
Document Number: MD00659
Revision 01.00

September, 2008

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

A New Paradigm in Linux Debug

Art Lee, Viosoft Corporation
Bruce Ableidinger, MIPS Technologies, Inc.

2 A New Paradigm in Linux Debug, Revision 01.00

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

A New Paradigm in Linux Debug, Revision 01.00 3

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

1 The Current Paradigm

No one today would argue against the fact that Linux has taken the embedded Real Time Operating System (RTOS)
space by storm. More and more applications that historically required either a commercially available RTOS or one
that was internally created and maintained are being replaced with a Linux-based platform. The reasons for this
movement vary from one company to the next, but some of the most common factors are:

1. The availability of source code to the operating system

2. A wealth of device drivers and communication stacks

3. An increasingly available pool of software engineers that are Linux proficient

4. A perceived cost advantage achieved with removal of the OS royalty component from the products’ bill of mate-
rials

5. Semiconductor suppliers now provide a Linux port to their SoC based on their hardware reference platform,
along with tool chains and a reference distribution

To take full advantage of the Linux operating system, original equipment manufacturers (OEMs) have a choice of
engaging with a commercial Linux vendor or adding additional engineering capability in-house. Both models have
proven successful, but each carries its own specific costs.

Regardless of the direction the OEM chooses, the typical debug model available for their engineers is the same… a
command line-based, client server environment based on GDB (GNU Debugger). This model is illustrated in Figure
1, which depicts an instantiation of GDBSERVER attached and running on each Linux process under debug on the
target. Each GDBSERVER is communicating with the host through an Ethernet port.

In addition, it is important to understand that in this approach to Linux debug, the standard Linux kernel is replaced
with a “static” version specifically built with debugging code instrumented throughout. With only a few exceptions,
all debug communication to the target via KGDB is limited to an RS232 serial link.

This approach provides an additional challenge to the developer that is using the instrumented version of the Linux
kernel by actually altering the performance of the target under debug from the “released version” that will eventually
ship with the product.

1 The Current Paradigm

4 A New Paradigm in Linux Debug, Revision 01.00

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

Figure 1 Standard Linux Debug Model

While this is by default the accepted Linux debug environment, there are some well understood limitations to this
approach. For example, applications that consist of multiple processes will require multiple copies of GDBSERVER
running in the often limited target memory. This can affect the performance of the target under debug. There have
been cases of a 50%+ degradation of target performance.

Even in the best case scenario where all kernel instrumentations and communication channels are available, there are
still areas of the code that are inherently inaccessible under this debugging paradigm. The illustrated “problem” areas
in Figure 2 have presented multiple challenges to kernel and application developers. These areas include the large
amount of threads under each process and kernel loadable modules that are code- and data position-independent.
While it is possible for skilled developers to put together an environment based on existing technologies to address
the debugging needs in these areas, such an environment has been shown to be very user-unfriendly and non-scale-
able under load.

Consider the case of Linux kernel loadable modules, which consist of an initialization routine to be invoked at mod-
ule loading time. Current debug paradigms suggest that such modules be loaded, and their code and data offsets then
be adjusted (manually and automatically) within the debugger. However, by this time, the initialization code of the
module has already been executed and there is no possible way to debug a problem in this area of the code. Another
use scenario involves shared libraries, which are often not well handled by GDBSERVER or equivalents.

Given these obstacles, many engineers still resort to printf (user space) and printk (kernel space) as their primary
debugging aids. Not withstanding the “ugliness” issues and time overhead of recompiling and linking in these mes-
sages, it is not uncommon for such debug “instrumentations” to skew the behavior of the target system code to the
point that it introduces new software problems or possibly masks existing problems.

