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This course section covers the MIPS32 Architecture Virtualization 
Module for MIPS processors cores
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This section describes Virtualization Module support as it pertains to a 
MIPS Core implementation. 

First I’ll explain what Virtualization is and why hardware assisted 
virtualization is a good idea.

Operating modes will cover the new modes added for assisted 
virtualization.

The virtual memory section covers the use of the tlb’s to control memory 
access

Exceptions covers exceptions within the context of virtualization

Interrupts covers interrupts within the contest virtualization

The Hypervisor resource section covers how core resources are 
configured and protected

In the Multi-Core section,  I’ll  discuss how virtualization pertains to a 
Multi-Core System

In the Multi-Threading section I’ll discuss how virtualization pertains to a 
Multi-Threaded Core and Multi-Threaded Multi Core

The System Control CP0 Registers section covers CP0 Registers that 
are related to virtualization 



Simply put Computer Virtualization makes one physical computer look 
like any number of physical computers.  

+ It allows the running of multiple operating systems, multiple embedded 
programs or a combination of both.

+ It does this by separating the software running in these virtual 
machines or VMs from the underlying hardware resources. 
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Here are some terms I will be using:

+ A Host or Processor is connected to the actual physical hardware. A 
processor is synonymous with a Virtual Processor or VPE in a Core that 
supports the Multi Threaded ASE.

+ A Virtual machine or VM is a Virtual context of a processor created by 
software.

+ The root context is the context of the physical system.

+The Guest context is a context of a virtual machine. There can be 
several virtual machines each running a different Guest OS with their 
own context.

+The software that creates and controls the VMs is call a Hypervisor. 
The Hypervisor runs in the Root Context. It has direct control of the 
hardware and thus creates and maintains the trusted execution 
environment. The Hypervisor is responsible for loading and controlling 
the software running in a guest context. The software running in the 
guest context will not be able to tell it is not running on actual hardware 
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but all hardware interfacing that this software does can be controlled by the 
Hypervisor running on the host machine.
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Taking a small step back, the idea for computer virtualization is not new. 
In 1974 Gerald Popek and Robert Goldberg wrote an article call "Formal 
Requirements for Virtualizeable Third  Generation Architectures“. In it 
they laid out the 3 main requirements for virtualization . 

+ Equivalence - where running on the virtual machine should look 
identical to running on the hardware directly. 

+ Resource control - were the Hypervisor must be in control of the 
virtualized resources. 

+ Last - most of the instructions executed should not require Hypervisor 
intervention.
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There are 2 types of Hypervisors:

+ A Type 1 or native Hypervisor runs directly on the hardware or 
processor and the Guest software such as an OS runs in VMs in the 
level above. Microsoft Hyper-V is an example of this type.

+ A Type 2 or hosted Hypervisor runs within a conventional operating 
system environment.  These are also referred to as trap and emulate 
because all actions by a Guest OS that need to effect actual physical 
resources are trapped and the access is emulated. A common example 
of this is VMware Workstation that runs in the Microsoft Windows 
environment. On a Standard MIPS core the type 2 Hypervisor would run 
in Kernel Mode and the Guest OSs would run in user mode. In this way 
any access the Guest OS tries to make to a privilege region of memory 
or execute a privilege instruction will cause an exception that is handled 
by the Hypervisor running in Kernel mode.
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The virtualization module extends the standard MIPS32 architecture so 
that an efficient type 1 Hypervisor can be used. The remaining sections 
of this class will cover the details of the this extension.
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Fundamental to the Virtualization Module is the addition of a limited-privilege Guest 
operating mode.

+ The Virtualization module keeps the existing privileged mode and calls it Root mode. 
For this mode, the classic Kernel, User and Supervisor operating modes will be referred 
to as Root.kernel, Root.user and Root.supervisor respectively. Note: The diagram does 
not include supervisor mode because it is seldom used. 

+ The Virtualization module adds a Guest mode which consists of the new operating 
modes Guest.kernel, Guest.user and Guest.supervisor. These are orthogonal to the 
existing kernel, user and supervisor modes.

+ Virtualization module can selectively allow the Guest.kernel mode to handle some 
interrupts, Guest exceptions, and manage virtual memory for Guest.user mode 
processes.

+ The Hypervisor handles all exceptions that happen in the root context and can 
selectively handle exceptions that happen in the guest context.
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Three operating modes are required to execute a virtualized Guest 
operating system: 

+ unprivileged Guest.user, 

+ limited-privilege Guest.kernel 

+ and full-privilege Root.kernel. 

+In addition, a Root.user mode could be used to execute non-virtualized 
software that needs to be secure. 
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The Root and Guest mode each have their own contexts. The term ‘context’ refers to the software visible 
state held within each Coprocessor 0 register set. 

+ The Virtualization Module physically replicates a subset of the Coprocessor 0 register set for use by the 
Guest Operating System. There is only one set of Guest CP0 registers per processor.

+The Root.kernel uses the full standard set of CP0 register and additional CP0 registers used to control 
Guest mode operation.

During Guest mode execution, both the Guest Coprocessor 0 and the Root Coprocessor 0 contexts are 
active. The presence of two simultaneously active Coprocessor 0 contexts is fundamental to the operation of 
the Virtualization Module. Exceptions can be handled in the mode whose context triggered the exception. An 
exception triggered by the Guest CP0 context can be handled in Guest mode and a exception triggered by 
the Root CP0 context will be handled in Root mode. For example a timer interrupt that is  caused by the 
Root-CP0 count register reaching the Root.Compare register will be handled in the Root mode. A timer 
interrupt that is caused by the Guest.Count register reaching the Guest.Compare register will be handled in 
the Guest mode.

For a simple switch between Guest mode to Root Mode, the presence of two Coprocessor 0 contexts and a 
shadow register set allows for an immediate switch between Guest and Root modes – without requiring a 
context switch to or from memory.  Simultaneously active CP0 contexts for the Guest and Root allows 
Guest.kernel privileged code to execute with the minimum Hypervisor intervention, and ensures that key 
Root-mode machine systems such timekeeping, address translation and external interrupt handling continue 
to operate without major changes during Guest execution.  

