
Document Number: MD00545
Revision 1.00

February 2, 2007

Multi-Threading for Efficient Set Top Box SoC
Architectures

This paper introduces the challenges in building set-top box architectures and describes how some of these challenges are met using an
underlying hardware multi-threaded processor. The benefits offered by multi-threading transcend performance and provide additional

significant benefits for designing an efficient system overall, encompassing hardware as well as software aspects. This paper describes some of
these advantages in detail.

2 Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00

Contents

Section 1: Introduction... 3

Section 2: SoC Partitioning with Multi-Threaded Processor Cores... 4
2.1: Replace Two Single-Threaded Cores with One Multi-Threaded Core .. 4
2.2: Replace a Single-Threaded Core with a Multi-Threaded Core.. 5
2.3: Defining a New SoC Architecture using a Multi-Threaded 34K Core .. 5
2.4: Performance Advantages of a Multi-Threaded Processor Core.. 6
2.5: Quality of Service .. 8

Section 3: SoC Partitioning for Set Top Boxes.. 9
3.1: Module View .. 10
3.2: Executing Audio and the OS on a Single MIPS32® 34K™ Core .. 10
3.3: Executing only Audio Functions on a 34K™ Core... 10
3.4: Executing only the OS and Control Functions on a 34K™ Core ... 11
3.5: Functional View ... 11

3.5.1: Analyzing the Components and the Requirements for Performance and QoS................................ 11

Section 4: Software Architecture of a Set Top Box... 12
4.1: Design and Implementation... 13
4.2: End User Experience... 14
4.3: Platform Life Span ... 14

Section 5: Conclusion .. 14

Section 6: References .. 15

Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00 3

1 Introduction

Set-top box (STB) manufacturers are facing significant challenges today in designing the hardware and software sys-
tem architecture. These challenges include, for example:

• Growing performance requirements due to additional features.

• An increasing variety of standards that must be supported in the same box: MHP, OCAP, DVB-T/S, etc.

• Cost pressures leading to new price/performance points which are hard to reach with traditional architectural
approaches.

These challenges apply to both entry-level products as well as full-featured products, while the latter are particularly
impacted with an increasing convergence of features and services. And moreover, these designs must complete with a
minimum time to market.

An effective way to address these challenges would be to use a multi-threaded processor core in the system design. A
few salient features of hardware multi-threading as applicable to this discussion, and as implemented in the
MIPS32® 34K® core family are:

• Duplication of user architecture state, that is, thread contexts (TCs) in hardware, reducing the context switch
overhead to zero.

• Dup.ication of system architecture state in hardware allowing multiple virtual processing elements (VPEs) to
share the same computing resources.

• Fine grained context switching, that is, the ability to issue instructions from different TCs in consecutive cycles,
allowing hardware to fill stall cycles arising from any cause.

• User-definable and user-programmable thread scheduling policy allowing QoS for real-time tasks.

For a more complete description of the MIPS MT architecture or the 34K processor core, please refer to the appropri-
ate documents.

For STB products, multi-threading not only offers performance benefits, but also a cost reduction in the overall sys-
tem. It can also improve the power and energy efficiency of the system. The MIPS® MT (multi-threading) ASE
(Application Specific Extension) offers quality of service (QoS) scheduling policies for threads. Using this QoS fea-
ture can provide real-time guarantees in hardware and improve the behavior of the product.

For software, multi-threading offers flexibility in the effective use of the available computing resources, and this type
of flexibility can be used to layer applications such as audio, JVM (Java Virtual Machine), and security on top of the
operating system. This reduces development time and decreases time to market for the product in question.

An additional benefit comes from the zero cycle hardware context switching, which allows fast interrupt processing
and hence a reduction in the latency of response to an interactive task. For example, in a PVR, the time from when a
user presses a button on a remote control to the response as seen by the user in terms of the redrawing of the screen is
an essential part of the user experience for that product. An important metric in a set-top box is the time to draw an
EPG (Electronic Program Guide) or render a browser page. With the overall performance benefits of multi-threading
including the latency reduction from fast context switching, this drawing time can be minimized for a better end prod-
uct.

