
Document Number: MD00548
Revision 01.01

August 22, 2011

Using the MIPS32® 34K® Core
Performance Counters

The MIPS32® 34K® core provides four performance counters and over 100 countable events. The developer
can access and use these counters using a number of different interfaces and tools. In this application note, we
present the performance counters and countable events, discuss the means to access and use the counters, and

provide examples of use to obtain information useful for application profiling and optimization.

2 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

Contents

Section 1: Introduction... 3

Section 2: MIPS32® 34Kc™ Core Multi-Threading Architecture.. 3
2.1: Architecture ... 4
2.2: Virtual Processing Element (VPE)... 5
2.3: Hardware Threads and Thread Context .. 5
2.4: New Instructions .. 6

Section 3: Performance Counters... 7
3.1: Configuration ... 7
3.2: Events Useful to Software Developers .. 11

Section 4: Using the Performance Counters ... 12
4.1: Application Software Access ... 12
4.2: Linux Operating System Access.. 13
4.3: Measurement Tools... 14
4.4: Avoiding Measurement Pitfalls .. 16
4.5: Making Reliable and Repeatable Measurements.. 17

Section 5: Examples of Use... 18
5.1: Reducing Data Cache Misses in mergesort .. 19
5.2: Measuring a Specific Thread in an MPEG-2 Decoder... 20
5.3: Tracking Stall Cycles in an MPEG-2 Decoder... 22

Section 6: Conclusion .. 25

Section 7: References .. 25

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 3

1 Introduction

The MIPS32® 34Kc™ core [1] implements the MIPS® Multi-Threading (MT) ASE [3], which provides hardware
support for multi-threading of software through the implementation of virtual processor elements (VPEs) and thread
contexts (TCs). Through the use of multi-threading, software applications can be executed by the MIPS 34Kc in
fewer cycles than on single-threaded MIPS cores such as the MIPS32® 24K® core. Reducing execution time allows
for a range of possible benefits, including:

• Increased throughput, e.g., decoding more output MPEG-2 video frames per second,

• Using the extra available processor time to add functionality,

• Lower energy consumption, through the ability to reduce processor clock speed for the same throughput, and,

• Lower cost, if lower frequency and hence less costly system components can be used.

Application software support for multi-threading is provided at the operating system level in SMTC Linux for the
34Kc core. Typically, existing multi-threaded application software compiled for the 24K family of cores may be exe-
cuted without change on the 34Kc core, and will execute in fewer cycles due to the MIPS 34Kc core’s hard-
ware-based multi-threading support. However, to obtain the best performance extra development work may be
required to optimize the application’s execution time performance. In this application note, we discuss the hardware
and software tools available for making detailed measurements of the execution of a software application, and using
that information to improve the performance of the application.

We begin with an overview of the 34Kc core architecture in Section 2 “MIPS32® 34Kc™ Core Multi-Threading
Architecture”, focusing on the hardware support for multi-threading. In Section 3 “Performance Counters” we intro-
duce the performance counters and the aspects of the processor that may be measured with them. Section 4 “Using
the Performance Counters” discusses how to make measurements using the performance counters, and introduces an
application for simplifying and automating the use of the performance counters, pc_sweep. In Section 5 “Examples
of Use” we present examples of using the performance counters to understand the behavior of two different types of
application.

We begin with an overview of the 34Kc core architecture in Section 2 “MIPS32® 34Kc™ Core Multi-Threading
Architecture”, focusing on the hardware support for multi-threading. In Section 3 “Performance Counters” we intro-
duce the performance counters and the aspects of the processor that may be measured with them. Section 4 “Using
the Performance Counters” discusses how to make measurements using the performance counters, and introduces an
application for simplifying and automating the use of the performance counters, pc_sweep. In Section 5 “Examples
of Use” we present examples of using the performance counters to understand the behavior of two different types of
application.

2 MIPS32® 34Kc™ Core Multi-Threading Architecture

But first, we will discuss a new approach to multi-threading at the hardware level that offers high performance on
threaded and unthreaded code: the 34K family of cores and the MIPS Multi-Threading ASE (MT ASE).

In the following sections we present an overview of the 34Kc™ core architecture and instruction set features, with a
focus on the features directly relevant to multi-threading. We will then discuss the thread switching mechanism

2.2 Virtual Processing Element (VPE)

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 5

2.2 Virtual Processing Element (VPE)

A virtual processing element (VPE) contains at least one thread context and is an instantiation of the full MIPS32®
ISA and privileged resource architecture (PRA), sufficient to run a per-processor OS image. A VPE can be thought of
as an “exception domain”, as exception state and priority apply globally within a VPE, and only one exception can be
dispatched at a time on a VPE.

n a processor with multiple VPEs, one VPE can be assigned to be a “master” VPE that has privileged access to the
resources of all VPEs using MTTR/MFTR instructions and can suspend or resume other VPEs. This allows one OS to
operate as a master, dispatching tasks to slave OSes. Other VPEs may assume (or be given) the role of master at
run-time.

This application note does not consider VPE-related issues, but assumes execution on a single processor or
multi-threaded VPE.

2.3 Hardware Threads and Thread Context

The 34K family of cores provide a rich set of controls to govern the behavior of VPEs and thread contexts (TCs).
Only a brief summary of TC operation is provided here, to provide background for the efficiency and capabilities of
the 34Kc core.

From the perspective of the 34Kc core hardware, a software thread is a stream of instructions executed in the order
the instructions were written. The 34Kc core provides hardware support, the thread context, that preserves the proces-
sor state sufficient to describe the state of a software thread. The hardware for each TC is identical, i.e., there are no
TCs reserved specifically for Kernel Mode or User Mode threads. A TC preserves at least the following processor
state:

• The program counter and 32 integer general-purpose registers

• The HI/LO register pair and the additional accumulator registers defined in the MIPS DSP ASE

• The privilege mode bits from the Status register

• The address space ID (the ASID field of the Coprocessor 0 EntryHi register), to allow the software thread
assigned to the TC to operate in a separate address space

• Coprocessor access state bits from the Status register

To minimize the hardware required to hold and maintain the TC, many registers are not stored in the TC. This
includes, for example, Coprocessor 1 registers.

A TC can be free or activated. Only free TCs may be allocated to new threads and only activated TCs may be sched-
uled by the thread scheduler. An activated TC may be running or blocked. Instructions are fetched and executed for
running TCs according to the implementation-dependent scheduling policy in effect. One such policy, provided by
MIPS, is a round-robin policy that issues one instruction from each running TC in turn. An instruction from a running
TC may be momentarily stalled, for example, due to functional unit delays. A blocked TC is one that has issued an
instruction that depends on an explicit synchronization event that has not yet occurred. For example, a thread
assigned to a TC may request synchronization with an external event via the external yield manager. The thread will
be in a blocked state until the external condition is met, at which point the TC may be rescheduled for execution (i.e.,
will return to the running state). This feature can be used to automatically and efficiently synchronize software with
fixed-function hardware.

