
Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 13 -

A Code Motion Technique for Scheduling Bottleneck Resources

Efraim Fogel, Immersia Ltd., and James C. Dehnert, SGI, Inc.

Abstract

 Most microprocessors have resources that may
become bottlenecks for scheduling. If such a
resource is explicitly referenced in the instruction
set architecture, anti-dependences between
producer-consumer instruction sequences in the
data dependence graph (DDG) derived from the
original program order may result in
unnecessary and costly constraints on
scheduling.

We describe a transformation of the data
dependence graph which identifies clusters of
instructions that define and then use such
bottleneck resources, and then reorders these
producer-consumer instruction sequences in the
DDG, replacing the original anti-dependence
arcs by less constraining ones. This shortens
critical paths, improving the achievable schedule
length.

This technique has been implemented as part of a
compiler for a C-like programming language that
was used to generate production microcode for
the GE11, a special-purpose VLIW SIMD
graphics processor used in the geometry
processing units of the Silicon Graphics
IMPACT™ and RealityEngine™ graphics
subsystems1. It produced improvement in most
cases, ranging up to 2x speedups.

1999, Efraim Fogel and James C. Dehnert.

Most of this work was done while the first author was
at SGI, Inc. Current addresses are: Efraim Fogel,
Immersia, Tel-Aviv, Israel; email efi@immersia.com;
James C. Dehnert , m/s 178, SGI, 1600 Amphitheatre
Pkwy., Mountain View, CA; dehnertj@acm.org.
1 IMPACT™ and RealityEngine™ are trademarks of
Silicon Graphics, Inc.

1 Introduction

1.1 Motivation

It is common for a microprocessor
architecture to include unique resources, such
as special-purpose registers, even when the
architecture supports extensive instruction-
level parallelism (ILP). When such resources
are referenced explicitly in the instruction
set, defined by one instruction and used by a
subsequent instruction, they can become a
serious scheduling constraint. For example,
consider the C code fragment:

int i,j,k,l,m,n;
i = (i+j)*k;
l = m*n;

On the MIPS architecture, which writes
multiply/divide results to dedicated registers
named hi/lo, straightforward compilation
would produce the following code:

1) add rt = ri+rj
2) mul hi,lo = rt*rk

implicit hi/lo results
3) mflo ri = lo

implicit lo operand
4) mul hi,lo = rm*rn

implicit hi/lo results
5) mflo rl = lo

implicit lo operand

Normal data dependence analysis will
identify true input dependences in the
instruction sequences (1)->(2)->(3) and (4)->(5).
In addition, since (3) uses lo and (4) defines it
again, it will identify an anti-dependence
(3)->(4), fully sequentializing the code. This
is not, however, an optimal dependence
graph. Since the second multiply doesn’t
depend on an earlier add, a better DDG on a

Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 14 -

machine with ILP has arcs (1)->(2) and
(4)->(5)->(2)->(3). This situation is similar to
the artificial scheduling constraints
introduced by allocating registers before
scheduling, but the use of a unique dedicated
resource prevents the use of methods like
later allocation or register renaming typically
applied to that problem. We will call such
unique dedicated resources bottleneck
resources.

1.2 Previous Work

We are unaware of any published approach
to this specific problem. The related problem
for non-dedicated registers has been widely
approached by renaming live ranges prior to
scheduling to remove the problematic anti-
dependences, e.g. in [DeTo93].

For instance, if a particular expression is
calculated and used multiple times, rather
than assigning it to a single pseudo-register
everywhere it is referenced, each new
calculation with its associated uses is
assigned to a new pseudo-register. Because
the pseudo-registers are different, the
definitions are not connected by anti-
dependence arcs in the DDG, allowing the
distinct values to be scheduled in any order
or even in parallel.

This produces an optimally unconstrained
DDG for this typical case, but because of the
uniqueness of bottleneck resources, it does
not work for them. In particular, distinct
values cannot coexist in a unique register, so
all uses of one must be scheduled before the
next definition. This means we must seek a
way to allow optimal reordering while
preventing the parallel scheduling that
renaming would permit.

The remainder of this paper is organized as
follows. In Section 2, we describe features
of the GE11 graphics processor that
motivated this work and relevant features of
the compiler in which it was implemented,

followed by a concrete example. In Section
3, we describe the transformation we
implemented. Finally, in Section 4 we
comment on our results and summarize.

2 Preliminaries

2.1 GE11 Graphics Processor

The Silicon Graphics GE11 graphics
processor was designed as the geometry
processing unit for a pair of high-
performance graphics subsystems. The
IMPACT™ mid-range graphics subsystem
employs two GE11 processors, while the
RealityEngine™ high-end graphics
subsystem employs eight, working in parallel
as a MIMD system.