For a Hypervisor to switch from one Guest to another it must save the context of the Guest OS being 
switched out and restore context of the Guest OS being switched in. The Hypervisor must save and restore 
the software visible state and the physical resources which are shared between  Guests, such as the Guest 
CP0 Registers, Root CP0 Guest Registers, Guest General Purpose Registers, Floating Point Registers, 
Hi/Lo accumulator registers and the TLB state . Some of the MIPS Cores may require less register saving. 
For example MT Cores and Cores with Shadow register sets can avoid the saving of GPRs. Cores with 
multiple FPU contexts can avoid saving FPU registers. The Virtualization Module also can be configured to 
avoid the saving of the TLB state.
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The MIPS Virtualization Module allows the Hypervisor to modify Guest 
configuration by writing the Guest configuration registers. In this manner, 
such a virtualized system can support privileged software from different 
hardware platforms by running them as Guests with different 
configurations. This allows a virtualized Guest to have features and 
capabilities which are a subset of the Root host machine and different 
from other Guests. For example if the host machine has a FPU the 
Hypervisor can program the Guest.Config[FP] field to not have a FPU.

+ The Virtualization Module provides Root-mode software with controls 
over privileged instructions that can be executed, 

+ The CP0 Context registers which can be accessed, 

+ and the interrupts and exceptions which can be taken when in Guest 
mode.

There will be more on this in upcoming sections.
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Guest mode is controlled by the CP0 Root.GuestCtl0[GM]  bit; it is used along 
with Root-mode exception and error status bits (StatusEXL, StatusERL) and 
the Debug Mode bit (DebugDM) to determine whether the processor is 
operating in Guest mode or Root mode.

The processor is in Guest mode when GM bit is set and the Root.Status
[EXL], [ERL] and [DM] bits are cleared.



The Virtualization Module extension contains a hierarchy of memory 
management units which are used for the isolation of applications, 
operating systems and the Hypervisor. Specifically, a Guest MMU is 
managed by a Guest OS to isolate guest applications while a Root MMU 
is managed by the Hypervisor to isolate Guest OSes and itself. Only the 
hypervisor is allowed to interact with secure code that controls the Root 
MMU that does the actual translation to a physical address.  

A Hypervisor divides actual physical memory up so that each Guest has 
its own non-shared physical memory and there is no overlap with the 
memory that the Hypervisor uses. All Guest address are controlled 
through the Root MMU even those that the Guest OS sees as being 
direct mapped.

A program executing in Guest.user space works the same as a user 
space program in classic MIPS. It always uses virtual addresses that are 
mapped either, direct using a FMT MMU or mapped through a TLB 
MMU. The Guest OS translates the virtual address to a Guest.physical
address. In the Virtualization module the Guest.physical address is a 
virtual address in the Root.mode context that the Root TLB will translate 
to a physical address.

Guest direct mapped segments such as KSEG0 or KSEG1 also map to 
a Guest.physical address which will further be translated buy the Root 
MMU.
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Lightweight Virtualization supports a Core with a FMT type MMU. This 
configuration provides memory protection without the need to manage 
TLB translations by the Hypervisor. 

+ This is done through the use of a Root Protection Unit or RPU. The 
RPU is a de-featured Root TLB that checks the Guest physical address 
on a page basis for Execute-Inhibit, Read-Inhibit and Dirty page 
attributes note the Dirty Attribute write-Inhibits the page. It does not 
support address translation or the Cache Coherency Attribute.

+ The Guest FMT translation produces the direct mapped physical 
address. If the action being attempted is allowed by the page attributes 
then the Guest has access to related L1 Cache line, L2 Cache Line and 
physical memory. Otherwise the access will trap into the Hypervisor, 
using standard tlb exceptions.

The RPU is programmed just like a TLB however the Root EntryLo0 and 
EntryLo1 PFN and CCA fields are assumed read-only as 0.
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This table shows you the exception that is generated on failure if a RPU 
is being used. BadVAddr contains the Physical Address of the source of 
the of the exception.
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Lightweight Virtualization is intended to support single hardware Guest 
context at a time. Software may swap context if you want to support 
more than one guest. With it you can protect the Hypervisor code and 
data from any kind of access from Guest mode. If there are propitiatory 
libraries that need to be protected from examination they can be set to 
read-inhibit so only instruction fetches can be done. Both the Hypervisor 
and propitiatory libraries can be write protected by setting the Dirty 
attribute. 
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A TLB type of MMU is used to support full virtualization features.

There are 2 ways to associate TLB entries with a specific context of Guest 
software.

+ A Guest ID can be used to tag all entries in the TLB entry associated with a 
specific Guest. The Guest entry number is used when writing the TLB entry. It 
comes from the current value in the Root GuestCtl1[ID] field. The Guest ID is 
active if the CP0 GuestCtl0[RAD] field is 0. This Guest ID is use for both the 
Guest tlb entries and the Root tlb entries.

+ The benefit of using the Guest ID is that the Guest TLB doesn’t not need to 
be flushed when the Hypervisor swaps one Guest software context for another.

+ Instead of using a Guest ID, the Root Address Space Identifier, ASID, can be 
used for the Root tlb entries to associate a specific Guest with a tlb entry in the 
Root TLB. In this case all entries in the Guest tlb will be assumed to belong to 
only 1 Guest context. The ASID use when writing a TLB entry comes from the 
CP0 EntryHi[ASID] field.

+ If  the ASID is used the Hypervisor will need to invalidate the entire Guest 
TLB when it swaps one Guest software context for another. This is needed 
because there is only one Guest TLB and none of the entries are tagged to 
indicate which Guest context they belong to.
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In Guest mode when Guest segmentation and translation are enabled 
two levels of address translation are performed by the hardware without 
software intervention. 

+ The first level uses the Guest segmentation controls and the Guest 
TLB. This translates an address from a Guest Virtual address (GVA) or 
a Guest Direct mapped address to a 

+ Guest Physical Address (GPA).

+ The second level of translation uses the Root TLB, using the GPA in 
place of the Virtual Address (VA) that would normally be used. This 
second translation results in a 

+ Physical Address (PA). The cache attribute used is that supplied by 
the Guest context. In this second level of translation, exceptions in 
address translation are handled by Root.

The main take away from this is the Hypervisor completely controls the 
memory access to the L1 and L2 caches and physical memory by the 
Guest. In addition the Hypervisor divides memory up between Guests 
but makes it look to the Guest OS like it is in control of all physical 
memory.
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Here are the counter parts of the TLB instructions that operate on the 
Guest TLB from Root mode. These can be used by the Hypervisor to 
initialize the Guest TLB, monitor what is in the Guest TLB or to save a 
restore TLB entries on a Guest context switch if necessary. All 
instructions that change an entry will only effect tlb entries where the 
Guest id of the entry is equal to the CP0 GuestCtl1[RID].
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These standard TLB instructions have been modified to use the Guest 
ID if GuestCTL0[RAD] is clear (0).  These instructions are used by a
Guest OS or the Hypervisor to manage their respective TLB.
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Now I’ll cover Exceptions. Exceptions in the Virtualization Module are broken 
down into those are taken in Guest mode by the Guest OS and those that are 
taken in Root mode by the Hypervisor. Of course all exceptions while the 
Hypervisor is running are taken in Root mode by the Hypervisor. In Guest 
mode the Virtualization Module is designed so that the Guest OS can handle 
all exceptions that it is permitted to, to be as efficient as possible and not cause 
a mode switch. There are rules to determine which mode an exception is 
handled in. 