2 MIPS32® 34Kc™ Core Multi-Threading Architecture

6 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

Independent of being free or activated, a TC can be halted. A halted TC cannot be allocated, even if marked free, and
cannot execute instructions, even if activated. The state of a halted TC is stable, making this state useful when, for
example, software must support more threads of execution than there are hardware TCs. An activated TC can also be
placed offline by code executing in the EJTAG Debug Mode, preventing the TC from being scheduled.

An activated TC may cause an exception during execution, causing the remaining activated TCs within the parent
VPE to be suspended while the exception is handled. Activated TCs may also be suspended if privileged software

deactivates multithreaded execution. A suspended TC can have active instructions in the pipeline, but cannot take any
action that would cause an exception or otherwise change VPE state. (Exception handling is complicated in a
multi-threading system; the reader is encouraged to review [3] to learn more.)

It is important to note that apart from initial configuration, the process of switching execution among a pool of acti-
vated threads is automatic and independent of software intervention. Hardware state allows a thread switch on the
MIPS 34Kc core to complete in a single cycle, significantly faster than the tens to thousands of cycles of thread
switching latency in an operating system executing on a single-threaded processor.

2.4 New Instructions

The 34Kc core implements the eight instructions of the MIPS MT ASE [3]:

• FORK and YIELD control thread allocation, deallocation, and scheduling, and are available in all execution
modes if implemented and enabled.

• MFTR and MTTR (move from thread context and move to thread context, respectively) are system coprocessor
(Coprocessor 0) instructions available to privileged system software for managing thread state.

• EMT and DMT are privileged Coprocessor 0 instructions for enabling and disabling multi-threaded operation of a
VPE.

• EVPE and DVPE are privileged Coprocessor 0 instructions for enabling and disabling multi-VPE operation of a
processor.

These instructions will cause a Reserved Instruction exception if executed by a processor not implementing the MIPS
MT ASE.

Ideally, each software thread is mapped to one TC. However, the user—or more usually, the operating system—can
allocate more software threads than there are hardware TCs, creating and managing thread state through the use of the
instructions listed above. In this application note we assume that there are always free hardware TCs that can be used
to execute the software application’s threads, which offers the lowest thread switching cost and the lowest execution
time.

In general, application software need not know or use the instructions listed above. Operating systems such as the
SMTC Linux kernel may use the new instructions to efficiently provide multi-threading support without further
application programmer intervention.

3.1 Configuration

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 7

3 Performance Counters

Performance counters are provided in a processor to count each occurrence of user-specified events. The 34Kc core
extends the performance counters of the 24Kc core family to provide:

• Four performance counters shared between the two VPEs

• The ability to count events per TC, per VPE, or per processor

• Additional countable events, e.g., fork and yield instructions and ITC accesses.

In Section 3.1 “Configuration” we present details of the performance counter configuration registers and list the dif-
ferent events that can be counted. In Section 3.2 “Events Useful to Software Developers” we describe which events
are the most useful to a software developer, and why.

3.1 Configuration

The four performance counters and four associated control registers are mapped to the system coprocessor (Copro-
cessor 0) register 25. The select field of the MTC0/MFC0 instructions are used to select the specific register accessed
by the instruction, as shown in Figure 2.

Each counter is a 32-bit read/write register (interpreted as an unsigned 32-bit value) that is incremented by one each
time the countable event specified in the associated control register occurs. Each counter can independently count one
type of event at a time. An interrupt signal, SI_PCI, is sent to the core when any counter has both the interrupt
enable (IE) bit of the corresponding control register set and has bit 31 set (i.e., the counter is half-full). The interrupt
allows software to take action when a counter value exceeds the half-full mark, such as extending the range of the
counter to avoid overflow, writing a zero to the counter (which may clear the interrupt), or even changing to counting
a different type of event.

Figure 2 shows the format of the Performance Counter Control register; Table 1 describes the Performance Counter
Control register fields. The available 34Kc core implementations may provide more than the minimum set of four
counters. When only four counters are implemented they are grouped into two pairs: the even pair (counters 0 and 2)
and the odd pair (counters 1 and 3

Figure 2 Performance Counter Register
31 30 29 22 21 20 19 16 15 12 11 5 4 3 2 1 0

M 0 TCID MT_EN VPEID 0 Event IE U S K EXL

Note: Implementation of the performance counters is optional, and software should first check for the pres-
ence of the performance counters before use. When performance counters are present, the PC bit of the
Config1 register is set to 1.

3 Performance Counters

8 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

Table 2 lists the countable events. The type field indicates whether the event can be counted per-TC (T), per-VPE
(V), or per-processor (P). TC countable events can also be counted in VPE or Processor modes, and VPE countable
events can also be counted in Processor mode. The operation of a counter is UNPREDICTABLE for events which
are specified as Reserved. All events not specified in the table are reserved.

Table 1 Performance Counter Register Selects Used in MTC0 and MFC0 Instructions

Select[2:0] Register

0 Register 0 Control

1 Register 0 Count

2 Register 1 Control

3 Register 1 Count

4 Register 2 Control

5 Register 2 Count

6 Register 3 Control

7 Register 3 Count

Table 2 Performance Counter Control Register Field Descriptions

Name Bits Description
Read/
Write Reset State

M 31 If this bit is one, another pair of Performance Control and Counter
registers is implemented at a MTC0 or MFC0 select field value of
‘n+2’ and ‘n+3’. (There may be more than four performance
counters available. There may also be no counters available—soft-
ware should check the PC bit of the Config1 register before
attempting to use the performance counters.)

R 1 for counter 0-2
0 for counter 3

0 30 Must be written as zero; returns zero when read. 0 0

TCID 29:22 Specifies which TC events should be counted if per-TC counting is
enabled

R/W Undefined

MT_EN 21:20 Specifies which events should be counted:
00: Count events from all TCs and VPEs
01: Count events from all TCs of the VPE specified in VPEID
10: Count events from the TC specified in TCID
11: Reserved

R/W Undefined

VPEID 19:16 Specifies which VPE events should be counted if per-VPE count-
ing is enabled

R/W Undefined

0 15:12 Must be written as zeros; returns zero when read. 0 0

EVENT 11:5 Counter event enabled for this counter. Possible events are listed
in Table 3.

