
Document Number: MD00547
Revision 01.01

August 22, 2011

Multi-Threading Applications on the
MIPS32® 34K® Core

This paper introduces the hardware multi-threading features of the MIPS32 34Kc processor core. The main focus of discussion in the paper is
to present performance benefits from executing certain classes of micro-benchmarks as well as a real-world application on such multi-threaded

processors. The paper also describes techniques to use the multi-threading support built into the core to reduce the overall execution time on
legacy as well as new applications.

2 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01 3

Section 1: Introduction... 5

Section 2: Single- and Multi-Threading .. 5
2.1: Reducing Application Execution Time ... 6

2.1.1: Single-Threaded Applications .. 7
2.1.2: Multi-Threaded Applications... 7

Section 3: MIPS32® 34Kc™ Core Multi-Threading Architecture.. 8
3.1: Architecture ... 8
3.2: Virtual Processing Element (VPE)... 9
3.3: Hardware Threads and Thread Context .. 9
3.4: New Instructions .. 10

Section 4: Multi-Threading Application Performance ... 11
4.1: Benchmarking Configuration ... 11
4.2: C Functions and Small Applications .. 12
4.3: MPEG-2 Encoding and Decoding.. 13
4.4: Hand-Coded DSP Kernels... 16
4.5: Analysis ... 18

Section 5: Creating Multi-Threaded Applications.. 19
5.1: Migrating POSIX® Pthreads-based Applications Written in C... 20
5.2: Performance Profiling .. 20

Section 6: Conclusion .. 21

Section 7: References .. 21

4 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01 5

1 Introduction

Reducing a software application’s execution time is a primary concern of software developers as a means of improv-
ing end-user experience and adding value. Reducing execution time allows for a range of possible benefits, including:

• Increased throughput, e.g., decoding more MPEG-2 video frames per second,

• Using the extra available processor time to add functionality,

• Lower energy consumption, through the ability to reduce processor clock speed for the same throughput, and,

• Lower cost, if lower frequency and hence less costly system components can be used.

The MIPS32® 34K® and 1004K™ families of cores implement the MIPS® Multi-Threading (MT) ASE [4], which
provides hardware support for multi-threading software through the implementation of virtual processor elements
(VPEs) and thread contexts (TCs). Through the use of multi-threading, software applications can be executed by the
MIPS 34Kc core in fewer cycles than on single-threaded MIPS cores, such as those from the MIPS® 24K™ family
of cores. In this application note we discuss the use of multi-threading on the MIPS32® 34K™ core [1] as a means of
effectively reducing an application’s execution time with less developer effort than traditional single-threading
approaches.

We begin with a brief definition and comparison of single- and multi-threading operation in Section 2 “Single- and
Multi-Threading”, introducing concepts useful to the remaining discussion, results, and examples. Section 3
“MIPS32® 34Kc™ Core Multi-Threading Architecture” introduces the 34Kc core architecture, with a focus on the
architectural features that support multi-threading operation. Section 4 “Multi-Threading Application Performance”
presents execution time benchmark results for the MIPS32 34Kc core and MIPS32 24Kc core on several different
types of application. Section 5 “Creating Multi-Threaded Applications” discusses how to use the multi-threading sup-
port built into the MIPS 34Kc core to reduce the execution time of both legacy and new applications.

2 Single- and Multi-Threading

Before examining the MIPS32 34K processor core’s approach to multi-threading, it will be helpful to review a few
important concepts and terms. Readers familiar with the concept of multi-threading may wish to skip directly to
Section 3 “MIPS32® 34Kc™ Core Multi-Threading Architecture”.

We will begin by defining the opposite of multi-threading: a single-threaded application is an application that exe-
cutes a single stream of instructions. This is a natural fit to traditional processor architectures that physically support
decoding of a single instruction stream. The execution of the instruction stream in a single-threaded application may
essentially halt while the processor waits for some condition to be met, such as data to be loaded into cache or for a
floating-point operation to complete. (The processor itself is not necessarily completely halted in this state; it might
be interruptible, for example, depending on the processor architecture.) In this condition the application is said to be
blocked: the processor is doing no useful work and the application’s execution time is increasing.

The efficiency of multiple single-threaded applications may be improved using an approach known as multitasking.
Multitasking is usually implemented at the operating system (OS) level by a task scheduler that switches execution
periodically among the currently executing applications, giving the appearance of true parallelism and allowing use-
ful work to be performed even when one or more of the applications is blocked. In co-operative multitasking the

2 Single- and Multi-Threading

6 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

application and the OS must work together to enable task switching. In pre-emptive multitasking, the OS may choose
when to switch tasks without requiring the programmer or program to be aware of the multitasking environment.

In either case, a set of information about each application—the application state—must be maintained to allow the
execution to be started and stopped without error. The application state is typically maintained by the operating sys-
tem, and the size of the state determines the cost of a context switch, which ultimately impacts the execution-time per-
formance of the system. Typically, the state is large, meaning that the OS does not switch applications as often as it
might if the cost to switch were lower. The result is that while the processor is doing useful work more of the time
compared to the non-multitasking case, there is room for improvement.

