
 
 
 
 

Choosing an Intellectual Property Core 
 
 

MIPS Technologies, Inc. 
June 2002 

 
 
One of the most important product development decisions facing SOC designers today is 
choosing an intellectual property (IP) core.  It can impact product performance and quality, as 
well as time-to-market and profitability. But SOC designers face many challenges when choosing 
a core. Determining which core is most appropriate for a given SOC requires careful 
consideration. Decisions must be made about the type of core (soft vs. hard), the quality of the 
deliverables, and the reliability and commitment of the IP provider. This paper discusses each of 
these areas and offers guidance on how best to evaluate the features of competing IP cores. 
 
Introduction 
Continuing improvements in silicon manufacturing technology have made vast amounts of 
silicon real estate available to today’s design engineers. Unfortunately, the ability of engineering 
teams to design circuits has not kept pace. This imbalance has spawned the IP core industry. IP 
cores allow design teams to rapidly create large system-on-a-chip designs (SOCs) by integrating 
pre-made blocks that do not require any design work or verification. 
 
A number of difficult challenges accompany this new design style. Depending on the core, they 
can be minimized or exacerbated.  
 
First of all, IP cores may be delivered to customers in one of two forms: soft or hard. In both 
cases, the customer receives a functionally verified design. A soft core, also known as a 
synthesizable core, is synthesized by the customer and implemented in its SOC. A hard core, on 
the other hand, is fully implemented and ready for manufacturing. (Technically, a design is not 
implemented until it is manufactured. In this context, however, implemented means laid-out and 
ready for manufacturing.)  The SOC team need only drop the hard core into the chip as a single 
monolithic piece. Soft and hard cores have different problems and benefits, which are addressed 
below.  
 
An IP core jump-starts a key part of the SOC design task. The design team gets a verified design, 
which enables them to complete their chip in less time with fewer engineering and EDA 
resources. However, integrating a core into a chip requires many steps.  How easily this is 
accomplished, if at all, depends on the deliverables provided. This paper details some of the 
collateral deliverables that enable easy core integration into all stages of the SOC design process. 
 



 2

Finally, there is the IP vendor to consider. The IP industry is still young and there have been a 
number of poor products and even some failures, and they have not been confined to start-ups.  
Consequently, a customer must evaluate not only the IP core, but also the IP provider.  

Soft vs. Hard Cores 
Let’s examine the pros and cons:   

Performance 
Because soft cores are not implemented, they are inherently more flexible in function and 
implementation than hard cores.  On the other hand, hard core developers can afford to spend 
more time optimizing their implementations because they will be used in many designs. Thus, 
there is a perception that hard cores offer higher performance.   
 
In fact, high-end, full-custom hard cores designed for the most advanced processes do offer more 
performance than soft cores. By using latches, dynamic logic, 3-state signals, custom memories, 
and so on, the full-custom design team can achieve much better results than a fully static 
synthesized design. For an SOC that requires performance that pushes the limits of current 
process and design technology, a full-custom hard core is better able to meet these needs.  
 
However, if the performance target is within the range of a soft core, then the potential 
performance advantage of a hard core is immaterial. The SOC design team can meet its 
performance goals with a soft core while taking advantage of its inherent flexibility. (As process 
technology improves, the maximum frequency limits of soft cores will also improve, making 
them an option for even more SOC designs.)   
 
Even at slower clock frequencies, a hard core may offer an advantage in terms of silicon area. 
But this is not always true. Often, a hard core is simply hardened using an ASIC-style 
methodology, which offers no advantage in area of speed. In other cases, a full-custom core is 
not re-optimized for each process generation, thus diminishing its frequency and area 
advantages. 
 
Technology Independence & Portability 
One of the advantages of a soft core is that it is technology independent. That is to say, the high-
level Verilog or VHDL does not require the use of a specific process technology or standard cell 
library. This means that the same IP core can be used for multiple designs, or for future 
generations of the current design. (Some soft core IP providers use design styles that make their 
cores technology-dependent, but the advantages of this approach are unclear.) 
 