A New Paradigm in Linux Debug, Revision 01.00 5

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

Figure 2 The “Problem” Areas

2 The Arriba Debugger: A Holistic Approach to
Debugging Linux

The Arriba Debugger is designed from the ground up to provide a holistic approach to debugging embedded Linux.
In place of GDBSERVER and KGDB, VMON2 is a dynamically loadable, demand-based debug agent that runs on
the embedded Linux target. Communicating with the Arriba Debugger on the host, VMON2 provides total visibility
of the Linux target, from user-level threads to the static kernel.

3 Addressing Well Known Embedded Linux Debug Challenges

6 A New Paradigm in Linux Debug, Revision 01.00

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

Figure 3 The Arriba Solution

VMON2 has a very small memory footprint and even when loaded has an almost immeasurable performance impact
on the running system. At less than 250KB in size on the target, VMON2 is able to provide end-to-end debugging of
the target over a single Ethernet connection.

3 Addressing Well Known Embedded Linux Debug
Challenges

Problem 1 - Loadable Modules

Through the Arriba Debugger, VMON2 can be configured to signal the host when a kernel module of a given prop-
erty is loaded on the target. Upon reception of this signal, the Arriba Debugger will automatically and correctly load
the symbol information of the respective module, and place control at the entry point to the module initialization
function. The user can now have full debug control of the module in question over a high-speed Ethernet link.

Traditional debug of the Linux kernel or module (when possible) is accomplished with KGDB or JTAG, which com-
pletely halts the target under debug. In contrast, an important feature of VMON2 is its ability to provide the same
level of debug non-preemptively. In other words, the Linux kernel on the target continues to handle inbound and out-
bound network traffic, multimedia data, and other time-critical activities that are crucial in maintaining the appear-
ance of normal execution to the outside world. This ability is critical to many data and media-centric applications
such as set-top boxes, digital media appliances, and high-speed networking switches and routers.

Problem 2: Debugging of Multiple Processes; Parent/Child Processes

In many instances, Linux application programmers need to create applications that involve multiple processes. Such
processes are spawned from a single parent process earlier in the application initialization sequence. A frequent chal-
lenge revolves around the need to set breakpoint(s) in the child process and eventually hit such breakpoints when the

A New Paradigm in Linux Debug, Revision 01.00 7

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

child process is created and running. Straightforward as this may sound, it is an unsupported use-case with existing
Linux debuggers; embedded or otherwise. As a workaround, developers often find themselves manually inserting
instrumented code in the child process with an infinite loop that is gated by a variable initially set to ‘true’. This
enables debugging tools such as GDBSERVER to attach to the child process in question, change the value of the gat-
ing variable to ‘false’ to unblock to loop, and resume debugging.

Because VMON2 has ultimate visibility into the Linux target, events such as process creations result in a notifying
signal being sent to the Arriba Debugger on the host. The Arriba Debugger, upon determining that a breakpoint is
pending for the child process, transmits the proper run-control sequence to ensure that such a breakpoint is set in the
child process code space.

Problem 3: Debugging Kernel Drivers and Shared Libraries… Production Released Kernel

Depending on the scope and breadth of the application, the list of Linux debug “problem areas” can range anywhere
from the inability of the programmer to use the debug tools on his or her deployment platforms due to footprint and
system performance constraints imposed by debugging techniques, to the tedious and error-prone work-arounds that
result in much wasted time and increased frustration. The Arriba Debugger provides an in-depth solution to these
problems and beyond.

As a final example, consider the need for programmers and field application engineers to diagnose and fix bugs that
occur in products that have already been deployed to the field. Under such conditions, the target platform is subject to
severely limited debugging and communication access. VMON2, as a loadable module, can be configured to be
launched on already-deployed systems. Thus, VMON2, with its ability to effectively debug and diagnose such sys-
tems with minimal intrusion has time and time again proven to be an indispensable tool through all stages of the prod-
uct lifecycle.

4 MIPS Technologies’ Navigator™ Integrated Component
Suite (ICS)

MIPS Technologies recently announced the availability of the MIPS Navigator™ Integrated Component Suite (ICS).
This powerful Eclipse-based Integrated Development Environment (IDE) is the cockpit for existing and future tools
for developing a MIPS-Based™ design. The Arriba Linux Debugger is now available directly from MIPS Technolo-
gies as a plug-in to the MIPS Navigator ICS. This seamless integration is the result of more than four years of collab-
oration between MIPS Technologies and Viosoft Corporation.

