
Document Number: MD00535
Revision 2.02

August 22, 2011

Increasing Application Throughput on the
MIPS32® 34K® Core Family with

Multithreading

2 Increasing Application Throughput on the MIPS32® 34K® Core Family with Multithreading, Revision 2.02

Contents

Section 1: Overview.. 3

Section 2: Single-Threaded Workloads .. 3

Section 3: Using Multithreading to Increase Throughput... 4
3.1: Increasing Audio Throughput .. 4
3.2: Increasing Throughput in the Presence of a File I/O Workload... 6

Section 4: Discussion .. 7

Section 5: Summary ... 7

Section 6: Additional Reading... 8

Increasing Application Throughput on the MIPS32® 34K® Core Family with Multithreading, Revision 2.02 3

1 Overview

The MIPS32® 34K® core family implements the MIPS® Multithreading ASE, which enables fine-grained hardware
multithreading. Cores in this family are capable of issuing an instruction from one of up to nine hardware thread con-
texts every cycle. Thus, when one thread is blocked from running due to an event such as a cache miss, instructions
from another thread context (TC) can be issued instead, recovering cycles that would otherwise be wasted. With the
right combination of threads and the appropriate choice of scheduling policy, multithreading can significantly
increase the efficiency of a single core. There are different ways to measure the increase in efficiency, but in this
paper we will focus on increase in system throughput as the key metric.

System throughput, broadly defined, is the amount of useful work done per unit time. In some cases, a system must
maintain a minimum level of throughput for correct behavior. For example, in an audio processing system we can
define throughput as the number of frames processed per second. The correct behavior of this system requires a min-
imum throughput to meet real-time constraints; otherwise, audible errors will result as frames are dropped. A system
capable of greater than real-time throughput has frequency headroom that can be used for other tasks.

For a system-on-chip (SoC) designer, the need to maintain a certain level of throughput often leads to a multi-core
design where real-time tasks, such as audio processing, are partitioned from the OS and its associated services on a
separate core. In other cases, usually for low-cost solutions, a single core is used, and significant effort is required to
balance the various workloads. The 34K core family offers more options. By increasing the efficiency of a single core
and giving greater control to thread scheduling policy, multithreading can in some cases allow a two-core solution to
be reduced to a one-core solution, saving significant die area and power. For single-core solutions, increasing the
throughput of real-time tasks can allow higher-complexity or even multiple streams to be processed. And regardless
of the number of cores used, the flexible scheduling options of the 34K core family make it easier to balance the shar-
ing of processor resources by multiple workloads.

In this paper, we will look at how multithreading can be used to improve throughput on a MIPS32® 34Kc core rela-
tive to a single-threaded MIPS32 24KEc core. Since the 34Kc core pipeline is based on the 24KEc core pipeline, this
comparison provides a good indication of the benefits that come directly from multithreading. Focusing on audio pro-
cessing and file I/O, two workloads common in set-top box (STB) and digital television (DTV) applications, we will
show that multithreading can deliver a 31% increase in audio throughput. In addition, we will show that when audio
processing is run concurrently with file I/O, multithreading can deliver a 226% increase in audio throughput without
significant impact on file I/O throughput.

2 Single-Threaded Workloads

The first workload of interest is audio processing. We selected processing likely to be performed in a STB or DTV
application: a cascade of a Dolby® Digital (AC-3) decoder, an SRS TruSurround XT® post-processor, and a sample-
rate converter. A single block (six per frame) of audio passes through each codec sequentially, and we measure aver-
age throughput for the audio-processing cascade in frames per second (fps), for the processing of 100 frames. Inter-
mediate data buffers are used, allowing for producer-consumer memory access locality. So, the same data written by
a producer codec are read by a consumer codec, making it likely that the data are still in the cache.

