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Introduction and Background on Voice Over IP

1.1 Introduction

Voice over IP (VoIP) or IP telephony is the technique of using IP networks like the internet to transmit packetized
voice and speech data. The main advantage of VoIP is reduced cost of long-distance phone calls, since the connection
to the internet is typically just a local call. Other advantages include a more overall streamlined network configura-
tion as the network is IP-based. This allows the call management center to be more automated and support more fea-
tures. The disadvantage of VoIP is that IP networks do not guarantee the delivery of packets within a specified time
limit, and hence some packets may be delayed enough to cause a noticeable degradation in the speech quality. Over
the years many speech compression algorithms and standards have emerged in an effort to reduce the amount of data
that needs to be transmitted.

Algorithms that process digitized voice and speech signals are computation intensive. Traditionally, these encode and
decode algorithms have been executed on dedicated DSP processors. But as the main embedded processors get faster,
it has become possible to migrate voice processing to the main processor. If this can be done successfully, then VoIP
phones and gateways can eliminate the DSP processor entirely from its SOC (System on Chip) solution. This lowers
the overall cost of the product, which is a critical factor for consumer electronics manufacturers.

To extract the best possible performance from such application codes, MIPS Technologies cores offer the CorEx-
tend® capability, which allows the addition of special User Defined Instructions (UDI) to the standard MIPS32®
architecture [4]. In this paper, we will use VoIP application code to illustrate how UDIs can be used to speedup appli-
cation execution on the main processor.

The rest of the paper is organized as follows. This chapter provides a brief introduction to voice compression stan-
dards from ITU-T (International Telecommunication Union, Telecom Standardization) [1], and describes one of these
standards, G.729, which is the focus of this paper. Chapter 2 illustrates the type of code analysis needed to define the
new instructions for increased application performance. Chapter 3 lists the new instructions and describes the hard-
ware needed to implement them. Chapter 4 describes the performance improvement obtained with the new instruc-
tions and summarizes the result.

1.2 Voice Compression Standards

Several speech coding standards have been published by the International Telecommunication Union (ITU). These
include for example, G.711, G.723, G.723.1, G.726, G.729, and G.729AB. The primary differences between the dif-
ferent standards are the sampling rates, the compression algorithms (hence compression ratios), and the resulting
quality of speech or voice signals. Table 1.1 shows a few compression standards.

MOS (Mean Opinion Score) is a subjective voice quality specification, where 5 is excellent and 1 is bad. A score
value of 4.0 or higher is considered toll quality. It is not uncommon for many VoIP phones to operate in the 3.5 to 4.0
range using speech codecs such as G.729A.



1.3 G.729 and G.729 - Annex A

Accelerating VoIP with MIPS® CorExtend® Instructions, Revision 01.01 5

The G.729 coder is computation intensive, and needs a significant amount of C code to implement. Hence, we use it
as an example throughout this application note to illustrate the process of designing CorExtend instructions. The prin-
ciples used here are equally applicable to other VoIP standards, as well as other application areas.

Table 1.1 Voice Compression Standards

1.3 G.729 and G.729 - Annex A

The G.729 coder is based on the Conjugate-Structure Algebraic-Code-Excited Linear-Predictive (CS-ACELP) cod-
ing model. The coder operates on speech frames of 10 ms corresponding to 80 16-bit samples at a sampling rate of
8000 samples per second. For every 10 ms frame, the audio signal is analyzed to extract the speech parameters, mod-
eled after the human vocal tract. These parameters are encoded into a 80 bit output frame, thus reducing the original
data size by a factor of 16.

The encoder requires many filter passes on the data, as well as a fixed code-book search. The decoding process is sig-
nificantly faster, because it does not require as many filtering stages and no searches need to be performed.

The Annex A of the G.729 standard is a method for reducing the computational complexity of the standard encoder
for the price of a slight loss in fidelity. One of the main speed enhancements is due to a much reduced fixed codebook
search. The original G.729 fixed code book search does a brute force search of up to 8192 combinations of codes,
while the G.729A search only considers a subset of 256 codes. Thus the codebook search does not find the optimal
solution, but in practice the solution found is "good enough". This, in addition to a few other changes, reduces the
CPU load of the G.729A encoder by a factor of roughly 2 in most implementations. The decoding process is the same
for both G.729 and G.729A.

1.4 Description of CorExtend®

The MIPS32 architecture reserves 16 opcodes under the SPECIAL2 main opcode for the use of User Defined Instruc-
tions. This is shown in Figure 1.1, where bits 0 through 3 are available to encode the user’s 16 instruction opcodes.
Note that this instruction format has 20 other available bits (6 to 25) for the use of the instruction. Hence, it is possible
to encode more than 16 instructions using some of the other bits.

Algorithm Bandwidth Frame Size
Compression

Ratio
Mean Opinion Score

(MOS)

G.711 64 Kbps 0.125 ms 1:2 4.1

G.729 8 Kbps 10 ms 1:16 3.9

G.729A 8 Kbps 10 ms 1:16 3.7

G.723.11

1. The other bit rate 5.3 Kbps is not shown.

6.3 Kbps 30 ms 1:2 3.4

G.7262

2. The other bit rates 40, 24, and 16 Kbps are not shown.

32 Kbps 0.125 ms up to 1:8 3.3
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Figure 1.1 Basic UDI Instruction Format

Here are some brief highlights on the flexibility and restrictions imposed by the main core on an UDI block:

• Only fixed integer instructions are allowed. No jumps, branches, loads, or stores are allowed.

• When the main core pipeline decodes to a UDI, two source operands are read using bits rs and rt as register num-
bers. These register contents are available on the interface to the UDI block. The UDI block can choose to ignore
these if it uses only one or none of the sources for its instruction.

• The destination register value can be derived from any of the bits of the instruction, or independently chosen by
the UDI block. The destination could be a GPR or an UDI block internal register.

• The UDI can have a single cycle or multiple cycle latency. All single cycle instructions and multiple cycle
instructions that don’t write back to a GPR will not stall the core’s pipeline.

• All multi-cycle instructions that write to a GPR will stall the pipeline. If a UDI block does not allow an instruc-
tion to be issued back-to-back, then consecutive issuing of that instruction will also stall the pipeline for the nec-
essary number of cycles.

31 26 25 21 20 16 15 6 5 0

SPECIAL2
011100

rs (optional) rt (optional)  user-interpretable UDI opcode
01xxxx

6 5 5 10 6
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Code Analysis to Define New Instructions

2.1 Factors that Influenced the Definition of the New Instructions

This section describes the basic rationale behind the new instructions, describing how they enhance application per-
formance. Original code samples are shown in this chapter to illustrate how new instructions were defined. Code
samples rewritten with the new instructions are also shown. The full list of all the user defined instructions recom-
mended for voice applications is listed in the next chapter (see Table 3.2 on page 22).