Further improvement can be made through the use of multiple threads of execution within an application, where a
thread is some stream of instructions within the application. Threads can share much of the application state, with the
result that far less state is required per thread than for the complete application—e.g., instruction pointer, stack
pointer, copies of some registers, but little more—significantly lowering the cost to switch between threads. The
lower switching cost can reduce the amount of time the processor is stalled, in turn reducing application execution
time relative to the case where threads are not used. Figure 1 depicts the conceptual advantage that can be realized if
a processor supports multiple threads of execution through the reduction or elimination of the lengthy process swap.

Threads can also be used for automatic dataflow synchronization within an application, by allowing one thread to
block on the output of another. For example, one thread might read data from an external device, pre-process it, and
write it to a buffer managed by a second worker thread for computation. If the external device is busy or slow, the
first thread may block (no data to write), causing the second to also block (no data to read), with both resuming when
there is data available.

Software threads, like tasks, are also typically managed by the operating system. Software applications executing on
POSIX®-compliant operating systems can make use of a special library, the POSIX threads library (Pthreads), to
explicitly create and use software threads.

2.1 Reducing Application Execution Time

With the brief discussion of tasks and threads behind us, we now discuss approaches to reducing application execu-
tion time. We start by considering the approaches used to reduce the execution time of single-threaded applications,
and then consider the impact of adding threads.

Figure 1 Using multiple threads of execution can improve application execution-time performance by
allowing useful work to be done under conditions that would stall a single-threaded application.

9 units

27 units

Process 1 Process 2 Process 3 Process swap

Instructions

Memory stall

Multi-
Threaded
Processor

Single
Threaded
Processor

Process 1
Process 2
Process 3

2.1 Reducing Application Execution Time

Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01 7

2.1.1 Single-Threaded Applications

Traditionally, four general techniques are used to reduce execution time for single-threaded applications. First, the
algorithm and implementation can be optimized to reduce the work that must be performed or to minimize run-time
stalls or latencies. The application is typically profiled to learn the locations of the application’s “bottlenecks” or
“hotspots”—the functions or loops that are responsible for the bulk of execution time or application inefficiency—
and what causes them. Once identified, there are many approaches to hotspot optimization, including re-implement-
ing algorithms by hand, changing the fundamental data types used for improved performance, and carefully specify-
ing the placement of data in memory. Such optimizations can yield impressive results, but not without cost: the
optimization process is generally labor-intensive, and can lead to the creation of special case code that doesn’t per-
form well over the desired range of inputs and operating conditions.

Second, the speed of the processor or memory (or both) can be increased. This may not decrease the absolute number
of cycles required to execute the application, but by executing instructions at a faster rate the end result is the same: a
lower execution time. This approach can be effective, particularly if a faster processor variant can execute the soft-
ware without modification (as is true of MIPS family processors). However, it may not be a practical approach due to
a variety of logistical and physical factors. For example, there may not be a faster processor family member available
given a specific project or product budget. Faster generally means greater energy consumption and this may result in
an increase in the cost of the system processor due to factors such as managing thermal dissipation.

Third, fixed-function hardware may be added to the system. This is possible in modern system-on-chip (SoC)
designs, particularly those designs that are organized around a standard on-chip bus interface and protocol. Fixed-
function hardware is typically both more energy efficient that a programmable solution and has a lower execution
time. Disadvantages include availability and cost (i.e., silicon area and licensing), and if the fixed-function IP is not
readily available, creating the IP may be impractical or too time consuming.

Finally, compromise may be used: features discarded or output quality sacrificed. Naturally, compromise can be the
least attractive of all the options listed here.

2.1.2 Multi-Threaded Applications

As defined earlier, a multi-threaded application utilizes multiple threads of execution. The use of threads allows the
application as a whole to continue doing useful work whenever a single thread becomes blocked, provided that there
is another thread able to do useful work and that the thread switch can occur. Adding multi-threading support to
application software can be relatively straight-forward, e.g., through the use of well-defined calls to the Pthreads
library, and require less effort than some of the options discussed above.

Before discussing how threads are created and used, we will explore how threads can be applied to the application
software. As an example, consider a web server application, which is the back end that provides data to the familiar
web browser application. The web server application has much to do; although not an exhaustive list, we can imagine
that at any given time the web server must:

• Listen for new TCP/IP connections, and establish new connections when requested.

• Process requests for pages (HTML source, images, and so on) over the TCP/IP connections already established.

• Tear down (i.e., free the resources for) old TCP/IP connections that are no longer in use.

A web server is a natural candidate for a multi-threaded implementation: it is expected to serve hundreds if not hun-
dreds of thousands of connections and transactions per second, and the web server performance is expected to scale
linearly with the number of connections and transactions. From the short list of tasks above it is clear that making a
thread to handle each task might be a reasonable approach. For example, a thread might listen for new TCP/IP con-

3 MIPS32® 34Kc™ Core Multi-Threading Architecture

8 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

nections, and launch a new worker thread to handle any page requests related to the connection. Another thread might
iterate over the list of connections, looking for inactive connections to free.