2 SoC Partitioning with Multi-Threaded Processor Cores

4 Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00

This document first expands upon the general advantages offered by multi-threading for hardware and software
before discussion of the specific topic of Set-Top Boxes. The document proposes new system partitioning options to
reach new price/performance points. This analysis is based on the MIPS® 34K® core family and its unique multi-
threading capabilities.

2 SoC Partitioning with Multi-Threaded Processor Cores

When a new SoC architecture for a STB is being developed, there are advantages to using a multi-threaded processor
in one of two possible ways, listed here:

1. Two or more non-multi-threaded processors can be replaced by a single multi-threaded processor, or

2. A single non-multi-threaded processor can be replaced by a multi-threaded processor.

In either case, the use of a multi-threaded processor opens up new possibilities for system-level optimizations and
software efficiencies. The two sections that follow provide details for these two possibilities. This chapter also
includes a section on the performance that can be obtained with a multi-threaded architecture. The final section of this
chapter deals with the quality of service feature and its benefits.

2.1 Replace Two Single-Threaded Cores with One Multi-Threaded Core

This scheme replaces two single-threaded processors with one multi-threaded processor like the MIPS 34Kc™ pro-
cessor. In this situation, in the original design, one processor would typically serve as the control application proces-
sor running Linux or a similar operating system. This processor’s main task is to control the overall system functions
on the SoC. In current designs this processor is also increasingly executing more and more Java-based applications.

The second processor is typically running tasks that are sensitive to real-time response, and which will require QoS
(Quality of Service). QoS may be required for guaranteed throughput, for example an audio application like Dolby
Digital, or for guaranteed low latency, for example a voice application. This processor may also run security tasks
like Digital Rights Management (DRM).

The key benefits of replacing the two single-threaded processors by one multi-threaded processor like the 34Kc pro-
cessor core are:

• Lowered price/performance point: This comes primarily from a cost reduction due to smaller chip area,
reduced royalty, and elimination of multiple development tool chains for heterogeneous architectures. With two
processors, there is non-negligible communication overhead, which has an impact on performance and area. The
interconnect hardware as well as software contribute to the overhead with either a coherent or a non-coherent
architecture. Having a unified tool chain can also shorten time to market since software designers have a smaller
overhead with a single tool-chain which can be used to create and debug software on a single platform.

• Simplified and more flexible partitioning of computing resources: The computing resources of a single
multi-threaded processor can be efficiently allocated as needed across the applications. Examining the overall
instructions per cycle of typical control applications, it is clear that half or more time is spent idling, waiting for
memory or some other long latency event. Using two processors then is very wasteful resulting in gross under-
utilization of computing resources. Multi-threading the tasks on the same processor fills the idle slots with effec-
tive use of all resources on the processor. The QoS-sensitive tasks will still be guaranteed their needed compute
resources through the core's QoS logic and thread policy manager. Extremely critical code can be loaded and

2.2 Replace a Single-Threaded Core with a Multi-Threaded Core

Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00 5

locked in the level-one cache or stored in scratchpad memory, although this is not unique to multi-threading, the
34K processor core allows for this possibility.

• Lower power consumption: The higher pipeline efficiency due to multi-threading reduces the overall power
consumption per executed task. Avoiding the use of a second processor reduces overall power consumption since
the leakage current from a second processor is eliminated.

2.2 Replace a Single-Threaded Core with a Multi-Threaded Core

The key benefits from replacing one single-threaded core with one multi-threaded are:

• Higher performance from the more efficient single pipeline, and

• Better quality of service (QoS), due to real-time scheduling.

If higher performance is not the main focus, then another benefit is reduced power consumption and/or reduced cost.
Because of the higher pipeline efficiency due to multi-threading, the processor operating frequency can be lowered or
the clock can be switched off once the compute task are completed. There is potential area reduction when the core is
synthesized at a lower clock frequency.

