Flash /
GIC and CPC Control Registers
\ Gic

Ox1bde.6000
Ox1bde.4000
Ox1bde.2000
Ox1bde.0000
0Ox1bdd.0000
0Ox1bdc.c000
0Ox1bdc.8000
0Ox1bdc.0000

8K
8K
8K
64K
16K
16K
32K

unused

Core-Other Control Block
Core-Local Control Block
Global Control Block
User-Mode Visible Section
Other Section

Local Section

Shared Section

© Imagination Technologies

Imagination — Confidential p34

The next slides will show the use of Segmentation and EVA when used with

Linux. This is example uses a MIPS Malta Evaluation Board for a test

platform. The Evaluation Board is limited to a maximum addressable memory

of 1.75 GB due to a limitation of the memory controller on the board.

The 15t RAM region is 256MB starting at physical 0. The 2" RAM region
occupies the region between 2 and 8 million hex, a 1.5GB region. There is an
‘IO hole” between the two RAM memory regions used for the boot flash, 1/0
device registers and the memory mapped GCRs.

Since 10 address used is the same as a legacy core’s no device drivers
needed to change.

34

EVA Memory Map For Linux on Malta FPGA - 2GB Ram

CPO PA AM
Register bits (Access mode) (cache
31:29 coherency
attribute)
0 CFGO0 000 MK 1
001 (TLB)
(Mapped Kernel)
CFG1 000 MK 1 na
001 (TLB)
(Mapped Kernel)
SegCtl1 CFG2 000 MUSUK 1 010
(5,3) 100 (uncached)
(Mapped User and
Supervisor and Unmapped
Kernel)
CFG3 000 MUSUK 1 100
100 (Writeback,
(Mapped User and coherent,
Supervisor and L d ive on
Kernel) write)
SegCtl2 CFG4 010 MUSUK 1 100
(5,2) 100 (Writeback,
(Mapped User and coherent,
Supervisor and Ul d lusive on
Kernel) write)
CFG5 000 MUSUK 1 100
100 (Writeback,
(Mapped User and coherent,
Supervisor and U d lusive on
Kernel) write)

VAR
(Virtual Address
Range)

OxFFFF FFFF

0xE000 0000
OxDFFF FFFF

0XC000 0000
OxBFFF FFFF

0xA000 0000
Ox9FFF FFFF

0x8000 0000
OX7FFF FFFF

0x4000 0000
Ox3FFF FFFF

0x0000 0000

Kernel Mode

LM
(Legacy
Mode)

KSEG3

KSEG2

KSEG1

KSEGO

KUSEG

[LB |

Physical
Memory

OxFFFF FFFF

0x8000 0000

0x2000 0000

1/0 Hole

OxOFFF FFFF
0x0000 0000

QJimagination

© Imagination Technologies

Imagination — Confidential p35

The next slides show the values programmed into the segmentation registers

and how they pertain to the different processor modes.

This first memory map is of the Linux Kernel when running in kernel mode.

+ Segments CFG3 and CFG2 correspond to the old KSEGO and KSEG1 and
direct map to the lower 512 MB of physical address which encompasses the

low 256MB of ram and the 10 Space.

+ Segments CFG5 and CFG4 correspond to the old KUSEG region are
directly mapped to the lower 2GB of the physical address space
encompassing the 2 RAM memory blocks and the 1/0O space.

+ Segments CFG1 and CFGO correspond to the old KSEG2 and KSGE3 and
are both mapped through the TLB.

35

EVA Memory Map For Linux on Malta FPGA - 2GB Ram
User Mode

Physical
Memory

CPO PA AM [VAR LM
Register bi (Access mode) (cache (Virtual Address (Legacy
31 coherency Range) Mode)
attribute)
0 CFG 0 000 MK 1 na OxFFFF FFFF KSEG3 Address OxFFFF FFFF
001 (TLB)
(Mapped Kernel) error

0xE000 0000

CFG1 000 MK 1 na OXDFFF FFFF KSEG2
001 (TLB) Address
(Mapped Kernel) error
0XC000 0000
SegCtl1 CFG2 000 MUSUK 1 010 O0xBFFF FFFF KSEG1
(5,3) 100 (uncached)

(Mapped User and Supervisor
and Unmapped Kernel)
0xA000 0000
CFG3 000 MUSUK 1 100 Ox9FFF FFFF KSEGO
100 (Writeback,
(Mapped User and Supervisor coherent,
and Unmapped Kernel) exclusive on 0x8000 0000
write) 0x8000 0000
SegCtl2 CFG4 010 MUSUK 1 100 OX7FFF FFFF KUSEG
(5,2) 100 (Writeback,
(Mapped User and Supervisor coherent,
and Unmapped Kernel) exclusive on
write)
0x4000 0000 0x4000 0000
CFGS5 000 MUSUK 1 100 OX3FFF FFFF
100 (Writeback,
(Mapped User and Supervisor coherent, 0x20000000
and Unmapped Kernel) exclusive on 1/0 Hole
write) O0xOFFF FFFF
0x0000 0000 0x0000 0000
qj |mag|ndtl0n © Imagination Technologies Imagination — Contidential p36

This is the memory map for the Linux Kernel running in user mode.