A hard core, on the other hand, is very technology-specific. In fact, if a foundry changes its 
process parameters or library factors, a hard core may not work correctly with the process 
tweaks. This introduces risk since the IP provider will need to re-verify the hard core when 
process parameters are changed. 
 
Hard cores can be ported to new process technologies, but the effort to re-optimize full-custom 
cores is significant and costly. It may take two years or more for some advanced microprocessor 
cores. Because of this, hard cores are often optically scaled for new processes. While simple and 



 3

fast, this technique diminishes many of the advantages of the full-custom optimizations done by 
the design team for the original process. 
 
Furthermore, optical scaling introduces additional risk, since it only guarantees that the new 
design meets design rules. It does not guarantee correct timing or function. Since the optical 
scaling is a short-cut design style, it can be very difficult to fully re-verify an optically scaled IP 
core. 
 
In reality, soft cores are likely designed with one technology and library in mind. The design 
itself is independent of this choice of technology but it optimized for this one technology and 
library. Similar technologies will be near-optimal, but some significantly different technologies 
(for instance, ones with very slow RAMs) may not see equivalent results. However, this effect is 
secondary. Soft cores will generally be better optimized than optically scaled hard cores. 
 
Speed/Area/Power Optimization 
Hard cores are optimized once, when they are implemented by the IP provider. Because the core 
is optimized only once, the IP provider can afford to spend significant resources. Thus, a hard 
core will typically run faster than a comparable soft core for that one technology in which it is 
implemented. But, even in that single technology, it is only optimized for one set of goals. If the 
goal is low area at reasonable performance, the highly tuned performance-optimized hard core 
may be too large for the application. 
 
Soft cores, on the other hand, can be “application optimized”: Timing, area and power targets 
can be adjusted to fit the specific embedded SOC design. For instance, if an SOC uses a 200-
MHz clock, then a soft IP core that was designed to run at 250 MHz can be targeted to run at 
exactly 200 MHz instead. This allows for smaller area and lower power while still meeting the 
design constraints.  
 
This application optimization also extends down to low-level IO timing. The IO constraints of a 
soft core can be adjusted to exactly fit the environment the core will be used in. If a hard core has 
a late output signal, there is little the SOC designer can do to improve that timing. 
 
If an SOC’s speed, area and power targets are exactly what the hard core was targeted for, then 
that hard core will be competitive. For the great majority of designs, however, a soft core will be 
better optimized for that particular SOC. 
 
Customizability 
Soft cores offer another advantage over hard cores: compile-time customizations. These are 
design options chosen prior to implementation. 
 
Cache memory size is a common compile-time customization. A soft-core processor can be 
configured for exactly the cache size needed by the specific embedded application. A hard core, 
on the other hand, cannot be customized in this way. 
 
Another customization employed in many soft cores is instruction specialization, or optional 
support for certain instructions. For example, support for external coprocessors may be 



 4

optionally included if required by the SOC.  Special hardware to enable instruction code 
compression may also be needed in some systems. However, in the systems that do not use these 
features, the extra hardware could be removed in a soft core, saving area and power. 
 
Soft cores may also include implementation configuration parameters. These are a special kind 
of compile-time customization that helps the soft core better match the design style used by the 
SOC team. For instance, a microprocessor core is typically implemented using gated clock 
circuits. However, this type of clocking may not fit well with some clock routing tools. If the 
processor core offers a compile-time setting that changes all gated clocks into equivalent 
recirculating MUXes, this could be used by the SOC team to make implementation easier. 
 
Ease of Integration 
Unless a hard core has been implemented by an internal design group, a soft core is more likely 
to be easily integrated into the flow used by the SOC design team. The reason is that SOC design 
teams will be adding RTL modules around the IP cores they have licensed. The cores will then 
look just like the other modules of the SOC and can be implemented like them, too. 
 