R/W Undefined

IE 4 Counter Interrupt Enable. This bit masks bit 31 of the associated
count register from the interrupt exception request output.

R/W 0

U 3 Count in User Mode. When this bit is set, the specified event is
counted in User Mode.

R/W Undefined

3.1 Configuration

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 9

S 2 Count in Supervisor Mode. When this bit is set, the specified event
is counted in Supervisor Mode.

R/W Undefined

K 1 Count in Kernel Mode. When this bit is set, the specified event is
counted in Kernel Mode.

R/W Undefined

EXL 0 Count when in exception handling mode. When this bit is set,
count the event when EXL=1 and ERL=0

R/W Undefined

Table 3 Performance Counter Event Code Listing

Event Counter 0/2 Type Counter 1/3 Type

0 Cycles P Cycles P

1 Instructions completed T Instructions completed T

2 Branch instructions T Branch mispredictions T

3 jr $31 (return) instructions T jr $31 mispredictions T

4 jr $xx (not $31) instructions T jr $31 not predicted (stack mismatch) T

5 ITLB accesses T ITLB misses T

6 DTLB accesses T DTLB misses T

7 JTLB instruction accesses T JTLB instruction misses T

8 JTLB data accesses T JTLB data misses T

9 Instruction cache accesses T Instruction cache misses T

10 Data cache accesses T Data cache writebacks T

11 Data cache misses T Data cache misses T

12 External intervention requests P External intervention requests P

13 External intervention hits dirty P External intervention hit clean P

14 Integer instructions completed T FPU instructions completed T

15 Loads completed T Stores completed T

16 j/jal completed T MIPS16 instructions completed T

17 No-ops completed T Integer multiply/divide completed T

18 All stalls (no action in RF pipeline
stage)

P Replay traps (other than uTLB) T

19 sc instructions completed T sc instructions failed (because link bit
cleared)

T

20 Prefetch instructions completed T Prefetch instructions completed with
cache hit

T

21 L2 cache writebacks P L2 cache accesses P

22 L2 cache misses P L2 cache misses P

Table 2 Performance Counter Control Register Field Descriptions (Continued)

Name Bits Description
Read/
Write Reset State

3 Performance Counters

10 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

23 Exceptions taken T Reserved

24 Cache fixup T Refetches T

25 IFU stalls P ALU stalls P

26 DSP instructions completed T ALU-DSP saturations done T

27 Reserved MDU-DSP saturations done T

28-31 Available to count implementation-specific events signalled by wires from configurable interfaces.

28 Implementation-specific PM event T Implementation-specific CP2 event T

29 Implementation-specific ISPRAM event T Implementation-specific DSPRAM
event

T

30 Implementation-specific CorExtend
event

T Implementation-specific system event T

31 Implementation-specific XYM event T Implementation-specific ITC event T

32 ITC loads T ITC stores T

33 Uncached loads T Uncached stores T

34 fork instructions completed T yield instruction completed T

35 CP2 arithmetic instructions completed T CP2 to/from instructions completed T

36 Reserved

37-46 Count number of cycles (most often “stall cycles”, i.e. time lost), not just number of events.

37 Instruction cache miss stall cycles T Data cache miss stall cycles T

38 L2 cache instruction miss stall cycles P L2 cache data miss stall cycles P

39 Data cache miss cycles P L2 miss cycles P

40 Uncached stall cycles T ITC stall cycles T

41 MDU stall cycles T FPU stall cycles T

42 CP2 stall cycles T CorExtend stall cycles T

43 ISPRAM stall cycles T DSPRAM stall cycles T

44 cache instruction stall cycles P Reserved

45 Load to Use stalls T ALU to AGEN stalls T

46 Other interlock stalls T Branch mispredict stalls Pi

47 Relax bubbles V Reserved

48 IFU FB full refetches T FB entry allocated P

49 Reserved

50-55 Monitor the state of various FIFO queues in the load/store unit: FSB (“fill/store buffer”), LDQ (“load
queue”) and WBB (“write-back buffer”). Some count events, others count stall cycles. None can be filtered
per-TC or per-VPE.

50 FSB < 1/4 full P FSB 1/4-1/2 full P

51 FSB > 1/2 full P FSB full pipeline stalls P

52 LDQ < 1/4 full P LDQ 1/4-1/2 full P

53 LDQ > 1/2 full P LDQ full pipeline stalls P

54 WBB < 1/4 full P WBB 1/4-1/2 full P

Table 3 Performance Counter Event Code Listing (Continued)

Event Counter 0/2 Type Counter 1/3 Type

3.2 Events Useful to Software Developers

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 11

Most of the events in Table 3 are self-explanatory although some events specific to multi-threading support require
greater explanation, such as:

• Indirect jump mispredictions (events 3 and 4). Only one Return Prediction Stack (RPS) resource is available in
the 34Kc core, and is dynamically mapped to one TC at any point in time. Thus, the count of RPS mispredictions
can be inaccurate or misleading.

• Pipeline events (events 18 and 24). Long stall conditions can cause a thread’s instructions in the pipeline to be
nullified and rolled back to the thread’s instruction fetch unit (IFU) instruction buffer, a condition known as a
replay. In some cases, an instruction may no longer be in the IFU buffer when a replay condition is detected,
requiring the instruction to be re-fetched. And, it is possible for the load/store unit (LSU) to be in replay (i.e.,
re-fetching data) and for subsequent ALU operations to be stalled.

• Relax stalls (event 46). The number of cycles that the low-power thread is executed as requested by the policy
manager.

Many event types count complementary events in the even/odd pairs of counters. For example, event 37 counts
instruction caches misses in counters 0 and 2, and data cache misses in counters 1 and 3. Some event types count
events that are also counted by other event types, e.g., event 25 counts IFU stalls in counters 0 and 2 and ALU stalls
in counters 1 and 3. The logical OR of both conditions can be counted in counters 0 and 2 under event 18, Stalls. That
is, in some cases a single event may not be sufficient to uniquely identify the cause of all stalls and the software must
be executed multiple times to obtain a clearer picture of cause. (Which is a feature of pc_sweep, described in
Section 4.3 “Measurement Tools”.)

3.2 Events Useful to Software Developers

Of the events listed in Table 3, the two events of most immediate relevance to a software developer are Cycles (event
0) and Instructions completed (event 1). Measuring these two events allow the computation of an application’s
instructions-per-cycle (IPC) metric, which is an important figure of merit for optimization or development. A high
IPC indicates that the machine is already executing the application efficiently, and gains, while possible, may come at
too high a cost to be justified. A low IPC indicates that performance can be improved, possibly through the use of
multi-threading or other optimizations.