There are three fundamental factors that dictated the design of the new instructions.

1. When processing digital signals, arithmetic operations that overflow and underflow values by wrapping around are
often not useful. Hence, much of the computation in digital speech processing involves saturation, i.e., clamping
values to the largest positive or negative representable value with an operation overflow or underflow,
respectively.

Saturation can be handled in two ways. Wide accumulators with 16 guard bits can be used for all the accumulation
operations, with overflow and clamping done once, at the end. This is a cleaner implementation and avoids
frequent saturation operations. But it is a little more expensive in hardware since wider accumulators have an area
cost. Another approach is to do the overflow check and saturation after every operation. The latter approach is
mandated by some standards, for example, VoIP standards like G.723.1, G.729, etc. Hence, this method is adopted
more frequently.

To implement operation-level saturation using general microprocessor instructions adds many cycles to the basic
arithmetic operation and is a considerable overhead. Hence, the most significant improvement is obtained by
defining arithmetic operation instructions that automatically check for overflow and saturate the results.

1. Since speech/voice data can be represented using 16 bits, it is possible to put two data values in the 32 bits of a
MIPS32 processor register. These values can be processed in parallel using a single instruction in a SIMD (Sin-
gle Instruction Multiple Data) register-type of operation. This type of parallelism is very effective in many of the
critical routines of the application and helped speedup those routines by a factor of two on top of the other
improvements.

2. The third factor that improved application performance was the ability to define new instructions that used more
accumulator registers. Since the UDI block is not part of the main integer core, it was possible to assume that this
block could implement more than one accumulator so that the instructions specified which one to use, and this
eliminated the bottleneck of the single hi/lo register pair of the main architecture. Defining new state has the dis-
advantage that it makes the code non-reentrant since these registers would not be saved on a context-switch
(without OS modifications).

The above list provides some background and will help the reader understand the reasoning behind the new instruc-
tions that will be used in this chapter in the code samples.
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2.2 G.729 Code Analysis

The G.729 algorithm was analyzed and the performance improved using the following methodology:

1. First, all obvious and trivial optimizations that could be done in C using the compiler were done. This includes
forced inlining of all the ITU basic_op and oper_32b macros, as well as using the standard set of optimizations
flags for best speed performance. (The ITU source code for the G.729 and G.723.1 codecs share a common set of
basic signal processing operations. These are the ones being referred to here as the basic_ops. These include
primitives such as 16 bit and 32 bit addition, subtraction, multiply, multiply-accumulate, rounding, saturation, and
normalization.)

3. Once the basic compiler optimizations were done, a profile was generated of the entire application. The profiling
helped isolate the most critical and important routines. It was also possible to use this information to generate
upper bounds on the possible speedups.

4. The most critical routines were examined for their underlying algorithms to determine what functionality must
be defined for the new instructions.

5. The previous step went hand-in-hand with the rewriting in assembly of these most important routines using the
new UDIs.

It is not possible within the scope of this paper to show all the converted routines, but we will attempt to illustrate a
flavor of this process. The application profile discussed in step two is shown in Section 2.2.1 “Initial Application Pro-
file”. Two example routines are discussed in Section 2.2.2 “Example: D4i40_17” and Section 2.2.3 “Example:
pred_lt_3”. All the analysis and code rewriting was done for the G.729 encoder. This is more computation-intensive
than the G.729 decoder. The decoder runs in about 20-25% of the encoder’s execution time.

2.2.1 Initial Application Profile

The profiling of the application is shown in Table 2.1. Values do not sum to 100% because not all routines are
shown. But the table shows all the routines that have at least a minimal impact on the total performance of the appli-
cation. (The total run-time shown in the table sums to about 88%).
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Table 2.1 G.729 Encoder Subroutine Run-time Profile

2.2.2 Example: D4i40_17

D4i40_17, also known as the fixed code book search, is the most computation intensive subroutine of the G.729 algo-
rithm. This is because it is searching a large space of codes, to find the best match for the unvoiced (pitch-less) com-
ponent of the speech frame. The unvoiced component is modeled as four random signed impulses in time, convolved
with the impulse response. Because this is done on a sub-frame (40 samples), there are 40*39*38*37/4*3*2*1 =
91390 possible sets of four impulse positions. To reduce this combinatorial space, each of the four impulses is con-
strained to be in its own unique “track”. Table 2.2 shows the allowed positions for each index.

Table 2.2 Fixed-Code Book Search Index Encoding

Each of the impulses has eight possible positions and a sign, requiring 3+1=4 bits to encode, except for the fourth
impulse which requires 5 bits to encode. All the impulse positions and signs can be encoded using 17 bits, which is
exactly the same 17 bits that are written to the 80 bit output frame. If the signs are omitted and not encoded, only 13

Percent Function

24.9 D4i40_17

11.4 Lag_max

10.2 Norm_Corr

7.5 Syn_filt

4.7 Lsp_pre_select

4.4 Convolve

3.7 Residu

3.6 Autocorr

3.3 Chebps_11

2.2 Cor_h_X

2.1 Cor_h

1.9 Pred_lt_3

1.5 overhead

1.2 Levinson

1.2 Qua_gain

0.9 Lsp_select_2

0.9 Lsp_select_1

0.8 Pre_Process

0.7 Coder_ld8k

0.6 Az_lsp

Impulses Possible Positions
Bits to encode (without

sign of impulse)
Bits to encode (with

sign of impulse)

i0 0,5,10,15,20,25,30,35 3 4

i1 1,6,11,16,21,26,31,36 3 4

i2 2,7,12,17,22,27,32,37 3 4

i3 3,4,8,9,13,14,18,19,23,24,28
29,33,34,38,39

4 5

Total 0 through 39 13 17
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bits are needed to encode the set of impulse positions. The fact that 13 bits will fit in a half-word of 16 bits is used in
the optimized algorithm, which is discussed below.

The G.729 algorithm loops over all possible impulses with four nested loops, resulting in a space of 8*8*8*16 = 8192
possible combinations. Only the positions of the impulses are searched; the signs of the impulses can be determined
after the search. As a shortcut, the fourth (innermost) loop of i3 is not done if the mean-square error due to the first 3
impulses is above a threshold. Because of the conditional nature of this threshold and the requirement that the opti-
mized code be bit exact with the ITU reference code, it is not efficient to attempt to vectorize the entire nest of loops.
However, the inner most loop when executed, (passing the threshold condition), can be vectorized, because it always
loops over the 16 values of i3. Since the data values can be represented in 16 bits, with register SIMD parallelization,
the inner most loop can be vectorized by a factor of 2 (with MIPS32 data size and registers).