Each GE11 is itself a 3-way SIMD processor,
with three processing cores consisting of
CPUs, register files, and local memories,
executing a single instruction stream under
an execution mask and sharing some memory
and register resources. Its architecture is
tailored to its graphics processing purpose,
with special-purpose registers, buses, and
memories, all explicitly controlled by a
VLIW instruction set. As a result, the GE11
has several bottleneck resources, making
their effective scheduling both more difficult
and more important.

For instance, consider memory. The GE11
has three memory component types on chip,
called wramf, cramf, and eramf. A value is
read from memory in two steps, first sending
an address to the memory, and then reading
the result from a special staging register
associated with the memory. For example,
the code to read a value at the address in
register a1 from wramf and multiply it by
another value in register ry might be as
follows:

WRDF = wramf(a1, 0);
T1 = mul (ry, WRDF);

Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 15 -

Here, the first statement sends the address to
wramf, causing it to be loaded into load
staging register WRDF, and the second
statement references WRDF as an operand in
a multiply instruction.

Similarly, stores to eramf and cramf use the
staging register ECDF. Data is first copied to
ECDF, and then a store instruction specifies
the address to which it is stored. Thus,
storing the contents of register ry to the
eramf address in a1 would be done as
follows:

ECDF = copy(ry);
eramf(a1, 0) = ECDF;

Each of the memory staging registers is a
bottleneck resource. The cramf and eramf
memories are shared by all three core
processing units; wramf and the staging
registers are all replicated, with one copy per
core. The full set is:

• cramf: loads staged through CRDF; stores
through ECDF.

• eramf: loads staged through CRDF; stores
through ECDF.

• wramf: loads staged through CRDF or
WRDF; stores direct (not staged).

2.2 The GE11 Compiler

The work described in this paper is
implemented in a compiler produced for the
GE11 graphics processor. As a custom-
designed embedded processor, its
architecture is significantly different from
any other processor designed before or since
at Silicon Graphics. Nevertheless, the
compiler is intended to be very retargetable,
based on tables describing the target
architecture. It was derived from a compiler
for an earlier Silicon Graphics
microprocessor, and has been retargeted to
the GE11’s successor graphics engine.

The objective of the compiler was to replace
hand-scheduled assembly code for the

graphics microcode. The approach was to
implement a high-level substitute for
assembly language, which allows close
control of machine features, while relieving
the user of responsibility for the complexities
of code scheduling and register allocation.

To this end, we defined a language similar to
C but much simpler, with special features
allowing the programmer direct access to
machine features. It has built-in names for
the special architectural registers, e.g. CRDF
for the load staging register; it allocates all
variables to registers and allows the
programmer to specify a particular register;
and it has special control constructs for
handling the SIMD execute-under-mask
capabilities. Effort is focused on a high-
quality instruction scheduler similar to that in
the Cydrome compiler [DeTo93], and a
global register allocator. It does not support
direct memory allocation or a stack; nor does
it perform traditional global optimizations.
The result is a model requiring that program
functionality be specified at a low level, but
eliminating most of the tedium of instruction
scheduling and register allocation, both of
which are very complex on the GE11.

The instruction scheduler works on an
intermediate representation of the program
that consists of a flowgraph of extended
basic blocks (BBs), single-entry, multiple-
exit sequences of operations. An operation is
an assembly-level operator with some
number of operands and results, each of
which is a Temporary Name (TN), i.e. a
pseudo-register, or a literal value. In cases
where a particular physical register must be
used, a Dedicated TN (DTN) associated with
that register is used. DTN usage may result
from explicit references in the source code,
or from translating higher-level constructs to
operation sequences which must use specific
DTNs. These DTNs represent the bottleneck
resources with which we are concerned.

Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 16 -

Figure 1: Initial Data Dependence Graph

Prior to scheduling, the compiler performs
renaming of non-dedicated TNs and a
variety of local optimizations like copy
propagation and dead code removal. It then
builds a data dependence graph (DDG, see
[Towle76] and [KKPLW81]) for each BB.
The nodes of this graph are the operations,
and the arcs represent ordering constraints
between the operations connected. Data
dependence arcs connect operations that both
reference the same pseudo-register, or TN,
and their significance differs depending on
the kind of references. Input dependences
constrain a use to follow the operation
producing the value. Output dependences
enforce the order of multiple definitions of
the same TN. Anti-dependences require a
later definition of a TN to follow a use of an
earlier definition. This is the structure
manipulated by the algorithm described in
this paper, and then processed by the
instruction scheduler. Although there are
cross-BB interactions, we will assume in this
paper that a single extended basic block is
being scheduled.

