

Building BusyBox/Linux with

Navigator™ ICS

This application note describes how to configure your system and import a BusyBox Linux project into Navigator ICS.
.

Document Number: MD01031
Revision 1.00

November 5, 2013

Page 1

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Page 2

1. Introduction

This document describes how to configure your system and import a BusyBox Linux project into
Navigator ICS. Though some of the examples in this document assume you are running on a
Malta board, the information is general enough to be useful for most Linux targets. By default,
the ROM Monitor installed on Malta boards is YAMON™.

This document assumes that both Navigator ICS and Navigator Console have been installed and
that a Navigator probe is already attached via USB.

The overall concept which this document describes is to build BusyBox and the Linux kernel,
download the kernel, set a breakpoint and then use a serial console window to issue the
standard YAMON go command to start execution of Linux.

You will need a Linux host system with Navigator ICS installed and a System navigator Probe.
You might need to install additional Linux applications on your system. For example, you will
need the ncurses and make packages.

Page 3

2. Initial Software Configuration

At this point it is assumed that you have installed Navigator ICS. If not you can get the latest
release at: http://www.mips.com/
For Linux hosts, by default Navigator ICS is installed in your home directory.

Navigator ICS has some default preferences set that are geared more towards bare iron
debugging as opposed to Linux debugging. So before creating a Linux project, let’s change a few
preferences to be better suited for Linux debugging.

1) On the main menu bar select Window | Preferences…
a. In the tree view on the left side of the Preferences dialog box, expand the

C/C++ | Debug node and select the GDB MI node.
b. On the right side of the Preferences dialog box, increase the Debugger and

Launch timeouts to a value that will be high enough to account for the
kernel download time (or set them to the maximum, which is 2147483647):

i. This change is needed because some GDB commands can take a
long time to complete (i.e., downloading the kernel), and we do not
want Navigator ICS to time out before the GDB command has
completed.

ii. NOTE: This may not be needed, or the time can be greatly reduced,
if fast data can be used on your target, and the additional steps
listed in the Configuring a Debug Launch for Linux section are
followed.

Page 4

7. Create a Navigator ICS BusyBox Project by selecting File-> New-> C Project.

8. Fill in the “Project name”, and select “Makefile project” and “Empty Project”. Also select

“Sourcery CodeBench for MIPS GNU/Linux”:

9. In the “Project Explorer”, right click on the project name (BusyBox) and select “Import”:

Page 10

10. Expand the “General” item and select “File System”:

11. Click “Next”. Enter a file name in the “From directory” by browsing to the BusyBox
source directory. Then select BusyBox in the Left pane and click on “Finish”:

Page 11

#tty2::askfirst:-/bin/sh
#tty3::askfirst:-/bin/sh
#tty4::askfirst:-/bin/sh

Stuff to do when restarting the init process
::restart:/sbin/init

Stuff to do before rebooting
::ctrlaltdel:/sbin/reboot
::shutdown:/etc/shutdown

25. Cut and paste the following to a file named rc.sh:

#!/bin/sh
mount -t proc proc /proc
mount -t sysfs sysfs /sys
mknod /dev/tty2 c 4 2
mknod /dev/tty3 c 4 3
mknod /dev/tty4 c 4 4

26. Copy rc.sh and inittab to _install/etc/
27. chmod 755 _install/etc/rc.sh

Page 14

The initial configuration of the kernel .config file is the only portion of building the Linux kernel
that needs to be run outside of Navigator ICS. The .config file is not modified directly, but
instead is modified using a simple GUI. Invoke the GUI by typing make menuconfig.

1) In a console window, navigate to the directory of your kernel source.
2) To make sure the kernel source is clean, at this point you can type make distclean. This

only needs to be run once. NOTE: This command deletes any config file, so make sure it
is run before creating the .config file or running make menuconfig.

3) There are several preconfigured config files located in the ../arch/mips/configs
directory. To use one of these configurations as a starting point, type cp
arch/mips/configs/maltasmvp.defconfig .config in the console window from the root
kernel directory. NOTE: After the copy, this file should be in the root kernel directory
(not in the arch/mips/configs directory).
For example: cp arch/mips/configs/maltasmvp_defconfig .config

4) To edit the config (this example is for little endian), type make menuconfig.
5) The Kernel should be built with debugging symbols enabled.

• To enable debugging symbols, select Kernel hacking.
• Scroll down to Kernel debugging and press “Y”.

Page 16

Page 17

3) In the C Project dialog box:
a. Type the desired project name in the Project name text box.
b. In the Project type list box, select Makefile project and Empty Project.
c. In the Toolchain list box, select the Sourcery CodeBench for MIPS GNU/Linux. It

should appear similar to this:

4) Click the Finish button.

Page 21

5) To import the Linux tree, right-click on the project name (the name you entered above)
in the “Project Explorer” and select “Import”. In the select screen, expand the General
item and select File System.

6) Click Next.

Page 22

7) Select the From directory by browsing to the top of your Linux source tree.
8) Then select the linux-mti box to select all of the files in the directory and click Finish.

Page 23

6. Configuring the Build
The build command should be similar to make –j4 . This command will use up to 4 processors
for the build, which should make it faster. Of course, your build speed will depend on your Linux
system.