The original algorithm attempts to minimize the mean-squared error by maximizing a ratio of Q15 values (the details
are omitted here for clarity). Because division is computationally expensive, two ratios are not compared by dividing
numerator by denominator, but instead by cross-multiplication of denominators with numerators. The best result is
stored in pieces, as the numerator, the denominator and the 4 indices that give this result. Each new combination of
indices is compared by cross-multiplying the proposed numerator and denominator with the best numerator and
denominator.

In the original algorithm, four integer variables hold the four indices of the best ratio. As seen in the table above, all
of the indices can be packed into a 13 bit code, which will fit in a halfword.

The original C code of the first inner i3 loop of D4i40_17 is shown in Table 2.3. L_SUBFR is 40 and STEP is 5,
resulting in 8 iterations of this loop. The L_mac operation is implemented using the MAQS_PH instruction. This does
a SIMD multiply and accumulates the results to two accumulators. The operation is done on fractional data format
and saturated.

The cross product comparison is done with the L_mult(ps3c,alpha) and subsequent L_Msu(L_temp,psc, alp) instruc-
tions, with the sign of the L_temp variable giving the result of the ratio comparison. If L_temp is positive, the “best”
values of psc and alpha are updated with the new values of ps3c and alp respectively.

The cross-multiplication and comparison can be vectorized using the MULQ (fractional SIMD multiply) instruction,
the C.LT comparison instruction, and finally the PICK instruction (see Table 3.2 on page 22). However, because of
the parallelization, the “best” numerator and denominator are also stored as vectors (a pair of PH for MIPS32+UDI,
see Figure 3.3  on page 21). In addition, the “best” index code is also stored in a PH vector. At the end of the code
book search index loops, the two values in the “best” numerator vector and denominator vector need to also be
reduced to a single “best” result, and a single “best” index code. This coded index (13bits) is re-encoded as 17 bits by
inserting the sign bits, and this is the value that is written to the final output frame.
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Table 2.3 First Inner Loop of D4i40_17 Fixed Codebook Search, C-implementation

Table 2.4 shows a snippet of the first inner i3 loop of D4i40_17. The register names have been predefined using cpp
macros to make it easier to follow. The inner i3 loop of 8 iterations is flattened into four passes including 2 iterations
each. There is no branching since the entire loop is unrolled. The original C-code is intermixed in the comments to
illustrate the new code. The snippet only shows the first of the four passes. The others are very similar and hence are
not shown.

The comparison magic happens due to these 3 instructions:

 C_LT_W(temp2,temp1,1)
 ...
 C_LT_W(temp2,temp1,0)
 ...
 PICK_PH(psc,ps3c,psc)

The two C_LT_W instructions write one condition bit each into the internal Vector Condition (VC) UDI register (see
Table 3.1 on page 21). The third argument to the compare instruction specifies the offset position of the bit in the VC
register. The final PICK_PH instruction uses the results of the VC register to decide how to update the psc register. A
1 means to take the element from the ps3c register, while a 0 means to retain the old value from the psc register. The
PICK instruction is repeated twice more for the alpha register and the index register.

For the sake of clarity, this sample does not show the best possible code schedule. For example, to prevent a stall
between the MAQS_PH instruction and the first MFUS, it is possible to move a non-dependent instruction from
below up between the two.

for (i3 = 3; i3 < L_SUBFR; i3 += STEP)      /* 4th pulse loop */
     {
           ps3 = add(ps2, Dn[i3]);
           alp3 = L_mac(alp2, *ptr_ri3i3++, 1);
           alp3 = L_mac(alp3, *ptr_ri0i3++, 2);
           alp3 = L_mac(alp3, *ptr_ri1i3++, 2);
           alp3 = L_mac(alp3, *ptr_ri2i3++, 2);
           alp  = extract_l(L_shr(alp3, 5));
           ps3c = mult(ps3, ps3);
           L_temp = L_mult(ps3c, alpha);
           L_temp = L_msu(L_temp, psc, alp);
           if( L_temp > 0L ) {
             psc = ps3c;
             alpha = alp;
             ip0 = i0;
             ip1 = i1;
             ip2 = i2;
             ip3 = i3;
     }
}  /*  end of for i3 = */
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Table 2.4 First Inner Loop of D4i40_17 Fixed Codebook Search, MIPS32+UDI Implementation

// flatten two iterations of the loop at a time. First do 3,8
lh temp2,  3*2(Dn)
lh ps3,    8*2(Dn)
ins ps3,temp2,16,16

/*      ps3 = add(ps2, Dn[i3]); */
ADDS_PH(ps3,ps2,ps3)

// replicate alp2 into the accumulators
MTU(alp2,VoUDI_Acc1)
MTU(alp2,VoUDI_Acc0)

//    alp3 = L_mac(alp2, *ptr_ri3i3++, 1);
lw temp1,0(ptr_ri3i3)
lw temp2,0(ptr_ri0i3)
MAQS_PH(temp1,one)

//    alp3 = L_mac(alp3, *ptr_ri0i3++, 2);
MAQS_PH(temp2,two)

//    alp3 = L_mac(alp3, *ptr_ri1i3++, 2);
lw temp1,0(ptr_ri1i3)
lw temp2,0(ptr_ri2i3)
MAQS_PH(temp1,two)

//    alp3 = L_mac(alp3, *ptr_ri2i3++, 2);
MAQS_PH(temp2,two)

//    alp  = extract_l(L_shr(alp3, 5));
MFUS(temp_h,VoUDI_Acc1,0)
MFUS(temp_l,VoUDI_Acc0,0)
SRA_W(temp_h,temp_h,5)
SRA_W(temp_l,temp_l,5)
CVTS_PH_W(alp,temp_h,temp_l)

//           ps3c = ((long)ps3 *ps3)>>15;
MULQ_PH(ps3c,ps3,ps3)

// if(ps3c*alpha > psc*alp) { /* there is a factor of 2, but
it doesn’t matter here */

MULQ_W_PHH(temp1,ps3c,alpha)
MULQ_W_PHH(temp2,psc ,alp)
C_LT_W(temp2,temp1,1)
MULQ_W_PHL(temp1,ps3c,alpha)
MULQ_W_PHL(temp2,psc ,alp)
C_LT_W(temp2,temp1,0)

//             psc = ps3c;
//             alpha = alp;

PICK_PH(psc,  ps3c,     psc)
PICK_PH(alpha,alp,      alpha)
PICK_PH(ip,  ip_const,ip)
ADDS_PH(ip_const,ip_const,two)
ADDS_PH(ip_const,ip_const,two) /* ready for next time */

...
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2.2.3 Example: pred_lt_3

This routine is more typical of the other routines in G.729. We will demonstrate how the MIPS32+UDIs are used to
speedup the code in this subroutine. Table 2.5 shows the original C implementation. This uses the ITU arithmetic
macros such as negate(), add(), sub(), L_mac() and round(). These ITU macros are like their normal C counterparts,
except that they do saturating arithmetic. The function round() converts a Q31 value to Q15 value.