There are two very different scenarios to consider, based on the tasks being performed by the single-threaded proces-
sor core:

1. An processor running both the operating system as well as real-time sensitive tasks is replaced with a
multi-threaded processor: Using a multi-threaded implementation such as the MIPS32 34Kc processor core,
the operating system and the real-time sensitive tasks can be separately executed via different Virtual Processing
Elements (VPEs) to imitate a multi-processor solution. Alternately, these tasks could also execute on the differ-
ent hardware Thread Contexts (TCs).

2. A processor executing either QoS sensitive tasks or executing an operating system including, for example,
Java applications, is replaced by a multi-threaded processor: Application tasks can typically be partitioned
either manually or automatically into multiple threads. In the case of Java, the operating system can automati-
cally tie applications executed on a Java virtual machine to TCs.

2.3 Defining a New SoC Architecture using a Multi-Threaded 34K Core

The definition of a new SoC architecture is always a significant challenge and undertaking, whether needed for a next
generation product requiring more features at a lower cost, or for entry into a new market. The required features have
to be mapped onto hardware and software functional units. Multi-threaded processors, because of their additional per-
formance, QoS policy, and the ability to provide task isolation, can take on more features at almost negligible addi-
tional cost. Moreover, when there is an existing set of hardware modules or software libraries, the flexibility for re-
partitioning these components is higher with multi-threading.

In an SoC solution that uses asymmetric multiprocessors, the performance requirement of each individual processor
core must be pre-determined in a situation where the standards and feature sets are changing. This can lead to over-
estimation when allowing for the potential extra headroom, leading to costlier end-products. In this type of situation,
if the multi-threading processor can handle the processing needs of the asymmetric multiprocessors, then it offers a
significant benefit since it eliminates the need to accurately estimate the performance needs of each individual core.
With a multi-threaded solution, only the overall performance requirements need to be estimated to design the chip. A
multi-threaded solution eliminates the need to move applications off an overloaded digital signal processor to the
main processor or vice versa. It also eliminates the need to shift security-type applications off the secure processor to

2 SoC Partitioning with Multi-Threaded Processor Cores

6 Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00

the generic processor. The flexibility of a multi-threaded processor as the single compute resource may not only elim-
inate a redesign and speed up the product availability, but it may also give the semiconductor product a larger market
window. A broader product portfolio could be generated as well.

All the benefits of multi-threading discussed so far also apply in the context of designing a brand new SoC architec-
ture. Briefly, these benefits include, the higher pipeline efficiency due to multithreading that reduces the overall
power consumption per executed task. A second core can be often avoided which saves leakage current. The fre-
quency and voltage of the processor can be lowered to save power. Clock and power can be switched off after task
completion while the core is idle. Transistors with a higher threshold voltage can be used to reduce leakage current.

2.4 Performance Advantages of a Multi-Threaded Processor Core

Multi-threading can be used to efficiently hide memory latencies caused by cache misses. It can also be used to hide
the latency of any operation, for example, peripheral access on an I/O bus, non-cached multi-cycle memory accesses,
or multi-cycle latency multiply operations. Peripheral access latency are often not negligible. Non-cached multi-cycle
memory accesses are sometimes used for data structures and buffers modified by another master or for sparse data
access patterns while preserving the contents of the data cache. In high frequency synthesizable designs, the pipeline
stages are deep enough that operations such as multiplies and divides may stall the main issue pipe long enough that
efficient multi-threading schemes can fill those idle cycles with useful work from other threads. Also the bubbles
caused by mispredicted branches can be filled in this way. The 34K core has the ability to do fine-grain context
switching on the active threads, and hence is capable of filling any stalls cycles in the core as long as there are other
active threads in the system. Hence the 34K core can fill not only the long latency stalls such as cache misses, but it
can also fill stalls that happen for other reasons such as data dependency, multiplies, synchronization, etc.