1) With the linux-mti project selected in the “Project Explorer”, right click and select
Properties. This will bring up the properties dialog.

2) In the treeview on the left side, select the C/C++ Build.
3) On the right side under the Builder Settings tab, uncheck the check boxes Use default

build command and Generate Makefiles automatically.
4) Also, on the right side under the builder settings tab, enter make –j4 in the Build

Command.
The screen should look like this:

5) Click OK.

Page 24

At this point, if you apply power to the Malta board (or press the reset button), you should see
text similar to that shown below and be sitting at a YAMON prompt.

YAMON ROM Monitor, Revision 02.14.
Copyright (c) 1999-2007 MIPS Technologies, Inc. - All Rights Reserved.

For a list of available commands, type 'help'.

Compilation time = Dec 17 2007 12:19:49
Board type/revision = 0x02 (Malta) / 0x00
Core board type/revision = 0x09 (CoreFPGA-3) / 0x01
System controller/revision = MIPS SOC-it 101 OCP / 1.3 SDR-FW-1:1
FPGA revision = 0x0001
MAC address = 00.d0.a0.00.02.b8
Board S/N = 0000000448
PCI bus frequency = 30 MHz
Processor Company ID/options = 0x01 (MIPS Technologies, Inc.) / 0x00
Processor ID/revision = 0x93 (MIPS 24Kc) / 0x80
Endianness = Little
CPU/Bus frequency = 32 MHz / 32 MHz
Flash memory size = 4 MByte
SDRAM size = 64 MByte
First free SDRAM address = 0x800b7de0

YAMON>

If you do not see this information, refer to the troubleshooting section at the end of this
document.

Page 27

9. Configuring a Debug Launch for Linux

1) Switch to the C/C++ perspective.
2) Make sure the Linux project is selected in the Project pane. Then use the bug icon pull-

down menu from the tool bar (at the top of the Navigator ICS screen) to select Debug
Configuration.

3) In the Debug Configuration dialog, double-click on MIPS ICS Application. This will create
a Debug Configuration using the name of the project. You can change the name to suit
your preference.

Page 28

4) On the Main tab of the debug LCD:
• Under C/C++ Application, click the Search Project button and select the desired

application (i.e., vmlinux which is in the top of the Linux directory tree).
5) On the Debugger tab, select the desired settings for your target. Although some options

for Linux debugging are specific to your target, other options should generally be set as
follows:

Page 29

7) Click the Debug button on the debug launch control dialog (LCD).
8) After the debug session has launched, the ROM monitor (i.e., YAMON) will be

running, but the Linux kernel will not yet be running. At this point, a breakpoint
can be placed in Linux. To set a breakpoint from within Eclipse, open the desired
source file (i.e., ../init/main.c) and double-click in the left margin of the source
file on the desired line of code (i.e., start_kernel).

9) To start the final Linux booting process, enter the standard command that would
be entered from the ROM monitor (i.e., YAMON) command prompt in the serial
console window (i.e., go 0x80100400 root=/init). This command may vary
depending on the bootloader/ROM monitor used. It also assumes that BusyBox
is being used as the file system.

10. Troubleshooting Q & A

Q: I don’t see any output in the serial window when I reset the Malta board.

A: Make sure the serial cable is connected to the correct serial ports on both the Malta
board and PC. Then disconnect the System Navigator probe from the Malta board. When
reset is pressed, you should now see the text as shown above in this document and
something similar to YAMON on the display of the Malta board.

Q: I see output in the serial window, but it looks different from that shown above.

A: Make sure the YAMON start variable is not defined. To check this, make sure you are at a
YAMON prompt (YAMON>) and type setenv, then press enter. You should see the
environment variable displayed on the screen. If the start variable has a value, then type
unsetenv start.

Page 31

Q: When I reset the Malta board I see power on in the Malta board display.

A: Disconnect the System Navigator probe to make sure it is not holding the processor in
debug mode, and cycle power on the Malta board. If the message remains, then YAMON
has probably been erased and will need to be reflashed.

Q: When I clicked the Hammer icon to start the build, I received an error message.

A: First read the error message to see if it gives you a clue as to what is going wrong.
Common reasons are that the build command is mistyped, the cross compiler toolchain bin
directory is not in the path, or the cross compiler toolchains have not been installed. You
can always open a shell and issue the build from there to make sure everything is setup
properly.

Q: I don’t know what kernel compilation commands I can type in the a terminal window
shell

A: At the shell prompt type make CROSS_COMPILE=mips-linux-gnu- help

Q: The code doesn’t download or doesn’t appear to be downloading properly.

A: Make sure you have built the kernel source with the proper toolchain (especially check
the endianness of the toolchain). This will be most visible by checking the build command
by right-clicking on the project in the Project Explorer and selecting properties, then clicking
the C/C++ build node. Also make sure your target is set for the proper endianness. On a
Malta board, the endianness is set by switch 2 of S5.

Q: It looks like my debug Launch has just stopped.

A: Most likely your Linux kernel is being downloaded. If you look at the red lights on the
System Navigator probe, there should be 2 lights on while the code is being downloaded.
One light is the power light and the other is the communication light, which blinks when the
probe is communicating with the target. When the code is being downloaded, the
communication light is blinking so fast it appears to be solid.

Page 32

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

