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Abstract 
 
The digital revolution has been characterized by an explosion of new applications that take 
advantage of today’s high-speed broadband architecture.  These include applications such as HD 
video streaming, gaming, VPN, social media, cloud computing and storage, and machine-to-machine 
(M2M) communications between embedded devices across both wired and wireless networks.  
Productivity and consumer entertainment has never been higher with these new applications, but 
this era has brought with it an increased risk of security compromises including piracy, IP theft and 
espionage, credit fraud and identity theft, and homeland security breaches, to name a few.  Security 
has therefore come to the forefront of embedded system design.   
 
Static-based approaches for embedded system security which define secure and non-secure zones 
by partitioning separate hardware subsystems for each zone have been effective so far.  However, 
more scalable and cost-effective approaches are required to address the needs of newer devices 
running multiple applications over several secure zones.  This paper examines the use of 
virtualization for creating the requisite scalable trusted execution environment for secure 
embedded systems.  It also provides an overview of MIPS’ existing and forthcoming solutions for 
virtualization-based security. 

1 The Need for Better Security in Connected Embedded Devices 
 
Throughout the evolution of the internet, we have seen ongoing innovation as new services and 
applications drive growth in network capacity, and the resulting excess capacity then spurns the 
development of new services and applications.  This trend continues in alternating cycles. It was 
only a few years ago that the telecom industry was talking about the “bandwidth glut” and the lack 
of the killer app that could consume the tremendous unused capacity in dark fiber.  These 
discussions are well behind us, and we are clearly once again in the “services driving bandwidth 
growth” phase, with a plethora of killer apps including video on demand, network gaming, video 
conferencing, e-commerce, telecommuting, cloud storage, social media and others.  Broadband 
connections to the home have risen dramatically, and the number of connected devices, including 
smart phones, tablets, gateways and set top boxes (STBs), continues to grow at a blistering pace.  
Adding to this evolution and bandwidth consumption will be connected cars and the “internet of 
things” where even municipal and industrial machines will be increasingly connected to ubiquitous 
broadband IP networks. 
 
With this growth in the number of applications and connected devices comes a need for increased 
security.  Security related concerns are skyrocketing among service providers, consumers and even 
governments as usage increases.  Digital Rights Management (DRM) is a critical concern for film and 
TV studios in protecting their content from piracy—a problem that already leads to billions of dollars 
in losses every year.  Traditional STBs have been the primary means for delivering video to 
consumers, but the risks have increased with more people streaming video to their smart phones, 
tablets, gaming systems and non-traditional over-the-top (OTT) STBs, which connect directly to 
broadband links.   
 

 
 

 
 

Page  3 
 



 

Telecommuting has also increased with the availability of fat pipes on both wired and wireless 
broadband connections, which make working from home practically seamless from an IT standpoint.  
Several enterprises even support the use of mobile enterprise applications deployed on remote 
laptops or tablets.  Obviously, the risk of the leak of confidential enterprise information is 
heightened as users mix work and personal use on their connected devices.  We are also seeing 
increased deployment of smart gateways, which provide not only a broadband connection for the 
consumer, but also provide utility information—such as gas and electricity consumption—to a public 
utility company.   
 
Governments are increasingly concerned about homeland security, as would-be hackers may be 
able to access public utility IT systems if the customer premise equipment (CPE) is not secure.  There 
are many other examples, but the point is that there has never been more risk for compromised 
security than today, with the widespread use of connected devices.  Therefore, embedded devices 
must be able to effectively and reliably isolate secure applications from non-secure applications 
while meeting the appropriate levels of functionality, performance, cost, and power consumption. 
 

2 A Generalized Framework for Embedded Security and Common SoC 
Implementation 

 
Many of today’s SoCs used in connected embedded devices are designed to implement some kind of 
security framework, like that shown in Figure 1. This section describes each key element of a secure 
SoC. 
 

 
Figure 1 – Generalized framework for a secure SoC 
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Secure boot:   The secure boot is the so-called “root of trust” which is intended to be tamper proof.  
It is typically implemented as a read-only memory (ROM), which holds the initial boot code loaded 
upon device reset.  Once the root of trust is up, it authenticates the signature of a boot loader for 
the main software bundle, then loads the signature upon positive authentication.  For example, in 
an STB, all of the software, encrypted with a private key, may be bundled into a flash device.  This 
software is loaded only after it has been validated by the secure boot using the public key stored in 
the one-time programmable (OTP) memory on the SoC.  What follows next is a hierarchical loading 
and verification process for firmware, trusted execution software, operating system and application 
software, where the lower layers are loaded and then authenticate the layers above them.   
 