In a single threaded system where instructions are primarily executed from the instruction cache, the overall system
performance depends, among others, on the instruction cache miss rate and the number of cycles required to fetch the
instruction so the CPU can continue execution. The instruction cache miss rate depends on the application, primarily
on the spatial and temporal locality of the instruction accesses, and the size and configuration of the cache.

When the cache miss rate in the system is very low or negligible, then the majority of the pipeline stalls are caused by
pipeline dependencies, long latency operations like multiplies and divides, stalls due to thread synchronization, or
stalls from branch misprediction. In this situation, the multi-threaded processor that can fill these stall cycles with
useful instructions from another thread would result in better overall performance than a single-threaded processor
that is unable to fill these stall cycles. Having the ability in the hardware to fill branch misprediction stalls is impor-
tant since these are impossible to schedule around unlike stalls due to say multiplies and other data dependencies.

The dark blue line in Figure 1 shows how in principle the system performance is affected by the cache miss rate. The
shown behavior is valid for the instruction cache as well as for the data cache. The performance degradation also
depends heavily on the memory sub-system behind the cache. A high performance fast memory system has lower
degradation. The implication of performance degradation due to memory latency is the under-utilization of the CPU
pipeline and other resources due to stalling.

In a multi-threaded system, the CPU stall cycles from one thread are typically filled by instructions from another
thread. The red line of Figure 1 shows this scenario. The more threads that are available, the higher the CPU utiliza-
tion. But this reaches a point of diminishing returns as the number of stall cycles gets smaller, saturating the pipeline
with the growing number of threads. And when all the threads are using the same memory sub-system, including
caches, then saturation can occur much faster, leaving the CPU still somewhat under-utilized.

2 SoC Partitioning with Multi-Threaded Processor Cores

8 Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00

run-time jitter of each thread is lower if a different memory-subsystem is used. This approach could be beneficial for
very QoS sensitive routines.

The best application profile for this approach occurs when one task of the application has compact code and/or data
size. This could be for example, a computation-intensive signal processing task that spends most of its time in an FFT
loop which fits in the SPRAM. If the computation-intensive task requires a significant portion of the overall available
performance (e.g. 35 percent or more), then the memory sub-system for the other tasks can be simplified, for exam-
ple, the cache sizes may be reduced, without reducing the overall performance.

Note that performance gain by overcoming stalls due to pipeline dependencies is not discussed in detail in this sec-
tion. When task behavior has been characterized, for example, as computation-intensive, or branch-intensive, then
this information can be used to guide the software partitioning decisions. Alternately, if the IPC (Instructions Per
Cycle) for each task is measured along with its cache workload characteristics, then this information can also be used
in the software partitioning decisions.

2.5 Quality of Service

Multi-threading can increase the quality of service. There are three possibilities:

1. Using a background thread to monitor throughput-oriented threads and to give the thread more cycles if needed,
using whatever mechanism that exists for controlling thread scheduling. In the case of the 34K core, this could be
the weighted round-robin policy manager implemented in hardware as described below.

2. Assigning critical tasks to individual threads with individual TCs for immediate response. Also, two critical tasks
can be executed interleaved and can respond significantly faster than if they are executed one after another.

3. Using the hardware thread scheduling policy supported by the MIPS MT architecture. This allows the user to
define the policy in hardware which is software controllable using programmable registers. The 34K core imple-
ments a hardware policy manager for both a round robin as well as a weighted round robin scheduling mecha-
nism. The core also allows the addition of a new hardware policy manager like earliest deadline first or
guaranteed percentage scheduling, if the two examples provided are not adequate to meet the specific needs of an
application.

QoS improvements in general:

There are some ways to guarantee that hard real-time threads meet their deadlines. Note that most of these techniques
apply to both single-threaded as well as multi-threaded processors.

