
A Code Motion Technique forA Code Motion Technique for
Scheduling Bottleneck ResourcesScheduling Bottleneck Resources

Efi Fogel
Immersia Ltd. Tel-Aviv, Israel
SGI, Mountain View, California
efi@immersia.com

James C. Dehnert
SGI, Mountain View, California

dehnert@sgi.com

IntroductionIntroduction

• Motivation
• Problem Statement
• Background
• Transformation
• Example
• Conclusions

O0: V1 = P0 + 1
O1: V2 = V1 * 2
O2: dtn = V2 + 3
O3: V4 = dtn * 4
O4: dtn = P1 * 5
O5: V6 = dtn + 6
O6: V7 = V6 * 7
O7: V8 = V7 + 8

O4: dtn = P1 * 5
O5: V6 = dtn + 6
O6: V7 = V6 * 7
O7: V8 = V7 + 8
O0: V1 = P0 + 1
O1: V2 = V1 * 2
O2: dtn = V2 + 3
O3: V4 = dtn * 4

MotivationMotivation
Code Motion that increases ILP

O0: V1 = P0 + 1
O1: V2 = V1 * 2
O2: dtn = V2 + 3
O3: V4 = dtn * 4
O4: dtn = P1 * 5
O5: V6 = dtn + 6
O6: V7 = V6 * 7
O7: V8 = V7 + 8

MotivationMotivation
Code Motion that increases ILP

O0

O1

O2

O3

O4

O5

O6

O7

Yellow arcs: input dependences; Red arcs: anti-dependences

O4: dtn = P1 * 5
O5: V6 = dtn + 6
O6: V7 = V6 * 7
O7: V8 = V7 + 8
O0: V1 = P0 + 1
O1: V2 = V1 * 2
O2: dtn = V2 + 3
O3: V4 = dtn * 4

MotivationMotivation
Code Motion that increases ILP

O0

O1

O2

O3

O4

O5

O6

O7

Red arcs: anti-dependences, Yellow arcs: input dependences

Problem StatementProblem Statement

Temporary NameTemporary Name - an operand, a pseudo-register, or a literal
value.

Dedicated Temporary Name - a TN that must be assigned a
particular physical register (cannot be renamed).

Bottleneck Resource - a DTN.

Cluster - a subsequence of operations for a particular live range
for a particular bottleneck resource, that has anti-dependences
only across its boundaries with respect to the bottleneck resource.

Terms & Definitions

Problem StatementProblem Statement
Find the best order of clusters within a basic block

Excluded clusters:
• Associated resource is live into the BB (definitions in

predecessor BBs).
• Associated resource is live out of the BB (usages in

successor BBs).
• Associated resource is volatile (e.g. output ports to the

next processing stage in the GE11).

BackgroundBackground

A special-purpose VLIW SIMD processor.
The geometry processing units of the SGI Impact™ and

the RealityEngine™ graphics subsystem employ 2 and
8 GE11 processors respectively working in parallel as a
MIMD architecture.

Each GE11 consists of 3 cores working in parallel as a
SIMD architecture.

Each core consists of special CPUs, register files, and
local memories.

The GE11 has several bottleneck resources.

The GE11 microprocessor

BackgroundBackground

• Retargetable - separation of general purpose and target
specific, table driven.

• Efficient generated code - high quality instruction scheduler.

• Global register allocation.
• Convenient programming - C-like language with special

features for close control of machine resources.

• Fast compilation.

The GE11 compiler objectives

BackgroundBackground

• Front End
• Global live range analysis
• Code expansion
• Scheduling preparation

– Variable renaming
– Dead code removal
– Cluster reordering
– Critical path analysis

• Scheduling
• Register Allocation
• Code emission

The GE11 compiler architecture
Source code

IR code

CGIR code

Machine code

Front end

Scheduling preparation
Scheduling
Register allocation
Code emission

Global live range analysis
Code expansion

BackgroundBackground

Unaware of any published approach to this specific
problem.

Related problem for non-dedicated temporary names has
been widely approached by renaming live ranges prior
to scheduling to remove problematic anti-dependences.

Previous Work

TransformationTransformation
Critical Path Analysis

Earliest Start (estart) - A node
attribute. The length of the longest path
to the root nodes in units of latencies.

Latest Start (lstart) - A node attribute.
The difference between the length of the
longest path and the length of the longest
path to the leaf nodes in units of
latencies.