+ First is regarding CP0 State exceptions, the exception is always taken in the 
mode whose CP0 state triggered the exception. For example say the Guest 
OS is Linux and one of the processes in Linux issues a FPU instruction which 
causes an exception, 

+the Virtualization Module first checks to see if the Guest.Config1[FP] field is 
set to indicate there is a FPU and then it checks Guest.Status[CU1] to see if 
the FPU is usable. If either of these is not set then then a Guest exception will 
be raised and the Linux OS will handle the exception. 

+If they are both set then the Root.CP0  context is check. There is a chance 
that the Root.Status[CU1] bit might not be set; then the exception will be raised 
in Root mode and the exception will be handled by the Hypervisor exception 
handler.

For this FPU example this is a way to control FPU sharing between Hypervisor 
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and multiple Guests. The Hypervisor needs only to save and restore the FPU 
registers, if a FPU instruction is actually used. In this case the Root exception 
handler would save the current FPU Register to the Guest context that last 
used them and then restore the FPU registers for the current Guest.
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While running in Guest mode and there is an exception cause by the 
Root context, a mode switch is done to Root mode and then exception 
state is save to the Root.CP0 registers. The Hypervisor exception 
routine is expected to save what ever context it deems necessary so the 
context can be restored after the exception is processed.

+ The Reset, NMI, Memory Error and Cache Error exceptions are 
always handled in Root mode no matter what mode is executing.  

+ A Hypervisor exception is  cause by the Guest executing an instruction 
where the instruction is either not permitted in Guest mode or is not 
enabled in Guest mode.  I’ll cover  these Guest Privileged Sensitive 
Instructions in the next slide.
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The virtualization Module can be configured to give control to the 
Hypervisor when the Guest OS tries to  execute a privileged  instruction. 
The Guest Privileged Sensitive Instruction Exception can be triggered by 
the Guest accessing a sensitive CP0 register or execution a privileged 
instruction. 

Any access to any CP0 register will cause this exception if the 
GuestCtl0[CP0] bit is not set. This table shows Guest CP0 Sensitive 
accesses even if the GuestCtl0[CP0] bit is set.

Access to any of the Config registers will cause an exception if the 
Config register access bit, CF is not set in the GuestCTL0 register

Access to the Compare registers will cause an exception if the timer 
register access GT bit is not set in the GuestCTL0 register.

Access to the PageGrain, Wired or any segmentation control register 
will cause a exception if the address translation field AT is not set in the 
GuestCTL0 register.

Access to any TLB related register if the MMU Guest bit, MG is set in 
GuestCtl0Ex

Access to any bad address register if the Bad Guest BG bit is set in 
GuestCtl0Ex

And Access to UserLocal, WREna, UserTraceData1, UserTraceData2, 
KScratch1-6 if the OG bit is set in GuestCtl0Ex
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Access to the registers that control the shadow register sets, Processor 
Identification, Common Device Memory Map, Cache, error

exceptions and Debug Exception Save register will always cause a 
Guest Privileged Sensitive Instruction Exception to the Hypervisor
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This table shows the instructions that could cause the Guest Privileged 
Sensitive Instruction Exception 

A wait instruction will always cause an exception to give the Hypervisor control 
over the power state of the core.

Cache instructions will generally cause an exception so that no Guest can read 
or write another Guest’s or Hypervisor’s cached instructions or data. The 
Cache Instruction Guest-mode enable, GuestCtl0[CG] bit allows the Guest it 
execute instructions which use an effective address. This effective address the 
will be translated by the Root TLB before the instruction executes so the 
Hypervisor is in control of the address being accessed. An effective address is  
also known as a program address which can be a virtual address that is 
mapped by the TLB or a direct mapped address from KSEG0 or KSEG1. 

If the Cache Instruction Guest-mode Index enable, GuestCtl0Ext[CGI] field is 
set along with the GuestCtl0[CG] bit then the Guest can issue index invalidate 
instructions. Index invalidate instruction will just invalidate a cache line so it will 
do no harm to another Guest or the Hypervisor but could cause some 
performance degradation.  

If the Address Translation, AT Field is not set so that the MMU is under Guest 
control then any TLB instruction will cause a exception.

If there are no additional shadow register sets or access to CP0 registers are 
not allowed  the Read GPR from Previous Shadow Set or Write GPR from 
Previous Shadow Set instructions will cause the exception.
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If the Guest access to coprocessor 0, GuestCtl0[CP0] bit is not set then 
any Guest execution of a Privileged Instruction will cause an exception. 
Note: If this bit is 0 then it overrides any other setting and will always 
cause a Guest Privileged Sensitive Instruction exception for any Guest 
execution of a Privileged Sensitive Instruction.

+ Privileged instructions are defined in Volume II of the architecture. 
Instructions that are supported depend on

the architecture release that an implementation is compliant with. 
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The virtualization module can be set so the Hypervisor can intercept all exceptions 

+ This is done by setting the mode change bit GuestCtl0[MC] and clearing the field change 
disable bit GuestCtl0Ext[FCD].

+ This is called a Guest Hardware field change exception.

+ The Guest Hardware field change exception is triggered by a hardware change to one of 2 
status fields, EXL that indicates an exception has happened and TS indicating that the TLB is 
about to be shutdown due to a duplicate entry being placed into it.

+ When an exception occurs the Guest context is update with any information that is normally 
updated in accordance with  the exception type and EXL is set. The Root context is modified by 
setting Exception level bit Root.Status[EXL] , setting the Exception Code field, 
Root.Cause[ExcCode] to “Guest Exit”  and the Root.GuestClt[GExcCode]  to indicate Guest 
Hardware Field Change Exception. 

+ Next a mode switch will be done so the Hypervisor can do what it needs to do in accordance 
with the systems security policy. 

+ Once the Hypervisor is finished and does an ERET the mode switches and the Guest begins 
processing the exception. 