Within the MIPS Navigator ICS is a full-featured Eclipse CDT environment that has been customized specifically for
the MIPS® architecture. In addition, MIPS Navigator ICS includes the latest CodeSourcery™ SG++ GNU based
toolchains for MIPS and all of the expected features necessary to develop code. The MIPS Navigator ICS also inte-
grates support for all MIPS Technologies’ processor IP, including PDTrace™ and EJTAG probe technologies.

In addition to the Arriba Linux Debugger, developers can leverage another new profiling tool called the Arriba Linux
Event Analyzer (LEA)—also a plug-in to the Navigator ICS. This new tool provides the ability to see all Linux
events occurring on the target by capturing the information and displaying it in a time domain format. The Arriba
LEA collects and provides a significant amount of information about the Linux system, including context switches
among processes and threads, signals and elapsed execution time.

The LEA has a small memory footprint and a minimal impact on CPU cycles. Because the LEA is light-weight and
able to dynamically add and remove instrumentation points on a production-ready system running Linux, it is an ideal
performance analysis and debugging tool for both in-house development and field service.

4 MIPS Technologies’ Navigator™ Integrated Component Suite (ICS)

8 A New Paradigm in Linux Debug, Revision 01.00

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

An example LEA screen display is shown below in Figure 4. Within this view, the user can zoom in and out to gain a
detailed understanding of how their code behaves and how the tasks execute in both the kernel and user space areas.
The LEA provides the ability to measure latencies, response times to external events and even the load that each
event represents on the running system. This information is also available in a “raw” format that can easily be
imported to Microsoft Excel for additional post-processing and analysis.

Because no two end-user applications are alike, each developer or team of developers within an organization is likely
to be interested in collecting and visualizing different aspects of the system with the LEA. The need for an open-
ended analysis tool led to a highly-customizable design. By creating and deploying their own kernel module plug-in
to the LEA, developers can easily and rapidly gain a level of visibility into their applications and system that is not
possible with other close-ended tools.

The LEA uses the same instrumentation technology employed by VMON2 in the Arriba Linux Debugger, which
means that no debug patches or special compilation of the Linux kernel is required. This capability makes the LEA an
ideal choice for deployment on production systems.

The combination of the Arriba Linux Debugger, Arriba LEA and MIPS Navigator ICS provides MIPS developers
with a comprehensive and powerful Linux development environment. The solution was designed to shorten custom-
ers’ time to market while providing developers the ability to ensure a level of code quality that until now was not
obtainable.

A New Paradigm in Linux Debug, Revision 01.00 9

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

Figure 4 The Linux Event Analyzer (LEA) ICS View

5 Seeing is Believing!

As with any new technology solution to well known debug challenges, it is reasonable for prudent readers to cast
doubt as to whether it will work in their embedded Linux environment. MIPS Technologies welcomes you to contact
us for an in-depth product demonstration. We will not bore you with “Hello World” debug examples, but instead real
world applications that involve very large amounts of code. Contact MIPS Technologies at sales@mips.com and see
for yourself.

5 Seeing is Believing!

10 A New Paradigm in Linux Debug, Revision 01.00

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

A New Paradigm in Linux Debug, Revision: 01.00

Copyright © 2008 MIPS Technologies Inc. All rights reserved.

Template: nW1.03, Built with tags: 2B

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kf, 74Kc, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

	A New Paradigm in Linux Debug
	1 The Current Paradigm
	2 The Arriba Debugger: A Holistic Approach to Debugging Linux
	3 Addressing Well Known Embedded Linux Debug Challenges
	4 MIPS Technologies’ Navigator™ Integrated Component Suite (ICS)
	5 Seeing is Believing!