The second workload is a file transfer task. We measure the average throughput, in megabytes per second (MB/s), for
transferring a 100 MB file from one disk location to another. The file is transferred with a user-mode program that
makes system read() and write() calls on 16 KB chunks. Both workloads run as processes under a uniprocessor Linux
kernel on a 24KEc core, as illustrated in Figure 1, below. Note that for this experiment the core is implemented on a

3 Using Multithreading to Increase Throughput

6 Increasing Application Throughput on the MIPS32® 34K® Core Family with Multithreading, Revision 2.02

3.2 Increasing Throughput in the Presence of a File I/O Workload

Having looked at the benefit multithreading can deliver to the throughput of a single workload, we now turn our atten-
tion to the interaction of two workloads, each competing for the resources of a single processor to complete their
respective tasks. Our single-threaded and multi-threaded setups are the same. On the 24KEc, the audio processing and
file I/O workloads each run in their own respective processes under a uniprocessor Linux kernel. On the 34Kc core
the uniprocessor OS and file I/O workload run within a single thread context on one VPE, and the multi-threaded
audio workload runs in a bare-iron environment on the other VPE.

As shown in the third row of Table 2, when both workloads are run on a 24KEc with default Linux priorities, the
audio throughput is 1.87 fps with a corresponding file I/O throughput of 1.34 MB/s. This is a 71% decline in audio
throughput relative to the 6.43 fps we measured without file I/O (row 1). On the other hand, file I/O throughput is only
16% lower than the value measured without the audio workload of 1.59 MB/s (row 2). Again, keep in mind these
numbers are for a 33 MHz core, and on a 266 MHz 24Kc LV file I/O throughput starts out at 10.5 MB/s. What hap-
pens if we use the Linux scheduler to try and return audio throughput to its previous level? The result can be seen in
row 4. Even when the audio process receives maximum priority, its throughput is only 5.82 fps, and this increase
comes at great cost to file I/O throughput, which drops to 0.20 MB/s. The inability to improve the throughput of one
workload without starving the other would make it very difficult to run both on the same core while still meeting real-
time constraints.

When the same workloads are run on the multithreaded 34Kc core, we see dramatic improvements in efficiency. With
the default equal-priority round-robin scheduling of the 34Kc core’s policy manager, audio throughput is 6.70 fps and
file I/O throughput is 0.95 MB/s (row 5). This audio throughput is higher even than the single-threaded case without
file I/O, and it represents a 258% increase over the 1.87 fps observed on the 24KEc. Of course the 0.95 MB/s is less

Table 1 Audio Throughput Increase1

1. Test Conditions: (a) input stream was 100 frames, 5.1 channels, 256 Kbps, 48 KHz; (b) TruSur-
round XT configured with TruSurround®, TruBass® and Dialog Clarity™ enabled and 5.1 chan-
nel input; (c) 24KEc core bitfile on CoreFPGA™ 3 at 33 MHz CPU with SOC-it® system
controller, 16KB/16KB write-back/write-allocate caches and 4:1 CPU to SOC-it clock ratio; (d)
34Kc core bitfile options same as 24KEc core with addition of inter-thread communication (ITC)
memory; (e) Linux kernel had 100Hz tick rate, 32-entry TLB and 120 MB memory size.

Core Speed Configuration Throughput IPC

24KEc FPGA 33 MHz Single-Threaded Audio in Linux Process 6.43 fps 0.720

34Kc FPGA 33 MHz Multi-Threaded Audio on VPE1, Linux on VPE0 8.45 fps 0.898

Table 2 Audio and File I/O Throughput1

1. Test Conditions: all conditions identical to those of Table 1.

Core Speed Scheduling Policy Workloads
Audio

Throughout
File I/O

Throughput IPC

24KEc FPGA 33 MHz Linux, equal-priority Audio 6.43 fps -- 0.720

24KEc FPGA 33 MHz Linux, equal-priority File I/O -- 1.59 MB/s 0.253

24KEc FPGA 33 MHz Linux, equal-priority Both 1.87 fps 1.34 MB/s 0.388

24KEc FPGA 33 MHz Linux, highest-priority audio Both 5.82 fps 0.20 MB/s 0.655

34Kc FPGA 33 MHz Hardware, equal-priority round-robin Both 6.70 fps 0.95 MB/s 0.847

34Kc FPGA 33 MHz Hardware, raised-I/O-priority round-robin Both 6.11 fps 1.26 MB/s 0.804

3.2 Increasing Throughput in the Presence of a File I/O Workload

Increasing Application Throughput on the MIPS32® 34K® Core Family with Multithreading, Revision 2.02 7

than the single-threaded file I/O throughput, but this is largely due to the default round-robin scheduling. There are a
total of four hardware thread contexts, each with equal priority, but these are disproportionately divided between the
two workloads. So with round-robin, on average the audio workload gets more scheduling opportunities.

