

Using Virtualization to Implement a

Scalable Trusted Execution
Environment in Secure SoCs

Document Number: MD00993
Revision 01.00

December 3, 2012

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 Page 2

Abstract

The digital revolution has been characterized by an explosion of new applications that take
advantage of today’s high-speed broadband architecture. These include applications such as HD
video streaming, gaming, VPN, social media, cloud computing and storage, and machine-to-machine
(M2M) communications between embedded devices across both wired and wireless networks.
Productivity and consumer entertainment has never been higher with these new applications, but
this era has brought with it an increased risk of security compromises including piracy, IP theft and
espionage, credit fraud and identity theft, and homeland security breaches, to name a few. Security
has therefore come to the forefront of embedded system design.

Static-based approaches for embedded system security which define secure and non-secure zones
by partitioning separate hardware subsystems for each zone have been effective so far. However,
more scalable and cost-effective approaches are required to address the needs of newer devices
running multiple applications over several secure zones. This paper examines the use of
virtualization for creating the requisite scalable trusted execution environment for secure
embedded systems. It also provides an overview of MIPS’ existing and forthcoming solutions for
virtualization-based security.

1 The Need for Better Security in Connected Embedded Devices

Throughout the evolution of the internet, we have seen ongoing innovation as new services and
applications drive growth in network capacity, and the resulting excess capacity then spurns the
development of new services and applications. This trend continues in alternating cycles. It was
only a few years ago that the telecom industry was talking about the “bandwidth glut” and the lack
of the killer app that could consume the tremendous unused capacity in dark fiber. These
discussions are well behind us, and we are clearly once again in the “services driving bandwidth
growth” phase, with a plethora of killer apps including video on demand, network gaming, video
conferencing, e-commerce, telecommuting, cloud storage, social media and others. Broadband
connections to the home have risen dramatically, and the number of connected devices, including
smart phones, tablets, gateways and set top boxes (STBs), continues to grow at a blistering pace.
Adding to this evolution and bandwidth consumption will be connected cars and the “internet of
things” where even municipal and industrial machines will be increasingly connected to ubiquitous
broadband IP networks.

With this growth in the number of applications and connected devices comes a need for increased
security. Security related concerns are skyrocketing among service providers, consumers and even
governments as usage increases. Digital Rights Management (DRM) is a critical concern for film and
TV studios in protecting their content from piracy—a problem that already leads to billions of dollars
in losses every year. Traditional STBs have been the primary means for delivering video to
consumers, but the risks have increased with more people streaming video to their smart phones,
tablets, gaming systems and non-traditional over-the-top (OTT) STBs, which connect directly to
broadband links.

Page 3

Telecommuting has also increased with the availability of fat pipes on both wired and wireless
broadband connections, which make working from home practically seamless from an IT standpoint.
Several enterprises even support the use of mobile enterprise applications deployed on remote
laptops or tablets. Obviously, the risk of the leak of confidential enterprise information is
heightened as users mix work and personal use on their connected devices. We are also seeing
increased deployment of smart gateways, which provide not only a broadband connection for the
consumer, but also provide utility information—such as gas and electricity consumption—to a public
utility company.

Governments are increasingly concerned about homeland security, as would-be hackers may be
able to access public utility IT systems if the customer premise equipment (CPE) is not secure. There
are many other examples, but the point is that there has never been more risk for compromised
security than today, with the widespread use of connected devices. Therefore, embedded devices
must be able to effectively and reliably isolate secure applications from non-secure applications
while meeting the appropriate levels of functionality, performance, cost, and power consumption.

2 A Generalized Framework for Embedded Security and Common SoC
Implementation

Many of today’s SoCs used in connected embedded devices are designed to implement some kind of
security framework, like that shown in Figure 1. This section describes each key element of a secure
SoC.

Figure 1 – Generalized framework for a secure SoC

Page 4

Secure boot: The secure boot is the so-called “root of trust” which is intended to be tamper proof.
It is typically implemented as a read-only memory (ROM), which holds the initial boot code loaded
upon device reset. Once the root of trust is up, it authenticates the signature of a boot loader for
the main software bundle, then loads the signature upon positive authentication. For example, in
an STB, all of the software, encrypted with a private key, may be bundled into a flash device. This
software is loaded only after it has been validated by the secure boot using the public key stored in
the one-time programmable (OTP) memory on the SoC. What follows next is a hierarchical loading
and verification process for firmware, trusted execution software, operating system and application
software, where the lower layers are loaded and then authenticate the layers above them.