1. Give these threads sufficient performance headroom such that the worst case runtime jitter for any thread is cov-
ered without causing a glitch in the real-time response. This headroom is often less than the accumulated head-
room needed for traditional multi-core solutions. This is because the worst-case performance peaks do not appear
simultaneously in a statistically probable environment and hence do not need to accumulated when computing
the worst-case margins on a single processor core.

2. The needed headroom can be reduced by dedicating cycles to a critical thread via pure hardware or mixed hard-
ware/software policy managers. MIPS MT provides the flexibility of optimizing these policy managers on a per
system basis. By using a mechanism such as the policy manager, the need to utilize the DMT (Disable Multi-
Threading) instruction to switch into single threaded mode can be reserved only for absolutely critical situations.

3. The system designer can optionally separate the memory subsystems and interrupts of very QoS sensitive com-
ponents from the others to get lowest runtime-jitter:

3 SoC Partitioning for Set Top Boxes

10 Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00

video decoder, graphics engine, audio, memory, front end, and the peripherals. High-end devices may provide two
memory controllers for two banks of external DDR memory to meet data bandwidth needs. The number and type of
peripherals vary depending on the end product definition, for example, not every product needs PCIe and a hard drive.

The right side has limited access to the security sensitive front end on the left. The system CPU cannot access the
peripherals and memories on the right side, except the dual ported communication RAM. It cannot configure the
DMA unit.

3.1 Module View

There exist a three options where a multi-threaded 34K core can give major advantages:

1) Executing audio, the operating system and control functions on a single 34K core.

2) Executing only audio functions on a 34K core.

3) Executing only the operating system and control functions on a 34K core.

3.2 Executing Audio and the OS on a Single MIPS32® 34K™ Core

Especially for entry-level systems, it is highly desirable to merge the audio decoding functionality into the system
CPU as shown in Figure 3.

The audio algorithms can be executed on a separate TC or even better a separate VPE using its own low-overhead
real-time OS or on bare iron (no operating system). The benefit of doing this is the cost savings from eliminating the
dedicated audio decoding engine, saving chip area and potentially lower royalty cost. The overall computing
resources can be better utilized if it is a shared core, rather than having two cores with unutilized remaining resources.
This has a beneficial lowering effect on the energy efficiency of the system.

This is an ideal solution for highly integrated low-cost set top boxes, especially for customers new in this field, who
do not have an audio decoder or customers who want to eliminate the existing audio decoder.

The QoS requirements for the audio processing can be guaranteed by an appropriate system configuration, as men-
tioned in the QoS section earlier. It is usually sufficient to provide a small amount of performance headroom and reg-
ulate the execution of the audio thread via a software managed weighted round-robin policy manager. Depending on
the buffer depth for the audio and depending on the performance headroom available, it may also be useful to analyze
whether a separate ISPRAM is needed. A separate VPE instead of a TC also has the major benefit that VPEs have
dedicated interrupts and do not block each other.

3.3 Executing only Audio Functions on a 34K™ Core

When using the multi-threaded 34Kc core for audio only, the audio processing tasks are split into multiple threads.
Audio encode and decode streams should be separated from each other for maximum efficiency. Also, different audio
processing steps, like Dolby Digital decoding, SRS TruSurround XT®, sample rate conversion, bass management,
etc. can be separated into different threads for optimal performance. These audio processing algorithms typically
work in a cascaded fashion, with the data generated by the back-end of one algorithm being used by the front-end of
the next algorithm in the sequence. When correctly configured to execute with pipelined parallelism, the resulting
data sharing in the cache between different threads leads to additional performance improvement. The obtained per-
formance gain is dependent on the exact algorithm mix and their interaction, but a performance gain of over 30% can

4 Software Architecture of a Set Top Box

12 Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00

• Real-time events in the millisecond range

• Soft real-time events

• Background tasks

Software partitioning on the system is normally done based on these categories, the functional components, and the
interaction between these components.

The different functional components include:

• Hardware video decoder control: This occurs mostly on a field-by-field basis. It must react within tens of mil-
liseconds or less to keep the video decode active in real-time. The CPU controlled video processing can also be
done on a finer granularity, for example, using multi-threading. This can allow more flexibility for error-recov-
ery as well as support the processing of non-standard bit streams.