If a low IPC is measured, indicating inefficiency, the developer can count other events to discover where the applica-
tion is inefficient. Among the approximately 100 events that can be measured the most two useful groups are:

• Events 9, 10, 11, 37, and 39, which measure cache-related inefficiencies such as misses and cycles spent waiting
for data.

• Events 18, 24, 25, 41, 45, and 46, which measure stalls, such as stalls waiting for instructions or within the ALU.

Many of the remaining events in Table 3 are special-purpose events with a very narrow focus that are unlikely to be
used in day-to-day software development.

55 WBB > 1/2 full P WBB full pipeline stalls P

56-127 Reserved

Table 3 Performance Counter Event Code Listing (Continued)

Event Counter 0/2 Type Counter 1/3 Type

4 Using the Performance Counters

12 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

In the following sections we show how to access performance counters individually or collectively from application
software or from the operating system. We then introduce a tool that assists the developer to specify events to count,
and to make and report measurements.

4 Using the Performance Counters

4.1 Application Software Access

Kernel-mode software executing on the 34Kc core may use MTC0 and MFC0 instructions to move values to and from
the performance counter and performance counter control registers. The performance counters are accessible at
Coprocessor 0 register 25, with individual performance counter and performance counter control registers accessed
using the MTC0 and MFC0 instructions sel field (as shown in Table 1). For example, to use performance counter 0 to
measure instructions completed during some part of application execution, the following C code might be used:

int32_t count=0, control=0x28;
asm volatile("mtc0 %0, $25, 0" : "=r" (control)); // configure counter 0
asm volatile("mtc0 $0, $25, 1"); // reset counter 0

... // Perform task

asm volatile("mfc0 %0, $25, 1" : "=r" (count)); // read counter 0

Note that the code example above is susceptible to execution and instruction hazards. Hazard barriers should be used
to clear and remove hazards when reading and writing the Coprocessor 0 registers. For example, the following assem-
bly code might be used to configure and read the performance counters:

addiu $t1, $0, 0x28 ; load control word into $t1
move $t2, $0 ; zero counter
la AT, 1f ;
mtc0 $t1, $25, 0 ; configure performance counter 0
ehb ; clear execution hazard
jr.hb AT ; clear instruction hazards
nop

1:
la AT, 2f
mtc0 $0, $25, 1 ; reset performance counter 0

ehb ; clear execution hazards
jr.hb AT
nop

2:

... ; Perform task

la AT, 3f
mfc0 $t2, $25, 1 ; read counter 0
jr.hb AT ; clear instruction hazards
nop

3:
nop

4.2 Linux Operating System Access

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 13

User-mode software may not access Coprocessor 0 directly (doing so will cause an exception), but may read the
Coprocessor 0 Count register to obtain a high-resolution cycle count using the RDHWR instruction. The Count
register is updated once every one or more CPU cycles; the update frequency can also be read using the RDHWR
instruction. For example,

int32_t countStart=0, countEnd=0, countRes;
asm volatile("rdhwr %0, $2" : "=r" (countStart));

... // Perform task

asm volatile("rdhwr %0, $2" : "=r" (countEnd));
asm volatile("rdhwr %0, $3" : "=r" (countRes));

Accessing the cycle counter from within the application allows for very precise measurement with as little error as
possible due to counter start/stop latencies. In addition, if the software application under test can temporarily pre-
vent context switches at the application level, variance due to a multitasking OS environment can also be mini-
mized or eliminated.

4.2 Linux Operating System Access

The performance counter registers and the performance counter control registers are available to the user through
the Linux /proc filesystem interface at /proc/perf. The interface may be read at any time; an example is
shown in Figure 3. The interpretation of the control registers is implementation-specific. Note that when reading
the /proc/perf interface, the values of the control registers are presented in hexadecimal format, while the val-
ues of the counters are presented in decimal format.

Figure 3 Output From /proc/perf Performance Counter Interface

The root user may also configure the performance counters using this interface, by writing simple ASCII-format
strings to /proc/perf in the format num control value, where

• num is the number of the performance counter and associated control register to set, in decimal format,

• control is the value to write to the associated control register, in hexadecimal format, and

• value is the value to initialize the performance counter with.

The example below shows the command used to configure performance counter 0 to count User Mode instruction
completions while initializing the counter to an initial value of zero. The example assumes that the user is root;
less-privileged users are not allowed to write the /proc/perf interface.

% echo "0 0x00000028 0" > /proc/perf

% cat /proc/perf
PerfCnt[0].Ctl : 0x80000528
PerfCnt[0].Cnt : 108399
PerfCnt[1].Ctl : 0x800005a8
PerfCnt[1].Cnt : 1171512
PerfCnt[2].Ctl : 0x800005a8
PerfCnt[2].Cnt : 285070
PerfCnt[3].Ctl : 0x000005c8
PerfCnt[3].Cnt : 779389

4 Using the Performance Counters

14 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

More than one counter can be updated or read at one time. For example, to set the properties for all four counters at
once using values in the file perfcnt_config, the following commands can be used:

% more perfcnt_config
0 0x8000001f 0
1 0x8000003f 0
2 0x8000025f 0
3 0x800002ff 0
% cat perfcnt_config > /proc/perf
 ... run program to profile here ...
% cat /proc/perf > log_perfcnt_results
% cat log_perfcnt_results

It is also possible to suspend and resume event counting, as shown in the example below:

echo "3 0x1f 0" > /proc/perf # clear counter 3, set to count all cycles, and
enable overflow interrupt

echo "3 0x0 -1" > /proc/perf # suspend counting
echo "3 0x1f -1" > /proc/perf # resume counting

An advantage of the /proc/perf interface is its simplicity and its availability to scripts and applications. A disad-
vantage is possible inaccuracy caused by (a) start/stop latency, and (b) context switches to other applications while
measurements are made. In general, by repeating measurements under a variety of operating conditions, these sources
of inaccuracy can be calibrated or otherwise made small relative to the measurements of interest. This is discussed
further in Section 4.5 “Making Reliable and Repeatable Measurements”, below.

4.3 Measurement Tools

As stated earlier, the 34Kc core provides four performance counters used to make measurements of an application.
However, in many cases, it is necessary to take more than four measurements in order to create an accurate picture of
application behavior. A command-line tool for Linux, pc_sweep, simplifies the measurement of multiple events
and is scriptable. The tool must be executed as the root user, to allow read/write access to the /proc/perf perfor-
mance counter interface under Linux.