Secure Key Storage: This refers to the OTP area where secure assets such as public keys and any
other keys for DRM are typically stored. For example, a video-on-demand application such as Netflix
might store its public key in the OTP to decrypt the content. Secure boot and secure key storage are
the first things you will need in order to create a secure SoC.

Trusted Execution Environment: After the boot loader has been successfully loaded and
authenticated, a software layer called the Trusted Execution Environment (TEE) is loaded. The TEE
manages and controls access to a set of lower-level software modules that together allow for a
secure environment. These sub-modules include secure keys, secure data paths, secure update, and
secure debug. The TEE, which allocates resources and prevents non-secure applications from
accessing secure blocks, is essentially the gatekeeper to the underlying hardware resources. For
example, the TEE in an STB would be responsible for ensuring that non-authorized applications don’t
access key assets such as video codecs or locations in memory that may hold unencrypted secure
information.

Secure Data Path: Secure data path is the sub-entity that ensures high-value assets such as codecs
are only accessed by authorized entities.

Secure Update: This is the entity that allows for secure updating of system software by
authenticating and managing any software update request from the upper layers.
Secure Debug: The secure debug module ensures that the JTAG ports are secured against
unauthorized access. Usage of the JTAG ports may implement an authentication system such as
passcodes.

Page 5

From an implementation standpoint, many SoCs implement a static, dual-processor system similar
to that shown in Figure 2.

Figure 2: SoC subsystem implementing static security

In such an implementation, one processor subsystem resides in the non-secure zone and another
processor is used for the secure zone workloads. Located in the secure zone are all the secure
assets such as the codecs, crypto engine, secure memory, OTP, boot ROM, and secured debug port.
The non-secure zone would be running the non-secure system OS and application software. Static
security implementations are common today and provide a high level of security. Many safety-
critical applications, such as avionics, implement static security SoC subsystems because of this.

3 The Scalability Challenge and Virtualization as the Solution

The approach of leveraging more CPUs to implement additional secure zones is a workable solution.
However, it is not the most cost- and power-effective way to address the matter, since it means that
more secure zones are needed in a single device. In mobile devices, the ability to address security
while keeping down power consumption and cost is of the highest priority. Therefore, it is critical to
use a solution which scales the number of secure zones in an embedded system in a manner that is
not excessive in terms of power and area. This is where virtualization fits in.

Virtualization is a technique for creating multiple, secure execution environments for guest
operating systems and applications over a common shared hardware resource such as a CPU
subsystem. Figure 3 is a diagram that shows a generic virtualized system. The core element is the

Page 6

hypervisor, which is a small body of code that sits above the hardware, and serves as the trusted
execution environment. It manages the privileged resources by defining access policies for each
execution environment. This effectively allows for the creation of multiple logical execution
environments called Virtual Machines.

A hierarchy of memory management units (MMUs) is used for the isolation of applications,
operating systems and the hypervisor. Specifically, a Guest MMU is managed by the Guest OS to
isolate guest applications/users while a Root MMU is managed by the hypervisor to isolate Guest
OSes. Only the hypervisor is allowed to interact with secure code.

Figure 3 – Virtualization components

In addition to security, virtualization also allows for increased system reliability. Because of the
isolation between virtual machines or zones, the other operating systems and applications in one
virtual machine can continue to run even if another virtual machine crashes in the same hypervisor
entity. Another noteworthy point about virtualized systems is that there is no need to address all
security holes of a big OS and/or multiple OSes as long as the hypervisor is secure. This reduces the
number of potential breaking points, and hence reduces concerns for the system designer.

There are different ways to implement a virtualized system. One approach is called Trap and
Emulate, which implements unmodified OSes on top of a hypervisor. This requires minimal design
effort to implement on existing CPUs, but delivers very low performance. A higher-performance
approach is called para-virtualization. Para-virtualization improves performance by optimizing the
interaction of the OS and the hypervisor. There is reasonable effort required to customize the OSes,
but this allows for better performance and can also be used in existing CPUs. Para-virtualization is a
reasonable approach for retrofitting a scalable security solution into deployed embedded systems
that are not due for additional hardware updates but require a trusted execution environment. A
third approach is hardware-assisted virtualization, which delivers increased virtualized system
performance through changes in the CPU architecture, without requiring any changes to the guest
operating systems.