Secure Key Storage:  This refers to the OTP area where secure assets such as public keys and any 
other keys for DRM are typically stored.  For example, a video-on-demand application such as Netflix 
might store its public key in the OTP to decrypt the content.  Secure boot and secure key storage are 
the first things you will need in order to create a secure SoC. 
 
Trusted Execution Environment:  After the boot loader has been successfully loaded and 
authenticated, a software layer called the Trusted Execution Environment (TEE) is loaded.  The TEE 
manages and controls access to  a set of lower-level software modules that together allow for a 
secure environment.  These sub-modules include secure keys, secure data paths, secure update, and 
secure debug.  The TEE, which allocates resources and prevents non-secure applications from 
accessing secure blocks, is essentially the gatekeeper to the underlying hardware resources.  For 
example, the TEE in an STB would be responsible for ensuring that non-authorized applications don’t 
access key assets such as video codecs or locations in memory that may hold unencrypted secure 
information.  
 
Secure Data Path:  Secure data path is the sub-entity that ensures high-value assets such as codecs 
are only accessed by authorized entities.   
 
Secure Update:  This is the entity that allows for secure updating of system software by 
authenticating and managing any software update request from the upper layers.   
Secure Debug:  The secure debug module ensures that the JTAG ports are secured against 
unauthorized access.  Usage of the JTAG ports may implement an authentication system such as 
passcodes.  
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From an implementation standpoint, many SoCs implement a static, dual-processor system similar 
to that shown in Figure 2. 
 
 

 
Figure 2:  SoC subsystem implementing static security 

 
In such an implementation, one processor subsystem resides in the non-secure zone and another 
processor is used for the secure zone workloads.  Located in the secure zone are all the secure 
assets such as the codecs, crypto engine, secure memory, OTP, boot ROM, and secured debug port.  
The non-secure zone would be running the non-secure system OS and application software.  Static 
security implementations are common today and provide a high level of security.  Many safety-
critical applications, such as avionics, implement static security SoC subsystems because of this. 
 

3 The Scalability Challenge and Virtualization as the Solution 
 
The approach of leveraging more CPUs to implement additional secure zones is a workable solution. 
However, it is not the most cost- and power-effective way to address the matter, since it means that 
more secure zones are needed in a single device.  In mobile devices, the ability to address security 
while keeping down power consumption and cost is of the highest priority.  Therefore, it is critical to 
use a solution which scales the number of secure zones in an embedded system in a manner that is 
not excessive in terms of power and area.  This is where virtualization fits in. 
 
Virtualization is a technique for creating multiple, secure execution environments for guest 
operating systems and applications over a common shared hardware resource such as a CPU 
subsystem.  Figure 3 is a diagram that shows a generic virtualized system.  The core element is the 
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hypervisor, which is a small body of code that sits above the hardware, and serves as the trusted 
execution environment.  It manages the privileged resources by defining access policies for each 
execution environment.  This effectively allows for the creation of multiple logical execution 
environments called Virtual Machines.   
 
A hierarchy of memory management units (MMUs) is used for the isolation of applications, 
operating systems and the hypervisor.  Specifically, a Guest MMU is managed by the Guest OS to 
isolate guest applications/users while a Root MMU is managed by the hypervisor to isolate Guest 
OSes.  Only the hypervisor is allowed to interact with secure code.   
 

   
Figure 3 – Virtualization components  

 
In addition to security, virtualization also allows for increased system reliability.  Because of the 
isolation between virtual machines or zones, the other operating systems and applications in one 
virtual machine can continue to run even if another virtual machine crashes in the same hypervisor 
entity.  Another noteworthy point about virtualized systems is that there is no need to address all 
security holes of a big OS and/or multiple OSes as long as the hypervisor is secure.  This reduces the 
number of potential breaking points, and hence reduces concerns for the system designer. 
 
There are different ways to implement a virtualized system.  One approach is called Trap and 
Emulate, which implements unmodified OSes on top of a hypervisor.  This requires minimal design 
effort to implement on existing CPUs, but delivers very low performance.  A higher-performance 
approach is called para-virtualization.  Para-virtualization improves performance by optimizing the 
interaction of the OS and the hypervisor.  There is reasonable effort required to customize the OSes, 
but this allows for better performance and can also be used in existing CPUs.  Para-virtualization is a 
reasonable approach for retrofitting a scalable security solution into deployed embedded systems 
that are not due for additional hardware updates but require a trusted execution environment.  A 
third approach is hardware-assisted virtualization, which delivers increased virtualized system 
performance through changes in the CPU architecture, without requiring any changes to the guest 
operating systems. 
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Using virtualization, a dynamic secure system could be created as shown in Figure 4.  The biggest 
difference versus a static system is the elimination of the second CPU.  The non-secure zone and the 
secure zone are now implemented in two virtual machines running on the same CPU (on the left 
side of the diagram).  The assets within the secure zone block are still secured, but access to these 
assets is now managed by the hypervisor, which acts as the trusted execution environment.  Only 
the application(s) which are granted access to the secure resources by the hypervisor can actually 
get to them.  By using only one CPU instead of two, designers can save area and power.  Multiple 
secure zones can be implemented in the CPU as needed via virtual machines.  Additional cores can 
be added as needed to accommodate other zones, or to boost performance.  However, a single CPU 
may provide sufficient horsepower depending on the application. 
 