The basic syntax of the pc_sweep command is:

% pc_sweep <mode> [<options>] <command>

Where <command> is the application (or sequence of applications) for which performance measurements are to be
made. The execution mode (User, Supervisor, Kernel, or Exception) under which measurements will be made must
also be specified. Table 5 lists all command line options for pc_sweep, including the options to define the applica-
tion execution mode. Both short- and long-format options are supported, and may be used interchangeably. Several
short options may combined into one, provided that the result is not ambiguous. For example, the common options
-u -i -p may be combined into one option, -uip.

Table 6 shows the mapping of command-line options to counted events. Options may be combined; the union of
events is used for the actual measurement. For example, giving the command-line options --misses and --tlb
results in an even counter event list of 5, 6, 7, 8, 9, 10, 11, 21, 22, and 39.

Figure 4 shows an example invocation of pc_sweep to measure the instructions per cycle of the command-line tool
grep. User commands are shown in bold face. In this example, only two counter events are specified, and the target
command is executed once. Note that the --parse option has been specified, which causes the raw counter data
collected by pc_sweep to be “pretty printed” by a helper application supplied with pc_sweep, pc_parse. When

4.3 Measurement Tools

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 15

the -p or --parse options are not specified, pc_sweep output looks similar to that shown in Figure 3; this format
is harder to read and understand and use of parsing is recommended.

Table 4 Command Line Options for pc_sweep

Option Event Type

Mandatory Arguments

-u, --user User-mode events

--supervisor Supervisor-mode events

--kernel Kernel-mode events

--exl Exception-mode events

Optional Arguments

-p, --parse Post-process /proc/perf dump
with pc_parse

--output <filename> Save counter output to <filename>

--append <filename> Append counter output to <filename>

--all|-a, --ipc|-i, --stalls|-s,
--queues|-q, --cache|-c, --branches|-b,
--stalls_all, --instructions, --tlb, --l2,
--itc

Event selection

--evens "[events numbers]" Even-counter events to measure

--odds "[events numbers]" Odd-counter events to measure

--balance Sweep TCs and VPEs

--modes Sweep user/supervisor/kernel/excep-
tion cycles

Table 5 Mapping of pc_sweep Command Line Options to Counted Events

Option

Events Assigned to Counters

Event Odd

--ipc 0 1

--stalls 18,25,41,45,24 18,25,41,45,46

--all_stalls 18,24,25,37,38,40,41,42,43,44,45,46,47,48 18,24,25,37,38,40,41,42,43,45,46,51,53,55

--queues 50,51,52,53,54,55 50,51,52,53,54,55

--misses 5,6,7,8,9,10,11,21,22,39 5,6,7,8,9,10,11,21,22,39

--instructions 1,2,3,4,14,15,16,17,19,20,26,35,32,34 2,3,4,14,15,16,17,19,20,26,27,35,32,34

--cache 9,10,37,39 9,10,11,37

--branch 2,3,4,16 2,3,4,16

--tlb 5,6,7,8 5,6,7,8

--l2 21,22,38 21,38,39

--ipc 0 1

4 Using the Performance Counters

16 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

Figure 4 shows a minimal run of pc_sweep to gather the instructions per cycle (IPC) ratio of the grep command
executed in User mode. The mode field displays the mode (user mode, kernel mode, etc.) for which the counter was
programmed to count events. The VPE and TC fields show which thread contexts were counted when running on the
34Kc core. The event field shows whether the counter displayed is an even-numbered counter or an odd-numbered
counter, and which event number was specified. The pc_parse tool converts the event number into a human-read-
able description. It also computes percentage ratios of certain statistics, most notably stalls, and pseudo-statistics,
such as instructions per cycle (IPC, a measure of efficiency) and cycle sharing overhead (a measure of the impact of
the OS on the application). The IPC is calculated as the ratio of all instructions to the sum of all instructions and all
stalls. The cycle-sharing overhead is computed as the ratio of the sum of all instructions and all stalls to the cycle
count.

Figure 4 Example pc_sweep

When more than four events are to be collected, pc_sweep will invoke the target command repeatedly until all of
the data is collected. Then, the counter results are summarized and displayed. This is shown (again, for the grep
command) in Figure 5.

4.4 Avoiding Measurement Pitfalls

The purpose of the performance counters is to provide the developer with fine-grained, quantitative information on
factors that affect execution time performance, either to confirm performance or to allow the performance to be
improved (if possible). Access to a large number of countable source events—there are over 100 separate countable
events—allows the developer many different avenues of investigation. However, care must be taken when making
measurements with the performance counters for three reasons.

First, many events track conditions that are similar or overlap other events. For example, event 25 tracks either IFU
stalls or ALU stalls, and event 18 tracks pipeline stalls, which includes both IFU and ALU stalls. A developer must
take care to understand the sources of the events that are being counted, and create operational conditions that allow a
single source to be identified.

Table 4.1

pc_sweep --parse -ui grep root /etc/passwd
Even-counter events: 0
 Odd-counter events: 1
root::0:0:root:/root:/bin/bash
operator:*:11:0:operator:/root:/sbin/nologin

[mode] [VPE TC] (event) event description: value

[U] [] (0 / 0) cycles: 1241355
[U] [] (1 / 1) all instructions: 695424 m 100.0%

[U] [] IPC: 0.560

4.5 Making Reliable and Repeatable Measurements

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 17

Figure 5 Using pc_sweep to Measure Cache Activity While Executing grep Command in User Mode

Second, there are only four performance counters. To gain an accurate understanding of the cause of performance
issues, the developer must execute the application repeatedly while measuring different sets of events. Typically, this
means repeatedly executing the application with the same input data set and initial conditions. However, the devel-
oper may have little control over the behavior of other applications in the system, such as the operating system. For
example, a regularly scheduled, but infrequent, housecleaning task may execute during the middle of a series of mea-
surement runs, distorting the results. This can be a significant source of error when the software under test executes in
relatively few cycles, e.g., as might be the case when testing a single kernel written in hand-optimized assembly. A
useful strategy to minimize the error due to external events is to simply re-run the tests multiple times and discard
outlier data sets.

Third, each performance counter is only 32 bits wide. It is possible for a counter to overflow and wrap around during
a single execution run. For example, if the 34Kc core executed instructions at a clock rate of 500 MHz, an application
experiencing an average instruction cache miss rate of 1 per 8 instructions would cause the counter tracking this event
to wrap around after approximately 68 seconds, which may be too brief for the application(s) and event(s) under test.
To offset this possibility, the performance counters may interrupt the core when any or all of the counters is over
“half-full,” allowing the counters to be extended and the probability of actual overflow reduced or eliminated. (A
64-bit wide counter tracking the same event under the same conditions would overflow after 9,300 years of continu-
ous operation!) However, extending the dynamic range of the counters may not be possible if the developer is not
able to enable or use the interrupt.