• Hardware audio decoder control: It is a requirement that the audio stream run continuously, but due to the
lower data density of audio stream, compared to video, the control activity is less demanding then for the video
control process.

• Software audio decoder: The audio decoder, if implemented on a MIPS core either dedicated for audio or
shared with other functionality, is a throughput-oriented compute task with specific performance requirements.
The performance needs are very dependent on the implemented algorithm.

• Transport demux: The data stream coming from the front-end gets parsed and the individual audio, video, and
information streams get stripped out and routed to the specific accelerators or memory. This is done primarily in
hardware. Electronic Program Guide (EPG) information is usually interpreted in software. In this task, the
MIPS32 bit extract instructions can be used to efficiently parse the data stream. For more information on these
bit extract instructions see the specifications for the MIPS32®, MIPS64®, and the MIPS® DSP ASE architec-
tures.

• Hardware descrambling control: The descrambling method could be Digital Encryption Standard (DES), Dig-
ital Video Broadcast (DVB) standard, or the National Renewable Security System (NRSS).

• MHP/OCAP: The new Multimedia Home Platform (MHP) and similar standards like OCAP are open middle-
ware system standards. The execution environment is based on the use of a Java virtual machine and generic
APIs running on the system CPU that can control the overall system.

4 Software Architecture of a Set Top Box

MHP and OCAP define an extensive application execution environment for digital interactive TV, independent of the
underlying, vendor-specific, hardware and software. This execution environment is based on the use of a Java virtual
machine and the definition of generic functions that provide access to the interactive digital TV terminal's typical
resources and facilities. The interoperable MHP applications are run on top of these APIs. MHP and OCAP consist of
a mix of soft real-time events, background tasks, and events in the millisecond range. One of the operating systems
for set top box products supporting the MIPS32® 34K core’s multi-threading architecture is SMTC Linux. SMTC
stands for Symmetric Multiprocessing on TCs and understands the concept of lightweight TCs.

4.1 Design and Implementation

Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00 13

Figure 4 Set Top Box Software Architecture

A typical MHP terminal software architecture is shown in Figure 4. The middleware, or (multi)media framework, is
one of the most complex elements. Although there is no specific standard for this, the Khronos Group has published a
generic API which captures the design philosophy found across most middleware implementations. Specifically, in
[4] it is mentioned that: The resulting design uses highly asynchronous communications, which allows processing to
take place in another thread, on multiple processing elements, or on specialized hardware.

Asynchronous communication is used not only by the middleware, but also in the MHP layer provided by the hard-
ware/drivers vendor. At the OS level, asynchronous communication translates to running multiple execution threads,
managing buffers, and handling thread and buffer-related events and interrupts.

The important point here is that media stack architectures such as MHP are inherently multi-threaded. Each layer has
a few execution threads passing buffers around, responding to hundreds of interrupts per second, with sufficient
cycles leftover for downloadable applications.

From the software architect's perspective, what would be the benefits of running a media stack on a MIPS 34K core
with SMTC Linux? The next few sections describe the main benefits and show how these benefits impact the whole
product life cycle.

4.1 Design and Implementation

By definition, each layer is designed, implemented, and tested as a component by different vendors in different envi-
ronments. Particular vendors assume a certain level of system performance and for good reason. Once all pieces of
the puzzle are in place, the reality may be that some software layer in some hard-to-reproduce context doesn't get the
expected performance. This sort of typical scaling problem can be prevented well in advance by the system software
architect.

The key observation here is that VPEs and TCs scale much better than software threads running on a single-threaded
processor. A hardware context switch is more deterministic and is orders of magnitude faster than a software context
switch. The beauty of multithreading is in its scalability: each thread runs as though the whole CPU is dedicated to
itself.

Operating System and Hardware Platform Drivers for:
Audio, Video, Restricted Security Control, Storage, Interfaces etc.