A hard core, on the other hand, will look more like a black-box RAM, especially if it was 
implemented using full-custom techniques. This means that a hard core provider will need to 
supply many more black-box models of the core so the SOC designers can design their modules 
around it. This is inherently more difficult than using a soft core.  For instance, a full-custom 
hard core may not have a gate-level netlist. This is because the design has been done at the 
transistor level, and gates were not used. But, the design team may need to run gate-level 
functional simulations with back-annotated timing. This will be difficult due to the lack of a 
gate-level netlist. 
 
Collateral Material 
A competitive soft IP core is not just a collection of Verilog or VHDL source files.  By the same 
token, a good hard core is not just a layout database. Today’s IP cores consist of a suite of 
deliverables that allow the SOC design team to integrate the IP core into their design. The goal of 
these collateral deliverables is to make integration of the IP core into all parts of the design 
process as easy as possible. 
 
Figure 1 shows the various SOC development activities that are affected by the IP core. This 
section discusses some of the deliverables that are necessary for both soft and hard cores. 
 
 
 
 
 
 
 
 
 
 
 



 5

Figure 1: Development tasks affected by IP cores 
 
 
 
 
 
 
 
 
t 
 
 
 
 
 
 
 
 
 
 
 
 
Documentation 
Clear and concise documentation is a prerequisite for most technical products. However, the 
number of different people who need to refer to IP core documentation is large and varying, 
which makes the documentation for an IP core particularly challenging. 
 
In Figure 1, each of the development activities has different documentation needs. For instance, 
software developers need to know the programmable features of the hardware, but they probably 
do not care to know how it is implemented. Thus, a good set of documentation makes it easy for 
software developers to find all of the information they need without wading through information 
they do not need. 
 
Finally, if the SOC team will be creating documentation for their SOC that could reuse parts of 
the IP core documentation, the IP provider should supply editable documentation source files and 
the rights to include excerpts in the SOC documentation. 
 
Interface Checkers 
The SOC team must design logic that interfaces with the various signals and protocols of the IP 
core. To determine if it has been designed correctly, the IP provider can deliver interface checker 
modules to verify correct operation of all interface signals and protocols. It can be as simple as 
ensuring that static signals do not change, or as complex as validating the correct operation of a 
multi-cycle bus protocol. 
 
These checkers can greatly simplify the effort required of the SOC team by automatically ver-
ifying correct operation for a given type of interface transaction. In the case of an illegal 

 

IP Core 

Document 
Development 

Interface 
Design 

System 
Integration 

Verification 

Software 
Development

Synthesis

Place & Route



 6

transaction, the checker should report the error so that the SOC designer can easily pinpoint the 
defective logic and debug the failure. 
 
Interface checkers must work correctly in the SOC design environment. They should be easily 
integrated into functional simulations, while not present in actual hardware. 
 
Protocol Tabulators 
The IP provider can supply another deliverable to make the interface verification easier: the 
protocol tabulator. This is a module that monitors the interface transactions, watching for various 
corner cases. The protocol tabulator remembers all of the types of transactions seen and reports 
the corner cases that have not been exercised. The IP provider must supply a list of corner cases 
that are required to enable full verification of the interface. 
 
During development, the protocol tabulator will help the SOC team determine what corner cases 
remain to be verified. Once development is complete, it also gives the SOC team the security of 
knowing that they have exercised all of the necessary corner cases. Since the IP provider has the 
best understanding of the core interfaces, this list of corner cases will be much more complete 
than anything the SOC team could devise. 
 
RAM Checkers 
If an IP core has internal RAMs that the SOC team must compile and integrate, there is a chance 
that bugs will be introduced during the process. Debugging failures caused by deeply embedded 
RAMs is very difficult for the SOC team since it typically involves tracing failures through 
internal core modules. A RAM checker can greatly ease the debug of failures caused by the 
RAM models. By quickly recognizing failures at the RAM interface, the SOC team can avoid 
debugging the internals of the IP core and quickly resolve the problem internal to the RAM. (It is 
a bad situation when the SOC team has to debug through an IP core. They should be able to rely 
on its correct operation.) 
 
