

1 of 9

The Benefits of Using MIPS® Processors
for Consumer Audio Applications

by Rajesh Palani and
Radhika Thekkath

MIPS Technologies, Inc.

Consumer devices such as mobile audio players, set-top boxes (STBs), digital TVs
(DTVs), and digital versatile disc (DVD) players and recorders are typically implemented
using a multi-function system-on-chip (SOC). Such an SOC performs two primary
functions: application processing and video/audio signal processing. The application
processing (or host processing) is usually handled by a programmable core such as a
MIPS® processor. Video signal processing, due to its degree of computational
complexity, is done using dedicated hardware. Audio signal processing is somewhat less
computationally demanding than video, and in the past, has been handled by hardwired
logic or a digital signal processor (DSP).

However, audio subsystem requirements have increased because consumer products need
to support more complex algorithms, advanced pre/post processing, and full-duplex
encode decode simultaneously. As audio requirements grow, processor frequencies
increase due to architectural innovations enabling programmable processors such as those
from MIPS Technologies to execute demanding audio applications along with host
functions.

It is possible to build two types of SOC architectures to execute audio applications on a
MIPS core: (1) one CPU that does host processing and a second CPU dedicated to audio
processing (see Fig 1), or (2) a single CPU that does both host and audio processing.
There are significant benefits associated with using a MIPS processor for audio
processing. Most notably, this type of solution provides:

• A single processor architecture for highly integrated SOC solutions
• A reduction in the total SOC design and manufacturing cost
• A programmable audio processor that extends the life of the SOC design
• A time-to-market advantage, and
• The MIPS™ Soft Audio Interface, which facilitates application software

development and integration

Multi-Core SOC Architecture for Audio

2 of 9

In the multi-core scenario the host CPU runs the operating system, end user applications,
and services, while a dedicated audio processor runs the audio processing function.
Several MIPS Technologies licensees have SOC implementations for consumer
electronic devices that use a dedicated MIPS core for audio processing.
In general, using a MIPS processor for audio provides a programmable solution.
Programmability implies that an existing design can be adapted easily for a variety of
audio algorithms. This provides two key benefits: the ability to target a single SOC for
multiple end-user applications, as well as extend the life of the SOC design since audio
standards continue to evolve and change rapidly.

An advantage of a dedicated audio processor is that it does not compete for CPU cycles
with other applications and therefore has a lot of headroom. This headroom on the audio
co-processor can be used in multiple ways: (1) the spare CPU cycles can be used to
encode and decode multiple streams simultaneously, (2) it can be used to ensure the
highest audio quality in high-end designs, or (3) the headroom can be used to reduce the
frequency of the processor by reducing the voltage, and thus lower the power
consumption of the audio sub-system and the entire SOC.

The advantage of using a programmable processor for audio algorithms is particularly
apparent with this configuration, since it provides a scalability that can address constantly
evolving worldwide audio standards. With a dedicated DSP, current performance and
power needs may be satisfied, but they may not scale to meet future requirements. MIPS
processors for audio offer a clear and easy migration path to higher-performance
processors, which are binary-compatible with their predecessors.

When audio processing is done on a core separate from the host CPU, a communication
mechanism is needed between the host and audio processor. Building a communication
interface between two MIPS cores is much simpler than building one between a MIPS
CPU and a DSP. For example, the LL/SC (Load-Linked/Store-Conditional) instructions
available on MIPS CPUs can be used very easily to build a
communication/synchronization mechanism.

Figure 1 Audio Processing Architectures

4 of 9

misses in the audio decoder can be reduced. Alternately, the SPRAM can be used to hold
commonly used data arrays, which could decrease data cache misses.

Comparison between Single-Core and Multi-Core SOC Architectures for Audio

 Single-Core Audio Multi-Core Audio
Target consumer device or
application

Those that are not expected
to require a lot of headroom

Those requiring a lot of
headroom now or in the
future

Target markets Low-end Mid- to high-end
Power requirements Reduces power by

eliminating the DSP IP
block from the SOC

Reduces power by
customizing core frequency
to meet audio requirements

SOC die size Lower chip area by
eliminating the DSP

Extra chip area for the
dedicated audio core

Inter-processor
communication

No extra support required,
use a memory location as a
synchronization flag

Use the LL/SC MIPS32®
architecture instructions to
build a synchronization flag

Lowest-Cost Total Solution: Using MIPS Processors for Audio
When making decisions about the architecture of a system, several major costs need to be
considered such as: licensing, royalty, die size, development tools, and design-time.