Java Virtual Machine Middleware

MHP/OCAP API
and underlying functions like

JMF, DVB SI, DSM CC,…

MHP/OCAP Apps, PVR, EPG, User Interface,
Downloadable Apps (Xlets)

Native
Interface

Hardware: Security, Transport, Video Decode, Graphics, Storage,
Interfaces etc.

FW
Loader

5 Conclusion

14 Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00

Partitioning the system load properly on VPEs and TCs brings this ideal closer to life. Obviously, the other benefit
here is in the low overhead and scalability of the thread management and synchronization primitives (mutexes, condi-
tion variables, and semaphores) due to the hardware based implementation. Determinism and speed in thread context
switches and synchronization help the vendors to shorten the development time and deliver better-tested components.

4.2 End User Experience

Once the basic MHP terminal is up and running, the next challenge is to accommodate downloadable MHP applica-
tions. Since the terminal is better balanced by design using the hardware multi-threaded MIPS32 34K core, there is
more CPU performance available for the applications and the overall user experience improves. Most likely none of
these applications will get dedicated hardware TCs, but the MHP Implementation component could run in its own
VPE and as such be a lot more accommodating.

In Figure 4, the Firmware (FW) Loader is the essential element for field upgradeability. Often this involves enabling
even more functionality. Internet access with bidirectional references between broadcast video and web content,
smart-card access for e-commerce, or caching broadcast applications for faster start-up are just few examples. More
functionality invariably translates in more threads and thus requires even better scalability.

4.3 Platform Life Span

New features are added constantly to any multimedia platform and MHP is no exception. One document [5] calls spe-
cifically for better scalability in MHP 1.1.2 in the context of multiple video decoders and multiple tuners. From the
Middleware Implementation's perspective, multiple video streams processing requires very little change; just instanti-
ate few more video control objects/threads.

The hardware platform has to be able to scale properly to this extra load and the hardware multi-threading has the
potential to achieve that. Consider features like simultaneous display of I-frames and scaled video or mosaic style
EPGs with audio from other services. Then add supporting access to files in pluggable file systems (memory cards,
USB-2 storage class devices) and multi-threading pressure becomes even greater.

The challenge for the software architect is to leverage the existing infrastructure while adding new components. A
hardware multi-threaded platform is by far the best choice to meet not only the present scalability requirements but
also the one coming with the new standards.

5 Conclusion

The MIPS32 34K processor core, with its implementation of the MIPS MT architecture, provides performance and
QoS benefits to set top box designs. This document has shown several approaches to leverage this technology. Multi-
threading helps the SoC and software architects to optimize the system effectively, reducing unused performance
overhead. Multi-threading also improves the price/performance point of an end product and shortens the development
cycle for the SoC and system designers.

4.3 Platform Life Span

Multi-Threading for Efficient Set Top Box SoC Architectures, Revision 1.00 15

6 References

[1] The MHP Knowledge Project, “The MHP Guide“, Institut für Rundfunktechnik GmbH, Mar. 2006.

[2] “Increasing Application Throughput on the MIPS32® 34K™ Core Family with Multithreading”, MD00535,
MIPS Technologies, Oct. 2006.

[3] “MIPS® MT Principles of Operation”, MD00452, MIPS Technologies, Sept. 2005.

[4] The Khronos Group Inc., “OpenMAX™ Integration Layer Application Programming Interface Specification Ver-
sion 1.0”, http://www.khronos.org/openmax

[5] Jon Piesing, “Introduction to MHP 1.1.2”, http://www.mhp.org

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 aǳƭǘƛπ¢ƘǊŜŀŘƛƴƎ ŦƻǊ 9ŦŦƛŎƛŜƴǘ {Ŝǘ ¢ƻǇ .ƻȄ {ƻ/ !ǊŎƘƛǘŜŎǘǳǊŜǎΣ wŜǾƛǎƛƻƴΥ мΦлл

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

