
PPC to MIPS® Architecture Migration Guide

Document Number: MD00875
Revision 00.10
May 30, 2011

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

PPC to MIPS® Architecture Migration Guide

2

PPC to MIPS® Architecture Migration Guide

3

Contents

Introduction ... 4

Programming Model ... 5

Instruction set .. 7

CPU initialization.. 8

Exception vector and exception type .. 10

Migrating applications .. 16

Summary ... 17

PPC to MIPS® Architecture Migration Guide

4

Introduction

The purpose of this document is to describe the ease of migration from an Power ISA v.2.03 to

the MIPS® architecture and cores.

MIPS Technologies supports the MIPS32® and MIPS64® instruction set architectures. MIPS64

allows 64-bit addressing modes to facilitate larger virtual address space. Migration from the

MIPS32 to the MIPS64 architecture is a seamless path.

Power architecture also supports 32 and 64 bit ISA. Beyond 32-bit and 64-bit, MIPS supports 16

bit instructions for improved code density. Both architectures support floating point and several

ISA extensions.

Typically the application code running on these architectures is coded in a high level language

such as C or C++, so porting between architectures is straightforward. MIPS provides a GNU

tool chain that that can efficiently recompile the code to a MIPS platform. The extensive

ecosystem for MIPS provides a variety of operating systems, software development tools and

platforms from a broad range of vendors.

The bulk of the migration effort between architectures involves low-level boot code and device

initialization. The areas that need special attention are: programming model, virtual to physical

address mapping differences, cache and TLB initialization, differences in exception vectors and

exception types and interrupt exceptions. For assembly code translation, the user needs to

understand the differences in instruction set and register calling conventions.

This document is not meant to be an architecture reference manual nor a software users guide.

The purpose of this document is to illustrate the differences in areas that need special attention

by the user and also provides sample code segments for initialization of the resources.

The user is encouraged to refer to the following documents for further reading and references:

MIPS32® Architecture for Programmers Volume I: Introduction to the MIPS32® Architecture

MIPS32® Architecture for Programmers Volume II: The MIPS32® Instruction Set

MIPS® Architecture for Programmers Volume III: The MIPS32® and microMIPS32™

Privileged Resource Architecture

YAMON™ Porting Requirements Specification

YAMON™ User's Manual

Details on tools and software, development kits, reference and users manuals and application

notes can be found at mips.com.

PPC to MIPS® Architecture Migration Guide

5

Programming Model

MIPS Security Levels:

At the kernel level all processor resources are accessible. At the supervisor level all registers,

supervisor segment and the 2GB user segment are accessible. At the user level the 2GB virtual

address space is accessible. Typical usages are kernel and user modes. Supervisor mode is rarely

used.

The kernel, supervisor and user state selection is made via the status register.

Mode KSU ERL EXL

Kernel x x x 1
 x x 1 x

 0 0 x x

Supervisor 0 1 0 0

User 1 0 0 0

The Power architecture supports two modes. User mode is unprivileged and Supervisor mode is

privileged. Applications normally run in user mode which is unprivileged or system mode

(privileged).

Both MIPS and PPC handle exceptions in the privileged mode.

The MIPS32 architecture specifies fixed memory map. The address space is divided into 4

regions:

PPC to MIPS® Architecture Migration Guide

6

 kseg2, TLB-mapped cacheable kernel space

 kseg1, direct-mapped uncached kernel space

 kseg0, direct-mapped cached kernel space

 kuseg, TLB-mapped cacheable user space

kseg0 and kseg1 segments are direct mapped and map to the first 512 megabytes of the physical

address space. The rest of the regions are TLB-mapped and cacheable. Reset vector is

0xBFC00000 – kseg1. All exceptions default to kseg1 and can be relocated to kseg0 upon

enabling of caches.

The following figure shows the virtual address to physical address mapping of the modes

supported in MIPS cores:

PPC to MIPS® Architecture Migration Guide

7

Instruction set

Instruction sets for MIPS and PPC are similar. MIPS also supports application specific

extensions (ASE) for DSP, security, multi-threading and other technologies. The CorExtend™

feature enables user defined instructions to be part of the core instructions set. The MIPS ISA is

fully backward-compatible. The following table lists the classes of instructions both architectures

support:

 PPC405Fx MIPS32® 24Kc™

Add ADD RT, RA, RB ADD rd, rs, rt

Subtract subf RT, RA, RB SUB rd, rs, rt

Multiply mulchw RT, RA, RB Rc=0 MUL rd, rs, rt

Multiply-accumulate MADD rs, rt

Count leading zeros cntlzw RA, RS Rc=0 CLZ rd, rs

AND crand BT, BA, BB ADD rd, rs, rt

XOR creqv BT, BA, BB XOR rd, rs, rt

OR cror BT, BA, BB OR rd, rs, rt

Branch B{cond} <label> J target

Branch with link BL{cond} <label> JAL target

Branch and exchange BX{cond} <Rm> JALX target

Word lwz[u][x] LW rt, offset(base)