The use of multi-threading works well for the web server because important web server resources—the network con-
nection and disks to store the content—have relatively high latency compared to the computational requirements of
the transactions being processed. Thus, web server threads can be expected to block frequently while waiting for data
transfers to complete, presenting opportunities for other threads to be executed even with software thread scheduling
(multitasking).

By utilizing threads, the application developer can improve the performance of the application by making use of the
time the processor would have otherwise been stalled. This can be achieved with less effort than required for the opti-
mization techniques described in Section 2.1.1 “Single-Threaded Applications”. In Section 5 “Creating Multi-
Threaded Applications”, we will discuss the general approach to implementing a multi-threaded application using a
POSIX-compliant thread library (Pthreads, as used in Linux operating systems) for thread creation and use.

3 MIPS32® 34Kc™ Core Multi-Threading Architecture

But first, we will discuss a new approach to multi-threading at the hardware level that offers high performance on
threaded and unthreaded code: the 34K® family of cores and the MIPS® Multi-Threading ASE (MT ASE).

In the following sections we present an overview of the 34Kc™ core architecture and instruction set features, with a
focus on the features directly relevant to multi-threading. We will then discuss the thread switching mechanism
before presenting benchmark results for a set of multi-threaded applications. Readers familiar with the 34Kc core
may wish to skip this section and move directly to Section 4 “Multi-Threading Application Performance”.

3.1 Architecture

The 34Kc core implements the MIPS Multi-Threading ASE (MT ASE) [4], and extends the MIPS32 24Kc core with
additional hardware and instruction set support for up to two virtual processing elements (VPEs) and up to nine hard-
ware thread contexts (TCs). Each TC stores the state for a single thread of execution. The definitions of both VPEs
and TCs are briefly expanded upon in the following sections. Figure 2 depicts the MIPS 34Kc core architecture.

A 34Kc core implementation may include 0, 8, 16, 32, or 64 KBytes of instruction and data caches. Implementations
of the MIPS 34Kc core may also include a floating-point unit, CorExtend™ user-defined instructions, scratchpad
memory, a front-side level two (L2) cache, and a fixed-mapping memory management unit (MMU). These optional
features are not directly relevant to the use of multi-threading. Readers who wish to learn more about the 34Kc core
architecture are referred to [1] and [2].

Implementations of the 34Kc core may also include inter-thread communication storage (ITC), a means of synchro-
nizing thread execution and data flow using gating storage. An ITC is a set of 64-bit cells that exist in the memory
map and are accessed using load and store operations. The address used to access a 64-bit cell defines the cell’s view,
which in turn defines access-based behavior. For example, access to a particular view may block or not depending on
whether the ITC is full or empty, allowing fine-grained thread synchronization. Note that this document is principally
concerned with the use of multi-threading with high-level software such as the POSIX® Pthreads library, which at
the time of writing did not support ITC. Applications executing on bare iron may be expected to make heavy use of
ITC to implement synchronization mechanisms typically provided by the OS. For further information on ITC consult
[1].

3 MIPS32® 34Kc™ Core Multi-Threading Architecture

10 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

• The program counter and 32 integer general-purpose registers

• The HI/LO register pair and the additional accumulator registers defined in the MIPS DSP ASE

• The privilege mode bits from the Status register

• The address space ID (the ASID field of the Coprocessor 0 EntryHi register), to allow the software thread
assigned to the TC to operate in a separate address space

• Coprocessor access state bits from the Status register

To minimize the hardware required to hold and maintain the TC, many registers are not stored in the TC. This
includes, for example, Coprocessor 1 registers.

A TC can be free or activated. Only free TCs may be allocated to new threads and only activated TCs may be sched-
uled by the thread scheduler. An activated TC may be running or blocked. Instructions are fetched and executed for
running TCs according to the implementation-dependent scheduling policy in effect. One such policy, provided by
MIPS, is a round-robin policy that issues one instruction from each running TC in turn. An instruction from a running
TC may be momentarily stalled, for example, due to functional unit delays. A blocked TC is one that has issued an
instruction that depends on an explicit synchronization event that has not yet occurred. For example, a thread
assigned to a TC may request synchronization with an external event via the external yield manager. The thread will
be in a blocked state until the external condition is met, at which point the TC may be rescheduled for execution (i.e.,
will return to the running state). This feature can be used to automatically and efficiently synchronize software with
fixed-function hardware.

Independent of being free or activated, a TC can be halted. A halted TC cannot be allocated, even if marked free, and
cannot execute instructions, even if activated. The state of a halted TC is stable, making this state useful when, for
example, one thread, running OS code, needs to manipulate the contents of another, as may be the case when software
must support more threads of execution than there are hardware TCs. An activated TC can also be placed offline by
code executing in the EJTAG Debug Mode, preventing the TC from being scheduled.