In the following sections, we will discuss strategies and tools for dealing with each of the issues summarized above.

4.5 Making Reliable and Repeatable Measurements

The pc_sweep tool executes the target application repeatedly until all requested measurements have been made. To
make the results useful the target application must exhibit deterministic behavior, i.e., each run must be identical to

pc_sweep --parse -cui grep root /etc/passwd
Even-counter events: 0 9 10 37 39
 Odd-counter events: 1 9 10 11 37
root::0:0:root:/root:/bin/bash
operator:*:11:0:operator:/root:/sbin/nologin
root::0:0:root:/root:/bin/bash
operator:*:11:0:operator:/root:/sbin/nologin
root::0:0:root:/root:/bin/bash
operator:*:11:0:operator:/root:/sbin/nologin

[mode] [VPE TC] (event) event description: value

[U] [] (0 / 0) cycles: 1235557
[U] [] (1 / 1) all instructions: 699255 m 100.0%
[U] [] (0 / 9) I-cache accesses: 497656
[U] [] (1 / 9) I-cache misses : 8227
[U] [] (0 / 10) D-cache accesses : 242055
[U] [] (1 / 10) D-cache writebacks: 3591
[U] [] (1 / 11) D-cache misses : 18236
[U] [] (0 / 37) L1 I-$ miss stalls: 87527
[U] [] (1 / 37) L1 D-$ miss stalls: 108114
[U] [] (0 / 39) D-$ miss pending: 140076

[U] [] IPC: 0.566
[U] [] I-$ miss rate: 1.7%
[U] [] D-$ miss rate: 7.5%

5 Examples of Use

18 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

the previous run. Many applications will have deterministic behavior—modulo the behavior of the operating system,
discussed next—when processing prepared files, e.g., MPEG-2 decoders operating on an encoded bitstream stored as
a file. Applications processing data collected from other, “live” sources (such as from a sensor feed or when process-
ing user input) will generally not exhibit deterministic behavior. In the latter case, multiple runs, possibly of long
durations, can be used to determine performance statistically.

The behavior of the operating system can also skew results: the OS may execute a disruptive task irregularly while
measurements are being made and the OS may cache files used by the application (and the application itself). In gen-
eral, the impact of the OS can be measured and then factored out from the target application’s results by making
repeated test runs and discarding outliers—i.e., data that is clearly far from the average. If desired, OS file system
caches can be flushed with respect to the application under test either by using explicit OS commands or by running
another application.

Currently, not all SMTC Linux kernels implement performance counter range extensions in the /proc/perf inter-
face, making it possible for a counter to overflow and wrap around during a test run. This is most likely to occur when
counting events that are triggered with highest frequency, such as event 0 (cycles). Note that when overflow occurs,
statistics derived from the overflowed counter are inaccurate. Check with MIPS Sales or Technical support staff for
the availability of the performance counter range extension in SMTC Linux.

5 Examples of Use

In the following sections we present three examples of pc_sweep use: a mergesort application and two examples
using an MPEG-2 decoder.

The results presented here were obtained on a MIPS Malta™ FPGA emulation platform containing an emulated
MIPS 34Kc processor executing at 32 MHz, configured with 2 VPEs and 5 TCs enabled. The emulation platform
used the ROC-it high-bandwidth system/memory controller configured for a 4:1 ratio of CPU:Bus cycles, resulting in
a cache miss penalty of approximately 50 cycles. The MIPS 34Kc executed the SMTC Linux operating system,
which is MIPS 34Kc-aware and provides access to the on-core performance counters using the Linux /proc/perf
filesystem interface.

5.1 Reducing Data Cache Misses in mergesort

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 19

Figure 6 YAMON Description of the MIPS 34Kc FPGA Emulation Board

5.1 Reducing Data Cache Misses in mergesort

Our first example shows how to use pc_sweep to count more than four events by executing a target application
multiple times in the same way. Our target application is the mergesort, a simple sorting algorithm with a relatively
small program size (76 kilobytes as compiled for the 24Kc), that may operate on quite large data sets that do not fit
completely within the data cache. The multi-threading implementation used here takes four command-line argu-
ments: an input random data file, the number of elements to sort, a blocksize, and number of threads. We suspect that
data cache misses will lower performance and that the choice of blocksize will affect data cache misses. We start with
a hypothesis that increasing the blocksize parameter can reduce data cache misses by allowing the sort algorithm to
spend more cycles operating on data already loaded in the cache rather than waiting for new data to be loaded into the
cache.

We will use pc_sweep to determine the best blocksize when using four threads to sort 1 MB of random input data,
executing the mergesort application multiple times to collect performance data related to the instruction and data
caches. When collecting cache performance data, pc_sweep will count 10 events (five even and five odd), requiring
multiple runs of the target application.

We invoke pc_sweep in a loop from the shell, requesting User mode counting (-u), with IPC computation (-i),
returning important cache statistics (-c), and parsing the output through pc_parse (-p):

for ((i=64; i<2048; i+=i)); do \
echo "Blocksize $i"; \
pc_sweep -uicp ./mergesort ../random 1048576 $i 4; \

done;

Table 6 shows selected output from from pc_sweep profiling the mergesort application, iterating over six values of
blocksize. (Relative execution time is computed after data collection, and is the ratio of the cycle count for blocksizes
above 64 to the cycle count with blocksize equal to 64.) Data cache stall cycles and relative execution time results
from the table are plotted in Table 7. We can see that as expected, data cache miss cycles trend down as blocksize
increases. We can also see that the number of instructions executed increases with blocksize while ALU and total
stall cycles are roughly constant with blocksize. The increase in instructions issued is expected due to the way the

Compilation time = Sep 1 2006 16:34:30
Board type/revision = 0x02 (Malta) / 0x00
Core board type/revision = 0x09 (CoreFPGA-3) / 0x01
System controller/revision = MIPS ROC-it / 0.0 FW-1:1 (CLK_unknown)
FPGA revision = 0x0001
MAC address = 00.d0.a0.00.04.cd
Board S/N = 0000000991
PCI bus frequency = 33.33 MHz
Processor Company ID/options = 0x01 (MIPS Technologies, Inc.) / 0x00
Processor ID/revision = 0x95 (MIPS 34Kc) / 0x44
Endianness = Little
CPU/Bus frequency = 32 MHz / 7968 kHz
Flash memory size = 4 MByte
SDRAM size = 64 MByte
First free SDRAM address = 0x800b6fb0

5 Examples of Use

20 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

mergesort operates: by recursively partitioning of the block and sorting each half of the new blocks created. Hence,
larger blocks result in more instructions being executed as more blocks are sorted.