Byte lbz[u][x] LBU rt, offset(base)

Byte signed LB rt, offset(base)

Halfword lha[u][x] LHU rt, offset(base)

Halfword signed LH rt, offset(base)

Word stw[u][x] SW rt, offset(base)

Byte stb[u][x] SB rt, offset(base)

Halfword sth[u][x] SH rt, offset(base)

Move to reg from coproc NA MFC0 rt, rd, sel

Move to coproc from reg NA MTC0 rt, rd, sel

Signed add high 16 + 16, low 16 + 16, set GE flags NA ADDQ.PH rd,rs,rt

Saturated add high 16 + 16, low 16 + 16 NA ADDQ_S.PH rd,rs,rt

Signed high 16 - low 16, low 16 + high 16, set GE flags NA SUBQ.PH rd,rs,rt

Saturated high 16 - low 16, low 16 + high 16 NA SUBQ_S.PH rd,rs,rt

Four saturated unsigned 8 + 8 NA ADDU_S.QB rd, rs, rt

Four saturated 8 - 8 NA ADD_S.QB rd, rs, rt

Four saturated unsigned 8 - 8 NA SUBU_S.QB rd, rs, rt

PPC to MIPS® Architecture Migration Guide

8

CPU Initialization

The cache architecture for both the MIPS and PPC architectures are fairly similar: independent

L1 for instruction and data and common a L2. MIPS caches are 1, 2 or 4 ways set associate and

the line size is 4 or 8 words.

The following code segments show cache operations for a MIPS32 24Kc core and the PPC 405:

Function PowerPC 405 CPU Core MIPS32® 24Kc™

Enabling
Cache

addis r4,r0,0x8000 mfc0 t0, C0_Config1

addi r4,r4,0x0001 /* set kseg0 as Cacheable, noncoherent, write-
back, write allocate */

mticcr r4 /* instruction cache */ ori t0,t0, 0x3

isync mtc0 t0, C0_Config1

addis r4,r0,0x0000

addi r4,r4,0x0000

mtdccr r4 /* data cache */

Function PowerPC 405 CPU Core MIPS32® 24Kc™

Invalidate
Cache

 mfc0 a1, C0_Config1

 and a1, M_Config1IL

/*---------------------------------- */ srl a1, S_Config1IL

/* Invalidate I and D caches. Enable I cache
for defined memory regions */

 li v0, 0x2

/* to speed things up. Leave the D cache
disabled for now. It will be */

 sll v0, a1 /* a1 = I-cache line size */

/* enabled/left disabled later based on user
selected menu options. */

 mfc0 t9, C0_Config1

/* Be aware that the I cache may be
disabled later based on the menu */

 and t8, t9, M_Config1IA

/* options as well. See miscLib/main.c. */ srl t8, S_Config1IA

/*------------------------------------- */ addiu t8, 1 /* t8 = associativity */

bl invalidate_icache and t9, M_Config1IS

bl invalidate_dcache srl t9, S_Config1IS

 li t7, 0x40

 sll t7, t9 /* t7 = sets per way */

PPC to MIPS® Architecture Migration Guide

9

 multu t8, t7

 mflo a0 /* a0=cache size */

 MTC0(zero, C0_TagHi)

 MTC0(zero, C0_TagLo)

 0:00

 li a2, KSEG0BASE /* Calc 1st cache line
address*/

 addu a3, a2, a0 /* Calc last cache line
address*/

 subu a3, a1

 1: /* Loop through all lines, invalidating
each of them */

 cache ICACHE_INDEX_STORE_TAG,
0(a2) /* clear tag */

 bne a2, a3, 1b

 addu a2, a1

TLB initialization:

 Both the PPC and MIPS architectures support virtual to physical address translation via TLB

scheme. On a TLB miss in the MIPS architecture, an exception is raised and an exception

handler loads the appropriate configuration in the TLB. The following code segment shows TLB

initialization:

Function PowerPC 405 CPU Core MIPS32® 24Kc™

Initilize TLB Entry tlbwelo r4,r0 void initTLBEntryByIndex (int idx) {

 tlbwehi r3,r0 int i;

 __asm__ __volatile ("move $t0, %0" : : "r" (idx));

 __asm__ __volatile (

 "mtc0 $t0, $0, 0;" // set index

 "lui $t1, 0xa000;"