+ Once the Guest is finished and it does a ERET then the mode switches again to Root 
execution before returning to normal Guest execution. Once the Hypervisor is finished it does a 
ERET and the mode switches back to the Guest.
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If the Reserve instruction bit GuestCtl0[RI] is set a Guest generated 
Reserve Instruction Exception,  will be taken in Root mode with no 
context change to the Guest. For example the execution of a DSP 
instruction in Guest mode when the Config3[DSP2P or DSPP] bits are 
not set indicating that the DSP ASE is not implemented will cause a 
Reserve Instruction Exception.
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The Guest OS can exit to the Hypervisor with the instruction hypercall. 
The instruction takes a 10 bit immediate value which is placed in the 
CP0 Root.BadInstr register.
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This course section covers the MIPS32 Architecture Virtualization 
Module for MIPS processors cores



This section will cover how interrupts are delivered using the 
Virtualization Module.

+The Hypervisor can configure the system to deliver interrupts in 3 
different ways

+ First in can program itself to receive the interrupt directly using legacy 
methods

+ It can configure the interrupt to go directly to the Guest OS without any 
Hypervisor intervention. It does this in 2 different ways depending on the 
type of interrupt. I’ll go into details later.

+ and last it can choose to receive the interrupt itself but then pass the 
interrupt on to the Guest OS

+ The Virtualization Module has to deal with the 2 modes of interrupts

+ Vectored interrupts where the is a 1 to 1 connection with a interrupt pin 
and an interrupt vector bit in the interrupt priority level field or IPL of the 
CP0 Cause register

+ Or Using an External interrupt controller that asserts vectors numbers 
into the Request Interrupt Priority Level field or RIPL of the CP0 Cause 
Register

The following slides will cover the 2 modes and how each is configured 
and works with the three delivery methods .
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First I’ll cover the Vectored Interrupt mode. I’m going to show you the big picture first and 
then I’ll go into details on the setup and inter workings of Vectored interrupt Mode for 
Virtualization. 

+ To start there are the external interrupts sources coming in to become a pending 
interrupt.

+ Next the pending interrupt is checked against the Root interrupt mask 

+ and if it is masked then the Root will receive the interrupt

+ If it is not then a pass through mask is checked to see if it is to be passed through to the 
Guest

+ If that  is set not nothing happens

+if it is set it moves along to pending for the Guest

+ the Guest interrupt mask is checked 

+ if it is not set nothing happens

+ if it is set then it gets handled by the Guest OS

+ The Root Timer and the Guest Timer are handled in the same way
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The assignment of an interrupt to Root is done by setting the interrupt bit 
associated with the interrupt pin in the Root.Status[IM] field to enable 
the interrupt to Root.  This interrupt will interrupt the core place it into 
Root mode and start executing at the vector for the interrupt.

The assignment of an interrupt to a Guest is done by setting the 
interrupt bit associated with the interrupt pin in Guest.Status[IM] and 
setting the same bit in the “Pending Interrupt Pass-through” (PIP) field of 
the  Root.GuestCtl0 register. 
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The last method of delivering an interrupt to a Guest is through Root 
intervention. This is called Root asserted Guest interrupts. There are 3 
reasons this might need to be done.

+ First if the Hypervisor wants to monitor Guest interrupts it can receive 
the interrupt and do what ever it needs then pass the interrupt along to 
the Guest.

+ second the Hypervisor my want to send a virtual interrupt to the 
Guest, like a pseudo device.

+ last When a Guest is not resident its interrupts will be redirected to the 
Hypervisor. When the Hypervisor receives an interrupt for a non resident 
Guest it will need to context switch the current Guest out and switch in 
the Guest that should receive the interrupt and set the interrupt up so 
the Guest will receive it.

The next slides will go into how this is done.
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If the Hypervisor is monitoring  the Guest interrupts it will first receive the 
interrupt as if it were a Root context interrupt. 

+ Then it will do what processing it needs to do. 

+ Once that is done the Hypervisor will set the “Hardware Clear” or HC 
bit in the Root.GuestCtl2 register that is associated with the interrupt pin. 
This is necessary so the associated bit in the Root.Cause register will be 
cleared when the associated Guest.Cause bit is cleared by the Guest 
OS when it de-asserts the interrupt. 

+ Next the Hypervisor will set the associated bit in the “Virtual Interrupt 
Pending” field of the Root.GuestCtl2 register. Once Guest Execution is 
enabled the Guest OS will receive the interrupt as long as the 
Guest.Status[IM] field is set to enable the particular interrupt.
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If the Hypervisor wants to cause an interrupt in the Guest 

+ it should make sure the Hardware Clear bit associated with the virtual 
interrupt pin is not set because there is no association with the 
Root.Cause register since this is not an external interrupt.

+ Next the Hypervisor will set the associated bit in the “Virtual Interrupt 
Pending” field of the Root.GuestCtl2 register. Once Guest Execution is 
enabled the Guest OS will receive the interrupt as long as the 
Guest.Status[IM] field is set to enable the particular interrupt.
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If the Hypervisor receives a Guest interrupt due to the fact that the 
target Guest is not the current Guest executing then the Hypervisor 
needs to first context switch in the target Guest and proceed to set the 
Guest up to receive the interrupt.
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Now I’m gong to switch to explaining External Interrupt Controller Mode for Virtualization. 
The Virtualization Module requires a Guest ID associated with the interrupt. The Guest ID 
will be used to direct the interrupt directly to the Root interrupt bus if it is 0 or the Guest 
interrupt if the Guest id of the interrupt matches the resident Guest. There will be more on 
Guest IDs that don’t match the resident Guest in the next slide.

+ To start external interrupts come into the Root or Guest interrupt bus to become a 
pending interrupt.

+ Next the pending interrupt is checked against the associated interrupt mask 

+ and if it is masked the associated context will receive the interrupt

+ If it is not nothing happens

+ The Root Timer and the Guest Timer are also routed directly to the associated interrupt 
bus
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Now for a look at what happens if the interrupt is for a Guest that is not resident. 

+ In this example the resident Guest is Guest 1 and the interrupt is for Guest 2. The 
External Interrupt Controller will check its target Guest ID against the current GuestCtl1[ID] 
and see that they do not match. 

+ It will then deliver the interrupt to the Root bus and write the Guest intended to the 
External Interrupt Controller Guest ID field Root.GuestCtl1[EID], write the Request 
Interrupt Priority to the Guest Request Interrupt Priority  field Root.GuestCtl2[GRIPL] 
register and write the EIC Shadow register Set number to the Guest EIC Shadow Set Field 
RootGuestCtl2[GEICSS].

+Then it interrupts the Root Context using interrupt vector 0x200. At that interrupt vector 
the Hypervisor knows the interrupt is for a non resident Guest. 