Table 2.5 Original C code for pred_lt_3

2.2.3.1 Note on the optimization of pred_lt_3

The optimized version of the code is shown in Table 2.6. The inner loop over i which runs from 0 to 9 adds the dot
product of c1 with x0[-9 .. 0] and the dot product of c2 with x0[1 .. 10], or equivalently, the dot product of the com-
bined c1||c2 array with x0[-9 .. 10], which contains 20 terms. Because the 20 terms of c1||c2 are constant, these values
are stored in 10 registers as PH values. To efficiently compute the dot-product, we define the DPAQS (DP--dot prod-
uct, A--accumulate, Q--fractional, S--saturating) instruction (see Table 3.2 on page 22).

The outer loop over j is unrolled twice, such that exc[j] and exc[j+1] are calculated on each pass. The loop unroll
saves 5 cycles due to loop overhead and allows one word store to substitute 2 halfword stores. The MIPS32 instruc-
tions LWL (load word left) and LWR (load word right) require an extra cycle before the result can be consumed. By

void Pred_lt_3(
    Word16   exc[],       /* in/out: excitation buffer */
    Word16   T0,          /* input : integer pitch lag */
    Word16   frac,        /* input : fraction of lag   */
    Word16   L_subfr)     /* input : subframe size     */
{
    Word16   i, j, k;
    Word16   *x0, *x1, *x2;
    const Word16 *c1, *c2;
    Word32  s;

    x0 = &exc[-T0];

    frac = negate(frac);
    if (frac < 0) {
        frac = add(frac, UP_SAMP);
        x0--;
    }

    for (j=0; j<L_subfr; j++) {
        x1 = x0++;
        x2 = x0;
        c1 = &inter_3l[frac];
        c2 = &inter_3l[sub(UP_SAMP,frac)];

        s = 0;
        for(i=0, k=0; i< L_INTER10; i++, k+=UP_SAMP) {
            s = L_mac(s, x1[-i], c1[k]);
            s = L_mac(s, x2[i],  c2[k]);
        }
        exc[j] = round(s);
    }
    return;
}
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using extra registers and interleaving the LWL and LWR instructions, we can fill the load delay slots so that there are
no stalls. In addition, we can interleave a LWL instruction between the DPAQS instruction to reduce the repeat rate
of the DPAQS instruction to every other cycle.
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Table 2.6 Optimized MIPS32+UDI Assembly Code for pred_lt_3

#define exc   $4
#define T0    $5
#define frac  $6

#define x0    $7

#define temp1 $14
#define temp2 $15
#define x0_end $2

# define c_0    $8
# define c_1    $9
# define c_2   $10
# define c_3   $11
# define c_4   $12
# define c_5   $13
# define c_6   T0  /* reused */
# define c_7   frac /* reused */
# define c_8   $3
# define c_9   $1

#define L_subfr 40
#define UP_SAMP 3
#define INTER10 10

sll x0,T0,1   /* short alignment */
sub x0,exc,x0

sub frac,$0,frac
bgez frac,1f
nop
addi frac,frac,UP_SAMP
addi x0,x0,-2

1:
/* the inter_31 array has been transmogrified into an easier to load
 * array, called inter_31_voudi, which is indexed by frac*20 */

la temp2, inter_3l_voudi
li temp1,20*2

// mul frac,frac,temp1
mult frac,temp1
addi x0_end,x0,40*2
mflo frac
add temp1,temp2,frac
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lw c_0, 0(temp1)
lw c_1, 4(temp1)
lw c_2, 8(temp1)
lw c_3,12(temp1)
lw c_4,16(temp1)
lw c_5,20(temp1)
lw c_6,24(temp1)
lw c_7,28(temp1)
lw c_8,32(temp1)
lw c_9,36(temp1)

2:
MTU($0,VoUDI_Acc1)
MTU($0,VoUDI_Acc0)

/* unroll #0 */
lwl temp1,-9*2  (x0)
lwl temp2,-7*2  (x0)
lwr temp1,-9*2+3(x0)
lwr temp2,-7*2+3(x0)
DPAQS_PH(VoUDI_Acc1,temp1,c_0)
lwl temp1,-5*2  (x0)
DPAQS_PH(VoUDI_Acc1,temp2,c_1)
lwl temp2,-3*2  (x0)
lwr temp1,-5*2+3(x0)
lwr temp2,-3*2+3(x0)
DPAQS_PH(VoUDI_Acc1,temp1,c_2)
lwl temp1,-1*2  (x0)
DPAQS_PH(VoUDI_Acc1,temp2,c_3)
lwl temp2, 1*2  (x0)
lwr temp1,-1*2+3(x0)
lwr temp2, 1*2+3(x0)
DPAQS_PH(VoUDI_Acc1,temp1,c_4)
lwl temp1, 3*2  (x0)
DPAQS_PH(VoUDI_Acc1,temp2,c_5)
lwl temp2, 5*2  (x0)
lwr temp1, 3*2+3(x0)
lwr temp2, 5*2+3(x0)
DPAQS_PH(VoUDI_Acc1,temp1,c_6)
lwl temp1, 7*2  (x0)
DPAQS_PH(VoUDI_Acc1,temp2,c_7)
lwl temp2, 9*2  (x0)
lwr temp1, 7*2+3(x0)
lwr temp2, 9*2+3(x0)
DPAQS_PH(VoUDI_Acc1,temp1,c_8)

/* unroll #1 */
lwl temp1,-9*2  +2(x0)
DPAQS_PH(VoUDI_Acc1,temp2,c_9)
lwl temp2,-7*2  +2(x0)
lwr temp1,-9*2+3+2(x0)
lwr temp2,-7*2+3+2(x0)
DPAQS_PH(VoUDI_Acc0,temp1,c_0)
lwl temp1,-5*2  +2(x0)
DPAQS_PH(VoUDI_Acc0,temp2,c_1)
lwl temp2,-3*2  +2(x0)
lwr temp1,-5*2+3+2(x0)
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2.3 G.729A

We have not optimized the G.729A algorithm, but based on optimizations done by others, we estimate that the
G.729A can be done in half the cycles of the G.729.