If a single-core SOC architecture can be used, especially for low-end systems, this
eliminates the DSP altogether, lowers the total die size, and eliminates the DSP license
fee and royalty. This translates to a reduction in overall cost for SOC manufacturers and
OEMs.

Whether SOC vendors choose to run audio on a dedicated core or move audio processing
onto the host, software development tools costs are lower since the same tool-chain can
be used to develop both host-based and audio applications. A major component of the
tools cost is the maintenance associated with the tools. In the case of a home-grown
DSP, this can be a significant part of the total cost.

Developers who use a MIPS core for control functions and a DSP for audio processing
must learn two different development environments. A typical development environment
may include the operating system, compiler, simulator, emulator, debugger, trace tool,
probe and profiler. However, when the same core is re-used, there is only one
development environment to learn, reducing overall design time and, hence, design cost.

Pre-optimized Audio Software Provides a Time-To-Market Advantage
MIPS Technologies and its audio software partners provide a wide range of optimized
audio applications for MIPS32® cores. These include many of the standard audio codecs
used in consumer applications such as digital cameras, digital camcorders, STBs, DTVs,
and DVD players. These highly optimized algorithms, together with high-performance
development tools provided by MIPS Technologies, allow developers to focus on driver
application development and integration, rather than optimization of standard audio
algorithms.

5 of 9

For customers who desire to tune other audio/DSP algorithms, the MIPS™ DSP Library is
available as part of the MIPS™ Software Toolkit. This library implements a variety of
signal processing functions that have applicability in speech compression, echo
cancellation, noise cancellation, channel equalization, audio processing, etc., and include
common functions such as filters and FFT. These functions have been optimized for
various MIPS Technologies processor families.

There are many features of MIPS cores that allow efficient execution of DSP-like
applications. The optimized audio codecs and the DSP Library take advantage of these
features to offer important benefits:
▪ The use of 32-bit integer data for internal computation in all audio algorithms

provides the best possible audio quality.
▪ The MIPS32 Multiply-Accumulate (MADD) instruction is very effective in coding

DSP MAC operations.
▪ The data prefetch instruction in the MIPS32 architecture is used when appropriate in

DSP loops. This allows the prefetching of data into the cache for the next iteration,
while executing the instructions of the current iteration. This has a significant savings
in the total run time since cache miss latencies are avoided.

▪ When a small memory footprint is desirable for the most cost-efficient solution, the
MIPS16e™ Application Specific Extension (ASE) is used to reduce the program
code size. This is simply provided as a compile-time option, which offers a
significant reduction in program code size.

In addition to the features above, the software uses other techniques to extract the best
possible performance:
▪ Hand-coding of the computation-intensive critical operations in MIPS32 assembly
▪ Hand-scheduling on a core-by-core basis to minimize load-to-use1 bottlenecks
▪ Loop unrolling and software pipelining commonly used for the best code scheduling

To offer maximum flexibility, all the algorithms in the MIPS Consumer Audio Platform
are implemented in software. However, SOC designers can implement emerging audio
standards using the instruction set of a MIPS core via the CorExtend™ feature. User-
defined instructions (UDIs), or CorExtend, allow the addition of new instructions and
state for application speed-up. This customization capability provides performance
improvements as well as product differentiation for an SOC vendor.

Migration Path
MIPS Technologies has a history of continually improving performance, through
increasingly sophisticated core design and through architectural advancements. In the
core arena MIPS Technologies has improved clock speed performance with the addition
of an 8-stage pipeline to product offerings. In the architecture area, MIPS Technologies
has improved IPC performance through the addition of the Release 2 Architecture.