+ The hypervisor uses the External Interrupt Controller Guest ID to context switch to that 
Guest

+Once the hypervisor has done the swap it will execute a return from exception which 
causes the processor to enter Guest Execution mode. On Guest entry the processor 
copies the Guest Request Interrupt Priority to the Guest.Context Cause[RIPL] field and the 
Guest EIC Shadow Set to the Guest.SRSCtl[EICSS] field. Once the Root interrupt does a 
Exception return the Guest 2 will be interrupted.
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In systems where there are multiple Guest Contexts the Hypervisor 
should maintain a Virtual Timer to Switch out contexts. 

+If the timer triggers while the Guest Context is switched out the 
Hypervisor should switch in the Guest context. The Hypervisor will need 
to set the timer interrupt bit in the Guest.Cause Register before 
completing the context switch. 

+The Guest OS will take the timer interrupt once Guest execution is 
resumed.
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There is only one set of performance counters per processor (per VPE 
in a MT system). These are located in the Root context. The Hypervisor 
can configure a set of counters to be controlled by a Guest context.

+ The Hypervisor enables Guest use of performance counters by setting 
the Guest.config1[PC] bit in the Guest context. It should do this when it 
starts the Guest for the first time and not change this value so the Guest 
can read this when it boots.

+ The Hypervisor can control which set of performance counters a 
Guest has access to by using the Specific performance counters Event 
Class field. This field is only visible in the Root context a setting of 2 
means that only Guest events will be counted, the counter is controllable 
in the Guest context and counter overflow exceptions will be take in the 
Guest Context.
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The Hypervisor can control access to the Cores resources these next 
slides will cover how that is done.

If the core is configured with Shadow Register sets then the Hypervisor 
can allocate them to Guest contexts. It does this by defining a range of 
shadow registers for a particular Guest. 

+First it sets the Guest lowest Shadow Set field in the GuestCtl3 register 
with the starting shadow set number for the low end of the range.

+Then it sets the normally read only, Highest Shadow Set field in the 
Guest’s SRSCtl register with the number of shadow set being allocated 
to the Guest. 

+ The range for the Guest starts at GLSS and ends at GLSS+HSS.

+The hardware will automatically offset the starting number to the first 
shadow set for the Guest to 0. 

Note: It will make context switching faster if the Hypervisor allocates at 
least one shadow set to each Guest to use as the Guest’s main General 
Purpose Registers  because the Hypervisor will not need to save the 
GPRs on a Guest context switch.
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The Hi and Lo Multiplier registers are shared by both Guests and Root 
context so the Hypervisor must save these registers when switching 
Guest contexts.
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If the DSP module is present it is shared by both Guests and Root 
contexts. The Hypervisor must save the HI/LO and the 3 HI/LO 
accumulator registers if enabled for the Guest Context.

+ The Hypervisor controls a Guest access to the DSP module by setting 
the normally read only DSP Present and DSP revision 2 Present fields in 
the Guest’s Config3 register.

+ When a DSP instruction is issued and the DSP module is not enabled 
in the Guest’s Status register then a DSP Module state unusable 
exception is taken in Guest mode. 

+ If it is enabled in the Guest status register but not enabled in Root’s 
Status register then a DSP Module state unusable exception is taken in 
Root mode. 
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If a Floating Point Unit is present it is shared by both Guests and Root 
contexts. The Hypervisor must save the floating point registers if 
enabled in the Guest context.

+ The Hypervisor controls a Guest access to the Floating Point Unit by 
setting the normally read only Floating Point Present field in the Guest’s 
Config1 register.

+ When a Floating Point  instruction is issued and the Floating Point Unit 
is not enabled in the Guest’s Status register then a coprocessor 
unusable exception is taken in Guest mode.

+ If it is not enabled in the Guest status register and not enabled in 
Root’s Status register then a coprocessor unusable exception is taken in 
Root mode.

+ Co-Processor 2 follows the same rules but uses the Co-Processor 2 
fields in the Config1 and Status registers 
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The floating point co processor is shared by the Root and Guest 
Contexts so the Hypervisor will need to save the floating point registers 
on a Guest context switch.

The Hypervisor will need to read the Floating Point Register mode field 
in the Status register to decide if 32  or 64 bit  floating point registers 
need to be save on a Guest context switch. 

+ If FR = 0 there are 32 32 bit registers to save

+ if FR =1 there are 32 64 bit registers to save

+ The ability to change FR in user mode is controlled by the setting of 
the UFR bit in the Config5 Register. If this bit is set then code operating 
in Guest User mode can make a change to the Guest.Status[FR] which 
is not visible to the Hypervisor.

+ To alert the Hypervisor when a Guest.user might have changed FR a 
GFSC exception is raised to Root on any access to Guest.Config5[UFR] 
field. 

+If this access changes UFR to a 1 then the Hypervisor will need to 
check Guest.Status[FR] each time before it saves the floating point 
registers to know the size of the registers to save.
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If the MSA module is present it is shared by both Guests and Root 
contexts. The HI/LO registers and the 3 addition HI/LI accumulator pairs 
need to be saved on a Guest context switch if the MSA module has 
been enabled for that Guest. 

+ The Hypervisor controls a Guest access to the MSA module by setting 
the normally read only MSA field in the Guest’s Config5 register.

+ When a MSA instruction is issued from Guest mode and the MSA
module is not enabled then a MSA Module state unusable exception is 
taken in Guest mode. 

+ If it is enabled in the Guest Config5 register and not enabled in Root’s 
Status register then a MSA Module state unusable exception is taken in 
Root mode. 
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Here is the whole picture to review. 

+ If you have shadow set it’s a good idea to assign at lease one for Guest use so when 
the processor switches to Root mode or when you context switch out a Guest you will 
not have to save the GPRs.

+ Multiplier result registers are accessible in user and kernel modes and are not 
protected. These shared registers must be saved/restored if necessary.

+ Address translation is performed first using the Guest TLB, enabled by setting the 
GuestCtl0[AT] to 1 or 3, then through the Root TLB. Note that Root context Segment 
Configurations are not used when translating a Guest Physical address - the Root 
context TLB translates every address from the Guest.

+ Access to the FPU is first checked in the Guest context and then in the Root context.

+ Exceptions detected by the Guest context are handled in Guest mode. 

+ Guest timekeeping, and interrupts can be passed through by the Root context so that 
the Guest OS can handle them directly

+ Exceptions detected by the Root context are handled in Root mode by the 
Hypervisor.
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In a Multi Core system

+ Each Processor behaves just like a Single processor with Root and 
Guest Contexts.