The best StarCore SC140 implementation shows a ratio of G729A cycles to G729 cycles of 4.7:8.4 = 56% [2] [3]. We
will use this value to estimate G.729A results from our study of G.729.

lwr temp2,-3*2+3+2(x0)
DPAQS_PH(VoUDI_Acc0,temp1,c_2)
lwl temp1,-1*2  +2(x0)
DPAQS_PH(VoUDI_Acc0,temp2,c_3)
lwl temp2, 1*2  +2(x0)
lwr temp1,-1*2+3+2(x0)
lwr temp2, 1*2+3+2(x0)
DPAQS_PH(VoUDI_Acc0,temp1,c_4)
lwl temp1, 3*2  +2(x0)
DPAQS_PH(VoUDI_Acc0,temp2,c_5)
lwl temp2, 5*2  +2(x0)
lwr temp1, 3*2+3+2(x0)
lwr temp2, 5*2+3+2(x0)
DPAQS_PH(VoUDI_Acc0,temp1,c_6)
lwl temp1, 7*2  +2(x0)
DPAQS_PH(VoUDI_Acc0,temp2,c_7)
lwl temp2, 9*2  +2(x0)
lwr temp1, 7*2+3+2(x0)
lwr temp2, 9*2+3+2(x0)
DPAQS_PH(VoUDI_Acc0,temp1,c_8)
addi x0,x0,4
DPAQS_PH(VoUDI_Acc0,temp2,c_9)

MFUS(temp2,VoUDI_Acc1,0)
MFUS(temp1,VoUDI_Acc0,0)
CVTQR_PH_W(temp1,temp2,temp1)
sw temp1,0(exc)

bne x0,x0_end,2b
addi exc,exc,4

jr $ra
nop
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Proposed User Defined Instructions for Voice Applications

3.1 Data Types

The data types used for speech processing are primarily 16 bit values, with 32 bit values used as intermediates. The
encoding of values are either signed integers (-32768 to +32767), fixed point fractions (-1.0000 to +0.9999) or
encoded in bit fields (G.729 output frame). These data types are typically supported by DSP hardware, but fixed point
fractions are usually not handled by general purpose microprocessors. In addition, DSP hardware offers the ability to
saturate a result if an overflow or underflow occurs due to an arithmetic operation, while general purpose micropro-
cessors usually return results where the most significant bits are lost, and the remnant is leftover noise from the lower
bits.

Fixed point fractions are notated using the Q format, where the number of bits used for the mantissa is given after the
letter Q. In G.729, all operations are done using Q15 (a 16 bit value with one sign bit and 15 bits of mantissa, show in
Figure 3.1) or Q31 (a 32 bit value with one sign bit and 31 bits of mantissa, shown in Figure 3.2). Arithmetically, they
are identical to plain integer values, meaning that addition, subtraction and multiplication are done using the same
algorithm, except that in multiplication, the result is renormalized to fit the destination register. For example, a Q15
value times a Q15 value results in 30 bits of mantissa. To store this value in a Q31 register, the result is shifted to the
left by one and an extra 0 is padded on the right. If the result is to be stored in a Q15 register, the result is shifted to
the right by 15 (30-15 = 15).

Figure 3.1 GPR in PH Data Format with Q15 Data Type

Figure 3.2 GPR in W Data Format with Q31 Data Type

3.2 Data Formats

The Voice UDI introduces two new data formats in the GPR register set.

For MIPS32, the pair half (PH) and single word (W) are used.

• In pair half format, a 32-bit GPR is interpreted as a vector of two ("paired") signed 16-bit integers. See Figure
3.3.

• In single word format, a 32-bit GPR is interpreted as a single signed 32-bit integer. See Figure 3.4.

Positions within a vector are denoted as v[i], where i=0 for the least significant position in the vector register. For
instructions that refer to the PHH data format, this refers to the "high" vector element in the PH format, that is, v[1].
Similarly, PHL refers to the "low" vector element in PH, that is, v[0].

31 30 16 15 14 0

sign mantissa sign mantissa

31 30 0

sign mantissa
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Figure 3.3 A MIPS32 GPR in PH Data Format

Figure 3.4 A MIPS32 GPR in W Data Format

3.3 CorExtend Registers

The CorExtend block uses six internal registers, four accumulators that are 64 bits each, a vector condition code reg-
ister (VC), and an overflow indicator register (OF). These are listed in Table 3.1.

3.4 Instruction Description

Table 3.2 provides a listing of all the instructions used by the G.729 codec. The instructions are categorized into their
types, for example, Arithmetic, Shift, etc. The instruction mnemonic is shown along with a brief description of its
functionality. The table indicates which specific ITU macro uses that instruction, if applicable. Overall, the G.729
uses nineteen instructions. The relative importance of these instructions during execution, and the criteria that can be
used to implement a smaller number is discussed in the next chapter (see Section 4.2.1, "Relative Importance of UDI
instructions" on page 28).

31 16 15 0

v[1] v[0]

31 0

v[0]

Table 3.1 Registers in the Voice UDI block

Register
Number

Register
Name

Register
Size in bits Description

Instructions
that can write
to the register

Instructions
that can read
the register

0 Acc0 64 Accumulator 0 DPAQS, DPSQS,
MAQS, MTU

DPAQS, DPSQS,
MAQS, MFU

1 Acc1 64 Accumulator 1 DPAQS, DPSQS,
MAQS, MTU

DPAQS, DPSQS,
MAQS, MFU

2 Acc2 64 Accumulator 2 DPAQS, DPSQS,
MAQS, MTU

DPAQS, DPSQS,
MAQS, MFU

3 Acc3 64 Accumulator 3 DPAQS, DPSQS,
MAQS, MTU

DPAQS, DPSQS,
MAQS, MFU

4 VC 2 Vector condition
code register

C.cond.fmt,
MTU

PICK, MFU

5 OF 1 Overflow
indicator register

All instructions
that saturate,

MTU

MFU
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All the UDIs in Table 3.2 are encoded into two UDI opcodes, UDI0 and UDI1. The encoding of the UDI instructions
in Table 3.2 into UDI0 (with opcode bits [3:0] = 0000) is shown in Table 3.3, and the encoding into UDI1 (with
opcode bits [3:0] = 0001) is shown in Table 3.4.

Note that there is a lot of flexibility in encoding these instructions, they could all have been put in a single UDI
opcode if desired. We chose this encoding so that UDI0 encodes all the instructions that use only a subset of registers
rs, rt, and rd of the GPR and no UDI registers or immediate values. (The exception are the SLAVS and the SRAV
instructions, which were grouped with the other shift operations in the UDI1 encoding).