Bottleneck resources are a problem because
they introduce anti-dependences into the
DDG that prevent an optimal ordering of
definitions and uses of the bottleneck
resource during scheduling. Those anti-
dependence arcs in the DDG also make it
easy to recognize potential problems, so our
solution is implemented after construction of
the DDG. Critical path analysis of the DDG
also provides a means of evaluating the
benefit of a transformation without full
scheduling: if a transformation decreases the
length of the critical path through the block,
it is likely beneficial. We chose not to
implement a solution in the scheduler proper,
preferring to keep the scheduler simpler by
keeping it independent of program
transformations.

2.3 Example

For illustration of the later discussion, we
present an example here. Suppose we are
compiling the statement pair:

x4 = cramf((base+i1)*2) * 4;
y8 = ((wramf(ay) * 4) + i7) * 8;

Then the pseudo-assembly code might be as
follows:

1) t1 = base + i1
2) a2 = t1 * 2
3) CRDF = cramf(a2,0)
4) x4 = CRDF * 4
5) CRDF = wramf(ay,0)
6) y4 = CRDF * 4
7) t7 = y4 + i7
8) y8 = t7 * 8

The DDG for this code fragment is given in
Figure 1, with solid arrows for input
dependence arcs, and dashed arrows for anti-
dependence arcs. For reasons explained
later, we ignore output dependences.

If we assume for simplicity that all latencies
are 1 cycle, then the critical path to node 8 is
7 cycles. As we shall see later, this can be

8

1

2

3

4

5

6

7

Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 17 -

cut to 3 cycles by reordering the uses of
CRDF.

3 The Inversion
Transformations

3.1 Preparation

The data dependence graph in the GE11
compiler consists of a node for each
operation in the BB, plus dummy START and
STOP nodes. Each dependence is represented
by an arc between the nodes representing the
operations involved, decorated with the
latency required to satisfy the dependence,
and the kind of dependence. We will
sometimes write an arc as op1->op2 where the
tail of the arc, op1, must precede the head of
the arc, op2, by at least the latency decorating
the arc. In addition to normal data
dependences, arcs in the DDG also represent
other constraints, such as the requirement
that an operation be executed before or after
a call or other branch. Finally, the START
node is made a predecessor of all nodes with
no other predecessors, and the STOP node a
successor of all nodes with no other
successors.

References to bottleneck resource DTNs are
identified, and divided into live ranges of the
DTN, i.e. all operations that either define the
value of the DTN or use the value later.
Although this set normally contains one
definition and one or more uses, the SIMD
features of the GE11 processor sometimes
result in multiple definitions for a single live
range. We call this set of operations for a
particular live range a cluster. An operation
op and a DTN tn determine the associated
cluster, which we denote cluster(op,tn).
Further, we denote the subsets of operations
defining and using the DTN in a cluster C by
defSet(C,tn) and useSet(C,tn) respectively,
or, if op is one of the operations in C, by
defSet(op,tn) and useSet(op,tn) respectively.

A cluster with definitions in predecessor BBs
(i.e. the resource is live into the BB) must be
scheduled first, and a cluster with references
in successor BBs (i.e. the resource is live out
of the BB) must be scheduled last. Clusters
associated with volatile DTNs (e.g. output
ports to the next processing stage in the
GE11) are also excluded from reordering.
Our algorithm may reorder the other clusters.

In our example, the clusters are pairs that
define and then use the DTN for CRDF: {3,4}
and {5,6}. All three clusters may be
reordered.

Critical path analysis is performed on the
DDG by a straightforward two-phase
algorithm. The first phase calculates the
earliest start cycle (estart), starting by
initializing it to zero for all nodes. We
repeatedly choose a node N for which all
predecessors in the DDG have been
processed (starting with the START node), and
set the estart of each successor M to the
maximum of estart(N)+latency(N,M) and the
previous value of estart(M). Once we have
calculated estart(STOP), the second phase
calculates the latest start cycle (lstart),
starting by initializing it to estart(STOP) for
all nodes. We repeatedly choose a node N
for which all successors in the DDG have
been processed (starting with the STOP node),
and set the lstart of each predecessor M to
the minimum of lstart(N)-latency(M, N) and
the previous value of lstart(M). This
calculation gives us a best-case estimate of
the length of the BB’s schedule (i.e.
estart(STOP)), and identifies critical path
operations as those for which estart(N) =
lstart(N).