+ Each Processor runs a distinct Hypervisor

+ Hypervisor instances communicate with each other to achieve shared 
goals, as in a traditional SMP system.. This can be done through shared 
memory segments, Inter thread Communication, inter-processor 
interrupts or a combination there of.
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In a Multi Threaded Single Core system

+ Each VPE behaves just like a single processor with a Root and Guest 
Contexts.

+ Each VPE runs a distinct Hypervisor

+ The same as in a Mulit Core system the Hypervisor instances 
communicate with each other to achieve shared goals, as in a traditional 
SMP system.

Note: MT Module registers are never present in Guest CP0 context so a 
Guest cannot emulate a MT core.
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This concept can be further extended to a multi-threaded, multi-core 
machine. Each processor core features multiple VPEs, each of which 
has its own Guest context. A distinct Hypervisor instance is present on 
each VPE and in control of the Root context. All Hypervisors would 
communicate with each other over a shared channel.
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This last section goes into more detail about the CP0 registers changes 
for the Virtualization Module. It covers the Added CP0 registers or CP0 
registers with new fields. 

+ The Root CP0 registers are a superset of the normal Processors CP0 
registers with the addition of new registers to control Guest mode and 
some registers which have added fields. These changes are only found 
in the Root CP0 registers and not the Guest CP0 set.

+ The Guest CP0 registers are defaulted to the same values as the Root 
CP0 registers on the initial boot up. The Guest CP0 registers are 
reconfigurable by the Hypervisor. It can change some of the register 
fields in the Guest CP0 registers that would normally have been hard 
coded and read only. This allows the Hypervisor to give a Guest OS 
subset of resources available in the actual processor.  
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Here is a table of new registers added to the Root CP0 register set.  
These registers are only available to the Hypervisor in Root.Kernel 
mode. These registers configure the amount of control the Hypervisor 
will have over the Guest OS. The Guest OS will not be aware of any 
intervention by the Hypervisor. 

Each will be covered in detail in the next slides.
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The next several slides will cover fields in the CP0 GuestCtl0 Register. 

+The processor is in Guest mode when the Root Exception, Error, and 
Debug bits are all  clear and the GM bit is set in the GusetCtl0 register. 

+The Hypervisor will use this bit to transition the processor into Guest 
mode. It is recommended the Hypervisor use a return from exception 
instruction to enter Guest mode. The hypervisor sets the GM bit, stores 
the starting address for guest execution in the Root.EPC register and 
makes sure Root.Status[ERL]=0. Then it would execute an  ERET 
instruction which will cause the program counter to be set to the address 
that is in the Root.EPC register and the exception-level bit EXL to be 
cleared in Root.Status.  After the ERET instruction execution is 
completed, the processor will be in Guest mode fetching instructions 
from the PC.
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The RI bit gives the Hypervisor control of what to do when a reserve 
instruction exception happens. A reserved instruction exception occurs 
when a reserved or undefined major opcode is execution or value in a 
function field is illegal . For example if a program were compiled to use 
hardware floating point and there is no hardware floating point hardware 
then a reserved instruction exception would be raised if it tries to 
execute a floating point instruction. In this example if the RI bit were 0 
then the Guest OS can directly resolve the exception and for example 
emulate the floating point instruction. If RI were set to 1 the Hypervisor 
would receive an exception and take the appropriate action depending 
on the securities policies it follows.
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The MC bit gives the Hypervisor control when external hardware 
changes the status of the EXL (exception) field in the Guest Status 
register or Guest software changes the processor operation mode. The 
Hypervisor would use this exception to monitor when the Guest OS is 
externally forced into Guest.Kernel mode on exception or when the 
Guest OS transitions from User mode to Kernel which happens with the 
execution of a syscall instruction.
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The CP0 bit gives the Hypervisor control over what happens when a 
Guest privileged sensitive instruction is executed. If CP0 is set to 1 
Guest execution of privileged sensitive instructions are permitted subject 
to other configuration settings. If CP0 is cleared then any use of a 
privileged sensitive instruction will always cause an exception.

57



The Hypervisor can choose to directly control the Guest MMU. Setting 
AT to 1 allows Root to control Guest address translation directly. AT 
normally defaults to 3 allowing the Guest OS to control the Guest TLB 
however this is implementation  dependent.
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If the GT bit is cleared the Hypervisor will monitor all accesses to the 
Guest count and compare registers.
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The cache is not protected by Guest ID so entries in the cache should 
be monitored by the Hypervisor to be sure one Guest is not corrupting or 
snooping another's cache or the cache entries of the Hypervisor.

If CG is 0 then A Guest Privileged Sensitive Instruction exception will 
result any time a Guest issues a cache instruction. 

If CG is 1 cache instructions that use an effective address will be 
allowed without causing an exception. This should be secure because 
the effective address is translated by the MMU to a physical address 
and the physical address is then used to address the cache. In this way 
only address that were assigned by the Hypervisor to the particular 
Guest can be accessed by this type of cache instruction. 
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Config0-7  register writes can be monitored by the Hypervisor.  If cleared 
writes will cause Guest Privileged Sensitive instruction. If set writes by a 
Guest OS are permitted without causing an exception.
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The G1 bit determines if the GuestCtl1 register has been Implemented. 
This determines if you can use GuestIDs. These IDs are used in 
identifying which Guest an external interrupt is for, which Guest a TLB 
entry is assigned to and which Guest OS is resident at the current time.
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These bits are implementation dependent and not defined by the 
architecture.
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The G0E bit determines if the GuestCtl0[Ext] register has been 
Implemented.  This register gives the Hypervisor more control over 
cache instructions, CP0 state changes and writes to additional CP0 
registers. More on this when I cover the GuestCtl0Ext register.
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The PT bit determines if the Pending Interrupt Pass-through feature has 
been Implemented. If this bit is set External interrupts are passed 
through from the Root context if enabled by the mask in the 
GuestCtl0[PIP] bits. This is the way the Hypervisor allows a Guest OS to 
directly handle a external interrupt with out Hypervisor intervention. 
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If the processor includes the MCU ASE module which expands the 
number of interrupt sources from 6 to 8 then these bits will be used as 
part of the Pending Interrupt Pass through mask. 
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This is a mask of interrupts that will be passed through to the Guest OS 
without Hypervisor intervention if the processor is in non-EIC mode. If a 
bit is set that External interrupt will be directly handled by the resident 
Guest OS. This mask is enabled or disabled by the PT field in this same 
register.
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The Root ASID De-alias mode bit can be used if there is only one Guest
possible then Hypervisor could use the ASID in the ROOT TLB to 
distinguish entries belonging to the Guest OS and Hypervisor. This is not 
recommended if there is more than one Guest possible because the 
Root TLB would need to be cleared when the Hypervisor switches 
between Guest contexts.  In the case where RAD is set and the Global 
bit is also set for a TLB entry then that entry will be valid for both the 
Root and Guest contexts. You could also think of this as determining if 
the TLB is shared; if it is set to 1 the TLB is not sharable between 
different Guest OSs.