An activated TC may cause an exception during execution, causing the remaining activated TCs within the parent
VPE to be suspended while the exception is handled. Activated TCs may also be suspended if privileged software
deactivates multi-threaded execution. A suspended TC can have active instructions in the pipeline, but cannot take
any action that would cause an exception or otherwise change VPE state. (Exception handling is complicated in a
multi-threading system; the reader is encouraged to review [4] to learn more.)

It is important to note that apart from initial configuration, the process of switching execution among a pool of acti-
vated threads is automatic and independent of software intervention. Hardware state allows a thread switch on the
34Kc core to complete in a single cycle, significantly faster than the tens to thousands of cycles of thread switching
latency in an operating system executing on a single-threaded processor.

3.4 New Instructions

The 34Kc core implements the eight instructions of the MIPS MT ASE [4]:

• FORK and YIELD control thread allocation, deallocation, and scheduling, and are available in all execution
modes if implemented and enabled.

• MFTR and MTTR (move from thread context and move to thread context, respectively) are system coprocessor
(Coprocessor 0) instructions available to privileged system software for managing thread state.

4.1 Benchmarking Configuration

Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01 11

• EMT and DMT are privileged Coprocessor 0 instructions for enabling and disabling multi-threaded operation of a
VPE.

• EVPE and DVPE are privileged Coprocessor 0 instructions for enabling and disabling multi-VPE operation of a
processor.

These instructions will cause a Reserved Instruction exception if executed by a processor not implementing the MIPS
MT ASE.

Ideally, each software thread is mapped to one TC. However, the user—or more usually, the operating system—can
allocate more software threads than there are hardware TCs, creating and managing thread state through the use of the
instructions listed above. In this application note we assume that there are always free hardware TCs that can be used
to execute the software application’s threads, which offers the lowest thread switching cost and the lowest execution
time.

In general, application software need not know or use the instructions listed above. Operating systems such as the
SMTC Linux kernel may use the new instructions to efficiently provide multi-threading support without further
application programmer intervention.

4 Multi-Threading Application Performance

In Section 2 “Single- and Multi-Threading”, we asserted that multi-threaded applications are expected to have lower
execution times than single-threaded applications. In this section we present the results of benchmarking a small
selection of multi-threaded applications for both the 34Kc core and 24Kc core. We first introduce the system used to
perform the benchmarking, and then present benchmark data for four different explicitly multi-threaded applications:
implementations of two different sorting algorithms, and an MPEG-2 encoder and decoder. Each of these applica-
tions is benchmarked on emulators for both the 34Kc core and 24Kc core. In addition, results are presented for a sin-
gle-threaded DSP kernel executing within a multi-threaded test harness on the 34Kc core (the 24Kc core lacks the
MIPS DSP ASE implementation on which the DSP kernel depends). A discussion of the results is presented in
Section 4.5 “Analysis”.

4.1 Benchmarking Configuration

The benchmark results presented here were obtained on a MIPS Malta™ FPGA emulation platform emulating either
a 34Kc core executing at 32 MHz and configured with 2 VPEs and 5 TCs enabled, or a 24Kc core executing at
32 MHz. The emulation platform used the ROC-it high-bandwidth system/memory controller configured for a 4:1
ratio of CPU to external memory bus cycles, resulting in a cache miss penalty of approximately 50 cycles. The 34Kc
core executed the SMTC Linux kernel in a TimeSys implementation of the Linux operating system. The SMTC ker-
nel is 34Kc-aware and provides access to the on-core performance counters using the Linux /proc/perf file sys-
tem interface. (Performance counters are discussed briefly in Section 5.2 “Performance Profiling” and in more detail
in [3].)

The 24Kc core emulation executed a regular MIPS32R2 Linux kernel and also executed the same TimeSys Linux dis-
tribution. This distribution includes a POSIX Pthreads library, allowing software compiled for the 24Kc to be used
for both 34Kc and 24Kc benchmarking.

4 Multi-Threading Application Performance

12 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

4.2 C Functions and Small Applications

Multi-threading may be applied to small applications, single functions, or kernels. Figure 4 shows the result of apply-
ing multi-threading to two small applications for sorting data: the mergesort and the bitonic sort.

The input to the bitonic and mergesort benchmarks is a file of random binary data, which may be generated using the
Linux dd command. For example, to generate a 1 megabyte file of random data called random:

% dd if=/dev/urandom of=random bs=1024 count=1024

The bitonic benchmark is executed using the following command:

% bitonic <random file> <size> <threads> [<print>]

The number of threads must be a power of two and the size argument must be a multiple of 2,048 and the number of
threads, e.g., a size of 4,096 may be used with 2 threads. An optional non-zero print argument causes the sorted out-
put data to be displayed.

The mergesort benchmark is executed using the command:

% mergesort <random file> <size> <blocksize> <threads> [<print>]

The blocksize and threads arguments must be powers of two, and the size argument must be a multiple of both block-
size and the number of threads, e.g.,

% mergesort random 2048 64 2

As with the bitonic search benchmark, an optional non-zero print argument causes the sorted output data to be dis-
played.