Fast Simulation Model 
For SOC designers, simulating the full SOC with the RTL of a large IP core may be very slow. If 
the IP provider can supply a fast functional model of the core that is cycle accurate, the customer 
benefits from faster simulations, faster debug, and less usage of simulation licenses. Even a non-
cycle accurate model may be good enough for most SOC design and debug. As long as a final 
run of the cycle-accurate model is made, a fast functional model is beneficial during 
development. 
 
EDA Tool Support 
Another indicator of the quality of a core is the breadth of EDA tool support. Since different 
design teams may use different tools, deliverables in multiple formats supporting many EDA 
tools are typically provided in today’s advanced cores. 
 
For instance, even if an IP core was designed using Verilog, VHDL is required by customers 
who have EDA tools and methodologies built around VHDL. If a core is only delivered in 
Verilog, then the SOC team will have to go through a cumbersome and bug-prone translation in 
order to use the core. 



 7

 
Furthermore, the IP provider should deliver more than the required format. Different EDA tools 
may have different implementations of standard formats. In the example above, an IP provider 
cannot supply only Verilog RTL to a Verilog customer; it must support the specific Verilog 
simulator to be used. Otherwise, the customer may end up debugging design problems related to 
a Verilog simulator that runs a little differently than that used by the IP provider. 
 
This concept can be generalized to virtually all deliverables. For hard cores, this concept is also 
applicable in the implementation phase. A hard core must be delivered in a format that is 
supported by the SOC team’s backend tools. And the IP provider must support the specific 
backend tools to be used. 
 
Sample EDA Scripts 
To help jump-start the various design activities, the IP provider should supply example scripts 
for supported EDA tools. This is yet another way the IP provider can enable the SOC team to 
efficiently bring up their system using the IP core. The scripts may be as simple as makefiles to 
enable a compiled functional simulator. They may be as complex as a complete suite of scripts 
designed to automate the execution of functional regressions. In any case, example scripts are 
almost always useful for SOC designers. 
 
For soft cores, example synthesis scripts are almost a requirement. At a minimum, they should 
give top-level constraints, false-paths, and multi-cycle paths. If possible, scripts implementing 
several industry-standard synthesis methodologies should also be included. Of course, the 
simpler these example scripts are, the easier it will be for the SOC designer to understand, 
modify, and integrate into his or her flow. 
 
Functional Core Verification 
Although SOC designers do not change the RTL design of the soft IP core, they do change some 
functions as a normal part of chip design. Examples of things that change the function of the 
design include scan-chain insertion, clock buffering and RAM BIST integration. The SOC team 
needs to be able to verify that these changes have not affected the correct operation of the core. 
 
One way to verify that the new design has not functionally changed from the old one is for the IP 
provider to supply a test bench and test suite to fully verify the correct operation of the core. 
Unfortunately, the complete test suite for many cores is too large to be delivered as part of the IP 
core. So, most IP providers select a subset of the full verification suite that can be run to verify 
correct operation. Most of the time, this subset is more than adequate to find any bugs that may 
have been introduced by the above types of design changes. 
 
However, formal verification tools are a much more thorough method to guarantee correct 
operation. These tools mathematically prove that the new design is equivalent to the old one. 
Support for formal verification tools can eliminate the need for the SOC team to run the above 
gate-level regressions. 
 
Software Co-Development Tools 
The standard way to develop software for a new system is to first manufacture sample hardware 



 8

and then develop the software to run on it. In many cases, however, this prolongs the time to 
market, so software development often occurs in parallel with hardware development. 
 
Software development requires much faster system simulation than hardware development. 
Thus, the IP provider must deliver a very fast functional model of the IP core. This provides 
enough performance for low-level firmware development. 
 
For greater simulation speed, hardware logic emulators are sometimes used that can run an order 
of magnitude faster than a pure simulation (though they are still 2-3 orders of magnitude slower 
than actual hardware). These tools are notoriously difficult to use and require special synthesis. 
For SOC teams that plan to do hardware and software co-development, support for these 
technologies is a key requirement from the IP core. 
 
Evaluating the IP Provider 
There are many companies that offer IP cores. Many are small, start-up design houses, and some 
are large, well-established companies using IP cores as a new method of delivering their designs 
to customers. Unfortunately, the size of a company is not an indicator of IP core quality.  The 
SOC designer should verify the commitment a company has made to IP core products. 
 