NOTE: If this bit is 0 then then the Hypervisor must use Guest IDs in the 
TLB entries so the G1 bit in this register must be set indicating the 
existence of the GuestCtl1 register which contains support for Guest 
IDs. Conversely if the bit is 1 then the G1 bit will be cleared and Guest 
ID cannot be used.
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When the processor uses Guest IDs in the TLB entries (RAD = 0) and it 
is in Root mode but not in Error, Exception or Debug mode, setting the 
DRG bit will cause loads or stores to use TLB entries associated with 
the  Root Control GuestID that is set in the GuestCtl1[RID] field. 

In other words when GuestCtl0[DRG] field is set and the Hypervisor is 
performing TLB operations that are targeted to a specific Guest ID using 
the GuestCtl1.RID field. For example if the hypervisor (root mode) wants 
to use the entries in the TLB to directly access guest entries then the 
GuestCtl0.DRG bit should be set and the GuestCtl.RID set to the Guest 
ID of the guest entries it wants to access. Then loads and stores will use 
the GuestCtl.RID to select the correct TLB entry to use. 
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The G2 bit indicates the presents of a CP0 Root.GuestCtl2  register. 
This will always be set if the processor uses an External Interrupt 
Controller and may be set if it does not.

If the processor is not in EIC mode then the Hypervisor will use 
Root.GuestCtl2  register to assert and de-assert virtual interrupts to the 
resident Guest OS.

If the processor is in EIC mode then the Root.GuestCtl2  register will 
facilitate the Hypervisor with interrupts that should be routed to a Guest 
OS that is not currently resident.  
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When the Root.Cause[ExcCode] is set to GE a Hypervisor-intervention 
exception has occurred. The [GExcCode] field further qualifies this 
exception. 

0 is a Guest Privileged Sensitive instruction; this happened when 
execution of a Guest Privileged Sensitive Instruction was attempted 
from Guest.kernel mode, but the instruction was not enabled for 
Guest.kernel mode.

1 indicates a Guest Software Field Change Event happened; this was 
previously discussed in the exception section.

2 indicates a hypercall instruction was executed by the Guest.

3 indicates that Guest is getting a Reserved Instruction exception and 
the GuestCtl0[RI] bit is set causing the exception to be redirect to the 
Root context.

8 - GVA Indicates that a Guest mode access resulted in a Root TLB 
access and the Guest Physical Address is not available. Root.BadVaddr
set to Guest Virtual address. This is allowed for a non-TLB refill 
exception; for example if a store was done to a clean page, Dirty bit not 
set so the translation in the TLB is correct and the exception is just 
telling the OS that the page is being written to for the first time. In this 
case an implementation is allowed to set Root.BadVaddr to the Guest 
Virtual address. The root TLB exception handler should check this bit 
and if it is set it must probe the Guest TLB entries using the TLBGP 

71



instruction to find the index into the Guest TLB that contains the Guest Virtual 
Address. Then the handler would use the TLBGR instruction to read that 
indexed entry in the Guest TLB to determine the Guest Physical address.  
The handler would then use the Guest Physical address as the virtual 
address in finding the entry in the Root TLB and for this example, it can set 
that entries dirty bit.

NOTE: MIPS Core implementations use this method because it preserves the 
micro TLB entry and avoids a load miss for future loads.

9 indicates a Guest Hardware field change event happened.

And 

10 - GPA indicates a Guest mode access resulted in a Root TLB access, the 
Guest Physical Address is available. Root.BadVaddr will be set to the Guest 
Physical address. This will always be the case for a guest TLB refill exception 
which will always set GPA in GuestCtl0GExcCode. If GPA is set, the root TBL 
exception handler can use Root.BadVaddr for the virtual address it needs to 
find a translation for.

71



7272

This course section covers the MIPS32 Architecture Virtualization 
Module for MIPS processors cores



7373

This course section covers the MIPS32 Architecture Virtualization 
Module for MIPS processors cores



The Hypervisor can allow the Guest OS to make changes to the 
Guest.Status[CU2] filed without intervention from the Hypervisor if the 
SFC2 field is set. Otherwise a change to the Guest.Status[CU2] field will 
result the a Field Change Exception to the Hypervisor.  The CU2 field 
controls access to Co-Processor 2 and a Guest OS may want to limit 
access to one user process at a time. So when a Guest.user process 
causes a Coprocessor 2 unusable exception the Guest OS will need to 
do a context switch of the Coprocessor 2 registers. The security policy 
may find this acceptable and allow this without intervention from the 
Hypervisor by setting this the SCF2 bit.  
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Similar to the SFC2 field, the Hypervisor can allow the Guest OS to 
make changes to the Guest.Status[CU1] filed without intervention from 
the Hypervisor if the SFC1 field is set. Otherwise a change to the 
Guest.Status[CU1] field will result the a Field Change Exception to the 
Hypervisor.  The CU1 field controls access to Co-Processor 1 which is 
by convention the FPU and a Guest OS may want to limit access to one 
user process at a time. So when a Guest.user process causes a 
Coprocessor 1 unusable exception the Guest OS will need to do a 
context switch of the FPU registers. The security policy may find this 
acceptable and allow this without intervention from the Hypervisor by 
setting this the SFC1 bit.  
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The GuestCtl1 register contains 3 IDs

EID is the external Guest ID set by the External Interrupt Controller 
when a interrupt is raised for a non resident Guest. This is used to 
determine which Guest the interrupt is for. The Hypervisor can check the 
EID against the ID to determine if the Guest currently resident is the 
Guest the interrupt is intended for. If it isn’t then the Hypervisor should 
swap in the intended Guest.  This was covered in detail in the interrupt 
section.

RID is used when the GuestCtl0[DRG] field is set and the Hypervisor is 
performing TLB operations that are targeted to directly access a specific 
Guests entries given by this RID field and not Root TLB entries. 