To obtain the relative speedup results shown here the cycle count for both benchmarks was measured using the
pc_sweep profiling tool. A random data set of 256 kilobytes was used as the input to the sort implementations; the
mergesort implementation used a blocksize of 64 bytes. Figure 4 shows the relative speedup for multi-threaded sort
implementations on both the 34Kc core and 24Kc core. For example, the two-thread mergesort implementation for
the 34Kc core is about 35% faster than the single-threaded implementation for the 34Kc core, and about 25% faster
than the dual-threaded implementation for the 24Kc core.

Compilation time = Sep 1 2006 16:34:30
Board type/revision = 0x02 (Malta) / 0x00
Core board type/revision = 0x09 (CoreFPGA-3) / 0x01
System controller/revision = MIPS ROC-it / 0.0 FW-1:1 (CLK_unknown)
FPGA revision = 0x0001
MAC address = 00.d0.a0.00.04.cd
Board S/N = 0000000991
PCI bus frequency = 33.33 MHz
Processor Company ID/options = 0x01 (MIPS Technologies, Inc.) / 0x00
Processor ID/revision = 0x95 (MIPS 34Kc) / 0x44
Endianness = Little
CPU/Bus frequency = 32 MHz / 7968 kHz
Flash memory size = 4 MByte
SDRAM size = 64 MByte
First free SDRAM address = 0x800b6fb0

Figure 3 YAMON Information Display for MIPS 34Kc Emulator.

4.3 MPEG-2 Encoding and Decoding

Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01 13

Table 1 shows performance profiling data for the mergesort application. The ratio of stalls to instructions is about
90% for the single-threaded case, and drops rapidly as the number of threads is increased.

4.3 MPEG-2 Encoding and Decoding

The ALPBench MPEG-2 encoder/decoder was used to benchmark the execution time of multi-threaded MPEG-2
encoding and decoding software. The ALPBench MPEG-2 software uses the POSIX Pthreads library, creating
worker threads for each frame and combining their results prior to writing the bitstream (for the encoder) and display-
ing each frame (for the encoder). The number of threads to use is specified at run-time, with an upper limit of 16
threads defined at compile time. The ALPBench software is available from http://rsim.cs.uiuc.edu/alp/
alpbench. The basic source code package was modified slightly to include performance timing (using
gettimeofday() calls) in the threaded section of code. Note that the benchmark results shown here were
obtained using the performance profiling tool pc_sweep described in [3].

The MPEG-2 encoder and decoder were built from source under the 24Kc core emulation with the following com-
piler optimization switches:

Metric

Threads

1 2 4

Cycles 130,146,350 96,219,537 90,243,830

All instructions 69,609,320 69,949,206 69,949,342

Instructions per cycle (IPC) 0.535 0.727 0.775

All stalls 52,861,043 21,497,272 15,906,789

I-cache accesses 53,071,697 49,722,762 48,584,846

I-cache misses 8,326 9,137 9,270

D-cache accesses 14,677,318 14,947,113 14,953,918

D-cache writebacks 403,763 430,738 432,459

D-cache misses 2,295,647 2,030,454 1,727,431

Replays 30,909 423,917 512,538

LSU replay stalls 25,878 94,363 2,988,110

No instructions available 11,500,820 5,868,088 2,524,588

ALU stalls 42,183,257 15,653,026 13,541,699

L1 I-$ miss stalls 494,945 488,698 501,778

L1 D-$ miss stalls 35,535,572 11,251,526 5,241,305

D-$ miss pending 39,479,636 37,271,257 39,130,953

MDU stalls 15,038 16,281 15,941

Load-to-use stalls 3,892,513 1,770,677 588,844

ALU to AGEN stalls 584,467 174,671 63,678

Branch misprediction stalls 52,608 1,126,636 668,250

Table 1 Performance Metrics for mergesort operating on 256 KB of random data, obtained using the
pc_sweep tool.

4 Multi-Threading Application Performance

14 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

-O3 -g -mips32r2 -mmad

(Although the MIPS 34Kc supports the MIPS DSP ASE, the MIPS 24Kc does not, and use of the compiler’s -mdsp
optimization switch improves the performance of the MPEG-2 decoder by less than 1% on the MIPS 34Kc.)

The MPEG-2 encoder is executed using the command:

% mpeg2enc-mips-nptl <par file> <m2v file> <number of threads>

Where <par file> is an ASCII file containing a list of encoder parameters, <m2v file> is the name of the
encoded output file, and <number of threads> sets the number of threads to use when encoding.

The MPEG-2 decoder using the command:

% mpeg2dec-mips-nptl -b <m2v file> -n <number of threads>

Where <m2v file> is the encoded output file created using the encoder, and <number of threads> sets the
number of threads to use when decoding. The execution-time performance of the video encoder and decoder was
measured using the standard “Foreman” video test stream containing 300 CIF resolution (352 × 288 pixels) YUV-
format video frames. The application cycle count was measured using the pc_sweep profiling tool and the data used
to create the relative speedup data plotted in the figures below. Relative speedup is expressed as a percentage and is
defined as

Figure 4 Relative speedup for multi-threaded implementations of mergesort and bitonic sort for MIPS 34Kc
and 24Kc core. Higher is better.