Table 3.2 Instructions in the VoIP CorExtend Block

# Type Instruction Description
Used in ITU
Code/Macro

1 Arithmetic ADDS.PH rd, rs, rt Integer vector saturating addition. add,L_add

2 CRLS.PH rd, rs Count leading sign bits norm_s,
norm_l

3 DPAQS.PH ud, rs, rt Fractional vector saturating dot-product
with accumulate.

L_mac

4 DPSQS.PH ud, rs, rt Fractional vector saturating dot-product
with subtract.

5 MAQS.PH rs, rt Fractional vector saturating multiplies
accumulating to separate accumulators

(code-book)

6 MULQ.PH rd, rs, rt Fractional vector multiply with same-
size products.

mult, L_mult

7
8

MULQ.W.PHH rd, rs, rt

MULQ.W.PHL rd, rs, rt

Fractional vector multiply with full-size
products.

mult, L_mult

9 SUBS.PH rd, rs, rt Integer vector saturating subtraction. sub, L_sub

10 Shifts SLAS.W rd, rs, shift Vector saturating arithmetic left shift. shl, L_shl

11 SLAVS.W rd, rs, rt Vector saturating arithmetic variable left
shift

12 SRA.W rd, rs, shift Vector right shift. shr, L_shr

13 SRAV.W rd, rs, rt Vector variable right shift.

14 Compare C.LT.PH rs, rt Condition vector compare instructions.

15 Register
Move

MFU rd, us, shift, sat Copy a UDI register value to a GPR, with
optional 32bit saturation.

16 MTU ud, rs Copy a GPR value to an UDI register.

17 PICK.PH rd, rs, rt Selectively pick vector elements from
two registers.

18 Format
Conversion

CVTQR.PH.W rd, rs, rt Fractional vector conversion to reduced
precision with rounding.

round

19 CVTS.PH.W rd, rs, rt Integer vector saturating conversion to
reduced precision.

extract_l
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3.5 Instruction Bit Encoding

Figure 3.5 shows the basic UDI format.

Figure 3.5 Basic UDI Format

Note that bits 0 to 3 are used to encode the UDI, and the other bits from 6 to 25 are free for the UDI block to use in
any way that it likes. Note that however, if GPR source register values are required, then they must be specified in the
fields denoted rs and rt. That is, the main processor core always supplies the source values of the registers that are
encoded in bits 21-25 and in bits 16-20. Hence, a random use of these bits might lead to a register dependency detec-
tion and pipeline stall (which is a false dependency that does not really exist). Hence we have attempted an encoding
of the instructions that is aware of this issue. If the instruction also specifies the destination register, then this is done
in the field denoted rd.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs (optional) rt (optional) rd/ud/imm op
xxxxx

UDI opcode
01xxxx

6 5 5 5 5 6

Table 3.3 UDI Encoding of the op field for UDI0 (bits [3:0] = 0000)

op  bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 ADDS.PH - - - - - - -
1 01 ΣΥΒΣ.ΠΗ − - - CRLS.PH - - -
2 10 - - - - - - − -
3 11 MULQ.PH - MULQ.W.PH

H
MULQ.W.PH

L
- - ΧςΤΘ.ΠΗ.Ω ΧςΤΘΡ.ΠΗ.Ω

Table 3.4 UDI Encoding of the op field for UDI1 (bits [3:0] = 0001)

op  bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 - SLAS.W - SLAVS.W - - - -
1 01 − ΣΡΑ.Ω - SRAV.W PICK.PH - MFU MTU
2 10 C.LT.PH - - - - - - -
3 11 DPAQS.PH DPSQS.PH MAQS.PH - - - - -
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3.6 Estimated Gate Counts

Table 3.5 shows a gate count estimate for a MIPS32 implementation of G.729 on a MIPS32 processor core, 4KEc™.
Note that the 4KEc is about 180 K gates (assuming 16 K 4-way caches, no RAMS, MIPS16e™, memBIST, EJTAG
TAP, COP2 interface, and no PDtrace™ in TSMC 0.18g process). The proposed UDI block adds about 23% to the
total core area. Note that the multiplier is the largest component of the UDI block.

Table 3.5 Gate Count of the Proposed UDI Block

If size is a critical factor, then only one multiplier can be implemented, with a little performance penalty. To execute
the SIMD multiply-accumulate or the dot-product instructions, the single 16x16 multiplier would have to be double-
pumped. The multiplier is assumed to be fully pipelined, so that when it is double-pumped for the two different mul-
tiplies of the 2-way SIMD instruction, the repeat-rate of the instruction is two. That is, the dot-product or the multiply
instruction can be issued only every other cycle. This is typically not a scheduling problem in the code since at least
one (load) instruction is available to be inserted between two dot-product instructions. We estimate a maximum of
10% performance penalty with only one multiplier. The total gate count with one multiplier would be 27K which is
about 15% of the total core size.

The assumed latency and repeat rates of the UDI instructions is shown in Table 3.6.

Unit Gates/Unit # Units Net
% of 180 K (core size
without CorExtend)

16x16 Multiplier 15 K 2 (1) 30 K (15 K)

16+16 Adders 1.5 K 2 3 K

Accumulator Registers 0.5 K 2 1 K

Shifters 0.5 K 2 1 K

Overhead 7 K 1 7 K

Total 42 K (27 K) 23% (15%)

Table 3.6 UDI Latency and Repeat Rates

Instruction

2 multipliers (1 multiplier)

Latency Repeat Rate

ADDS, CRLS, SUBS 1 1

MULQ 2 (3) 1 (2)

DPAQS, DPSQS, MAQS 3 (4) 1 (2)

CVTQR, CVTQ 1 1

C.LT 1 1

SLAS, SLAVS, SRA, SRAV 1 1

MFU, MTU, PICK 1 1
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3.7 The Feasibility of a CorExtend Block for General VoIP Processing

Since G.729 is only one of the many VoIP standards, we examine some of the other applications to determine how
they might impact the number of instructions needed and the size of the UDI block. Other common (and popular)
codecs that are used are G.711, G.726, and G.723.1.

G.711 comprises a A-law and µ-law encoder and decoder. The G.711 application is not very computation intensive.
To process 64 K samples takes about 0.5 MHz of the processor. And the entire encoding and decoding can be done
using a single instruction or table look-up function, if needed. Hence, this codec is not discussed any further.