Page 7

Using virtualization, a dynamic secure system could be created as shown in Figure 4. The biggest
difference versus a static system is the elimination of the second CPU. The non-secure zone and the
secure zone are now implemented in two virtual machines running on the same CPU (on the left
side of the diagram). The assets within the secure zone block are still secured, but access to these
assets is now managed by the hypervisor, which acts as the trusted execution environment. Only
the application(s) which are granted access to the secure resources by the hypervisor can actually
get to them. By using only one CPU instead of two, designers can save area and power. Multiple
secure zones can be implemented in the CPU as needed via virtual machines. Additional cores can
be added as needed to accommodate other zones, or to boost performance. However, a single CPU
may provide sufficient horsepower depending on the application.

Figure 4 – Dynamic security system using virtualization

As an example, an SoC for an Android tablet might look like the functional subsystem shown in
Figure 5a. Since there is only one CPU, a hypervisor is needed to ensure that unauthorized
applications do not access the secure assets in the secure zone. Figure 5b shows how the
applications and guest operating systems could be mapped to virtual machines running on the
hypervisor. A video-on-demand application like Netflix running on an Android OS could be mapped
to the first, non-secure virtual machine. To protect secure assets—such as the crypto engine and
keys—from being accessed by unauthorized guests, a second virtual machine could be instantiated
to run the DRM scheme plus a security client, which serves as a mailbox to the non-secure side.

Page 8

Figure 5a – Tablet SoC with hypervisor-based TEE

Page 9

Figure 5b –Virtual machine application mapping for a tablet SoC

To further highlight virtualization’s breadth of use in securing embedded applications, we can also
look at the emerging smart gateway, which serves as the hub for connected smart home
applications. As the gateway increases its intelligence and connectivity to critical network resources
such as those within utility companies, it becomes even more important to have a trusted execution
environment in the residential gateway SoC. An example residential gateway CPU subsystem is
shown in Figure 6a. Figure 6b demonstrates how a first virtual machine could run the smart home
application software plus the residential gateway software on the non-secure side. A second virtual
machine could be used to run the smart home security application and the security client.

Page 10

Figure 6a – Smart gateway SoC with hypervisor-based TEE

Page 11

Figure 6b – Virtual machine application mapping for smart gateway SoC

4 MIPS Virtualization Support

Para-virtualization Solutions
Customers looking to implement para-virtualization on MIPS devices can utilize hypervisors from
third party partners such as SYSGO AG, now part of Thales Group. Hypervisors such as SYSGO’s
PikeOS perform a baseline set of functions as well as value-added functions including hardware
abstraction, inter-partition communication, module configuration, resource and time partitioning,
and health monitoring. MIPS partners also make available popular operating systems that have been
optimized to work with hypervisors. Para-virtualization is an excellent option for existing SoCs that
may need to be retrofitted with cost-effective security mechanism that could be deployed quickly.

MIPS Release 5 Architecture with Hardware-Assisted Virtualization
With the demand for secure solutions, and corresponding use of virtualization solutions expected to
increase, MIPS has implemented hardware-assisted virtualization support in its Release 5
architecture. The MIPS Virtualization (VZ) module is a highly-scalable option that provides a number
of capabilities, including enhanced security features and support for multiple operating systems. The
MIPS VZ module is a simple and flexible hardware-based solution that satisfies varied security
requirements with limited or no performance impact. A complementary whitepaper which describes
the Virtualization features of the Release 5 architecture in more detail is also available on the MIPS
website for download.

Page 12

5 Summary

Today’s connected embedded devices are highly-integrated and are capable of simultaneously
supporting a multitude of applications. These applications have enhanced the consumer’s
entertainment experience and work productivity with an anytime and anywhere usage scheme, but
with that has come the exponentially increased threat of security compromises. Requirements for
SoC security have also escalated to meet the challenge, but scaling the security capabilities while
managing cost and power consumption is key.

Virtualization is beginning to emerge as a viable, cost- and power-efficient solution for creating
trusted execution environments in secure SoCs for connected applications. Virtualization has been
widely deployed in PC/server systems, with a focus on maximizing server utilization and reducing
OpEx. However, only recently have we seen it deployed in security for consumer-class embedded
systems.

MIPS believes the usage of virtualization will increase substantially in the future with even more
connected device types and applications. In support of this vision, MIPS Technologies delivers a
complete range of virtualization solutions. This includes hardware-assisted virtualization with the
Release 5 architecture and para-virtualization through third party partners. Learn more by
downloading the Release 5 specification and MIPS Virtualization white paper. Contact MIPS to
discuss options for virtualization-based security in your secure SoC design.

Page 13

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