Segments CFG2, CFG3, CFG4 and CFG5 are all mapped through the TLB
expanding the user virtual memory to 3GB.

+ Segments CFGO and CFG1 are not accessible.

36

EVA Memory Map For Linux on Malta FPGA - 2GB Ram
EU - Status.ERL =1 (reset, NMI or cache error)

CPO
Register

0 CFGO

bits

31:29

000

000

000

010

000

AM
(Access mode)
MK 1

001
(Mapped Kernel)

MK
001
(Mapped Kernel)

MUSUK
100
(Mapped User and Supervisor
and Unmapped Kernel)

MUSUK
100
(Mapped User and Supervisor
and Unmapped Kernel)

MUSUK
100
(Mapped User and Supervisor
and Unmapped Kernel)

MUSUK
100
(Mapped User and Supervisor
and Unmapped Kernel)

1

1

0x0000 0000

[VAR
(cache (Virtual Address (Legacy
coherency Range) Mode)
attribute)
na OxFFFF FFFF
(TLB)
0xE000 0000
na OxDFFF FFFF KSEG2
(TLB)
0XC000 0000
010 O0xBFFF FFFF KSEG1
(uncached)
0xA000 0000
100 Ox9FFF FFFF KSEGO
(Writeback,
coherent,
exclusive on
write) 0000
100 OX7FFF FFFF KUSEG
(Writeback,
coherent,
exclusive on
write)
0x4000 0000
100 O0x3FFF FFFF
(Writeback,
coherent,
exclusive on r
write)

Physical
Memory

OXFFFF FFFF

0x8000 0000
OX7FFF FFFF

0x4000 0000
Ox3FFF FFFF

0x2000 0000
1/0 Hole
O0xOFFF FFFF
0x0000 0000

CFG1
SegCtl1 CFG2
(5,3)
CFG3
SegCtl2 CFG4
(5,2)
CFGS
QJimagination

© Imagination Technologies

Imagination — Confidential p37

Here’s the map for error conditions reset, NMI or cache errors.

+ Segments CFGO0, CFG1, CFG2 and CFG3 correspond to the old KGESS,
KSEG2, KSEG1 and KSEGO respectively and all direct map to the lower 512
MB of physical address including the low 256MB of ram and the |0 Space.

+ Segment CFGS is directly mapped to the lower 1GB of the physical address space
which includes three quarters of a GB RAM divided into two parts with I/O space in-

between.

+ Segment CFG4 is directly mapped to 1GB of physical ram stating at 0x4000

0000.

37

Adding the memory to Linux
=add_memory_region
= Function call called in malta.init.c

D

= [To'check total.available memory in the shell, we cgn use the free

Men 1824208 30832 179337¢

command'to check how much memory is available| to the system.

qj Imaglnahon © Imagination Technologies Imagination — Confidential p38

For the Linux kernel to use the extra memory the add_memory_region
function is used to register the memory. See the arch/mips/mti-malta/malta-
memory.c to see how this is done for the Malta Board.

Since the mappings and the cache attributes remain the same, existing device
drivers and the root file system can be used without any modification.

38

Linux Files That Have Been Modify

File name

Description

arch/mips/kernel/cpu-probe.c

probe for interaptiv core

arch/mips/kernel/genex.s

add ftlb handler

arch/mips/kernel/rdk_switch.5

change _init_fpu

arch/mips/kernel/scall32-032.5

setup stack argument in stackargs

arch/mips/kernel/segment.c

create proc entry for segment control

arch/mips/kernel/signal.c

add FPU context switch function call

arch/mips/kernel/smp-cmp.c

add segment check

arch/mips/kernel/spram.c

add interaAptiv spram support

arch/mips/kernel/traps.c

where ftlb handle implemented, add eva trap support

arch/mips/kernel/unaligned.c

emulate lhe, Iwe, etc opcode

arch/mips/kernel/mips_ksyms.c

export strncpyxx, copy_from_user, etc

arch/mips/lib/memcpy-inatomic.5

add atomic copy from user, etc function

arch/mips/lib/memcpy.S

__copy_fromuser, _copy_touser, __copy_inuser,

arch/mips/lib/memset.s

add__bzero_user

arch/mips/lib/strlen_user.S

add _strlen_kernel_asm

arch/mips/lib/strncpy_user.S

add _strncpy_from_kernel_asm, _strncpy_from_kernel_nocheck_asm, __strncpy_from_user_asm