The G.726 codec is based on ADPCM (Adaptive Differential Pulse Code Modulation) and is of medium complexity.
The processing in the adaptive quantizer and the inverse adaptive quantizer involves log2() and antilog() operations.
The VoIP UDI does not need a LOG2 instruction since the ITU standard defines a log2() approximation. The bulk of
the processing in this codec is in computing the signal estimate in the adaptive predictor which uses floating point in
the predictor filters. Thus, it is necessary to manage exponents and mantissas efficiently. These are performed effec-
tively using the CRLS instruction to compute the exponents, and the SLAVS instruction to compute the mantissas
using normalization operations.

The G.723.1 is a dual-rate codec with the lower bit rate based on CELP (Code Excited Linear Predictive), like the
G.729 codec. The ITU source code for G.729 and G.723.1 share a common set of basic signal processing operations.
These are the primitive 16-bit and 32-bit arithmetic operations in the basops.c file. The set of instructions defined for
G.729 cover these basic ops well, hence G.723.1 can also be efficiently performed using the same instructions. The
only instructions that would be needed in addition are a vector MIN/MAX function.

Other than the codecs, line echo cancellation is a key component of VoIP processing. The basic computation here is
the LMS (Least Mean Squared) FIR Filter. The main operations in the LMS filter consist of convolution (FIR filter),
followed by updating the filter coefficients. The convolution is essentially a dot product (which is covered by our
DPAQS instruction), and updating the filter state (shifting the data in the delay line). The filter state update can be
emulated using a CIRADD (circular add) instruction that takes a buffer base and increments the pointer through the
buffer. Such an instruction has been shown in the application note that addresses the user defined instructions needed
for DSP filter processing [6].

Hence, to cover the full space of VoIP processing, the G.729 CorExtend block would need three additional instruc-
tions, the MIN, MAX, and CIRADD. These instructions do not impact the gate count significantly (a 1-2% increase
approximately).
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Performance of G.729

4.1 Methodology

The MIPSsim™ simulator was used to evaluate the performance impact of the proposed instructions on the G.729
application code. The simulator can model and simulate all processor cores available from MIPS Technologies, and
can estimate cycle counts fairly accurately. For the 4KEc core, the simulator has been verified to be within 5% of the
performance of the hardware. The simulator provides a CorExtend UDI interface that allows a user to describe the
execution of the proposed instructions in C. This C library is then bolted onto the simulator which sends all UDI
instructions across the interface to be emulated by the user-written C library code. The simulator interfaces with the
GreenHills MULTI debugging environment to allow easy debugging as well as performance evaluation. The perfor-
mance results provided in this chapter have been obtained using the methodology just described.

4.2 G.729 Performance

The values in Table 4.1 represent the cycle counts for some selected, important routines in G.729. Note that these
cycle counts are approximate values, and in some cases vary dramatically with the speech data being processed. The
Fixed Codebook Search (D4i40_17) in particular can vary significantly with the type of data being processed. Like-
wise, the frame totals are approximate values, based on 10 frames of algthm.in test data. The values given here are
fairly typical, and hence used for reference purposes and as a basis for further performance analysis. The input voice
vector used was obtained from the ITU website [1].

Since a full implementation of the G.729 encoder using MIPS64® ([5]) and 64-bit UDIs (not listed in this document)
has been completed, we show this performance data. Some of the key routines have been rewritten in MIPS32+UDI
(described in Table 3.2 on page 22). The speedups of these routines have been used to extrapolate results to other rou-
tines that have not yet been rewritten in MIPS32+UDI. This is possible since the type of computation in each routine
is well understood. Hence, the estimated number in the last row and last column of Table 4.1 is judged to be fairly
accurate.

As the reader will note, the speed ups of individual routines are considerable (ranging from about 3.7 to over 20). The
speed ups are due to several factors, listed here in decreasing order of importance:

1. Saturation is done by the arithmetic operations defined by the UDI, rather than using several comparison and
branch instructions.

1. The reference code for some instructions was written for portability, not efficiency. (This was particularly true
for bit shifting operations.) These were rewritten more efficiently for the MIPS architecture.

2. The 2-way SIMD instructions allow the use of 32 bit registers to store two values, and compute in parallel on two
values.

3. Critical routines were hand-coded to maximize use of registers and for efficient code scheduling.

4. Using UDIs often reduced the code size, which had an overall beneficial effect on the rate of instruction cache
misses.
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The final result was an application that can encode G729 speech data using 24.2 MHz of the bandwidth of a MIPS64
processor.

Table 4.1 Cycle Counts for Selected G.729 Subroutines

To predict the application performance on a 32-bit machine (such as the 4KEc), a few key routines were rewritten
using the MIPS32+UDI instruction set. By cutting the register size in half (and the SIMD data size in half), we expect
that the MIPS32 implementation would require twice as many operations to get the same results as the MIPS64
implementation. Indeed, we see that the cycle counts of the critical loops increase by about a factor of 2 (1.75-2.14 in
the examples of the table). We estimate that about 75% of the application will suffer from this degradation, giving a
net cycle increase of about 1.75x, or about 42 MHz.

The decoding process is considerably faster than the encoding process. We have estimated that the decode requires
about 20% of the cycles of the encoding process. This results in about 30 MHz for a full duplex codec running on a
MIPS64 processor implementation, and about 50 MHz for a full duplex codec running on a (MIPS32) 4KEc imple-
mentation.

Figure 4.2 shows the summary of the megacycles requirement for the encoder and the decoder and also the estimated
megacycles for the G.729A annex to the G.729 scheme. (See Section 2.3, "G.729A" on page 19 for a description of
how the G.729A numbers were obtained). We can estimate expected full-duplex performance by comparing the opti-
mized C-implementations of the encoder versus decoder to get the ratio of computational complexity, and then
extrapolating the UDI optimized decoder speed from the UDI optimized encoder speed. We find that the C-imple-
mentation decoder requires 22.7% of the cycles of the encoder.