 "sll $t0, $t0, 16;"

 "or $t1, $t0,$t1;"

 "mtc0 $t1, $10,0;" //entryhi

 "mtc0 $zero, $2,0;" //entrylo0

 "mtc0 $zero, $3,0;" //entrylo1

 "mtc0 $zero, $5,0;" //pagemask

 "tlbwi;"

 "ehb;"

);

 return;

 }

PPC to MIPS® Architecture Migration Guide

10

Exception vector and exception type

The following table is a summary of the exception vector and types for the MIPS and PPC

architectures:

PowerPC 405Fx CPU Core MIPS32® 24Kc™

Supports different 18 types/priorities of
exceptions

Supports35 different types/priorities of exceptions: offering
the programmer more knowledge of what went wrong and
allowing the user to handle it differently

The gap between 0xFC000000 and 0xFC900000
is used for the exception vector area and
system start up logging

Exception base is predefined to 0xBFC0.0000 and 0x8000.0000

 Exception base is can be changed by Ebase

The following tables list the details of exception vector, exception types and priorities for the

PPC and MIPS architectures:

PPC Exception Vector Prefix Register
(EVPR)is a 32-bit register whose high-order
16 bits contain the prefix for the address
of an interrupt handling routine. The 16-
bit interrupt vector offsets are following
table Offset

MIPS Exception vector address
(SI_UseExceptionBase, Status.BEV,
Status.EXL, Cause.IV, EJTAG
ProbEn)

Exception
Types

System Reset 0x00100
16#BFC0.0200 Other, TLB

Refill

Machine Check 0x00200 16#BFC0.0300 Cache Error

Data Storage 0x00300

16#BFC0.0380 TLB Refill,
Interrupt, All
Others

Instruction Storage 0x00400 16#BFC0.0400 Interrupt

External 0x00500
16#BFC0.0480 EJTAG

Debug

Alignment 0x00600

16#8000.0180 TLB Refill,
Interrupt, All
Others

Program 0x00700 16#8000.0280 Interrupt

PPC to MIPS® Architecture Migration Guide

11

Floating-Point Unavailable 0x00800 16#A000.0100 Cache Error

System Call 0x00C00 16#FF20.0200 EJTAG
Debug

APU unavailable 0x00F20 EBase31..30=2#10 || 1 ||
EBase28..12 || EBase12..0=16#000

Cache Error

Programmable Interval Timer 0x01000 EBase31..30=2#10 || 1 ||
EBase28..12 || EBase12..0=16#480

EJTAG
Debug

Fixed Interval Timer 0x01010 EBase31..30=2#10 || EBase29..12
|| EBase12..0=16#000

All Others,
Reset, NMI

Watchdog timer 0x01020 EBase31..30=2#10 || EBase29..12
|| EBase12..0=16#200

All Others,
TLB Refill

Data TLB miss 0x01100 EBase31..30=2#10 || EBase29..12
|| EBase12..0=16#380

TLB Refill,
Interrupt, All
Others

Instruction TLB Miss 0x01200 EBase31..30=2#10 || EBase29..12
|| EBase12..0=16#400

Interrupt

EBase31..30=2#10 || EBase29..12
|| EBase12..0=16#480

EJTAG
Debug

2#101 || SI_ExceptionBase[28:12]
|| 16#300

Cache Error

PowerPC 405 MIPS32® 24Kc™

Priority Name Priority Name Description

1 Machine check—data 1 Reset Assertion of SI_Reset signal.

2 Debug—IAC 2 DSS EJTAG Debug Single Step

3
Machine check—
instruction 3 DINT

EJTAG Debug Interrupt:
caused by the assertion of
the external EJ_DINT input,
or by setting the EjtagBrk bit
in the ECR register

4

Debug—EXC,

UDE 4 DDBLImpr/DDBSImpr
Debug Data Break
Load/Store Imprecise

5

Critical interrupt

input 5 NMI
Asserting edge of SI_NMI
signal

6

Watchdog timer—

first time-out 6 Machine Check
TLB write that conflicts with
an existing entry

7

Instruction TLB

Miss 7 Interrupt

Assertion of unmasked
hardware or software
interrupt signal

PPC to MIPS® Architecture Migration Guide

12

8

Instruction storage

—

8 Deferred Watch

Deferred Watch (unmasked
by K|DM->!(K|DM)
transition) ZPR[Zn] = 00

9

Instruction storage

—

9 DIB
EJTAG debug hardware
instruction break matched

 TLB_ entry,

Program ,System

call, APU

Unavailable, FPU

Unavailable

10 10 WATCH

A reference to an address in
one of the watch registers
(fetch)

11 Data TLB miss 11 AdEL

Fetch address alignment
error: fetch reference to
protected address

12 Data storage 12 TLBL
Fetch TLB miss: fetch TLB hit
to page with V=0

13 Data storage 13 ICache Error Parity error on ICache access

14 Alignment 14 IBE Instruction fetch bus error

15 Debug 15 DBp
EJTAG Breakpoint (execution
of SDBBP instruction)

16

External interrupt

input 16 Sys
Execution of SYSCALL
instruction.