5.2 Measuring a Specific Thread in an MPEG-2 Decoder

The ALPBench MPEG-2 decoder uses the POSIX Pthreads library, creating worker threads for each frame and com-
bining the results prior to outputting each decoded frame. The number of threads to use is specified at run-time, with
an upper limit defined at compile time. The ALPBench software is available from
http://rsim.cs.uiuc.edu/alp/alpbench.

Figure 7 shows using pc_sweep to profile the mergesort application to determine the best blocksize to use to sort
1 MB of random data. Relative execution time is execution time relative to the time for a blocksize of 64 bytes.

Table 6 pc_sweep Output from mergesort

Metric

Blocksize

64 128 256 512 1024 2048

Relative execution
time

1.00 1.45 2.29 4.08 7.60 14.72

Cycles 522,337,380 754,283,302 1,198,406,121 2,137,115,472 3,967,414,208 7,689,066,234

All instructions 446,849,798 667,638,291 1,110,112,990 2,012,639,686 3,812,539,153 7,431,331,191

All stalls 51,943,984 61,686,395 50,990,956 64,044,425 63,407,402 91,081,096

ALU stalls 44,430,415 52,139,381 43,594,682 56,612,052 55,545,441 79,673,813

D-cache accesses 73,681,290 98,705,929 144,750,486 245,363,821 442,501,474 845,222,541

D-cache writebacks 1,944,965 1,929,496 1,673,532 1,686,965 1,453,707 1,520,521

D-cache misses 12,220,059 12,980,219 10,716,190 11,597,488 9,464,412 10,564,993

L1 D-$ miss stalls 25,759,417 32,208,075 23,478,699 30,071,077 24,398,339 32,766,275

D-$ miss pending 169,377,268 175,177,187 157,146,579 171,146,721 194,420,395 256,755,966

5.2 Measuring a Specific Thread in an MPEG-2 Decoder

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 21

Figure 7 mergesort Profile

The MPEG-2 decoder is invoked with the following command-line syntax:

% mpeg2dec-mips-nptl -b <m2v file> -n <number of threads>

The application is profiled while decoding the standard “Foreman” video test stream containing 300 CIF resolution
(352 × 288 pixels) YUV-format video frames. The MPEG-2 decoder application takes command-line arguments for
the location of the input encoded video file (-b <m2v file>) and for the number of threads to create per frame
(-n <number of threads>). To prevent pc_sweep from parsing these arguments as its own, insert the
end-of-switches switch, “--”, prior to the MPEG-2 decoder command, as shown below:

% pc_sweep -uicp -- ./execs/mpeg2dec-mips-nptl -b ../video/foreman10.m -n 4

The pc_sweep application allows measurements can be made from any single TC or VPE. It is possible to specify a
specific TC for use by the application using the SMTC Linux utility taskset, and to specify that pc_sweep only
collect events from the specific TC using the -t command-line switch. An example is shown in Figure 8; the output
from pc_sweep shows that only data for TC3 was collected. A similar approach can be used to obtain data for a sin-
gle VPE through the use of the -v switch.

Data can be collected for a specific TC using the Linux utility taskset in conjunction with the pc_sweep command, as
shown in Figure 8.

0

2

4

6

8

10

12

14

16

64 128 256 512 1024 2048

Blocksize

C
yc

le
s

(x
10

6)

0

2

4

6

8

10

12

14

16

R
el

at
iv

e
E

xe
cu

ti
o

n
 T

im
e

D$ miss cycles Relative Execution Time

5 Examples of Use

22 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

Figure 8 Using taskset and pc_sweep

Care must be taken when interpreting single-TC measurements made using pc_sweep when the target application
uses multiple threads. The work being done by the other application threads will not be visible to the pc_sweep run,
which may be confusing. If the application’s behavior is completely deterministic, multiple pc_sweep runs examin-
ing different threads can be used and the developer can then combine the results to obtain a clearer picture of perfor-
mance.

5.3 Tracking Stall Cycles in an MPEG-2 Decoder

Although pc_sweep provides command-line switches to target specific groups of events in a single run, it can be
convenient to specify a customized list of events to measure. In this example, we will use the --evens and --odds
options to pc_sweep to specify specific stall events of interest. These two options take a list of events to apply to
the even and odd counters, respectively. We first choose events 18 (all stall cycles and replay traps), 37 (instruction
cache miss cycles), and 39 (data cache miss cycles) from Table 3, then execute pc_sweep as follows:

% for i in 1 2 3 4 5; do \
pc_sweep -uip --evens "18 37 39" --odds "18 37 39" -- \

./execs/mpeg2dec-mips-nptl -b ../video/foreman10.m2v -n $i \;
done;

pc_sweep -uicp -t3 -- taskset -c 3 \
./execs/mpeg2dec-mips-nptl -b ../video/foreman10.m -n 1

Even-counter events: 0 9 10 37 39
 Odd-counter events: 1 9 10 11 37
ropebench: kernel: '10_mpeg2dec'
ropebench: 1 threads
height 288 width 352
ropebench: realtime 5.470546
ropebench: kernel: '10_mpeg2dec'
ropebench: 1 threads
height 288 width 352
ropebench: realtime 5.463928
ropebench: kernel: '10_mpeg2dec'
ropebench: 1 threads
height 288 width 352
ropebench: realtime 5.462602

[mode] [VPE TC] (event) event description: value

[U] [TC3] (0 / 0) cycles: 182220114
[U] [TC3] (1 / 1) all instructions: 150634834 m 100.0%
[U] [TC3] (0 / 9) I-cache accesses: 85094070
[U] [TC3] (1 / 9) I-cache misses : 43897
[U] [TC3] (0 / 10) D-cache accesses : 43144409
[U] [TC3] (1 / 10) D-cache writebacks: 106040
[U] [TC3] (1 / 11) D-cache misses : 427095
[U] [TC3] (0 / 37) L1 I-$ miss stalls: 434017
[U] [TC3] (1 / 37) L1 D-$ miss stalls: 1323273
[U] [TC3] (0 / 39) D-$ miss pending: 3364544

[U] [TC3] IPC: 0.827
[U] [TC3] I-$ miss rate: 0.1%
[U] [TC3] D-$ miss rate: 1.0%

5.3 Tracking Stall Cycles in an MPEG-2 Decoder

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 23

Selected results from the measurement are shown in Table 7. Relative speedup (not computed by pc_sweep, but
computed from the cycle counts returned by pc_sweep) is defined as

From the table we see that three threads of execution offers the best mix of relative speedup and fewest L1 instruction
cache miss cycles. For example, total stall cycles are more than halved when three threads are used compared to the
single-threaded case. Additional worker threads offer diminished returns: with four and five threads of execution, L1
instruction cache miss cycles continue to grow while the execution time remains relatively constant.