arch/mips/lib/strnlen_user.S

add _strnlen_kernel_asm,__strnlen_kernel_nocheck_asm,

arch/mips/mm/cache.c

modify _flush_cache_vmap, _flush_cache_vunmap, export mips_flush_data_cache_range

arch/mips/mm/c-rak.c

adding D$ flush functions

arch/mips/mm/init.c

modify copy_to_user_page

arch/mips/mm/tibex.c

add proAptiv support to tlbw function

arch/mips/mm/tlb-rak.c

use tibinv to invalidate tlb entry in local_flush_tlb_all()

arch/mips/mti-malta/malta-init.c

program PCl controlller to access 2GB memory

arch/mips/mti-malta/malta-memory.c

add prom_getevamdesc() to setup memory descriptor from bootloader to Linux Kernel

arch/mips/mti-malta/malta-pci.c

shift PCI devices to upper 2GB, to prevent PC bridges loop

arch/mips/mti-malta/malta-setup.c

define new function plat_eva_setup() to setup segctl register

Qg imagination

© Imagination Technologies Imagination — Confidential p39

The changes to the Linux Kernel can be classified into the following;

Files marked in grey are for generic CPU detection, FPU initialization, and
instruction emulation.

Files marked in purple contain functions that need to copy to user space or from
kernel space. These functions have been changed to use the EVA Load/Store
instructions. The reason for this is there is no KUSEG segment anymore and
segmentation control register are not programmed to be Kernel mapped. In an old
legacy core, when data was copied from address space in user mode to address space
in kernel mode, Iw/sw could be used because both USEG and KUSEG were mapped.

Files marked in green have been changed to use the new TLB instructions to
invalidate TLB entries.

Files marked in white are needed for Malta to configure EVA and use the
larger ram memory. This is platform specific. The key functions for these files
setup the memory descriptor for Linux to register the appropriate memory that
has been detected, register the memory with the add_memory_region
function, and setup the segmentation control registers.

39

Linux Changes
» Use of CKSEG1ADDR for uncache memory access

= Macro is in arch/mips/include/asm/addrspace.h
» Depend on the file arch/mips/include/asm/mach-malta/spaces.h

qj Imaglncﬂlon © Imagination Technologies

Imagination — Confidential p40

Another thing that has been change in Linux kernel, for the Malta board, is the
code that accesses the |0 registers. The macro CKSEG1ADDR in
addrspace.h has been changed depending on settings in the malta specific
spaces.h include file. This macro should be used when a device driver needs
access to an 10 control register, via an uncached address. The macro
supports a 3GB Ram space. It is needed because the kernel normally used
the KSEG3 region as uncached for this purpose and when the core is
programmed for 3GB of ram the corresponding CFGO is configured for use as
a DMA zone. It is recommended that you use a similar approach when you
need to support 3GB of Ram.

40

Linux Segment Configuration

» Use CFGO for SW IO Coherence when kernel is configured to
support 3GB memory

» - DMA_ZONE This segment is mapped to the lower area in the physical
memory address unmapped and uncached. Device driver uses this zone
to maintain software |O coherence.

= For example, Ethernet driver will allocate the token ring buffer here. The
Ethernet driver will use uncached access to these data structure to
maintain SW 10 coherence with the device.

qj Imaglndflon © Imagination Technologies Imagination — Confidential p41

When the kernel is configured to support 3GB of memory it will use the CFGO
segment as a DMA zone. This segment will be configured by the kernel as
unmapped and uncached configured to the lower area in physical memory.

41

Linux Segment Configuration
» Use CFG2 for SW IO Coherence when kernel is configured
less than 3 GB memory

» - Linux kernel uses the segment the same as CFGO except it's use when
kernel is not configured to support 3GB memory.

= Use CFG1 for vmalloc

» - To allocate large chuck of memory or loading large kernel module, it's
more effective to allocate a large continuous memory to access the
memory.

» - This region needs to be configured as mapped. Whenever, CPU
accesses this region, it will use TLB to access the memory.

qj Imaglndflon © Imagination Technologies Imagination — Confidential p42

The kernel will configure the CFG2 segment for I/O coherence when there is
less than 3 GB of RAM memory the same as it configures the CFG0O segment
when there is 3GB of memory or more .

In all cases the CFG1 segment is configured by the kernel as a mapped
segment used for vmalloc and loading kernel modules.

42