In addition to the normal critical path
analysis, we do a modified analysis to
identify candidates for transformation. All
output and anti-dependence arcs associated
with bottleneck DTNs are identified, and
anti-dependences between clusters that might
be reordered (i.e. not volatile, live-in, or live-

Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 18 -

out clusters) are ignored. Based on this
modified DDG, new estart and lstart
functions are calculated, which we call ecycle
and lcycle.

In our example, the critical path analysis
yields the values given in the following table.
Note that all of the nodes are on the critical
path. In calculating ecycle/lcycle, we ignore
the anti-dependence arcs given as dotted
lines in Figure 1.

Table 1: Critical Path Analysis

op estart lstart ecycle lcycle

START 0 0 0 0
1 0 0 0 0
2 1 1 1 1
3 2 2 2 2
4 3 3 3 3
5 4 4 0 0
6 5 5 1 1
7 6 6 2 2
8 7 7 3 3

STOP 7 7 3 3

3.2 The potential Function

This modified DDG reflects scheduling
constraints ignoring the artificial ones
imposed by the DTN anti-dependences.
Intuitively, we expect the best schedule to
result from an ordering of the clusters which
matches their ecycle/lcycle order in this
DDG. That is, if the defSet operations of
cluster2 have later ecycles than those of
cluster1, and the useSet operations of cluster2

have later lcycles than those of cluster1, then
we would expect the best schedules to result
from an anti-dependence arc from cluster1 to
cluster2 rather than the opposite. Therefore,
we define a potential function which reflects
this objective, and our algorithm attempts to
maximize its value on the DDG by
reordering clusters.

Specifically, given an anti-dependence arc
op1->op2 associated with DTN tn, we define
potential(arc) as follows.

Given the potential function on arcs, we
define the potential function on the full DDG
G as follows. Let arcSet be the set of all
anti-dependence arcs associated with
bottleneck DTNs with head and tail in
different clusters. Then:

In applying the potential function to our
example, we find one anti-dependence arcs
associated with the DTN for CRDF: (4)->(5).
The results of the analysis are given in the
following table:

Table 2 : potential Analysis

arc earlyDiff lateDiff potential

 (4)->(5) -2 -2 -4

3.3 Local Inversion

The primitive transformation of our
algorithm, which we call local inversion,
inverts the order of two clusters in the DDG.
More precisely, suppose we have a DTN tn,
and an anti-dependence arc op1->op2

associated with tn connecting operations op1

in cluster C1 and op2 in C2, where neither C1

nor C2 is volatile or is required to be first or
last in the BB. Then local inversion of the arc
op1->op2 removes it, and replaces it with arcs
in the opposite direction, i.e. with anti-
dependence arcs from ops in useSet(C2,tn) to
ops in defSet(C1,tn). (As explained later, we
have no DTN output dependence arcs
between clusters at this point.)

potential(G) = ∑ potential(arc)
arc ∈ arcSet

earlyDiff(arc) = cycle(op2) – MAX { ecycle(o) }
o in defSet(op1,tn)

lateDiff(arc) = MIN { lcycle(o) } – lcycle(op1)
o in useSet(op2,tn)

potential(arc) = earlyDiff(arc) + lateDiff(arc)

Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 19 -

Figure 2: Inverted Data Dependence Graph

In accordance with the intuition described
above, we expect a local inversion to be
beneficial if the new arcs have higher
potential than the old arcs they replace, i.e. if
potential(G) is increased by the inversion.

In our example, suppose we choose to invert
the anti-dependence arc, (4)->(5). That
involves removing it, and adding a new anti-
dependence arc (6)->(3). Since the anti-
dependence arcs are not considered in the
ecycle/lcycle calculations, they are not
redone, and the potential calculation for our
new arc yields earlyDiff = 2, lateDiff =2, and
potential = 4. We expect the increase in
potential to produce an improvement, and
indeed, if we recalculate estart/lstart, we now
find that the estart of the STOP node is now 4
instead of 8. Since there are critical paths of
length 4 containing only input dependence
arcs, we can do no better. The modified data
dependence graph is shown in Figure 2.

3.4 Global Inversion

Unfortunately, the legality and benefit of a
local inversion cannot always be evaluated in
isolation. The main problem is that an
individual local inversion may introduce a
cycle in the DDG, because other
dependences in the graph require the original
ordering. Nor is it simply a matter of
performing the local inversions in the right
order. It is possible to have some pairs of
clusters for different DTNs which must be
scheduled together (e.g. because they share

an operation), where two such pairs may be
inverted but inverting just the clusters for
either of the DTNs yields a cyclic (and
therefore unschedulable) DDG.