17 Fixed Interval Timer 17 Bp
Execution of BREAK
instruction

18

Programmable

Interval Timer 18 CpU

Execution of a coprocessor
instruction for a coprocessor
that is not enabled

 19 CEU

Execution of a CorExtend
instruction modifying local
state when CorExtend is not
enabled

 20 RI
Execution of a Reserved
Instruction

 21 FPE Floating Point exception

PPC to MIPS® Architecture Migration Guide

13

 22 C2E Coprocessor2 Exception

 23 IS1
Implementation specific
Coprocessor2 exception

 24 Ov
Execution of an arithmetic
instruction that overflowed

 25 Tr
Execution of a trap (when
trap condition is true)

 26 DDBL / DDBS
EJTAG Data Address Break
(address only)

 27 WATCH

A reference to an address in
one of the watch registers
(data)

 28 AdEL

Load address alignment
error. Load reference to
protected address

 29 AdES

Store address alignment
error. Store to protected
address

 30 TLBL
Load TLB miss. Load TLB hit
to page with V=0

 31 TLBS
Store TLB miss. Store TLB hit
to page with V=0

 32 TLB Mod Store to TLB page with D=0.

 33 DCache Error
Cache parity error -
imprecise

 34 L2 Cache Error
L2 Cache ECC error -
imprecise

 35 DBE
Load or store bus error -
imprecise

Interrupt exception

MIPS architecture has an integrated interrupt controller that supports up to 6 priorities in VI

mode and up to 63 priorities in EIC mode. The PPC supports two external interrupt sources,

critical and non-critical. The following table summarizes the interrupt schemes for each

architecture:

PPC to MIPS® Architecture Migration Guide

14

PowerPC 405 MIPS32® 24Kc™

Exception
Address Critical / Noncritical Handler

Exception
Address Interrupt Handler

#Handler Addr1 Critical handler 0x8000.02A0 Interrupt Handler 1

 ... Include code to process the
interrupt

 ... Include code to process the
interrupt

 Store address of next to SRR2

 ... Store contents of MSR (status) to SRR3

 rfci ERET
#Handler Addr2

Noncritical handler (For example:
external interrupt) 0x8000.02C0 Interrupt Handler 2

 ... Include code to process the
interrupt

 ... Include code to process the
interrupt

 Store address of next to SRR0

 ... Store content of MSR to SRR1

 rfi ERET

Application Binary Interface (ABI)

The following table shows the register calling convention for the PPC and MIPS architectures:

PowerPC 405 core MIPS 24Kc

r0 local

commonly used to hold the
old link register when
building the stack frame $0 $0 Always 0

PowerPC 405 MIPS32® 24Kc™

Two types Critical and Noncritical Interrupts One type but has 3 operation mode
(Compatibility, VI, EIC)

Bank registers for supporting better interrupt response Shadow register for better interrupt service

response

Max 32 active registers can be used Max 32 active registers can be used
Need to handshake with external interrupt controller to
get effective vector address
Need to reload the PC for both critical and non-critical
interrupts

 Faster interrupt response time as CPU calculates
the vector address
The spacing is set 0x20 and the base 0x8000.280.
Shadow registers can be bound to different
interrupt sources

PPC to MIPS® Architecture Migration Guide

15

r1 dedicated stack pointer $1 $at

The Assembler Temporary
used by the assembler in
expanding pseudo-ops

r2 dedicated table of contents pointer $2-$3
$v0-
$v1

These registers contain the
Returned Value of a
subroutine; if the value is 1
word only $v0 is significant

r3 local

commonly used as the return
value of a function, and also
the first argument in $4-$7

$a0-
$a3

The Argument registers, these
registers contain the first 4
argument values for a
subroutine call

r4–

r10 local

commonly used to send in
arguments 2 through 8 into a
function

$8-$15,
$24,$25

$t0-
$t9 The Temporary Registers

r11–

r12 local $16-$23
$s0-
$s7 The Saved Registers

r13–

r31 global $26-$27
$k0-
$k1

The Kernel Reserved registers.
DO NOT USE

lr dedicated

link register; cannot be used
as a general register.