1 A load instruction’s data arrives from the cache/memory system after the instruction needing the data
starts executing – the processor stalls until the data is available

6 of 9

Continuing its commitment to improved performance, MIPS Technologies recently
introduced an ASE for Multi-Threading (MT) a MIPS processor. This has particular
relevance to the audio marketplace. The MIPS MT ASE improves overall system
performance by filling pipeline stalls with useful work from another available thread. But
the more significant feature of MT ASE for audio is that it provides mechanisms for
quality-of-service scheduling.

The MT ASE has a concept of multiple Virtual Processing Elements (VPEs) that can
share a single pipeline. In an audio environment, two VPEs can be used: one to run an OS
and the other to run the audio application. The MT ASE allows scheduling policies where
specific tasks are guaranteed a minimum allocation of the processor bandwidth. In
addition, it provides a Quality of Service (QoS) feature. The combination of these two
features can guarantee a real-time execution of the audio application without skipping
any audio frames, while also servicing all other real-time tasks as well as the OS in a
timely manner.

The QoS feature essentially eliminates the impact of OS interrupts on the performance of
the audio function. Normally, interrupt service introduces considerable variability in the
execution time of the thread that “takes” the exception. The MT ASE provides a
mechanism that causes any asynchronous exception raised to be deferred until an OS
thread (non-exempt thread) is scheduled. This increases the interrupt latency in a
bounded and controlled manner for OS tasks while preserving the performance of the
audio task. If interrupt handler execution takes place only during issue slots not assigned
to exempt real-time QoS threads, interrupt service has zero first-order effect on the
execution time of such real-time code.

Example Use of a MIPS Audio Decoder
An audio decoder is typically accessed from a driver application. The driver is
responsible for extracting the incoming bit-stream from the appropriate input device and
for sending the decoded bit-stream to an audio output device, as shown in the figure
below. It might also perform other post-processing functions, such as bass management
on the decoded audio bit-stream, before sending to the output device. The driver accesses
a MIPS audio product via a standard interface mechanism, the MIPS Soft Audio
Interface (SAI). This common interface allows easy porting of the main application
across the various audio decoders from MIPS Technologies.

7 of 9

The MIPS SAI provides the interface functions and structures between the decoder and a
main program or RTOS for high-level control and monitoring of decoder operation. The
interface provides access to parameters that control decoder operation and access to status
and error information. The interface implements three basic functions: one to initialize
the decoder, one to read a frame header, and one to actually do the decode processing.
For every decoder there is a data structure with pre-determined fields relevant to a
specific decoder. The decoder reads and updates the structure for every frame. At the
beginning or end of a frame the main program can access the data structure to read status
or change control parameters. Refer to the example code below which illustrates the
operation of a driver program. The functions in the MIPS SAI are highlighted.

int main(void)
{

decoder_specific_struct dec_ptr;

//Initialize the decoder.
mips_sai_dec_init(&dec_ptr);

//Open the bitstream input device.
open_input();

//Open the audio output device.
open_output();

//Allocate buffers for decoder operation.
allocate_buffers(&dec_ptr);

while(not-end-of-input-bitstream)

Main
Application

MIPS Soft Audio Interface

Audio Decoder

Input / Output Device Drivers

Bit Stream
Input
Device

Audio
Output
Device

Bit
Stream

Audio
Samples

8 of 9

//Read the input bitstream.
read_input(&dec_ptr);

//Read the frame header for encoded stream parameters.
mips_sai_dec_readheader(&dec_ptr);

//Set up params for decoder operation.
setup_params(&dec_ptr);

//Decode the frame
mips_sai_dec_process(&dec_ptr);

//write the decoder output to the device driver.
write_output(&dec_ptr);

end-while

//Close the input and output devices.
close_input();
close_output();

return 0;
}

9 of 9

Summary
The various features available on MIPS processors offer a number of benefits when
executing consumer audio algorithms. These include a single programmable architecture,
lower system cost and reduced time-to-market. This makes MIPS processors a viable and
attractive solution for audio applications in consumer devices ranging from battery
powered mobile audio players to high performance DVD recordable devices.

For more information, please visit the company’s website at www.mips.com.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