The GuestCtl.ID is used in Guest mode only to select TLB entries. In 
root mode the GuestCtl.ID indicates the ID of the current Guest context. 
When a hypervisor switches in a Guest context it changes the 
GuestCtl.ID and from that point forward all guest access to the TLB will 
only have access to TLB entries with a guest ID that matches the 
GuestCtl.ID. 
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The meaning of the fields in the GuestCtl2 register depend on the 
interrupt mode:

If the core is in Vectored Interrupt mode and not external interrupt 
controller mode this register is used by the Hypervisor to send a 
interrupt to the Guest OS. The Hypervisor will receive an external 
interrupt is if an interrupt happened for a Guest that was not resident. It 
would then switch in the intended Guest context. This was covered in 
the interrupt section.

+ Setting the associated Hardware Clear in the Root.GuestCtl2[HC] field 
will cause the associated “Interrupt Pending”  bit in the Root.Cause[IP] 
register to be cleared when the bit in the Guest.Cause[IP] field is de-
asserted. This field may be hardwired as a read only bit set to 1 or 0.

+ Set the associated “Virtual Interrupt Pending” bit in the GuestCtl2[VIP] 
Field asserts the interrupt in the Guest once the ERET is done in the 
Hypervisor interrupt handler.
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If the core is in external interrupt controller mode: 

These fields are written only when an interrupt received on the Root 
interrupt bus for a non resident Guest is taken.  

The External interrupt Controller writes the follow fields:

+ GRIPL is the Requested Interrupt Priority Level in the MIPS EIC 
implementation this is treat as the vector number for the processor once 
it enters Guest mode.

+ GEICSS is the External Interrupt Controller Shadow set number

+ The GVEC is the Guest Vector Offset that could be provided by the 
EIC which would be used directly as the interrupt vector once the 
processor enters Guest mode. NOTE:  The GVEC  is not used in EIC 
implementations of current MIPS Cores; The GRIPL as describe 
previously is used as a vector instead.

Details for non resident Guest interrupts were provided in the Interrupt 
section.
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Guest Lowest Shadow Set number determines the lowest physical 
Shadow Set number assigned by Root to Guest. Guest SRSCtl[HSS] is 
the highest number shadow register set for the Guest in the Guest 
context. Guest is thus assigned physical Shadow Set range between 
GLSS and GLSS plus Guest SRSCtl[HSS]. NOTE: the Guest lowest 
shadow set is the set the Guest will use for GPRs. If you have shadow 
set it’s a good idea to assign at lease one for Guest use so when the 
processor switches to Root mode or when you context switch out a 
Guest you will not have to save the GPRs.
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GuestCtl0Ext is an optional extension to GuestCtl0. It adds additional 
control features to the virtualization module. GuestCtl0G0E should be 
read by software to determine if GuestCtl0Ext is implemented.

CGI  Allows execution of CACHE and CACHEE Index Invalidate 
operations in Guest mode. If GuestCtl0[CG] =1 and GuestCtl0Ext[CGI] 
=1, then all CACHE, CACHEE Index Invalidate (code 0xb000) 
operations may execute in Guest mode without causing a Guest 
Privileged Sensitive Instruction (GPSI).

FCD Disables Guest Software/Hardware Field Change Exceptions 
(GSFC/GHFC).

OG adds Guest CP0 registers, UserLocal, WREna, UserTraceData1, 
UserTraceData2, KScratch1 through KScratch6 to the list of register 
access that will cause a Guest Privileged Sensitive Instruction  
exception.

BG Bad register GPSI Enable. adds Guest CP0 registers, BadVAddr, 
BadInstr, BadInstrP to the list of register access that will cause a Guest 
Privileged Sensitive Instruction exception.
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MG adds Guest CP0 registers Index, Random, EntryLo0, EntryLo1, Context, 
ContextConfig, PageMask and  EntryHi  to the list of register access that will 
cause a Guest Privileged Sensitive Instruction exception.
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The Guest.Count register is always relative to the Root.Count register. 
The GTOffset register is used to offset the Root.Count register; the 
result can be read from the Guest.Count register.  

Any writes to the Guest.Count register always result in a Guest 
Privileged Sensitive Instruction exception so the Hypervisor can make 
the proper adjustment and write it to the GTOffset. 
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Here is what happens when a Guest OS tries to set it’s Count register.

When the Guest OS executes a mtc0 to write its Count register a Guest 
privileged sensitive instruction exception is raised giving control to the 
hypervisor. 

+ The Hypervisor decodes the instruction

+ The hypervisor calculates the two’s complement of the current value of 
the Root.Count Register 

+ then it adds that value to the Guest setting 

+ and moves the result to the GTOffset register

+  Then it calculates the new PC for the Guest to continue execution 
from, by adding 4 to the Bad Instruction Pointer and moving that value to 
the EPC register.

+ after issuing a Hazard barrier instruction to make sure the write of the 
GTOOffset register has taken effect it executes an Exception Return 
instruction.
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+ Guest OS execution continues none the wiser.
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Here is a diagram  of a timer interrupt in the Guest and Root Contexts. 
Assume that Root.Count register is a  hex 42 to start

+ Let’s assume to set up the timer the Guest will zero out the its Count 
register so the GTOffset will be set to a negative 42

+ and the Guest will set it’s compare register to hex 100 

+ and Root has sets its compare register to hex 200 at the same time.

+ each cycle the Root.Count register will increment

+ which has the effect of incrementing Guest.Count

+ 100 cycles later the Guest.Count will be 100 equaling the 
Guest.Compare register and the Guest OS will take a timer interrupt

+ 100 cycles after that the Root.Count will equal the Root.Compare 
register and the Hypervisor will get a timer interrupt
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There is a new code for the Root.Cause Exception Code field to indicate 
a Guest Exit or GE. The Hypervisor exception routine would decode the 
Exception Code  field and finding it is GE would then decode Guest 
Exception Code to further refine which exception it is. Guest Exception 
Code was cover earlier in this section.
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The Root.Config3 register has an new field called VZ which when set 
indicates that the Virtualization is implemented for the processor.
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There are 2 new instructions to move from and to the Guest set of CP0 
registers to a General purpose register.
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The Guest CP0 Context is somewhat configurable by Root in that it can 
be a subset of the Root context. Some of the fields in the configuration 
registers of the Guest context that are normally read only, can be de-
configured by the Hypervisor. The intent is for the Hypervisor to do this 
de-configuration before starting the Guest code and not change it once 
the Guest has started. The Virtualization architecture allows for many of 
the Config registers to have many writable fields by Root however, the 
Actual MIPS IP Cores implementations limit the Root writeable fields to 
the list shown here.

This ends the Virtualization Module section. Writable
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