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

2 4

Threads

R
el

at
iv

e
S

p
ee

d
u

p

Mergesort (34Kc) Bitonic (34Kc) Mergesort (24Kc) Bitonic (24Kc)

S∆
single-threaded cycle count
multi-threaded cycle count
---=

4.3 MPEG-2 Encoding and Decoding

Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01 15

Thus, a relative speedup higher than 1.0 indicates that the multi-threaded implementation executed in fewer cycles
than the single-threaded implementation, and conversely, a value lower than 1.0 indicates that the multi-threaded
implementation executed in more cycles. If processor clock speed and instruction execution rates are equal, fewer
cycles equates to lower execution time or, equivalently, higher throughput per unit time.

The relative speedup results for the MPEG-2 encoder versus the number of per-frame execution threads for both the
34Kc core and 24Kc core are shown in Figure 5. In this case the encoder is operating on a sequence of 30 frames
taken from the longer 300 frame “Foreman” sequence (a standard test sequence for video codecs). Adding a second
thread to the per-frame encoding produces a relative speedup of about 10% on the 34Kc core, and produces a slight
slowdown for the 24Kc core. That is, the single-threaded 24Kc core gains no advantage from multi-threading in this
application implementation.

The columns in Figure 6 shows the relative speedup versus threads of execution for single- and multi-threaded
MPEG-2 decoder implementations for both the 34Kc core and 24Kc core. The line plots the relative speedup of the
multi-threaded implementation for the 34Kc core compared to the single-threaded implementation for the 24Kc core.
The cycle count of the single-threaded implementation for the 34Kc core is higher than that of the single-threaded
implementation for the 24Kc core, but the 34Kc core cycle counts drop quickly as the number of decoder threads is
increased. In contrast, the 24Kc core implementation becomes slower as the number of threads is increased.

An interesting question is: why does the relative speedup of the MPEG-2 decoder peak at three threads? Using the
pc_sweep profiling tool, we can examine specific performance counters within the 34Kc processor to learn why.
(The set of available 34Kc performance counters is described in [3] and in [4]). We examine the stall counters, specif-
ically, the counters for all stalls (counter 18), IFU stalls (even counter 25), and ALU stalls (odd counter 25).

We use the profiling tool pc_sweep to examine the 34Kc core stall cycles in the MPEG-2 decoder for the three- and
four-thread case, producing the results shown in Table 2. The data shows why the relative speedup drops when four
threads are used instead of three—there is a 24% increase in the total number of stall cycles. We can see that misses
from the data and instruction caches are a tiny fraction of the total stall cycles, while stalls in the ALU contribute
about 70% of the total stall cycles. If the ALU stalls could be eliminated in the three-thread case (unlikely, but useful

4 Multi-Threading Application Performance

16 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

for the purpose of this discussion) the speedup relative to the single-threaded implementation would be a little over
1.20×, a significant gain in throughput.

4.4 Hand-Coded DSP Kernels

The execution time of hand-coded DSP kernels can also be reduced using POSIX threads to “wrap” execution of the
kernel. Each thread is used to execute the target kernel some number of times in sequence. Here, we show relative
speedup results from benchmarking a multi-threaded test an 8 × 8 IDCT used in MPEG decoding. The hand-opti-
mized kernel is executed 100,000 times, divided by the number of threads used. The benchmark uses the Pthreads
library to create the specified number of worker threads (between one and five), with each thread executing the hand-
optimized implementation of the IDCT kernel thousands of times.

Note that this benchmark could only be executed on the 34Kc core as it has MIPS DSP ASE support: the MIPS DSP
ASE is unsupported on the 24Kc core.

Metrics

Threads

1 3 4

Cycles 553,453,176 501,513,160 508,720,118

All instructions 457,728,249 457,975,955 458,102,491

Instructions per cycle (IPC) 0.827 0.913 0.901

All stalls 77,674,195 28,347,789 35,247,363

Replays 29,719 366,498 488,771

LSU replay stalls 741,151 2,390,949 4,055,509

No instructions available 31,992,071 8,904,795 9,990,366

ALU stalls 46,545,739 19,822,328 25,370,881

MDU stalls 8,453,274 1,627,133 1,246,536

Load-to-use stalls 7,736,459 1,413,712 1,315,972

ALU to AGEN stalls 8,795,296 1,476,329 1,396,921

Branch misprediction stalls 471,300 608,079 510,979

I-cache accesses 259,021,090 249,131,089 250,028,234

I-cache misses 120,031 179,394 197,243

D-cache accesses 130,923,849 131,017,261 131,060,656

D-cache writebacks 155,201 189,727 313,566

D-cache misses 1,519,772 1,097,434 1,572,165

L1 I-$ miss stalls 6,715,894 3,863,166 5,038,711

L1 D-$ miss stalls 11,565,354 1,516,873 1,811,861

D-$ miss pending 23,595,826 36,310,831 45,571,011

Table 2 Stall cycle measurement results for the MPEG-2 decoder obtained with the pc_sweep performance
counter tool.