Designed for Reuse? 
For example, an IP provider that is not completely committed to IP cores has offerings that may 
only be previous designs repackaged as IP cores. A company that is serious about building high-
quality cores will design them from scratch with reuse in mind. This section details some 
hallmarks of designs made to be reusable. 
 
First of all, watch out for soft cores that are the source code for a full-custom hard core. Since 
these designs were not originally made to be synthesizable, they will be poor products when 
compared to those designed to be synthesizable. When making a hard core, optimizations can be 
made based on the known implementation style. However, in a soft core, the implementation is 
not yet done, so these shortcuts should not be taken since they may result in non-functional or 
sub-optimal implementations. 
 
Another thing to look for in a soft core is registered interface signals. By registering IOs, internal 
logic can be timing-independent from anything the SOC team hooks up. Furthermore, it enables 
easy timing predictability and gives very good timing constraints to the SOC designer. All of 
these things make SOC design easier. 
 
A soft core that was designed from the beginning to be reusable will typically have more 
configuration choices and more flexibility in implementation. It will also likely be delivered with 
multiple design environments in mind. A design made without reuse in mind will be less flexible 
in function and implementation. 
 
Complete Product Line 
Another sign of a good IP provider is a complete IP core product line. If you choose a soft core, 
make sure that the company offers a complete soft core product line for future product 



 9

enhancements. If you choose a hard core, make sure it is offered in all of the process 
technologies that you will be using. 
 
Also, verify that the IP provider has a clear direction for future IP core development. Do they 
plan to expand their soft core offerings? How do they plan to port hard cores to new process 
generations? (Watch out for optical scaling of full-custom cores.) 
 
Maintenance and Support 
The quality of product maintenance and support is not unique to IP cores. However, watch out 
for young companies that lack dedicated support. Even for established companies, the 
infrastructure required for maintaining IP cores is somewhat specialized. Here is a checklist of 
items to look for: 
 
• Does the company have a clearly documented way for the customer to get help in answering 

questions? 
• How is the SOC team charged for support? (Are you in danger of losing support?) 
• Is the company forthright in disclosing bugs in its designs? 
• How often does the company make new releases to fix bugs? 
• Does the IP provider make maintenance releases that add new functionality to the IP core or 

its collateral deliverables (e.g. support for more EDA tools)? 
• How responsive is the company once a support issue is submitted? 
• If the support response is too slow, can an issue be escalated? 
• How knowledgeable is the first-line support staff? 
 
In many cases, the quality of support is not a part of the initial IP core purchase decision. 
However, poor support can become a major problem at a time in the project when the design 
team desperately needs help. The highest quality support is imperative for project success. 
 
Conclusion 
The field of IP core design is a new one. There are many companies vying for design wins in this 
rapidly expanding field. The SOC designer must be careful to evaluate the designs and the IP 
provider companies carefully to avoid the many pitfalls that can happen with any new 
technology. 
 
The optimizations used in creating a hard-core may be useful for a minority of designers whose 
requirements are exactly what the hard core was targeted for. But, the flexibilities that are 
possible with a soft core will be optimal for the great majority of designs: 
 
• Application optimization 
• Compile-time customizations 
• Technology independence 
• Ease of integration into SOC flow 
 
An IP core with poor deliverables can also be difficult to integrate into an SOC flow. Therefore, 
it is very important to evaluate the IP core deliverables to make sure the correct EDA tools are 
supported and all steps of the SOC flow can be addressed properly. 



 10

 
The choice of the IP provider is perhaps as important as the choice of the IP core itself. An IP 
provider that is making a significant commitment to IP cores is an absolute necessity. 
Furthermore, the SOC team needs to know that the IP provider will be there in the future to 
support the product as well as to introduce the new products. 
 
There are many challenges facing today’s SOC designer. Using a high-quality IP core from a 
reputable company should make those challenges easier, not more difficult. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Wave Computing, Inc. All rights reserved. 
www.wavecomp.ai