We can compensate for this by switching to a fixed-priority scheduling policy and raising the priority of the file I/O
thread. The effect is that any time the file I/O thread is able to run, the processor runs it exclusively. The results are in
row 6. File I/O throughput increases to 1.26 MB/s, within 6% of its single-threaded level, and audio throughput goes
to 6.11 fps. This is still a 226% increase in audio throughput, relative to the single-threaded system, with only a 6%
decrease in file I/O throughput. Another way of looking at the results is that at the same clock speed required to pro-
cess one real-time audio stream on a 24KEc core, a 34Kc core could process three without impacting file I/O through-
put.

4 Discussion

In part, the large disparity between single-threaded and multithreaded system throughput stems from the inability of
Linux to interleave process execution at a fine enough grain to mask the stalls of the file I/O workload. The result is
that processor time is always divided with some proportion between the two workloads, but there is never an increase
in core efficiency. By moving context-switching between threads to the hardware level, the 34Kc core can switch out
a blocked thread in only one cycle, a level impossible to achieve with software.

As we saw, hardware scheduling policy can be used to alter the balance of processor time allotted to running threads.
In fact, the 34K core was designed to allow even more flexibility in scheduling policy than was used in this experi-
ment. A more sophisticated policy manager called weighted round-robin can be used to assign threads to groups
which, on average, get unequal fixed fractions of processor time. For even more control, the core even allows for
closed-loop feedback control. A software layer on top of the policy manager could monitor the behavior of individual
threads and dynamically adjust policy manager parameters to make quality-of-service (QoS) guarantees. This is par-
ticularly useful for real-time tasks, when throughput is absolutely critical for correct system behavior. For more infor-
mation on 34K core scheduling policies, consult the "Programming the MIPS32® 34K Core Family" (MD00427)
guide.

The reader should keep in mind that all of the absolute throughputs reported in this paper are for 33 MHz FPGA
implementations of the cores. A higher speed processor will obviously increase absolute throughput. Less obviously,
the speed will also have an impact on the relative speedup from multithreading. Due to the complexity of the interac-
tions of the workloads, Linux, and the hard disk drive, though, it is impossible to extrapolate the expected behavior
for a system of arbitrary speed. However, so long as the file I/O workload remains a low-IPC task, inefficiently utiliz-
ing the processor, and so long as the real-time audio workload continues to be impacted by heavy disk activity, the
34K core will offer significant advantages for improving overall throughput.

5 Summary

In this paper we have shown that the multithreading capabilities of the MIPS32 34K core family can be used to
deliver significant increases in core efficiency and utilization. For an example STB or DTV audio-processing work-
load, this led to a 31% increase in throughput compared with a single-threaded 24KEc core. When this workload was
run concurrently with a file I/O workload we showed a 226% increase in audio throughput with only a 6% decrease in
file I/O throughput. We discussed how this increase in efficiency and throughput could be used to process higher-
complexity or multiple real-time streams simultaneously, or how it could be used to reduce a two-core SoC design to

6 Additional Reading

8 Increasing Application Throughput on the MIPS32® 34K® Core Family with Multithreading, Revision 2.02

a one-core design. Additionally, we discussed how the flexible scheduling policies of the 34Kc core could be used to
balance the throughputs of various workloads and make real-time guarantees.

6 Additional Reading

• "Programming the MIPS32® 34K® Core Family" (MD00427)
• "MIPS® MT Principles of Operation" (MD00452)
• "Getting Started with the VPE-loader and AP/SP API" (MD00453)
• "MIPS32® Architecture for Programmers Volume IV-f: The MIPS® MT Application-Specific Extension to the

MIPS32® Architecture" (MD00378)

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 LƴŎǊŜŀǎƛƴƎ !ǇǇƭƛŎŀǘƛƻƴ ¢ƘǊƻǳƎƘǇǳǘ ƻƴ ǘƘŜ aLt{онϯ опYϯ /ƻǊŜ CŀƳƛƭȅ ǿƛǘƘ aǳƭǘƛǘƘǊŜŀŘƛƴƎΣ wŜǾƛǎƛƻƴΥ нΦлн

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