Subroutine

Compiler Optimized
C implementation

(MIPSsim cycle
counts)

MIPS64+UDI
(MIPSsim cycle

counts)
Speedup of C

to MIPS64+UDI

MIPS32+UDI
(MIPSsim cycle

counts)
Speedup of C

to MIPS32+UDI

D4i40_17 1

1. highly dependent on frame data, this is the 4th frame of algthm.in

 172676  47570 3.6  101826 1.7

Lag_max 106756 6446 16.5

Norm_corr 113653 8982 12.7

Syn_Filt 10133 1163 8.7

Lsp_pre_select 37343 1712 21.8

Convolve 19027 1456 13 3019 6.3

Residu_rev 10994 544 20.2 950 11.6

Autocorr 58736 4037 14.5

Cor_h_X 19039 1102 17.3

Pred_lt_3 17099 798 21.4 1529 11.2

Lsp_select_1,2 7585 474 16

Pre_Process 13101 2125 6.2

Az_lsp 57578 15398 3.7

One Frame Total 2

2. approximate, data dependent

 1220600  242419 5 3420000 %

3. estimated, based on MIPS64 values and partial conversion of the code into MIPS32 and overall impression of vectorization of total
algorithm

2.910±
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We see from the results that using say a 240 MHZ 4KEc processor core, and using the G.729A compression scheme,
which is one of the most commonly used ones in the VoIP area, one can easily implement four channels of voice pro-
cessing. Each channel takes approximately 27 MHZ of the cpu and hence a total of 108 MHZ or about 45% of the cpu
can be used for voice processing. The rest is available for operating systems and other control functions.

Table 4.2 Summary Table for G729 and G729A.

4.2.1 Relative Importance of UDI instructions

Figure 4.3 shows the usage of each UDI instruction. These counts were done for a few frames of speech input. In
addition, the equivalent cycles to emulate each instruction is given for comparison. Finally, the net degradation to the
overall performance is estimated by multiplying the equivalent cycles with the count. The final column is the accu-
mulated degradation, starting from the bottom of the list. The Move From and To UDI register instructions (MFU and
MTU) can not be emulated, so they can not be assigned a hypothetical degradation. The accumulated degradation is
roughly 400% or 5x, which is in line with the overall performance improvement of 24 MHz (for MIPS64+UDI G.729
Encode) versus 122 MHz.

Algorithm Direction

CPU Usage (Megacycles per Second)

MIPS32+UDI MIPS64+UDI

G.729 Encode 42 24

Decode 9.5 5.5

Total (Full Duplex) 52 30

G.729A Encode 24 13

Decode 2.8 3.1

Total (Full Duplex) 27 16
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Table 4.3 Profile of MIPS64+UDI Instructions in G.729 Encoder (Sorted by decreasing importance)

Note that since the accumulated performance degradation for the last nine instructions (from CVTQ_QH_PW to
CRLS_PW) is only about 7.18%, they were omitted from the list of user defined instructions shown in Table 3.2 on
page 22. Many of these nine instructions can be implemented if needed without any significant hardware penalty
since the required hardware already exists (for other instructions).

The most significant use of this table lies in the fact that it can be used to determine the top 10, or 5, or even 2 instruc-
tions needed to accelerate G.729. And the corresponding performance can be easily estimated from the given data.
For example, if one wants to implement only 4 instructions, then implementing DPAQS, MULQ, MAQS, and
DPSQS would result in a 133% degradation from the current performance level, which implies 56 MHZ to do encod-
ing in MIPS64, which might be an acceptable performance level for only 4 instructions. (Note that this corresponds to
a performance improvement of 2.2x over the no UDI case.)

UDI Instruction (MIPS64
version) Count Percent

Approximate
Equivalent

Cycles
Degradation if not

implemented

Accumulated
Degradation (added
up from last row of

the table)

MTU 36368 11.5% N/A N/A N/A

MFUS 8000 2.5% N/A N/A N/A

DPAQS_QH 79700 25.1% 54 162.47% 376.19%

MULQ_QH 15302 4.8% 52 30.02% 213.73%

MAQS_QH 18928 6.0% 40 28.39% 183.71%

DPSQS_QH 14400 4.5% 40 21.60% 155.32%

PICK_QH 14276 4.5% 40 21.41% 133.72%

ADDS_QH 10838 3.4% 40 16.26% 112.30%

SUBS_QH 10320 3.3% 40 15.48% 96.05%

MULQ_PW_QHL 12644 4.0% 26 12.16% 80.57%

MULQ_PW_QHH 12604 4.0% 26 12.12% 68.41%

C_LT_PW 11944 3.8% 20 8.73% 56.29%

SLAVS_PW 10881 3.4% 20 7.95% 47.56%

SRA_PW 10264 3.2% 20 7.50% 39.61%

SLAS_QH 4732 1.5% 40 7.10% 32.11%

SLAS_PW 7600 2.4% 20 5.55% 25.01%

CVTQR_QH_PW 7200 2.3% 20 5.26% 19.46%

CVTS_QH_PW 5262 1.7% 20 3.85% 14.20%

PICK_PW 4340 1.4% 20 3.17% 10.35%

CVTQ_QH_PW 3500 1.1% 20 2.56% 7.18%

ADDS_PW 2080 0.7% 20 1.52% 4.62%

MULQR_QH 600 0.2% 60 1.36% 3.10%

MFAS_PW_2D 14184 4.5% 3 1.09% 1.74%

SRAV_PW 400 0.1% 20 0.29% 0.65%

ABS_PW 400 0.1% 17 0.25% 0.36%

CRLS_QH 100 0 24 0.09% 0.11%

SUBS_PW 20 0 20 0.01% 0.02%

CRLS_PW 20 0 12 0.01% 0.01%
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4.3 Summary

We have shown that using User Defined Instructions on a MIPS32 Pro Series Core improves the performance of
G.729 by a factor of 3. The G.729 codec consumes about 52 MHz of a MIPS32 Pro Series processor, and G.729A is
about half that value, i.e., 26 MHz. At this performance level, a 4KEc core can easily support VoIP functions such as
video conferencing as well as other general OS and system functions.

We have also shown that the gate count of a UDI block for VoIP is reasonably small and is estimated to be about
23%, with two multipliers, or 15%, with one multiplier, of the total gate count for a 4KEc core. The performance pen-
alty for one multiplier (over two) is only 10%. This type of cost/performance trade-off needs to be made on a per-user
basis, and knowing all the other constraints on the system.

We have also shown that the set of instructions designed for G.729 can be augmented by only three more instructions
to cover the range of applications needed for VoIP. This includes other codecs such as G.726 and G.723.1, as well as
echo cancellation.

The disadvantage of using new state such as the accumulator registers in the CorExtend block is that it makes the
application code non-reentrant. Since there is no operating systems support to save and restore this extra architectural
state, there can only be one instance of the application active at any given time in the processor. This restriction can
be avoided if only new instructions are implemented using CorExtend without the addition of any new state.

Instead of using this feature to boost performance, the speedup obtained using these additional instructions can be
used to save power and lower the core clock frequency. For instance, by lowering the operating frequency by only
10%, power consumption can be reduced by about 20%. This reduction in core frequency has a corollary effect in that
it allows the whole core to be synthesized more for area/power and less for clock speed. This allows a saving in sili-
con area that would offset the area increase for the CorExtend block.
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