 
Figure 4 – Dynamic security system using virtualization 

 
As an example, an SoC for an Android tablet might look like the functional subsystem shown in 
Figure 5a.  Since there is only one CPU, a hypervisor is needed to ensure that unauthorized 
applications do not access the secure assets in the secure zone.  Figure 5b shows how the 
applications and guest operating systems could be mapped to virtual machines running on the 
hypervisor.  A video-on-demand application like Netflix running on an Android OS could be mapped 
to the first, non-secure virtual machine.  To protect secure assets—such as the crypto engine and 
keys—from being accessed by unauthorized guests, a second virtual machine could be instantiated 
to run the DRM scheme plus a security client, which serves as a mailbox to the non-secure side. 
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Figure 5a – Tablet SoC with hypervisor-based TEE 
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Figure 5b –Virtual machine application mapping for a tablet SoC 

 
To further highlight virtualization’s breadth of use in securing embedded applications, we can also 
look at the emerging smart gateway, which serves as the hub for connected smart home 
applications. As the gateway increases its intelligence and connectivity to critical network resources 
such as those within utility companies, it becomes even more important to have a trusted execution 
environment in the residential gateway SoC. An example residential gateway CPU subsystem is 
shown in Figure 6a.  Figure 6b demonstrates how a first virtual machine could run the smart home 
application software plus the residential gateway software on the non-secure side.  A second virtual 
machine could be used to run the smart home security application and the security client.   
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Figure 6a – Smart gateway SoC with hypervisor-based TEE 
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Figure 6b – Virtual machine application mapping for smart gateway SoC 

4 MIPS Virtualization Support 
 
Para-virtualization Solutions 
Customers looking to implement para-virtualization on MIPS devices can utilize hypervisors from 
third party partners such as SYSGO AG, now part of Thales Group.  Hypervisors such as SYSGO’s 
PikeOS perform a baseline set of functions as well as value-added functions including hardware 
abstraction, inter-partition communication, module configuration, resource and time partitioning, 
and health monitoring. MIPS partners also make available popular operating systems that have been 
optimized to work with hypervisors. Para-virtualization is an excellent option for existing SoCs that 
may need to be retrofitted with cost-effective security mechanism that could be deployed quickly. 
 
MIPS Release 5 Architecture with Hardware-Assisted Virtualization 
With the demand for secure solutions, and corresponding use of virtualization solutions expected to 
increase, MIPS has implemented hardware-assisted virtualization support in its Release 5 
architecture. The MIPS Virtualization (VZ) module is a highly-scalable option that provides a number 
of capabilities, including enhanced security features and support for multiple operating systems. The 
MIPS VZ module is a simple and flexible hardware-based solution that satisfies varied security 
requirements with limited or no performance impact. A complementary whitepaper which describes 
the Virtualization features of the Release 5 architecture in more detail is also available on the MIPS 
website for download. 
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5 Summary 
 
Today’s connected embedded devices are highly-integrated and are capable of simultaneously 
supporting a multitude of applications. These applications have enhanced the consumer’s 
entertainment experience and work productivity with an anytime and anywhere usage scheme, but 
with that has come the exponentially increased threat of security compromises. Requirements for 
SoC security have also escalated to meet the challenge, but scaling the security capabilities while 
managing cost and power consumption is key.  
 
Virtualization is beginning to emerge as a viable, cost- and power-efficient solution for creating 
trusted execution environments in secure SoCs for connected applications. Virtualization has been 
widely deployed in PC/server systems, with a focus on maximizing server utilization and reducing 
OpEx. However, only recently have we seen it deployed in security for consumer-class embedded 
systems.  
 
MIPS believes the usage of virtualization will increase substantially in the future with even more 
connected device types and applications. In support of this vision, MIPS Technologies delivers a 
complete range of virtualization solutions. This includes hardware-assisted virtualization with the  
Release 5 architecture and para-virtualization through third party partners. Learn more by 
downloading the Release 5 specification and MIPS Virtualization white paper. Contact MIPS to 
discuss options for virtualization-based security in your secure SoC design. 
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