4 Multi-Threading Application Performance

18 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

from runs of the IDCT test harness. The data show that the primary source of stall cycles are ALU stalls, and that add-
ing threads significantly reduces ALU stall cycles. The maximum relative speedup is approximately 1.20×, given by
the ratio of cycles to instructions for the single-threaded case. The actual relative speedup obtained is about half this:
as the stall cycles from the primary source diminish rapidly, stall cycles from multiple secondary sources gain greater
significance.

4.5 Analysis

As shown in the figures presented in this application note, enabling the use of a small number of threads of execution
can reduce the cycle count of the 34Kc applications presented here by up to 40% relative to the same application exe-
cuted with a single thread, increasing throughput by the same amount. In contrast, adding more threads to the 24Kc
implementations typically increased the cycle count, lowering throughput. As identical application code was exe-
cuted on both emulations, the gain in throughput must be due to the specific hardware support for multi-threading in
the 34Kc (differences in the two Linux kernels used are not expected to contribute significantly to the outcome).

Profiling using the pc_sweep tool shows that ALU stall cycles are a dominant factor in execution time for the appli-
cations benchmarked here, and that adding multiple threads of execution can reduce ALU stall cycles significantly,
even in cases where careful optimization may have been performed to reduce stall cycles, such as in the IDCT kernel.
Note that the underlying cause of the ALU stalls is not identified by the profiling tool and that further work would
need to be done to isolate the source. Clearly, the availability of multi-threading does not change the general approach
to optimization discussed in Section 2.1 “Reducing Application Execution Time”. However, it can provide meaning-
ful reductions in execution time “for free.”

For the developer, the important questions are: how can I determine if multi-threading will accelerate my application,
and if it will, how many threads are optimal for my application?

To answer the first question we consider the application’s instructions-per-cycle ratio (IPC). The data presented here
indicates that single-threaded applications that have a low IPC benefit more from the application of multi-threading

Metric

Threads

1 3 5

Cycles 101,953,042 93,585,704 92,429,635

All instructions 85,584,564 85,608,770 85,626,162

Instructions per cycle (IPC) 0.839 0.915 0.926

All stalls 13,498,555 5,898,274 5,081,664

Replays 7,262 10,710 11,603

No instructions available 3,732,078 914,791 875,507

ALU stalls 9,567,956 5,143,263 4,050,332

L1 I-$ miss stalls 433,544 517,541 546,439

L1 D-$ miss stalls 273,788 300,338 301,354

Load-to-use stalls 207,974 15,688 12,839

ALU to AGEN stalls 147,252 50,233 48,757

Branch misprediction stalls 238,962 41,655 22,563

Table 3 Detail of stall cycles in the multi-threaded 8x8 IDCT kernel test bench.

4.5 Analysis

Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01 19

than single-threaded applications that have a high IPC ratio. (Note that because the 34K core family has a single-issue
pipeline, the maximum achievable IPC for any application is 1.0.) A low IPC indicates that the application spends a
considerable proportion of cycles waiting, either for data or events to occur. Multi-threading helps replace these
unproductive cycles with productive cycles, lowering the overall cycle count and increasing the IPC. For example, in
the applications benchmarked here the MPEG-2 decoder had a single-thread IPC of 0.827 (Table 2) whereas the sin-
gle-threaded mergesort had a single-thread IPC of 0.535 (Table 1). As can be seen from the data, enabling more
threads of execution in the MPEG-2 decoder resulted in a modest reduction in cycle count, while in contrast the
mergesort cycle count was reduced significantly.

To answer the second question, a definition of optimality is needed. One might choose the fewest threads that result
in the largest single gain (to preserve TCs for other applications, which may also be multi-threaded), in which case
the applications benchmarked here indicate “fewer than five software threads.” All of the applications tested showed
the largest relative speedup when the application used two threads of execution. Applications with a high single-
threaded IPC may be best served with two threads; applications with a low single-threaded IPC may benefit from up
to four threads.

5 Creating Multi-Threaded Applications

The 34Kc core supports multi-threading in hardware and software: a 34Kc-aware operating system can allocate hard-
ware threads to single-threaded applications, allowing a reduction in the overall execution time of a collection of sin-
gle-threaded applications without further effort on the part of the application developer. However, a developer can
also add explicit multi-threading to new and legacy applications through the use of software libraries, as discussed
here.

Figure 7 Relative speedup of a hand-optimized 8x8 IDCT kernel when multiple threads of execution are
used. Higher is better.

0.95

1.00

1.05

1.10

1.15

1 2 3 4 5

Threads

R
el

at
iv

e
S

p
ee

d
u

p

8x8 IDCT

5 Creating Multi-Threaded Applications

20 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

5.1 Migrating POSIX® Pthreads-based Applications Written in C

The POSIX Pthreads C library is used to create and manage a POSIX-compliant application’s threads of execution.
MIPS has created MIPS32® 34K™-family-aware versions of the Linux kernel that utilizes MIPS MT ASE instruc-
tions to create and destroy threads directly on the hardware TCs. From the developer’s perspective, migrating multi-
threading applications written in C that use the POSIX Pthreads library to the 34Kc core can be as simple as execut-
ing the application. However, for best results the developer should also review the number and use of threads in the
application, and the application performance profile (discussed in the next section). For example, an application orig-
inating from a significantly different architecture and run-time environment (e.g., a server-class application being
ported to a deeply embedded 34Kc-core-based product) may have been written to use many more threads than is effi-
cient for the 34Kc core. As seen from the results presented in Section 4 “Multi-Threading Application Performance”,
low numbers of application threads typically provide the best relative speedup.