The table includes the instructions per cycle ratio (IPC) and cycle sharing overhead, as computed by pc_sweep. The
IPC is maximized and the cycle sharing overhead is minimized when three threads are used. As described in Section
4.3 “Measurement Tools”, IPC is calculated as the ratio of all instructions to the sum of all instructions and all stalls.
An IPC of 1.0 indicates that the machine is performing work every cycle; values lower than one indicate
less-than-ideal performance. The cycle sharing overhead is the ratio of the sum of all instructions and all stalls to the
cycle count and is a measure of the overhead of other tasks (principally the OS) on the measured data.

We also note that, independent of the number of threads, the total stall cycle count is generally four to five times
higher than the sum of replay stall cycles and L1 cache miss cycles. What is the source of the extra stall cycles? To
find out, we add more events to the list of events to count and run pc_sweep once more. We add events 24 (cache
fixup and re-fetches) and 25 (IFU stalls and ALU stalls) to both the --evens and --odds lists. The results are
shown in Table 8 below and plotted in Figure 9, and indicate that ALU cycles are the primary source of stall cycles in
this application.

Table 7 Selected Results of Customized Stall-cycle Measurement

Metric

Threads

1 2 3 4 5

Cycles 183,624,622 168,450,653 167,250,453 169,070,742 172,441,901

All instructions 151,020,049 151,086,135 151,120,799 151,162,631 151,206,089

IPC 0.822 0.897 0.904 0.894 0.877

All stalls 26,770,910 11,939,387 10,932,458 12,451,991 15,394,697

Replays 13,949 108,549 132,180 142,431 202,719

L1 I-$ miss stalls 2,642,765 1,528,107 1,686,401 2,003,892 2,133,641

L1 D-$ miss stalls 3,961,518 710,077 720,560 845,133 817,302

Cycle sharing
overhead (%)

3.20% 3.20% 3.10% 3.20% 3.40%

Relative speedup 1.00 1.09 1.10 1.09 1.06

S∆
single-threaded cycle count
multi-threaded cycle count
---=

5 Examples of Use

24 Using the MIPS32® 34K® Core Performance Counters, Revision 01.01

.

Figure 9 PC_sweep Profiles

Table 8 Stall Cycle Measurement Results

Metric

Threads

1 2 3 4 5

Cycles 183,624,622 168,450,653 167,250,453 169,070,742 172,441,901

All instructions 151,020,049 151,086,135 151,120,799 151,162,631 151,206,089

IPC 0.822 0.897 0.904 0.894 0.877

All stalls 26,770,910 11,939,387 10,932,458 12,451,991 15,394,697

LSU replay stalls 248,040 441,140 804,660 1,265,543 2,380,531

Refetches 2,937 8,210 6,861 8,972 15,458

No instructions
available

11,057,833 4,310,231 3,534,592 3,819,503 4,321,247

Replays 13,949 108,549 132,180 142,431 202,719

ALU stalls 15,819,932 7,382,784 7,240,907 8,032,199 11,102,178

L1 I-$ miss stalls 2,642,765 1,528,107 1,686,401 2,003,892 2,133,641

L1 D-$ miss stalls 3,961,518 710,077 720,560 845,133 817,302

Cycle sharing over-
head (%)

3.20% 3.20% 3.10% 3.20% 3.40%

Relative speedup 1.00 1.09 1.10 1.09 1.06

0

5

10

15

20

25

30

1 2 3 4 5

Threads

C
yc

le
s

(x
10

6)

0.95

1.00

1.05

1.10

1.15

1.20

1.25

R
el

at
iv

e
S

p
ee

d
u

p

ALU stalls All stalls Relative Speedup

5.3 Tracking Stall Cycles in an MPEG-2 Decoder

Using the MIPS32® 34K® Core Performance Counters, Revision 01.01 25

Note that for three threads, the sum of the individual stall cycle counters (14,126,161 cycles) is not equal to the
reported total of all stalls (10,932,458 cycles): if two stall events occur at the same time, they are counted as one. This
can make finding the exact cause of stalls confusing. However, in this case, we have a clear indication that ALU stalls
are the most significant source of stall cycles. MPEG-2 decoder applications typically spend most cycles in relatively
few functions, implying that the majority of the ALU stalls are caused by software in a few, or possibly just one, of
the kernel functions within the MPEG-2 decoder. Armed with the data from the performance counters, the developer
can proceed to identify the source and cause of the ALU stalls, and seek to reduce them.

6 Conclusion

The MIPS32 34Kc core’s performance counters can be a powerful tool to help developers understand the reasons for
the performance of their application. Developers can access the 34Kc core performance counters in several ways. The
counters are easily used with a simple, yet powerful command-line tool, pc_sweep, and also through the
/proc/perf filesystem interface and from the Linux command line. Privileged software may read and write the
performance counters from C or from assembly using Coprocessor 0 register read and write operations; unprivileged
software may only access a cycle count register.

The performance counters must be used with care to ensure that measurements are accurate and repeatable, and that
counter overflow and wrap around does not obscure useful data. Developers using the performance counters should
review the 34Kc core performance counter documentation to understand which events can be counted, and which
events share counters (e.g., as is the case with the total stall cycles counter and the IFU and ALU stall counters).

The 34Kc core enables hardware-based support for multi-threading in a way that is almost completely transparent to
the software developer. However, optimizing the execution time and throughput performance of a multi-threading
software application requires special insight into complex application behavior. The wealth of 34Kc core perfor-
mance counters can provide the developer with quantitative data about application performance, and so help the
developer to make informed decisions about how and where to best apply optimization efforts.

7 References

1. MIPS32® 34Kc™ Processor Core Datasheet, MIPS Document Number: MD00418

2. MIPS® MT Principles of Operation, MIPS Document Number: MD00452

3. MIPS32® Architecture Reference Manual VolumeIV-f: The MIPS® MT Application-Specific Extension to the
MIPS32® Architecture, MIPS Document Number: MD00376

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 ¦ǎƛƴƎ ǘƘŜ aLt{онϯ опYϯ /ƻǊŜ tŜǊŦƻǊƳŀƴŎŜ /ƻǳƴǘŜǊǎΣ wŜǾƛǎƛƻƴΥ лмΦлм

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