To solve this problem, we embed local
inversion steps in a more comprehensive
heuristic called global inversion. After
inverting a candidate arc op1->op2, global
inversion checks for introduced circularity by
checking for a path from defSet(op1,tn) back
to useSet(op2,tn). If such a path is found, it
identifies the lowest-potential anti-
dependence arc on the path from arcSet, that
is not already the result of the current global
inversion, and inverts it. This procedure is
repeated until one of three things occurs:

• No circularity remains in the DDG, and
the total change in potential of the local
inversions is positive. In this case, the
transformation is applied.

• No further arcs remain as candidates for
inversion, but circularity has not been
eliminated. In this case, the entire
sequence of local inversions is
abandoned.

• At some intermediate step, the total
change in potential of the local inversions
falls below a threshold. We currently set
the threshold to 0, but it could be
negative to allow trial sequences with
intermediate steps that are not beneficial.
In this case too, the global inversion is
abandoned.

3.5 Optimization

We can now describe the full optimization
process in terms of the above components. It
operates on an input DDG and a set of
DTNs. A preparation phase removes output
dependence arcs between the DTNs (because
they are not useful at this stage and can be
easily regenerated later), and adds new anti-
dependence arcs between the DTNs,

1

2

3

4 8

5

6

7

Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 20 -

completing the transitive closure of the initial
set.

The optimization phase identifies the anti-
dependence arcs which are candidates for
inversion, calculates ecycle/lcycle values (i.e.
the modified critical path analysis that
ignores them, which is described above), and
calculates the potential of each of the
candidate anti-dependence arcs. It then
repeatedly attempts global inversion on the
lowest-potential candidate arc using a
priority queue, removing arcs attempted or
removed by successful inversions, and
adding new arcs created by successful
inversions, until the queue is empty.

Finally, the restoration phase inserts output
dependence arcs between the clusters (based
on the new ordering), and removes the
redundant anti-dependence arcs inserted
during preparation.

4 Conclusions

4.1 Summary

The optimization technique described in this
paper is applicable to most architectures, and
is not target-specific except in the
identification of the bottleneck resources to
be treated. It will be most useful for
architectures with frequent use of such
resources, and for application areas where
complex algebraic expressions provide
extensive opportunity for instruction level
parallelism through instruction scheduling.
Special-purpose media processors and their
applications often match this profile quite
well.

Our target application, microcode
implementing geometry processing for a
graphics subsystem, was an excellent match,
particularly because bottleneck resources
were used for all memory references. We did
not do a careful performance study, but the
overall performance improvement was

approximately 10-20%, and we saw doubling
of speed in individual functions, with a
reasonable cost in compilation time. Since
this optimization was implemented after
much of the microcode had been written,
many of the critical instances had already
been hand-optimized, so these numbers
understate the likely benefit if the
optimization were present from the
beginning.

4.2 Ideas for Future Work

There are several possible improvements to
our heuristics that might be tried.

In local inversion, we replace only the arc
being inverted. If there are multiple arcs
between the clusters involved, that will
necessarily leave a cycle to be removed by
global inversion. It is probably more
efficient to identify and invert all of the arcs
between the two clusters at once.

We currently identify the local inversions
that make up a global inversion one at a time.
This is very simple to implement, but it does
lead to dead ends. It might be more effective
to first identify the partial order on clusters
imposed by input dependences, and then
attempt only reordering consistent with that
partial order.

Acknowledgments

Ross Towle produced the original compiler
front end. The SGI IMPACT™ and
RealityEngine™ microcode development
teams were tremendously helpful in
identifying opportunities and problems.

References

 [DeTo93] J.C. Dehnert and R.A. Towle, “Compiling
for the Cydra 5,” The Journal of Supercomputing
7(1/2), 1993, pp. 181-227.

[KKPLW81] D.J. Kuck, R.H. Kuhn, D.A. Padua, B.
Leasure, and M.Wolfe, “Dependence Graphs
and Compiler Optimizations,” Proceedings of the

Proceedings of the 1st Workshop on Media Processors and DSPs, Haifa, Israel 15 November 1999

- 21 -

8th ACM Symposium on Principles of
Programming Languages, 26-28 January 1981,
pp. 207-218.

[Tarjan81] Robert Endre Tarjan, “Fast Algorithms for
Solving Path Problems,” JACM 28(3), July
1981, pp. 591-642.

[Towle76] Ross A. Towle, “Control and Data
Dependence for Program Transformations,”
Ph.D. Thesis, Dept. of Computer Science, Univ.
of Illinois at Champaign-Urbana, March 1976.