7,7

D0

U0

D1

1,1

U1

2,2

3,3

4,4

5,5

6,6

4,7

0,0

Yellow arcs: input dependences; Red arcs: anti-dependences
Orange text: <estart,lstart>

TransformationTransformation
Modified Critical Path Analysis

Earliest Cycle (ecycle) - A node
attribute. Like estart, but ignoring anti-
dependence arcs between clusters that
might be reordered (not volatile, not
live-in, not live-out clusters).

Latest Cycle (lcycle) - A node
attribute. Like lstart, but ignoring anti-
dependence arcs as above.

3,4

D0

U0

D1

1,1

U1

2,2

3,3

0,1

1,2

2,3

4,4

0,0

Yellow arcs: input dependences; Red arcs: anti-dependences
Orange text: <ecycle,lcycle>

TransformationTransformation
The potential Function

potential(arc) = earlyDiff(arc) + lateDiff(arc)

potential(G) = potential(arc)
arc ∈ arcSet

earlyDiff (arc) = ecycle(op1) - max(ecycle(defOp0))
defOp0 ∈ defSet(op0,tn)

lateDiff (arc) = min(lcycle(useOp1)) - lcycle(Op0)
useOp1 ∈ useSet(op1,tn)

op0 = tail(arc)
op1 = head(arc)

TransformationTransformation
The potential Function

3,4

D0

U0

D1

1,1

U1

2,2

3,3

0,1

1,2

2,3

4,4

0,0

-3

potential(arc) = earlyDiff + lateDiff
 = (-2) + (-1) = -3

earlyDiff = ecycle(D1) - ecycle(D0)
 = 0 - 2 = -2

lateDiff = lcycle(U1) - lcycle(U0)
 = 2 - 3 = -1

U0 = tail(arc)
D1 = head(arc)

TransformationTransformation
Local Inversion - primitive transformation

D00

U0

D1

U10

D01

U11

D00

U0

D1

U10

D01

U11

D00

U0

D1

U10

D01

U11

D00: Dtn = op0();

U0 : op1(dtn);

D1 : dtn = op2();

U10: op3(dtn);

Inversion of the order of two clusters in the DDG.

D1 : dtn = op2();

U10: op3(dtn);

D00: Dtn = op0();

U0 : op1(dtn);

TransformationTransformation
Global Inversion - compound transformation

D0

U0

D1

U1

D2

U2

-1

-1

-2

D0

U0

D1

U1

D2

U2

-1

-1

2

D0

U0

D1

U1

D2

U2

-1

1

2

D0

U0

D1

U1

D2

U2

1

1

2

The composite effect of a sequence of local inversions.
• No circularity remains in the DDG.
• Total change in potential of local inversions is positive.

TransformationTransformation
The Optimization
Operates on input DDG, G, and a set of DTNs, arcSet.
• Preparation

– Remove output dependences.
– Add anti-dependences (complete transitive closure of initial set).

• Optimization
– Perform Modified Critical Path Analysis
– Calculate Potential(G).
– Repeatedly attempt global inversion on lowest-potential

candidate, using a priority queue.

• Restoration
– Insert output dependences.
– Remove redundant anti-dependences.

ExampleExample

D0

U0

D1

0,0

U1

D2

U2

1,1

2,2

0,1

1,2

-1

-2

-1
0,0

1,1

2,2

D0

U0

D1

0,0 U1

D2

U2

1,1

2,2

0,1

1,2

2

0,0

1,1

2,2

1

1

Yellow arcs: input dependences; Red arcs: anti-dependences
White text: arc potential; Orange text: <ecycle,lcycle>

ConclusionsConclusions

The provision of an optimization algorithm that exploits
instruction level parallelism, where automatic code
motion is achieved through graph transformation.

• A very common data structure used -- dependence graph
• Does not depend on any other component of a compiler in

general or scheduler in particular.
• Applicable to most architecture, and is not target specific (except

in identifying the bottleneck resources).
• Eliminates the need for manual code motion (if applicable at all).
• Used as part of an operational compiler, with up to 2x speedup.
• Its computational complexity does not create a bottleneck.

Main Results

ConclusionsConclusions
Future work
Use a less greedy algorithm. We currently identify the

local inversions one at a time (could lead to a dead end).
• Identify all arcs between 2 clusters. Then, invert them at once.
• Identify optimal partial order on clusters. Then, reorder the

clusters at once.

Improve the potential function. We currently assume
unlimited parallel resources.

• Take in account other constraints that must be satisfied.