Use mflr (move from link

register) or mtlr (move to

link register) to get at,

e.g., mtlr r0 $28 $gp

The Global Pointer used for
addressing static global
variables. For now, ignore this

cr dedicated condition register $29 $sp The Stack Pointer

 $30

$fp
(or
$s8)

The Frame Pointer: programs
that do not use an explicit
frame pointer (e.g., everything
assigned in ECE314) can use
register $30 as another saved
register - not recommended
however

 $31 $ra
The Return Address in a
subroutine call

Migrating applications

Reset, initialization and exception handling are typically done in assembly, but it is common that

the application itself is coded in C/C++ (high level language). The application and any device

drivers must be recompiled with the MIPS tool chain. Any assembly code can be translated

manually, as there is almost a one-to-one equivalent instruction.

The bulk of the effort in migration entails changes to the initialization and low level boot code.

MIPS Technologies provides the YAMON™ PROM monitor as reference code that runs on

PPC to MIPS® Architecture Migration Guide

16

MIPS development boards. There are boot loaders available from third party vendors and open

source.

On both the PPC and MIPS architectures, applications normally will run in user mode. On an

exception the PPC will switch to the supervisor mode and the MIPS to the kernel mode. The

exception handler switches the mode back to user mode upon handling the exception.

Memory map on the MIPS architecture is fixed and user space is kuseg segment of the memory.

Kseg0-3 is reserved for kernel. Cached system data resides in kseg0 and uncached in kseg1. I/O

devices in the MIPS architecture are mapped in kseg1. The PPC architecture does not specify a

fixed memory map.

In both PPC and MIPS most of the exception handling is done in software. The MIPS

architecture supports six external interrupts and each can be masked independently. Nested

interrupts are handled in a similar fashion. The exception context needs to be saved for nested

interrupts before re-enabling the interrupts. Configuring interrupts is straight forward in the

MIPS architecture as only the status register fields must be programmed.

The MIPS ISA defines both MIPS32 and MIPS64. MIPS64 offers larger virtual address and

physical address space, and MIPS32 applications can be seamlessly migrated to MIPS64 to take

advantage of the 64-bit pointers. Long word is 128 bits in MIPS64 and in both MIPS32 and

MIPS64, char is 8-bit unsigned. MIPS provides N32 and N64 ABIs for embedding assembly

code with C/C++.

The MIPS architecture load and store instructions require that all data is aligned on its ―natural‖

boundary, i.e shorts on a multiple of 2 bytes, ints on a multiple of 4, and doubles on 8. If the

alignment is not correct, then the CPU will generate an address exception. gcc will normally

align all data structures and their fields on their natural boundaries. However, some software

ported from 8 or 16-bit CPUs may rely on data structures whose fields align to a smaller

boundary.

There are two ways to convince gcc to change its default alignment rules:

1. Use the GCC attribute (packed)extension on whole structures or individual structure

fields - see the Extensions section of the GCC manual for full details.

 2. Precede the definitions of packed structures with the single line #pragma pack(x), where x

is the alignment boundary, in bytes. Follow the declaration with the line #pragma pack(x), which

restores the normal alignment rules - don't forget this, your code may continue to work, but

quietly become bigger and slower! For example:

#pragma pack(1)

struct packedstruct {

short s; /* offset: 0 */

int i; /* offset: 2 */

int j; /* offset: 6 */

};

#pragma pack()

PPC to MIPS® Architecture Migration Guide

17

MIPS Technologies offers the MIPS Navigator™ Integrated Component Suite (ICS) that comes

with a GNU compiler and debugger, JTAG level debugger, profiler and event analyzer. Several

other software vendors also provide tool suite for MIPS processors.

Summary

MIPS Technologies licenses its MIPS32 and MIPS64 architectures, and also offers single-core,

multi-core, superscalar and multi-threaded families of cores based on the MIPS32 architecture.

Several of MIPS Technologies‘ licensees also offer high-performance, multicore products based

on the MIPS64 architecture.

With its architectures and cores, MIPS has a large footprint in digital home and networking

applications, and growing traction in mobile devices.

MIPS cores are the industry‘s most area efficient, offering high performance at the lowest power

dissipation. With its multi-threading technology, companies can efficiently implement a

parallelizable application by maximizing the instructions per cycle (IPC). The QoS features in

the multi-threaded family of products help ensure real-time application performance. The breadth

and the rich features of MIPS‘ product portfolio, coupled with a flexible business model, enable

MIPS licensees to create MIPS-Based products that range from 32-bit microcontrollers and

energy efficient mobile devices to ‗green‘ supercomputers and high end networking

infrastructure.

Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