Using the POSIX Pthreads library on the 34Kc core is straightforward: Figure 8 shows a fragment of code from the
getpic.c file in the MPEG-2 decoder used to obtain the benchmark results shown earlier. The worker thread’s
function is Thrd_Work, and the data required by the thread is held in the user-defined structure
thread_data_array. This code fragment is executed (once per thread) at the start of per-frame decoding to cre-
ate the new worker threads that do the actual work of decoding a frame slice. The per-thread decoded slices are com-
bined into a single output frame, with each thread terminating when its work is done. When using the MIPS 34Kc-
core-aware SMTC Linux OS, the pthread_create call will result in the allocation of a single hardware TC to the
thread. When the number of threads is higher than the number of TCs supported in the specific MIPS 34Kc core
implementation, software scheduling will be used to multiplex the software threads onto the available hardware TCs.
In either case the developer does not have to significantly modify the application source code or design, an important
saving of effort.

5.2 Performance Profiling

Simply adding software threads is not a guarantee that an application will meet the required or desired execution time
targets. As a general rule, the cost to add a single software thread on the 34Kc core is low, but the execution-time cost
of adding another software thread can be high, depending on a range of factors.

As a simple example, consider a multi-threaded application executing on a 34Kc core implementation with a 32 KB
data cache and where each thread operates on 8 KB data blocks from disjoint regions of memory. The performance

/*Thread Create */
t = thrd_num - 1;
thread_data_array[t].id = t;
thread_data_array[t].num_slices = num_decode_slice[t];
thread_data_array[t].framenum = framenum;
thread_data_array[t].MBAmax = MBAmax;
thrd_ptr[t] = tb[t].frame_buf;
Thrd_Initialize_Buffer(t);

#if (NUM_THREADS>1)
if (t!=num_thrds-1) {

rc = pthread_create(&thread[t], NULL, Thrd_Work,
(void*) &thread_data_array[t]);

#endif
if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}

Figure 8 The POSIX Pthreads library simplifies the creation and use of threads, as shown in this example
from the MPEG-2 decoder used for thread benchmarking.

5.2 Performance Profiling

Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01 21

gain (the ratio of execution time for a single-threaded application implementation vs. a multi-threaded implementa-
tion) is likely to be lower with 5 execution threads than with 4 due to the impact of data cache thrashing on thread
execution (see, for example, the MPEG-2 encoder results presented in Figure 5). By making detailed profiling mea-
surements, the developer can identify this condition, and take action—either limiting the number of threads, or
changing the size of each thread’s data set.

The underlying factors affecting execution time in a multi-threaded application can be subtle and hard to diagnose
without help. The developer can use the wealth of profile counters provided by the 34Kc core and the pc_sweep
profiling tools discussed in [3] to measure application performance directly and guide any modifications necessary to
meet overall application performance goals.

6 Conclusion

Reducing an application’s execution time can bring many benefits in terms of increased throughput and reduced
energy consumption. The hardware-based multi-threading capabilities of the MIPS32 34Kc core provide the applica-
tion developer with a nearly transparent means to reduce application execution time with relatively little effort.

MIPS Technologies has enabled an implementation of the Linux kernel and POSIX Pthreads library that combine to
support the multi-threading 34Kc core’s architecture natively and relatively transparently for the developer. For
example, applications compiled for the MIPS32 24Kc and written to use the POSIX Pthreads library can achieve
cycle count reductions of between 10% and 40% simply by being executed on the 34Kc core. Further reductions in an
application’s cycle count can be made using the 34Kc performance counters and a performance profiling tool,
pc_sweep, to obtain the detailed information needed to fine-tune application performance.

7 References

1. MIPS32® 34Kc™ Processor Core Datasheet, MIPS Document Number: MD00418

2. MIPS® MT Principles of Operation, MIPS Document Number: MD00452

3. Using the MIPS32® 34K™ Core Performance Counters, MIPS Document Number: MD00548

4. MIPS32® Architecture Reference Manual VolumeIV-f: The MIPS® MT Application-Specific Extension to the
MIPS32® Architecture, MIPS Internal Document Number: MD00376

7 References

22 Multi-Threading Applications on the MIPS32® 34K® Core, Revision 01.01

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 aǳƭǘƛπ¢ƘǊŜŀŘƛƴƎ !ǇǇƭƛŎŀǘƛƻƴǎ ƻƴ ǘƘŜ aLt{онϯ опYϯ /ƻǊŜΣ wŜǾƛǎƛƻƴΥ лмΦлм
 Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

